幼儿教师教育网,为您提供优质的幼儿相关资讯

八年级数学上册14.2勾股定理的应用教学设计华东师大版反思

发布时间:2022-03-03 八年级上册数学教案小学 华东师大小学五年级下数学教案 三年级数学教学设计

现在向您介绍幼儿园教案《八年级数学上册14.2勾股定理的应用教学设计华东师大版反思》

《八年级数学上册14.2勾股定理的应用教学设计华东师大版反思》这是一篇八年级上册数学教案,本节课是人教版数学八年级下册第十七章第一节第二课时的内容,是学生在学习了三角形的有关知识,了解了直角三角形的概念,掌握了直角三角形的性质和一个三角形是直角三角形的条件的基础上学习勾股定理,加深对勾股定理的理解,提高学生对数形结合的应用与理解。

八年级数学上册14.2勾股定理的应用教学设计华东师大版

14.2勾股定理的应用(2)

教学目标:

1.会用勾股定理解决较综合的问题.

2.树立数形结合的思想.

教学重点

勾股定理的综合应用.

教学难点

勾股定理的综合应用.

教学过程

一、课前预习

1.等腰三角形底边上的高为8,周长为32,则该等腰三角形面积为_______.

解:设底边长为2x,则腰长为16-x,有(16-x)2=82+x2,x=6,

∴S=×2x×8=48.

2.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫格点,以格点为顶点分别按下列要求画三角形:

(1)使三角形的三边长分别为3.、(在图甲中画一个即可);

(2)使三角形为钝角三角形且面积为4(在图乙中画一个即可).

二、合作探究

问题探究1:边长为无理数

例1:如图,在3×3的正方形网格中,每个小正方形的边长都为1,请在给定网格中按下列要求画出图形:

(1)画出所有从点A出发,另一端点在格点(即小正方形的顶点)上,且长度为的线段;

(2)画出所有的以(1)中所画线段为腰的等腰三角形.

教师分析只需利用勾股定理看哪一个矩形的对角线满足要求.

解:(1)如下图中,AB.AC.AE.AD的长度均为.

(2)如下图中△ABC.△ABE.△ABD.△ACE.△ACD.△AED就是所要画的等腰三角形.

问题探究2:不规则图形面积的求法

例2:如图,已知CD=6m,AD=8m,∠ADC=90°,BC=24m,AB=26m.求图中阴影部分的面积.

解:在Rt△ADC中,

AC=AD+CD=6+8=100(勾股定理),

∴AC=10m.

∵AC+BC=10+24=676=AB,

∴△ACB为直角三角形(如果三角形的三边长A.B.c有关系:a+b=c,那么这个三角形是直角三角形),

∴S阴影部分=S△ACB-S△ACD

=×10×24-×6×8=96(m).

三、课堂巩固

(1)四年一度的国际数学家大会于2002年8月20日在北京召开.大会会标如图甲,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积为13,每个直角三角形两直角边的和是5,求中间小正方形的面积;

(2)现有一张长为6.5cm,宽为2cm的纸片,如图乙,请你将它分割成6块,再拼合成一个正方形.

解:(1)设较长直角边为b,较短直角边为a,则小正方形的边长为:a-b.

而斜边即为大正方形边长,且其平方为13,即a2+b2=13①,

由a+b=5,两边平方,得a2+b2+2ab=25.

将①代入,得2ab=12.

所以(b-a)2=b2+a2-2ab=13-12=1.

即小正方形面积为1;

(2)由(2)题中矩形面积为6.5×2=13与(1)题正方形面积相等,仿照甲图可得,算出其中a=2,b=3,如图.

四、课堂小结

1.我们学习了什么?

2.还有什么疑惑吗?

五、课后作业

习题

14.2勾股定理的应用(1)

教学目标

1.知识目标

(1)了解勾股定理的作用是“在直角三角形中已知两边求第三边”;而勾股逆定理的作用是由“三角形边的关系得出三角形是直角三角形”.

(2)掌握勾股定理及其逆定理,运用勾股定理进行简单的长度计算.

2.过程性目标

(1)让学生亲自经历卷折圆柱.

(2)让学生在亲自经历卷折圆柱中认识到圆柱的侧面展开图是一个长方形(矩形).

(3)让学生通过观察、实验、归纳等手段,培养其将“实际问题转化为应用勾股定理解直角三角形的数学问题”的能力.

教学重点、难点

教学重点:勾股定理的应用.

教学难点:将实际问题转化为“应用勾股定理及其逆定理解直角三角形的数学问题”.

原因分析:

1.例1中学生因为其空间想象能力有限,很难想到蚂蚁爬行的路径是什么,为此通过制作圆柱模型解决难题.

2.例2中学生难找到要计算的具体线段.通过多媒体演示来启发学生的思维.

教学突破点:突出重点的教学策略:

通过回忆复习、例题、小结等,突出重点“勾股定理及其逆定理的应用”,

教学过程

教学过程设计意图

复习练习,引出课题

例1:在Rt△ABC中,两条直角边分别为3,4,求斜边c的值?

【答案】c=5.

例2:在Rt△ABC中,一直角边分别为5,斜边为13,求另一直角边的长是多少?

