幼儿教师教育网,为您提供优质的幼儿相关资讯

比例问题教案

发布时间:2023-11-26 比例问题教案 比例教案

比例问题教案六篇。

这是幼儿教师教育网编辑在互联网上查找到的一篇名为“比例问题教案”的文章。在新学期开始之前,老师们需要准备好他们的教案和课件,每个人都需要仔细计划自己的教案和课件。教师应该根据不同学科的特点巧妙地设计他们的教案。建议你将这个网站加入到收藏夹中,以便日后继续学习!

比例问题教案(篇1)

一、教学目标

(一)知识与技能

在具体情境中认识、理解成正比例的量的意义,掌握和运用正比例知识解决问题。

(二)过程与方法

通过让学生尝试解决问题的过程,培养学生分析问题和解决问题的能力。

(三)情感态度和价值观

主动参与数学活动,感受数学与生活的联系,树立学习数学的信心。

【目标解析】本节课的主要内容是用正比例的意义解决问题。学生在之前的学习中实际上已经接触过这类问题,可用归一、归总和列方程的方法来解答。这里主要是学习用正比例知识来解答,通过解答使学生进一步熟练地进行判断成正比例的量,加深对正比例概念的理解,也为学生的后续学习打下基础做好准备。同时也巩固和加深对所学的简易方程的认识。

二、教学重难点

教学重点:使学生能正确判断题中涉及的量是否成正比例关系,并能利用正比例的关系列出含有未知数的等式,运用比例知识正确解决问题

教学难点:利用正比例的关系列出含有未知数的等式。(wwW.FW76.coM 76范文网)

三、教学准备

课件。

四、教学过程

(一)复习回顾

1.说说正比例、反比例的相同点和不同点。

2.判断下列每题中的两个量是不是成比例,成什么比例?

(1)已知A÷B=C。

当A一定时,B和C()比例;

当B一定时,A和C()比例;

当C一定时,A和B()比例。

(2)购买课本的单价一定时,总价和数量的关系。

(3)总路程一定时,速度和时间的关系。

【设计意图】通过比较和判断,让学生加深对正比例、反比例意义的理解,使学生体会到数学在生活中的运用,同时为新知的学习做好准备。

(二)探究新知,培养能力

1.提出问题。

教师:看来同学们能正确判断这两种量成什么比例关系了,这节课我们一起运用比例知识来解决一些实际问题。

课件出示教材第61页例5。

思考:题中告诉了我们哪些信息?要解决什么问题?

教师:你能利用数学知识帮李奶奶算出上个月的水费吗?

2.解决问题。

(1)学生尝试解答。

(2)交流解答方法,并说说自己的想法。

教师:谁愿意来说一说你是怎么解决的?

预设1:

28÷8×10

=3.5×10

=35(元)

(先算出每吨水的价钱,再算出10吨水需要多少钱)

预设2:

10÷8×28

=1.25×28

=35(元)

(也可以先求出用水量的倍数关系,再求总价)

教师:谁和这位同学的方法一样?

【设计意图】用以往学过的方法解决例题,有助于从旧知跳跃到新知的学习,同时有利于用比例解决问题的检验,帮助学生在后面的学习中构建知识结构。

3.激励引新。

教师:像这样的问题也可以用比例的知识来解决,我们今天就来学习用比例的知识进行解答。(板书课题:用比例解决问题)

课件出示以下问题,让学生思考和讨论:

(1)题目中相关联的两种量是()和( ),说说变化情况。

(2)()一定,()和()成()比例关系。

(3)用关系式表示是()。

(4)集体交流、反馈。

板书:

教师概括:因为水价一定,所以水费和用水的'吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。

(5)根据正比例的意义列出比例式(方程)。

学生独立完成,教师巡视。

反馈学生解题情况。

解:设李奶奶家上个月的水费是x元。

28:8=x:10或()

8x=28×10

x=280÷8

x=35

答:李奶奶家上个月的水费是35元。

(6)将答案代入到比例式中进行检验。

教师:你认为李奶奶用了10吨水的水费为35元钱,这个答案符合实际吗?你是怎么判断的?

(7)学生交流,汇报。

【设计意图】“人人都能获得良好的数学教育,不同的人在数学上获得不同的发展”是课标的教学理念,为此让学生通过合作、交流从而解决问题,能使他们增强学习的信心、能给他们自信。在交流中,让学生充分地表达自己的见解,培养学生的辩证思维能力和口语交际能力。

4.变式练习。

教师:刚才我们用归一法和比例法帮李奶奶解决了水费的问题,同学们真不简单,瞧!王大爷又遇到了什么问题呢?(出现下面的练习)

张大妈:我们家上个月用了8吨水,水费是28元。王大爷家上个月的水费是42元,他们家上个月用了多少吨水?

(1)比较一下此题和例5有什么联系和区别?

(2)学生独立用比例的知识解决这个问题。指名板演。(教师巡视)

(3)集体订正,请学生说一说是怎样想的。

5.概括总结。

教师:刚才我们用正比例知识帮李奶奶和王大爷解决了生活中的水费问题,请大家回忆一下解题思路,再想一想用正比例解决问题的思考过程是怎样的。

学生讨论交流,汇报。

(1)分析找出题目中相关联的两种量。

(2)判断它们是否是正比例关系。

(3)根据正比例的意义列出比例。

(4)最后解比例。

(5)检验作答。

教师总结:同学们不但会解决问题,而且还善于归纳总结方法。就像大家想的那样,先分析题中的数量关系,判断相关联的两种量成什么关系,根据问题中的等量关系列出方程,解方程并检验作答。

【设计意图】本着“以学生发展为本”的理念,围绕生活中的水费问题,让学生经历“尝试──理解──总结”的全过程,从而理解、掌握用正比例解决问题的方法,使学生解决问题的能力有一个提升。

(三)巩固练习

1.只列式不计算。

(1)一个小组3天加工零件189个,照这样计算,9天可加工零件x个。

(189:3=x:9)

(2)小明买了4支圆珠笔用了6元。小刚想买3支同样的圆珠笔,要用x元钱。

(x:3=6:4)

2.用正比例解决问题。

(1)小兰的身高1.5米,她的影长是2.4米。如果同一时间、同一地点测得一棵树的影子长是4米,这棵树有多高?

(2)小红计划每天跳绳600下,2分钟跳了240下,照这样计算,还要跳多少分钟才能完成计划?

【设计意图】通过即时练习巩固,增强学生对具体情境中成正比例的量作出判断和解释的能力,能有条理地解释问题解决的思考过程,有助于提高学生解决问题的能力。

(四)课堂小结,拓展延伸

同学们,谁来说说,上了这节课,你收获了什么?

【设计意图】课堂总结,引导学生反思每节课的收获,整理一节课所学习的知识,提高学生归纳、整理的能力,起总结提升的作用。

比例问题教案(篇2)

教学内容:补充:用比例方法解决实际问题

教学目标:1、进一步巩固正比例与反比例的意义,能正确判断两个量是否成比例。

2、能用比例的知识解决实际问题,提高学生灵活解决实际问题的能力。

教学设计:

一、复习

谈话导入:如何判断两个量是否成正比例?或反比例?

二、拓展练习

(一)填空:

1、下面两个量成正比例?成反比例?不成比例?

如果3A=41/B,那么A与B()

引导学生将这个算式改成A与B的比,计算比值后再判断。

2、(1)8/X=Y;(2)X/8=Y;(3)X-Y=8()式中的X与Y成反比例,()式中的X与Y成正比例。

3、(1)比的前项一定,比的后项和比值。(2)比例尺一定,分母和分数值。(3)正方形的边长和面积。()成正比例,()成反比例,()不成比例。

引导学生将以上3个表达式进行变式,如能变成两个字母的比值或积,即成正或反比例。

4、a和b成正比例,并且在a=1.5时,b的对应值是0.15.

(1)a和b关系式是a/b=().

(2)当a=2.5时,b的对应值是()

(3)当b=9.2时,a的对应值是()

引导学生理解每题要求,独立完成,指名交流。

三、解决实际问题

1、一批煤原计划每天烧4吨,可以烧72天,由于改成节能炉灶,实际每天只烧2。4吨,这堆煤可以烧几天?

学生独立完成,再组织交流。估计学生都用算式解,引导学生判断题中4个数据是指哪两个量?它们是否成比例?成什么比例?用比例的知识怎样解决这个问题?

2、一辆汽车2小时行驶140千米,照这样计算,从甲地到乙地共行了5小时,那么甲、乙两地之间的公路长多少千米?

学生独立完成,再组织交流。估计学生都用算式解,引导学生判断题中4个数据是指哪两个量?它们是否成比例?成什么比例?用比例的知识怎样解决这个问题?

3、一个筑路队修筑一条公路,3天修了75米,照这样计算,再修15天就可完成任务。这条公路全长有多少米?

用算术方法如何解答?用比例任何解答?引导学生用多种比例方法解答。

4、拓展练习:在标有04080120千米的地图上,量得甲、乙两地之间相距9厘米,一列客车与一列货车从甲、乙两地同时相向而行,2小时后相遇。已知客车与货车的速度比是5:4,求客车的速度。

比例问题教案(篇3)

第四课时按比例分配的实际问题

教学内容:第75页的例5及相应的试一试,练一练,练习十四第1~4题。

教学目标:1、使学生理解按比例分配实际问题的意义。

2、使学生通过运用比的意义和基本性质解答有关按比例分配的实际问题。

教学重点和难点:理解按比例分配实际问题的意义,掌握解题的关键。

教学过程:

一、导入

出示例5中的实物图。

提问:图中共有30个方格,平均分成两份,一份涂上黄色,一份涂上红色,每种颜色涂多少格?如果红色涂20格,黄色涂10格,红色与黄色方格数的比是多少?

指出:在实际生活中,有时并不是把一个数量平均分,而是按一定的比来分配。这就是我们今天要学习的新知识按比例分配的实际问题。(板书课题)

二、新课

1、教学例5

(1)提问:3:2要表示的哪两个数量的比?这两个数量有什么样的联系呢?

思考:红色与黄色方格数的比是3:2,还可以怎么理解?

学生讨论。

①想:红色与黄色方格数的比是3:2,就是把30个方格平均分成5份,其中3份涂红色,2份涂黄色。

比例问题教案(篇4)

一、教学内容:

课本第75页的例5及相应的试一试练一练、练习十四的第1~4题。

二、教学重难点、生长点:

1.重点:教学按比例分配的实际问题。

2.难点:理解三个数量连比的意义,正确计算按比例分配的实际问题。

3.生长点:学习了比的意义、理解部分与整体的比及分数乘法的意义基础上教学本课时。

三、教材地位分析:

本课教学,重在引导学生应用比的意义解答有关按比例分配的实际问题。学生在学习的过程中,进一步体会数学知识间的内在联系,建立合理的认知结构。

四、教学目标:

1.让学生认识按比例分配的实际问题,探索并掌握这类实际问题的解答方法,认识连比。

2.让学生进一步体会数学知识之间的内在联系,培养思维的灵活性,增强分析问题、解决问题的能力。

3.让学生进一步体会数学与现实生活的联系,增强数学应用意识,增强学好数学的信心。

五、教学过程:

(一)复习

六(3)班男、女生人数的比是13:7。

()人数是()人数的()/()。

让学生填出不同的答案。

(二)教学例5

1.出示例5:给30个方格分别涂上红色和黄色,使红色与黄色方格数的比是3:2。

问:你是如何理解3:2的?(估计学生能说出红色与黄色的比是3:2,黄色与红色的比是2:3;红色与格子总数的比是3:5,黄色与格子总数的比是2:5)

当学生说到红色(黄色)与格子总数的比时,问:格子总数是多少?那你能算出红色的有多少格、黄色的有多少格吗?

学生做题,交流解答方法。

说明:在实际生活中,很多情况下并不只是把一个数量平均分,使每部分都一样多,而是在平均分的基础上按一定的比进行分配。这道题就是把30个方格按3:2进行分配。

2.验证。你做出的结果是不是正确呢?我们可以把得数放到题目中去检验一下。与同桌说说你的检验方法。

板书检验方法:18+12=30(格)18:12=3:2

3.教学试一试。

学生读题后,说说是如何理解1:2:3的?(引导学生说出是把30格按照红色1份、黄色2份、绿色3份来涂色)

谈话:三个数或更多个数组成的比叫连比,它只表示三个量或更多个量各占几份,而不能理解为连除,这与两个数的比是不同的。根据红、黄、绿的比是1:2:3,你能想到格子总数被平均分成几份了吗?每种颜色的格子数各有几格?

学生做题,交流算法。

引导学生认识:都是把总数按照一定的比分成几部分,求每部分是多少,解答时都可以把比看成各占多少份,先求出每份是多少,再分别求几份是多少,也可以把比转化成分数,即各部分占总数的几分之几,再用分数乘法计算。

4,做练一练。

做第1小题。本题较为简单,让学生独立解答。

做第2小题。

本题稍有难度,先让学生读题。

问:你觉得怎样分配这些巧克力比较公平?(估计大部分学生会说按人数平均分;可能会有极少数人说按班级平均分)

问:按班级人数平均分,也就是按怎样的比进行分配?再让学生算一下每个班各分到多少巧克力。

问:如果按班级平均分,又该怎样分?口算出结果。能不能把平均分也看作按比分?按什么样的比分?(1:1:1)可见平均分是按比分的一种特殊情况。

(三)巩固、拓展练习

1.做练习十三第2题。

让学生先看图估一估比赛已用去的时间与剩余时间的比,交流结果。

学生按要求计算。

2.做练习十三第4题。

引思:题中只有比,没有总量,如何解决?(引导回忆直角三角形中两个锐角的和是90度,本题就是把90度按3:2的比例来分配。)

再让学生独立解题。

小结:有些问题的解决需要先找到题中的隐含条件,再思考如何解题。

3.弹性题:建筑业中的按比例分配问题。

按规定,某种建筑用的混凝土中,水泥、黄沙、石子的比例为2:3:5。现在某小区建筑工地上水泥有4吨,黄沙有12吨,石子有24吨,够配成40吨这样的混凝土吗?为什么?

预计通过讨论、学生可能出现的解决方法有:

(1)计算配40吨混凝土需要三种量各多少,再与条件进行对比。

(2)将三种材料的现有吨数进行比较,看化简后的比和条件中的比是否一致。

六、总结全课:

今天所解决的问题有什么共同点?解题思路是怎样的?

七、课堂作业:

练习十三第1、3题(这两题较为简单,学生应该能自已做)。

弹性作业:

1.甲、乙两人每天加工零件个数的比是3:4,两人合作15天后,甲、乙两人各自加工零件的个数比是()。

2.从六(3)班调全班人数的1/10到六(4)班,则两班人数相等。原来六(3)班与六(4)班的人数比是()。

比例问题教案(篇5)

第五课时按比例分配的问题练习

教学内容:练习十四第59

教学目的:1、通过练习让学生进一步巩固分数的基本性质,更好地沟通比和分数的联系。

2、让学生在练习中掌握应用比的知识解决实际问题,进一步体会比的应用价值,发展学生的数学思考。

教学过程:

一、基本练习

二、拓展练习

1、完成练习十四第7题

先解答410克药水中,药粉和水各有多少克?再解答书上两个问题。

说说与补充问题条件有什么不同,怎么解答?

学生尝试解答,说说各自的解题方法和理由。比较三个问题有什么区别?

2、完成练习十四第8题

学生独立完成,集体交流解题方法。

三、综合练习

1、完成练习十四第9题

提示学生:用列举法列举出面积是24平方厘米的长方形,长和宽可能是几厘米,再找出符合长和宽长度的比是3:2的一个。

想一想:周长16厘米的长方形,长和宽的和是多少,根据长和宽的比是5:3求出长和宽的长度。

2、思考题

引导学生理解:分成的两部分的面积比是1:1,说明这两部分的面积相等。让学生通过操作、交流认识到:要使分成的两部分面积相等,只要把原来的三角形的底按1:1进行分割。

教学后记:

比例问题教案(篇6)

教学内容:

教科书第59页例5以及相关练习题。

教学目标:

1、使学生能正确判断题中涉及的量是否成正比例关系。

2、进一步巩固正比例的意义,掌握用正比例方法解应用题的方法和步骤,能正确地用正比例的方法来解答应用题。

3、培养学生运用所学知识解决实际问题的能力,培养学生勇于探索精神。

4、在成功解决生活中的实际问题中体会数学的价值。

教学重点:

利用已学的正比例的意义,通过自己探索掌握解答正比例应用题的方法。

教学难点:

正确判断两个量是否成正比例的关系,找出相等关系并列出含有未知数的等式。

教具准备:

小黑板

教学过程:

一、复习铺垫,激发兴趣。

1、填空并说明理由。

(1)速度一定,路程和时间成( )比例。

(2)单价一定,总价与数量成( )比例。

(3)每块地砖的大小一定,砖的块数和所铺的总面积成( )比例。

【设计意图:通过复习,让学生温故而知新,为学习下面的内容铺垫。】

3、提出问题:老师请你用一把米尺去测量学校旗杆的高度,你能行吗?

生1:把旗杆放下量。

生2:爬上去量。

生3:利用影子的长度量。(如果没有学生说教师可做适当引导。)

师:相信通过这一节课的学习,你一定会找到解决的方法的。

【设计意图:激起学生学习这习欲望,欲望是产生动机的催化剂。】

二、揭示课题、探索新知。

1、小黑板出示例5

张大妈:我们家上个月用了8吨水,水费是12.8元。

李奶奶:我们家用了10吨水,上个月的水费是多少钱?

思考:题中告诉了我们哪些信息?要解决什么问题?

师:你能利用数学知识帮李奶奶算出上个月的水费吗?

(1) 学生自己解答。

(2) 交流解答方法,并说说自己想法。

算式是:12.8÷8×10

=1.6×10

=16(元)。(先算出每吨水的价钱,再算出10吨水需要多少钱。)

(也可以先求出用水量的倍数关系再求总价。)

10÷8×12.8

=1.25×12.8

=16(元)

【设计意图:用以往学过的方法解决例题,有助于从旧知跳跃到新知的学习,同时有利于用比例解决问题的检验,帮助学生在后面的学习中构建知识结构。】

师:像这样的问题也可以用比例的知识来解决,我们今天就来学习用比例的知识进行解答。(板书课题:用比例解决问题)

(3)小黑板出示以下问题让学生思考和讨论:

1)题目中相关联的两种量是( )和( ) ,说说变化情况。

2)( )一定,( )和( )成( )比例关系。

3)用关系式表示是( )

(4)集体交流、反馈

板书: 水费 用水吨数

12.8元 8吨

?元 10吨

水费:用水吨数 = 每吨水的价钱(一定)

师概括:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。

(5)根据正比例的意义列出比例式(方程):

学生独立完成,教师巡视。

反馈学生解题情况。

8

12.8

10

χ

解:设李奶奶家上个月的水费是χ元。

12.8 :8 =χ:10 或 =

8χ=12.8×10 8χ= 12.8×10

χ=128÷8 χ=128÷8

χ= 16 χ= 16

答:李奶奶家上个月的水费是16元。

【设计意图:在教师引导下,学生通过合作、交流从而解决问题,能使他们增强学习的信心、能给他们自信。在交流中,让学生充分地表达自己的见解,培养学生的辩证思维能力和口语交际能力。】

(6)将答案代入到比例式中进行检验。

你认为李奶奶用了10吨水交16元钱,这个答案符合实际吗?你是怎么判断的?

生交流,汇报。

2、变式练习。

刚才我们用归一法和比例法帮李奶奶解决了水费的问题,同学们真不简单,瞧!王大爷又遇到了什么问题呢?出现下面的练习:

张大妈:我们家上个月用了8吨水,水费是12.8元。王大爷家上个月的水费是19.2元,他们家上个月用了多少吨水?

(1)比较一下改编后的题和例5有什么联系和区别?

(2)学生独立用比例的知识解决这个问题。指名板演。(教师巡视)

(3)集体订正,学生说一说你是怎么想的?

3、概括总结

师:刚才我们用正比例知识帮李奶奶和王大爷解决了生活中的水费问题,请大家回忆一下解题思路,再想一想用比例解决问题的思考过程是怎样的?

学生讨论交流,汇报。

师总结:

1、分析找出题目中相关联的两种量。

2、判断他们是否是正比例关系。

3、根据正比例的意义列出比例。

4、最后解比例。

5、检验作答。

【设计意图:归纳解题的策略,有助于提高学生解决问题的能力。】

三、巩固练习,形成技能。

1、解决课前提出的问题。小明在解决这一问题时,采集到了下面信息:在下午1时旗杆旁的一棵高2米的小树影长1.5米,旗杆影长9米,你能根据这些信息解决求旗杆高吗

师提醒:同一时间、同一地点的身高和影长成正比例。

学生读题后,先思考以下三个问题。

① 题中已知哪两种相关联的量?

②它们成什么比例关系?你是根据什么判断的?

② 你能列出等式吗?

生独立完成,并汇报解答过程。

2、教科书P60“做一做”。

生独立解答。

【设计意图:通过练习的巩固,提高学生解决问题的能力。同时从学生的生活实际入手,引导学生把所学的知识运用与生活实践,从中体会所学知识的生活价值。】

四、全课总结

通过今天的学习,你有什么收获?

五、布置作业

练习九第3、5题。

板书设计:

用比例解决问题

水费 用水吨数 解:设李奶奶家上个月的水费是χ元。

12.8元 8吨

?元 10吨 12.8 :8 =χ:10

8χ= 12.8×10

水费:用水吨数 = 每吨水的价钱(一定)

χ=128÷8

χ= 16

答:李奶奶家上个月的水费是16元

YJS21.cOm更多幼儿园教案小编推荐

倍比问题教案


古人云,工欲善其事,必先利其器。作为一幼儿园的老师,我们需要让小朋友们学到知识,大部分老师为了让学生学的更好都会事先准备好教案,教案对教学过程进行预测和推演,从而更好地实现教学目标。你知道怎么写具体的幼儿园教案内容吗?或许你需要"倍比问题教案"这样的内容,仅供参考,大家一起来看看吧。

倍比问题教案 篇1

在教学工作者开展教学活动前,总不可避免地需要编写教学设计,借助教学设计可使学生在单位时间内能够学到更多的知识。优秀的教学设计都具备一些什么特点呢?下面是小编收集整理的植树问题教学设计,仅供参考,欢迎大家阅读。

一、教材分析

本单元“数学广角”主要是渗透是渗透有关植树问题的一些思想方法,通过现实生活中一些常见的实际问题,借助线段图等手段让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的简单实际问题。

植树问题通常是指沿着一定的路线植树,这条路线的总长度被树平均分成若干段,由于路线不同、植树要求的不同,路线被分成的段数和植树地棵数之间的关系也就不同。在现实生活中类似的问题还有很多,比如公路两旁安装路灯、花坛摆花、锯木头、架设电线杆等等,这些问题中都隐藏着总数和段数之间的关系。

二、学情分析

除法问题对于五年级的学生来说很熟悉,知道了总长度和每段长度,大家都能列出除法算式求出段数,通过学生排队问题找到段数与点数之间的关系(两端都种)点数=段数+1,通过锯木头问题发现了段与点的另一种关系(两端都没有),点数=段数-1,通过对比、观察、发现这两种情况的相同点与不同点。这部分内容对孩子来说并不难。本节课主要是分析、归纳、总结出植树问题的三种情况,从而建立树学模型,并运用植树问题的这三种情况解决其它和植树相类似的问题。

三、教学目标

1.理解用除法解决的问题中,有时商并不是最后的结果。

2.学会用画线段图的方法来分析、理解题意。

3.理解段和点之间的关系。

4.将植树问题推广到生活中的其它问题并会灵活运用。

四、教学重难点

1.探究段和点之间的关系,并运用发现的规律解决问题。

2.通过给出的例题,让孩子们发现什么树、人、锯等都是在点上,探究段和点之间的关系。

五、教学方法

情意导入法、总结归纳法、合作交流法、对比观察法

六、课时安排

1课时

七、教学准备

多媒体课件(教师课上用) 自主学习卡(学生课前做)

八、教学过程

(一)情境引入

师:孩子们,大家准备好了吗?那就让我们一起走进今天的数学课堂。请看题:

8米长的绳子 ,每2米分成一段,可以分成几段?

