三角形全等课件
发布时间:2023-06-22 三角形全等课件 全等课件三角形全等课件。
常言道,优秀的人都是有自己的事先计划。幼儿园教师在平时的学习工作中,都会提前准备很多资料。资料的定义比较广,可以指生活学习资料。参考资料可以促进我们的学习工作效率的提升。那么,你知道幼师资料的主要内容是什么吗?下面是小编帮大家整理的三角形全等课件,希望能为你提供更多的参考。
三角形全等课件 篇1
教材内容分析:
本节课内容是全章学习的开篇课,也是本章学习的主线,主要介绍全等三角形的概念和性质。通过对生活中的全等图形和抽象的几何图形的观察,使学生对全等有一个感性的认识,建立对应的概念,掌握寻找全等三角形中对应元素的方法,理解全等三角形的性质,为学习判定两个三角形全等以及第十六章轴对称图形提供了必要的理论基础。
全等三角形中严密的对应关系能够锻炼学生的观察力和推理能力,对它的深入研究有助于学生理解数学的本质,提升思维水平。
教学目标:
1.了解全等形、全等三角形的概念;理解全等三角形的性质; 2.能够准确找出全等三角形的对应元素,逐步培养学生的识图能力;
3.让学生通过观察生活中的全等形和动手操作获得全等三角形的体验,在探究和运用全等三角形性质的过程中感受到数学活动的乐趣。
教学重难点及突破:
重点:全等三角形的.概练和性质;
难点:能在全等变换中准确找到对应角、对应边。
教学突破:通过生活中的实例观察、感受全等形和全等三角形,动手操作、合作交流,亲身体验创造全等三角形,加深全等三角形的有关概念的理解。
教学准备:
1.教师准备:多媒体课件、剪刀、白纸等; 2.学生准备:白纸、剪刀等。
教学流程:创设情境,引入新知→合作交流,探索新知→手脑并用,理解新知→合作交流,应用新知→课堂练习,巩固新知→师生互动,小结新知。
教学过程设计:
一、创设情境,引入新课。
1、与学生谈话,努力走近学生之中。
2、游戏情景,引入新课出示课件:大家来找茬游戏
引导:
1、观察两副图形在形状、大小、位置方面的共同点
2、两副图形形状、大小若相同该如何检验?
引导:什么样的图形叫做全等形?
定义:能够完全重合的两个图形叫做全等形;列举生活中的实例(一百元人民币)感知全等形。
二、合作交流,探索新知。
1、手脑并用,感受新知
用剪刀在一张纸上剪出两个形状、大小完全一样的三角形,引出全等三角形教学。
2、观察诱导,探究新知。 (1)全等三角形相关概念
引导观察:课件操作演示两个三角形完全重合。引导学生类比得出全等三角形定义;
中国人民邮政
能够完全重合的两个三角形叫做全等三角形引导学生概括对应顶点、对应边、对应角定义;
全等三角形中,互相重合的顶点叫对应顶点.互相重合的边叫对应边.互相重合的角叫对应角。
(2)全等三角形的表达式
引导学生书写全等三角形的表达式:△ABC≌△DEF,读作:△ABC全等于△DEF。
温馨提示:
①记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上。 ②全等符号“≌”中“∽”表示形状相同,“=”表示大小相等,合起来就是形状相同、大小相等,即全等。
引导学生感悟:三角形全等表达式充分体现出数学的秩序性和精确性,使用规范的表达式将有助于解决相关的问题
(3)全等三角形性质
引导学生观察并概括全等三角形性质
全等三角形的性质:全等三角形的对应边相等,对应角相等。用几何语言表达全等三角形性质:∵△ABC≌△DEF(已知) ∴AB=DE,AC=DF,BC=EF;
∠A=∠D,∠B=∠E,∠C=∠F(全等三角形的对应边相等,对应角相等)
3、合作交流,探究新知(1)手脑并用,体验新知
利用刚才剪下的两个全等三角形,在课桌上摆出不同形状的图形,再与同伴合作交流,探究如何通过操作其中一个三角形使它们再次重合?
通过课件展示引导学生理解只要两个三角形的形状大小相同,不管位置怎样变化,都能通过平移旋转翻折的方式使之重合。
(2)观察交流,探究新知
引导学生观察,交流探索规律。在全等三角形中,一般是:1.有公共边,则公共边为对应边; 2.有公共角,则公共角为对应角;
3.最大边与最大边(最小边与最小边)为对应边;最大角与最大角(最小角与最小角)为对应角;
引导学生观察,交流发现规律。
针对所得的对应角、对应边情况引导学生总结:规范地写出全等三角形表达式具有重要的意义,根据表达式中字母的对应情况就能够,准确判断出全等三角形的对应顶点、对应边、对应角。
三、合作交流,应用新知。
例:如图,△ABO≌△DCO,指出所有的对应边和对应角。
解:∵△ABO≌△DCO (已知) ∴AB=DC,BO=CO,AO=DO (全等三角形的对应边相等)
∠A=∠D,∠ABO=∠DCO,∠AOB=∠DOC (全等三角形的对应角相等)变式:若上图中△ABC≌△DCB,试写出这两个三角形中相等的边和相等的角。
解:∵△ABC≌△DCB (已知) ∴AB=DC,BC=CB,AC=BD (全等三角形的对应边相等)
∠A=∠ D,∠ABC=∠DCB,∠ACB=∠DBC (全等三角形的对应角相等)
四、课堂练习,巩固新知。
(1)如图,△ABD≌△EBC,AB=3cm,BC=5cm,求DE的长.
解:∵△ABD≌△EBC,且AB=3cm,BC=5cm (已知)
∴AB=EB=3cm,BC=BD=5cm (全等三角形的对应边相等) ∴DE=BD-EB=5-3=2cm
(2)如图,已知△ABC≌△ADE,想一想: ∠ BAD= ∠ CAE吗?为什么?
解:相等,
∵△ABC≌△ADE(已知) ∴∠BAC=∠DAE(全等三角形对应角相等) ∴∠BAC—∠DAC=∠DAE—∠DAC(等式性质)即∠BAC=∠DAE
五、师生互动,小结新知。
学习了这堂课你有哪些收获?并把它与同伴一起分享。
1、全等形的定义:能够完全重合的两个图形,叫做全等形。
2、全等三角形的定义:能够完全重合的两个三角形叫做全等三角形。
3、全等三角形的性质:全等三角形对应边相等,对应角相等。
4、寻找全等三角形的对应边、对应角得规律。 (1)观察图形特点;
(2)观察表达式(对应关系)
六、布置作业。
课本P92习题15.1,第
2、4题。
七、教后感
······
板书设计:
15.1全等三角形
定义:
表示性质:
(学生板书)
三角形全等课件 篇2
教材分析:
《三角形全等复习课内容》选用义务教育课程标准实验教材《数学》(华师大版)九年级上册,三角形全等是初中数学中重要的学习内容之一。本套教材把三角形全等看作是三角形相似的特殊情况,同时三角形全等的概念,三角形全等的识别方法,与命题与证明,尺规作图几部分内容相互联系紧密,尤其是尺规作图中作法的合理性和正确性的解释依赖于全等知识。本章中三角形全等的识别方法的给出都通过学生画图、讨论、交流、比较得出,注重学生实际操作能力,为培养学生参与意识和创新意识提供了机会。
设计理念:
针对教材内容和初三学生的实际情况,组织学生通过摆拼全等三角形和探求全等三角形的活动,让学生感悟到图形全等与平移、旋转、对称之间的关系,并通过学生动手操作,让学生掌握全等三角形的一些基本形式,在探求全等三角形的过程中,做到有的放矢。然后利用角平分线为对称轴来画全等三角形的方法来解决实际问题,从而达到会辨、会找、会用全等三角形知识的目的。
教学目标:
1、通过全等三角形的概念和识别方法的复习,让学生体会辨别、探寻、运用全等三角形的一般方法,体会主动实验,探究新知的方法。
2、培养学生观察和理解能力,几何语言的叙述能力及运用全等知识解决实际问题的能力。
3、在学生操作过程中,激发学生学习的兴趣,培养学生主动探索,敢于实践的精神,培养学生之间合作交流的习惯。
教学的重点和难点:
重点:运用全等三角形的识别方法来探寻三角形以及运用全等三角形的知识解决实际问题。
难点:运用全等三角形知识来解决实际问题。
教学过程设计:
一、创设问题情境:
某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块形状完全相同的玻璃,那么你认为它应保留哪一块?(教师用多媒体)
师:请同学们先独立思考,然后小组交流意见
生:…………
师:上述问题实质是判断三角形全等需要什么条件的问题。
今天我们这节课来复习全等三角形。(引出课题)。
师:识别三角形及等的方法有哪些?
生:SAS 、 SSS、 ASA、 AAS 、 HL。
复习回顾:练习1、将两根钢条AA/、BB/中点O连在一起,使AA/、BB/绕着点O自由转动,做成一个测量工具,则A/B/的长等于内槽宽AB,判定△OAB≌△OA/B/现由( )
练习2、已知AB//DE,且AB=DE,
(1)请你只添加一个条件,使△ABC≌△DEF,
你添加的条件是
(2)添加条件后,证明△ABC≌△DEF?
[根据不同的添加条件,要求学生能够叙述三角形全等的条件和全等的现由,鼓励学生大胆的表述意见]
二、探求新知:
师:请同学们将两张纸叠起来,剪下两个全等三角形,然后将叠合的两个三角形纸片放在桌面上,从平移、旋转、对称几个方面进行摆放,看看两个三角形有一些怎样的特殊位置关系?
请同组合作,交流,并把有代表性的摆放进行投影。
熟记全等三角形的基本形式,为探求全等三角形打下基础,提醒学生注意两个全等三角形的对应边和对应角。学生的摆放形式很多,包括那些平时数学成绩不好的学生也跃跃欲试,教师给予肯定和鼓励激发他们学习的积极性和主动性。
例1、一张矩形纸片沿着对角线剪开,得到两张三角形纸片ABC、DEF,再将这两张三角形纸片摆成右图的形式,使点B、F、C、D处在同一条直线上,P、M、N为其他直线的交点。
(1)求证:AB⊥ED
(2)若PB=BC,请找出右图中全等三角形,并给予证明。
用多媒体演示图形的变化过程。
师:图3中AB与ED有怎样的位置关系?同学生猜想一下结果。
生甲:AB垂直ED
师:为什么?可以从几方面来考虑?
生乙:可以从图形运动变化的过程来考虑
生丙:可以考虑全等在已知条件下,显然有△ABC≌△DEF,故∠A=∠D,又∠ANP=∠DNC,所以,∠APN=∠DCN=900,即AB⊥ED。
(根据学生的回答,教师板演)
师:若PB=BC,找出右图中全等三角形,看看谁能找得最快?
生丁:△PBD≌△CBA(ASA)
师:板演,由AB⊥ED,可得到∠BPD=900,∠BPD=∠CBA,∠A=∠D,PB=BC,故有△PBD≌△CBA(ASA)。
师:还有其他三角形全等吗?
生:有,我连接BN,由勾股定理得PN=CN,就不难得到△APN≌△DCN。
(在错综复杂的图形中寻找全等三角形是一件不容易的事,要鼓励学生大胆的猜想,努力探求,在学生的叙述过程中,教师及时纠正学生叙述中的错误,训练学生严谨的学习态度和学习习惯。)
例2、(动手画)(1)已知OP为∠AOB平分线,请你利用该图画一对以OP所在直线为对称轴的全等三角形。
教师在黑板上画好∠AOB和直线OP,学生独立思考,然后请几个学生在黑板上演示。
师生总结:想要画出符合条件的三角形,只要在射线OA、OB上找到一对关于OP对称的点就可以了。
(2)利用上图作全等三角形方法,在△ABC中,∠B=600,∠ABC是直角,AD、CE是∠BAC,∠DCA的平分线,AD、CE相交于F,请判断FE与FD间数量关系。
师:请同学们用三角尺和量角器准确画出此图,然后量出EF、FD的长度,看看EF与FD长度
关系如何?
生:基本相等。
生:长度相等。
师:如何来证明他们相等?注意审题。
学生先独立思考后,组内交流,等到有同学举手发言。
生:在AC上取点H,使AH=AE,则△AEF≌△AHF则EF=FH
师:为什么要这么做?你是怎么想到的?
生:因为要证明线段相等要考虑三角形全等,而EF、FD所在两个三角形显然不全等,又AD是平分线,在AC上找出E关于AD有对称点H得到△AEF≌△AHF。
师:这样只能得到EF=FH。
生:再证明△FHC≌△FDC。
生:先求出AD、CE是角平分线∠APC=1200,则∠DPC=∠EPA=∠APH=600,所以∠HPC=
∠DPC=600,PC=PC,∠3=∠4,因为△HCP≌△DCP(ASA)所以PD=PH。YjS21.CoM
(看清题意,猜想结果是解决探究题的重要环节,教师要留给学生一定思考时间,同时鼓励学生尝试和交流,鼓励学生勇于探索以及同学之间的合作。)
师生共同小结:
1、熟记全等三角形的基本形态,会找全等三角形的对应边和对应角。
2、在错综复杂的几何图形中能够寻找全等三角形。
3、利用角平分线的对称性构造三角形全等,并利用三角形的全等性质解决线段之间的等量关系。
4、运用全等三角形的识别法可以解决很多生活实际问题。
作业:
1、在例2中,如果∠ACB不是直角,而(1)中的其他条件不变,请问:你在(1)中所得结论能成立吗?若成立,请证明,若不成立,请说明理由。
2、书本课后复习题
教学反思:
本教学设计从以下三方面考虑:
1、根据学生的学习情况,改进学生的学习方式,强调合作交流,探索学习,教师在教学过程中,努力为学生创设自主探索的氛围,让学生真正成为课堂主体。
2、重视对学生能力的培养,除常规的鼓励就大胆思考,积极发言,重视培养学生观察、操作、测试、思考的能力,学生的活跃,他们思考问题的方式是多种多样,教师从对完全更改,尊重他们的学习方式,这样有助于创新
3、重视对学生学习习惯的培养,全等三角形是几何部分内容说明书,有较强逻辑性,教师板演,以及在学生叙述中纠正学生的错误,是培养学生养成良好的习惯之一,同时学生学习习惯多方面的,在合作交流中,培养学生合作意识和合作习惯培养显得尤为重要。
三角形全等课件 篇3
(一) 本节内容在教材中的地位与作用。
对于全等三角形的研究,实际是平面几何中对封闭的两个图形关系研究的第一步。它是两三角形间最简单、最常见的关系。本节《探索三角形全等的条件》是学生在认识三角形的基础上,在了解全等图形与全等三角形以后进行学习的,它既是前面所学知识的延伸与拓展,又是后继学习探索相似形的条件的基础,并且是用以说明线段相等、两角相等的重要依据。因此,本节课的知识具有承上启下的作用。同时,苏科版教材将“边角边”这一识别方法作为五个基本事实之一,说明本节的内容对学生学习几何说理来说具有举足轻重的作用。
在本课的教学中,不仅要让学生学会“边角边”这一全等三角形的识别方法,更主要地是要让学生掌握研究问题的方法,初步领悟分类讨论的数学思想。同时,还要让学生感受到数学来源于生活,又服务于生活的基本事实,从而激发学生学习数学的兴趣。为此,我确立如下教学目标:
(1)经历探索三角形全等条件的过程,体会分析问题的方法,积累数学活动的经验。
(2)掌握“边角边”这一三角形全等的识别方法,并能利用这些条件判别两个三角形是否全等,解决一些简单的实际问题。
(3)培养学生勇于探索、团结协作的`精神。
由于本节课是第一次探索三角形全等的条件,故我确立了以“探究全等三角形的必要条件的个数及探究边角边这一识别方法作为教学的重点,而将其发现过程以及边边角的辨析作为教学的难点。同时,我将采用让学生动手操作、合作探究、媒体演示的方式以及渗透分类讨论的数学思想方法教学来突出重点、突破难点。
(四)教学具准备,教具:相关多媒体课件;学具:剪刀、纸片、直尺。画有相关图片的作业纸。
本节课主要是“边角边”这一基本事实的发现,故我在课堂教学中将尽量为学生提供“做中学”的时空,让学生进行小组合作学习,在“做”的过程中潜移默化地渗透分类讨论的数学思想方法,遵循“教是为了不教”的原则,让学生自得知识、自寻方法、自觅规律、自悟原理。
首先,我出示一个实际问题:
问题:皮皮公司接到一批三角形架的加工任务,客户的要求是所有的三角形必须全等。质检部门为了使产品顺利过关,提出了明确的要求:要逐一检查三角形的三条边、三个角是不是都相等。技术科的毛毛提出了质疑:分别检查三条边、三个角这6个数据固然可以。但为了提高我们的效率,是不是可以找到一个更优化的方法,只量一个数据可以吗?两个呢?……
然后,教师提出问题:毛毛已提出了这么一个设想,同学们是否可以与毛毛一起来攻克这个难题呢?
这样设计的目的是既交代了本节课要研究与学习的主要问题,又能较好地激发学生求知与探索的欲望,同时也为本节课的教学做好了铺垫。
数学教学的本质就是数学活动的教学,为此,本节课我设计了下列活动,旨在让学生通过动手操作、合作探究来揭示“边角边”判定三角形全等这一知识的产生过程。
活动一:让学生通过画图或者举例说明,只量一个数据,即一条边或一个角不能判断两个三角形全等。
活动二:让学生就测量两个数据展开讨论。先让学生分析有几种情况:即边边、边角、角角。再由各小组自行探索。同样可以让学生举反例说明,也可以通过画图说明。
活动三:在两个条件不能判定的基础上,只能再添加一个条件。先让学生讨论分几种情况,教师在启发学生有序思考,避免漏解。
教师提出3个角不能判定两三角形全等,实质我们已经讨论过了。明确今天的任务:讨论两条边一个角是否可以判定两三角形全等。师生再共同探讨两边一角又分为两边一夹角与两边一对角两种情况。
活动四:讨论第一种情况:各小组每人用一张长方形纸剪一个直角三角形(只用直尺与剪刀),怎样才能使各小组内部剪下的直角三角形都全等呢?主要是让学生体验研究问题通常可以先从特殊情况考虑,再延伸到一般情况。
活动五:出示课本上的3幅图,让学生通过观察、进行猜想,再测量或剪下来验证。并说说全等的图形之间有什么共同点。
活动六:小组竞赛:每人画一个三角形,其中一个角是30°,有两条边分别是7cm、5cm,看哪组先完成,并且小组内是全等的。这样既调动了学生的积极性,又便于发现边角边的识别方法。
最后教师再用几何画板演示,学生进行观察、比较后,师生共同分析、归纳出“边角边”这一识别方法。
若有小组画成边边角的形式,则顺势引出下面的探究活动。否则提出:若两个三角形有两条边及其中一边的对角对应相等,则这两个三角形一定全等吗?
活动七:在给出的画有的图上,让学生自主探究(其中另一条边为5cm),看画出的三角形是否一定全等。让学生在给出的图上研究是为了减小探索的麻木性。
教师用几何画板演示,让学生在辨析中再次认识边角边。同时完成课后练习第一题。
例题教学是课堂教学的一个重要环节,因此,怎样充分地发挥好例题的教学功能是十分重要的。为此,我将充分利用好这道例题,培养学生有条理的说理能力,同时,通过对例题的变式与引伸培养学生发散思维能力。
首先,我将出示课本例1,并设计下列系列问题,让学生一步一步地走向“知识获得与应用”的理想彼岸。
问题1: 请说说本例已知了哪些条件,还差一个什么条件,怎么办?(让学生学会找隐含条件)。
问题2: 你能用“因为……根据……所以……”的表达形式说说本题的说理过程吗?
这样设计的目的在于体现“数学教学不仅仅是数学知识的教学,更重要的发展学生数学思维的教学”这一思想。
在例题教学的基础上,为了及时的反馈教学效果,也为提高学生知识应用的水平,达到及时巩固的目的,我设计了如下两个练习:
(1) 基础知识应用。完成教材P139练一练2。
(四)课堂小结,建立知识体系。
(1) 本节课你有哪些收获:重点是将研究问题的方法进行一次梳理,对边角边的识别方法进行一次回顾。
(2) 你还有哪些疑问?
三角形全等课件 篇4
教学目标:
1、能根据方向与距离确定两地的相对位置,描述从一个地方到另一个地方的具体路线。
2、能正确运用所学知识准确地说出来去某个地方所走的路线,能与实际生活联系起来进行学习。
3、养成尊敬老人的传统美德。
教学重点:学会看简单地图上的路线图。
教学难点:
能用准确的语言描述从一个地方到另一个地方的具体路线。
教学设计:
(一)、情境创设:
师:首先请大家唱首歌:《让座》。
师:刚才我们唱的这首歌讲的是什么:叔叔给我们让座我们可以说是爱护儿童也就是爱幼的行为。那我们给婆婆让座是什么行为呢?预设(生:尊敬老人。)
师:对!尊敬老人是中华民族的传统美德。那我问问大家:重阳节这天,小红、小明和小刚三个好朋友约好去敬老院看望老人。(板书:看望老人)但三个小伙伴不认识路,他们手中只有一副地图,这可难住了三个小伙伴。大家能帮帮他们吗?老师把三个小伙伴去敬老院的路线图带来了。(课件出示主题图)看看你能从图中看懂什么?
(二)、探索新知:
1、观察路线图,学会从中获取信息。
说一说,在图中你获得了哪些数学信息?
你知道图上的符号表示什么意思?那些数又表示什么?图中的每一小段表示什么呢?
2、解决问题:
小红现在要去敬老院,她应该怎样走?敬老院与邮局都在小红家的西边,怎么区分敬老院与邮局的不同位置呢?你能用准确的语言描述吗?
请你说一说小明怎样走才能到敬老院?小刚呢?
①
请你思考后与你的同桌说一说“三个小朋友分别从自己家出发,怎样走才能到敬老院?”