【答案】另一直角边的长是12.通过简单计算题的练习,帮助学生回顾勾股定理,加深定理的记忆理解,为新课作好准备

小结:在上面两个小题中,我们应用了勾股定理:

在Rt△ABC中,若∠C=90°,则c2=a2+b2.加深定理的记忆理解,突出定理的作用.

勾股定理能解决直角三角形的许多问题,因此在现实生活和数学中有着广泛的应用.

例3:如图,一圆柱体的底面周长为20cm,高AB为4cm,BC是上底面的直径.一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,试求出爬行的最短路程.

【解析】蚂蚁实际上是在圆柱的半个侧面内爬行.大家用一张白纸卷折圆柱成圆柱形状,标出A.B.C.D各点,然后打开,蚂蚁在圆柱上爬行的距离,与在平面纸上的距离一样.AC之间的最短距离是什么?根据是什么?(学生回答)

根据“两点之间,线段最短”,所求的最短路程就是侧面展开图矩形ABCD对角线AC之长.我们可以利用勾股定理计算出AC的长.

解:如图,在Rt△ABC中,BC=底面周长的一半=10cm,

∴AC==

=≈10.77(cm)(勾股定理).

答:最短路程约为10.77cm.

例4:一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图的某工厂,问这辆卡车能否通过该工厂的厂门?

【解析】由于厂门宽度足够,所以卡车能否通过,只要看当卡车位于厂门正中间时其高度是否小于CH.如图所示,点D在离厂门中线0.8米处,且CD⊥AB,与地面交于H.

解:在Rt△OCD中,由勾股定理得

CD===0.6米,

CH=0.6+2.3=2.9(米)>2.5(米).

因此高度上有0.4米的余量,所以卡车能通过厂门.

通过动手作模型,培养学生的动手、动脑能力,解决“学生空间想像能力有限,想不到蚂蚁爬行的路径”的难题,从而突破难点.

由学生回答“AC之间的最短距离及根据”,有利于帮助学生找准新旧知识的连接点,唤起与形成新知识相关的旧知识,从而使学生的原认知结构对新知识的学习具有某种“召唤力”

再次提问,突出勾股定理的作用,加深记忆.

利用多媒体设备演示卡车通过厂门正中间时的过程(在几何画板上画出厂门的形状,用移动的矩形表示卡车,矩形的高低可调),让学生通过观察,找到需要计算的线段CH、CD及CD所在的直角三角形OCD,将实际问题转化为应用勾股定理解直角三角形的数学问题.

结本节课我们学习了应用勾股定理来解决实际问题.在实际当中,长度计算是一个基本问题,而长度计算中应用最多、最基本的就是解直角三角形,利用勾股定理已知两边求第三边,我们要掌握好这一有力工具.

课堂练习练习

1.如图,从电杆离地面5米处向地面拉一条7米长的钢缆,求地面钢缆固定点A到电杆底部B的距离.

【答案】

2.现准备将一块形为直角三角形的绿地扩大,使其仍为直角三角形,两直角边同时扩大到原来的两倍,问斜边扩大到原来的多少倍?

【答案】2

(四)作业:习题

(五)策略分析

为防止以上错误的出现,除了讲清楚定理,还应该强调:

1.定理中基本公式中的项都是平方项;

2.计算直角边时需要将基本公式移项变形,按平方差计算.

3.最后求边长时,需要进行开平方运算.

【反思】

本节课是人教版数学八年级下册第十七章第一节第二课时的内容,是学生在学习了三角形的有关知识,了解了直角三角形的概念,掌握了直角三角形的性质和一个三角形是直角三角形的条件的基础上学习勾股定理,加深对勾股定理的理解,提高学生对数形结合的应用与理解。本节第一课时安排了对勾股定理的观察、计算、猜想、证明及简单应用的过程;第二课时是通过例题分析与讲解,让学生感受勾股定理在实际生活中的应用,通过从实际问题中抽象出直角三角形这一模型,强化转化思想,培养学生解决问题的意识和应用能力。

针对本班学生的特点,学生知识水平、学习能力的差距,本节课安排了如下几个环节:

一、复习引入

对上节课勾股定理内容进行回顾,强调易错点。由于学生的注意力集中时间较短,学生知识水平低,引入内容简短明了,花费时间短。

二、例题讲解,巩固练习,总结数学思想方法

活动一:用对媒体展示搬运工搬木板的问题,让学生以小组交流合作,如何将木板运进门内?需要知道们的宽、高,还是其他的条件?学生展示交流结果,之后教师引导学生书写板书。整个活动以学生为主体,教师及时的引导和强调。

活动二:解决例二梯子滑落的问题。学生自主讨论解决问题,书写过程,之后投影学生书写过程,教师与学生一起合作修改解题过程。

活动三:学生讨论总结如何将实际生活中的问题转化为数学问题,然后利用勾股定理解决问题。利用勾股定理的前提是什么?如何作辅助线构造这一前提条件?在数学活动中发展了学生的探究意识和合作交流的习惯;体会勾股定理的应用价值,让学生体会到数学来源于生活,又应用到生活中去,在学习的过程中体会获得成功的喜悦,提高了学生学习数学的兴趣和信心。