孩子们,你会解答吗?

生:8÷2=4

师:为什么用除法解决呢?

生1:8表示总数,2表示每份数,求的是份数。总数÷每份数=份数

生2:8米,每2米分成一段,就是求8里面包含几个2。

师:8÷2除了能解决分段的问题以外,还能解决什么问题呢?请大家来说一说。(课前布置孩子们自己出一道或两道用8÷2解决的问题)

生汇报

师:8÷2这道除法算式解决了我们生活中的这么多的问题,那今天我们就继续学习用除法解决问题。

(设计意图:从除法问题中的包含问题引入,列出8÷2的`除法算式,明确除法算式的商就是要求的段数)

师:请同学们看下面这道题。

8米长的队伍,每隔2米站一个人,共有几个人?

师:请同学们仔细思考,你觉得能站几个人?会算式表示吗?

生1:站5个人。

生2:站4个人。

师:看来大家对这个问题都有了想法,都认为是能站5个人,我们的想法对吗?能不能验证一下呢?

生实际排队演示

师:对于这两道题,同学们还有什么疑问吗?

师:我有疑问了,同样都是8米,每2米分一份,为什么第一题的答案是4,第二题的答案是5呢?这两道题到底有什么区别呢?

生1:问题不一样。

生2:第一题求的是几段,第二题求的是几个人?

师:点数求的是段,第二题求的是点。一段两个点,两端三个点,三段四个点……,也就是说点数比段数多1,或者说人段+1=点(板书)

(设计意图:通过排队问题,使学生们明确一点,有时候除法算式的商并不是最后的结果。通过第1、第2题的对比、发现两道题的区别所在,一个是求段,一个是求点,从而找到段和点之间的关系:段数+1=点数)

师:同学们这次清楚了吗?好,那我们看下一题。

8米长的木头,每2米锯一段,要据几次?

师:请同学们仔细思考,需要锯几次呢?

生1:3次

生2:4次

师:锯木头我们是锯在哪里?是锯在段上还是锯在点上?

生:点上。

师:那我们刚刚发现了段数+1=点数,所以应该锯5次呀?

生:因为两端不用锯。所以不是5次是3次。

师:同学们说的太棒了,锯一次分成两段,锯两次分成三段,锯三次分成四段……所以我们发现此时点数比段数少1.

(设计意图:通过锯木头问题,让学生明确段数和点数的另一种关系:段数-1=点数)

师总结:有的时候,段数加1等于点数,有的时候,段数减1等于点数。接下来我们继续研究,看看里面到底有没有规律。

在一条8米长的小路上一边植树,每隔2米种一棵,可以种多少棵?

生猜一猜:5棵、4棵、3棵

生:无法确定几棵,因为没有告诉我们起点和终点到底植不植树。

师:这个问题有没有告诉我们呀?

你们到底是怎么种的呢,把自己的想法画出来,然后列列算式。

生汇报

生1:种5棵的情况

生2:种3棵的情况

师:为什么头和尾不种呢

生:有可能有障碍物(师在小路两贴各放置一个小房子)

师:还有没有其它可能呢?

生:小路的一端有障碍物,可以种4棵

师:同样的条件和问题,同学们做出了三种不同的答案,经过我们的分析发现都是正确的.

(设计意图:有了排队问题、锯木头问题的基础,学生已经明确了段和点之间的关系。此时出现植树问题,让孩子们分析植树问题的可能出现的情况:段数+1、段数-1、段数=点数)

出示种5棵的情况

大家观察,种5棵树的情况跟我们黑板上的哪种情况是类似的?

生:小朋友站队。

师:这种情况我们能给它起个名字吗?

生:两端都有

师:这个问题我们是怎么解决的?

生:先用除法算式求出段数,再把段数+1(板书:段数+1)

师:大屏出示两端都不种的情况,大家再给它起个名字吧。

生:两端都没有

师:我们又是怎么解决的呢?

生:先用除法算出段数,段数再减1(板书:段数-1)

师:大屏出示只有一端的情况,叫什么名字呢?

生:只有一端

师:只有一端的情况:段数=点数(板书:段数=点数)

师:这就是我们今天讲的植树问题。(板书课题)

根据植树问题,我们总结出了这样三种情况,一种是两端都有的,段数商+1;一种是两端都无的,段数-1,一种是只有一端的,段数=点数

(设计意图:通过对比、观察,发现植树问题的本质规律)

师:这节课我们研究了排队问题、锯木头问题、还有植树问题,也知道了有这样的三种情况,想一想在我们的生活中有没有这样的情况,它又属于三种情况中的哪一种呢?

生1:做操排队(两端都有)

生2:桌子(只有一端)

生3:纽扣(只有一端)

生4:公共汽车站(两端都有)

师:老师也找到了一些,展示

海边的路灯(两端都有)

公交车路线图(两端都有)

隔离桩

千纸鹤(只有一端)

马拉松服务站(只有一端)

师出示图片,把各种情况分类,总结商+1,商-1和商不变的情况

(设计意图:学习数学知识与方法最重要的是运用。通过列举生活中与植树问题相类似的例子,让孩子们学会解决问题方法的迁移)

谈收获

师总结:今天我们学的是植树问题,但通过植树问题的方法,我们又解决了很多和植树相类似的问题,其实这就是方法的迁移。希望在我们今后的学习中,同学们也能够运用已经掌握的方法与技巧,解决管理科学中更多的数学问题。

倍比问题教案 篇2

1、实践操作——让学生体验“做数学”的过程。

教与学都要注重“做”为中心,在操作中体验数学,感悟数学。本节课设计了让学生用自己喜欢的方法画一画、连一连、算一算的实践活动,让学生学会清晰、有条理的有顺序的思考问题,体会有序思考的好处——不重复、不遗漏。同时有助于提高学生的学习兴趣和主动性,激发求知欲,在实践操作中让学生体验“做数学”的快乐,培养学生的观察能力,操作能力和分析推理能力。

2、合作交流——让学生体验“说数学”

《数学广角》是属于“综合与实践运用”领域的内容,本块知识的学习是学生前面已有知识的综合和运用,课堂上相对对学生的要求要高些。教学中,不难发现:一些孩子知道方法和答案,可表达就是一片空白,吱吱唔唔说不上一两句或是缺欠完整性等。为了锻炼学生的表达能力,在新授衣服搭配的汇报阶段,我让4个学生站到讲台前说一说自己的想法。

3、联系生活——让学生“用数学”。

《数学课程标准》指出:数学教学要体现生活性。人人学有价值的数学。本课通过美羊羊选衣服、吃早点的搭配等情境创设,引导学生从生活经验和已有的知识出发,学习有序思考问题的方法,注重引导学生把课堂中所学的数学知识和方法应用于生活实际,既加深对数学知识的理解,又能让学生切实体验到生活中处处有数学,体会到数学的价值和感受“用数学”的愉悦。

然而,本节课存在许多不足之处:

1、学生用同一种符号来表示上衣和下衣,其实这种情况在第一次试教时也出现

了,我就启发性地提问:“有什么办法能让别人看得更清楚?”学生立即就想到了用两种不同的符号。但赏析课时不管我怎么问学生还是认为用同一种符号上下两排,旁边写上上衣、下衣的文字也很清楚。学生是课堂的主人,既然他们觉得好,我也不能一味地反对了,期待下一秒会有转机。

2、在4位学生说完自己的想法后我让其他学生来说一说这几种方法的异同,在

我的预设中,希望学生能说出相同点是:都分成两类;都是确定上衣去搭配下衣;都是6种方法。不同点是:有的用连线,有的用文字。可发现学生不会说,导致方法优化很不突出,很多学生在解决搭配早餐的问题时还义无反顾地用画图连线或者文字法。

倍比问题教案 篇3

教学内容:

五年级(上册)第106页例1及练习二十四的1—5题

教学目标:

1.通过探究发现一条线段上两端要种植树问题的规律。

2.向学生渗透化归的思想方法。

3.让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

教学重点:

使学生掌握“两端都要种的植树问题”的解题方法。

教学难点:

用发现的规律解决生活的实际问题作为难点。

教学过程:

一、引入课题

3月12日是什么节日呢?植树有什么好处呢?从而引出课题——植树问题。(板书课题:植树问题)

二、引导探究,发现“两端都要栽”的规律

让学生在一条长度为12厘米的线段上等距离的植树,通过植树的情况引出间隔和间隔数以及棵数与间隔数之间的关系。

三、利用规律解决植树中的问题

例1、同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要栽多少棵树苗?每隔4米呢?每隔10米呢?把小路延长到1000米呢?

100÷5=20(段).........间隔数

20+1=21(棵)...........棵数

答:一共需要栽21棵树苗。

小结:刚才,我们应用发现的规律,解决了实际问题。已经知道,“两端要种”棵数=间隔数+1.其实,应用植树问题的规律,不仅仅能解决植树的问题,生活中很多类似的现象也能用植树问题的`规律来解决.

四、回归生活,实际应用

1、园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第一棵到最后一棵的距离有多远?

2、在沿河路的一边,设有16个节能路灯(两端都设),相邻两根的距离平均是60米,这条路有多远?

3、同学们做操比赛,第一行从左起第一人到最后一人的距离是14米,每两人之间相距2米,这一行有多少人?

五、全课总结

1、在生活中,你还见过那些植树问题呢?

2、同学们今天的表现真不错,运用发现的规律解决了不少问题,你们有什么收获呢?

六、布置作业:

课本109页第5题。

七、板书设计:

植树问题

两端要载棵数=间隔数+1

100÷5=20(段).........间隔数

20+1=21(棵)............棵数

答:一共需要栽21棵树苗。

倍比问题教案 篇4

教学目标

能进行相关的简单实际应用。

操作、比较、讨论等数学学习过程,引导学生认识到解决问题策略的多样性,渗透解决问题最优方案的意识。发展思维的灵活性。

3.通过探究活动,让学生体验探索和合作的乐趣,充分感受数学与生活的密切联系,培养学生合理安排时间的良好习惯。

教学重难点

教学重点:能利用探究“烙饼问题”的规律解决简单的实际问题。

教学难点:在探索“烙饼问题”的过程中,形成解决较复杂问题的数学研究方法,体会优化的数学思想。

教学准备

课件、记录表、饼模型。

教学过程

准备课前互动:有一个字总是被人们念错,猜猜是哪个字?(错)同一天出生的两个小孩,长得一模一样,是一个妈妈生的,不是双胞胎,请问咋回事?(三胞胎)

设计意图:舒缓紧张气氛,活跃现场氛围,帮助学生思维“热身”。

一、谈话导入,激发兴趣。

1.出示自家厨房情境,交流吴老师做饭的兴趣爱好。

2.煮一个鸡蛋需要5分钟,煮3个鸡蛋需要多长时间?

3.烙两张饼需要6分钟,烙一张饼需要几分钟?

设计意图:老师进行自我开放,让学生了解生活中的老师,拉进师生距离。从最简单的优化案例谈起,给全体学生思考的时空,为探究课堂中的问题打基础。通过逆向思维问题的直接对比,初步引发冲突,激发学生学习欲望。

二、自主探索,合作交流。

(一)解读信息,理解烙饼规则

1.学生自主阅读,发现关键的数学信息。每次只能烙两张饼,两面都要烙,每面要3分钟。

2.深入解读数学信息。

(1)每次只能烙两张饼是什么意思?

(2)两面都要烙呢?设计意图:发现并提出问题是数学学习的根本。引导学生能把生活中的数学问题抽象成数学问题来解决,这是培养学生应用意识的重要意义之一。

(二)依次探究8张……张饼的最优烙法

1.研究2张饼的最优烙法。设问:如果要烙2张饼呢?需要几分钟?

(1)想一想,你会怎样烙?所用时间是多少?

(,预设出现两种情况。烙两张饼需要6分钟,烙一张饼需要3分钟。可两张饼一起烙,先烙正面需要3分钟,再烙反面,又需要3分钟,共6分钟。

(3)原因分析。预设:锅里面有空位,但是只烙一张饼,只有空着。

2.探索4张饼的烙法。

(1)同桌之间用手当饼,尝试验证。

(2)交流汇报:用老师的饼模型在黑板上演示,得出公认的结果。

12张饼的最优方案。

(1)集体研讨。

(设计意图:数学教学要切合学生的认知水平、由浅入深循循善诱。这样的设计符合学生认知规律,会感觉到轻松得出结论。同时探索过程中的直观方法、模型思想为后面探究更难的烙埋下伏笔。

4.探究3张饼的最优烙法。

(合作交流。

(2)展示烙法,寻求最优方案。

(对比发现3张饼的最优烙法。

是突破难点的核心环节。在前面探究较为简单的烙饼张数的基础上,利用已有的认知经验和活动经验,经历了猜想、操作、验证的学习过程,能更好的渗透数学思想方法、积累数学活动经验。

11张饼的最优烙法。

(的最优烙法。

(技能、思想和经验是推动学生后续学习数学最宝贵的财富。

三、练习巩固,提升应用

如果有16张饼,怎样烙最节省时间?需要几分钟?

如果有23张饼,怎样烙最节省时间?需要几分钟?

,煎7条鱼至少需要几分钟?

4.一口锅一次能同时烙3张饼,两面需要各烙3分钟,烙6张饼最少需要多长时间?设计意图:练习的设计由浅入深,层层递进,再次引发学生思考,同时完成巩固和应用。

四、总结延伸,拓展思维

1.谈谈你这节课的收获?

2.拓展延伸。设疑:假如妈妈的这口锅再大一点,每次最多能烙3张饼,情况还跟两张饼的一样吗?附:用一口平底锅烙饼,每次可以烙3张饼,每面要烙1分钟。如果有4张饼,两面都要烙,至少需要多分钟?

设计意图:帮助学生把一节课所学习的知识更好的同化到已有的认知结构中,同时进行更为深度的思考,为有余力的学生提供更广阔的思考时空。

倍比问题教案 篇5

教学内容:

人教版小学数学教材六年级上册第42~43页例7及相关练习。

教学目标:

1.让学生经历用“假设法”解决分数工程问题的过程,理解并掌握把工作总量看作单位“1”的分数工程应用题的基本特点、解题思路和解题方法。

2.通过猜想验证、自主探究、评价交流等学习活动,培养学生分析、比较、综合、概括的能力。

教学重点:

认识工程问题的特点,掌握其数量关系、解题思路和方法。

教学难点:

学会用“工程问题”的方法解决实际问题。

教学准备:

课件。

教学过程:

一、复习旧知

师:今天,我们将继续解决生活中的数学问题。先来看看,你能解决下面的问题吗?(ppt课件出示。)

(1)修一条360米的公路,甲队修12天完成,平均每天修多少米?

360÷12=30(米)。

师:你是怎样列式的?为什么?(教师板书:工作总量÷工作时间=工作效率。)

(2)修一条360米的公路,甲队每天修18米,多少天能完成?

360÷18=20(天)。

师:你是怎样列式的?为什么?(教师板书:工作总量÷工作效率=工作时间。)

(3)加工一批零件,计划8小时完成,平均每小时加工这批零件的几分之几?

1÷8=。(师:你是根据什么来列式的?)

(师小结:不知道工作总量时,我们可以用单位“1”来表示,相对应的工作效率就用时间分之一来表示。)

(4)一项工程,施工方每天完成,几天可以完成全工程?

1÷=6(天)。(师:你又是根据什么来列式的?)

【设计意图】小学生学习数学的过程就是新知识同原有知识相互作用,发展形成新的数学认识结构的过程。因此,在复习准备阶段,设计了上述4道基本练习题,帮助学生激发原有的知识记忆,使学生能进一步熟练运用工作总量、工作时间、工作效率这三个量之间的关系解决实际问题,并适当渗透工作总量、工作效率不是具体的数量时应该怎样表示,为学习新知做好铺垫。

二、创设情境,设疑导入

为了建设新农村,各地都在进行乡村公路的建设。张村也准备新修一条公路。两个工程队,一队单独修12天完成,二队单独修要18天完成。(ppt出示。)

师:从以上条件,我们可以获得什么信息?

(预设:一队每天修这条公路的;二队比一队多用6天完成;二队每天修这条公路的……)

师:假如你是负责人,你会承包给谁?为什么?

如果要修得又快又好,怎么办?

(预设:让甲队修;可以让两个队一起修。)

师:如果两队合修,多少天能修完?(PPT出示完整题目。)

张村准备新修一条公路。两个工程队,一队单独修12天完成,二队单独修要18天完成。如果两队合修,多少天能修完?

【设计意图】教材中的例题设计了学生熟悉的修路情境,合理利用情境激发学生的学习兴趣,逐步展开,并在设疑中生成有教学价值的问题——“如果两队合修,多少天能修完”,展开新课教学。

三、猜想验证,合作探究

(一)猜想。

师:请同学们先猜一猜两个队一起修路,大约几天能修完?(教师随机板书学生所说的天数。)

师:在这些天数中,哪些天数可以排除?你是怎样想的?(得出“两队合修的天数比12天少”的结论。)

(二)讨论。

师:到底是几天呢?观察题目,想一想,要知道合修的时间,需要知道什么?

(预设:需要知道工作总量和工作效率。)

师:可这里的工作总量(也就是道路全长)是未知的,怎么解决?

可以假设道路全长是多少?

根据学生的回答,老师随机板书假设的长度(预设单位“1”,如36千米等。如果是假设具体数量,考虑12和18的公倍数会方便些)。

师:请你选择其中一个道路全长的值,试一试解决这道题吧。

(三)验证,辨析各种解法。

1.学生用假设法解题,老师巡视,抽取不同假设的同学板书演示。

2.全班交流评价各种方法,让学生说说自己解决的思路与方法。

预设:

(1)假设道路全长36千米,36÷(36÷12+36÷18)=7.2(天);

(2)假设道路全长720米,720÷(720÷12+720÷18)=7.2(天);

(3)假设道路全长为单位“1”,1÷=(天)。

对于假设具体数据的解法,分析一种,让学生说一说数量关系。(先分别求出两队的效率,再用工作总量除以合作工作效率,即两队效率之和,求出合作修路所需的工作时间。)

对用单位“1”及分率解题的方法,老师结合PPT进行重点追问:

这里的1指什么,,各指什么?代表什么?为何用1÷?

请学生结合工作总量、工作效率与工作时间的关系说一说。(同桌互相讨论这种解法的思路。)

预设:如果有同学用1÷(1÷12+1÷18),肯定并说明可以直接写作的形式。

【设计意图】猜想与验证是学生自主探究的有效方法,让学生发散思维,在猜测中预测结果,提高学生参与验证的热情。另外,因为学生的认知基础不同,允许验证的方法多样化,对于正确的答案都能给予肯定,让学生享受成功的喜悦。

(四)小结建模,策略优化。

1.同学们各自假设的道路总长不同,但答案都是7.2天,说明什么?

(说明完成时间和道路总长没有关系。)

在道路总长发生变化的时候,哪些量在变,哪些量没有变?

引导小结:他们单独修的时间不变,无论假设道路全长是多少,两个队每天修的始终占道路全长的和.

也就是说对这条公路的全长而言,他们每天修路的米数在变化,但他们每天修这条路的“几分之几”没有变。

2.比较这几种解法,哪种解法更简便一些?

小结 :这道题没有给出具体的工作总量,我们可以把工作总量看作单位“1”。

根据“一队单独修12天完成”可知一队每天修全长的(也就是一队的工作效率),根据“二队单独修18天完成”可知二队每天修全长的(也就是二队的工作效率),所以表示两队工作效率之和。

用工作总量单位“1”除以工作效率之和,即可求得两队合修所需的工作时间。

【设计意图】在验证过程中,学生发现“工作总量变了,工作时间还是不变”,教师要引导学生悟出其中的算理,使每一个学生自主有效地形成新知。从上一环节的算法多样化,到这一环节的方法小结优化,使学生的思维“量”“质”兼备。

(五)点明课题:

这就是我们今天要学习的“工程问题”(板书课题)。

(六)针对性练习。

师:咱们一起来试试解题吧!(ppt出示教材第43页“做一做”。)

交流解题方法,说一说“把工作总量看作单位1,效率就是次数分之一”。(PPT直观演示线段图。)

【设计意图】发挥多媒体计算机辅助教学的优势,出示情境,绘制线段图,为学生提供形象直观的演示,让学生在观察、比较中解决疑难问题,进一步突破本课教学难点,提高教学效率。

四、实践应用

(一)辨析性练习

判断题。

(在正确算式后面的括号内打“√”,错误算式后面的括号内打“×”。并说明理由。)

解答时出现了如下几种列式:

①300÷(8+10)……( );②300÷(300÷8+300÷10)……( );

③300÷……( );④1÷(300÷8+300÷10)…… ( );

⑤1÷……( )。

【设计意图】学生对知识的理解容易出现片面性和笼统性,会把刚学的新知识与相似的旧知识混淆,通过辨析,进一步明确工作总量和工作效率必须要相对应,从而促进学生对工程问题本质特征的理解。

(二)变式训练,类推应用

1.甲车从A城市到B城市要行驶2小时,乙车从B城市到A城市要行驶3小时。两车同时分别从A城市和B城市出发,几小时后相遇?

(改变问题情境,将工程问题转化为行程问题。)

2.某水库遭遇暴雨,水位已经超过警戒线,急需泄洪。这个水库有两个泄洪口。只打开A口,8小时可以完成任务,只打开B口,6小时可以完成任务。如果两个泄洪口同时打开,几小时可以完成任务?