出示课本第62面的“填一填”:三个小朋友分别从自己家出发。
小红向()走()米到敬老院;
小明向()走()米,再向()走()米到敬老院;
小刚向()走()米,再向()走()米到敬老院。
②学生看图试着完成,再小组交流,说一说为什么这样填。
③集体交流,教师根据学生的答案演示课件,验证结果、加深印象
你知道谁家离敬老院最近?谁家离敬老院最远?为什么?
如果三个小朋友看望老人后,他们怎么走才能回到自己的家?
三个小伙伴回到家后各自去做自己的事。小刚要去邮局,小红和小明要去书店,他们又应该怎样走呢?在小组内交流交流。
(三)、巩固练习:
1、帮三个小伙伴解决了问题,现在我们再帮城建局的叔叔们一个忙好吗?
在商场的东面60米的地方建一个游乐场,请用三角符号标出她的位置。在商场的西面20米的地方建一个停车场,请用圆形标出它的位置。如果你是设计师,你还想建什么?建在什么地方?把你的想法和同桌说一说。
2、有一天,三个小动物听说一个地方藏有宝贝,它们决定去寻宝,谁能说一说它们的寻宝路线,并算一算谁家离的最近?(参看课本的寻宝图)
3、小兔送信:
小兔要给4只小动物送信,你能说说它的送信线路吗?(学生独立思考,并在书上标出自己设计的路线,借助实物投影仪,让学生展示结果边说自己设计的路线,边用彩笔演示过程)
送完信后小兔回到家一共走了多少米?
小兔送信有几条路线?走哪条最近?
4、刚才你们在路线图中能够很好的分辨东南西北,那请你看一看现在你所在的教室,你能告诉我哪是东、南、西、北、吗?(复习教室中的方向)
①你能说一说,从你的座位,怎样走可以走出教室?(同桌互相说一说,然后学生边说边演示)
②从教室出发,怎样走可以走到办公室?
(四)、课后总结:
这节课我们主要学习了什么?你有什么收获?你认为自己在本节课的表现怎么样?你还想说些什么?
三角形全等课件 篇5
一、教材分析
本节课的教学内容是人教版数学八年级上册第十一章 《全等三角形》的第一节.这是全章的开篇,也是全等条件的基础.它是继线段、角、相交线与平行线及三角形有关知识之后出现的通过本节的学习,可以丰富和加深学生对已学图形的认识,同时为学习其他图形知识打好基础,具有承上启下的作用.
教材根据初中学生的认知规律和特点,采用由浅入深、由易到难、抓联系、促迁移的方法.通过生活中的实例创设情景,形成概念,再通过平移、翻折、旋转说明变换前后的两个三角形全等,进而得出全等三角形的相关概念及其性质.
二、教学目标分析
知识与技能
1.了解全等三角形的概念,通过动手操作,体会平移、翻折、旋转是考察两三角形全等的主要方法.
2.能准确确定全等三角形的对应元素.
3.掌握全等三角形的性质.
过程与方法
1.通过找出全等三角形的对应元素,培养学生的识图能力.
2.能利用全等三角形的概念、性质解决简单的数学问题.
情感、态度与价值观
通过构建和谐的课堂教学氛围,激发学生的学习兴趣,调动学生的学习积极性,使学生勇于提出问题,乐于探索问题,同时注重培养学生善于合作交流的良好情感和积极向上的学习态度.
三、教学重点、难点
重点:全等三角形的概念、性质及对应元素的确定.
难点:全等三角形对应元素的确定.
四、学情分析
学生在七年级时已经学过线段、角、相交线与平行线及三角形的有关知识,并学习了一些简单的说理,已初步具有对简单图形的分析和辨识能力,但八年级的学生仍处于以形象思维为主要思维形式的时期.为了发展学生的空间观念,培养学生的抽象思维能力,本节课将充分利用动画演示,来揭示图形的平移、翻折和旋转等变换过程,以便让学生在观察、分析中获得大量的感性认识,进而达到对全等三角形的理性认识.
五、教法与学法
本节课坚持“教与学、知识与能力的辩证统一”和“人人都能获得必需的数学”的原则,博采启发教学法、引探教学法、讲授教学法等诸多方法之长,借助多媒体手段引导学生观察、猜想和探究,促进学生自主学习,努力做到教与学的最优组合.
六、教学教程
Ⅰ.课题引入
1.电脑显示
问题:各组图形的形状与大小有什么特点?
一般学生都能发现这两个图形是完全重合的。
归纳:能够完全重合的两个图形叫做全等形。
2.学生动手操作
⑴在纸板上任意画一个三角形ABC,并剪下,然后说出三角形的三个角、三条边和每个角的对边、每个边的对角。
⑵问题:如何在另一张纸板再剪一个三角形DEF,使它与△ABC全等?
(学生分组讨论、提出方法、动手操作)
3.板书课题:全等三角形
定义:能够完全重合的两个三角形叫做全等三角形
“全等”用“≌”表示,读着“全等于”
如图中的'两个三角形全等,记作:△ABC≌△DEF
Ⅱ.全等三角形中的对应元素
1. 问题:你手中的两个三角形是全等的,但是如果任意摆放能重合吗?该怎样做它们才能重合呢?
2.学生讨论、交流、归纳得出:
⑴.两个全等三角形任意摆放时,并不一定能完全重合,只有当把相同的角重合到一起(或相同的边重合到一起)时它们才能完全重合。这时我们把重合在一起的顶点、角、边分别称为对应顶点、对应角、对应边。
⑵.表示两个全等三角形时,通常把表示对应顶点字母写在对应的位置上,这样便于确定两个三角形的对应关系。
Ⅲ. 全等三角形的性质
1.观察与思考:
寻找甲图中两三角形的对应元素,它们的对应边
有什么关系?对应角呢?
(引导学生从全等三角形可以完全重合出发找等量关系)
全等三角形的性质:
全等三角形的对应边相等.
全等三角形的对应角相等.
2.用几何语言表示全等三角形的性质
如图:∵ABC≌ DEF
∴AB=DE,AC=DF,BC=EF
(全等三角形对应边相等)
∠A=∠D,∠B=∠E,∠C=∠F
(全等三角形对应角相等)
Ⅳ.探求全等三角形对应元素的找法
1.动画(几何画板)演示
(1).图中的各对三角形是全等三角形,怎样改变其中一个三角形的位置,使它能与另一个三角形完全重合?
归纳:两个全等的三角形经过一定的转换可以重合.一般是平移、翻折、旋转的方法.
(2).说出每个图中各对全等三角形的对应边、对应角
归纳:从运动的角度可以很轻松地解决找对应元素的问题.可见图形转换的奇妙.
3. 归纳:找对应元素的常用方法有两种:
(1)从运动角度看
a.翻折法:一个三角形沿某条直线翻折与另一个三角形重合,从而发现对应元素.
b.旋转法:三角形绕某一点旋转一定角度能与另一三角形重合,从而发现对应元素.
c.平移法:沿某一方向推移使两三角形重合来找对应元素.
(2)根据位置元素来推理
a.有公共边的,公共边是对应边;
b.有公共角的,公共角是对应角;
c.有对顶角的,对顶角是对应角;
d.两个全等三角形最大的边是对应边,最小的边也是对应边;
e.两个全等三角形最大的角是对应角,最小的角也是对应角;
Ⅴ.课堂练习
练习1.△ABD≌△ACE,若∠B=25°, BD=6㎝,AD=4㎝,
你能得出△ACE中哪些角的大小,哪些边的长度吗?为什么 ?
练习2.△ABC≌△FED
⑴写出图中相等的线段,相等的角;
⑵图中线段除相等外,还有什么关系吗?请与同伴交
流并写出来.
Ⅵ.小结
1.这节课你学会了什么?有哪些收获?有什么感受?
2.通过本节课学习,我们了解了全等的概念,发现了全等三角形的性质,并且利用一些方法可以找到两个全等三角形的对应元素.这也是这节课大家要重点掌握的
Ⅶ.作业
课本第92页1、2、3题
三角形全等课件 篇6
各位老师:
大家好!我说课的内容是人教版八年级数学上册第十一章第二节《全等三角形的判定》第一课时,下面我将从教材、教法、学法、教学流程等几个方面和大家分享一下我对本节课的一些想法和体会。
一、教材分析:
1、教材地位及学情
本课落实了课程标准中的“掌握利用“边边边”证明两个三角形全等”的要求,主要讲的是如何利用“边边边(SSS)”的条件证明两个三角形全等。它是在学生学习了全等三角形的概念及性质后展开的,是证明两个三角形全等的重要方法之一,也是证明线段相等、角相等的重要依据,是学生学习几何部分重要的切入点之一。
因为八年级学生观察、分析问题能力较弱,他们还不具备独立系统地推理论证几何问题的能力,思维具有局限性,考虑问题还不够全面。在学习过程中,老师充分发挥主导作用,适时点拨、引导,尽可能调动所有学生的积极性,主动参与到合作与探索中来,使学生在与他人合作中获取新知。
2、教学重点、难点:
综合大纲要求及教材内容特点,本节课我将“用三角形“边边边”的条件进行有条理思考并进行简单的推理。”确定为教学重点,将“三角形全等条件的探索过程”确定为教学难点。
3、教学目标:根据新课程标准,为了突出重点突破难点,我制定了以下四维教学目标:
(1)知识技能:
①掌握“边边边”条件的内容
②能初步应用“边边边”条件判断两个三角形全等
(2)数学思考:使学生经历探索三角形全等的条件的过程,体验用操作、归纳得出数学结论的过程
(3)解决问题:会用“边边边”条件证明两个三角形全等
(4)情感态度:通过探究三角形全等的条件的活动,培养学生合作交流的意识和大胆猜想、乐于探究的良好品质以及发现问题的能力
二、教法分析
课程标准倡导“创造性的使用教材,优化教学过程,并强调与生活实际相联系。”根据教学内容和教学目标我选用了以下的教学方法。
1、问题引入法
我将本课的知识点融入到一个个探究问题中,环环相扣,激发学生参与和思考的热情。培养学生的自学能力、数学思维能力以及应变能力。
2、引导学生合作
结合教材设置探究问题,组织学生分组讨论、合作探究,促使学生在合作和分享中,自主探索和独立思考中提升自己。培养学生的团结协作的精神。
在整个教学过程中,我始终要为学生创始一种宽松、民主、和谐的学习氛围,并给予鼓励性的评价,让学生的思维走进课堂,走进数学。
3.多媒体演示
在本课中我运用了多媒体进行直观演示,增强教学的直观性,使学生获得感性认识,激发学生的学习兴趣。
三、学法分析
课程标准要求“从学生自身的生活经验出发,以学生能够接受、乐于参与和能够促进思考、拓展体验等方式创造一个生机盎然的学习空间。”针对本节教材特点和教学目的,在整个的教学过程中我强调自主探索,注重小组合作交流,让学生的学习在探究的过程中进行,使他们在自主探究的过程中理解和掌握三角形全等的条件,提高学生探究、发现问题的能力,同时注意精选习题,做多种形式的练习,在教学中力争把学生思维展开,注重培养学生的数学思维能力。
四、教学流程
关于本节课的教学过程我设计的如下五个节:环节一:创设情境,导入新课;环节二:师生互动,探索新知;环节三:题组跟进,巩固新知;环节四:反思小结,体验收获;环节五:课堂作业
环节一:创设情境,导入新课;
学校有两块三角形装饰板如下图,小明想知道这两块板是否全等,这两块板很重又固定在墙上,小明只有刻度尺,你能帮小明想个办法吗?
设计意图:通过同学们身边的事例来启发学生,带着问题展开学习,激发学生学习兴趣和探索欲望,让学生感受数学源于生活,又服务于生活。
教学效果:这个问题马上调动了学生的学习积极性,学习气氛高涨,学生带着这个问题很快进入新的课堂。
环节二:师生互动,探索新知
(一)温故知新
已知:△ABC≌△DEF
找出其中相等的边和角
设计意图:利用多媒体带领学生回顾全等三角形定义及性质,同时引出问题,为探究新知做好准备。
教学效果:因为上节课内容简单容易理解,学生很积极的抢答这个问题,学习效果非常好,很自然地就过渡到探究问题上。
(二)尝试发现,探索新知
探究一:先任意画一个△ABC。再画一个△A′B′C′,使△ABC与△A′B′C′满足上述六个条件中的一个(一边或一角分别相等)或两个(两边、一边一角或两角分别相等)。你画出的△ABC与△A′B′C′一定全等吗?
设计意图:学生利用自己手中的三角形纸板探索、研究,分小组进行讨论交流,受问题启发,从最少条件开始考虑,一个条件、两个条件、三个条件……经过学生逐步分析,各种情况渐渐明朗,进行交流,予以汇总、归纳。对学生渗透分类讨论的数学思想。
教学效果:学生讨论激烈,为一种情况争得面红耳赤,真正体会到与人合作其乐无穷!也真正落实了课标中的数学分类讨论思想。
探究二:先任意画出一个△ABC,再画出△A′B′C′,使A′B′=AB,B′C′=BC,A′C′=AC.把画好△A′B′C′的剪下,放到△ABC上,它们全等吗?
设计意图:让学生动手实践,以学生的探求活动为主体,让学生参与、经历、体验、感悟“三角形全等条件”的形成与发展过程,并能概括说明得出结论。
教学效果:学生更加积极的活动,因为是自己实践得出的结论,有些同学很是兴奋,但有些同学没操作好,很是沮丧。课堂活跃,学生主动参与,每个学生的动手能力都得到了提高。
接下来是例题探究,由于学生刚开始学习全等三角形的证明,对三角形全等的书写格式还不熟悉,所以我设计了一个填空题作为铺垫,让学生自己尝试写出证明过程,我再重点板书解题过程,还强调了三角形全等的书写格式以及应注意的问题。本环节的设置使学生学会用“边边边”证明两个三角形全等,重点培养了学生独立系统地推理论证几何问题的能力。
教学效果:学生大声的和我一起归纳、齐声朗读解题过程!学生初步掌握了用符号语言证明两个三角形全等。
环节三:题组跟进,巩固新知
设计意图:练习一:学生体会公共边的应用,加强学生的观察能力;练习二:知识性总结,学生能够准确书写符号语言,为几何题的合情推理做好语言准备。练习三是一道开放性试题,让学生体验数学的发散思维。练习四是将实际问题抽象为数学问题的建模过程,锻炼学生从数学的视角来审视问题。
教学效果:这个环节的设置,为学生自主学习提供了空间,小组内自我评析,我给各小组打分评价,用小组量化评比的方式激励学生。错题自我改正后再师徒互教。学生学习积极性高,热情高涨。
为了突破难点我又设计了一道提高题,学生读题、思考、再小组交流得出各自的解题过程,让学生学会添加辅助线解决问题,实现四边形到三角形的转化。一题多解,变换角度对学生进行训练,从不同角度对问题进行分析,考虑问题全面。
教学效果:学生很快进入了思考,但很多学生不能解决这个问题,当别的同学提出自己的意见时,脸上露出了喜悦之情!最后在同学们共同努力下各种解题方法一一呈现!学生们的数学思考能力得到提高!
环节四:课堂小结
设计意图:学生在教师的指导下小组内交流,回顾本节课对知识研究的探索过程,小结方法和结论,提炼数学思想,掌握数学规律。
教学效果:学生积极发言,总结自己所学的内容,都由衷的感到喜悦和自豪!
环节五:课堂作业
针对不同层次的学生我设计了分层作业,有必做题和选作题,让不同层次的同学都能完成作业,体会到学习的乐趣!
五、教学评价:
通过本课的教学实践与反思我认为本课的亮点是:
1.本节课自始至终贯彻了以学生为“主体”,教师为“主导”小组合作的教学理念,是一节师生“双赢”的课堂,学生学得“精彩”,老师教的“享受”,学生成为学习的主人,真正把课堂回归给学生!
2.整节课形式活泼多样,学习气氛轻松、活泼而又团结互助,学生参与其中,乐在其中。
今后努力方向:
1、提高对课堂活动的控制,在小组讨论和展示的环节,把握好时间。
2、加强对学生发言的评价和引导。
通过这节课的教学实践我从备课环节到上课流程细微处的查缺补漏我深刻感受到自己的缺失与不足也看到自己的进步,从而更激励我用心钻研教材,留心教学环节,耐心引导学生。
以上是我对本节课的设计和思考,不足之处敬请各位指正。!
三角形全等课件 篇7
尊敬的各位评委老师:
大家好!今天我说课的题目是人教版数学八年级上册第十一章第1节《全等三角形》。下面,我将从教材分析、教学方法、教学过程等几个方面对本课的设计进行说明。
全等三角形是八年级上册人教版数学教材第十一章第一节的教学内容。本节课是“全等三角形”的开篇,是全等三角形全等的条件的基础,也是进一步学习其它图形的基础之一。本章是在学过了线段、角、相交线、平行线以及三角形的有关知识以及在七年级教材中的一些简单的说理内容之后来学习,为学习全等三角形奠定了基础。通过本章的学习,可以丰富和加深学生对已学图形的认识,同时为学习其它图形知识打好基础。
学生在小学阶段已经学习了三角形的性质和类型,已经知道三角形可以分为锐角三角形、钝角三角形和直角三角形,但是对于全等三角形这一特殊的三角形却还是一个新的知识点。三角形是最基本的几何图形之一,它不仅是研究其他图形的基础,在解决实际问题中也有着广泛的应用。学生对于研究它的全等的判定有着足够的感知经验,但是也存在着以下困难:全等三角形的判定对于学生的识图能力和逻辑思维能力是一个挑战,特别是学生的逻辑思维能力,在此之前,学生所接触的逻辑判断中直观多余抽象,用自己的语言表述多于用数学语言表述。所以,怎样引导学生发挥认知和操作方面的经验,为掌握规范和有效的数学思维方式服务将是学习本节内容的关键。
本节教材在编排上意在通过全等图案引入新课教学,在新课教学中又由直观演示图形的平移、翻折、旋转过渡,学生容易接受。根据课程标准,确定本节课的教学目标如下:
1.知识目标:
(1)理解全等三角形的概念。
(2)知道全等三角形的性质,能用符号正确地表示两个三角形全等。
(3)能熟练找出两个全等三角形的对应角、对应边。
2.能力目标:
(1)通过全等三角形有关概念的学习,提高学生数学概念的辨析能力。
(2)通过找出全等三角形的对应元素,培养学生的识图能力。
3.情感目标:
(1)通过感受全等三角形的对应美激发热爱科学勇于探索的精神。
(2)通过自主学习的发展体验获取数学知识的感受,培养勇于创新,多方位审视问题的创造技巧。
为了适应学生的认识思维发展水平,有序的引导学生观察、分析,得出结论,让学生通过观察——认识——实践——再认识,完成认识上的飞跃。
学生在学习过程中可能难于理解全等三角形的对应顶点、对应边、对应角。教师要做到教法与学法的有机统一:一是看听结合,形成表象。看教师演示,听教师讲解,形成表象。二是手脑结合,自主探究,学生为主体,充分使用学具,动手操作体会全等三角形。
本节课的教学过程是:
首先,展示教材上的图案以及制作的一些图案,引导学生读图,激发学生兴趣,从图中去发现有形状与大小完全相同的图形。然后教师安排学生自己动手随意去做两个形状与大小相同的图形,通过动手实践,合作交流,直观感知全等形和全等三角形的概念。
其次,通过阅读法让学生找出全等形和全等三角形的概念。然后,教师随即演示一个三角形经平移,翻折,旋转后构成的两个三角形全等。通过教具演示让学生体会对应顶点、对应边、对应角的概念,并以找朋友的形式练指出对应顶点、对应边、对应角,加强对对应元素的熟练程度。此时给出全等三角形的表示方法,提示对应顶点,写在对应的位置,然后再给出用全等符号表示全等三角形练习,加强对知识的巩固,再给出练习判断哪一种表示全等三角形的方法正确,通过对图形及文字语言的综合阅读,由此去理解“对应顶点写在对应的位置上”的含义。
再次,通过学生对全等三角形纸板的观察,小组讨论,合作交流,观察对应边、对应角有何关系,从而得出全等三角形的性质。并通过练习来理解全等三角形的性质并渗透符号语言推理。
最后教师小结,这节课我们知道了什么是全等形、全等三角形,学会了用全等符号表示全等三角形,会用全等三角形的性质解决一些简单的实际问题。
我以条理清楚为原则,既体现了学习目标,又突出了学习的重点,能够帮助学生更明了地理解这节课的知识点。特设计如下:
三角形全等课件 篇8
(1)知道什么是全等形、全等三角形及全等三角形的对应元素;
(2)知道全等三角形的性质,能用符号正确地表示两个三角形全等;
(3)能熟练找出两个全等三角形的对应角、对应边。
2、能力目标:
(1)通过全等三角形角有关概念的学习,提高学生数学概念的辨析能力;
(2)通过找出全等三角形的对应元素,培养学生的识图能力。
3、情感目标:
(1)通过感受全等三角形的对应美激发学生热爱科学勇于探索的精神;
(2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧。
(1)动画(几何画板)显示:
一般学生都能发现这两个三角形是完全重合的。
画一个三角形:边长为4cm,5cm,7cm.然后剪下来,同桌的'两位同学配合,把两个三角形放在一起重合。
让学生用自己的语言叙述:
全等三角形、对应顶点、对应角以及有关数学符号。
由学生观察动画发现,两个三角形的三组对应边相等、三组对应角相等。
(1) 投影显示题目:
分析:由于两个三角形完全重合,故面积、周长相等。至于D,因为AD和BC是对应边,因此AD=BC。C符合题意。
说明:本题的解题关键是要知道中两个全等三角形中,对应顶点定在对应的位置上,易错点是容易找错对应角。
然后依据已知的对应元素找:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。
翻折法:找到中心线经此翻折后能互相重合的两个三角形,易发现其对应元素
旋转法:两个三角形绕某一定点旋转一定角度能够重合时,易于找到对应元素
三角形全等课件 篇9
本节课的教学内容是人教版数学八年级上册第十一章 《全等三角形》的第一节。这是全章的开篇,也是全等条件的基础。它是继线段、角、相交线与平行线及三角形有关知识之后出现的。通过本节的学习,可以丰富和加深学生对已学图形的认识,同时为学习其他图形知识打好基础,具有承上启下的作用。
教材根据初中学生的认知规律和特点,采用由浅入深、由易到难、抓联系、促迁移的方法。通过生活中的实例创设情景,形成概念,再通过平移、翻折、旋转说明变换前后的两个三角形全等,进而得出全等三角形的相关概念及其性质。
1。了解全等三角形的`概念,通过动手操作,体会平移、翻折、旋转是考察两三角形全等的主要方法。
2。能准确确定全等三角形的对应元素。
1。通过找出全等三角形的对应元素,培养学生的识图能力。
2。能利用全等三角形的概念、性质解决简单的数学问题。
通过构建和谐的课堂教学氛围,激发学生的学习兴趣,调动学生的学习积极性,使学生勇于提出问题,乐于探索问题,同时注重培养学生善于合作交流的良好情感和积极向上的学习态度。
学生在七年级时已经学过线段、角、相交线与平行线及三角形的有关知识,并学习了一些简单的说理,已初步具有对简单图形的分析和辨识能力,但八年级的学生仍处于以形象思维为主要思维形式的时期。为了发展学生的空间观念,培养学生的抽象思维能力,本节课将充分利用动画演示,来揭示图形的平移、翻折和旋转等变换过程,以便让学生在观察、分析中获得大量的感性认识,进而达到对全等三角形的理性认识。
本节课坚持“教与学、知识与能力的辩证统一”和“人人都能获得必需的数学”的原则,博采启发教学法、引探教学法、讲授教学法等诸多方法之长,借助多媒体手段引导学生观察、猜想和探究,促进学生自主学习,努力做到教与学的最优组合。
Yjs21.coM更多幼师资料延伸读
等腰三角形课件实用十四篇
教案是老师上课之前需要备好的课件,每位老师都应该他细设计教案课件。 精心制作的教学教案有助于激发学生的学习兴趣,老师在写教案课件的时候要注意什么?以下是幼儿教师教育网编辑为您整理的一系列与“等腰三角形课件”有关的内容,请注意下文仅供参考并非绝对可信!