二、巩固练习,熟练新知

通过测量旗杆活动,发展学生的探究意识,培养学生动手操作的能力,增加学生应用数学知识解决实际问题的经验和感受。

在教学设计的实施中,也存在着一些问题:

1.由于本班学生能力的差距,本想着通过学生帮带活动,使学困生充分参与课堂,但在学生合作交流是由于学习能力强的学生,对问题的分析解决所用时间短,而在整个环节设计中转接的快,未给学困生充分的时间,导致部分学生未能真正的参与到课堂中来。

2.课堂上质疑追问要起到好处,不要增加学生展示的难度,影响展示进程出现中断或偏离主题的现象。

3.对学生课堂展示的评价方式应体现生评生,师评生,及评价的针对性和及时性。

YJS21.cOm更多幼儿园教案小编推荐

八年级数学上册《勾股定理的应用》教学设计教案反思


现在向您介绍幼儿园教案《八年级数学上册《勾股定理的应用》教学设计教案反思》

《八年级数学上册《勾股定理的应用》教学设计教案反思》这是一篇八年级上册数学教案,使用多媒体进行教学,使知识显得形象直观,充分发挥现代技术作用。

八年级数学上册《勾股定理的应用》教学设计

【学习目标】

能运用勾股定理及直角三角形的判别条件解决简单的实际问题.

【学习重点】

勾股定理及直角三角形的判别条件的运用.

【学习重点】

直角三角形模型的建立.

【学习过程】

一.课前复习

勾股定理及勾股定理逆定理的区别

二.新课学习

探究点一:蚂蚁沿圆柱侧面爬行的最短路径问题

1.3如图,有一个圆柱,它的高等于12cm,底面圆的周长是18cm.在圆柱下底面的A点有一只蚂蚁,它想吃到上底面上与A点相对的B点处的食物,沿圆柱侧面爬行的最短路程是多少?

思考:

1.利用学具,尝试从A点到B点沿圆柱侧面画出几条线路,你认为

这样的线路有几条?可分为几类?

2.将右图的圆柱侧面剪开展开成一个长方形,B点在什么位置?从

A点到B点的最短路线是什么?你是如何画的?

1.33.蚂蚁从A点出发,想吃到B点上的食物,它沿圆柱侧面爬行的最短路程是多少?你是如何解答这个问题的?画出图形,写出解答过程。

4.你是如何将这个实际问题转化为数学问题的?

小结:

你是如何解决圆柱体侧面上两点之间的最短距离问题的?

探究点二:利用勾股定理逆定理如何判断两线垂直?

1.31.31.3李叔叔想要检测雕塑底座正面的AD边和BC边是否分别垂直底边AB,

但他随身只带了卷尺。(参看P13页雕塑图1-13)

(1)你能替他想办法完成任务吗?

1.31.3(2)李叔叔量得AD的长是30cm,AB的长是40cm,

BD长是50cm.AD边垂直于AB边吗?你是如何解决这个问题的?

(3)小明随身只有一个长度为20cm的刻度尺,他能有办法检验AD边是否垂直于AB边吗?BC边与AB边呢?

小结:通过本道例题的探索,判断两线垂直,你学会了什么方法?

探究点三:利用勾股定理的方程思想在实际问题中的应用

例图1-14是一个滑梯示意图,若将滑道AC水平放置,则刚好与AB一样长.已知滑梯的高度CE=3m,CD=1m,试求滑道AC的长.

1.3

思考:

1.求滑道AC的长的问题可以转化为什么数学问题?

2.你是如何解决这个问题的?写出解答过程。

小结:

方程思想是勾股定理中的重要思想,勾股定理反应的直角三角形三边的关系正是构建方程的基础.

四.课堂小结:本节课你学到了什么?

三.新知应用

1.如图,台阶A处的蚂蚁要爬到B处搬运食物,它怎么走最近?并求出最近距离.

1.3

2.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水而1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()

1.3

五.作业布置:习题1.41,3,4题

【反思】

一、教师我的体会:

勾股定理的应用教学反思范文

①、我根据学生实际情况认真备课这节课,书本总共两个例题,且两个例题都很难,如果一节课就讲这两题难题,那一方面学生的学习效率会比较低,另一方面会使学生畏难情绪增加。所以,我简化教材,使教材易于操作,让学生易于学习,有利于学生学习新知识、接受新知识,降低学习难度。

把教材读薄,

②、除了备教材外,还备学生。从教案及授课过程也可以看出,充分考虑到了学生的年龄特点:对新事物有好奇心,但对新知识的钻研热情又不够高,这样,造成教学难度较大,为了改变这一状况,在处理教材时,把某些数学语言转换成通俗文字来表达,把难度大的运用能力降低为难度稍细的理解能力,让学生乐于面对奥妙而又有一定深度的数学,乐于学习数学。

③、新课选用的例子、练习,都是经过精心挑选的,运用性强,贴近生活,与生活实际紧密联系,既达到学习、巩固新知识的目的,同时,又充分展现出数学教学的重大特征:数学源于生活实际,又服务于生活实际。勾股定理源于生活,但同时它又能极大的为生活服务。

④、使用多媒体进行教学,使知识显得形象直观,充分发挥现代技术作用。

二、学生体会:

课前,我们也去查阅了一些资料,关于勾股定理的证明以及有关的一些应用,通过这节课,真真发现勾股定理真真来源于生活,我们的几何图形和几何计算对于勾股定理来说非常广泛,而且以后更要用好它。对于勾股定理都应用时,我觉得关键是找到相关的三角形,并且分清直角边或斜边,灵活机智地进行计算和一些推理。另外与同学间在数学课上有自主学习的机会,有相互之间的讨论、争辩等协作的机会,在合作学习的过程中共同提高我觉得都是难得的机会。锻炼了能力,提高了思维品质,并且勾股定理的应用中我觉得图形很美,古代的数学家已经有了很好的研究并作出了很大的'贡献,现代的艺术家们也在各方面用到很多,同时在课堂中渐渐地培养了我们的数学兴趣和一定的思维能力。

不过课堂上老师在最后一题的画图中能放一放,让我们有时间去思考怎么画,那会更好些,自然思维也得到了发展。课上老师鼓励我们尝试不完善的甚至错误的意见,大胆发表自己的见解,体现了我们是学习的主人。数学课堂里充满了智慧。

北师大版数学八年级上册1.3勾股定理的应用1优秀教案反思


现在向您介绍幼儿园教案《北师大版数学八年级上册1.3勾股定理的应用1优秀教案反思》

《北师大版数学八年级上册1.3勾股定理的应用1优秀教案反思》这是一篇八年级上册数学教案,本节课是学生在学习了三直角三角形的性质、直角三角形勾股定理逆定理的基础上开展的,更进一步加深学生勾股定理的理解,提高学生对数形结合的应用与理解。

1.3勾股定理的应用

1.能熟练运用勾股定理求最短距离;(难点)

2.能运用勾股定理及其逆定理解决简单的实际问题.(重点)

一、情境导入

一个门框的宽为1.5m,高为2m,如图所示,一块长3m,宽2.2m的薄木板能否从门框内通过?为什么?

二、合作探究

探究点一:求几何体表面上两点之间的最短距离

【类型一】长方体上的最短线段

如图①,长方体的高为3cm,底面是正方形,边长为2cm,现有绳子从D出发,沿长方体表面到达B′点,问绳子最短是多少厘米?

解析:可把绳子经过的面展开在同一平面内,有两种情况,分别计算并比较,得到的最短距离即为所求.

解:如图②,在Rt△DD′B′中,由勾股定理得B′D2=32+42=25;

如图③,在Rt△DC′B′中,由勾股定理得B′D2=22+52=29.

因为29>25,所以第一种情况绳子最短,最短为5cm.

方法总结:此类题可通过侧面展开图,将要求解的问题放在直角三角形中,问题便迎刃而解.

【类型二】圆柱上的最短线段

为筹备迎接新生晚会,同学们设计了一个圆筒形灯罩,底色漆成白色,然后缠绕红色油纸,如图①.已知圆筒的高为108cm,其横截面周长为36cm,如果在表面均匀缠绕油纸4圈,应裁剪多长的油纸?

解析:将圆筒侧面展开成平面图形,利用平面上两点之间线段最短求解,构造直角三角形,利用勾股定理来解决.

解:如图②,在Rt△ABC中,因为AC=36cm,BC=108÷4=27(cm).由勾股定理,得AB2=AC2+BC2=362+272=2025=452,所以AB=45cm,所以整个油纸的长为45×4=180(cm).

方法总结:解决这类问题的关键就是转化,即把曲面转化为平面,曲线转化成直线,构造直角三角形,利用勾股定理求出未知线段长.

探究点二:利用勾股定理解决实际问题

如图,在一次夏令营活动中,小明从营地A出发,沿北偏东53°方向走了400m到达点B,然后再沿北偏西37°方向走了300m到达目的地C.求A、C两点之间的距离.

解析:把实际问题中的角度转化为图形中的角度,找到直角三角形,利用勾股定理求解.

解:如图,过点B作BE∥AD.∴∠DAB=∠ABE=53°.∵37°+∠CBA+∠ABE=180°,∴∠CBA=90°,∴AC2=BC2+AB2=3002+4002=5002,∴AC=500m,即A、C两点间的距离为500m.

方法总结:此类问题解题的关键是将实际问题转化为数学问题;在数学模型(直角三角形)中,应用勾股定理或勾股定理的逆定理解题.

三、板书设计

通过观察图形,探索图形间的关系,培养学生的空间观念.在将实际问题抽象成数学问题的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.在利用勾股定理解决实际问题的过程中,感受数学学习的魅力.