【设计意图】通过变式训练,引导学生寻找知识间的联系,进行迁移、类推,加强学生对本节课的理解与对知识的消化,有效巩固工程问题的解题思路和解题方法,从而提高解题能力。

五、全课总结

说一说本节课你有什么收获?

今天学习工程问题,这类题目的特点是:①把工作总量看作单位“1”;②谁几天完成,谁的工作效率就是几分之一;③用工作总量除以工作效率和就得到工作时间。

六、课外作业

1.教材第45页第6题;

2.阅读教材第45页“你知道吗”内容。

倍比问题教案 篇6

1、通过猜测、试验、、验证等数学探究活动,使学生初步体会两端都栽的植树问题的规律,构建数学模型,解决实际生活中的有关问题。

2、培养学生通过“化繁为简”从简单问题中探索规律,找出解决问题的有效方法的能力,初步培养学生的模型思想和化归思想。

发现并理解两端都栽的植树问题中间隔数与棵数的规律。

运用“植树问题”的解题思想解决生活中的实际问题。

课件、直尺、学习纸。

(一)创设情境,引入新课

教师:你们知道3月12日是什么节日吗?关于植树你知道些什么?(引导学生说诸如植树时两棵数之间有一定的距离,这些距离一般相等……这些与本课学习相关的信息。)

教师:其实在植树中还隐藏着很多数学问题呢!今天我们这节课就来研究植树中的数学问题。(板书课题:植树问题)

(二)充分经历,探究新知

1、大胆猜测,引发冲突。

(1)读一读,说一说。

课件出示例1,引导学生获取相关数学信息。让学生读题,然后指名说一说:从题中你了解到了哪些信息?重点帮助学生弄清楚下列数学信息的含义:

“每隔5米栽一棵”是什么意思?

使学生明确“每隔5米栽一棵”就是指每两棵树之间的距离都是5米,每两棵树之间的距离也叫间隔长度,也可以说成“两棵树之间的间隔是5米”。

“两端要栽”是什么意思?“一边”是什么意思?

可以先让学生说一说,然后教师拿出实物演示。例如:让学生指出尺子的两端指的是哪里?一边指的是什么?

(2)猜一猜,想一想。

让学生根据例题中的信息,猜一猜一共要栽多少棵树苗,教师对学生的猜测不发表评论,引导学生积极发表自己的看法。

教师:到底要栽多少棵呢?对不对呢?你打算怎样检验自己的猜想?

引导学生用画线段图的方法进行验证。

(设计意图:帮助学生厘清题意,让学生通过猜想答案,引起认知冲突,激发学生继续探究的欲望。)

2、借助操作,探究规律。

(1)初步体验,化繁为简。

教师:我们用一条线段表示100米的小路,每隔5米栽一棵,大家可以用自己喜欢的图案表示树,每隔5米种一棵,每隔5米种一棵,照这样一棵一棵种下去……是不是很麻烦?

教师:为什么觉得很麻烦?

学生:因为100米里面有20个5米,太多了。

教师:也就是说100米在这道题中显得数据有点大,因此画图时会比较麻烦。像这样比较复杂的问题,我们可以先从简单一些的`情况入手进行研究。比如,我们可以先选取100米中的一小段研究。

(2)教师演示,直观感知。

教师演示课件,边演示边说明。

教师:我们选取100米中的20米来研究,用一条线段表示20米,每隔5米栽一棵,也就是说树的间隔是5米。(教师板书)

教师;大家看一看,我们把这段路平均分成了几段?也就是有几个间隔?栽了几棵树?

引导学生说出20米长的一条路,间隔长度是5米,有4个这样的间隔,可以栽5棵树。

(设计意图:让学生体会复杂问题可以从简单问题入手的解题策略,并通过课件的演示,向学生示范线段图的画法,为学生下面的自主探究作好准备。)

(3)动手操作,初步体验。

让学生自由选择100米中的一小段,动手画一画,看一看这一小段上,两端都要栽,一共要栽几棵树。

教师选择有代表性的作品进行展示,为什么这样画?重点让学生说一说自己的想法:你是怎样画的?为什么这样画?一共要栽多少棵树?

教师:虽然这些同学选取的长度不一样,一共要栽的棵数也不一样,但他们所画的线段图特别是他们的分析和思考方法有相同的地方,你能找到吗?

引导学生观察,在这些不同的画法中,有一个共同的地方:棵树比间隔数多1。

(4)合理推测,感知规律。

教师:不用画线段图,如果这条路长30米、35米……又应栽几棵树呢?请同学们拿出学习纸,填写表格。

学生填写表格,教师巡视,对个别学生进行指导和说明。

学生填写完表格后,小组交流汇报结果。

(5)归纳概括,理解规律。

教师:请大家认真观察表格,你发现在一条线段上栽树(两端要栽),间隔数和棵树有什么关系?将自己的发现在小组内说一说。

学生汇报自己的发现。

引导学生发现两端都栽树,植树的棵数比间隔数多1,也可以说间隔数比棵数少1。

教师:为什么两端都栽树,棵数比间隔数多1?

学生回答后,教师借助课件演示帮助学生进一步直观理解。

(设计意图:学生动手操作,合作交流。让学生在不断的操作和交流中,经历了观察、发现和感受的全过程,学到了解决问题的方法。)

(6)即时巩固,强化规律。

教师:同学们都明白了两端都栽的情况下树的棵数与间隔数之间的关系,老师出几道题考考大家:7个间隔种几棵树?20个间隔种几棵树?9棵树之间有几个间隔?20棵树之间有几个间隔?

(设计意图:通过这个小练习,使学生进一步掌握在两端都栽的情况下,树的棵数和间隔数之间的关系。)

3、运用规律,验证例1。

教师:回到例1,在100米的小路一边植树,每隔5米栽一棵(两端要栽),到底一共要栽多少棵树?哪些同学刚才猜对了?

教师(点几个猜错的同学):现在你知道自己猜错的原因是什么了吗?给大家说说看,你要提醒大家注意什么?

学生尝试列式解决问题,教师巡视,有针对性地指导。

全班汇报交流,主要让学生弄清楚:100÷5=20是什么意思?为什么还要用20+1=21(棵)?

(设计意图:让学生经历猜测——试验——验证的探究过程,同时让学生明确每步算式的意义,以便于学生更好地理解植树问题的数学模型。)

(三)回归生活,实际应用

1、“做一做”第1题。

教师:这道题里没有植树呀,能用我们今天学的方法解决吗?

使学生明确应用植树问题的规律,可以解决生活中很多类似问题。在本题中把一盏路灯看成一棵树,也能用植树问题的规律来解决。

教师:其实植树问题,并不只是与植树相关,生活中有很多问题和植树问题相似,比如安装路灯、电线杆、设立车站等。

2、练习二十四1、2、3题。

让学生进一步感受到植树问题在生活中的广泛应用。

3、练习二十四第4题。

教师:这一题与例题有什么不同?

老师引导学生找出此题与例题的区别。例题是知道全长与间隔长度求棵数,而本题是知道间隔长度与棵数求路的全长。

教师:你是怎样计算的?为什么用36减1?

(设计意图:运用植树问题的数学模型解决生活中的类似问题,把植树问题进行拓展应用,使学生能举一反三,触类旁通,并让学生体会到数学与实际生活的紧密联系。)

(四)课堂小结,畅谈收获。

通过本节课的学习,让学生了解两端都栽的情况下,棵数和间隔数的关系,这部分内容比较抽象,为了将难点化简,讲授新知前,我利用手指游戏导入,孩子很感兴趣,而且初步感受到了棵数、间隔数的关系。再从生活中抽取简单的植树现象,加以提炼,建立数学模型,再将这一数学模型应用于生活实际。

从学生感兴趣的猜谜和游戏入手,创设轻松愉悦的氛围,让学生初步感知棵数、间隔数的关系,为进一步的探究奠定了基础。这种学生感兴趣的学习情境有利于学生积极主动地投入到数学活动中。

体验是学生从旧知识向隐含的新知识迁移的过程。教学中,我创设了情境,为学生提供了充分思考的时间与空间,让学生从简单的问题入手,借助直观的图示,探索植树问题两端要栽的规律。借助图形,建立知识表象,注重对数形结合意识的渗透,使学生得到启迪,悟到方法,从而建立起学习的信心,进一步解决较复杂的问题,渗透一种化归思想。

“数学来源于生活,而又应该为生活服务。”让学生认识到只要善于观察,就会发现生活中的许多事例跟植树问题相似,引导学生要灵活运用所学知识来解决生活中的一些实际问题。

但这节课也有我颇感不足的地方,我觉得自己对学生的学习起点没有充分把握,没有注重学生逆向思维的培养,也没能很好地关注到全体学生,在以后的教学中,我还要注意把握好教材的度,适当进行取舍,更合理的安排好教学时间。

倍比问题教案 篇7

教学内容:课本应用题例5及练一练

教学目标:

1、通过教学,引导学生认识“相遇问题(求相遇路程)”的特征,理解数量关系,并能解答相遇问题应用题。

2、通过组织学生分组讨论,培养学生合作与交流的意识。

3、结合生活实例,培养学生收集信息、处理信息和解决实际问题的能力。

教学重点:“相遇问题”的特征和解题方法。

教学难点:“相遇问题”的特征和解题方法。

教学用具:多媒体课件一套

教学过程:

一、激趣引入,复习旧知

1、根据已知条件解答问题。

电脑演示一位学生边走边唱上学的情景。

“我是小小读书郎,蹦蹦跳跳上学忙。每分要走70米,4分才能到学堂。”

学生提出问题:“你知道我家到学校有多远吗?”

2、学生口答列式:70×4=280(米)。

复习“速度”、“时间”、“路程”三者之的数量关系。

(板书:速度 时间 路程)

二、揭示特征,化解难点

1、想想,说说

电脑演示两个学生同时上学在校门口相遇的情景,引导学生初步认识“相遇问题”的特征。

①两个学生是怎么上学的?

(板书:同时 相对 相遇)

②“相遇”的意思懂吗?请两个学生上台合作表演一下。

2、填填,议议

①介绍人物及行走的速度和时间。

小明每分走70米,小芳每分走60米,有一天,他们约好,从家里同时出发,对而行,3分钟后恰好在校门口相遇。

②分组合作,完成以下表格:

比一比,看哪个组填得又对又快?

走的时间

小明走的路程(米)

小芳走的路程(米)

两人所走路程的和(米)

1分

2分

3分

③分组汇报表中所填数据。

走的时间

小明走的路程(米)

小芳走的路程(米)

两人所走路程的和(米)

1分

70

60

130

2分

140

120

260

3分

210

180

390

④采取教师提问,学生回答;学生提问,教师回答;学生提问,学生回答的式,分析表中数据,加深对“相遇问题”特征的理解,并初步感知相遇问题数量间的关系,渗透两种解法。

“130米是什么?”表示两人每分所走的路程和即“速度和”(板书:速度和)

“260米是怎么得来的?”渗透两种方法即:140+120,130×2。同时说“2分”是“相遇时间”。(板书:相遇时间)

“390米是怎么得到的?”强调两种方法,即把各自的路程相加210+180);用速度和乘相遇时间(130×3)。

“390米表示什么?”两人3分钟所走路程的和,实际上就是两家之间的离。

三、解答例题,理清思路

1、尝试例5(稍做改动)。弄清数量关系,理清解题思路,掌握两种解法。

①将上题中“同时行3分钟”改成“同时行4分钟”,其余条件不变,仍然求两家相距多远?”学生读题后尝试练习。

②评讲板演,理清解题思路,概括两种方法。

先求两人4分钟各走多少米。

⑴分步列式解答 70×4=280(米)

60×4=240(米)

280+240=520(米)

⑵综合列式解答 70×4+60×4

=280+240

=520(米)

先求两人1分钟一共走多少米。

⑴分步列式解答 70+60=130(米)

130×4=520(米)

⑵综合列式解答(70+60)×4

=130×4

=520(米)

2、质疑小结,揭示课题。

①想一想,这两种解法有什么联系?

②概括“相遇问题”的特征和解题方法。

③揭示课题。

这两种解法都是利用速度×时间=路程这一数量关系式。不过,第一种方法是用各自的速度乘各自的时间,得出各自的路程,然后相加求和;第二种方法用速度和乘相同的时间。象这样两人分别从两家同时出发,相对而行,结果遇的问题,就是我们今天研究的主要内容“相遇问题”(板书:相遇问题),决这样的问题可以用两种方法。

四、深化理解,应用拓展

1、基本练习。

用两种方法完成课本第37页上的练一练,并说一说,是怎样列式的?先求什?再求什么?

2、变式练习。

电脑演示小明和小芳放学的情景。

①认识“相背而行”(板书:相背)

②小明每分走70米,小芳每分走60米,1分钟后两人相距多远?2分呢?4分呢?结果怎样?

揭示“相背而行”和“相对而行”求总路程时的解题思路是一样的。

3、拓展练习。

结合生活实例,培养学生收集信息、处理信息和解决实际问题的能力。

电脑演示:张教授、李经理分别从湖州、上海去杭州参加经贸会,临行前一段对话情景。

对话实录如下:

张教授:喂,李经理吗?我已坐在湖州去杭州的大巴上。

李经理:知道了,张教授,你车子的速度怎样啊?

张教授:大概每小时行70千米吧!

李经理:这样吧!我把车速控制在每小时行100千米,过2小时,我们就可在杭州见面啦!

张教授:杭州见!一路平安!

李经理:好,一路平安,杭州见!

分组合作,进行探究。

请同学们认真听,仔细看,从对话中能捕捉到哪些信息?

倍比问题教案八篇


我们历经思考,精心设计的“倍比问题教案”必定令您惊喜,期待我的建议能助您成功。通常在给学生上课之前,老师会提前准备好教案和课件,因此需要老师花费一些时间来编写。教案在监测教学质量方面具有重要作用。

倍比问题教案【篇1】

教学内容:课本应用题例5及练一练

教学目标:

1、通过教学,引导学生认识“相遇问题(求相遇路程)”的特征,理解数量关系,并能解答相遇问题应用题。

2、通过组织学生分组讨论,培养学生合作与交流的意识。

3、结合生活实例,培养学生收集信息、处理信息和解决实际问题的能力。

教学重点:“相遇问题”的特征和解题方法。

教学难点:“相遇问题”的特征和解题方法。

教学用具:多媒体课件一套

教学过程:

一、激趣引入,复习旧知

1、根据已知条件解答问题。

电脑演示一位学生边走边唱上学的情景。

“我是小小读书郎,蹦蹦跳跳上学忙。每分要走70米,4分才能到学堂。”

学生提出问题:“你知道我家到学校有多远吗?”

2、学生口答列式:70×4=280(米)。

复习“速度”、“时间”、“路程”三者之的数量关系。

(板书:速度时间路程)

二、揭示特征,化解难点

1、想想,说说

电脑演示两个学生同时上学在校门口相遇的情景,引导学生初步认识“相遇问题”的特征。

①两个学生是怎么上学的?

(板书:同时相对相遇)

②“相遇”的意思懂吗?请两个学生上台合作表演一下。

2、填填,议议

①介绍人物及行走的速度和时间。

小明每分走70米,小芳每分走60米,有一天,他们约好,从家里同时出发,对而行,3分钟后恰好在校门口相遇。

②分组合作,完成以下表格:

比一比,看哪个组填得又对又快?

走的时间

小明走的路程(米)

小芳走的路程(米)

两人所走路程的和(米)

1分

2分

3分

③分组汇报表中所填数据。

走的时间

小明走的路程(米)

小芳走的路程(米)

两人所走路程的和(米)

1分

70

60

130

2分

140

120

260

3分

210

180

390

④采取教师提问,学生回答;学生提问,教师回答;学生提问,学生回答的式,分析表中数据,加深对“相遇问题”特征的理解,并初步感知相遇问题数量间的关系,渗透两种解法。

“130米是什么?”——表示两人每分所走的路程和即“速度和”(板书:速度和)

“260米是怎么得来的?”——渗透两种方法即:140+120,130×2。同时说“2分”是“相遇时间”。(板书:相遇时间)

“390米是怎么得到的?”——强调两种方法,即把各自的路程相加210+180);用速度和乘相遇时间(130×3)。

“390米表示什么?”——两人3分钟所走路程的和,实际上就是两家之间的离。

三、解答例题,理清思路

1、尝试例5(稍做改动)。弄清数量关系,理清解题思路,掌握两种解法。

①将上题中“同时行3分钟”改成“同时行4分钟”,其余条件不变,仍然求两家相距多远?”学生读题后尝试练习。

②评讲板演,理清解题思路,概括两种方法。

先求两人4分钟各走多少米。

⑴分步列式解答70×4=280(米)

60×4=240(米)

280+240=520(米)

⑵综合列式解答70×4+60×4

=280+240

=520(米)

先求两人1分钟一共走多少米。

⑴分步列式解答70+60=130(米)

130×4=520(米)

⑵综合列式解答(70+60)×4

=130×4

=520(米)

2、质疑小结,揭示课题。

①想一想,这两种解法有什么联系?

②概括“相遇问题”的特征和解题方法。

③揭示课题。

这两种解法都是利用速度×时间=路程这一数量关系式。不过,第一种方法是用各自的速度乘各自的时间,得出各自的路程,然后相加求和;第二种方法用速度和乘相同的时间。象这样两人分别从两家同时出发,相对而行,结果遇的问题,就是我们今天研究的主要内容——“相遇问题”(板书:相遇问题),决这样的问题可以用两种方法。

四、深化理解,应用拓展

1、基本练习。

用两种方法完成课本第37页上的练一练,并说一说,是怎样列式的?先求什?再求什么?

2、变式练习。

电脑演示小明和小芳放学的情景。

①认识“相背而行”(板书:相背)

②小明每分走70米,小芳每分走60米,1分钟后两人相距多远?2分呢?4分呢?结果怎样?

揭示“相背而行”和“相对而行”求总路程时的解题思路是一样的。

3、拓展练习。

结合生活实例,培养学生收集信息、处理信息和解决实际问题的能力。

电脑演示:张教授、李经理分别从湖州、上海去杭州参加经贸会,临行前一段对话情景。

对话实录如下:

张教授:喂,李经理吗?我已坐在湖州去杭州的大巴上。

李经理:知道了,张教授,你车子的速度怎样啊?

张教授:大概每小时行70千米吧!

李经理:这样吧!我把车速控制在每小时行100千米,过2小时,我们就可在杭州见面啦!

张教授:杭州见!一路平安!

李经理:好,一路平安,杭州见!

分组合作,进行探究。

①请同学们认真听,仔细看,从对话中能捕捉到哪些信息?

②根据刚才捕捉的信息,能解决哪些问题?比一比,看哪个组提出的问题多?

③汇报提出的问题,交流解决的方法。

④生活中的行程问题,是不是一定都是这样?有没有别的情况?

4、全课总结。

今天这节课主要学习了什么内容?你获得什么本领?

同学们,只要你们留心观察,善于思考,就会发现许多数学问题,刚才大家出的问题,都有一定价值。有些问题现在我们可以解决了,有些问题还需要续学习,深入研究,将来去解决。

五、课堂作业

练一练第1——5题

板书设计:

相遇问题

同时相对(背)相遇

速度时间路程

(和)(相同)(和)

⑴70×=280(米)⑶70+60=130(米)

60×4=240(米)130×4=520(米)

280+240=520(米)

⑵70×4+60×4⑷(70+60)×4

=280+240=130×4

=520(米)=520(米)

答:两家相距520米。

倍比问题教案【篇2】

教学内容:

人教版《义务教育课程标准实验教科书数学》四年级下册第117、118页例1、例2。

教学目标:

1.利用生活中的问题,通过动手操作的实践活动让学生发现分的段数与植树棵数之间的关系,并能利用规律来解决简单植树的问题。

2.进一步培养学生从实际问题中发现规律,应用规律解决问题的能力。

教学重难点:

1.利用生活中的问题,通过动手操作的实践活动让学生发现分的段数与植树棵数之间的关系,并能利用规律来解决简单植树的问题。

2.培养学生从实际问题中发现规律,应用规律解决问题的能力。

3.提高解决问题,让学生感受日常生活中处处有数学,激发热爱数学的情感。

教学、具准备:

课件、表格、尺子等。

教学过程:

一、教学“间隔”

1.教学“间隔”的含义。

师:同学们,在我们的身边到处有数学。请你们伸出一只手张开手指,仔细观察,你看到了什么?(5个手指,4个空)这4个“空”也可以说成4个“间隔”,5个手指之间有4个间隔,那4个手指之间有几个间隔?3个手指之间呢?(请生在自己的手上指一指)2个手指之间呢?(全班一起找)通过刚才我们找手指数和间隔数,你发现了什么?谁来说说。(手指数比间隔数多1或间隔数比手指少1。)

2.引入植树问题的学习。

师:你们真聪明!发现了手指数与间隔数之间的关系,像这类问题其实就是——植树问题(揭示课题)。今天这节课我们就一起来研究植树问题。

二、自主探究 找出规律

1.课件出示:为迎接2008奥运会,北京市城市规划局准备在长100米的迎宾道一侧栽树,每隔5米栽一棵(两端都栽)。一共需要多少棵树苗?

师:我们一起来读读题。谁知道每隔5米栽一棵是什么意思?那共需多少棵树苗,谁来猜一猜?

预设:学生可能大多数对得到20棵。

师:你们的猜测正确吗?下面我们就一起想办法来验证一下。但是100米这个数字有点大,不好验证,怎么办呢?在遇到比较复杂的问题是我们可以先用比较简单的例子来验证。假设路长只有20米,每5米栽一棵(两端都栽),要栽几棵呢?

师:下面就请小组同学一起想办法验证一下你们的猜测是否正确?

全班交流汇报。(重点让用线段图来验证的小组来说明理由。)

师:这个小组的同学真会想办法,他们用一条线段表示这条小路,平均分成4份,这时出现了几个间隔和几个间隔点?

生:4个间隔和5个间隔点。也就是把一条小路平均分成4份后,如果两端都要栽树的话,共要栽几棵?(5棵)20÷5不是等于4吗?怎么是5棵呢?多的这一棵是怎么来的?

师:如果每隔4米栽一棵、每隔2米栽一棵又需要栽多少棵树苗呢?请小组同学一起讨论一下,并将你们解决的方法写在练习纸上。

根据学生的回答,师填写表格:

长(米)

每两棵树之

间的距离

(每段长)

间隔数

(段 数)

20

全班观察表格寻找规律。

师:同学们非常能干,通过猜测、讨论、验证发现了植树问题中一个非常重要的规律,那就是在一条路上植树,如果两端都要栽的话,栽树的棵数比平均分的份数也就是间隔数多1。(板书:棵数=间隔数+1。)

师:对得到的这个规律有没有不同意见?