等腰三角形课件 篇1
重点与难点分析:
本节内容的重点是等腰三角形的判定定理.本定理是证明两条线段相等的重要定理,它是把三角形中角的相等关系转化为边的相等关系的重要依据,此定理为证明线段相等提供了又一种方法,这是本节的重点.推论1、2提供证明等边三角形的方法,推论3是直角三角形的一条重要性质,在直角三角形中找边和角的等量关系经常用到此推论.
本节内容的难点是性质与判定的区别。等腰三角形的性质定理和判定定理是互逆定理,题设与结论正好相反.学生在应用它们的时候,经常混淆,帮助学生认识判定与性质的区别,这是本节的难点.另外本节的文字叙述题也是难点之一,和上节结合让学生逐步掌握解题的思路方法.由于知识点的增加,题目的复杂程度也提高,一定要学生真正理解定理和推论,才能在解题时从条件得到用哪个定理及如何用.
教法建议:
本节课教学方法主要是“以学生为主体的讨论探索法”。在数学教学中要避免过多告诉学生现成结论。提倡教师鼓励学生讨论解决问题的方法,引导他们探索数学的内在规律。具体说明如下:
学生学习过互逆命题和互逆定理的概念,首先提出问题:等腰三角形性质定理的逆命题的什么?找一名学生口述完了,接下来问:此命题是否为真命?等同学们证明完了,找一名学生代表发言.最后找一名学生用文字口述定理的内容。这样很自然就得到了等腰三角形的`判定定理.这样让学生亲自动手实践,积极参与发现,满打满算了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会。
(2)采用“类比”的学习方法,获取知识。
由性质定理的学习,我们得到了几个推论,自然想到:根据等腰三角形的判定定理,我们能得到哪些特殊的结论或者说哪些推论呢?这里先让学生发表意见,然后大家共同分析讨论,把一些有价值的、甚至就是教材中的推论板书出来。如果学生提到的不完整,教师可以做适当的点拨引导。
为了使学生对本节课有一个完整的认识,便于今后的应用,教师提出如下问题,让学生思考回答:(1)怎样判定一个三角形是等腰三角形?有哪些定理依据? (2)怎样判定一个三角形是等边三角形?
一.教学目标:
1.使学生掌握等腰三角形的判定定理及其推论;
2.掌握等腰三角形判定定理的运用;
3.通过例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力;
4.通过自主学习的发展体验获取数学知识的感受;
5.通过知识的纵横迁移感受数学的辩证特征.
估计学生能用自己的语言说出,这里重点复习怎样分清题设和结论。
(2)等腰三角形的性质定理的内容是什么?并检验它的逆命题是否为真命题?
启发学生用自己的语言叙述上述结论,教师稍加整理后给出规范叙述:
1.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等.
(简称“等角对等边”).
由学生说出已知、求证,使学生进一步熟悉文字转化为数学语言的方法.
教师可引导学生分析:
联想证有关线段相等的知识知道,先需构成以AB、AC为对应边的全等三角形.因为已知∠B=∠C,没有对应相等边,所以需添辅助线为两个三角形的公共边,因此辅助线应从A点引起.再让学生回想等腰三角形中常添的辅助线,学生可找出作∠BAC的平分线AD或作BC边上的高AD等证三角形全等的不同方法,从而推出AB=AC.
注意:(1)要弄清判定定理的条件和结论,不要与性质定理混淆.
等腰三角形课件 篇2
一、教学目标:
1、了解作为证明基础的几条公理的内容,掌握证明的基本步骤和书写格式。
2、经历“探索-发现-猜想-证明”的过程。能够用综合法证明等腰三角形的关性质定理和判定定理。3、结合实例休会反证的含义。
二、教学重点:
了解作为证明基础的几条公理的内容,掌握证明的基本步骤和书写格式。教学难点:能够用综合法证明等腰三角形的关性质定理和判定定理。
三、教学方法:观察法。
四、教学过程:
复习:1、 什么是等腰三角形?2、 你会画一个等腰三角形吗?并把你画的等腰三角形栽剪下来。3、试用折纸的办法回忆等腰三角形有哪些性质?新课讲解:在《证明(一)》一章中,我们已经证明了有关平行线的一些结论,运用下面的公理和已经证明的定理,我们还可以证明有关三角形的一些结论。同学们和我一起来回忆上学期学过的公理w 本套教材选用如下命题作为公理 :w 1.两直线被第三条直线所截,如果同位角相等,那么这两条直线平行; w 2.两条平行线被第三条直线所截,同位角相等; w 3.两边夹角对应相等的两个三角形全等; (SAS)w 4.两角及其夹边对应相等的两个三角形全等; (ASA)w 5.三边对应相等的两个三角形全等; (SSS)w 6.全等三角形的对应边相等,对应角相等. 由公理5、3、4、6可容易证明下面的推论:推论 两角及其中一角的对边对应相等的'两个三角形全等。(AAS)证明过程:已知:∠A=∠D,∠B=∠E,BC=EF求证:△ABC≌△DEF证明:∵∠A=∠D,∠B=∠E(已知)∵∠A+∠B+∠C=180°,∠D+∠E+∠F=180°(三角形内角和等于180°)∠C=180°-(∠A+∠B)∠F=180°-(∠D+∠E)∠C=∠F(等量代换)BC=EF(已知)△ABC≌△DEF(ASA)这个推论虽然简单,但也应让学生进行证明,以熟悉的基本要求和步骤,为下面的推理证明做准备。
五、议一议:
(1)还记得我们探索过的等腰三角形的性质吗?(2)你能利用已有的公理和定理证明这些结论吗?等腰三角形(包括等边三角形)的性质学生已经探索过,这里先让学生尽可能回忆出来,然后再考虑哪些能够立即证明。定理:等腰三角形的两个底角相等。这一定理可以简单叙述为:等边对等角。已知:如图,在ABC中,AB=AC。求证:∠B=∠C我们刚才利用折叠的方法说明了这两个底角相等。实际上,折痕将等腰三角形分成了两个全等三角形。能否通过作一条线段,得到两个全等的三角形,从而证明这两个底角相等呢?证明:取BC的中点D,连接AD。∵AB=AC,BD=CD,AD=AD,∴△ABC△≌△ACD (SSS)∴∠B=∠C (全等三角形的对应边角相等)让同学们通过探索、合作交流找出其他的证明方法。想一想:在上图中,线段AD还具有怎样的性质?为什么?由此你能得到什么结论?应让学生回顾前面的证明过程,思考线段AD具有的性质和特征,从而得到结论,这一结合通常简述为“三线合一”。推论 等腰三角形的顶角的平分线、底边上的中线、底边上的高互相重合。随堂练习:做教科书第4页第1,2题。课堂小结:通过本课的学习我们了解了作为基础的几条公理的内容,掌握证明的基本步骤和书写格式。经历“探索-发现-猜想-证明”的过程。能够用综合法证明等腰三角形的关性质定理和判定定理。探体会了反证法的含义。五、课外作业:教科书第5页第1,2题。
六、板述设计:
七、课后记:
等腰三角形课件 篇3
一、教材分析
教材是教师教学的基本依据,因此,教师必须把握教材,了解教材的内容体系与脉络。
首先, 我们来分析教材的地位与作用: 等腰三角形是在学习了全等三角形的判定及性质与轴对称之后编排的,它不仅是对前面所学知识的延伸应用,同时也是今后探究线段相等、角相等以及两直线垂直等的重要依据,它所应用的观察-发现-猜想-论证的数学思想方法是今后研究数学的基本思想方法。因此,本节内容在教材中处于非常重要的地位,起着承前启后的作用。
基于以上分析,根据新课标的要求,结合学生的具体实际,我制定了如下教学目标:
知识技能:掌握等腰三角形的性质,运用等腰三角形的性质进行证明和计算。
数学思考: 使学生经历知识的形成和发展过程,发展合情推理和演绎推理能力,培养主动探究的习惯。
问题解决: 通过学生体验发现问题,提出问题及解决问题的全过程,培养学生的数学应用能力。
情感态度: 通过学生参与数学活动,激发学生学习数学的好奇心和求知欲,体验获得成功的乐趣,锻炼克服困难的意志,建立学好数学的自信心.
本节课的重点为等腰三角形的性质及其应用,我将通过创设情境和解决问题来突出重点。由于现阶段学生把文字命题翻译成数学符号语言的能力有待提高,所以本节课的难点在于等腰三角形性质的证明,我将通过折纸实验和小组合作探究来突破难点。
二、学情分析:
学生是教学工作的落脚点,是备课活动的最终服务对象。现阶段学生已了解全等三角形和轴对称图形的相关知识,这个阶段学生的思维以形象思维为主,他们好奇爱问、求知欲强、想像力丰富,会进行简单的说理,但他们对如何从实际问题中抽象出数学问题,建立数学模型的能力较差。
三、教法学法分析:
教需有法,教无定法;大法必依,小法必活。
根据学生的具体情况和本节课的特点,我将采用“探索、归纳与合作交流”相结合的方法,以学生主动参与为前提、自主学习为途径、合作交流为形式,培养学生动手、动脑、合作、交流,为学生的终身学习奠定基础。
对于本节课的教学,我从兴趣着手,让学生在自主探究中经历知识的形成、发展过程,并使其思维能力在小组合作交流中得到锻炼.
为了达到更好的教学效果,本节课我将采用师生互动、生生互动的教学组织形式.
四、教学过程设计
也就是说课的重头戏,我的教学过程将围绕以下四个环节展开:创设情境、导入新课;合作交流、探究新知;体验新知,学以致用;小结升华、布置作业。首先进入第一个环节:创设情境,导入新课:
具体生动的情境具有很强的感染力和说服力,可以触及到学生的内心深处,使其思想与本节课的内容—等腰三角形发生联结.所以,上课伊始,在美妙的音乐中,我会用课件展示生活中含有等腰三角形模型的一些图片。
之后联系已学的等腰三角形的定义,我会向学生介绍 腰 底边 顶角 底角 等相关概念,并给学生设疑:等腰三角形作为一种特殊的三角形,有没有自己特殊的性质呢?从而引出本节课的内容。(板书)
荷兰数学家弗赖登塔尔曾说过: “学习数学唯一正确的方法是实现再创造,也就是由学生本人把要学的东西自己去发现或创造出来,教师的任务则是引导和帮助学生去进行这种再创造的工作,而不是把现成的知识灌输给学生。”
为此,我设置了合作交流、探究新知这一环节并通过以下四个活动展开:剪等腰三角形 实验探究—等腰三角形性质 概括总结—等腰三角形性质 推理证明—等腰三角形性质
首先我将带领学生进入活动1: 剪等腰三角形
为了提高学生的动手能力,使学生从本质上认识等腰三角形,我让学生拿出事先准备好的长方形纸片,分组活动,剪等腰三角形。
剪完以后,我会请各小组推荐一名代表上台展示所剪三角形,并讲解自己的剪法,学生的想像力是相当丰富的,剪的方法多种多样,在这里我仅展示了以下四种剪法:
(1) (2) (3) (4)
如图(1)的操作,剪出的是等腰直角三角形 ,图(2)中,学生先画出了一个等
腰三角形,再把它剪下来,图(3)为教材中的剪法,得到了这样一个等腰三角形,按图(4)的操作可以得到两个三角形,将它们拼在一起则为等腰三角形。为方便下一步使用,对于采用第(4)种剪法的学生,我会建议他们用第(3)种剪法再剪一次。
对于活动1的处理,我跟教材上是不同的。大家都知道,教材知识具有系统性,一般编写得比较简练。教师不是教教材,而是用教材创造性地去教.我之所以这样设计,一是培养学生的发散思维,二是让学生明白剪腰三角形有很多方法,辨析最简单的方法。
接下来进入活动2: 实验探究—等腰三角形的性质
让学生将刚才所剪的等腰三角形标上字母后,对折成两个全等的三角形,分小组观察并完成事先准备好的实验单,在实验单上,我设置了2个问题:
((1)等腰三角形ABC是轴对称图形吗?
(2)对折后的△ABC重合的部分是什么?
之后,各小组推荐一名代表上台,在投影仪下展示他们的探究结果。根据学生所填实验单,我会引导学生将符号语言转化为自然语言, △ABC两底角相等是显而易见的,我会引导学生发现:折痕AD在△ABC中具有三重身份。
通过前2个活动的铺垫,在活动3,让学生概括总结出等腰三角形的性质:(1)等腰三角形的两个底角相等; (2)等腰三角形的顶角平分线、底边上中线、底边上的高相互重合.
通过前3个活动,让学生经历了发现问题、提出问题、解决问题的全过程,教会了他们怎样进行数学思考。
数学知识具有高度的严谨性,我们得到的实验结果需要理论上加以推证,因此,我设计了活动4: 推理证明—等腰三角形性质
性质1的证明对于现阶段学生有2个难点:一是将文字性命题转化为符号语言,二是怎样添加辅助线,在这个环节为突破第1个难点,我会先就性质1 “等腰三角形的两个底角相等”的条件和结论对学生进行提问,引导学生完成转化。
为了突破第二个难点,我会提示学生,由前面试验中的折痕我们容易想到过A点添加辅助线,由于△ABC得折痕具有三重身份,所以性质1的证明方法不止一种,让他们体会条条道路通罗马的道理。安排学生分组讨论并发言之后,我会用板书示范一种证明过程,另外两种方法证明过程由学生类比完成。
教师多1分精心的预设,课堂就多1份动态的生成,学生就会多一1份发展。所以,在学生体验成功的喜悦之时,我会乘胜追击,反问学生:前面3种证明方法都借助了辅助线,不作辅助线你能证明性质1吗?一石激起千层浪,再次激起了学生的求知欲。
我预测,学生很难想到不作辅助线如何完成性质1的证明,其实,只要将△ABC看作两个三角形 ABC和ACB,并证明它们全等即可。这种证法培养了学生的发散思维,启发学生要敢于打破陈规,张开想像的翅膀。在此,我之所以这样设计,是想以教师教学方式的转变促进学生学习方式的转变,使学生走出思维定势,给学生一个活性的大脑。
性质1证明完毕,我会提出问题:受性质1的证明的启发,你能证明性质2(等腰三角形的顶角平分线,底边上的中线、底边上的高互相重合)吗?我会引导学生把性质2分解为3个命题,让学生分组讨论证明。
通过实验探究,逻辑推理,得到了性质1和性质2,性质1,我们又简称 等边对等角,性质2,又简称 三线合一。至此,探究新知环节已经完成。
学生对知识的掌握是通过“学得”和“习得”而来的,为了巩固本节课所学知识,我设置了体验新知,学以致用环节, 本环节按照循序渐进原则设置了2个练习题和1个思考题,它们由浅入深,由易到难,各有侧重。练习1作为性质1的有效补充,提示学生等边对等角这一性质必须在同一个等腰三角形中才可使用,强调审题的重要性;
练习2直接来自课本,它的设置,是为了巩固和应用 “等边对等角”,培养学生的转化思想和方程思想。
之后,我又给了一道思考题,让学生利用刚学到的知识,做一个用来测量屋顶的横梁是否水平的工具?将枯燥的数学问题赋予于有趣的实际背景,同时激发学生学习数学的兴趣让学生充分感受本节课内容在解决实际问题中的作用。
为了拓宽学生的知识面,我上网查阅了资料,有关等腰三角形的面积说,以等腰三角形的底边代表人的遗传因素,两腰分别代表饮食营养和身心健康,那么等腰三角形的面积越大,人的寿命就越长,怎样扩大等腰三角形的面积从而延长寿命呢?我会让有兴趣的同学在课下上网查阅。
叶澜教授说:一个教师写一辈子教案不一定成为名师,如果一个教师写三年的反思,有可能成为名师。因此,反思是进步的阶梯。
本环节中,我会先带领学生对本节课内容作出小结,之后让学生畅所欲言,对自己说:我有什么收获,对老师说:我有什么疑惑,对同学说:我有什么温馨提示。同时给学生提供一个充分从事数学活动的机会,体现了学生是学习的主人的理念。
作业设计是教师了解、掌握学生学习情况的一把尺子。这个环节遵循因材施教的原则,必作题体现新课标下落实“人人都能获得良好的数学教育”,选做题则让“不同的人在数学上得到不同的发展”, 体现分层思想。让学生不仅学会,而且会学,最终达到乐学的目的.