【反思】

本节课是学生在学习了三直角三角形的性质、直角三角形勾股定理逆定理的基础上开展的,更进一步加深学生勾股定理的理解,提高学生对数形结合的应用与理解。本节课首先安排了对圆柱形中的最短距离的观察猜想,由学生讨论如何实现圆柱中的最短距离,要把立体图形展开成为平面图形,平面图形中,有结论:两点之间,线段最短。在进一步由学生质疑,一定这样的方法得到的是最短距离吗?有没有其他的路径,进而讨论圆柱中的特殊情况,当圆柱是扁平的圆柱时,得到的最短距离还是把圆柱侧面展开构造的长方形的斜边长吗?最后由教师补充总结,当圆柱时细长的圆柱时,最短距离是把圆柱侧面展开构造的长方形的斜边长;当圆柱时扁平的圆柱时,最短距离是圆柱的高加圆柱的底面直径,至于这个圆柱到底是细长的还是扁平的,要具体问题具体分析。

当学生具备这样的理论基础,在圆柱的基础上讨论长方体的最短距离时,就事半功倍了,用类比思想,得到长方体中的最短距离,因为展开方式不同,所以分类讨论,最短距离分三种情况:1.最短距离2=(长+宽)2+高2;

2.最短距离2=(长+高)2+宽2;

3.最短距离2=(宽+高)2+长2,从三种情况中找到最小的就是最短距离;进而总结利用勾股定理求最短距离的步骤:

1.将立体图形展开;展开时注意:只需要展开包含相关点的面,可能会存在多种展开方式

2.确定相关点的位置;

3.连接相关点,构造直角三角形;

4.利用勾股定理求解。

通过总结如何将立体图形中的最短路线转换成平面图形中的最短路线,让学生体会到数学来源于生活又应用的生活,在学习的过程中体会获得成功的喜悦,提高获得提高学生学习数学的兴趣和信心,但课堂上质疑追问要恰到好处,不要增加学生展示的难度,影响展示进程出现中断或偏离主题的现象。

北师大版九年级数学下册3.7切线长定理1教学设计反思


现在向您介绍幼儿园教案《北师大版九年级数学下册3.7切线长定理1教学设计反思》

《北师大版九年级数学下册3.7切线长定理1教学设计反思》这是一篇九年级下册数学教案,在教学过程中,通过安排实践操作活动,使学生提高了探究的兴趣.首先教师突出操作要求,学生操作并思考回答问题,教师在学生回答问题的基础上进一步引导学生从中发现问题,让学生体会从具体情景和实践操作中发现问题,解决问题.通过设计问题情境,使学生提高解决问题的意识,通过自己画图尝试从中得到感性认识,进而不断地比较,让学生的思维能够经历一个从模糊到清晰,从具体到抽象,从直觉到逻辑的过程,再由直观、粗糙向严格、精确,使学生体会数学发展的过程.

*3.7切线长定理

1.理解切线长的定义;(重点)

2.掌握切线长定理并能运用切线长定理解决问题.(难点)

一、情境导入

如图①,PA为⊙O的一条切线,点A为切点.如图②所示,沿着直线PO将纸对折,由于直线PO经过圆心O,所以PO是圆的一条对称轴,两半圆重合.设与点A重合的点为点B,这里,OB是⊙O的一条半径,PB是⊙O的一条切线.图中PA与PB、∠APO与∠BPO有什么关系?

二、合作探究

探究点:切线长定理

【类型一】利用切线长定理求线段的长

如图,从⊙O外一点P引圆的两条切线PA、PB,切点分别是点A和点B,如果∠APB=60°,线段PA=10,那么弦AB的长是()

A.10

B.12

C.53

D.103

解析:∵PA、PB都是⊙O的切线,∴PA=PB.∵∠APB=60°,∴△PAB是等边三角形,∴AB=PA=10.故选A.

方法总结:切线长定理是在圆中判断线段相等的主要依据,经常用到.

变式训练:见《学练优》本课时练习“课堂达标训练”第4题

【类型二】利用切线长定理求角的度数

如图,PA、PB是⊙O的切线,切点分别为A、B,点C在⊙O上,如果∠ACB=70°,那么∠OPA的度数是________度.

解析:如图所示,连接OA、OB.∵PA、PB是⊙O的切线,切点分别为A、B,∴OA⊥PA,OB⊥PB,∴∠OAP=∠OBP=90°.又∵∠AOB=2∠ACB=140°,∴∠APB=360°-∠PAO-∠AOB-∠OBP=360°-90°-140°-90°=40°.易证△POA≌△POB,∴∠OPA=12∠APB=20°.故答案为20.

方法总结:由公共点引出的两条切线,可以运用切线长定理得到等腰三角形.另外根据全等的判定,可得到PO平分∠APB.

变式训练:见《学练优》本课时练习“课堂达标训练”第3题

【类型三】利用切线长定理求三角形的周长

如图,PA、PB、DE是⊙O的切线,切点分别为A、B、F,已知PO=13cm,⊙O的半径为5cm,求△PDE的周长.

解析:连接OA,根据切线的性质定理,得OA⊥PA.根据勾股定理,得PA=12,再根据切线长定理即可求得△PDE的周长.

解:连接OA,则OA⊥PA.在Rt△APO中,PO=13cm,OA=5cm,根据勾股定理,得AP=12cm.∵PA、PB、DE是⊙O的切线,∴PA=PB,DA=DF,EF=EB,∴△PDE的周长PD+DE+PE=PD+DF+FE+PE=PD+DA+EB+PE=PA+PB=2PA=24cm.

方法总结:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角.

变式训练:见《学练优》本课时练习“课后巩固提升”第4题

【类型四】利用切线长定理解决圆外切四边形的问题

如图,四边形ABCD的边与圆O分别相切于点E、F、G、H,判断AB、BC、CD、DA之间有怎样的数量关系,并说明理由.