三、巩固练习

师:现在我们用得到的这个规律来验证一下你开始的猜测正确吗?

(1)基础练习。

师:请看题目,谁愿意来说一说?

A1. 在长100米的迎宾道一侧栽树,每隔5米栽一棵(两端都栽)。一共需要多少棵树苗?

A2. 如果是每隔10米栽一棵呢?(口答)

B.师:同学们真能干!其实在我们的生活周围存在许多类似的植树问题。这是陈老师家乡重庆的鹅公岩大桥,想知道这座桥上有多少盏路灯吗?

课件出示:大桥全长1420米,大桥的两侧每隔10米安装了一盏路灯。一共安装了多少盏路灯?

C.这是我们重庆的轻轨列车,陈老师每天就坐轻轨列车回家。

课件出示:从学校到老师家一共有14个站,每相邻两个站之间的距离平均是1千米,你知道陈老师的家离学校大约有多少千米吗?

(2)拓展练习。

师:老师的家乡重庆是一个美丽的城市,在重庆有一个解放碑。想听听它的钟声吗?

课件出示解放碑的大钟及题目。

解放碑的大钟5时敲响5下,8秒钟敲完。12时敲响12下,需要多长时间呢?

师:请同学们独立的在练习本上完成。

小结:同学们真棒!不仅能通过自己的观察、思考找到植树问题中当两端都栽树时棵数=间隔数+1,而且还运用规律解决了生活中的实际问题。

四、数学文化

介绍二十棵树植树问题:有20棵树,若每行四棵,问怎样种植,才能使行数更多?

五、全课总结

1.通过这节课的学习你有什么收获?

2.其实植树问题里还有许多有趣的知识,如植树时有时需要一头栽一头不栽,在圆形的球场一周栽树以及围棋盘上摆棋子的问题等(课件图片展示),这些都需要同学们在以后的学习中开动脑筋,积极思考才能找到解决问题的好方法。

倍比问题教案【篇3】

教学目标:

1.使孩子透过生活中的事例,初步体会解决植树问题的方法。

2.初步培养孩子从实际问题中探索规律,找出解决问题的有效方法的潜力。

3.让孩子感受数学在日常生活中的广泛应用,培养孩子的应用意识和解决问题的潜力。

教学重点:

用解决植树问题的方法解决实际问题。

教学难点:

栽树的棵数与间隔数之间的关系。

教具准备:多媒体课件。

设计理念:新课标指出:“有效的数学学习活动不能单纯地依靠模仿与记忆,动手实践、自主探索与合作交流是孩子学习数学的重要方式。”同时指出:“孩子是数学学习的主人,老师是数学学习的组织者、引导者与合作者。”结合新课标的要求,教学中力求发挥孩子的主体地位,让他们动脑、动手、合作探究,经历分析、思考、解决问题的全过程,体会植树问题这一重要的数学思想方法。

教学过程:

一、谈话导入:

师:同学们,你们喜欢植树吗?你植过树吗?(生答)植树能绿化环境,造福人类。在生活中,常常遇到在路的一边、间隔必须的距离植树,这就需要计算准备多少棵树苗。还有许多类似的问题:比如在公路两旁安装路灯、花坛摆花、站队中的方阵等等,在数学上,我们把这类问题统称为“植树问题”。

二、揭示学习目标:(媒体出示)

透过这节课的学习,我们要解决哪些问题呢?

1.能根据相关条件,求出需要多少棵树苗或计算两树间的距离。

2.能利用植树问题,灵活解决生活中类似的实际问题。

三、探究新知:

1.出示例1:同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?(生读题)

师:你会计算吗?(让孩子回答)你算的对吗?请同学们自己动脑来验证一下。

学习提示:(媒体出示)

①假如路长只有10米,要栽几棵树?如果路长是20米,又要栽几棵树?请你画线段图来看看。

②透过上面的分析,你能找出什么规律?和同桌或小组内说说。

③此刻你能算出一共需要多少棵树苗吗?

④你还有别的想法吗,在小组内说说。

2.孩子自学探讨。(师巡视)

3.班内交流。孩子回答后,师媒体演示间隔数和间隔点数的关系。

总结规律:栽的棵数比间隔数多1。

完成例题。

四、变化巩固:

1.做一做:118页孩子独立完成。订正时说说怎样想的,重点让孩子明确先求出间隔数,即36棵树有35个间隔。

2.122页第2题。独立完成,同桌交流想法,可一生板演。

五、检测反馈:(独立完成)

1.在一条长400米的马路的一边,从头到尾每隔8米种一棵树。一共能够种多少棵树?

2.5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?

3.从王村到李村一共设有16根高压电线杆,相邻两根的距离平均是200米。王村到李村大约有多远?

孩子完成后师批阅订正,发现问题及时解决。

六、总结延伸:

这节课我们学习了植树问题,并能利用植树问题解决生活中类似的实际问题,解答时要重点分清栽树的棵数与间隔数间的关系,后面还有一些不同的状况,期望大家开动脑筋,灵活处理。

倍比问题教案【篇4】

教学目标:

1.认识棵数,知道什么是间隔数、。

2.理解在线段上植树(两端都栽)的情况中“棵树=间隔数+1”的关系。

3.能将植树问题推广到生活中的其他问题,学会通过画线段图来分析题意。

教学重点:

探究植树的棵数和间隔数之间的关系,并能用发现的规律解决实际问题

教学难点:

灵活运用“两端都栽”情况下植树的棵数和间隔数之间的规律解决生活中的实际问题

导学指要:

1.通过五指初步感知棵数与间隔数之间的关系,理解间隔、间隔数、间距的含义。

2.通过老师用画线段的方法模拟种树情境理解解决问题的方法,再采用合作学习的方式利用学具摆、数、画等方法,进一步明确棵数与间隔数之间的规律。

3.学习植树问题在生活中的运用。

教具:课件一套学具9套自学提示卡一张

预设教学流程:

一、创设情境生成学习目标

1、教学“间隔”定义

师:我们班在各方面都十分优秀,俗话说的好:耳听为虚、眼见为实,今天让来听课的老师也看看我们班的风采好吗?

生:好

师生问好

师:我们人有两件宝贝,是双手和大脑,今天这节课,我们就要用到这两样宝贝,动脑去思考:手与我们这堂数学课有什么关系呢?手上有哪些数学问题呢?好,现在我们就去探讨。

师:请你伸出你的右手,观察你有几根手指?几个手指缝?它们存在什么样的关系呢?

生:……………………

师:减掉1根手指,现在你有几根手指?几个手指缝?它们之间又存在着什么样的关系呢?

生:……

师:再减掉1根手指,现在你有几根手指?几个手指缝?它们之间又存在着什么样的关系呢?

生:……

师:通过刚才的观察,想一想,手指和手指缝之间存在着怎样的关系呢?

生:……手指比手指缝多1,手指缝比手指少1。

师:这两根手指之间的手指缝,用数学语言来说就叫间隔,间隔的个数就叫间隔数。

板书:间隔数

2、在生活中找间隔

师:和你的同桌说说:什么是间隔数?

生:……

师:我们再来体验,请一排的前三名同学站起来,这一排同学有多少个间隔?

生:…………….

师:请这一排的前四名同学站起来,用你们的手指告诉老师,这一组同学的间隔数是多少?

生:……………

师:今天将利用数学知识来解决“植树问题”。

板书课题:植树问题

二、探究规律实现目标

1、多媒体出示学校操场

A师:这里是哪里?

学校打算在100米的跑道上植树,来美化我们的学校。可不是随便种的哦,学校可是有要求的。

出示例题1:在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?、

师:读一读,在题中你读到哪些信息?谁来说一说?

生:……………………

师:全长100米表示什么?每隔5米栽一棵表示什么意思?一边表示什么?

师:什么是两端都要栽?

生:……………………..

(此环节要全方位理解题意)

师:今天这节课我们重点来研究两端都栽的植树问题,板书:两端都栽

师:题目都理解了,请大家动笔尝试算一算,一共需要多少棵树苗?

B生动笔算

师:谁来说说你是怎样列式的?

生:……..

板书:100÷5=20xx+1=21(棵)

100÷5=20xx+2=22(棵)

100÷5=20xx+1=21(棵)

21x2=42棵

师:学校可犯糊涂了,有这么多种结果,到底该买多少棵呢?接下来我们来验证下吧

请同学们利用画一画,数一数,算一算,到底该买多少棵树苗?

C学生小组合作,教师巡视,并有目的的选取学生

D在实物投影上展示学生的作品

学生展示并板演

用画线段的方法解决的棵数与间隔数的关系

反馈黑板上的题目,注意利用错误资源教师提问:100÷5=20求的是什么?为什么还要加1呢?

2、再次课件演示得出结论

那你们获得的结论是什么呢?在两端都栽的情况下棵数与间隔数之间有什么关系呢?

棵数=间隔数+1

师小结:

你们真了不起,你们发现了植树问题中非常重要的一个规律棵数=间隔数+1

3、应用规律解决问题

师:应用这个规律,我们来解决在一条全长100米的小路一边植树,每隔4米栽一棵,(两端都栽)一共需要多少棵树苗?

在一条全长1000米的小路一边植树,每隔5米栽一棵,(两端都栽)一共需要多少棵树苗?

生:……………

师:同学们真的很了不起。通过把复杂的问题简单化,发现了“两端都栽”求棵数的解题规律,你们能够独立解决植树问题了吗?

倍比问题教案【篇5】

教学目标:

知识技能目标:

1、利用学生熟悉的生活情境,透过动手操作的实践活动,使他们发现间隔数与植树棵数之间的关系;

2、透过小组合作、交流,在理解间隔数与棵数之间规律的基础上解决简单的植树问题。

过程目标:

1、使学生经历感知、理解知识的过程,培养学生从实际问题中发现规律,并应用规律来解决问题的潜力;

2、渗透数形结合的思想,培养学生借助图形解决问题的意识;

3、培养学生的合作意识,养成良好的交流习惯。

情感目标:

1、透过实践活动激发热爱数学的情感;

2、感受日常生活中处处有数学,体验学习成功的喜悦。

教学重点:理解“植树问题(两端要种)”的特征,应用规律解决问题

教学难点:理解“间距数+1=棵数,棵数-1=间距数”

教学准备:课件

教学过程:

一、创设原型

1、教学“间隔”的含义

师:每位同学都有一双灵巧的手,他不但会写字、画画、干活,在他里面还藏着搞笑的数学知识,你想了解他吗?请举起你的右手。(五指伸直、并拢、张开)

师:张开的五指中有几个空隙?(4个)数学中我们把这个“空隙”叫“间隔”。(板书)我们发现5根手指中有4个间隔,那么4根手指呢?3根呢?

2、举例生活中的“间隔”

师:生活中的“间隔”到处可见,你能举几个例子吗?(两棵树之间、两个同学之间、钟声…)

3、根据生活实景信息回答问题。

(1)公园的一侧一些树,数了数有6个间隔,一共栽了几棵树呢?(7棵)

(2)庄老师家在6楼,从1楼到6楼要爬几层楼?(5层)

(3)河边的护栏有5根铁链,需要几根柱子?(6根)

4、引入课题

师:同学们刚才我们了解的5根手指间有几个间隔;爬楼梯要几层。铁链需要几根柱子等,数学中统称为植树问题。(板书)

二、构建模型

1、用图象语言描述“植树棵数与间隔数”之间的关系。

师:(右手)我把5根手指看作5棵树,他有4个间隔。那么,6棵树、7棵树之间有几个间隔呢?你能用一个图来展示说明吗?(生作图,展示)

2、构建植树问题的数学模型

(1)我们一齐来看一下这几位同学画的图,你能说说你是怎样画的吗?

(2)比较一下这几种作图方法,你觉得哪种方法简便,看起来清楚?(是阿,用线段图的方法最简便,因此它也是我们最常用的。)

(3)透过画图,我们发现这条路的两端都栽了树,这就是我们这天研究的植树问题的一种类型。(板书:两端都栽)

(4)在线段图上,我们用点表示栽的树,几个点就是几棵树,透过画图,我们明白6棵树之间有5个间隔,7棵树之间有6个间隔,那么你能想象一下10棵树之间、50棵树之间、100棵树之间有几个间隔吗?你发现了什么规律?

植树棵数间隔数67

(板书:棵数-1=间隔数间隔数+1=棵数)

师:这天表现真不错,一下子就能找到这其中的规律,老师真为你们感到高兴!

三、利用模型解决问题

1、教学例1

师:此刻老师要考考你们了,谁敢理解检查?既然大家都想来,那么我们一齐来。

课件出示:同学们要在全长50米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?

(1)谁能大声清楚朗读这个题目?

(2)从中你了解了哪些数学信息?(小路长50米,两端都要栽、每隔5米。)

(3)两端都要栽是什么意思?每隔5米是什么意思?哪两棵树之间相隔5米?

(3)这题也能够用画线段图的方法来解答,你能试着画线段图吗?

(4)展示学生线段图,你能说说你是怎样画的吗?

(5)为了看起来更清楚,老师把这张图移到了电脑上,你能猜猜许老师画图的意思吗?从这张图上你能够了解些什么信息?谁也明白了也想来说给大家听一听的?

(6)线段图里其实就反映着题目的意思,你能看着线段图用算式来解答吗?学生独立列算式。

(7)汇报:说说你的想法。

①出示学生各种答案,板书在黑板上。

②对于这几种方法,你们有什么看法吗?(生:我认为……)

③擦去错误答案,留下正确答案:100÷5=10(个)10+1=11(棵)

④师追问:大家都认为这种方法是正确的,那么谁能告诉我算式中的“50”表示什么吗?“5”表示什么?“100÷5=10(个)”又表示什么?(板书:间隔)为什么“+1”?(两端要栽,它比间隔多1)“10+1=11(棵)”表示什么?(植树棵树)这其实就是运用了“间隔数+1=棵数”这个规律。

⑤谁能够完整地说一说这个算式的意思?有谁听明白了,也想来说一说的?既然大家都想来说,那么我们就同桌互相说一说。

2、试一试

师:如果老师把题目改一改,看看谁还会?

课件出示:“六一”儿童节快到了,校园决定在全长120米的求索大道一边插上彩旗,每隔8米插一面旗(两端都插),一共需要准备多少面彩旗?

(1)生轻轻读题,说说从这个题目中你了解了些什么信息?

(2)和刚才这题比较,你想说什么?

(3)学生独立列式并汇报。

3、巩固新知

师:恭喜大家,顺利透过检查!你们还想理解新一轮的挑战吗?

课件出示:园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵,从第1棵到最后一棵的距离有多远?

(1)生独立阅题,说说这个题目中又有哪些数学信息呢?

(2)这个题目和前面做的两题有什么不同呢?(①前面那题告诉路的长度,而这题求路的长度。②前面那题求植树棵树,而这题已经告诉了植树棵树。)

(3)在做前面那题时,我们是先求什么的?(间隔数)那在这个题目中,我们就应先算什么?

(4)学生独立解答并汇报:

(5)板书学生的各种答案,你有什么看法?说说理由。生列式:36-1=35(个)35×6=210(米)

(6)擦去错误答案,师追问:“36”表示什么意思?再“-1”表示什么?(板书:间隔数)这其实就是运用了“棵数-1=间隔数”这个规律。再“×6”又是什么意思?(板书:总距离)

倍比问题教案【篇6】

教学目标:

1.通过探究发现一条线段上两端要种和两端不种两种不同情况植树问题的规律。

2.使学生经历和体验“复杂问题简单化”的解题策略和方法。

3.让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

一、谈话引入,明确课题

母亲节刚过,我们马上又要迎来一个快乐的节日──“六·一儿童节”,这也是全世界少年儿童共同的节日。其实,一年中有意义的日子还有很多,你还知道哪些?能说几个吗?(生说)

大家知道3月12日是什么日子吗?(植树节)你参加过植树活动吗?植树不仅能美化环境,净化空气,而且植树中还有很多数学问题。今天这节课,我们就一起来研究“植树问题”。(板书课题:植树问题)

二、引导探究,发现“两端要种”的规律

1.创设情境,提出问题。

①课件出示图片。

介绍:这是我县新修的一条公路。公路中间有一条绿化带,现在要在绿化带中种一行树,怎么种呢?

出示题目:这条公路全长1000米,每隔5米种一棵树(两端要种)。一共需要多少棵树苗?

②理解题意。

a.指名读题,从题中你了解到了哪些信息?

b.理解“两端”是什么意思?

指名说一说,然后师实物演示:指一指哪里是这根小棒的两端?

说明:如果把这根小棒看作是这条绿化带,在绿化带的两端要种就是在绿化带的两头要种。

③算一算,一共需要多少棵树苗?

④反馈答案。

方法一:1000÷5=200(棵)

方法二:1000÷5=200(棵)200 +2=202(棵)

方法三:1000÷5=200(棵)200 +1=201(棵)

师:现在出现了三种答案,而且每种答案都有不少的支持者,到底哪种答案是正确的呢?咱们可不可以画图模拟实际种一种?如果从图上一棵一棵种到1000米,数一数,是不是就能知道到底谁的答案是正确的了呢?

2.简单验证,发现规律。

①画图实际种一种。

课件演示:我们用这条线段表示这条绿化带。“两端要种”,我们从绿化带的这头开始,先在头儿上种上一棵,然后隔5米再种一棵,再隔5米再种一棵,再隔5米再种一棵,照这样一棵一棵的种下去……

师:大家看,已经种了多少米?(45米)这么长时间才种了45米,一共要种多少米?(1000米)要一棵一棵一棵一直种到1000米呀?!同学们,你有什么想法?(太累了,太麻烦了,太浪费时间了)

师:老师也有同感,一棵一棵种到1000米确实太麻烦了。其实,像这种比较复杂的问题,在数学上还有一种更好的研究方法,大家想知道吗?这种方法可不是一般的方法。大家听好喽,这种方法就是:遇到比较复杂的问题先想简单的,从简单的问题入手来研究。比如:1000米的路太长了,我们可以先在短距离的路上种一种,看一看。大家想不想用这种方法试一试?

②画一画,简单验证,发现规律。

a.先种15米,还是每隔5米种一棵,画图种一种,看种了多少棵?比一比,看谁画得快种的好。(板书:3段4棵)

b.跟上面一样,再种25米看一看,这次你又分了几段,种了几棵?(板书:5段6棵)

c.任意选择一段距离再种一种,看这次你又分了几段,种了几棵?从中你发现了什么?

(板书:2段3棵;7段8棵;10段11棵。)

d.你发现了什么?

小结:你们真了不起,发现了植树问题中非常重要的一个规律,那就是:

(板书:两端要种:棵树=段数+1)

③应用规律,解决问题。

a.课件出示:前面例题

问:应用这个规律,前面这个问题,能不能解决了?那个答案是正确的?

1000÷5=200这里的200指什么?

200 +1=201为什么还要+1?

师:这个“秘方”好不好?

通过简单的例子,发现了规律,应用这个规律解决了这个复杂的问题。以后,再遇到“两端要种”求棵树,知道该怎么做了吗?

b.解决实际问题

运动会上,在笔直的跑道的一侧插彩旗,每隔10米插一面(两端要插)。这条跑道长100米,一共要插多少面彩旗?(学生独立完成。)

问:这道题是不是应用植树问题的规律解决的?

师:看来,应用植树问题的规律,不仅仅能解决植树的问题,生活中很多类似的现象也能用植树问题的规律来解决。

小结:刚才,我们应用发现的规律,解决了一个实际问题。我们已经知道,“两端要种”求棵树用段数+1;如果“两端不种”棵树和段数又会有怎样的关系呢?

三、合作探究,“两端不种”的规律

1.猜测“两端不种”的规律。

猜测结果是:两端不种:棵树=段数-1

师:到底同学们的猜测是不是正确呢?我们还是用前面学习的方法,举简单的例子画一画,种一种。

要求:每人先独立画一段路种种看;然后4人一组进行交流。你们组发现了什么规律?

2.独立探究,合作交流。

3.展示小组研究成果,发现规律,验证前面的猜测。

小结:同学们太了不起了,通过举简单的例子,自己又发现了“两端不种”的规律:棵树=段数-1。如果“两端不种”求棵树,你会做了吗?

4.做一做。

①在一条长20xx米的路的一侧种树,每隔10米种一棵(两端不种)。一共需要多少棵树苗?(学生独立完成)

②师:同学们注意看,这道题发生了什么变化?

课件闪烁:将“一侧”改为“两侧”

问:“两侧种树”是什么意思?实际要种几行树?会做吗?赶紧做一做。

小结:今天我们研究了植树问题的两种情况。发现了两端要种:棵树=段数+1;两端不种:棵树=段数—1。以后同学们在做题的时候,一定要注意分清是“两端要种”还是“两端不种”。

四、回归生活,实际应用

1.一根木头长8米,每2米锯一段。一共要锯几次?(学生独立完成。)

8÷2=4(段)

4—1=3(次)

问:为什么要—1?这相当于今天学习的植树问题中的那种情况?

2.我们身边类似的数学问题。

①看,这一列共有几个同学?(4个)如果每相邻两个同学的距离是1米,从第1个同学到最后一个同学的距离是多少米?如果这一列共有10个同学呢?100个同学呢?

②这一列还是4个同学,如果每相邻两个同学之间的距离是2米,从第一个同学到最后一个同学的距离是多少米呢?

3.在一条路的一侧种树,每隔6米种一棵,一共种了41棵树。从第1棵树到最后一棵树的距离是多少米?

五、全课总结

通过今天的学习,你有哪些收获?