五.板书设计
板书是课堂教学的缩影,是把握教学重点的示意图,也是提示教学难点的辐射源。由于借助了多媒体辅助教学,我的板书将分为2个区域,第一个区域,是等腰三角形的性质,突出了重点,第二个区域是性质1的示范证明,突破了难点
等腰三角形课件 篇4
教学目标
1、掌握证明的基本步骤和书写格式。
2、经历“探索-发现-猜想-证明”的过程。能够用综合法证明等腰三角形的关性质定理和判定定理。
3、结合实例体会反证法的含义。
教学重点
等腰三角形的关性质定理和判定定理。
教学难点
能够用综合法证明等腰三角形的关性质定理和判定定理。
教学方法
教学后记
教学内容及过程
教师活动学生活动
一、等腰三角形性质的探究
1.让学生回忆上节课的教学内容,引导学生思考从等腰三角形中能找到哪些相等的线段。
2.播放课件,结合刚才的问题讲解例1的命题,并为后面将此性质拓展埋下伏笔。
3.分别演示:
∠ABC,∠ACE=∠ACB,k=,时,BD是否与CE相等。引导学生探究、猜测当k为其他整数时,BD与CE的关系。
4.引导学生探究,对于上述例题,当AD=AC,AE=AB,k=,时,通过对例题的引申,培养学生的发散思维,经历探究—猜测—证明的学习过程。
5.引导学生进一步推广,把上面3、4中的k取一般的自然数后,原结论是否仍然成立?要求学生说明理由或给出证明。
6.对学生探究的结果予以汇总、点评,鼓励学生在自己做题目的时候也要多思多想,并要求学生对猜测的结果给出证明。
7.提出新的问题,引导学生从“等角对等边”这个命题的反面思考问题,即思考它的逆命题是否成立。适时地引导学生思考可以用哪些方法证明?培养学生的推理能力。
8.归纳学生提出的各种证法,清楚的分析证明的思路,培养学生演绎证明的初步的推理能力。
9.启发学生思考:在一个三角形中,如果两个角不相等,那么这两个角所对的边也不相等,这个结论是否成立?如果成立,能否证明。这实际上是“等边对等角”的逆否命题,通过这样的表述可以提高学生的思维能力。
10.总结这一证明方法,叙述并阐释反证法的含义,让学生了解。
11.小结这两个课时的内容。
作业:
同步练习
板书设计:
1.积极思考,回忆以前所学知识,联想新问题。
2.认真观看例1图形中线段的关系,积极思考,认真听讲。
3.对于课件的演示很感兴趣,凭直观感觉可以猜测,不管k为何值,BD=CE总成立。基于前面例题的启发,想要给出证明。一部分学生可以自己给出证明,一部分学生需要老师的帮助。
4.在已经探究了角的大小的改变对于BD,CE的等长性没有影响,有了一些成就感之后,又面临新的任务:BD=CE吗?因此学生会满怀热情地进行这部分探究活动,而且有了前面的体验,探究也会比较顺利。
5.兴致高涨,凭直觉猜测结论仍然成立。但有些学生给出全部证明可能会有困难。
6.认真听讲,在掌握结论的同时受到老师的鼓励,有很高的热情进行后续学习。
7.较少接触这样的命题,因此会感到新鲜,有用已知公理和定理对命题的真假性进行判断的欲望。在老师指导下完成证明。
8,积极动脑思考,认真听讲,获得对演绎证明的初步体会。
9.可以从直观上得出结论,但是此处要求证明,体会到证明的必要性。遇到认知上的冲突,激起学习欲望。
10.怀有强烈的求知欲听讲,对反证法有了感性认识和一定的理解。
11.体会老师的讲解,并根据小结记忆掌握知识。
(学生小结:掌握证明的基本步骤和书写格式。经历“探索-发现-猜想-证明”的过程。能够用综合法证明等腰三角形的两条腰上的中线(高)、两底角的平分线相等,并由特殊结论归纳出一般结论。等腰三角形的判定定理。了解反证法的推理方法。)
等腰三角形课件 篇5
一、教材分析
1、教材的内容、地位、作用及处理
这节课是义务教育课程标准试验教科书人教版八年级第十四章第3节《等腰三角形》第一课时,等腰三角形是在学生学习了三角形的有关知识、掌握了全等三角形的判定及性质与轴对称的性质的基础上进行的。它不仅是对前面所学知识的综合应用,也是后面研究等边三角形等内容的预备知识,同时也是今后证明角相等、线段相等及两直线垂直的重用依据。而通过探究等腰三角形的“三线合一”的性质,可以激发学生浓厚的学习数学的兴趣,使学生体会性质定理的来龙去脉;了解、感知知识发生、发展的全过程;拓宽学生探索图形变化的视野。掌握等腰三角形及其性质在生活中的应用,更有益于学生了解数学价值,体会数学来源于实践,又反作用于实践的认识问题的一般规律。对教材进行处理:增加2个例题,目的是直接运用性质定理并认识等腰直角三角形。
2、重点:学生了解、感悟等腰三角形的性质定理,归纳总结其证明。
3、难点:等腰三角形常用辅助线的作法。
二、目标分析
学情分析:等腰三角形是在学生学习了三角形的有关知识、掌握了全等三角形的判定及性质与轴对称的性质的基础上进行的,八年级学生的思维活跃、愿意表达自己的见解,有一定的互动互助基础,但在应用数学知识解决实际问题的方面还缺乏经验。其次学生程度参差不齐,两极分化已经形成,个体差异比较明显。再次学生的思维逐渐由形象思维向抽象思维转变,但形象思维仍占主导地位,数形结合是学生掌握知识的较好方法。新课标指出:“三维目标”是一个密切联系的有机整体,应该使获得知识与技能的过程同时成为学会学习和形成正确价值观的过程,所以确定本课的教学目标为三个方面:
1、知识技能性目标:使学生通过试验猜想、主动探究的学习活动,发现并认同等腰三角形的性质定理及推论,探索归纳出它们的证明方法,并能用其解决实际问题。
2、过程方法性目标:让学生经历“实验-探究-解决-收获”的学习过程,体会发现问题、探究问题的思想,从中感悟证明结论的方法和乐趣,初步了解作辅助线的技巧,培养“转化”及“分类讨论”的数学思想方法。
3、情感价值观目标:在亲切、和谐、民主、活跃的探究氛围中,引导学生对图形观察、发现,激发学生的求知欲望和学习兴趣,使其个性得以充分张扬。帮助其养成良好的学习习惯和勤于思考、勇于探索的的思想品质,建立学习的自信心。
三、教法分析:
建构主义认为,知识是在原有知识的基础上,在人与环境的相互作用过程中,通过同化和顺应,使自身的认知结构得以转换和发展。基于本节课内容的特点和八年级学生的年龄特征,根据“以人为本,以学定教”的教育理念,从学生已有的认知基础出发,以学生自主探索、合作交流为主线,让学生经历数学知识的形成与应用过程,加深对所学知识的理解,从而突破重难点。教师着眼于引导,学生着眼于探索,同时,考虑到学生的个体差异,在教学的各个环节进行分层施教,实现“有差异”的发展。注重调动学生的潜能,充分让学生参与每一个环节的学习活动,争取每个学生都有自己的亲身体验和理解,都有不同的收获。利用多媒体教学手段,直观呈观等腰三角形的和谐、对称的美,通过学生折纸活动探究性质的过程,激发学生的兴趣,增大教学容量,提高课堂效率,最优化的达到教学目的。
四、学法分析:
课程改革的具体目标之一是“改变课程实施过于强调接受学习、死记硬背、机械训练的现状,倡导学生主动参与、乐于探究、勤于动手,培养学生收集和处理信息的能力、获取新知识的能力、分析和解决问题的能力以及交流与合作的能力”。数学作为基础教育的核心课程之一,转变学生的学习方式,不仅有利于提高学生的数学素养,而且有利于促进学生整体学习方式的转变。我以构建主义理论为指导,辅以多媒体手段,在教师的组织引导下,采用自主实验探索、合作交流的研讨式学习方式,让学生思考问题,获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体。在课堂结构上,我根据学生的认知水平,设计了
①创设情景,激发兴趣;
②实验操作与归纳验证--形成和深化概念;
③技能演练与拓展--巩固新知;
④感悟收获---提高认识;
⑤布置作业五部分。设计从四个活动展开,以分散难点、突破重点,变“学会”为“会学”,充分保障学生的主体地位。
五、评价分析:
整节课是一个动手作图、动眼观察、动脑猜想、实践验证、巩固应用的动态生成过程,注重学生能力的培养和习惯的养成。由于学生的层次不一,教师要全程关注每一学生的学习状态,进行分层施教。对可能出现的突发事件,要因势利导、随机应变,适时调整教学环节。同时将“教学反应”型评价和“让学生谈收获的教学反馈”评价相结合,促进学生的自主评价,努力推行成功教育、愉快教育的理念,把握评价的时机与尺度,实现评价主体和形式的多样化,从而激发学生的学习兴趣,激活课堂气氛,使课堂教学达到最佳状态。
六、教学过程分析
(一)创设情景,激发兴趣
1、利用多媒体课件展示影视材料:埃菲尔铁塔、长江大桥、水晶塔、金字塔、欧式建筑等。
(设计意图:让学生感受等腰三角形在实际生活中的应用,从生活中去发现数学、探究数学、认识并掌握数学,同时也激发学生的兴趣,吸引学生的注意力,培养学生从实际问题背景中抽象出数学问题的能力。即:学会数学地思考。)
(二)等腰三角形性质定理的探索,发现过程
活动1、由学生动手剪纸,完成课本140页的探究,形成等腰三角形的有关概念。
活动2、除了剪纸方法,你还能用其他方法做一个等腰三角形吗?说一说你的做法。并指明它的腰、底边、顶角、底角。
(设计意图:为学生提供参与数学活动的时间和空间,调动学生的主观能动性,培养学生的参与意识、实践能力,通过活动使学生增强对图形的直观体验,从中体会、感知等腰三角形的本质特性,发展空间观念,为下一步研究等腰三角形的性质作好准备。)
活动3、实验猜想:请同学们利用手中的图形折一折、量一量,你能发现什么结论?比一比,议一议,看谁发现的结论多。完成课本141页的思考。
(设计意图:引导学生议一议,通过小组间合作交流学习,充分调动学生观察、思考、归纳的积极性从而得出等腰三角形的性质雏形。有利于本节课重点的突出,难点的突破)
活动4、建立模型、验证结论:让学生对上述猜想进行数学说理并引导学生归纳出辅助线的所有作法。
(设计意图:这样做有利于学生参与探索,感受学习的过程,也有利于培养学生的语言表达能力,体会数形结合的思想。进一步突破重难点。教师演示性质1的证明,学生完成性质2的证明。)
(三)技能演练与拓展:
1、演----运用新知
(1)等腰三角形的顶角是36°,则它的底角是___度。
(2)在△ABC中,AB=AC,∠BAC=90°,AD是BC边上的高,∠BAD=____,BD=_______=__________.
(3)如图,在△ABC中,AB=AC,点D在AC上,且BD=BD=AD,
求△ABC各角的度数。
(设计意图:学生讨论问题,教师参与讨论并适时地启发,重点关注:①学生能否正确应用等腰三角形的性质,②学生应用所学知识的应用意识。目的是培养学生正确应用知识的能力,增强应用意识和参与意识,巩固所学知识。)
2、练与拓----巩固新知
(1)练习:
①P1431、2、3(1和2题集体要求,3题中上层次学生完成,并安排学生板演)
②P1508(屏幕显示题目,要求学生用精炼的语言进行表述)
(2)拓广延伸:完成P142的讨论并总结规律,并给出其中一或二个的证明。
(设计意图:通过习题的解答,让不同的人得到不同的发展,让每一位同学体验学习数学的乐趣,找到自信。且练习的设计充分考虑到了学生的个体差异,练习源于例题,以本为本。例题由教师板书,体现示范功能。练习由学生板演,关注学生的数学表达,提供反馈校正的素材。拓广延伸通过讨论交流,实现生生师生互助,丰富情感体验,活跃课堂气氛。)
(四)感悟收获
通过本节课的探索研究,你收获到了什么?有何感受?
(设计意图:让学生谈收获,回授到的不仅有知识与技能的达成情况,还有过程的体验、方法的获得以及数学思想方法和情感价值观的形成情况。将“教学反应”型评价和“让学生谈收获的教学反馈”评价相结合,促进学生的自主评价,努力推行成功教育、愉快教育的理念,把握评价的时机与尺度,实现评价主体和形式的多样化,从而激发学生的学习兴趣,激活课堂气氛,使课堂教学达到最佳状态。教师根据情况再进行小结。)
(五)布置作业:
1、课本P149-150习题14.31(必作),3(必作),7(选作)
2、实验感悟(选作):画线段BC,分别以B、C为顶点作两个相等的角,两角终边的交点为A,再作△ABC的中线AD,然后沿AD翻折,试试看你有新的发现吗?
(设计意图:学以致用、巩固提高,作业分必做题和选做题,体现分层思想。通过作业,内化知识,检验学生掌握知识的情况,发现和弥补教与学中的遗漏与不足。同时,选做题具有前瞻性,可引导学生自学探究,为后一节课的教学做好准备。)
七、设计说明
1、本设计始终体现以学生为中心的教育理念,通过数学实验激发了学生探究的兴趣,提高了他们实验、分析、探究的能力,让学生体会到实验观察、猜想、归纳、验证的思想和数形结合的思想,学生的创造力得到充分发挥,从而得出新的结论和新的猜想,因为教学过程也就是学生的认知过程,只有学生积极参与才能达到教学目的,同时遵循学生学习数学的心理规律,让学生在一定情景中去经历、感悟知识,才是学生最有价值的收获,体现了学生从维持性学习走向研究性学习,从而走向自主创新性学习的转变和进步。
2板书设计:
3时间安排:
“复习引入”约3分钟,“探索、发现、验证过程”约17分钟。“技能演练与拓展”约20分钟。“感悟收获”约4分钟,“布置作业”约1分钟。
(注:45分钟一课时)
等腰三角形课件 篇6
目标:
知识目标: 等腰三角形的相关概念,两个定理的理解及应用。
技能目标: 理解对称思想的使用,学会运用对称思想观察思考,运用等腰三角形的思想整体观察对象,总结一些有益的结论。
情感目标: 体会数学的对称美,体验团队精神,培养合作精神。
2、“等边对等角”的理解和使用。
3、“三线合一”的理解和使用。
难点:
1、等腰三角形三线合一的具体应用。
2、等腰三角形图形组合的观察,总结和分析。
1、使用导学法、讨论法。
2、运用合作学习的'方式,分组学习和讨论。
3、运用多媒体辅助教学。
4、调动学生动手操作,帮助理解。
准备工作:
1、多媒体课件片断,辅助难点突破。
2、学生课前分小组预习,上课时按小组落座。
3、学生自带剪刀,圆规,直尺等工具。
4、每人得到一张印有“长度为a的线段”的纸片。
教学设计策略:依据教学目标和学生的特点,依据教学时间和效率的要求,在此课教学方法和教学模式的设计中我主要体现了以下的设计思想和策略:
1、回归学生主体,一切围绕着学生的学习活动和当堂的反馈程度安排教学过程。
2、原则性和灵活性相结合,既要完成教学计划,在教学过程中又可以根据现实的情况,安排问题的难度,体现一些灵活性。
3、教学的形式上注重个体化,充分给予学生讨论和发表意见的机会,注重学习的参与性,努力避免以教师活动为主体的教学过程。
解三角形课件
前辈告诉我们,做事之前提前下功夫是成功的一部分。在幼儿教育工作中,我们都有会准备一写需要用到资料。资料意义广泛,可以指一些参考素材。资料可以帮助我们更高效地完成各项工作。所以,您有没有了解过幼师资料的种类呢?为此,你可能需要看看“解三角形课件”,欢迎大家参考阅读。
解三角形课件(篇1)
一、本节课的内容是四年级下册第五单元里的一个内容:三角形的分类。这是在学生认识了各种角及三角形的特征的基础上展开学习的,本节课的设计我分为两个层次:按角分为三类,主要引导学生认识锐角三角形、直角三角形、钝角三角形。按边分为三类,着重引导学生认识等腰三角形、等边三角形边和角的特征。
二、本节课的知识目标是:
1、会根据三角形角、边的特点给三角形进行分类。
2、认识各种三角形。
能力目标是:经历观察与探索的过程,培养学生观察分析、动手操作能力,进一步发展学生的空间观念。
情感目标:激发学生的主动参与意识,培养学生的合作精神。
三、教学重点:能够按三角形角的不同和边的不同给三角形分类。
教学难点:引导学生认识各类三角形的特征。
四、本节课设计理念和施教措施
为了实现教学目标,有效的突出重点,突破难点,根据本组小专题“精心设计问题,促进学生有效学习”和学生的实际情况,教学中以直观教学为主,运用观察、动手操作、同桌合作等教学方法,精心设计问题,引导并启发学生展开思考和学习活动,促进学生有效解决问题的能力,在本节课中我精心设计了以下几个问题:
你能按三角形的特征给三角形分类吗?这是让学生运用已学过的就知识为新知识做铺垫,通过采取两次同桌合作的方式是学生会按角、边的特点给三角形进行分类。
培养学生的观察力是有效实施数学教学的方法之一,因此,我在让学生按角分类之后,抛出了又一个问题:仔细观察这三类三角形的角有什么相同的地方?这是为了让学生清楚在一个三角形中至少有两个锐角,也为如何正确的判断三角形打好基础。
此外,自学能力是教学中的一部分,因此,我根据教材内容的设置,安排让学生自学,以问题:等腰三角形和等边三角形各部分的名称又是怎样的呢?激起学生探究的欲望,通过学生自学课本内容来认识这两种三角形各部分的名称。
为了让学生进一步对等腰三角形、等边三角形有一个更清楚的认识和理解,我又以问题:你认为等边三角形是等腰三角形吗?为导向,让学生对比、理解等腰三角形包含等边三角形,也就是等边三角形是特殊的等腰三角形。
总之,整节课根据教学内容的设置,设计不同层面的问题,引导学生在积极思维的过程中有效学习,从而掌握知识。
解三角形课件(篇2)
教学目标
1.探索并了解三角形的外角的性质。
2.利用平行线性质来证明三角形外角的性质。
3.利用三角形内角和以及外角性质进行有关计算。
4、通过观察、实验、探索等数学生活,体验数学的美。
教学重点:掌握三角形外角的三个性质
教学难点:利用平行线证明三角形外角性质
学情分析
通过前面几节课的学习,学生已经掌握了三角形的基本概念,知道三角形的内角和为180°,三角形的外角与其相邻的内角是互补关系。这就为本节课的学习奠定了基础。本节课应注重渗透数学说理过程,从简单的问题中逐步培养学生运用几何语言的能力。
教学准备
多媒体、课件、三角板。并让学生课前准备好三角形纸片
教学过程
复习提问
1.什么叫三角形的外角?三角形外角和它相邻内角之间有什么关系?
2.三角形内角和等于多少度?
(由学生回答上述问题)
设计意图:
回顾上节课学习内容,为本节课的学习做好铺垫。
讲授新课
1.学一学:
自学课本47页长方形框上面的内容。然后回答下列问题:
(1)找出△ABC(如图)的外角,以及与这个外角相邻的内角、不相邻的内角。
(2)外角与其相邻的内角之间的关系呢?
(3)外角与其不相邻的内角又会有什么关系呢?这将是我们这节课要探索的主要内容。
设计意图:以学生自学的形式,来掌握与本节课相关的几个基本概念,并通过问题
(3)进行设疑,引出这节课的重点内容。
解三角形课件(篇3)
教学目标:
1、知识与技能目标:联系实际和利用生活经验,通过观察、操作、测量、联想等学习活动,认识三角形的基本特征,初步形成三角形的概念,初步认识三角形的底和高,感悟三角形的底和高的相互依存的关系。
2、过程与方法目标:在认识三角形的基本特征及底和高的活动中,体会认识多边形特征的基本方法,发展观察能力和比较、抽象、概括等思维能力。
3、情感、态度与价值观目标:认识到三角形是日常生活中的常见图形,在学习活动中进一步产生学习图形的'兴趣和积极性。
教学重点:认识三角形的基本特征,认识三角形的底和高。
教学难点:懂得底和高的对应关系,会画三角形指定边上的高。
下面请同学看黑板,板上有一幅房子图,从图中你可以想到我们学过的什么 图形?
师:根据我们已学的知识,你能在推理的基础上,说一说,这节课我们学习什么 ?
师:从房子 图上,我们找到了三角形,想想生活中的场景、结合平时观察,你能从什么地方的图上找出三角形?
师:数学来源于生活。平时观察中,我们能发现三角形,你能创造出三角形吗?
学生活动:
请你们拿出课前自己准备好的小棒,每人做一个三角形。
师:好,请同学们在纸上画出一个三角形。同时思考什么样的图形是三角形。
师:请同学生们观察我们摆出和画出的三角形,联系生活的图形说一说什么样的图叫三角形?
师:我们知道有三条线段首尾连接的叫三角形。让你给它各部分起个名称分别叫什么呢?
生:
教师:板书)如果在三角形的三个顶点上分别写上三个不同的大写字母,如:A、B、C,那么这个三角形就是“三角形ABC”,也可以称为“三角形ACB”或“三角形BAC”等。
教师:再说说,三角形ABC的3条边、3个角、3个顶点分别是什么?3条边:AB、AC、BC;3个顶点:A、B、C;3个角:∠A、∠B、∠C。
师:同学们对三角形认识了,我们一起来看看下面的图形哪个是三角形?
师:大家对三角形的基础知识掌握得很好,下面请同学们在导学案方格上任连三个点画出三角形。
引导学生发现:不在同一条直线上的三个点都能画出一个三角形。
师:有没有同学连在一条线上的三个点?你们为什么不连?
过渡:请大家用笔将这四个点都连起来,想象一下,现在这连好的图形像我们屋顶的~生:梁
师:(PPT)出示人字梁 这些线段中,哪一根最特殊?
师:(揭示高的定义)在数学上,人们把:从三角形的一个顶点向它的对边作一条垂直线段,这条垂直线段就是三角形的高,(板书:画出三角形的高,标上直角标记,并在所画线段的旁边标出“高”字)这条对边是三角形的底。(板书:底)
师:通过观看,闭上眼睛联想一下,画高就和我们以前学的画什么差不多?
师:现在,你们一定能画出三角形指定的高,请你画一画(完成导学案中的第4题)
解三角形课件(篇4)
教学目标
(一)使学生了解并掌握等腰三角形、等边三角形的特征,认识三角形的底和高.
(二)学会画三角形.
(三)进一步提高学生观察能力和画图能力.
教学重点和难点
使学生理解等腰三角形、等边三角形的特点,掌握底和高的概念是教学的重点;辨认三角形的底和高,尤其是当高不是处于铅垂位置时,对底的认识容易出错,因此辨认和画高是学习的难点.
教学过程设计
(一)复习准备
1.口答:
(1)说说什么叫做三角形?它有什么特征?
(2)按角的特征,三角形可以分成哪几类?各叫做什么三角形?
2.指出下面各叫做什么三角形?(投影)
(二)学习新课
我们学习了根据三角形角的特征把三角形分成直角三角形、锐角三角形、钝角三角形,今天继续学习对三角形的认识.(板书课题:三角形的认识(二))
1.教学等腰三角形.
(1)我们班得到了一面卫生流动红旗(如图),以及同学们戴的红领巾都是三角形.
观察一下这样的三角形,它们的边有什么特点?
(2)动手测量.(拿出事先准备好的三角形.)
测量每个三角形三条边的长度,你发现了什么?这三个三角形的边长有什么共同特点?
(3)动手折叠.
上面的每个三角形,能不能折叠成互相重叠的图形?
(4)通过我们的观察、测量、折叠,你发现这些三角形有什么特点?
引导学生明确:这些三角形都有两条边相等,两个角相等.
教师指出并板书:两条边相等的三角形叫做等腰三角形.
2.认识等腰三角形各部分名称.
出示一等腰三角形,结合图形认识各部分名称.在等腰三角形里,
相等的两条边叫做腰,另一条边叫做底,两个腰的夹角叫顶角,底边上
的两个角叫底角.
(3)认识等腰三角形的性质.
让学生量一量自己手中三个等腰三角形,每个等腰三角形的底角.
你发现了什么?
在度量的基础上,引导学生明确:等腰三角形两个底角相等.(板书)
反馈:下面哪些图形是等腰三角形?
3.教学等边三角形.出示三幅图:
指定三人到黑板上测量每个三角形的边长和每个角的度数.
全班同学测量课本145页右上角图.
通过测量你发现这些三角形边、角各有什么特点?
引导学生得出:每个三角形的三条边长度都相等,每个三角形的三个角都相等.
教师指出并板书:
三条边都相等的三角形叫做等边三角形,又叫做正三角形.
等边三角形的三个角都相等.
通过把等边三角形与等腰三角形对比,引导学生明确等边三角形是特殊的等腰三角形.
4.认识三角形的底和高,并画高.
(1)认识三角形的底和高.
我们已经学过从直线外一点向直线作垂线的方法.现在利用这个知识来认识三角形的高.
①画锐角三角形,师边作图边说明.