解析:直接利用切线长定理解答即可.

解:AD+BC=CD+AB,理由如下:∵四边形ABCD的边与圆O分别相切于点E、F、G、H,∴DH=DG,CG=CF,BE=BF,AE=AH,∴AH+DH+CF+BF=DG+GC+AE+BE,即AD+BC=CD+AB.

方法总结:由切线长定理可以得到一些相等的线段,一定要明确这些相等线段.记住“圆外切四边形的对边之和相等”,对我们以后解决问题有很大帮助.

变式训练:见《学练优》本课时练习“课堂达标训练”第4题

【类型五】切线长定理与三角形内切圆的综合

如图,在△ABC中,AB=AC,⊙O是△ABC的内切圆,它与AB、BC、CA分别相切于点D、E、F.

(1)求证:BE=CE;

(2)若∠A=90°,AB=AC=2,求⊙O的半径.

解析:(1)利用切线长定理得出AD=AF,BD=BE,CE=CF,进而得出BD=CF,即可得出答案;

(2)首先连接OD、OE、OF,进而利用切线的性质得出∠ODA=∠OFA=∠A=90°,进而得出四边形ODAF是正方形,再利用勾股定理求出⊙O的半径.

(1)证明:∵⊙O是△ABC的内切圆,∴AD=AF,BD=BE,CE=CF.∵AB=AC,∴AB-AD=AC-AF,即BD=CF,∴BE=CE;

(2)解:连接OD、OE、OF,∵⊙O是△ABC的内切圆,切点为D、E、F,∴∠ODA=∠OFA=∠A=90°.又∵OD=OF,∴四边形ODAF是正方形.设OD=AD=AF=r,则BE=BD=CF=CE=2-r.在△ABC中,∠A=90°,∴BC=AB2+AC2=22.又∵BC=BE+CE,∴(2-r)+(2-r)=22,得r=2-2,∴⊙O的半径是2-2.

方法总结:本题综合考查了正方形的判定以及切线长定理和勾股定理等知识,解决问题的关键是得出四边形ODAF是正方形.

【类型六】利用切线长定理解决存在性问题

如图①,已知正方形ABCD的边长为23,点M是AD的中点,P是线段MD上的一动点(P不与M,D重合),以AB为直径作⊙O,过点P作⊙O的切线交BC于点F,切点为E.

(1)除正方形ABCD的四边和⊙O中的半径外,图中还有哪些相等的线段(不能添加字母和辅助线)?

(2)求四边形CDPF的周长;

(3)延长CD,FP相交于点G,如图②所示.是否存在点P,使BF•FG=CF•OF?如果存在,试求此时AP的长;如果不存在,请说明理由.

解析:(1)根据切线长定理得到FB=FE,PE=PA;(2)根据切线长定理,发现该四边形的周长等于正方形的三边之和;(3)若要满足结论,则∠BFO=∠GFC,根据切线长定理得∠BFO=∠EFO,从而得到这三个角应是60°,然后结合已知的正方形的边长,也是圆的直径,利用30°的直角三角形的知识进行计算.

解:(1)FB=FE,PE=PA;

(2)四边形CDPF的周长为FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;

(3)假设存在点P,使BF•FG=CF•OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF•tan∠GFC=CF•tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG•tan∠PGD=DG•tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.

方法总结:由于存在性问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算.一般思路是:假设存在——推理论证——得出结论.若能导出合理的结果,就做出“存在”的判断,若导出矛盾,就做出“不存在”的判断.

三、板书设计

切线长定理

1.切线长的概念

2.切线长定理

3.切线长定理的应用

在教学过程中,通过安排实践操作活动,使学生提高了探究的兴趣.首先教师突出操作要求,学生操作并思考回答问题,教师在学生回答问题的基础上进一步引导学生从中发现问题,让学生体会从具体情景和实践操作中发现问题,解决问题.通过设计问题情境,使学生提高解决问题的意识,通过自己画图尝试从中得到感性认识,进而不断地比较,让学生的思维能够经历一个从模糊到清晰,从具体到抽象,从直觉到逻辑的过程,再由直观、粗糙向严格、精确,使学生体会数学发展的过程.

人教版六年级数学上册《确定起跑线》教学设计反思


现在向您介绍幼儿园教案《人教版六年级数学上册《确定起跑线》教学设计反思》

《人教版六年级数学上册《确定起跑线》教学设计反思》这是一篇六年级上册数学教案,通过数学活动让学生了解田径跑道的结构,学会确定跑道起跑线的方法。

教学目标:

1.通过数学活动让学生了解田径跑道的结构,学会确定跑道起跑线的方法。结合具体的实际问题,通过观察、比较、分析、归纳等数学活动,让学生通过独立思考与合作交流等活动提高解决实际问题的能力。在主动参与数学活动的过程中,让学生切实体会到探索的乐趣,感受到数学知识在生活中的广泛应用。

2.结合具体的实际问题,通过观察、比较、分析、归纳等数学活动,让学生通过独立思考与合作交流等活动提高解决实际问题的能力。

3.让学生体会到数学的有用性。

教学重难点:

重点:

通过对跑道周长的计算,了解田径场跑道的结构,能根据所学

知识解决确定起跑线的问题。

难点:

综合运用圆的知识解答生活中遇到的实际问题,探究起跑线位

置的设置与什么有关。

教学过程:

【情景导入】

(1)播放2009年世界田径锦标赛男子100米决赛场面,博尔特以9秒58创新世界纪录。

师:100米赛为什么那么吸引人?让那么多人为这9秒58而欢呼不停?(因为公平,才吸引人。与学生聊一聊比赛中公平的话题。)

(2)播放2009年世界田径锦标赛男子400米决赛场面。

师:看了两个比赛,你们有什么发现,又有什么想法?(组织学生交流)

(100米跑运动员站在同一条起跑线上,而400米跑运动员为什么要站在不同的起跑线上?400米跑的起跑线位置是怎样安排的?外面跑道的运动员站在最前,这样公平吗?)

今天,我们就带着这些问题走进运动场,用我们学过的知识来研究、解决这些问题,了解比赛的时候各跑道的起跑线是如何确定的。

【新知探究】

(一)观察思考,找出问题关键。

(课件出示完整跑道图)

观察跑道图,每条跑道一圈的长度相等吗?差别在哪里昵?比赛的时候,是怎样解决这个问题的?怎样才能做到公平比赛?

(二)分析比较,确定解决问题思路。

1.小组交流:观察跑道图,说一说,每一条跑道具体是由哪几部分组成的?内外跑道的差异是怎样形成的?

学生充分交流得出结论:

(1)跑道一圈长度=2条直道长度+一个圆的周长

(2)内外跑道的长度不一样是因为圆的周长不一样。

2.小组讨论:怎样找出相邻两个跑道的差距?

(1)分别把每条跑道的长度算出来,也就是计算2个直道长度与一个圆周长的总和,再相减,就可以知道相邻两条跑道的差距。

(2)因为跑道的长度与直道无关,只要计算出各圆的周长,再算出相邻两圆的周长相差多少米,就是相邻跑道的差距。

(三)计算验证,解决问题。

计算圆的周长要知道什么?

直径

第一道的直径为72.6米,第二道是多少?第三道呢?

(让学生选择自己喜欢的方法进行计算)

方法一:计算完成下表。

《确定起跑线》教学设计

方法二:

75.1×3.14-72.6×3.14=7.85(m)

77.6×3.14-75.1×3.14=7.85(m)

……

(引导学生将3.14159换成π进行计算)

刚才大家通过计算已经知道了400米跑相邻两个跑道长度大约相差7.85米,也就是相邻跑道的起跑线应该相差7.85米。哪一种方法更快更简便呢?

第二种方法更简便。

如果我们在计算圆的周长时直接用π来表示,看你有什么发现?

(72.6+1.25×2)π-72.6π

=72.6π-72.6π+1.25×2×π

=1.25×2×π

(75.1+1.25×2)π-75.1π

=75.1π-75.1π+1.25×2×π

=1.25×2×π

……

(相邻跑道起跑线相差都是“跑道宽×2×π”)

师:从这里可以看出:起跑线的确定与什么关系最为密切?

生:与跑道的宽度关系最为密切。

师(小结):同学们经过努力终于找到了确定起跑线的秘密!对了,其实只要知道了跑道的宽度,就能确定起跑线的位置。

(四)巩固应用,形成技能。

1.小学生运动会的跑道宽比成人比赛的跑道宽要窄些,要开小学生运动会,你能帮裁判计算出相邻两条跑道的起跑线又该相差多少米吗?400米的跑步比赛,跑道宽为1米,起跑线该依次提前多少米?如果跑道宽是1.2米呢?

2.在运动场上还有200米的比赛,跑道宽为1.25米,起跑线又该依次提前多少米?

【知识梳理】

本节课你学习了什么知识?

【随堂练习】

请你设计一个200米的跑道。

【反思】

1、教材分析

小学六年级数学上册《确定起跑线》的教学反思

《确定起跑线》是六年级数学上册的一节综合应用课,这节课是在学生掌握了圆的概念和周长等知识的基础上进行教学的。主要让学生经历运用圆的有关知识计算弯道长度的过程,了解“跑道的弯道部分,外圈比内圈要长”,从而体会确定起跑线的意义;理解相邻跑道的长度差与圆的周长以及起跑线位置之间的关系;掌握确定起跑线的方法,并学会确定起跑线。在观察、比较、归纳、探究的数学活动中,培养学生自主发现问题,分析问题和解决问题,并在民主的气氛中探索出规律。通过创设情境,体验数学与生活的密切联系,以及数学知识在实际生活中的广泛应用,激发学生学习热情,培养学生主动参与、解决的问题的意识。