师:通过今天的学习,我们不仅发现了植树问题中两端要种和两端不种的规律,而且还学习了一种研究问题的方法,那就是遇到复杂问题先想简单的。植树中的学问还有很多,有兴趣的同学,课下可以查阅有关的资料继续研究。

“植树问题”说课

“植树问题”是人教版新课程标准实验教材四年级下册“数学广角”的内容。大家都知道,数学的思想方法是数学的灵魂。本册安排“植树问题”的目的就是向学生渗透复杂问题从简单入手的思想。为此,本课制定了三个教学目标:

1.通过探究发现一条线段上两端要种和两端不种两种不同情况植树问题的规律。

2.学生经历和体验“复杂问题简单化”的解题策略和方法。

3.让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

本课教学分四大环节:

一、谈话导入,明确课题

二、引导探究,发现“两端要种”的规律

1.创设情境,提出问题。

通过创设在公路中间绿化带中植树的现实问题情境,提出“共需多少棵树苗的问题”。学生在解答的过程中出现了三种不同的答案,到底哪种答案对呢?引导学生通过画图实际种一种去检验。通过模拟种学生体验到一棵一棵种到1000米太麻烦了,于是老师介绍研究复杂问题的方法:遇到复杂问题想简单的,从简单问题入手去研究。(说明:为了使学生对复杂问题简单化的思想体验得更深刻,教材原题是在100米的小路的一侧植树我们将100米改为了1000米。)

2.简单验证,发现规律。

在举简单例子画一画这个环节,安排了两个小层次:

①按老师要求画。

②学生任意画。

通过按老师要求画,学生对棵树和段数的关系已有了一定的感性认识。然后让学生再任意画一画,种一种,更丰富了学生的感性材料,为学生顺利发现并总结规律打下了基础。

3.应用规律,解决问题。

①应用规律,验证前面例题哪个答案是正确的。

②应用规律,解决插多少面小旗的问题。

这样一方面巩固刚发现的规律,另一方面使学生认识到植树问题的规律不仅仅能解决植树的问题,还能解决生活中很多类似的问题。

三、合作探究“两端不种”的规律

1.猜测“两端不种”的规律。

猜测是一种培养学生推理能力的好方法。学生已经发现了“两端要种”的规律,这时候老师提出如果两端不种,棵数和段数又会有怎样的规律呢?有了前面的学习基础,学生的思维非常活跃,想表达的欲望也很强烈。所以这时候让学生进行猜测是很有必要的,通过验证证明绝大多数同学的猜测是正确的,这样学生的研究成果被认可使学生会有一种成就感,从而也更增强了学生学习数学的信心。

2.独立操作,探究规律。

有了前面的学习基础,放手让学生先独立探究再合作交流,通过简单的例子验证前面的猜测,发现两端不种的规律。在这个过程中,学生对复杂问题从简单入手的数学思想又有了更深刻的体验。

四、回归生活,实际应用

设计了三道题:锯木头、算第一个同学和最后一个同学的距离以及对算距离问题的进一步巩固。通过解决生活中的问题,使学生感受到数学知识源于生活,用于生活,数学就在我们身边。从而使学生深刻感受到数学的应用价值,激发了学生学习数学的兴趣。

倍比问题教案【篇7】

教学目标:

(1)在观察、操作及交流活动中抽象出植树问题的模型,掌握种树棵树与间隔数间的关系。

(2)体验复杂问题简单化的快乐。

教学重点:应用植树问题的模型解决相关的实际问题。

教学难点:理解棵树与间隔数之间的关系。

教学准备:课件

教学过程:(如下文)。

一、课前谈话

1.手指游戏

师:双手创造了幸福的生活,在我们的手上也隐藏了数学奥秘,同学们想明白吗?请举起右手像老师这样做,五指伸直,并拢再张开。看着张开的手,你从中想到了什么数字?(5,5个手指)

师:老师从中也得到了一个数字4,你们明白它指的是什么吗?(缝隙、空格等)

师:对了,指的是手指间的空格,在数学上我们把这样的空格叫做间隔。每两个手指之间有一个间隔,大家仔细观察老师的手,5个手指,有几个间隔,4个手指时有几个间隔呢?3个,2个手指时呢?

师:你们发现手指数与间隔数的关系了吗?谁能说一说?(间隔数+1=手指数)

[设计意图:以趣激学。从学生最熟悉的教学资源“手”入手,在简单的氛围中进入学习状态,初步感知生活中的植树问题。]

2.导入课题

师:我们手上都有这么多数学奥秘,看来数学真是无处不在!生活中的间隔到处可见。比如,刚才我们看到的5根手指有几个间隔;爬楼梯要几层;栓广告牌要几个柱子等就是数学中的植树问题。(板书课题:植树问题)这天咱们主要来研究“两端都栽”的规律。(板书:两端都栽)

二、动手种树,初步感知

1.创设情境,提出问题

(1)课件出示例1

同学们在全长100米的小路一侧植树,每隔5米栽一棵树(两端要栽)。一共需要多少棵树苗?

(2)理解题意

①指名读题,从中你了解哪些信息?

②理解“两端”是什么意思?

(3)讨论交流

师:我这样认为,100÷5=20,所以要准备20棵树苗。你们觉得呢?有了答案后与同桌交流交流。

全班讨论、交流,汇报后得出结论,这种说法不对。就应是:

100÷5=20(段)20+1=21(棵)(板书)

2.简单验证,发现规律

师:把双手举起来叉开手指,能够看到10根手指共有9个间隔,如果把手指看成树苗,10棵树有9个间隔。

课件演示:每5米一棵,种到第100米的时候,你发现了什么?(两端都要种)

问:100÷5=20(段)20表示什么意思?(两棵树之间的距离)

20+1=21(棵)20段为什么不是20棵,而是21棵呢?

我们把这条小路平均分成20份,其中的每一份(或者说每一段,每一个空)就是一个间隔,在这道题中,间隔指什么?共有几个间隔呢?也就是说,如果两端都种,种的棵树=间隔数+1

透过这个例题,你明白了什么?(棵数与段数有关,求棵数得先求段数。即段数=总长÷间距)

师:你们真了不起,发现了植树问题中十分重要的规律,那就是:

间隔数(段数)=全长÷段长

植树的棵数=间隔数+1

全长=段长×段数

[设计意图:导之敢学。在决定、计算、验证探索中学习知识,发现知识,并透过讨论交流,发现植树问题的一个十分重要的规律。]

三、利用规律,解决问题

师:其实植树问题并不只是与植树有关,生活中还有许多现象和植树问题很相似,我们一齐来看一看下面几个问题。

①刘怡瑶从家到校园乘公共汽车行驶路线全长3千米,相邻两站的距离是1千米。一共有几个车站?

②张老师去某班教室,从一楼开始,每走一层有12个台阶,共走了36个台阶,你明白她去几楼的教室吗?

③广场上的大钟3时敲3下,8秒敲完。11时敲11下,需多长时间?

师:这些题是不是应用植树问题的规律解决的?看来,应用植树问题的规律,不仅仅能解决植树的问题,生活中很多类似的现象也能用植树问题的规律来解决。

[设计意图:乐中求学。把生活中类似植树问题的各种现象糅合在一齐,加深对植树问题模型的理解,提升学生思维的灵活性和深刻性。]

四、再次探究,构建模型

1.创设情境,激趣导入

师:咱县新开张的德克士为了进一步宣传,要在全长50米的店面前沿插彩旗,请按照每隔5米插一面的要求设计方案,并说明理由。

2.设计方案,动手操作

师:能够独立思考也可小组讨论再设计方案。把你们设计的方案想一想,画一画,摆一摆。择优录取哦!

(生动手摆学具,画线段图,动手算,师行间巡视,个别辅导,注意发现不同的算法)

3.反馈交流

师:谁来说一说自己设计的方案?把前沿分成几个间隔?(10个)插了几面旗?(11面,10面,9面)

师:为什么同样的长度,同样的要求,插的旗数却不一样呢?你们的方案有什么特点呢?谁来展示一下自己的设计方案。

生1:我设计分成10个间隔,插11面旗,两端都插旗(投影展示线段图同时师五指伸直手势表述)。

生2:我也分成10个间隔,插10面旗,一端不插旗。(投影展示算法师拇指弯曲其余伸直手势表述)

生3:我10个间隔插9面旗,两端不插旗。(投影展示学具摆法后师拇指和小指弯曲其余手指伸直表述)……

4.师小结

同一个要求,同学们却设计出了这么多不同的方案,真有创造力!看来你们都有成为设计师的资格。

五、精彩回放,画龙点睛

1.用手势表达植树问题的模型并考察同桌的掌握状况。

2.透过这节课的学习,你们有什么收获?

六、穿越时空,展望未来

有20棵树,若每行4棵,问怎样种植,才能使行数更多?

七、板书设计

植树问题:

两端都种:棵数=间隔数+1

100÷5=20(个)……(间隔数)

20+1=21(棵)……(棵数)

10-1=9(个)……(间隔数)

9+1=10(棵)……(棵数)

倍比问题教案【篇8】

教学内容:课本应用题例7及练一练

教学目标:

1、通过教学,引导学生认识“相遇问题(求其中的一个速度)”的特征,理解数量关系,并能解答求其中的一个速度问题的应用题。

2、通过组织学生分组讨论,培养学生合作与交流的意识。

3、结合生活实例,培养学生收集信息、处理信息和解决实际问题的能力。

教学重点:“求其中的一个速度问题”的特征和解题方法。

教学难点:“求其中的一个速度问题”的特征和解题方法。

教学用具:多媒体课件一套

教学过程:

一、激趣引入,复习旧知

今天小红打的去离家3600米的少年宫学习舞蹈,6分钟就到了少年宫,汽车每分钟行多少米?

学生口答列式:3600/6=600(米)。

复习“速度”、“时间”、“路程”三者之的数量关系。

(板书:速度=路程/时间)

一辆客车和一辆货车一小时共行115千米,其中一辆客车每小时行55千米,一辆货车每小时行多少千米?

二、揭示特征,化解难点

读读 议议

出示:两地相距460米。小明和小红同时从两地出发,相对走来,经过5分钟相遇。小明每分钟走60米,小红每分钟走多少米?

提问:你知道相遇的时候,小明行了多少米?小红行了多少米?

如果只知道:两地相距460米。小明和小红同时从两地出发,相对走来,经过5分钟相遇。你能求出什么?

460/5=92(米)

三、解答例题,理清思路

1、尝试例7(稍做改动)。弄清数量关系,理清解题思路,掌握两种解法。

①将上题中“经过5分钟相遇。”改成“经过4分钟相遇。”,其余条件不变,仍然小红每分钟走多少米?”学生读题后尝试练习。

②评讲板演,理清解题思路,概括两种方法。

解法一:

分步计算:两人每分共行多少米?

460/4=115(米)

小红每分种走了多少米?

115-60=55米

综合算式:460/4-60

=115-60

=55(米)

解法二:

分步计算:相遇时小明行多少米?

60*4=240米

相遇时小红行多少米?

460-240=220米

小红每分行多少米?

220/4=55米

综合算式:(460-40*4)/4

=220/4

=55米

2、质疑小结,揭示课题。

①想一想,这两种解法有什么联系?

②概括“求其中的一个速度”的特征和解题方法。

③揭示课题。

四、深化理解,应用拓展

1、基本练习。

用两种方法完成练一练 第1题

比一比 哪一种方法简单一些?

2、变式练习

甲乙两台机床同时加工580个零件,经过10小时正好完成。甲机床每小时加工28个,乙机床每小时多少个?

五、课堂总结

今天这节课你有什么收获?

六、课堂作业

练一练 第2、3、4、5

比例应用题教案收藏12篇


经验告诉我们,成功是留给有准备的人。作为一位幼儿园教师,我们希望能让小朋友们学到更多的知识,教案的作用就是为了缓解学生的压力,提升效率,有了教案才能有计划、有步骤、有质量的完成教学任务。幼儿园教案的内容具体要怎样写呢?经过整理,小编为你呈上比例应用题教案收藏12篇,欢迎阅读,希望对你有帮助。

比例应用题教案 篇1

教学目标:

1、掌握用正比例的方法解答相关应用题;

2、通过解答应用题使学生熟练地判断两种相关联的量是否成正比例,

从而加深对正比例意义的理解;

3、培养学生分析问题、解决问题的能力;

4发展学生综合运用知识解决简单实际问题的能力。

教学重点:掌握用正比例的方法解答应用题

教学难点:能正确判断两种相关联的量成什么比例,正确列出比例式。

教学过程:

一、谈话导入:

1、在上新课之前,先考考大家对广州的认识。你知道广州最高的建筑物是什么?它位于何处?

2、对于这座广州最高的建筑物,你还想了解些什么?怎样测量它大概的高度呢?

刚才同学们想出了很多的方法去测量中信广场的大概高度。今天我们学习一种新的方法正比例应用题,学完后,我们试着用这种方法去计算中信广场的大概高度。看谁学得最棒。

二、新课教学:

先来研究这样一个问题。

1、出示例1

一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时。甲乙两地之间的公路长多少千米?

2、分析解答应用题

(1)请一位同学读一读题目

(2)这道题要求什么?已知什么条件?

(3)能不能用以前学过的方法解答?

(4)让学生自己解答,边订正边板书:

14025

=705

=350(千米)

答:________________。

3、激励引新

这两种方法都合理,还可以有什么方法解答呢?

学生互议,师引导,我们已经学习了比例的知识,能不能用比例解答呢?

三、探讨新知

1、提出问题

师:请同学们结合课本上的例题,讨论以下问题。

(1)题目中相关联的两种量是________和________。

(2)________必定,_________和_________成_______比例联系。

(3)______行驶的_____和_____的________相等。

2、学生自学例题后小组讨论。

3、组间交流:小组代表把讨论结果在班内交流

4、学生尝试解答后评价(指名学生板演)

5、怎样检验?把检验过程写出来。

6、概括总结

(1)

用比例解答应用题与用算术方法解答应用题教师这道题的解法,如果题目中没有要求的,我们采取任何一种方法都可以,但如果题目要求用比例解的,就必定要用比例的方法解。

(2)明确解题步骤。(板)

用比例方法解答应用题,具体步骤是怎样的呢?请根据我们所做的例题归纳解题步骤。

1.分析判断

2.找出列比例式所需的相等联系

3.设未知数列等式

4.求解

5.检验写答语

四、练习提高

1、基本练习

(1)例题改编

①如果把这道题的第三个和问题改成:已知公路长350千米,需要行驶多少小时?该怎样解答?

②让学生解答改编后的应用题,集体订正。

③小结:比较一下改编后的题和例1有什么联系和区别?

例1的条件和问题以后,题中成正比例的联系仍没变,解答的方法出没有改变,只是要设需要行驶的小时数为x,列出的等式是:

140/2=350/x

(2)24页做一做:让学生直接用比例知识解答。做完后,请几个同学说一说:你为什么这样列式?

2、变式练习

3、理论运用

(1)汇报数据:刚才我们上课时提到怎样测量和计算中信广场的大概高度,课前我请几位同学去测得中信广场的一些数据。现在请这些同学跟我们汇报一下。

(2)能用这些数据编一道正比例应用题吗?

(3)小组合作编题

五、总结

今天我们学习的是如何用正比例的方法解答以前学过的应用题。解答的步骤怎样的呢?

样测量和计算中信广场的大概高度,课前我请几位同学去测得中信广场的一些数据。现在请这些同学跟我们汇报一下。

(2)能用这些数据编一道正比例应用题吗?

(3)小组合作编题

五、总结

今天我们学习的是如何用正比例的方法解答以前学过的应用题。解答的步骤怎样的呢?

比例应用题教案 篇2

教材分析:

正比例应用题这部分内容是在教学过比例的意义和性质,成正、反比例的量的基础上进行教学的,这是比和比例知识的综合运用。教材首先说明应用正、反比例的知识可以解决一些实际问题。例1教学应用正比例的意义来解的基本应用题。为了加强知识之间的联系,先让学生用以前学过的方法解答,然后教学用比例的知识解答。通过方框中的说明突出了怎样进行思考的过程,特别强调了新科技要判断题目中两种相关联的量成什么比例联系,以及列出比例式所需的相等联系,即行驶的路程和时间成正比例联系,所以两次行的路程和时间的比是相等的然后再设未知数,列出等式(方程)解答,并在解答的基础上引导学生想一想,如果改变例1题目里的条件和问题该怎样解答。

教学对象分析:

成正比例的量,在生活实际中应用很广,学生在前两年的学习中,已接触过这种情况的问题,如归一应用题,只不过那时是就题论题,没有上升到一般规律。这里主要使学生学习用比例的知识来解答,在原有认识的基础上,再让学生用其他方法解答同一题目,概括出一般规律。通过解答使学生进一步熟练地判断成正比例的量,从而加深对正比例意义的理解。有利于沟通知识间的联系,也为中学的数学、物理、化学等学科中应用比例知识解决一些问题做较好的准备。同时,由于解答时是根据正比例意义来列等式,又可以巩固和加深对所学的简易方程的认识。所以,在教学上要十分重视从旧知识引申出新知识,在这过程中,蕴涵了抽象概括的方法,运用这个概括对新的实际问题进行判断,这是数学学习所特有的能力。

正比例应用题教学设计

三元坊小学梁智丹

教学内容:人教版23页至24页例1以及相应的做一做。

教学目标:

1、掌握用正比例的方法解答相关应用题;

2、通过解答应用题使学生熟练地判断两种相关联的量是否成正比例,

从而加深对正比例意义的理解;

3、培养学生分析问题、解决问题的能力;

4发展学生综合运用知识解决简单实际问题的能力。

教学重点:掌握用正比例的方法解答应用题

教学难点:能正确判断两种相关联的量成什么比例,正确列出比例式。

教学过程:

一、谈话导入:

1、在上新课之前,先考考大家对广州的认识。你知道广州最高的建筑物是什么?它位于何处?

2、对于这座广州最高的建筑物,你还想了解些什么?怎样测量它大概的高度呢?

刚才同学们想出了很多的方法去测量中信广场的大概高度。今天我们学习一种新的方法正比例应用题,学完后,我们试着用这种方法去计算中信广场的大概高度。看谁学得最棒。

二、新课教学:

先来研究这样一个问题。

1、出示例1

一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时。甲乙两地之间的公路长多少千米?

2、分析解答应用题

(1)请一位同学读一读题目

(2)这道题要求什么?已知什么条件?

(3)能不能用以前学过的方法解答?

(4)让学生自己解答,边订正边板书:

14025

=705

=350(千米)

答:________________。

3、激励引新

这两种方法都合理,还可以有什么方法解答呢?

学生互议,师引导,我们已经学习了比例的知识,能不能用比例解答呢?

三、探讨新知

1、提出问题

师:请同学们结合课本上的例题,讨论以下问题。

(1)题目中相关联的两种量是________和________。

(2)________必定,_________和_________成_______比例联系。

(3)______行驶的_____和_____的________相等。

2、学生自学例题后小组讨论。

3、组间交流:小组代表把讨论结果在班内交流

4、学生尝试解答后评价(指名学生板演)

5、怎样检验?把检验过程写出来。

6、概括总结

(1)

用比例解答应用题与用算术方法解答应用题教师这道题的解法,如果题目中没有要求的,我们采取任何一种方法都可以,但如果题目要求用比例解的,就必定要用比例的方法解。

(2)明确解题步骤。(板)

用比例方法解答应用题,具体步骤是怎样的呢?请根据我们所做的例题归纳解题步骤。

1.分析判断

2.找出列比例式所需的相等联系

3.设未知数列等式

4.求解

5.检验写答语

[NextPage]

四、练习提高

1、基本练习

(1)例题改编

①如果把这道题的第三个和问题改成:已知公路长350千米,需要行驶多少小时?该怎样解答?

②让学生解答改编后的应用题,集体订正。

③小结:比较一下改编后的题和例1有什么联系和区别?

例1的条件和问题以后,题中成正比例的联系仍没变,解答的方法出没有改变,只是要设需要行驶的小时数为x,列出的等式是:

140/2=350/x

(2)24页做一做:让学生直接用比例知识解答。做完后,请几个同学说一说:你为什么这样列式?

2、变式练习

3、理论运用

(1)汇报数据:刚才我们上课时提到怎教材分析:

正比例应用题这部分内容是在教学过比例的意义和性质,成正、反比例的量的基础上进行教学的,这是比和比例知识的综合运用。教材首先说明应用正、反比例的知识可以解决一些实际问题。例1教学应用正比例的意义来解的基本应用题。为了加强知识之间的联系,先让学生用以前学过的方法解答,然后教学用比例的知识解答。通过方框中的说明突出了怎样进行思考的过程,特别强调了新科技要判断题目中两种相关联的量成什么比例联系,以及列出比例式所需的相等联系,即行驶的路程和时间成正比例联系,所以两次行的路程和时间的比是相等的然后再设未知数,列出等式(方程)解答,并在解答的基础上引导学生想一想,如果改变例1题目里的条件和问题该怎样解答。

教学对象分析:

成正比例的量,在生活实际中应用很广,学生在前两年的学习中,已接触过这种情况的问题,如归一应用题,只不过那时是就题论题,没有上升到一般规律。这里主要使学生学习用比例的知识来解答,在原有认识的基础上,再让学生用其他方法解答同一题目,概括出一般规律。通过解答使学生进一步熟练地判断成正比例的量,从而加深对正比例意义的理解。有利于沟通知识间的联系,也为中学的数学、物理、化学等学科中应用比例知识解决一些问题做较好的准备。同时,由于解答时是根据正比例意义来列等式,又可以巩固和加深对所学的简易方程的认识。所以,在教学上要十分重视从旧知识引申出新知识,在这过程中,蕴涵了抽象概括的方法,运用这个概括对新的实际问题进行判断,这是数学学习所特有的能力。

比例应用题教案 篇3

教学内容:P53~54、第4~13题,思考题,正、反比例应用题的练习。

教学目的:进一步掌握正、反比例的意义,能正确应用比例知识解答基本的正、反比例应用题,并沟通不同解法之间的联系,进一步提高学生判断,分析和推理等思维能力。

教学过程:

一、基本训练

P53第4题,口答并说明理由

二、基本题练习

1、做练习十第5题

2提问:按过去的算术解法,第(1)题要先求什么数量?第(2)题呢?

用比例的知识怎样解答呢,请大家自己做一做。

评讲:说一说是怎样想的?

(板书:速度时间=路程(一定)=反比例

=正比例

提问:正、反比例应用题解题过程有什么相同的地方?解题方法有什么不同?为什么?

3、练习小结:(略)

三、综合练习

3、练习十第11题

启发学生用几种方法解答

4、做练习十第13题

(1)提问:这是一道什么应用题?可以怎样列式解答?

(2)把树苗总数看做单位1,成活棵数是94%,你还能用比例知识解答吗?

四、讲解思考题

引导:增加铅以后,铅与锡的比是5:3,有怎样的关系式?

五、课堂小结:

通过本课的练习,你进一步明确了哪些内容?