从三角形的一个顶点到它的对边作一条垂线.顶点和垂足之间的线段叫做三角形的高,这条对边叫做三角形的底.
提问:
锐角三角形有几条高?
如果从B点画高,它的底边是哪条线段?
如果从C点画高,它的底边是哪条线段?
引导学生明确:锐角三角形的底和高不止一个,从任何一个顶点都可以向它的对边作高.这样三角形就有3个底和3个高.
②画直角三角形的高.
想一想,直角三角形应该怎样画高?
通过观察思考明确:因为直角三角形两条边成直角,所以夹直角的一条边是高,另一条边就是底.
再找一找另外一条高在哪儿?从而明确从直角的顶点向斜边作一条垂线,所以直角三条形的另一条高在斜边上.
③画钝角三角形的高.
右图这个钝角三角形,从A点作高,底边应是BC,高要画在三角形外;从B点作高,底边是AC,高也要画在三角形外.这两条高的画法我们就不研究了.
只有从C点向对边作高,底边是AB,高画在三角形里.因此钝角三角形只有从钝角的顶点向对边作高.教师边作图边说明.
教师强调指出:每画完一条高,要标上垂足.
反馈:
①指出各图的底和高.(投影)
②学生动手画高.
在自己准备好的三角形上画高.教师巡视.
5.学习画三角形.
根据三角形的边长和角的度数,可以画符合已知条件的三角形.
例 一个三角形的两条边长分别是2.5厘米和2厘米,它们的夹角是30°.根据这些条件画出三角形.
教师边演示边与学生同画.
先画一个30°的角.从这个角的顶点起,在一条边上量出2.5厘米的线段,在另一条上量出2厘米的线段,各点上一个点.用线段把这两个点连接起来.
让学生说说画三角形的步骤.
学生试画:两条边长都是3厘米,夹角是40°的三角形.
教师行间巡视指导.
完成146页“做一做”.
(三)巩固反馈
1.出示一组图形,各是什么三角形?(投影)
2.完成练习三十一第5,6题
3.判断下面说法对吗?
(1)一个三角形里如果有两个锐角,必定是一个锐角三角形.
(2)所有的等边三角形都是等腰三角形.
(3)所有的等腰三角形都是锐角三角形.
(四)作业
练习三十一第7~10题.
课堂教学设计说明
学生已经掌握了根据三角形角的特征对三角形进行分类,在这个基础上,本节课学习根据边的特点认识等腰三角形和等边三角形,并认识三角形的底和高,会画三角形的高和三角形.
新课分为四部分.第一部分,认识等腰三角形,通过动手实践、测量、折叠,从而建立等腰三角形概念,了解各部分名称及其性质.第二部分,用同样方法认识等边三角形,并明确等边三角形是特殊的等腰三角形.第三部分,认识三角形的底和高,并会画高.今后学习三角形面积要常用到,因此一定要让学生掌握.最后一部分动手操作,让学生学会画三角形,掌握画三角形的步骤.教师要高度重视,加强指导.
本节课既重视教师的直观、演示,更要重视学生的动手实践,以逐步提高学生的识图、作图能力.
板书设计
三角形的认识(二)
两条边相等的三角形叫做等腰三角形.
两个底角相等.
三条边都相等的三角形叫做等边三角形,也叫做正三角形.
三个角都相等.
解三角形课件(篇5)
教学内容:
人教版四年级下册第85面——87面。
教学目标:
1、让学生亲自动手,通过量、剪、拼等活动发现三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。
2、让学生在动手获取知识的过程中,渗透“转化”数学思想,掌握简单的数学推理方法,培养学生的创新意识、探索精神和实践能力。
3、让学生感受到数学的价值,体会成功的喜悦,激发学生主动学习数学的兴趣。
教学重点:
让学生经历“三角形内角和是180°”这一知识的发现过程。
教学准备:
教具:多媒体课件、三角板一个、两个完全一样的直角三角形。
学具:锐角三角形、直角三角形、钝角三角形各一个。
教学过程:
(一)创设情境,提出问题。
师:同学们的歌声真嘹亮,老师站在这里和大家一起学习感到很高兴,
今天老师还给大家带来了一个老朋友,请看,是什么?
生:三角形!
师:前面我们已经认识了三角形,谁能给大家介绍一下?
学生讲学过的三角形知识。
(学生叙述到部分主要内容即可)
师:看来大家对三角形已经非常熟悉了,老师还为大家带来了两个特殊的三角形,请看,它们是什么三角形?(点击FLASH出示直角三角形实物图)
师:(师指第一个三角形)谁知道这个直角三角形每个角的度数吗?
师:答的真准确,(FLASH:生说完后师边说边点出度数)30度、60度、90度都在这个三角形的内部,我们把这样的角叫做三角形的内角。
师:有谁知道这个三角形三个内角的度数?
(FLASH:生说完后师点击出第二个三角形,边说边点出度数)
[U1]试一试,看谁算得快。
师:谁来说说自己的计算过程?
[U2]角的和叫做三角形的内角和。(板书课题)下面请大家认真观察这两个算式,从结果上看,你发现了什么?
生:它们的内角和都是180度。
师:观察的真仔细!(点击课件,出示多种多样的三角形后提问)同学们,咱们都知道,这两个三角形是特殊三角形,在我们的生活中还有许许多多不是这个样子的三角形,请看大屏幕,这些任意三角形,它们的内角和是不是都是180度呢?
[回答可能有二]:
(一种全部说是:)
师:请问,你们是怎么想的,为什么这么认为?
生:……
师:看来,大家是通过这两个三角形猜想的,是吗?想不想验证一下你们的猜想,(生:想)好,咱们一起走进三角形王国,一起去研究它们内角和的秘密吧!(师在课题“内角和”下面划上横线,打上问号)
(一种有一部分同学说是,有一部分同学说不是:)
师:看来,大家的意见不一致,想不想验证一下你们的猜想,(生:想)好,咱们一起走进三角形王国,一起去研究它们内角和的秘密吧!(师在课题“内角和”下面划上横线,打上问号)
(二)动手操作,探究新知
[U3]
师:老师看你们有答案了,哪位同学愿意说一说你的奇思妙想?
生:我准备用量的方法。
师:然后呢?
生:然后把它们三个内角的度数相加起来,就知道了三角形的内角和是多少?
师:说的真不错,还有没有其它的方法?
生:我是把三角形的三个角剪下来,拼在一起(师鼓励:你的想法很有创意,等一会儿用你的行动来验证你的猜想吧!)
生:……
(如生一时想不到,师可引导:他是把三个内角的度数相加在一起,我们能不能想办法把三个内角放在一起进行观察,看看能不能发现些什么呢?)
师:好啦,老师相信咱们班的同学个个都是小数学家,一定能找出更多的方法的,请你们在研究之前,也像老师一样,在三个内角上编上序号,角一、角二、角三,现在就请同学们对锐角三角形、直角三角形和钝角三角形等各种类型的三角形进行研究,看看它们的内角和各有什么特点。咱们比一比,看一看,哪个小组的方法多,方法好!
[U4]开始吧!(学生研究,师巡回指导)预设时间:5分钟
师:老师看各小组已经研究好了,哪位同学愿意上来交流一下?
师:请你告诉大家,你是怎么研究的,最后发现了什么结果?
(预设:如果第一类同学说的是量的方法)
师:你是用什么来研究的?
生:量角器。
师:那请你说一下你度量的结果好吗?
(生汇报度量结果)
师:刚才有的同学测量的结果是180度,有的同学测量的结果是179度,有的同学测量的结果是182度,各不相同,但是这些结果都比较接近于多少?
生:180度。
师:那到底三角形的内角和是不是180度呢?还有哪位同学有其它的方法进行验证吗?
生:我是先把三角形的三个角剪掉以后粘在一起,然后在量出它们三个角组成的度数。
师:他演示的真好,你们听明白了吗?李老师把他的过程给大家在大屏幕上演示一下。
(师边讲解边点击FLASH:把三角形按照三个内角撕成三块,先把角一放在右边,再把角二放在左边,最后把角三调个头,插在角一角二的中间,这样它们三个内角就形成了一个大角,角一的这条边,角二这条边看起来在一条直线上,那到底是不是在一条直线上呢,我们一起用直尺来量一下,师演示后问学生:是不是在一条直线上,那这个大角是个什么角呢?通过刚才拼的过程,你有什么发现?)
师:好极了,刚才这个小组的同学用拼的方法得到XX三角形的内角和是180度,你们还有别的方法吗?
生:我们还用了折的方法(生介绍方法)
师:你们听明白了吗?李老师把他的过程给大家在大屏幕上演示一下。
(师边讲解边点击FLASH:先找到两条边的中点,把它连起来,把角一沿着中间的这条线向对边对折,再把角二向里对折,使它的顶点与角一对齐,最后把角三也用同样的方法对折,这样它们三个内角就形成了一个大角,这个大角是个什么角呢?)
生:是个平角。180度。
师:除了用了量、拼、折的方法来研究以外,刚才在操作的过程中老师还发现了一个同学用了一种方法来进行研究,大家想知道吗?
师:请这位同学来说给大家听听吧!
生:我把两个相同的直角三角形拼成了一个长方形,因为长方形里面有四个直角,所以它的内角和是360度,那么一个三角形的内角和就是180度。
师:刚才我们用量、拼、折、推理的方法都得到了三角形的内角和是180度,同学们,现在我们回想一下,刚才测量的不同结果是一个准确数还是一个近似数?为什么会出现这种情况呢?
生1:量的不准。
生2:有的量角器有误差。
师:对,这就是测量的误差,如果测量仪器再精密一些,我们的方法再准确一些,那么任意一个三角形的内角和也将是180度。
师:同学们,我们刚才用不同的方法,不同的三角形研究了三角形的内角和,得到了一个相同的发现,这个发现就是?
生:三角形的内角和是180度。(师板书)
师:把你们伟大的发现读一读吧!
(三)拓展应用,深化认识
师:请看老师手上的这两个三角形,左边这个内角和是多少度?(生:180度)右边呢(生:也是180度)
师:现在老师把它们拼在一起,这个大三角形的内角和又是多少度呢?
(生答后师引导归纳得出:三角形的内角和与形状大小无关,组成的大三角形的内角和依然是180度。)
师:刚才我们在讨论学习三角形知识的时候,三角形中的两个好朋友却争执了起来,想知道怎么回事吗?让我们一起去看看吧!(出示课件,课件内容:一个大一些的直角三角形说:“我的个头比你大,我的内角和一定比你大”。另一个稍小的锐角三角形说:“是这样吗”?)
师:到底谁说的对呢?今天我们就用我们今天学到的知识来为它们解决解决吧!
师:真不错,你们当了一回小法官,帮助三角形兄弟解决了问题,它俩很感谢你们,三角形王国中还有很多生活中的问题,小博士们,你们愿意解答吗?
师:好,请看大屏幕!
(出示基础练习)在一个三角形中角一是140度,角三是25度,求角二的度数。
生答后,师提问:你是怎样想的?
生陈述后,师鼓励:说的真好!
出示自行车、等边三角形的路标牌、告诉顶角求底角的房顶、直角三角形的电线杆架进行练习。
(出示)小红的爸爸给小红买了一个等腰三角形的风筝,它的一个底角是70度,它的顶角是多少度?
师:看来啊,三角形的知识在咱们生活中还有着这么广泛的运用呢!昨天,我们班发生了一件事情,小明不小心将镜框上的一块三角形玻璃摔破了,(课件呈现情境)他想重新买一块玻璃安上,小明非常聪明,只带了其中的一块到玻璃店去,就配到了和原来一模一样的玻璃了。你知道他带的是哪一块吗?
(预设:师:根据三角形的内角和是180度,你能求出下面四边形、五边形、六边形的内角和吗?
师:太棒了,这位同学把这个四边形分割成了二个三角形求出了它的内角和,你能像他一样棒求出五边形和六边形的内角和吗?
师:同学们,今天我们一起学习了三角形的内角和,你有哪些收获呢?
师:嗯,真不错,你们知道吗?三角形的内角和等于180度是法国著名的数学家帕斯卡在1635年他12岁时独自发现的,今天凭着同学们的聪明智慧也研究出了三角形的内角和是180度,老师为你们感到骄傲,老师相信在你们的勤奋学习和刻苦钻研下,你们就是下一个“帕斯卡”!
师:好,下课!同学们再见!
解三角形课件(篇6)
[设计思路]
这节课主要运用动手实践、自主探索、合作交流的学习方式,通过操作、讨论、交流等活动,使学生主动地获得数学知识的技能,发展学生的思维能力,培养学生创新意识。教学中加强数学知识与生活实际的联系,让学生体会到数学的价值,激发学生的学习兴趣,培养学生应用意识和实践能力。设计练习时应具有一定针对性、层次性、实践性,以此巩固三角形特征的认识。
[教学目标]
1、使学生联系实际和利用生活经验,通过观察、操作、测量、等学习活动认识三角形的基本特征,知道三角形各部分的名称,了解三角形的两边之和大于第三边。
2、让学生在由实物到图形的抽象过程中,在探索图形特征以及相关结论的过程中,进一步发展空间观念,锻炼思维能力。
[教具、学具准备]
学生准备小棒若干根(包括10cm、6cm、5cm、4cm长的小棒各一根),三角板,铁丝。
1、(课件出示:如下图)师:老师每天上班都要从学校先经过加油站,再从加油站到学校,有没有更近一点的路呢?(从家直接去学校)
2、师:为什么从家直接去学校这条路最近呢?我们可以把这几个地点和路线看成什么图形呢?
3、谈话:三角形是我们过去认识的图形,这里面还有很多数学问题,今天同学要通过动手操作,自己来探索发现。(板书:三角形的认识)
[设计意图:创设学生熟悉的生活情境,提出问题引发学生深入思考,引起悬念,从而激起学生探索的愿望]
1、师:生活中你在哪些地方见到过三角形?课件演示生活中的一些三角形。
2、师:同学们在生活中找出了许多三角形,你能想办法自己做个三角形吗?
3、展示学生做出的各种三角形,并说说做的过程和方法(学生可能是用小棒摆,铁丝围,用纸折,用三角板画……)
指名让一名学生用小棒摆一个三角形,师故意拨动小棒,使学生明白摆小棒时应首尾相连。
4、师:同学们用自己的方法做出了不同的三角形,你们能自己画一个三角形吗?在课本第23页的点子图上自己画一个三角形。
5、师在黑板上画出三角形。
6、师:我们已经做了三角形,又画了三角形,你们知道三角形各部分的名称吗?自学课本第22页下面的图。
7、在自己画出的三角形上,标出各部分的名称。
8、小结:三角形是有三条线段围成的图形,它有三条边、三个角、三个顶点。
[设计意图:通过让学生自己动手做三角形、画三角形,并在学生摆小棒的过程中故意“捣乱”,让学生体验到三角形是由三条线段围成的图形,也为后面学生的活动打好基础;通过自学认识三角形有三条边、三个角、三个顶点,逐步形成三角形的概念。]
1、谈话:刚才我们用小棒摆了三角形,如果任意给你们三根小棒能把他们围成三角形吗?(有的说“能”,有的说“不能”。)让我们动手实验一下吧!
小组活动要求:
b、记录所选三根小棒的长度,看一看能否用选定的三根小棒围成一个三角形。
2、展示和报告实验结果,说说选的哪三根小棒能围成三角形,哪三根小棒不能围成三角形。
3、说说能不能围成三角形跟小棒的什么有关?(长度)课件演示不能围成三角形的两种情况。
4、师:通过刚才的小组活动,老师的演示,你有什么发现?
引导学生说出:当两根小棒的长度之和等于或小于第三根时,就不能围成一个三角形。
5、观察能围成的三角形的三条边,看看有什么发现?
[设计意图:让学生动手操作、小组合作,让学生自己在操作过程中感受三角形三条边之间的关系;在交流中升华。培养学生动手操作能力,真正体现了学生学习方式的改善,体现了以学生发展为本的新理念。]
1、回到课开始的关于“老师去学校”的生活情境,现在可以说说什么从家直接去学校这条路近呢?
总结窍门:只要看较短的两边之和大于第三边就能判断能否围成三角形。
3、把一根14厘米长的吸管剪成三段,用线串成一个三角形,能做多少个?如果每小段剪成整厘米长,能剪几个?
[设计意图:三个练习设计体现了一定的层次性,第一个练习前后呼应,让学生认识到数学知识源于生活,又用于生活;第二个练习旨在让学生学以致用,并总结出窍门;第三个练习有一定难度,拓展学生的思维,使不同的学生得到不同的发展,体现了“下要保底,上不封顶”的教学思想。
1、师:这节课你对三角形有了什么新的认识?你有那些收获?
2、(课件演示)摇晃的椅子加了一根木棒就稳了,艾非尔铁塔高一千多米,这么多年依然雄伟壮观……这到底什么原因呢?其实这就跟三角形一个重要的特征有关,有兴趣的同学课后可以去查查资料研究研究。
解三角形课件(篇7)
一、教学目标
1、掌握中位线的概念和三角形中位线定理
2、掌握定理“过三角形一边中点且平行另一边的直线平分第三边”
3、能够应用三角形中位线概念及定理进行有关的论证和计算,进一步提高学生的计算能力
4、通过定理证明及一题多解,逐步培养学生的分析问题和解决问题的能力
5、通过一题多解,培养学生对数学的兴趣
二、教学设计
画图测量,猜想讨论,启发引导。
三、重点、难点
1、教学重点:三角形中位线的概论与三角形中位线性质。
2、教学难点:三角形中位线定理的证明。
四、课时安排
10课时
五、教具学具准备
投影仪、胶片、常用画图工具
六、教学步骤
【复习提问】
1、叙述平行线等分线段定理及推论的内容(结合学生的叙述,教师画出草图,结合图形,加以说明)。
2、说明定理的证明思路。
3、什么叫三角形中线?(以上复习用投影仪打出)
【引入新课】
1、三角形中位线:连结三角形两边中点的线段叫做三角形中位线。
(结合三角形中线的定义,让学生明确两者区别,可做一练习,画出中线、中位线)
2、三角形中位线性质
了解了三角形中位线的定义后,我们来研究一下,三角形中位线有什么性质。
三角形中位线定理:三角形中位城平行于第三边,并且等于它的一半。
应注意的两个问题:
①为便于同学对定理能更好的'掌握和应用,可引导学生分析此定理的特点,即同一个题设下有两个结论,第一个结论是表明中位线与第三边的位置关系,第二个结论是说明中位线与第三边的数量关系,在应用时可根据需要来选用其中的结论(可以单独用其中结论)。
②这个定理的证明方法很多,关键在于如何添加辅助线。可以引导学生用不同的方法来证明以活跃学生的思维,开阔学生思路,从而提高分析问题和解决问题的能力。但也应指出,当一个命题有多种证明方法时,要选用比较简捷的方法证明。
【小结】
1、三角形中位线及三角形中位线与三角形中线的区别。
2、三角形中位线定理及证明思路。
七、布置作业
教材P188中1(2)、4、7
解三角形课件(篇8)
《三角形的认识》教学设计
岚皋县城关小学王晓君
教学内容:
人教版《义务教育课程标准实验教科书。数学》四年级下册第59页60页。
教学目标:
1、通过学习使学生认识三角形,知道三角形各部分的名称,能用字母表示三角形;理解三角形底和高的对应关系,会在三角形内画高初步了解三角形的外高。
2、在找一找、画一画、说一说的过程中感知三角形的表象,在画高的过程中感受三角形底与高的相互依存关系。
3、通过教学培养学生的观察能力、作图能力,数学语言表达能力。积累抽象概括及画高等数学活动经验。养成学生用数学的眼光观察生活的好习惯。体验数学与生活的密切联系,培养学生的空间观念。
4、通过使用iPad辅助教学,提高学生的参与度。体会在现代信息技术的支持下,学习可以无处不在。
教学重点:
理解三角形的概念、认识三角形各部分的名称。
教学难点:
能准确画出三角形的高。
教具、学具:
教师准备:多媒体课件、iPad、三角尺。
学生准备:课前在网上搜索,生活中拍摄与三角形有关的物体图片。三角板,铅笔,白纸。
教学过程:
一、理解三角形的概念
1、初步感知
今天要学什么呢?(课件出示"猜一猜,打一几何图形")
你知道了什么?(板书图形)
课件出示谜面:形状似座山,三竿首尾连。拐角尖又尖,学问不简单。
指名学生读一读。
你猜可能是什么?它是人类智慧的象征。今天我们将一起来认识三角形。
板书课题《三角形的认识》
从古到今三角形在我们的生活中都有着广泛的应用,课件出示古金字塔和安康汉江三桥画面。(课件出示抽象画面中的三角形)
打开iPad,小组交流你搜集的有关生活中三角形的图片。指一指三角形都在哪?指名小组汇报,说一说搜集的结果。
2、画图理解概念
现在知道三角形是什么样了吗?在练习纸上画一画吧。(师在黑板上画)
跟同桌或小组里的同学说一说,你是怎么画的?什么样的图形叫三角形?
画好以后在你画的三角形的上面写上自己的名字,用iPad拍照后发班级QQ群,大家互相欣赏,举手评价,学生评价时老师点击放大该学生的作品。
课件出示判断:
来看看下面这些图形,哪些是三角形?这些为什么不是?(相机板书:3条线段,每相邻两条线段的端点相连)
3、尝试概括定义
说一说,什么样的图形叫三角形?
课件出示:由3条线段围成的图形叫做三角形。你觉得这里的"围成"是什么意思?(完善板书)
二、认识各部分名称
1、引导观察并讲述:(课件出示)围成三角形的这三条线段就是这个三角形的边,每相邻两边相连的端点叫做顶点,由一个顶点出发的两条边所组成的图形就是角。三角形有几条边,几个顶点,几个角?
练习:找个同学上来指一指黑板上这个三角形各部分的名称。
都理解了吗?再找个同学上来指一指:这回老师说你来指好吗?"那个顶点",学生指哪个都摇头 .