2、教学设计

这节课,教材上没有直接就研究比赛中起跑线的问题,而是采用的一个比较简单的生活情景进行学习。针对起跑线的'不同正是由于比赛中的弯道的不同所造成的,所以采用了“100米比赛各运动员的起跑位置在同一条直线上”到“400米的比赛,运动员也在同一条直线上起跑,公平吗?”这样一个简单的问题来引起学生的思考,从而来简化问题的难度“只要将起跑线往前移”即可,那么“移多少呢?”。在讲例题时引导学生说出由于“半圆的半径不同,因此所走的路程也不同”。这为分析400米标准跑道确定起跑线的方法奠定了基础,在讲400米标准跑道确定起跑线的方法时,我先向学生课件展示——400米标准跑道的组成,提出问题:相邻两道之间的距离差由什么决定?通过课件演示让学生知道计算相邻跑道的长度之差与直道没关系,实质是计算由两个弯道合在一起的圆的周长之差。如果用R表示外圈大圆的半径,用r表示内圈圆的半径,那么相邻跑道的长度之差=2πR-2πr=2π(R-r)。而R-r实际上就是道宽,所以说如果题目中道宽直接告诉,则相邻跑道的长度之差=2π×道宽。如果是半圆形跑道,则相邻跑道的长度之差=π(R-r)或π×道宽。让学生知道要确定起跑线的位置,只需知道内外圆半径或道宽即可,实现了教学重点的突破。

3、反思

在巩固练习过程中,我发现部分学生在确定环形跑道起跑线的位置时,运用“外圈跑道的总长度-内圈跑道的总长度”来计算的。这样计算比较麻烦。

这也是由于我在课堂上虽然归纳了算法,但是没有把两种方法进行对比,学生还没有明确各种算法的优与劣,这也是我在以后的教学中该努力的地方。

相关推荐

  • 八年级数学上册《勾股定理的应用》教学设计教案反思 现在向您介绍幼儿园教案《八年级数学上册《勾股定理的应用》教学设计教案反思》《八年级数学上册《勾股定理的应用》教学设计教案反思》这是一篇八年级上册数学教案,使用多媒体进行教学,使知识显得形象直观,充分发...
    2022-03-03 阅读全文
  • 北师大版数学八年级上册1.3勾股定理的应用1优秀教案反思 现在向您介绍幼儿园教案《北师大版数学八年级上册1.3勾股定理的应用1优秀教案反思》《北师大版数学八年级上册1.3勾股定理的应用1优秀教案反思》这是一篇八年级上册数学教案,本节课是学生在学习了三直角三角...
    2022-03-04 阅读全文
  • 人教版数学八年级上册教学设计 作为一名教职工,常常需要准备教学设计,借助教学设计可以促进我们快速成长,使教学工作更加科学化。教学设计应该怎么写才好呢?以下是小编精心整理的人教版数学八年级上册教学设计模板,仅供参考,希望能够帮助到大家。人教版数学八年级上册教学设计 篇1一、指导思想本学期,我们将在校长室及教务处的领导下...
    2024-10-13 阅读全文
  • 北师大版数学五年级上册教学设计 教师作为文明之树的培育者,教学前就要准备安排好相应的教学设计。教学设计每学科都不一样,但都有一个基本要求,可以确保促进学生的学习,获得成功的教学。怎么才能把这一篇教学设计写好呢?下面,我们为你推荐了北师大版数学五年级上册教学设计,我们后续还将不断提供这方面的内容。...
    2023-01-19 阅读全文
  • 北师大版九年级数学下册3.7切线长定理1教学设计反思 现在向您介绍幼儿园教案《北师大版九年级数学下册3.7切线长定理1教学设计反思》《北师大版九年级数学下册3.7切线长定理1教学设计反思》这是一篇九年级下册数学教案,在教学过程中,通过安排实践操作活动,使...
    2022-03-03 阅读全文

现在向您介绍幼儿园教案《八年级数学上册《勾股定理的应用》教学设计教案反思》《八年级数学上册《勾股定理的应用》教学设计教案反思》这是一篇八年级上册数学教案,使用多媒体进行教学,使知识显得形象直观,充分发...

2022-03-03 阅读全文

现在向您介绍幼儿园教案《北师大版数学八年级上册1.3勾股定理的应用1优秀教案反思》《北师大版数学八年级上册1.3勾股定理的应用1优秀教案反思》这是一篇八年级上册数学教案,本节课是学生在学习了三直角三角...

2022-03-04 阅读全文

作为一名教职工,常常需要准备教学设计,借助教学设计可以促进我们快速成长,使教学工作更加科学化。教学设计应该怎么写才好呢?以下是小编精心整理的人教版数学八年级上册教学设计模板,仅供参考,希望能够帮助到大家。人教版数学八年级上册教学设计 篇1一、指导思想本学期,我们将在校长室及教务处的领导下...

2024-10-13 阅读全文

教师作为文明之树的培育者,教学前就要准备安排好相应的教学设计。教学设计每学科都不一样,但都有一个基本要求,可以确保促进学生的学习,获得成功的教学。怎么才能把这一篇教学设计写好呢?下面,我们为你推荐了北师大版数学五年级上册教学设计,我们后续还将不断提供这方面的内容。...

2023-01-19 阅读全文

现在向您介绍幼儿园教案《北师大版九年级数学下册3.7切线长定理1教学设计反思》《北师大版九年级数学下册3.7切线长定理1教学设计反思》这是一篇九年级下册数学教案,在教学过程中,通过安排实践操作活动,使...

2022-03-03 阅读全文
Baidu
map