六、作业:

第8、9、10题

七、课后作业:

第6、7、12题

比例应用题教案 篇4

一、情景再现:

课上,我先让学生理解了什么是按比例分配,然后出示:

某单位在植树节组织职工植树,男女职工人数比是3:2。让学生说对3:2的理解。

学生有说男工比女工多一份的;也有说男工是女工的,女工是男工的;男工是总人数的,女工是总人数的;职工共有5份,其中男工3份,女工2份等等。根据学生的回答我在黑板上随机画图如下:

男工3份()女工2份()

接着出示:共有职工60人。

问学生:可以求出什么?学生说可以求出男工和女生的人数。于是我把题目补充完整成例题:某单位在植树节组织职工植树,男女职工人数比是3:2,共有职工60人,男女职工各有多少人?让学生尝试解答。

由于学生课前已经预习过课本,无一例外的进行了如下地解答:

3+2=560=36(人)60=24(人)

我问学生:还有不同的方法吗?一阵沉默。预想中的多种方法因为学生的预习而没有如期出现,怎么办?自己出示其它方法还是继续把时间留给学生,让学生自己发现?我选择了后者,让学生继续看线段图,想一想:还可以怎样解答?一阵沉思后,学生终于有所收获,学生的手陆续地举了起来。

一生说:可以先求出每一份的人数,60(2+3)=12(人),再算男职工和女职工,123=36(人),122=24(人)。

另一生说:可以用方程解,2X+3X=60,X=12,122=24(人),123=36(人)。

把这些方法板书在黑板上后,我让学生进行讨论:你喜欢哪种方法?为什么?结果,学生都倾向于第一种方法:把按比例分配应用题转化为分数乘法应用题来解。而在我看来,这种方法在解决一些按比例分配应用题的变式题时,如已知两个部份量的差求两个部份量,转化为求一个数的几分之几的应用题的思考过程明显较之归一法先求一份数,再求各部份量要来得复杂。学生往往会照搬总量乘几分之几的方法去解答,导致错误。但学生已经形成这种先入为主的观念,教师该怎么办?听之任之,不利于后续发展;想怎么算就怎么算的说法更易使学生发生认识上的混乱;教师规定用哪种方法当然更不是一个明智的选择。稍做思考后,我决定让学生解答几道变式题,希望通过变式题的解答来体验各种方法,进而对解题策略作出自己合理地选择。

变式题一:某单位在植树节组织职工植树,男女职工人数比是3:2,男职工有36人,女职工有几人?

变式题二:某单位在植树节组织职工植树,男女职工人数比是3:2,女职工有24人,共有职工几人?

变式题三:某单位在植树节组织职工植树,男女职工人数比是3:2,男职工比女职工多12人,男女职工各有几人?

面临第一个问题,学生经历了短暂的困惑后,然后出现了三种解法:

生1:36=24(人)。我问:为什么这样解?他说:由男女工的比是3:2可知,男工是女工的,男工有36人,就是已知女工的是36,求女工是多少,用除法做。

生2:36=24(人)。我同样让他说说理由,他说,由男工女工的比是3:2可知,女工是男工的,求女工,即求36的是多少,用乘法算。

生3:可以先求出一份数,再算女工人数。3632=24(人)

如果说生2、3的解法是我预料中的话,生1的方法,有点出乎我的意料,看来随着探索活动的深入,学生的思维更加活跃了,但同时,我也更加担心学生会更无从选择。但是后面两题的发展情况消除了我的这种担心。先看第二题的解答:

生1:先求出一份数,再求总人数:242=12(人),12(3+2)=60(人)

生2:从3:2中可知,女生是总人数的,已知女生有24人,求总人数,用除法。24=60(人)

学生在这一题中没有用分数乘法来解,我想可能是学生很难会去想全部职工是女工的,而上述两种思路学生比较容易想到,正所谓择善而从之吧!第三题的解答更是证实了这一点:

先求一份数:12(3-2)=12(人)

再求男工和女工:123=36(人)

122=24(人)

在一次次的体验和反思中,学生选择了他们的方法。

二、思考:

这节课的进程,可以说是一波三折,从最初的单一的方法,到多样化,再到认识上的分歧,再到统一的选择,学生经历了一个问题探索优化的数学活动过程,最终达到了算法多样化和算法优化的平衡。

1、学生算法多样化的出现,需要教师给予支持。

现在的学生,学习渠道很多,在学习新知前往往已经对新知有了一定的认识,形成了比较固定的思维定势,这一方面可以促进学生的有效学习,另一方面也会阻碍学生更好地发展。怎样打破学生的这种思维定势,促使学生去追寻独具个性的、多样化的解题策略,出现算法多样化呢?这需要教师给予支持。

(1)给学生更多的时间和空间,让学生去思考还可以怎样算,培养学生学生寻求多种方法解决问题的思维习惯与态度。本课在实施过程中,当学生出现思维上的惰性,对教材呈现的方法一致认同并接受,不出现别的方法时,按照传统的教学思路,似乎到此也可,可以直接进行下一环节的练习。从单纯的解题要求来讲,似乎已经达到要求了,但是,学生的数学思维发展特别是发散性思维的发展必然有所欠缺。因此,笔者在此采取了继续等待的策略,把时间和空间留给学生,让学生继续思考:还有没有别的算法?这不单单是为了达成笔者所希望的多种方法出现的目的,更是为了让学生养成这样一种习惯:当能够用一种方法解决问题后,想一想:还有别的策略吗?这是对学生终身有益的。

(2)把静态的材料转化为动态的材料,把结论转化为问题,促使学生主动探索,寻求解决问题的策略。浙教版的教材编写体系是按照例题+方法+练一练来编写的,教师容易把握,学生能够独立自学,但也容易使师生的思维产生定势。特别是对于学生来说,教材上以结论的方式呈现学习材料,容易使学生的思维受到桎棝,影响学生从多角度思考问题。本课,教材只介绍了把按比例分配应用题转化为求一个数的几分之几是多少的分数乘法应用题来解答的方法,后面的练习题与例题大同小异,缺乏变式练习,学生在不断地强化这种方法后,导致的直接问题就是遇到形似例题的变式题,也不假思索地套用这种方法,出现错误。要避免这种僵化的学习行为的产生,需要教师对学习材料进行重组,把静态的例题改为动态生成,把已知结论改为需探索的问题,以此来促使学生去探索,发现不同的解题策略,形成算法上的多样化。教学中,笔者先让学生理解男女职工人数的比是3:2的意思,为后面算法多样化的出现预作伏笔,然后出示总人数60人,让学生自己提出问题,在此基础生成研究的问题,让学生探究解答方法,努力使学生摆脱教材的束缚,经历问题探究的过程,形成自己独特的策略。

2、学生算法的优化,是学生在体验与反思基础上的内化过程。

算法多样化是一种手段,不是目的,出现多样化的算法后,选择哪一种方法,是每个学生面临的问题。曾几何时:你喜欢用哪种方法就用哪种方法的说法充斥着我们的课堂,笔者也曾进行尝试,结果学生往往死抱着自己的方法不放,上课之前与上课之后没有区别,学习没有质的提高。如果说,算法多样化是学生数学思维量的积累的话,那么,对算法进行优化,则是学生数学思维质的飞跃。本课,学生对按比例分配应用题,出现了转化为分数乘法、分数除法、归一法解等思路,对此如何评价,引导学生作何选择,是教师不容回避的问题。就以已知总量及部份量的比,求各部份量的基本题来说,各种方法并没有大的区别,这也是学生在解决基本题后,笔者让他们讨论你喜欢哪种方法时,学生喜欢分数乘法解的原因之一。但在解决变式题,如本课的后三题时,三种方法的思维简捷程度是不一样的,以第三题为例,用归一法的思路,已知男职工比女职工多12人,由3:2又可知,男职工比女职工多1份,每份人数是121=12(人),男职工有3份,为123=36(人),女职工2份,122=24(人),思路十分清楚;如果要转化为求一个数的几分之几是多少的思路来解的话,则首先应当使学生想到:男职工人数相当于男工比女工多的人数的,女职工相当于男工比女工多的人数的,然后列出算式:12和12;或者是想到全部人数的是12人,先求出总人数:12=60(人),再求相应的男、女职工人数这样一个转化过程。后两种思路,对多数学生来说,有一定困难,远不及归一法的思路简捷。但如何让学生作出正确选择呢?显然由老师进行规定肯定不行,只有通过学生的切身体验和反思,才能作出正确判断,内化为自己的知识。本课在学生展现各种解法后,老师及时地让学生解答三道变式题,让学生在解决三道变式题的过程中选择合理算法,促进了学生知识的内化,达到算法多样化基础上的优化,发展学生的数学能力。

三、结束语:

叶澜教授说:没有聚集的发散没有价值的,聚集的目的是为了促进学生发展。算法多样化不是教学的归宿,优化才是数学的本质。教师应当善于激发学生的创造思维,促进学生的算法多样化,引导学生进行体验与反思,自觉进行算法的优化,促进知识的内化。

比例应用题教案 篇5

教学内容:教材第115页正、反比例的意义和正、反比例应用题、练一练,练习二十二第1、2题。

教学要求:

1、使学生更清楚地认识正比例和反比例关系的特征,能正确判断成正比例关系或反比例关系的量。

2、使学生进一步掌握正比例和反比例应用题的数量关系、解题思路,能正确地解答成正、反比例关系的应用题,进一步培养学生分析、推理和判断等思维能力。

教学过程:

一、揭示课题

这节课,复习正、反比例关系和正、反比例应用题。通过复习,要进一步认识正、反比例的意义,掌握正、反比例应用题的数量关系、解题思路和解题方法,能更正确地判断成正、反比例关系的量,正确地解答正、反比例应用题。

二、复习正、反比例的意义。

1、复习正、反比例的意义。

提问:如果用x和y表示成比例关系的两种相关联的量,那么,什么情况下成正比例关系,什么情况下成反比例关系?

想一想,成正比例关系和成反比例关系的两种量有什么相同点和不同点?

指出:正比例关系和反比例关系的相同点是:都有相关联的两种量,一种量随着另一种量的变化而变化。不同点是:成正比例关系的两种量中相对应数值的比值一定,成反比例关系的两种量中相对应数值的积一定。

2、判断正、反比例关系。

(1)做练一练第1题。

指名学生口答。

提问:判断是不是成比例和成什么比例的根据是什么?

(2)做练习二十二第1题。

指名学生口答。

3、判断x和y这两种量成什么关系,为什么?

指出:我们根据正、反比例关系的特点,可以判断两种相关联的量成什么比例。如果一道题里两种量成正比例或反比例关系,我们就可以应用比例的知识,根据比值相等或者积相等的数量关系来解答。

三、复习正、反比例应用题。

1、做练一练第2题第1题。

让学生读题,判断两种量成什么比例。

提问:这道题成正比例关系,要根据什么相等来列式解答?

指名一人板演,其余学生做在练习本上。

集体订正,突出列式的等量关系是比值一定。

做练一练第2题第(2)题。

指名一人板演,其余学生做在练习本上。

集体订正。

提问:这道题是怎样想的?成反比例关系的应用题,要根据什么来列式解答?

3、启发学生思考:

你认为正比例应用题实际上是我们过去学过的哪一类应用题?反比例应用题是哪一类应用题?

怎样解答正、反比例应用题?

指出:用比例知识解答应用题,要先判断两种相关联的量成什么比例。如果成正比例,根据比值相等列等式解答;如果成反比例,根据积相等列等式解答。

四、课堂作业

练习二十二第2题

比例应用题教案 篇6

教学内容:P51-52例1、例2,正、反比例应用题

教学目的:认识正、反比例应用题的特点,理解掌握这种应用题的解题思路和解题方法,能正确解答,发展学生的思维。

教学过程:

一、复习

判断下面的量各成什么比例

(1)工作效率一定,工作总量和工作时间。

(2)路程一定,行驶的速度和时间。

二、导入新课

说数量关系,判断成什么比例,列出等式。

一台抽水机5小时抽水40立方米,照这样计算,9小时可抽水X立方米。

三、学习新课

1、学例1

(1)将导入题中的X立方米改成多少立方米?

(2)讨论:怎样用比例的知识来解这道题止的导入题的想法能给我们启示吗?

(3)试一试:学生练习讲解例题,教师根据情况作点拨。

(4)小结:说一说用正比例知识解答这道应用题要怎样想?怎样做?

2、数学想一想

放手让学生自己做,并说说列等式的依据。

3、教学例2

(1)出示例2,读题

(2)讨论并试一试:能仿照例1的解题过程用比例的知识解答例2吗?

(3)说一说:将自己的解法及想法告诉大家。

教师作点拨

4、学习想一想

独立练习后班次讲

5、小结:解题思路

(2)判断比例关系

(3)找出对应数值

(4)列出等式解答

追问:你认为解题关键是什么?

四、巩固练习

1、做练一练

2、练习十第1题

评讲时比较异同

五、课堂小结:

这节课你学习了哪些内容?你认为哪些是重点?

六、作业

P5354第2题,第10题。

七、课后作业

P53第3题

比例应用题教案 篇7

教学目的

1.通过复习,使学生能够正确判断出应用题中所涉及的相关联的量成什么比例关系.

2.通过复习,能够使学生利用正反比例的意义正确、熟练的解答应用题.

3.通过复习,培养学生的分析能力、综合能力以及判断推理能力.

教学重点

通过复习,使学生能够利用正反比例的意义正确、熟练的解答应用题.

教学难点

通过复习,使学生能够利用正反比例的意义正确、熟练的解答应用题.

教学过程

一、复习准备.

下面每题中的两种量成什么比例关系?

(1)速度一定,路程和时间.

(2)总价一定,每件物品的价格和所买的数量.

(3)小朋友的年龄与身高.

(4)正方体每一个面的面积和正方体的表面积.

(5)被减数一定,减数和差.

谈话引入:我们今天运用正反比例的知识来解决实际问题.

(板书:用比例知识解应用题)

二、探讨新知.

(一)教学例5(用比例解答下题)

修一条公路,总长12千米,开工3天修了1.5千米.照这样计算,修完这条路还要多少天?

1.学生读题,独立解答.

2.学生反馈:

3.分析:

(1)为什么需要用正比例解答?

(2)12和要求的天数之间有什么关系?

4.小结:我们在做题时,根据注意题目中的数量关系,不仅需要判定运用什么比例方法,而且还要注意找准题目中的对应关系.

(二)反馈.

1.某车队运送一批救灾物品,原计划每小时行60千米,6.5小时到达灾区,实际每小时行了78千米.照这样计算,行完全程需要多少小时?

2.大齿轮与小齿轮的齿数比为4∶3.大齿轮有36个齿,小齿轮有多少个齿?

三、巩固反馈.

1.一张大纸,如果裁成长36厘米,宽26厘米的小纸张,可以裁成28张;如果裁成长18厘米,宽13厘米的小纸张,可以裁成多少张?

2.某车间有男工25人,女工20人.如果男工增加15人,要想使男工和女工人数的比不发生变化,女工应该增加多少人?

3.一项工程,10人去做24天可以完成;如果每人的工作效率不变,现在需要提前4天完成,需要多少人?

4.两个底面半径相等的圆柱体,第一个圆柱的高是第二个圆柱高的.第二个圆柱的体积是60立方米,第一个圆柱体的体积是多少立方米?

四、课堂总结.

通过这堂课的学习,你有什么收获?

比例应用题教案 篇8

教学内容:教科书第35页的第45题,练习九的第46题。

教学目的:使学生进一步掌捏用比例解答应用题的方法,提高解答应用题的能力。

教具准备:小黑板。

教学过程:

一、复习用比例解答应用题

教师:我们学习了比例的知识,有些应用题就可以用比例的知识来解答。现在我们就来复习一下。

1,用小黑板出示第35页第4题:

我国发射的科学实验人造地球卫星,在空中绕地球运行6周需行10.6小时,运行14周要用多少小时

教师解释:运行一周就是绕地球一圈,人造卫星的速度是一定的。

提问:

这道题有几个相关联的量它们成什么关系为什么(有两个相关联的量,因图为=速度,而速度是一定的,所以转的周数同时间成正比例关系。)

指名说说这道题用比例的知识怎样解答。当学生说出后,教师板书出解答过程:

解:设运行14周要用X小时。

6:10.6=14:X

6x=10.614

X=

x24、7

答:运行14周要用24.7小时。

2.用小黑板出示第35页第5题:

一个农业专业组乎整土地,原来打算每天平整0.4公顷,15天可以完成任务。结果12天完成了任务,平均每天平整多少公顷

指名学生读题,并说出这道题的两个相关联的量成什么比例,当学生说出每天平整的公顷数与时间成反比例后,让学生完成这道题。教师板书出解答过程。

3.总结。

教师:像上面这样的题在解答时,先要判断两个相关联的量成什么比例,然后列出含有未知数x的等式,再进行解答。

二、课堂练习

完成练习九的第46题。

1。第4题,先说明一下,农药是药液和水合起来的重量,再提示:第(1)小题。要求配制这种农药750.5千克,需要药液与水多少千克,要先算出农药和药液的比、农药和水的比。

2.第5题,让学生说一说根据什么来判断方砖的面积与方砖的块数成什么比例。

3.第6题,让学生独立完成,集体订正时,说说解答思路。

比例应用题教案 篇9

教学目标

1.复习正反比例的意义,练习判断两种相关联的量成正比例还是成反比例。

2.复习用正比例方法解答应用题。

3.复习用反比例方法解答应用题。

教学重点和难点

判断两种相关联的量成什么比例;确定解答应用题的方法。

教学过程设计

(一)复习数量关系

判断两种相关联的量成不成比例,确定解答应用题的方法。

1.被除数一定,除数和商。

2.一条路,已修的和未修的。

3.梯形的上、下底长度一定,梯形的面积和它的高度。

4.每块砖的面积一定,砖的块数和铺地面积。

5.挖一条水渠,参加的人数和所需要的时间。

6.从甲地到乙地所需的时间和所行走的速度。

7.单位面积一定,播种面积和总产量。

8.时间一定,速度和距离。

9.订阅《北京儿童》的份数和所需钱数。

(二)复习应用题

1.某工厂八月份计划造一批机床,开工8天就造了56台,照这样速度到月底可生产多少台?

第一步,先找对应关系:

8天56台

31天?台

第二步,判断成什么比例?(每天生产的台数一定,成正比例。)

请你在对应关系的旁边写上正字,决定用正比例方法做。

解设到月底可生产x台。

x=217

答:照这样速度月底可生产217台。

2.一批纸张,钉成20页一本的练习本,能钉600本。如果钉成24页一本的练习本,能钉多少本?

第一步,先找对应关系:

20页600本

24页?本

第二步,判断成什么比例?(纸张总页数一定,成反比例。)

请你在对应关系的旁边写上反字,决定用反比例方法做。

解钉成24页一本的练习本,可钉x本。

24x=20600

x=500

答:如果钉成24页一本的练习本可钉500本。

学生独立地用老师教的分析应用题的思路和方法在本上做两道题。

(1)火车3小时行135千米,用同样的速度5小时可以行多少千米?

(2)有一批砖,25人去搬,6小时搬完,如果30人去搬,需要多少小时搬完?

(三)练习解答两步的比例应用题

1.李涛读一本书,每天读6页,30天可以读完。如果每天多读4页,多少天可以读完?

黑板上的对应关系变成:

解设x天读完。

(6+4)x=630

10x=630

x=18

答:18天可以读完。

2.在第1题的基础上,改变问题。

李涛读一本书,每天读6页,30天可以读完,如果每天多读4页,提前几天读完?

对应关系:

解设如果每天多读4页,x天读完。

(6+4)x=630

10x=630

x=18

30-18=12(天)

答:提前12天读完。

(指导学生分析、比较。)

以上两道题,什么发生了变化?什么没有变?(条件和问题发生了变化,使原来的题复杂了一步,但用反比例解的方法没有变。)

练习(学生独立分析,做题。)

1.一辆汽车从甲城开往乙城,3小时行驶105km。用同样的速度又行驶了1.2h到达乙城,甲城到乙城有多少千米?

解设甲城到乙城有x千米。

3x=105(3+1.2)

x=147

答:甲城到乙城有147km。

2.光明乡有144公顷水稻,5天收割了90公顷,照这样计算,剩下的几天可以收割完?

解设剩下的x天可以收割完。

90x=554

x=3

答:剩下的3天可以收割完。

(再用间接设的方法做两道题。)

1.纺织厂的织布车间过去每人看16台织布机,每班需要42人,现在改进操作方法,每人看24台。每班可以节约几人?

1642=24x

42-x

2.某机器厂原计划每天生产机器48台,15天可以完成任务,现在要12天完成任务,每天应增产多少台?

12x=4815

x-48

(四)总结

这节课我们主要复习了解正、反比例应用题的分析、思考方法。拿到应用题不要急于先做,要先读题,找出对应关系,判断是正比例还是反比例,就可以正确解答了。

课堂教学设计说明

解答正、反比例应用题是有其独特的思考方法的,所以在教案的设计上重点放在指导、解答正反比例应用题的思考方法上。

第一层次,先做判断练习,判断两个相关联的量是否成比例,成什么比例,因为这是正确解答正反比例应用题的基础。

第二层次,进行最基本的正反比例应用题的训练,着重训练学生怎样找对应关系,如何正确判断,然后再动笔做题,目的是培养学生良好的学习习惯和学习方法。

第三层次,进行间接设的正、反比例应用题的训练,目的是在原来分析问题的基础上,使学生的思维更高一步。

板书设计

比例应用题教案 篇10

教学内容:课本第91页例4;练一练;《作业本》第39页。

教学目标:进一步巩固反比例的意义,掌握用反比例方法解应用题的方法和步骤。

教学重点:学会用反比例解归总应用题

教学难点:判断题中哪两个量是成反比例的量,列出等积式。

教学过程:

一、复习准备:

1、三角形面积一定,底和高成什么比例?为什么?

2、甲、乙两种量,只要它们相对应的数的积一定,这两种量一定成反比例,对吗?举例说明?

二、新授:

1、教学例4。

例4:一艘货轮每小时航行20千米,6小时可以到达目的地。如果要5小时到达,每小时航行多少千米?

观察:

⑴、题中有哪几个量?

⑵、从题中可见哪个数量是一定的?

分析:

想:因为速度时间=路程,由于4小时与3小时航行路程相同,可确定行驶的速度与时间成反比例,所以两次航行与时间的乘积相等。

解:设每小时需航行X千米。

5X=206

X=2065=24(千米)

X=24

(检验)

答:每小时需盘航行24千米。

2、改条件:5小时到达为每小时行15千米,要求几小时到达应怎样列式?

3、试一试。

(1)甲种铅笔每支0.25元,乙种铅笔每支0.20元,买甲种铅笔32支的钱,可以买乙种铅笔多少支?

(2)同学们做操,每行站30人,正好站12行,如果每行站36人,可以站多少行?

分析:⑴、从已知数量可知,哪个量是一定的?

⑵、可利用比例解题,也可利用一般方法解题?

三、巩固练习:练一练。

四、小结:

今天学习了什么?

五、《作业本》p39.

比例应用题教案 篇11

教学内容:苏教版第十二册P51

教学目标:1、使学生能正确判断应用题中涉及的量成什么比例关系。

2、使学生运用正、反比例的意义正确解答应用题。

3、渗透函数的初步思想,建立事物是相互联系的这一辨

证观点,培养学生的判断推理能力和分析能力。

教学重点:让学生能正确判断应用题中的数量之间存在何种比例关系,并能利用正反比例的意义列出含有未知数的等式。

教学难点:利用正反比例意义正确列出等式,掌握用比例知识解答应用题的解题思路

教学准备:课件

教学步骤:(铺垫孕伏,建立表象;创设情境,探究新知;归纳总结,

揭示意义;巩固练习,考考自己;分层练习,深化新知)

一、铺垫孕伏,建立表象

1、判断下面每题中的两种量成什么比例关系?