2、用字母表示
师:为什么现在他指不对了呢?
师:为了更好的区分它们,我们可以用字母A,B ,C分别表示这三个顶点。这个顶点就读作"顶点A"读,(指B,C)这个是?这样一来这条边就叫AB边。(指另外两条)。这个角就是——角A.
师:整个三角形就可以叫做——三角形ABC.真会类推!快动手把你的三角形也用字母表示出来。
练习并过渡:(课件出示同底不等高的三角形)现在会用字母表示三角形了吗?
师:这是个三角形家族,如果用ABC表示这个蓝色的三角形的话,这个绿色的三角形可以表示为AB——D.这个红色的`就是——三角形ABE.
3、认识三角形的高
观察这些三角形,你有什么发现?(一个比一个高,一个比一个大)
师:看样子三角形也是有高的,而且这个高还影响着三角形的大小。
师:如果三角形有高的话,那这个高应该在哪儿呢?(停顿一下出示课件)看看下面哪个三角形画出了你心目中的高?
你的感觉到底对不对呢?请打开课本60页,在书中去找一找。
谁来读一读?
改一改上图中错误的高。
5、学习画高
演示画高:指着黑板上画的三角形:它有高吗?那咱们一起来给它画出来好吗?过点A做BC边的高。对边在哪?怎么画?
全体学生尝试独立画自己所画的三角形的高。
老师拍典型图片,用iPad展示,画得好的同学汇报自己的画法。同桌用三角尺互查,画得是否标准。总结用三角板画高的方法。
(可能会有画三条高的,进行展示)课件出示三条高,理解高和底的对应关系,知道三角形有三条高。
练习画高:会画高的同学把手举起来我看看!都会画呀!请打开课本60页,完成下面的"做一做".(课件出示)
用iPad展示,指名学生推送作品。在学生的作业点评中巩固画高的方法,理解直角三角形两条直角边互为底和高。
三、了解形外高。
如图:先给出ABCD四个点,让学生观察,如果连线组成三角形的话,你觉得可以组成哪些三角形?
课件演示过A点做BC边的垂线AE.观察你觉得AE是哪些三角形哪条边上的高?了解钝角三角形的形外高。
四、培养空间观念
今天我们对三角形进行了更为深入的学习,生活中有三角形吗?
来学校的路上我发现了一个三角形,想知道是什么吗?大家说是直接出示图片还是给一些线索大家来猜一猜?课件出示:高40厘米,底50厘米。这个三角形可能是什么?先把你的想法与同桌比划比划,再全班交流。
解三角形课件(篇9)
一、说教材:
本课是义务教育课程标准实验教科书数学五年级(上册)第84页至85页的教学内容。三角形的面积计算是学生在掌握了它的特征的基础上学习的,它是进一步学习圆面积和立体图形表面积的基础知识之一。因此,体验和感知三角形面积计算的探索过程,掌握三角形面积计算公式,是学生后继学习的重要基本技能和基础知识。教材的编排是在学生已经学习了长方形、平行四边形的面积的基础上学习的。教学内容引导学生动手把两个完全一样的三角形拼成平行四边形来计算面积,培养学生的动手操作能力和思维能力。
二、说教学目标:
基于以上对教材的认识,按照新课程理念,我制定了以下的教学目标:
1、理解三角形面积公式的推导过程,正确运用三角形面积计算公式进行计算。
2、培养学生观察能力、动手操作能力和类推迁移的能力。
3、培养学生勤于思考,积极探索的学习精神。
三、说教学重点、难点:
重点是理解三角形面积计算的推导过程,会根据公式进行计算。难点是理解三角形面积公式的推导过程。
四、说教法学法:
“动手实践、自主探究与合作交流”是学生学习数学的重要方式。因此,在本课的教学采用:
学生通过自己动手操作学习新知识比听教师讲解新知识记忆更加深刻,兴趣更加浓厚。因此,在教学三角形面积计算公式推导过程时,让学生动手操作、讨论,体现了以学生为主体,教师为主导的教学原则。
2、课件演示,配合启发。
学生动手实验,交流汇报之后,再看课件演示,教师给予点拨,使学生更直观,更形象地理解三角形面积的计算方法。
1、谈话导入:植树节快到了,我们学校要进行一些绿化、美化,看,这是块平行四边形的空地,你们能先求出它的面积吗?现在要把这块地平均分成两份,一半种月季,一半种菊花,如何分?你能算其中一块花坛的面积吗?请同学们猜想三角形的面积是怎样算的?(设计意图:渗透几何图形之间联系,为新知识的学习作好铺垫。)
导入:下面让我们一起来验证我们的猜想是否正确,请同学们拿出学具,用两个完全一样的三角形拼已经学过的平面图形。
(1)小组合作,动手拼摆。(说明:学生准备直角、钝角和锐角三角形各两个,且两个直角、两个钝角和两个锐角三角形的形状分别完全一样。设计意图:教师为学生提供一个开放的空间,让学生亲身经历自主探索的过程。创设了一个问题情景,让学生在发现问题,解决问题之中感悟出“完全一样的三角形”是拼摆的前提,通过学生亲手拼摆,最大限度地发挥学生学习的主体性,也有助于“用两个形状完全一样的三角形拼出了一个平行四边形”等概念的建立。)
(2)小组代表汇报实验成果,并演示拼摆的操作过程,说明拼摆的方法。教师鼓励学生充分、大胆地发言,说出自己在操作中的发现,对学生的发现给予肯定。(设计意图:让学生汇报实验成果,教师给予表扬肯定,使学生体验学习成功的喜悦,设置“我的发现”这一开放性的问题,培养学生发散思维的能力。)
(3)课件演示三角形拼摆成平行四边形的过程。(设计意图:先让学生自由做实验,有利于学生在操作过程中自由发挥,而不束缚学生的想象力和思维能力。学生汇报实验成果之后,再观看课件演示,这就更形象、更直观,更生动的展现了图形拼摆的过程,有利于学生形象思维能力的培养。)
(4)总结归纳计算公式。
每个三角形的面积与拼成图形的面积有什么关系?
这个平行四边形的底等于三角形的什么?
这个平行四边形的`高等于三角形的什么?
三角形的面积公式是怎样的?
学生借助手中的图形讨论问题。
小组代表汇报讨论学习成果。
教师结合课件补充,帮助学生解决问题。(设计意图:让学生亲自讨论、交流中发现三角形的底、高和面积与所拼成的平行四边形的底、高和面积的关系,帮助学生对三角形面积公式的推导。培养学生的合作学习意识。)
(5)回顾推导过程(用自己的语言来填空)。
三角形的面积公式为 用字母表示为 。
(1)解决例1:利用公式,计算一下佩戴的红领巾,它的面积是多少?
(2)让学生阅读书本85页的“你知道吗?”。并让学生说说有什么感想?(设计意图:让学生自主解决例1,巩固学生对基本知识的掌握。阅读“你知道吗?”让学生了解我国的数学文化,渗透爱国、爱学习的思想品德教育,激发学习热情。)
1、基本题的练习。
基本题的练习设计是遵循学生的认知规律,注意梯度性。学生独立计算,教师指名学生上黑板板演。判断题要求学生做出正确的判断后并说出理由。(设计意图:基本题的设计,巩固了学生对基本知识的掌握,明白计算三角形的面积必须要找准对应的底和高,同时感受到数学与生活之间联系。)
2、拓展题的练习。设计有一定的开放性,重点突出“等底等高”的关系,有利于学生学习主体性的提高。)
同学们,这节课经过大家亲自实验,归纳推导出了三角形面积计算的公式,真了不起!但请大家仔细想想,这节课,你们还有什么问题吗?(设计意图:一堂课的学习,不能让学生产生错觉,认为把本节课所有的问题都解决了,教师要注重培养学生的问题意识,学生产生了疑问,才会积极地去探究。)
解三角形课件(篇10)
在学习本课之前,学生已经充分认识了三角形的特征,能熟练地计算长方形、正方形面积,并且在本单元探索活动中,学生经历了推导平行四边形的面积公式,在实际操作的过程中已经感受到了知识之间的相互联系与互相转化的思想。所以,我们在设计这节课的时候,将教会学生预习,让学生在猜想、观察、操作中自主归纳公式运用公式作为本课的侧重点。
教学目标是:
1、在实际情境中,认识计算三角形面积的必要性。
2、在自主探索中,经历推导三角形面积计算公式的过程。
3、能运用三角形的面积公式,计算相关图形的面积,解决实际问题。
教学重难点:在自主探索中,经历推导三角形面积计算公式的过程,并能解决实际问题。
教学教学准备
教学环节:
一、课前预习,初步感知。
在这个环节中,教师的行为是根据具体的教学内容指导学生进行预习。这里我们要说明的是,预习并不是放任自流,我们在研究的过程中总结了指导预习的9种方法。他们分别是:读、找、做、想、记、举、试、问、联。
所以在这节课的课前预习中,我们就指导学生先读一读教材,了解这节课我们要学习的内容是什么。然后让学生在书中的标题旁或者小刺猬的图例旁找一找这节课的知识点是什么。再引导学生根据书中的要求自己动手做一做。在实际操作之后让学生想一想为什么要这么做?还可以怎么做?然后让学生讲一讲自己操作的过程。还要教会学生问一问,问问自己还有什么不明白的或者容易错的问题。
在这个基础上,教师引领学生做七巧板拼图游戏,让学生在游戏中感受图形之间的联系。在这个环节中,重要的是要教会学生预习的方法,所以教师要跟踪检查布置的每一项任务。
二、进入情景,发现问题。
在这个环节中,教师要为学生创设情境,学生在此情境中发现问题、提出问题,感受学习本课的必要性。这个环节的关键是要引起学生的认知冲突,激发学生的求知欲。
因此在这个环节中,我们为学生设置了学校开运动会制作宣传小旗的情境。引导学生看情境图,分析要求出至少需要多少布料的关键就是要求出这个三角形的面积,教师要及时抓住主要的问题引导学生思考怎么求这个三角形的面积,在学生的讨论中,引起学生的认知冲突,让学生感到学习三角形面积计算的重要性,然后及时切入新课。
三、尝试解决,交流总结。
在这个环节中,学生要在预习的基础上与小组成员合作解决问题。通过各种不同的方法验证三角形的面积公式。教师的行为就是在学生的自主探索中适当的指导,并在学生的汇报中引导学生总结规律,强化重点。
因为学生在课前有了学习平行四边形面积计算的经验,又做了充分的预习,所以在这个环节中我们将重点放在学生独立尝试解决问题上。我设计的问题是:你要怎么解决这个问题。因为学生在课前已经做了预习,并且在学习平行四边形面积的时候已经感受到了数小格的局限性,所以在这个问题的回答上,学生很有可能直接就说出了三角形的面积公式。其实学生在没有教师讲授的时候就了解三角形的面积公式不足以为奇,关键是教师要继续追问下去为什么是底高2,这才是我们这节课要解决的重点问题,所以我们在学生预习的基础上调整了教学的顺序,变以往的教师在课堂上设计大量的环节牵引学生一步一步的推导到让学生在了解公式的前提下,自己动手操作验证结论。其实都是在教师的指导下对公式的形成进行了再一次的推导,不过在教学的顺序上发生了微小的变化,教学的要求由教师的教变成了学生自主验证,让学生充分感觉自己是课堂的主人,这样做更激会发学生的求知欲。在全班交流的过程中,学生会用两个完全相同的三角形拼成一个平行四边形,将三角形转化成我们已经学习的平行四边形进行计算,这个时候教师的作用就是要引导学生观察一个三角形与拼成的平行四边形之间的关系,强化本节课的几个重难点,引导学生发现新旧知识之间的联系,总结公式。
四、分层达标,巩固练习
在第三个环节中,我们重视的是学生自主的探索,鼓励每个学生在实践操作中展示自己的预习成果,学生可能会出现各种不同的问题,但是为了尊重学生,教师只在学习的过程中起到帮助和个别引导的作用,教师不牵引,不主导,所以,在第三个环节中会比以往教师引导学生一步一步总结的时间花费的多。因此在第四个环节巩固练习,分层达标中,我们就要用短暂的时间,根据不同层次学生的实际水平,运用多种情景的变式,通过设计饶有兴趣的练习,或新颖耐人寻味的总结,使学生牢固掌握知识。
五、自我评价,总结提高
在这个环节中,我们鼓励学生说说本节课你有什么收获,其实也是培养学生独立总结的能力。
在这节课的设计中,我们注重了学生的认知规律,激发了学生的求知欲望,注意了学生的个性张扬,让学生独立思考,合作学习,创新精
解三角形课件(篇11)
一、说教材
1、教材的地位及作用:教材首先引出中位线的概念,进而探索研究它的性质,最后利用性质定理进行有关的论证和计算,步步衔接,层层深入,形成知识的链条。本课内容可以为今后证明线段平行和线段倍份关系提供重要的方法和依据。可见,三角形中位线在整个知识体系中占有相当重要的作用。另外,本课是通过探究推理得到定理的,所以通过本课教学,对探究数学问题能力的培养及创新思维训练也有着十分重要的作用。
根据新课标要求,结合学生的实际情况,我制定了如下的学习目标:
知识与技能:理解并掌握三角形中位线的概念、性质,会利用性质解决有关问题。
过程与方法:经历探索三角形中位线性质的过程,感受三角形与四边形的联系,培养学生分析问题和解决问题的能力。
情感态度价值观:通过对问题的探索研究,培养学生大胆猜想、合理论证的科学精神。
我认为本课的教学重点是三角形中位线定理及其应用,这是因为:
1、《新课程标准》明确规定要求学生掌握三角形中位线定理,能运用它进行有关的论证;
2、三角形中位线定理所显示的特点既有线段的位置关系又有线段的数量关系,因此对实际问题可进行定性和定量的描述;
3、学习定理的目的在于应用,而三角形中位线定理的应用相当广泛,它是几何学最基本、最重要的定理之一。
教学难点是三角形中位线定理的推证,原因在于补充三角形中位线定理的证法中,还利用了数学中的化归思想,这正是学生的薄弱环节。
二、说教法
依据本书教学内容及学生知识建构的特点,尚需依赖于直观形象的学习方法,我选用了合作探究式教学法,通过设计活动、问题序列,引导学生动脑、动手、动口、主动探究,参与整个教学过程,体现学生的自主性和合作精神主动愉快地进行创造性学习。
同时,根据图形的特点,充分利用多媒体提高教学效率,增大教学容量,通过动态的演示,激发学生学习兴趣,启迪学生解题思路的蒙发。
三、说学法
“授人以鱼,不如授人以渔”.我体会到,必须在给学生传授知识的同时,教给他们好的学习方法,就是让他们“会学习”。通过本节课的学习使学生学会猜想法、测量法、模仿法、自主学习法等。
四、说教学过程:
(一)、创设问题情境,引入新课.
引例:(幻灯片)A、B两地被一建筑物隔开不能直接到达,要测量A、B两地的距离应如何测量?
今天这堂课我们就要来探究其中的学问。三角形中位线
借助多媒体演示引例,创设悬念——如何测算被建筑物隔开的A、B两地的距离吸引学生的注意,激发了学生的兴趣和求知欲。
(二)、引导学生,探究新知:
1、概念教学:
直接认识概念
老师结合图形演示所做线段区别是三角形的中线和中位线。
明确:三角形中位线定义是什么?一共几条?引导学生自己给三角形中位线下定义,从而培养学生归纳概括的能力。
观察区别:三角形的中位线与三角形的中线有什么区别?又有什么联系?加深学生对三角形的中线和中位线认识,从而培养学生对比学习的能力。
2、自学交流:
观察猜想:△ABC中,D为AB中点,E为AC中点,线段DE(△中位线)与BC有什么数量关系与位置关系?
引导学生猜想,鼓励学生仔细观察,说出他们自
己的猜想。使学生在学习过程中学会猜想。
做一做:
方法一(测量法)
1、任意画一个三角形并画出它的一条中位线;
2、量出中位线和第三边的长度;
3、你发现了什么?
教师给学生提供操作步骤,引导学生通过动手测量、推理检验自己猜想的合理性。教师参与学生探究解决问题的过程中,与学生交流,获取信息,了解学生实际,从而有针对性地引导学生进行证明。
学生说自己的证法(实物投影仪),最后由教师借助幻灯片演示完整的过程。
总结定理:(幻灯片)
三角形的中位的性质定理:三角形的中位线平行于第三边,并且等于它的一半。
让学生总结定理,(教师强调)一个题设两个结论,(一个是位置关系,一个是数量关系,根据需要选用相应的结论)它提供了一种证明直线平行和线段数量关系的新方法,应用定理的关键是找出(或构造出)符合定理的基本条件,加强学生对定理的理解,培养了学生归纳概括的能力。
3.定理应用:(幻灯片)为了进一步巩固定理,加深对定理用途的认识,我选择教科书上的'例题,放手发动学生自主学习。对学生的疑惑教师进行点拨。通过此题学会运用定理进行推理运算,发挥例题的示范,提高学习的效率与学生自学能力。
4.当堂检测
为检测学生对本课目标达成情况,加强对定理的应用训练。我设计了一组有梯度的练习题其中探究1、2题是中位线定理的经典应用,巩固定理的同时又提高学生自主学习能力与语言表达能力。当堂检测题通过添加辅助线构造三角形中位线,对于学生来说有一定难度,但有了前面的经验,相信给学生一定的时间,能独立完成。教师只解决学生讨论探究中的疑难问题,最后达成共识,师生共同完成书写步骤。应用定理解决问题,增强应用意识与能力。同时解决开头的生活链接,呼应悬念。有机地把所学的知识技能、思维方法迁移到生活中的具体问题的解决之中,加强对定理的理解,突出重、难点。教学时教师启发学生怎样把现实问题转化为数学问题,使问题得以解决。师生共同完成书写步骤。给学生施展才智的机会。学生通过分组评论得出结论,使学生对所学知识豁然开朗,在轻松愉快的教学氛围中达到理想的教学效果,增强了数学来源于实践,又反作用于实践的意识。多媒体的应用,无疑使这节课更加形象直观,帮助理解,增加了课堂容量
5、归纳小结
让学生自己总结并谈收获,培养归纳能力,围绕教学目标,教师补充强调,通过小结,使学生进一步明确学习目标,使知识成为体系。
6、布置作业
教材68页2题巩固运用定理解决问题。
7、板书:
课题:22.3三角形中位线定理
1.定义:连接三角形两边中点的定理的证明:
线段叫三角形中位线。
2.定理:三角形中位线平行于第
三边,并且等于它的一半。
通过板书呈现教学重难点,进一步明确学习目标。
总之,在设计教学过程中,我始终注意发挥学生的主体作用,让学生通过自主探究、合作学习,培养学生良好的数学素养和学习习惯,让学生学会学习。
最新解直角三角形课件
为了让学生更好地掌握上课所学知识,老师需要提前准备教案,不能草率了事。教案是评价和总结教学过程的重要材料。笔者费心打造了这篇“解直角三角形课件”,希望能受到大家的青睐,供参考和使用,希望大家能够收藏并分享!
解直角三角形课件 篇1
一、说教材
今天我执教的这一课是二年级第二学期第五单元中《锐角、钝角、直角三角形》这一课。
教学目标:
知识与技能目标:知道三角形可以按角分为锐角三角形、钝角三角形和直角三角形以及它们的特征。能辨别锐角三角形、钝角三角形和直角三角形。
过程与方法目标:培养学生观察能力、动手操作能力和合作交流能力。
情感与价值观目标:提高学生对三角形的学习兴趣,感受三角形在生活中无处不在。
教学重点:
能将三角形按角分类,并知道锐角三角形、钝角三角形和直角三角形的特征。
教学难点:
辨别锐角三角形、钝角三角形和直角三角形。
二、说教学过程
这节课由引入、新授、练习和总结四部分组成。
首先是从生活中引入三角形,让学生介绍和观察一些生活中的三角形,感受到三角形在生活中无处不在,以此引出课题。新授部分主要是由以下几个环节构成。
第一个环节通过学生动手操作来判断教师给出的6个三角形的三个角分别是什么角,并填写表格。这里不仅要学生把表格填写完整,还要学生总结出判断一个角是什么角的方法,首先用眼睛观察,如果明显比直角大或比直角小的就马上能够判断了,如果跟直角很接近或者拿不定主意的时候才要用直角量具去验证。填写表格不单单是记录数据,更重要的是让学生数形结合对锐角、钝角和直角三角形初步有所感知。
第二个环节是让学生通过观察刚才填写的表格来发现其中的规律,总结出这6个三角形中,每个三角形至少有2个锐角,最多有一个直角,最多有一个钝角。并且让学生通过验证自己带来的三角形,得出所有的三角形都有这样的特点。
第三个环节是根据刚才找到的三角形的角的特点,来给三角形分类。并且总结出三角形按角分类可以分成锐角、钝角和直角三角形三类。然后通过学生对刚才自己带来的三角形和老师出示的三角形进行判断,巩固三类三角形的定义,并总结出判断三角形属于什么三角形的方法。
第四个环节就是通过三角板和三角尺的比较,和改变三角板摆放的位置,让学生发现判断一个三角形是什么三角形只跟三角形角的特点有关,跟三角形的大小和它摆放的位置没有关系。最后的练习部分有两个练习,第一个练习是给出三角形的一个角让学生判断是什么三角形。给出一个直角和一个钝角时学生很容易就判断出来,但是给出一个锐角的时候,由于前面学习的负迁移,学生很容易脱口而出是锐角三角形,然后通过实际的演示、谜底的揭晓,让学生认识到判断一个三角形是锐角三角形必须要知道三个角都是锐角才行,给出一个锐角是不能判断它是什么三角形的。第二个练习其实是这节课的一个综合运用,学生不仅是要知道判断一个三角形是什么三角形的方法,还要以最快的速度来判断,也就是一开始讲的,明显比直角大或者小的角用眼睛就可以判断,比较像直角或者拿不定主意的时候一定要用直角量具去测量。最后总结的时候,还让学生把今天学到的知识跟自己的实际生活联系起来,整个一堂课从生活中提炼出数学知识,再把数学知识回归到生活中去。
解直角三角形课件 篇2
教学内容:等腰直角三角形(活动课)
教学目标:
1、认识等腰直角三角形,知道等腰直角三角形各部分名称、各个角的度数和各条边的关系。
2、通过实践操作,拓宽学生的解题渠道,诱发求异思维,培养创新意识。
3、采用小组合作的学习方式,体验探索知识的过程,培养合作意识和集体精神。
教学过程:
一、创设情景,揭示课题。
1、学生拿出课前准备好的正方形纸沿对角线对折。
提问:得到一个什么图形?(三角形)
2、通过观察、测量和比较说说这个三角形的特征。
(两条边相等,一个角是直角)
提问:那么,这样的三角形我们叫它什么三角形?
揭示课题,板书:等腰直角三角形
这节课就让我们一起来研究等腰直角三角形。
解直角三角形课件 篇3
一、 教材简析:
本章内容属于三角学,它的主要内容是直角三角形的边角关系及其实际应用,教材先从测量入手,给学生创设学习情境,接着研究直角三角形的边角关系---锐角三角函数,最后是运用勾股定理及锐角三角函数等知识解决一些简单的实际问题。其中前两节内容是基础,后者是重点。这主要是因为解直角三角形的知识有较多的应用。解直角三角形的知识,可以被广泛地应用于测量、工程技术和物理中,主要是用来计算距离,高度和角度。教科书中的应用题,内容比较广泛,具有综合技术教育价值,解决这类问题需要进行运算,但三角中的运算和逻辑思维是密不可分的;为了便于运算,常需要先选择公式并进行变换,同时,解直角三角形的应用题和课题学习也有利于培养学生空间想象的能力,即要求学生通过对实物的观察,或根据文字语言中的某些条件画出适合它们的图形,总之,解三角形的应用题与课后学习可以培养学生的三大数学能力和分析解决问题的能力。
同时,解直角三角形还有利于数形结合。通过这一章的学习,学生才能对直角三角形的概念有较为完整的认识。另外有些简单的几何图形可分解为一些直角三角形的组合,从而也能用本章的知识加以处理。以后学生学习斜三角形的余弦定理,正弦定理和任意三角形的面积公式时,也要用到解直角三角形的知识。
二、教学目的、重点、难点:
教学目的:使学生了解解直角三角形的概念,能熟练应用解直角三角形的知识解决实际问题,培养学生把实际问题转化为数学问题的能力。
重点:1、让学生了解三角函数的意义,熟记特殊角的三角函数值,并会用锐角三角函数解决有关问题。
2、正确选择边与角的关系以简便的解法解直角三角形
难点:把实际问题转化为数学问题。
学会用数学问题来解决实际问题即是我们教学的目的也是我们教学的归宿。根据课标的要求,要尽量把解直角三角形与实际问题联系,减少单纯解三角形的习题。而要在实际问题中,要使学生养成先画图,再求解的习惯。还要引导学生合理地选择所要用的边角关系。
三、教学目标:
1、知识目标:
(1)经历由情境引出问题,探索掌握有关的数学知识内容,再运用于实践的过程,培养学数学、用数学的意识与能力。
(2)通过实例认识直角三角形的边角关系,即锐角三角函数;知道30、
45角的三角函数值;会使用计算器由已知锐角求它的三角函数值,由已知三角函数值求它对应的角。
(3)运用三角函数解决与直角三角形有关的简单的实际问题。
(4)能综合运用直角三角形的勾股定理与边角关系解决简单的实际问题、
2、能力目标:培养学生把实际问题转化为数学问题并进行解决的能力,进而提高学生形象思维能力;渗透转化的思想。
3、情感目标:培养学生理论联系实际,敢于实践,勇于探索的精神.
四、、教法与学法
1、教法的设计理念
根据基础教育课程改革的具体目的,结合注重开放与生成,构造充满生命活力的课堂教学体系。改变课堂过于注重知识传授的倾向,强调形成积极主动的学习态度,关注学生的学习兴趣和体验,让学生主动参与学习活动,并引导学生在课堂活动中感悟知识的生成,发展与变化。在教学过程中由学生主动去发现,去思考,留有足够的时间让他们去操作,体现以学生为主体的原则;而教师为主导,采用启发探索法、讲授法、讨论法相结合的教学方法。这样,使学生通过讨论,实践,形成深刻印象,对知识的掌握比较牢靠,对难点也比较容易突破,同时也培养了学生的数学能力。
2、学法
学生在小学就接触过直角三角形,先学习了锐角三角函数,所以这节课内容学生可以接受。本节的学习使学生初步掌握解直角三角形的方法,培养学生把实际问题转化为数学问题的能力。通过图形和器具的演示调动学生的学习积极性,同时让学生通过观察、思考、操作,体验转化过程,真正学会用数学知识解决实际的问题。
解直角三角形课件 篇4
教学建议
1.知识结构:
本小节主要学习解直角三角形的概念,直角三角形中除直角外的五个元素之间的关系以及直角三角形的解法.
2.重点和难点分析:
教学重点和难点:直角三角形的解法.
本节的重点和难点是直角三角形的解法.为了使学生熟练掌握直角三角形的解法,首先要使学生知道什么叫做解直角三角形,直角三角形中三边之间的关系,两锐角之间的关系,边角之间的关系.正确选用这些关系,是正确、迅速地解直角三角形的关键.
3. 深刻认识锐角三角函数的定义,理解三角函数的表达式向方程的转化.
锐角三角函数的定义:
实际上分别给了三个量的关系:a、b、c是边的长、、和是由用不同方式来决定的三角函数值,它们都是实数,但它与代数式的不同点在于三角函数的值是有一个锐角的数值参与其中.
当这三个实数中有两个是已知数时,它就转化为一个一元方程,解这个方程,就求出了一个直角三角形的未知的元素.
如:已知直角三角形ABC中,,求BC边的长.
画出图形,可知边AC,BC和三个元素的关系是正切函数(或余切函数)的定义给出的,所以有等式
,
由于,它实际上已经转化了以BC为未知数的代数方程,解这个方程,得
.
即得BC的长为.
又如,已知直角三角形斜边的长为35.42cm,一条直角边的长29.17cm,求另一条边所对的锐角的大小.
画出图形,可设中,,于是,求的大小时,涉及的三个元素的关系是
也就是
这时,就把以为未知数的代数方程转化为了以为未知数的方程,经查三角函数表,得
.
由此看来,表达三角函数的定义的4个等式,可以转化为求边长的方程,也可以转化为求角的方程,所以成为解三角形的重要工具.
4. 直角三角形的解法可以归纳为以下4种,列表如下:
5. 注意非直角三角形问题向直角三角形问题的转化
由上述(3)可以看到,只要已知条件适当,所有的直角三角形都是可解的.值得注意的是,它不仅使直角三角形的计算问题得到彻底的解决,而且给非直角三角形图形问题的解决铺平了道路.不难想到,只要能把非直角三角形的图形问题转化为直角三角形问题,就可以通过解直角三角形而获得解决.请看下例.
例如,在锐角三角形ABC中,,求这个三角形的未知的边和未知的角(如图)
这是一个锐角三角形的解法的问题,我们只需作出BC边上的高(想一想:作其它边上的高为什么不好.),问题就转化为两个解直角三角形的问题.
在Rt中,有两个独立的条件,具备求解的条件,而在Rt中,只有已知条件,暂时不具备求解的条件,但高AD可由解时求出,那时,它也将转化为可解的直角三角形,问题就迎刃而解了.解法如下:
解:作于D,在Rt中,有
;
又,在Rt中,有
∴
又,
∴
于是,有
由此可知,掌握非直角三角形的图形向直角三角形转化的途径和方法是十分重要的,如
(1)作高线可以把锐角三角形或钝角三角形转化为两个直角三角形.
(2)作高线可以把平行四边形、梯形转化为含直角三角形的图形.
(3)连结对角线,可以把矩形、菱形和正方形转化为含直角三角形的图形.
(4)如图,等腰三角形AOB是正n边形的n分之一.作它的底边上的高,就得到直角三角形OAM,OA是半径,OM是边心距,AB是边长的一半,锐角.
6. 要善于把某些实际问题转化为解直角三角形问题.
很多实际问题都可以归结为图形的计算问题,而图形计算问题又可以归结为解直角三角形问题.
我们知道,机器上用的螺丝钉问题可以看作计算问题,而圆柱的侧面可以看作是长方形围成的(如图).螺纹是以一定的角度旋转上升,使得螺丝旋转时向前推进,问直径是6mm的螺丝钉,若每转一圈向前推进1.25mm,螺纹的初始角应是多少度多少分?
据题意,螺纹转一周时,把侧面展开可以看作一个直角三角形,直角边AC的长为
,
另一条直角边为螺钉推进的距离,所以
,
设螺纹初始角为,则在Rt中,有
∴.
即,螺纹的初始角约为 .
这个例子说明,生产和生活中有很多实际问题都可以抽象为一个解直角三角形问题,我们应当注意培养这种把数学知识应用于实际生活的意识和能力.
一、教学目标
1.使学生掌握直角三角形的边角关系,会运用勾股定理、直角三角形的两个锐角互余及锐角三角函数解直角三角形;
2.通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力;
3.通过本节的.学习,向学生渗透数形结合的数学思想,培养他们良好的学习习惯.
二、重点·难点·疑点及解决办法
1.重点:直角三角形的解法。
2.难点:三角函数在解直角三角形中的灵活运用。
3.疑点:学生可能不理解在已知的两个元素中,为什么至少有一个是边。
4.解决办法:设置疑问,引导学生主动发现方法与途径,解决重难点,以相似三角形知识为背景解决疑点。
三、教学步骤
(一)明确目标
1.在三角形中共有几个元素?
2.如图直角三角形ABC中,这五个元素间有哪些等量关系呢?
(1)边角之间关系
(2)三边之间关系
(勾股定理)
(3)锐角之间关系 。
以上三点正是解直角三角形的依据,通过复习,使学生便于应用。
(二)整体感知
教材在继锐角三角函数后安排解直角三角形,目的是运用锐用三角函数知识,对其加以复习巩固。同时,本课又为以后的应用举例打下基础。因此在把实际问题转化为数学问题之后,就是运用本课——解直角三角形的知识来解决的。综上所述,解直角三角形一课在本章中是起到承上启下作用的重要一课。
(三)教学过程()
1.我们已掌握Rt的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素。这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢,激发了学生的学习热情。
2.教师在学生思考后,继续引导“为什么两个已知元素中至少有一条边?”让全体学生的思维目标一致,在作出准确回答后,教师请学生概括什么是解直角三角形?(由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形)。
3.例题
【例1】 在中,为直角,所对的边分别为,且,解这个三角形。
解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用。因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想。其次,教师组织学生比较各种方法中哪些较好,选一种板演。
解:(1),
(2),
∴
(3)
∴
完成之后引导学生小结“已知一边一角,如何解直角三角形?”
答:先求另外一角,然后选取恰当的函数关系式求另两边。计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比较可靠,防止第一步错导致一错到底。
【例2】 在Rt中,,解这个三角形。
在学生独立完成之后,选出最好方法,教师板书。
解:(1),
查表得;
(2)
(3),
∴。
注意:例1中的b和例2中的c都可以利用勾股定理来计算,这时要查平方表和平方根表,这样做有时会比上面用含四位有效数字的数乘(或除)以另一含四位有效数字的数要方便一些。但先后要查两次表,并作一次加法(或减法)或者使用计算器求平方、平方根及三角正数值等。
4.巩固练习
解直角三角形是解实际应用题的基础,因此必须使学生熟练掌握。为此,教材配备了练习P.23中1、2练习1针对各种条件,使学生熟练解直角三角形;练习2代入数据,培养学生运算能力。
[参考答案]
1.(1);
(2)由求出或;
(3),
或;
(4)或。
2.(1);
(2)。
说明:解直角三角形计算上比较繁琐,条件好的学校允许用计算器。但无论是否使用计算器,都必须写出解直角三角形的整个过程。要求学生认真对待这些题目,不要马马虎虎,努力防止出错,培养其良好的学习习惯。
(四)总结扩展
1.请学生小结:在直角三角形中,除直角外还有五个元素,知道两个元素(至少有一个是边),就可以求出另三个元素。
2.幻灯片出示图表,请学生完成
四、布置作业
教材P.32习题6.4A组3。
[参考答案]
3.;
五、板书设计
解直角三角形课件 篇5
课本116页练习题的第1、2、3题。
1、在Rt△ABC中,∠C=90°,∠B=53046’,b=3cm,求∠A、a、c(精确到0.01cm)。
2、在Rt△ABC中,∠C=90°,a=5.82cm,c=9.60cm,求b、∠A、∠B(角度精确到1’,长度精确到0.01cm)。
3、在Rt△ABC中,∠C=90°,∠A=38012’,c=15.68cm,求∠B、a、b(精确到0.01cm)
目的:使学生巩固利用直角三角形的有关知识解决实际问题,提高学生分析问题、解决问题的能力,此环节用时约6分钟。
(四)课堂小结
让学生自己小结这节课的收获,教师补充、纠正。
1、“解直角三角形”是求出直角三角形的所有元素。
2、解直角三角形的条件是除直角外的两个元素,且至少需要一边,即已知两边或已知一边一锐角。
3、解直角三角形的方法:
(1)已知两边求第三边(或已知一边且另两边存在一定关系)时,用勾股定理(后一种需设未知数,根据勾股定理列方程);
(2)已知或求解中有斜边时,用正弦、余弦;无斜边时,用正切;
(3)已知一个锐角求另一个锐角时,用两锐角互余。
目的:学生回顾本堂课的收获,体会如何从条件出发,正确选用适当的边角关系解题,此环节用时约6分钟。
(五)学生作业(此环节用时约6分钟)
课本120页习题4、3A组第1、2、3题。
1、在Rt△ABC中,∠C=90°,∠A=28032’,c=7.92cm,求∠B(精确到1’),a、b(精确到0.01cm)。
2、在Rt△ABC中,∠C=90°,∠B=46054’,a=12.36cm,求∠A(精确到1’),b、c(精确到0.01cm)。
3、在Rt△ABC中,∠C=90°,a=3.68cm,b=5.24cm,求c(精确到0、01cm)以及∠A、∠B(精确到1’)。
四、教学评价
《新课程标准》提出了学生学习的方式是:“自主探索、动手实践、合作交流、勇于创新”。因此根据本节课的内容,为了更好地培养学生的创造能力,在教学中我注重引导学生运用探究学习的方法进行学习,确保了学生学习的有效性,激发了学生学习的欲望,学生真正成为了课堂的主人,在学生陈述自己探究结果时,我对学生不完整或不准确的回答适当地采用延迟性评价,不仅培养了学生对数学语言的表达能力和概括能力,同时充分挖掘了学生的潜能,也为学生提供了合作学习的空间,让学生在合作交流中提出问题并解决问题,从而发展了学生的合作探究能力。
解直角三角形课件 篇6
一、麸曲白酒的生产工艺流程 当前麸曲白酒的生产,主要采用清蒸法和混烧法两种生产方法,其工艺流程如下: 1.混烧法工艺流程 2.清蒸法工艺流程 二、麸曲白酒生产工艺 (一)原料的粉碎 1. 原料粉碎的目的 原料粉碎可以促进淀粉的均匀吸水,加速膨胀,利于蒸煮糊化。通过粉碎又可增大原料颗粒的表面积,在糖化发酵过程中以便加强和曲、酵母的接触,使淀粉尽量得到转化,利于提高出酒率。原料粉碎后可使其中的有害成分易于挥发排除出去,有利于提高成品酒的质量。 2.粉碎要求 一般薯干原料经过粉碎应能通过直径为1.5―2.5毫米的筛孔,高梁、玉米等原料也不应低于这个标准。 3.粉碎设备及操作 薯干原料可用锤式粉碎机粉碎,高梁等粒状原料可用磙式粉碎机破碎。目前许多工厂的粉碎设备已和原料的气流输送设备配套,劳动强度和劳动条件得到极大的改善(气流输送详细内容请参阅酒精工艺第二节)。 (二)配料 1.配料的目的和要求 配料是白酒生产工艺的重要环节,其目的是要通过主、辅原料的合理配比,给微生物的生长繁殖和生命活动创造良好的条件,并使原料中的淀粉在糖化酶和酒化酶的作用下,尽可能多地转化成酒精。同时使发酵过程中形成的香味物质得以保存下来,使成品白酒具备独特的风格。配料时要根据原料品种和性质、气温条件来进行安排,并考滤生产设备、工艺条件、糖化发酵剂的种类和质量等因素,合理配科。 2.配料的主要依据 麸曲白酒的生产一般都在水泥池、石窖或大缸内进行,发酵过程中无法调节温度,只有适当控制入池淀粉浓度和入池温度,才能保证整个发酵过程在适宜的温度下进行。但入池温度往往受到气温的限制,因此只有通过控制入池淀粉浓度来保证发酵过程中产生的热量和酒精浓度,使不超过微生物正常活动所能忍受的限度。 (1)热量问题 酒精发酵是个放热过程,热量的产生有两种途径,即呼吸热和发酵热。产生呼吸热的反应式如下: C6H12O6十6O2 ――→ 6CO2十6H2O十热量(2817千焦耳) 在麸曲白酒发酵时,因为氧气少,所以呼吸热在总热量中占的比例很小,而是以发酵热为主 的,其反应式如下: C6H12O6 ――→2C2H5OH十2 CO2十热量(83.6―96.1千焦耳) 根据测定,每100克葡萄糖在酒精发酵时生成下列主要产物: 发酵产物 数量(克) 热能(千焦耳) 酒精 51.1 1500 甘油 3.1 60.2 琥珀酸 0.56 8.35 酵母残渣 1.3 21.55 二氧化碳 49.2 0 合计 1590.1 每100克葡萄糖具有1660千焦耳热量,因而在发酵过程中每100克葡萄糖能释放出70千焦耳的热量,相当于每克葡萄糖放出700焦耳的热。根据淀粉水解生成葡萄糖的数量,即每克淀粉在酒精发酵时能放出770焦耳热量。若以酒醅中含60%的水分计算,当酒醅中淀粉浓度由于发酵而降低1%时,酒醅温度应升高约2.4℃。考虑到热量散失和发酵过程中产生其它成分的影响,发酵过程中当淀粉浓度下降1%时,酒醅温度实际约升高2℃左右。 发酵温度的`高低与酵母的发酵力有着密切的关系。当温度升高,又有酒精存在时,酵母的发酵力会受到很大抑制。较高温度(例如36℃左右)会使酵母发酵到一定程度就停止。较低温度下发酵(例如28℃左右),酵母的酶活力不易被破坏,发酵持续性强,对糖分的利用比较彻底,因而出酒率也较高。麸曲白酒在发酵过程中,由于固体酒醅的传热系数较小,无法采取降温措施,只能靠控制入池温度和入池淀粉浓度来调节发酵温度,其中入池温度又往往受到气温的影响,所以主要是利用适当的入池淀粉浓度来控制池内发酵温度的变化,使发酵温度在整个发酵过程中不超过一定的限度,保证发酵的正常进行。根据酵母的生理特性,要求发酵温度最高不超过36℃6,若入池温度控制在18―20℃左右,也就是在发酵过程中允许升温在16―18℃左右的范围,根据每消耗1%淀粉浓度醅温约升高2℃计算,那末在发酵过程中可以消耗淀粉浓度9%左右,而一般酒醅的残余淀粉浓度为5%左右,说明入池淀粉浓度应控制在14―15%左右。如果采用续渣法生产,因为酒醅反复发酵,入池淀粉浓度可以适当提高一些,可控制在15―16%左右。如果采用配糟一次发酵法生产,因为配糟量较大(一般在1∶5左右),大多数酒糟可参与反复发酵,因此入池淀粉浓度可控制在13―14%左右。当然还要考虑到气温条件,原料品种和质量等其它因素的影响,应该根据具体情况进行灵活掌握。 (2)酒精浓度的问题 淀粉是产生酒精的源泉,在发酵过程中,当酒精达到一定的浓度时,会对微生物产生毒性,对酶起抑制作用,所以要在配料时注意适宜的淀粉浓度,使形成的酒精不超过微生物能忍受的限度。 根据淀粉经水解形成葡萄糖,又经酵母发酵转化成酒精的反应式计算,淀粉的理论出酒率为56.78%,或者说,每消耗1.53克淀粉可产生1毫升纯酒精。 酵母的品种不同,耐酒精的能力也不一样,一般在8.5%(容量),就明显阻碍酵母繁殖,酒精浓度达到12―14%(容量)时,酵母逐步开始停止发酵。但对酵母发酵而言,还受到温度、糖度、酵母品种等因素的影响。固体发酵白酒,酒醅所含水分较少,相对酒精浓度就较大,成熟酒醅中若含70%的水分,酒精浓度达7%(容量)时,那么相对酒精浓度就是10%(容量),这样的酒精浓度对酵母发酵还不致造成很大影响。 霉菌的蛋白酶在酒精浓度达4―6%(容量)以上时,酶活力就会损失一半,而霉菌的淀粉酶在酒精浓度高达18―20%(容量)以上时,酶活力才开始受到抑制。 从以上分析中可以看出,只要控制一定的酒精浓度(例如一般8%),对霉菌糖化和酵母发酵不会产生多大的影响。 (3)pH值问题 入池淀粉浓度过高,发酵过猛,前期升温过快,则因产酸细菌的生长繁殖,造成了酒醅酸度升高,影响出酒率和酒的质量。但各种微生物和各种酶都是由蛋白质所组成,微生物的生长和酶的作用都有适宜的pH值范围,如果pH值过高或过低,就会抑制微生物的生长,使酶活性钝化,影响发酵过程的正常进行。