○1速度一定,路程和时间()○2路程一定,速度和时间()

○3单价一定,总价和数量()○4每小时耕地公顷数一定,耕地的总公顷数和时间

○5全校学生做操,每行站的人数和站的行数

2、根据条件说出数学关系式,再说出两种相关联的量成什么比例,并列出相应的等式。

(1)一台机床5小时加工40个零件,照这样计算,8小时加工64个。

(2)一列火车行驶360千米,每小时行90千米,要行4小时;每小时行80千米,要行经X小时。

指名学生口答,老师板书。

二、创设情境,探究新知

从上面可以看出,日常生活生产的一些实际问题,应用比例的知识,也可根据题意列一个等式。我们以前学过的一些应用题,还可以应用比例的知识来解答,这节课我们学习比例的应用(板题)

1、教学例1

(1)出示例1(课件演示)让学生读题

一辆汽车2小时行140千米,照这样的速度,从甲地到乙地共行驶5小时,甲乙两地之间的公路长多少千米?

师:你用什么方法解答,给大家介绍一下如何?(自由回答)

(提问:我们怎样解答的?(板式)先求什么,是按怎样的数量关系式来求的?这道题里哪个数量是不变的量)

学生解答如下几种:

解法一:14025=705=350千米

解法二:140(52)=1402.5=350千米

如果有学生用比例方法解,老师及时给以肯定,如果没有,老师给以引导性的问题:

A题中涉及哪三种量?(路程、时间和速度三种量),其中哪两种是相关联的量?

B哪一种量是一定的?(固定不变),你是怎么知道的?(照这样的速度,就是说速度是一定的)

C它们有什么关系?(行驶的路程和时间成正比例关系)

D题中照这样的速度就是说一定,那么和成比例关系?因此和的是相等的。

教师板书:速度一定,路程和时间成正比例。

师追问:两次行驶的路程和时间的什么相等(比值相等)

解法三:(用比例方法,怎样列式)

解:设甲乙两地间的总路长X千米

140X或140:2=X:5

252X=1405

X=350

答:甲乙两地之间公路长350千米。

小结:这一类型题,我们不仅可用过去的归一法、倍比法来解,还可用比例方法来解。

2、怎样检验这道题做得是否正确呢?

3、变式练习改编题

出示改编的问题,让学生说一说题意,请同学们按照例1的方法自己在练习本上解答,指名一人板演,然后集体订证,指名说一说是怎样想的,列等式的依据是什么?

4、教学例2(课件演示)

(1)出示例2,学生读题

例2:一辆汽车从甲地开往乙地,每小时行70千米,5小时到达,如果4小时到达,每小时要行多少千米?

提问:(1)以前我们怎样解答的?(板书算式)这样解答先求什么?是按怎样的数量关系式来求的?(板书:速度时间=路程)这道题里哪个数量是不变的量?

(2)谁能仿照例1的解题过程,用比例的知识解答例2来试试,指名板演,其余学生做在练习本上,练习后提问怎样想的?速度和时间的对应关系怎样?检查列式解答过程,结合提问弄清为什么列成积相等的等式解答。

学生利用以前的方法解答。

7054=3504=87.5(千米)

(3)提问:按过去的方法先求什么再解答的?先求总路程的应用题现在用什么比例关系解答的?谁来说说,用反比例关系解答这道应用题怎样想,怎样做的?(课件演示)

这道题里的路程是一定的,和成比例,所以两次行驶的和的是相等的。

指出:解答例2要先按题意列出关系式,判断成反比例,再找出两种关联量里相对应的数值,然后根据反比例关系里积一定,也就是两次行驶相对应数值的乘积相等,列式。

(4)设每小时行驶X千米(根据反比例的意义,谁能列出方程

4X=705X=705/4X=87.5

答:每小时行驶87.5千米。

师:A)该题中三个量有什么关系?其中哪两种量是相关联的量?B)题中哪一种是固定不变的?从哪里看出来?C)它们有什么关系?D)这道题的一定,和成比例关系,所以两次行驶的

和的是相等的。

(5)变式练习(改编题)

出示改变的条件和问题,让学生说一说题意,指名一人板演,其余在练习本上独立解答,集体订证,说说怎样想,根据什么列式。

一辆汽车从甲地开往乙地,每小时行70千米,5小时到达,如果每小时行87.5千米,需要几小时到达?

解:设需要x小时到达

87.5x=705x=4

答:需要4小时到达。

三、归纳总结,揭示意义

想一想,应用比例知识解答应用题,是怎样想怎样做的?同学们可互相讨论一下,然后告诉大家,指名说解题思路。

指出:用比例解答应用题的关键,正确找出题中的两种相关联的量,判断它们成哪种比例关系,然后根据正反比例的意义列出方程。(正确判断成什么比例,正比例比值相等,反比例乘积相等)

四、巩固练习,考考自己(课件演示)

请你们按照刚才学习例题的方法去分析,只要列出式子就行。

1、食堂买3桶油用780元,照这样计算,买8桶油要用多少元?(用比例知识解答)

2、同学们做广播操,每行站20人,正好站18行,如果每行站24人,可以站多少行?

以上1、2两题,学生做完将鼠标移到看看做对了没有进行自我判断。

3、先想想下面各题中存在什么比例关系?再填上条件和问题,并用比例知识解答。

(1)王师傅要生产一批零件,每小时生产50个,需要4小时完成,?

(2)王师傅4小时生产了200个零件,照这样计算?

4、四选一,每题只能选一次

(1)体积是30立方分米的钢体重150千克,重1200千克的这种钢材,体积是多少立方分米?(d)

a.15030=1200xb.30:150=1200:x

c.150x=301200d.150:30=1200:x

(2)机器厂制造一个零件所用的时间由原来8分钟减少到3分钟,过去每天生产零件60个,现在每天生产多少个?(a)

a.608=3xb.60:8=3:x

c.608=(8-3)xd.3:x=8:60

(3)机器厂生产一种零件,每制造5个零件需要40分钟,一天工作480分钟,能制造多少个零件?(b)

a.540=480xb.5:40=x:480

c.40x=5480d.40:5=x:480

(4)托儿所给小朋友分糖,原来中班24人每人可分5块,最近又调进6人,每人可分多少块糖?(c)

a.245=6xb.24:5=6:x

c.(24+6)x=245d.(24+6):x=24:5

(5)小红从甲地到乙地,3小时行了全程的75%,几小时可以走一个来回?(b)

a.375%=2xb.75%:3=2:x

c.75%x=23d.3:75%=2:x

五、分层练习,深化新知

○1修一条长6400米的公路,修了20天后,还剩下4800米,照这样计算,剩下的路要修多少天?(6400-4800):20=4800:x

○2工人装一批电杆,每天装12根,30天可以完成,如果每天多装6根,几天能够完成?

1230=(12+6)X

○3农具厂生产一批小农具,原计划每天生产120件,28天可完成任务,实际每天多生产了20件,可以提前几天完成任务?

12028=(120+20)X

六、全课总结,温故知新

解比例应用题的一般步骤是什么?(学生自己用语言叙述)

一般方法和步骤:

1、判断题目中两种相关联的量是成正比例还是反比例;

2、设未知量为x,注意写明计量单位;

3、列出比例式,并解比例式;

4、检查后写出答案;

5、特别注意所得答案是否符合实际。

七、课后反馈,挑战难题

小明受老师委托,编一些比例应用题,于是他前往数学超市选购了一些条件:

计划每天生产30辆、实际每天生产40辆、计划25天完成、实际20天完成、计划一共生产了900辆、实际一共生产了1000辆

小明需要你的帮助,你会怎样编题?

比例应用题教案 篇12

教学要求:

1.使学生认识正、反比例应用题的特点,理解、掌握用比例知识解答应用题的解题思路和解题方法,学会正确地解答基本的正、反比例应用题。

2.进一步培养学生应用知识进行分析、推理的能力,发展学生思维。

教学重点:认识正、反比例应用题的特点。

教学难点:掌握用比例知识解答应用题的解题思路。

教学过程:

一、复习引新

1.判断下面的量各成什么比例。

(1)工作效率一定,工作总量和工作时间。

(2)路程一定,行驶的速度和时间。

让学生先分别说出数量关系式,再判断。

2.根据条件说出数量关系式,再说出两种相关联的量成什么比例,并列出相应的等式。

(1)一台机床5小时加工40个零件,照这样计算,8小时加工64个。

(2)一列火车行驶360千米。每小时行90千米,要行4小时;每小时行80千米,要行x小时。

指名学生口答,老师板书。

3.引入新课。

从上面可以看出,生产、生活中的一些实际问题,应用比例的知识,也可以根据题意列一个等式。所以,我们以前学过的一些应用题,还可以应用比例的知识来解答。这节课,就学习正、反比例应用题。(板书课题)

二、教学新课

1.教学例1。

(1)出示例1,让学生读题。

提问:以前我们是怎样解答的(板书算式)先求什么,是按怎样的数量关系式来求的这道题里哪个数量是不变的量

(2)说明:这道题还可以用比例知识解答。

提问:题里照这样计算说明什么一定数量之间有怎样的关系式,两种相关联的量成什么比例关系题里两次抽水的总量与时间对应数值各是多少这两次对应数值的什么相等你能根据对应数值的比值相等,列出等式来解答吗请大家自己试一试(启发弄清要设未知数x)。学生练习解题,然后口答,老师板书。追问:按过去的方法是先求什么再解答的先求单一量的应用题现在用什么比例关系解答的

(3)小结:

提问:谁来说一说,用正比例知识解答这道应用题要怎样想怎样做指出:先按题意列关系式判断成正比例,再找出两种相关联量里相对应的数值,然后根据正比例关系里比值一定,也就是两次抽水相对应数值比的比值相等,列等式解答。

2.教学改编题。

出示改变的问题,让学生说一说题意。请同学们按照例1的方法自己在练习本上解答。同时指名一人板演,然后集体订正。指名说一说是怎样想的,列等式的依据是什么。

3.教学例2。

(1)出示例2,学生读题。

提问:以前我们是怎样解答的(板书算式)这样解答先求什么是按怎样的数量关系式来求的(板书:速度时间=路程)这道题里哪个数量是不变的量?

(2)谁能仿照例l的解题过程,用比例知识来解答例27请来试一试。指名板演,其余学生做在练习本上。学生练习后提问是怎样想的。速度和时间的对应关系怎样,检查列式解答过程,结合提问弄清为什么列成积相等的等式解答。

(3)提问:按过去的方法是先求什么再解答的先求总数量的应用题现在用什么比例关系解答的谁来说一说,用反比例关系解答这道应用题是怎样想,怎样做的指出;解答例2要先按题意列出关系式,判断成反比例,再找出两种相关联量里相对应的数值,然后根据反比例关系里积一定,也就是两次航行相对应数值的乘积相等,列等式解答。

4.教学改编题。

出示改变的条件和问题,让学生说一说题意。指名一人板演,其余学生在练习本上独立解答。集体订正,让学生说一说怎样想的,根据什么列等式的。

5.小结解题思路。

请同学们看一下黑板上例1、例2的解题过程,想一想,应用比例知识解答应用题,是怎样想怎样做的同学们可以相互讨论一下,然后告诉大家。指名学生说解题思路。指出:应用比例知识解答应用题,先要判断两种相关联的量成什么比例关系,(板书:判断比例关系)再找出相关联量的对应数值,(板书:找出对应数值)再根据正、反比例的意义列出等式解答。(板书:列出等式解答)追问:你认为解题时关键是什么(正确判断成什么比例)怎样来列出等式(正比例比值相等,反比例乘积相等)

三、巩固练习

1.做练一练。

指名两人板演,其余学生做在练习本上。集体订正,让学生说说为什么列出的等式不一样。指出:只有先正确判断成什么比例关系,才能根据正比例或反比例的意义正确列式。

2.做练习十第1题。

让学生用比例知识列出解题的式子,然后口答,老师板书。提问:这两题有什么相同和不同的地方按过去算术解法都要先求什么量用比例知识解答有什么相同的地方(都成正比例关系,都列成比值相等的式子来解答)有什么不同的地方(未知数,表示的数量不同,在等式里位置也不同)说明;在正确判断成比例关系后,要按照比值相等来列等式解答。列等式时还要注意数量之间的对应关系。

3.做练习十第2题。

让学生默读题目。提问:用算术方法解答都要先求什么数量这两题里两种数量成什么关系,为什么要按什么相等来列等式

四、课堂小结

这节课学习了什么内容正、反比例应用题要怎样解答?你还认识了些什么

五、布置作业

课堂作业;完成练习十第1、2题的解答。

家庭作业:练习十第3题。

《比例》教案精选7篇


上课前准备好教案和课件非常重要,这需要老师们抽出时间来完成。在编写教案课件时,需要注意的是避免遗漏重点内容。那么,老师应该在写教案课件时注意哪些问题呢?为此,我们为大家提供了与“教案课件编写技巧”相关的主题内容,希望对您有所帮助!

《比例》教案(篇1)

教学内容:

九年义务教育六年制小学数学第十二册P62——63

教学目标:

1、使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。

2、使学生在认识成正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。

3、使学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。

教学重点:认识正比例的意义

教学难点:掌握成正比例量的变化规律及其特征

设计理念:课堂教学中从学生的已有的生活经验出发,引导学生观察、分析,从而发现成正比例量的规律,概括成正比例量的特征。课堂教学中给学生提供探究的平台,凡是能让学生自己发现的,就让学生亲自去探究。通过数学活动,让学生把所学的数学知识应用到解决实际问题中去,进一步培养学生的观察能力和发现规律的能力。

一、复习铺垫激情促思

1、说出下列每组数量之间的关系。

(1)速度时间路程

(2)单价数量总价

(3)工作效率工作时间工作总量

2、师:这些是我们已经学过的一些常见数量关系,每组数量之间是有联系的,存在着相依关系。当其中一种量变化时,另一种量也随着变化,而且这种变化是有一定的规律的,你想知道其中的奥秘吗?今天,我们就来研究和认识这种变化规律。

学生口答,相互补充

二、初步感知探究规律1、出示例1的表格(略)

说说表中列出了哪两种量。

(1)引导学生观察表中的数据,说一说这两种量的数值分别是怎样变化的。

初步感知两种量的变化情况,得出:路程和时间是两种相关联的量,时间变化,路程也随着变化。(板书:相关联的量)

(2)引导学生观察表中数据,寻找两种量的变化规律。

根据学生交流的实际情况,及时肯定并确认这一规律,特别是有意识地从后一种角度突出这一规律。

根据发现的规律启发学生思考:这个比值表示什么?上面的规律能否用一个式子表示?

根据学生的回答,板书关系式:路程/时间=速度(一定)

(3)揭示概括成正比例的量:路程和时间是两种相关联的量,时间变化,路程也随着变化。当路程和对应时间的比的比值总是一定(也就是速度一定)时,我们就说行驶的路程和时间成正比例,行驶的路程和时间是成正比例的量,

(板书:路程和时间成正比例)

2、教学“试一试”

学生填表后观察表中数据,依次讨论表下的4个问题。

根据学生的讨论发言,作适当的板书

3、抽象表达正比例的意义

引导学生观察上面的两个例子,说说它们的共同点。启发学生思考:如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用怎样的式子来表示?

根据学生的回答,板书:=k(一定)

揭示板书课题。

先观察思考,再同桌说说

大组讨论、交流

学生可能发现一种量扩大(缩小)到原来的几倍,另一种量也随着扩大(缩小)到原来的几倍。也可能发现两种量中相对应的两个数的比值不变。

学生根据板书完整地说一说表中路程和时间成什么关系

学生独立填表

完整说说铅笔的总价和数量成什么关系

学生概括

三、巩固应用深化规律

1、练一练

生产零件的数量和时间成正比例吗?为什么?

2、练习十三第1题

先算一算、想一想,再组织讨论和交流。

要求学生完整地说出判断的思考过程。

3、练习十三第2题

先独立判断,再有条理地说明判断的理由。

4、练习十三第3题

先说出把已知的正方形按怎样的比放大,放大后正方形的边长各是几厘米,再画一画。

分别求出每个图形的周长和面积,并填写表格。

讨论、明确:只有当两种相关联的量的比值一定时,它们才成正比例。

5、思考:明明三岁时体重12千克,十一岁时体重44千克。于是小张就说:“明明的体重和身高成正比例。”你认为小张的说法对吗?为什么?

讨论、交流

独立完成,集体评讲

说明判断的理由

说一说,画一画

填一填,议一议

讨论

四、总结回顾评价反思

这节课你学会了什么?你有哪些收获?还有哪些疑问?

《比例》教案(篇2)

教学内容:

苏教版义务教育课程标准实验教科书第94页《正比例和反比例》“练习与实践”的第1-6题。

教材学情分析:

本节课是《正比例和反比例》复习的第二教时,教材重点引导学生交流判断两种量是否成比例、成什么比例的思考方法,并要求学生找出一些生活中成正比例或反比例量的例子,帮助学生进一步认识成正比例和反比例的量,感受正比例和反比例是描述数量关系及其变化规律的又一种有效的数学模型。

“练习与实践”第7题让学生根据提供的两组数据判断相应的两种量分别成什么比例,有利于学生巩固对成正比例和反比例量的认识,掌握判断两种量是否成比例以及成什么比例的基本思考方法;“练习与实践”第8题让学生结合生活经验以及相关数量关系的理解,继续练习成正比例和反比例量的判断方法;“练习与实践”第9题的第一题让学生根据表示一辆汽车在高速公路上行驶的千米数和耗油量关系的图象,先判断这两种量是否成正比例,再根据其中一个量的数值估计另一个量的数值。第二题要求学生根据一辆汽车在市区行驶的千米数和耗油量关系的数据,在方格纸上画出表示它们关系的图象。通过上述活动,一方面可以使学生加深对正比例关系的认识,另一方面可以使进一步体会数学结合在解决问题方面的价值;“练习与实践”第10题是一个与比例尺有关的实际问题。教材先让学生量出一幅平面图上相关的图上距离,再让学生利用给出的比例尺求出相应的实际距离。教材这样的安排,主要让学生进一步体会比和比例知识的应用价值,感受不同领域的数学内容有着密切联系的。

教学目标:

⑴使学生进一步认识成正比例和反比例的量,感受表示数量关系及其变化规律的不同数学模型;能运用比和比例的知识解决一些简单实际问题,丰富解决问题策略,积累解决问题的经验。

⑵让学生进一步体会比和比例知识的应用价值,感受不同领域的数学内容有着密切联系的。

⑶使学生在系统复习的过程中,体验与同学合作交流以及获取知识的乐趣,增进对数学学习的积极情感,增强学好数学的信心。

教学重点:

进一步认识成正比例和反比例的量。

教学难点:

感受比的应用价值,在活动中获得一些新的认识。

教学具准备:

教学流程:

一、教师谈话,揭示课题。

⑴教师谈话。

教师谈话:上一节课我们复习了“比和比例”的有关知识,本节课我们继续复习这方面的知识。板书:正比例和反比例。

⑵揭示课题。

揭示课题——正比例和反比例。

二、师生互动,合作交流。

⑴完成“练习与实践”第7题。

呈现“练习与实践”第7题,明确要交流的主题:表中的两种量分别成什么比例?为什么?

班级交流判断的方法:一是利用表中的数据进行判断,在次体会正比例和反比例量在变化中的不同规律。成正比例关系的两种量同时扩大或缩小,它们扩大或缩小的倍数是相同的;成反比例的两种量,一个量扩大,另一种量反而缩小,它们扩大或缩小的倍数也是相同的;二是利用数量关系式判断,表格一:因为钢材质量:钢材体积=比重(一定),所以钢材质量和钢材体积成正比例;表格二:圆柱底面积×圆柱高=圆柱的体积(一定),所以圆柱底面积和圆柱高成反比例;利用图象判断,用描点的方法画出图象,如果是直线,则成正比例。

⑵完成“练习与实践”第8题。

呈现完成“练习与实践”第8题,明确要思考的内容:先写出数量关系式,再判断是否成比例?成什么比例?为什么?独立写出数量关系式,同桌交流。

第一问:因为每块砖的面积×砖的块数=一间教室的面积(一定),所以每块砖的面积和砖的块数成反比例;

第二问:因为圆的周长÷半径=2π,所以圆的周长和半径成正比例。

⑶完成“练习与实践”第9题。

呈现完成“练习与实践”第9题,明确要交流的内容:判断行驶的路程和耗油量是否成正比例;根据图象用一种数据判断另一种数据是多少。

班级交流理解、完成题目的情况,进行“根据图象用一种数据判断另一种数据是多少”的练习;反馈学生形成的正比例图象的情况;比较汽车高速公路和市区耗油量的不同情况,体会比例知识在日常生活中的应用价值。

⑷完成“练习与实践”第10题。

呈现完成“练习与实践”第10题,理解题目的意思,分别量出学校到各个地方的图上距离,形成以下板书:

图上距离实际距离

学校-少年宫4厘米?米

学校-体育场3.5厘米?米

学校-市民广场2.5厘米?米

学校-火车站7厘米?米

多种角度理解比例尺的意思:图上距离1厘米表示实际距离600米;图上距离1厘米表示实际距离60000厘米;……

解答:在多种书写形式的基础上,体会用“图上距离1厘米表示实际距离600米”的优越性。沟通和正比例之间的联系。

⑸谈谈本节课的收获。

《比例》教案(篇3)

教学内容:

本单元一共安排了三道例题和一个练习。先认识正比例的意义,接着认识正比例的图象,再认识反比例的意义,最后安排了一些巩固练习和综合练习。

教材分析:

本单元内容是在学生已经学习了比和比例等知识的基础上进行教学的,主要让学生结合实际情境认识成正比例和反比例的量。正、反比例的知识在日常生活和工农业生产中有着广泛的应用,而且还是今后进一步学习中学数学、物理、化学等知识的重要基础,因而学好这部分知识非常重要。通过学习这部分知识,还可以帮助加深对过去学过的数量关系的认识,使学生初步会从变量的角度来认识两个量之间的关系,从而初步体会函数的思想。

教学目标:

1、使学生结合实际情境认识成正比例和反比例的量,能根据正、反比例的意义判断两种相关联的量是否成正比例和反比例。

2、使学生初步认识正比例的图象是一条直线,能利用给出的具有正比例关系的数据在方格纸上画出相应的直线,能根据具有正比例关系的一个量的数值看图估计另一个量的数值。

3、使学生在认识成正比例、反比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步提升思维水平。

4、使学生进一步体会数学与日常生活的密切联系,增强探索数学知识和规律的意识,养成积极主动哦参与学习活动的习惯,提高学好数学的自信心。

教学重点:

认识正、反比例的意义

教学难点:

根据正、反比例的意义正确判断两种相关联的量是否成正比例或反比例。

课时安排:

正比例和反比例(4课时)

第1课时

教学内容

成正比例的量

教材第62—63页的例1和试一试,练一练和练习十三的第1—3题

课型

新授

本单元教时数:4本教时为第1教时备课日期月日

教学目标

1、使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。

2、2、使学生在认识成正比例的量的过程中,初步体会数量之间的相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。。

3、使、学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的能力。

教学重点

使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。

教学难点

根据正比例的意义正确判断两种相关联的量是不是成正比例。

教学准备

光盘课件

教学过程设计

教学内容

教师活动

学生活动

二次备课

一、教学例1

1、谈话引出例1的表格

2、这两种量的数据是怎样变化的?