而适当的pH值可以增强酶活性,并能有效地抑制杂菌的生长繁殖。例如酵母菌繁殖的最适pH值为4.5―5.0,再低一些对酵母菌的生长繁殖影响也不大,但这样低的pH值对杂菌会产生很大的抑制力,若培养基的pH值为4.2或更低一点时,仅酵母可以发育,而细菌则不能繁殖,所以用调节培养基的pH值,来抑制杂菌的生长是个有效的方法。目前工厂里根据长期实践的经验,常用滴定酸度的高低来表示培养基或发酵醪中含酸量的多少。pH值是表示溶液中的H+浓度高低,而滴定酸度表示溶液中的总酸量,包括离解的酸和未离解的酸,它在某些情况下和pH值有一定的关系。麸曲白酒生产中,酸度最主要的来自酒醅,其次来自曲和酒母。在发酵过程中引起酸度增加的主要原因是杂菌的污染。 3.填充材料 酿制麸曲白酒,在配料时往往需要加入填充料,目的是为了调整淀粉浓度,增加蔬松性,调节酸度,以利于微生物的生长和酶的作用,并能吸收浆水和保持酒精,为发酵和蒸馏创造良好的条件。常用填充材料的种类和特性见表4―20。选用填充科要田地制宜,注意其特点和所含有害成分的影响。 常用作填充料的是稻壳、小米壳、花生壳等。以吸水性讲,玉米芯最大,这对出酒率有利。高梁壳含单宁较多,会影响糖化发酵。对酒的质量来讲,玉米芯含有较多的聚戊糖,生成的糠醛量较多。稻壳含有大量的硅酸盐,用量过多,会影响酒精的饲料价值。所以在选用各种填充料时要全面考滤,合理使用。 固态法麸曲白酒生产中,目前配料时均配人大量酒糟,主要是为了稀释淀粉浓度,调节酸度和疏松酒醅,并能供给微生物一些营养物质,同时酒糟通过多次反复发酵,能增加芳香物质,对提高成品白酒的质量有利。虽然酒糟经化验还含有5%左右的残余总糖,但主要是一些纤维素、淀粉l,6键结构的片段以及其它一些还原性物质,这些物质较难形成酒精,而被残留在酒糟中。 4.配料的比例和方法 由于原料性质不同、气温高低不同、酒糟所含残余淀粉量不同及填充料特性的不同,配料比例应有所变化。如果原料淀粉含量高,酒糟和其它填充料配入的比例也要增加;如果酒糟所含残余淀粉量多,则要减少酒糟配比而增加稻壳或谷糠用量。填充料颗较粗,配入量可减少。根据经验计算,一般薯类原料和粮谷类原料,配料时淀粉浓度应在14―16%左右为适宜。填充料用量占原料量的20―30%,根据具体情况作适当调整。粮醅比一般为1∶4―6。 例如以薯干粉为原料(以含淀粉为65%计算),采用清蒸一次发酵法生产,原料配比为: 冬天 薯干粉∶鲜酒糟∶稻壳=1∶5∶0.25―0.35 夏天 薯干粉∶鲜酒糟∶稻壳 =1∶6―7∶0.25―0.35 配料时要求混和均匀,保持疏松。拌料要细致,混蒸时拌醅要尽量注意减少酒精的挥发损失,原料和辅科配比要准。 (三)蒸煮 1.蒸煮的目的 蒸煮是利用水蒸汽的热能使淀粉颗粒吸水膨胀破裂,以便淀粉酶作用,同时借蒸煮把原料和辅料中的杂菌杀死,保证发酵过程的正常进行。在蒸煮时,原料和辅料中所含的有害物质也可挥发排除出去。 2.蒸煮过程中的物质变化 (1)淀粉 淀粉在蒸煮时先吸水膨胀,随着温度的升高,水和淀粉分子运动加剧,当温度上升到60℃以上,淀粉颗粒会吸收大量水分,三维网组织迅速扩大膨胀,体积扩大50―100倍,淀粉粘度大大增加,呈海绵状糊,这种现象称为糊化。这时淀粉分子间的氢键就被破坏,使淀粉分子变成疏松状态,最后和水分子组成氢键,而被溶于水,有效地被淀粉酶糖化。 原料不同淀粉颗粒的大小、形状、松紧程度也不同,因此蒸煮糊化的难易程度也有差异。麸曲白酒是采用固体发酵,原料蒸煮时一般都采用常压蒸煮。由于要破坏植物细胞壁,又考虑到淀粉受到原料中蛋白质和盐类的保护,以及为了达到对原料的杀菌作用,所以实际蒸煮温度都在100℃以上。 (2)蛋白质及含氮有机物质 由于常压蒸煮,温度不太高,蛋白质在蒸煮过程中主要发生凝固变性,极少分解。而原料中氨态氮在蒸煮时便溶解于水,使可溶性氮增加,有利于微生物的作用。 (3)糖分 蒸煮过程中使戊糖脱水成
解直角三角形课件 篇7
一、教材分析
(一)、教材的地位与作用
本节是在掌握了勾股定理,直角三角形中两锐角互余,锐角三角函数等有关知识的基础上,能利用直角三角形中的这些关系解直角三角形。通过本小节的学习,主要应让学生学会用直角三角形的有关知识去解决某些简单的实际问题。从而进一步把形和数结合起来,提高分析和解决问题的能力。它既是前面所学知识的运用,也是高中继续解斜三角形的重要预备知识。它的学习还蕴涵着深刻的数学思想方法(数学建模、转化化归),在本节教学中有针对性的'对学生进行这方面的能力培养。
(二)教学重点
本节先通过一个实例引出在直角三角形中,已知两边,如何求第三边,再引导学生如何求另外的两个锐角,这样一是为了巩固前面的知识,二是如何让学生正确利用直角三角形中的边角关系,逐步培养学生数形结合的意识,从而确定本节课的重点是:由直角三角形中的已经知道元素,正确利用边角关系解直角三角形。
(三)、教学难点
由于直角三角形的边角之间的关系较多,学生一下难以熟练运用,因此选择合适的关系式解直角三角形是本课的难点。
(四)、教学目标分析
1、知识与技能:本节课的目标是使学生理解解直角三角形的意义,能运用直角三角形的三个边角关系式解直角三角形,培养学生分析和解决问题能力。其依据是:新课标对学生数学学习的总体目标规定“获得适应未来社会生活和进一步发展所必需的重要数学知识”。
2、过程与方法:通过学生的探索讨论发现解直角三角形所需的最简条件,使学生了解体会用化归的思想方法将未知问题转化为已知问题去解决。其依据是新课标关于学生的学习观——“动手实践、自主探索与合作交流是学习数学的重要方式”。
3、情感态度与价值观:通过对问题情境的讨论,以及对解直角三角形所需的最简条件的探究,培养学生的问题意识,体验经历运用数学知识解决一些简单的实际问题,渗透“数学建模”的思想。其依据是:新课标对学生数学学习的总体目标规定“具有初步的创新精神和实践能力,在情感态度和一般能力方面都能得到充分发展”。
二、教法设计与学法指导
(一)、教法分析
本节课采用的是“探究式”教法。在以最简洁的方式回顾原有知识的基础上,创设问题情境,引导学生从实际应用中建立数学模型,引出解直角三角形的定义和方法。接着通过例题,让学生主动探索解直角三角形所需的最简条件。学生在过程中克服困难,发展了自己的观察力、想象力和思维力,培养团结协作的精神,可以使他们的智慧潜能得到充分的开发,使其以一个研究者的方式学习,突出了学生在学习中的主体地位。
教法设计思路:通过例题讲解,使学生熟悉解直角三角形的一般方法,通过对题目中隐含条件的挖掘,培养学生分析、解决问题能力。
(二)、学法分析
通过直角三角形边角之间关系的复习和例题的实践应用,归纳出“解直角三角形”的含义和两种解题情况。通过讨论交流得出解直角三角形的方法,并学会把实际问题转化为解直角三角形的问题。
学法设计思路:自主探索、合作交流的学习方式能使学生在这一过程中主动获得知识,通过例题的实践应用,能提高学生分析问题,解决问题的能力,以及提高综合运用知识的能力。
(三)、教学媒体设计:由于本节内容较多,为了节约时间,让学生更直观形象的了解直角三角形中的边角关系的变化,激发学生学习兴趣,因此我借助多媒体演示。
三、教学过程设计
本节课我将围绕复习导入、探究新知、巩固练习、课堂小结、学生作业这五个环节展开我的教学,具体步骤是:
(一)复习导入
师:前面的课时中,我们学习了直角三角形的边角关系,下面老师来看看大家掌握得怎样?
1、直角三角形三边之间的关系?(a2+b2=c2,勾股定理)
2、直角三角形两锐角之间的关系?(∠A+∠B=900)
3、直角三角形的边和锐角之间的关系?
生:学生回忆旧知,逐一回答。
目的:温故而知新,使学生能用直角三角形的边角关系去解直角三角形。
师:把握了直角三角形边角之间的各种关系,我们就能解决与直角三角形有关的实际问题了,这节课我们学习“解直角三角形及其应用”,此环节用时约5分钟。
(二)探究新知
在这一环节中,我分如下三步进行教学,第一步:例题引入新课,得出解直角三角形的概念。
例1(课件展示)、如图,一棵大树在一次强烈的地震中于离地面10米折断倒下,树顶在离树根24米处,大树在折断之前高多少?
师:a或c还可以用哪种方法求?
生:学生讨论得出方法,分析比较,从而得出——使用题目中原有的条件,可使结果更精确。
师:通过对上面两个例题的学习,如果让你设计一个关于解直角三角形的题目,你会给题目几个条件?如果只给两个角,可以吗?
生:学生讨论分析,得出结论。
目的:使学生体会到(课件展示)“在直角三角形中,除直角外,只要知道其中2个元素(至少有一个是边)就可以求出其余的3个元素”,此步骤用时约10分钟。
第三步:师生共同总结出解直角三角形的条件及类型。
师:通过上面两个例子的学习,你们知道解直角三角形有几种情况吗?
生:学生交流讨论归纳(课件展示):解直角三角形,只有下面两种情况:
(1)已知两条边;
(2)已知一条边和一个锐角。
目的:培养学生善总结,会总结的习惯和方法,使不同层次的学生得到不同的发展,此步骤用时约3分钟。
(三)课堂练习:
课本116页练习题的第1、2、3题。
1、在Rt△ABC中,∠C=90°,∠B=53046’,b=3cm,求∠A、a、c(精确到0.01cm)。
2、在Rt△ABC中,∠C=90°,a=5.82cm,c=9.60cm,求b、∠A、∠B(角度精确到1’,长度精确到0.01cm)。
3、在Rt△ABC中,∠C=90°,∠A=38012’,c=15.68cm,求∠B、a、b(精确到0.01cm)
目的:使学生巩固利用直角三角形的有关知识解决实际问题,提高学生分析问题、解决问题的能力,此环节用时约6分钟。
(四)课堂小结
让学生自己小结这节课的收获,教师补充、纠正。
1、“解直角三角形”是求出直角三角形的所有元素。
2、解直角三角形的条件是除直角外的两个元素,且至少需要一边,即已知两边或已知一边一锐角。
3、解直角三角形的方法:
(1)已知两边求第三边(或已知一边且另两边存在一定关系)时,用勾股定理(后一种需设未知数,根据勾股定理列方程);
(2)已知或求解中有斜边时,用正弦、余弦;无斜边时,用正切;
(3)已知一个锐角求另一个锐角时,用两锐角互余。
目的:学生回顾本堂课的收获,体会如何从条件出发,正确选用适当的边角关系解题,此环节用时约6分钟。
(五)学生作业(此环节用时约6分钟)
课本120页习题4、3A组第1、2、3题。
1、在Rt△ABC中,∠C=90°,∠A=28032’,c=7.92cm,求∠B(精确到1’),a、b(精确到0.01cm)。
2、在Rt△ABC中,∠C=90°,∠B=46054’,a=12.36cm,求∠A(精确到1’),b、c(精确到0.01cm)。
3、在Rt△ABC中,∠C=90°,a=3.68cm,b=5.24cm,求c(精确到0、01cm)以及∠A、∠B(精确到1’)。
四、教学评价
《新课程标准》提出了学生学习的方式是:“自主探索、动手实践、合作交流、勇于创新”。因此根据本节课的内容,为了更好地培养学生的创造能力,在教学中我注重引导学生运用探究学习的方法进行学习,确保了学生学习的有效性,激发了学生学习的欲望,学生真正成为了课堂的主人,在学生陈述自己探究结果时,我对学生不完整或不准确的回答适当地采用延迟性评价,不仅培养了学生对数学语言的表达能力和概括能力,同时充分挖掘了学生的潜能,也为学生提供了合作学习的空间,让学生在合作交流中提出问题并解决问题,从而发展了学生的合作探究能力。
解直角三角形课件 篇8
2.5 直角三角形(2) 〖教学目标〗 ◆1、掌握直角三角形斜边上中线性质,并能灵活应用. ◆2、领会直角三角形中常规辅助线的添加方法. ◆3、通过动手操作、独立思考、相互交流,提高学生的逻辑思维能力以及协作精神. 〖教学重点与难点〗 直角三角形的性质及其应用是初中几何部分比较重要的内容,是实验几何向论证几何过渡之后学生学习几何知识的一个新的起点,有着承上启下的作用,而“直角三角形斜边中线等于斜边一半”这一性质无论在几何计算中还是在相关的推理论证中都起到很重要的作用。 ◆教学重点:“直角三角形斜边上中线等于斜边的一半”这一性质的灵活应用. ◆教学难点:在直角三角形中如何正确添加辅助线. 〖教学准备〗:三角板,多媒体课件 〖教学过程〗: 二度备课: 先复习上节课所学的知识:如直角三角形的`定义及性质,判定一个三角形是直角三角形的方法。再让学生猜一猜:直角三角形斜边上的中线与斜边的一半有何数量关系,从而引出课题。 1、 直角三角形斜边上的中线等于斜边的一半 学生实验:每个学生任意画一个直角三角形,并画出斜边上的中线,然后利用圆规比较中线与斜边的一半的长短。 教师提问:让学生猜测直角三角形斜边上的中线与斜边一半的大小关系。 教师板书性质后可以演示一下教师预先准备好的证明过程给学生看,但不要求学生掌握。 课后反思: 培养学生的探索能力以及养成良好的合作交流能力。 课堂练习。 (1)直角三角形中,斜边及其中线之和为6,那么该三角形的斜边长为llll。 (2)已知,在Rt△ABC中,BD为斜边AC上的中线,若∠A=35°,那么∠DBC=llll。 课后反思: 初步让学生巩固“直角三角形斜边上的中线等于斜边的一半”这一性质。 2、 直角三角形性质应用举例 例 如图2-18,一名滑雪运动员沿着倾斜角为30°的斜边,中A滑行至B。 已知AB=200m,问这名滑雪运动员的高度下降了多少m? 30° A B C 教师先引导学生理解题意后分析:书上分析。 教师板演解题过程: 解:如图作Rt△ABC的斜边上的中线CD,则CD=AD=1/2AB=1/2×200=100( 在直角三角形中,斜边上的中线等于斜边的一半) A ∵∠B=30°(已知) D ∴∠A=90°-∠B=90°-30° 30° C B (直角三角形两锐角互余) ∴∠DCA=∠A=60°(等边对等角) ∴∠ADC=180°-∠DCA-∠A=180°-60°-60°=60°(三角形内角和等于180°) ∴△ABC是等边三角形(三个角都是60°的三角形是等边三角形) ∴AC=AD=100 答:这名滑雪运动员的高度下降了100m。 课堂练习: P37、课内练习3、 师生小结 今天学习的直角三角形性质也是以后在直角三角形中一条常用的辅助线。 4、 布置作业 书上作业题 1、2、3、4、5
解直角三角形课件 篇9
2 .5 风 炭宝宝竹炭――呵护您的健康 教学目标 1、了解风是怎样形成的 2、知道风向、风速的表示方法和度量单位 3、学会用风向标、风速仪测定风向和风速的方法 4、了解风对人类活动和动物行为的影响 重点难点分析 重点:风的观测 难点:风的形成;目测风向、风速 教学过程 ◇视频片段《赤壁之战》引入课题《追寻风的足迹》。 演示并思考】把充满气体的气球充气口松开,会感到气球内的空气一涌而出,这是为什么? 一、风 1、风是空气的水平运动。 风是从高气压区流向低气压区的。 2、风的两个基本要素:风向和风速 1)风向是指风吹来的方向。 天气观测和预报中常使用8种风向。 表示方法:用一短线段表示。 用纸飞机测风向 【为什么做】 风向和风速是测量风的两个基本要素。观测风向的仪器叫风向标,由箭头、水平杆和尾翼三部分组成。那么风向标是怎样指示风向的呢?风向是由风向标箭头的方向来指示,还是由箭尾的方向来指示呢?风向又是怎么规定的呢?就让我们用纸飞机测风向这个简单的模拟实验来解决吧! 【怎样做】 折一纸飞机,中间用铅笔穿过(要让纸飞机能在铅笔上轻松转动)。用手握住铅笔,将纸飞机放在开启的电风扇前,观察纸飞机的机头和尾翼的指向。注意:此时人要站在纸飞机的后方。并借助指南针判断风向。 【学到了什么】 通过实验,使我们对风和风向有了一个直观的认识:纸飞机的箭头指向风来自的方向。同理,在气象观测中,风向是由风向标的箭头指向的。 同时也使我们明白:实验可以使我们更简洁明了地了解事物,也培养了我们的观察能力。 【进一步的研究】 (1)用纸飞机测风向的实验使你明白了风向标指示风向的事实。你是否在想:这是运用了什么原理呢?为什么风向标会有一定的指向呢?下面的文字,会帮助你有一个了解。 风向标是一种应用最广泛的测量风向仪器的主要部件。在风的作用下,尾翼产生旋转力矩使风向标转动,并不断调整指向杆指示风向。风向标感应的风向必须传递到地面的指示仪表上,以触点式最为简单,风向标带动触点,接通代表风向的灯泡或记录笔电磁铁,作出风向的指示或记录,但它的分辨只能做到一个方位(22.5°)。 地面风指离地平面10─12 米高的风。风的来向为风向,一般用十六方位或360°表示。以360°表示时,由北起按顺时针方向度量。 (2)你知道了风向的`测量方法,一定很想知道风速大小的测量方法。其实你也可以用简单的模拟实验来测量风速。请认真阅读下面的文字,你就会用生活中常见的小风车(参见三维风车式风速仪)或风压板来简单比较风速的大小了,动手试一试。 风向:指风吹来的 方向 ;天气观测和预报中常使用8种风向,即:东、南、西、北、东北、西北、东南、西南(图2―10)。 符号 代表东风。 (2)风速:指单位时间里空气在水平方向上移动的距离,其单位是:米/秒、千米/时或海里/小时表示。 测试风速的仪器叫风速计,它利用风杯在风作用下的旋转速度来测量风速。 风速仪有以下几种:①风杯风速表②桨叶式风速表③热力式风速表。 风速常用风级表示。 【阅读】各风级的名称、风速和目测结果 (3)风对人类的生活有很大的影响,有些动物的行为也和风有关。 【小结】
解直角三角形课件 篇10
等腰直角三角形
教学内容:等腰直角三角形(活动课)
教学目标:
1、认识等腰直角三角形,知道等腰直角三角形各部分名称、各个角的度数和各条边的关系。
2、通过实践操作,拓宽学生的解题渠道,诱发求异思维,培养创新意识。
3、采用小组合作的学习方式,体验探索知识的过程,培养合作意识和集体精神。
教学过程():
一、创设情景,揭示课题。
1、学生拿出课前准备好的正方形纸沿对角线对折。
提问:“得到一个什么图形?”(三角形)
2、通过观察、测量和比较说说这个三角形的特征。
(两条边相等,一个角是直角)
提问:“那么,这样的三角形我们叫它什么三角形?”
揭示课题,板书:等腰直角三角形
这节课就让我们一起来研究“等腰直角三角形”。
二、动手操作,探索新知。
1、
投影出示一个等腰直角三角形让学生试说。
边说边课件演示。
2、把刚才折成的等腰直角三角形再对折,看看又得到什么图形?
3、展开后把4个三角形都剪下来,重叠在一起,发现了什么?
4、取出其中一个等腰直角三角形指出已有的底和高。
提问:“斜边上的高你能不能画出来?”
出示探究要求:
①动手画出斜边上的高,同桌互相检验。
②量出斜边和斜边上高的长度,填在表格里。
③根据表格里的.数据,小组讨论,说说有什么发现?
④交流发现。
5、电脑演示并出示结论。
学生齐读:等腰直角三角形斜边上的高等于斜边的一半。
6、拼图游戏
(1)拿出2个完全一样的等腰直角三角形拼以前学过的平面图形。
(2)拿出4个完全一样的等腰直角三角形拼以前学过的平面图形。
学生小组合作拼图,到实物投影上展示。
(3)电脑演示拼成的没学过的平面图形。
三、合作交流,探求一题多解。
1、出示题目:已知等腰直角三角形的直
角边长是20厘米,求它的面积是多少?
2、出示题目:已知等腰直角三角形的斜边
长是20厘米,求它的面积是多少?
角形拼一拼、摆一摆。)
各小组汇报交流,说说想法。
教师板书各种解法。
四、
20厘米应用创新,总结升华。
1、一个边长为20厘米的正方形,连接
每边的中点,又得到一个正方形,求
涂色部分的面积是多少?
(学生互相探讨,交流解法。)
20厘米2、再连接空白部分正方形每边的中点,
所得的小正方形面积与空白正方形面
积有什么联系?与原正方形面积有什
么联系?你能求出它的面积吗?
(各小组之间互相讨论,说说想法。)
3、依次连接正方形每边的中点,每次得
到的新正方形面积与原正方形面积有什
么联系?从中你能发现什么规律?
(各小组之间互相讨论,交流发现的规律。)
五、回忆所学,谈谈收获。
本课我们学习了什么内容,你有什么收获?