时间在扩大,路程也随着扩大,时间在缩小,路程也在缩小。

小结:路程和时间是两种相关联饿量,时间在变化,路程也随着变化。

3、但是,你能发现什么呢?

如果学生发现不了,就要求学生写出几组路程与时间的比,并求出比值。

这个比值是什么呢?

谁能用一句话来概括例1中的变化与不变

4、介绍成正比例的量

指名说说,表中有哪两种量

引导学生观察,

指名说一说。

启发学生从“变化”中寻找“不变”。

学生试着回答,教师帮助完成。

学生完整的说说路程和时间成正比例的量

二、教学试一试

1、出示教材试一试

教师指导学生完成

学试着完成,并交流回答四个问题。

三、概括意义

1、引导学生观察例1和试一试,它们有什么共同点。

2、概括正比例的意义,揭示课题(板书)

3、用字母怎样表示成正比例关系的两种量呢?

y:x=k(一定)

观察,说说自己的发现。

学生完整的说一说例1和试一试成正比例关系。

四、巩固练习

1、完成练一练

2、练习十三第1题

重点让学生说出判断的理由

3、做练习十三第2题

4、做练习十三第3题

引导学生根据计算的结果来判断。完成书上的问题

重点让学生理解:只有当两种相关联的量的比值一定时,它们才成正比例的量。

独立判断,交流时说出判断的理由。

学生先各自算一算,交流,说出思考过程。

指名判断,交流时说出思考过程,其它同学进行补充或纠正。

学生理解题意,然后在书上画一画,算一算,填在书上。

五、全课总结

学习了什么?你有什么收获?

说一说

板书

正比例的意义

两种相关联的量=k(一定)y和x就成正比例的量

课后感受

第2课时

教学内容

正比例的意义及其图像

教材第63页例2,随后的练一练和练习十三的第4、5题

课型

新授

本单元教时数:4本教时为第2教时备课日期月日

教学目标

1、使学生认识正比例的图象,并借助直观的图象加深对成正比例量的变化规律的认识。

2、使学生能利用给出的具有正比例关系的数据在方格纸上画出相应的直线,能根据具有正比例关系的一个量的数值看图估计另一个量的数值。

教学重点

使学生认识正比例的图象,并借助直观的图象加深对成正比例量的变化规律的认识。

教学难点

使学生能利用给出的具有正比例关系的数据在方格纸上画出相应的直线,能根据具有正比例关系的一个量的数值看图估计另一个量的数值。

教学准备

光盘课件

教学过程设计

教学内容

教师活动

学生活动

二次备课

一、教学例2

1、先出示例1的表格

谈话:同学们,像例1中成正比例的量的数据,有时也可以用图象的形式来表示。

出示已标出纵轴、横轴以及相噶关信息的方格图。教师先示范描一两个点(边讲解边示范),你们会描点吗?

引导学生观察这些点的排布规律,并用直线连起来。

提问:(1)图中的a点表示1小时行80千米,b点表示5小时行400千米,你知道其它各点分别表示什么吗?(任意指几个点让学生回答)

(2)图中所描的点在一条直线上吗?

(3)根据图象判断一下,这辆汽车2。5小时行驶多少千米?行驶440千米需要多少小时?

学生描点。

学生按要求操作完成。

指名回答

如果学生回答有困难,可以启发先在横轴上找到表示2.5小时的点,并从这点起作纵轴的平行线,从而得到与已知图象的交点;再从交点起作横轴的平行线,从而得到与纵轴的交点;最后依据与纵轴的交点进行估计。

二、巩固练习

1、练一练

学生做好后展示学生画的图象,共同评议

问:你们画出的表示打字时间和打字个数关系的图象有什么特点?

指名回答第(3)个问题

追问:你是怎样判断打750个字用多少分钟的?估计7分钟、10。5分钟呢?打450个字、625个字各用几分钟?

2、练习十三第4题

既可以根据图象的特点说明,也可以从图象上选取几个点,求出比值来作判断。

第二题要求估计,答案出入是允许的

3、第5题

先让学生独立完成,在组织交流,帮助学生进一步明确方法,加深认识。

学生独立完成

指名回答第(2)个问题

学生相互间说一说

学生回答,要说明理由

讨论第(4)小题后,引导学生在提出一些类似的问题并进行解答。

三、全课总结

今天学习了什么?你有了什么新的认识?你知道今后还可以根据什么来判断两种量是否成正比例的量吗?

说说,议论议论。

板书

正比例的意义及其图像

例2(图像)

课后感受

《比例》教案(篇4)

教学内容:教科书第62~63页的例1和“试一试”,“练一练”和练习十三的第1~3题。

教学目标:

1.使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。

2.让学生在认识成正比例的量的过程中,初步体会数量之间相依互变的关系,进一步培养观察能力和发现规律的能力。

教学重点:

结合实际情境认识成正比例的量的特点,加深对正比例意义的理解。

教学难点:

能跟据正比例的意义判断两种相关联的量是否成正比例的量。

教学准备:

教学过程:

一、导入

谈话:同学们购物问题中有单价、数量、总价,你知道它们之间的关系吗?

学生讨论,反馈。

[设计意图:本环节结合生活中的实例,引导学生体会数量之间的关系。]

二、教学例1

1、出示例1的表格。

提问:表中列出了哪两种量?(板书:时间和路程)

观察表中的数据,哪一种量的变化引起了另一种量的变化?

指名回答。

谈话:时间变化,路程也随着变化,我们就说,路程和时间是两种相关联的量。(板书:路程和时间是两种相关联的量。)

为什么说路程和时间是两种相关联的量?

学生交流。(有的学生可能发现一种量扩大到原来的几倍,另一种量也随着扩大到原来的几倍;有的学生可能会发现一种量缩小到原来的几分之几,另一种量也随着缩小到原来的几分之几。)

2、谈话:观察表中的数据,这两种量在变化中有没有什么不变的规律呢?

学生交流,教师引导:请写出几组对应的路程和时间的比,并求出比值,根据学生回答板书:=80=80=80……

提问:你能用一个式子来表示上面的规律吗?

根据学生回答,板书:=速度(一定)

3、小结:路程和时间是两种相关联的量,时间变化,路程也随着变化。当路程和对应时间的比的比值一定(也就是速度一定)时,我们就说行驶的路程和时间成正比例,行驶的路程和时间成正比例的量。(板书:正比例的意义)

[设计意图:正比例的知识在日常生活中有着广泛的应用。通过学习这部分知识,可以帮助学生加深对学过的数量关系的认识,使学生学会从变量的角度来认识两个量之间的关系,把握正比例概念的内涵和本质。]

三、教学“试一试”

1、出示“试一试”,学生自由读题。

2、让学生根据已知条件把表格填写完整。

3、请学生根据表中数据,先尝试独立完成表格下面的四个问题,再和同桌交流。

4、学生交流中,明确:总价和数量是相关联的量,=单价(一定),总价和数量成正比例。

[设计意图:让学生在认识成正比例的量的过程中,体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。]

四、归纳字母公式

1、比较例题和“试一试”的相同点。

提问:观察上面的两个例子,它们有什么相同的地方呢?

(1)都有两种相关联的量;

(2)两种相关联的量相对应的两个数的比值总是一定的;

(3)两种量都成正比例。

2、如果用字母和分别表示两种相关联的量,用表示它们的比值,正比例关系可以用怎样的式子来表示呢?

根据学生的回答,板书:=(一定)

交流:和表示两种相关联的量,比的比值一定,我们就说和成正比例。

[设计意图:文似看山,学如登高。结合实例认识成正比例的量的特点,加深对正比例意义的理解。]

五、巩固练习

1、完成第63页“练一练”。

学生独立思考并作出判断,要用完整的语言说出判断的理由。

2、完成练习十三第1题。

(1)让学生按题目要求先各自算一算、想一想。

(2)全班交流,让学生说说为什么碾米机的工作时间和碾米数量成正比例,引导学生完整地说出判断的思考过程。

3、完成练习十三第2题。

(1)让学生独立判断,并指名说说判断的理由。

(2)注意引导学生有条理地说明判断的思考过程。

4、完成练习十三第3题。

(1)先让学生说说题目中将图中的正方形按怎样的比放大,放大后的正方形的边长各是几厘米?

(2)再让学生在书上画出放大后的图形,并算出每个图形的周长和面积,并填在表中。

(3)讨论表格下面的两个问题。通过讨论使学生明确:只有当两种相关联的量的比值一定时,它们才成正比例。

[设计意图:按照新课改的理念,教学中创设开放的问题情境和宽松的学习氛围,给学生充分思考、交流的空间,进一步巩固对正比例意义的理解。]

六、全课总结

这节课你学会了什么?通过这节课的学习,你还有哪些收获?

[设计意图:引导学生进行课堂反思,进一步理解成正比例的量,为后面的学习打基础。]

七、作业

完成《练习与测试》相关作业。

板书设计

正比例的意义

时间和路程路程和时间是两种相关联的量。

=80=80=80……

=速度(一定)

=(一定)

《比例》教案(篇5)

教学内容:

苏教版义务教育课程标准实验教科书第94页《正比例和反比例》“练习与实践”的第1-6题。

教材学情分析:

《正比例和反比例》复习教材上分为两个部分,“整理与反思”部分主要复习比的意义和性质,以及成正比例和反比例的量。教材先引导学生结合具体的例子回忆并整理比的意义、基本性质以及比的应用,再用填空的形式帮助学生进一步明确比与分数、除法的关系。在此基础上,要求学生说说比的基本性质与分数的基本性质、商不变的规律有什么联系和区别。这样的比较有利于学生体会比的基本性质与分数的基本性质、商不变的规律的一致性,有利于学生加深对比与分数、除法关系的理解,促进学生对数学知识的灵活运用。接下来,教材重点引导学生交流判断两种量是否成比例、成什么比例的思考方法,并要求学生找出一些生活中成正比例或反比例量的例子,帮助学生进一步认识成正比例和反比例的量,感受正比例和反比例是描述数量关系及其变化规律的又一种有效的数学模型。

“练习与实践”第1题让学生写出本班的男、女生人数,再要求学生分别写出男生和女生人数,在要求学生分别写出男生和女生人数的比以及女生和全班人数的比,帮助学生在练习中进一步理解比的意义,掌握用比表示数量之间关系的基本方法;“练习与实践”第2题让学生先分小组量一量人体有关部分的长度,再按要求写出部分长度的比,再求出比值。然后启发学生通过进一步的交流和比较,发现一些有趣的现象。这样的活动,既有较强的趣味性,又能较好体现比的应用价值,有利于吸引学生积极主动参与活动,并在活动中获得一些新的认识;“练习与实践”第3题结合直观的图片,先让学生按要求写出一些比,再估计写出的这些比中哪两个比可以组成比例,并通过计算加以验算。这里的估计即可以依据每一个比中前项和后项之间的关系,也可以依据相应长方形图片的形状,因而这个活动既能帮助学生复习比例的意义,又有利于学生进一步体会图形的放大和缩小与比例的内在联系;“练习与实践”第4题是解比例的练习。练习的目的主要是让学生进一步理解比例的基本性质,并掌握解比例的基本方法;“练习与实践”第5题提供了对我国东、西部地区各类土地资源面积进行比较的百分数,要求学生把其中一些用百分数表示的数量关系改写成用比表示,并交流从这组数据中所获得的其他信息。通过练习,可以使学生进一步体会比和百分数在表示数量关系方面的各自特点,加深对比与百分数关系的理解;“练习与实践”第6题先让学生看图写出一个房间中两种地砖面积的比,再让学生联系这个房间算出这两种地砖的面积,帮助学生进一步理解比的意义,掌握解决按比例分配的实际问题的基本方法。

教学目标:

⑴使学生进一步理解比的意义和基本性质,理解比与分数、除法的关系,能根据要求求比值、化简比;理解比例的意义和基本性质,会解比例;认识成正比例和反比例的量,感受表示数量关系及其变化规律的不同数学模型;能运用比和比例的知识解决一些简单实际问题,丰富解决问题策略,积累解决问题的经验。

⑵通过量一量等操作活动,吸引学生积极主动参与,感受比的应用价值,在活动中获得一些新的认识;

⑶使学生在系统复习的过程中,体验与同学合作交流以及获取知识的乐趣,增进对数学学习的积极情感,增强学好数学的信心。

教学重点:进一步理解比和比例的一些知识。

教学难点:感受比的应用价值,在活动中获得一些新的认识。

教学具准备:

教学流程:

一、自主学习,完成练习。

⑴揭示课题。

教师谈话:今天我们复习《正比例和反比例》。板书课题——“正比例和反比例”。

⑵自主练习。

教师谈话:用5-8分钟的时间阅读课本94页的内容,完成“练习与实践”1-6题,其中“练习与实践”第2题作为课前活动,“练习与实践”第1题本班的男女生人数板书在黑板上,男生24人、女生27人。

学生自主练习,教师巡视。

二、交流讨论,梳理知识。

⑴整理比的知识。

交流“练习与实践”第1题的答案,并矫正;理解“男生和女生人数的比是8:9”的意思,一般表示男生是女生人数的8/9,男生和女生人数是除法关系;“男生和女生人数的比是8:9”由比24:27化简而来,回忆比的基本性质;体会“女生和全班人数的比是9:17”答案由来的多种途径。

⑵感受生活中的比例。

交流头长和身高的比,让多名学生将自己头长和身高的比和比值板书在黑板上;指导学生取近似值,整理答案,再说说自己的发现,比值一般很接近的,感受生活中的比例。

⑶整理比例的知识。

交流“练习与实践”第3题的答案,并矫正;根据写成的比例理解比例的意义,根据图形的放大或缩小沟通比的基本性质和分数基本性质的一致性;根据图形的放大或缩小体会和比例的关系。

⑷整理解比例的知识。

交流“练习与实践”第4题的答案,并矫正;理解比例的基本性质,以及在解比例中运用,掌握解比例的方法。

⑸解决实际问题。

交流“练习与实践”第5题,先说说对表中百分数的理解,交流我国东西部各自的特点;掌握把两个数量的百分数关系改写成比的一般方法,用对应的分数表示前项和后项,再化简。交流“练习与实践”第6题,说说得到两种地砖铺地面积比的思考过程,因为每块地砖的大小是相同的,所以可以转化成块数来写出面积的比;交流问题2的解决过程,体会比的应用。

⑹谈谈本节课的收获。

《比例》教案(篇6)

教学内容:

正比例

教材分析:

正比例这个内容是学生在学习了比的意义、比的化简与比的应用等内容的基础上进行的。本课是有关比例知识的初步认识,结合具体情境,理解正比例的意义,判断两个量是否成正比例。教材提供了三个情境,其中一个是图像,两个是表格,让学生在具体问题、具体情境中认识成正比例的量,初步感受生活中存在很多成正比例的量;让学生通过观察、比较、分析、归纳等数学活动,自主发现正比例的变化规律,理解正比例的意义,会判断两个量是否成正比例。

学情分析:

学生在学习乘法时,已经知道一个因数扩大几倍,另一个因数不变,积就扩大几倍这个规律,这个规律实际上就是正比例的一个变化规律,所以,学生对这个内容是有个初步的接触。在这个内容的学习中,学生最容易掌握的是根据表格中的具体数据判断两个量是否成正比例,最难掌握的是离开具体数据,根据文字叙述判断两个量是否成正比例,特别是学生对学过的数量关系不熟悉时就更难了。

教学目标:

1、结合丰富的事例,认识正比例,理解正比例的意义,并初步感受生活中存在很多成正比例的量。

2、能根据正比例的意义,判断两个相关联的量是不是成正比例。

教学重点:

1、结合丰富的事例,认识正比例,理解正比例的意义。

2、能根据正比例的意义,判断两个相关联的量是不是成正比例。

教学难点:

能根据正比例的意义,判断两个相关联的量是不是成正比例。

教学用具:

课件

教学过程:

一、在情境中感受两种相关联的量之间的变化规律。

(一)情境一

1、一种汽车行驶的速度为90千米/小时。汽车行驶的时间和路程如下:

2、请把下表填写完整。

3、从表中你发现了什么规律?

说说你发现的规律:路程与时间的比值(速度)相同。

(二)情境二

1、一些人买一种苹果,购买苹果的质量和应付的钱数如下。

2、把表填写完整。

3、从表中发现了什么规律?

应付的钱数与质量的比值(也就是单价)相同。

4、说说以上两个例子有什么共同的特点。

小结:路程随时间的变化而变化,在变化过程中路程与时间的比值相同;应付的钱数随购买苹果的质量的变化而变化,在变化过程中应付的钱数与质量的比值相同。

(三)情境三

1、观察图,分别把正方形的周长与边长,面积与边长的变化情况填入表格中。请根据你的观察,把数据填在表中。

2、填完表以后思考:这两个表格中的变化情况与上两题的变化规律相同吗?

说说从数据中发现了什么?

3、小结:正方形的周长和面积都随边长的增加而增加,在变化过程中,正方形的周长与边长的比值一定都是4。正方形的面积一边长的`比是边长,是一个不确定的值。

(四)归纳正比例的意义

1、 时间增加,所走的路程也相应增加,而且路程与时间的比值(速度)相同。那么我们说路程和时间成正比例。

2、 购买苹果应付的钱数与质量有什么关系?

3、 正方形的周长与边长有什么关系?

4、 观察思考成正比例的量有什么特征?

一个量变化,另一个量也随着变化,并且这两个量的比值相同。

5、 小结

两种相关联的量,一种量扩大,另一种量也随着扩大,一种量缩小,另一种量也随着缩小,并且这两种量中相对应的两个数的比值(也就是商)一定,这两种量就是成正比例的量,它们的关系就是正比例关系。

二、巩固练习。

正方形的周长与边长成正比例吗?面积与边长呢?为什么?

师小结:

(1)正方形的周长随边长的变化而变化,并且周长与边长的比值都是4,所以正方形的周长与边长成正比例。

请你也试着说一说。

(2)正方形的面积虽然也随边长的变化而变化,但面积与边长的比值是一个变化的值,所以正方形的面积和边长不成正比例。

请生用自己的语言说一说。

三、全课总结:说说你在这节课中学到了什么知识?有什么不明白的地方?

板书设计:

正比例

路程÷时间=速度(一定)

总价÷数量=单价(一定)

正方形的周长÷边长=4(一定)

两种相关联的量,一种量扩大(或缩小),另一种量也随着扩大(或缩小),并且这两种量的比值(也就是商)一定,这两种量就成正比例。

《比例》教案(篇7)

教学目标

1.使学生理解正比例的意义.

2.能根据正比例的意义判断两种量是不是成正比例.

3.培养学生的抽象概括能力和分析判断能力.

教学重点

使学生理解正比例的意义.

教学难点

引导学生通过观察、思考发现两种相关联的量的变化规律,即它们相对应的数的比值一定,从而概括出正比例关系的概念.

教学过程

一、复习准备

口答(课件演示:成正比例的量)

1.已知路程和时间,怎样求速度?

2.已知总价和数量,怎样求单价?

3.已知工作总量和工作时间,怎样求工作效率?

二、新授教学

(一)导入新课

这些都是我们已经学过的常见的数量关系.这节课,我们继续研究这些数量关系中的一些特征.

(二)教学例1.(课件演示:成正比例的量)

1.一列火车1小时行驶90千米,2小时行驶180千米,3小时行驶270千米,4小时行驶360千米,5小时行驶450千米,6小时行驶540千米,7小时行驶630千米,8小时行驶720千米

2.出示下表,并根据上述内容填表.

相关推荐

  • 倍比问题教案 古人云,工欲善其事,必先利其器。作为一幼儿园的老师,我们需要让小朋友们学到知识,大部分老师为了让学生学的更好都会事先准备好教案,教案对教学过程进行预测和推演,从而更好地实现教学目标。你知道怎么写具体的幼儿园教案内容吗?或许你需要"倍比问题教案"这样的内容,仅供参考,大家一起来看看吧。 ...
    2024-06-12 阅读全文
  • 倍比问题教案八篇 我们历经思考,精心设计的“倍比问题教案”必定令您惊喜,期待我的建议能助您成功。通常在给学生上课之前,老师会提前准备好教案和课件,因此需要老师花费一些时间来编写。教案在监测教学质量方面具有重要作用。...
    2023-11-27 阅读全文
  • 案例:进餐问题 小二班的小朋友有一个整体的习惯,就是“杜绝”吃早餐。我们班的王思琪入园以来早、晚餐的牛奶是绝对不碰的。(早上做“神仙”不吃不喝,有时软硬兼施也不吃。中午的两碗绝对不少。)不管老师如何宣传食物的美味与香...
    2021-05-17 阅读全文
  • 案例:“问题儿童”的“问题行为” 张老师正在教小班小朋友一首新歌,大家都坐在椅子上不动,一边听老师弹琴一边学唱,只有丁丁在椅子上动来动去,他一会儿推推旁边的佳佳,一会儿转过身来,趴在椅背上,看着后面的墙壁发呆,张老师看了看他,没理会,...
    2021-05-17 阅读全文
  • 比例应用题教案收藏12篇 经验告诉我们,成功是留给有准备的人。作为一位幼儿园教师,我们希望能让小朋友们学到更多的知识,教案的作用就是为了缓解学生的压力,提升效率,有了教案才能有计划、有步骤、有质量的完成教学任务。幼儿园教案的内容具体要怎样写呢?经过整理,小编为你呈上比例应用题教案收藏12篇,欢迎阅读,希望对你有帮助。教学目标...
    2023-06-16 阅读全文

古人云,工欲善其事,必先利其器。作为一幼儿园的老师,我们需要让小朋友们学到知识,大部分老师为了让学生学的更好都会事先准备好教案,教案对教学过程进行预测和推演,从而更好地实现教学目标。你知道怎么写具体的幼儿园教案内容吗?或许你需要"倍比问题教案"这样的内容,仅供参考,大家一起来看看吧。 ...

2024-06-12 阅读全文

我们历经思考,精心设计的“倍比问题教案”必定令您惊喜,期待我的建议能助您成功。通常在给学生上课之前,老师会提前准备好教案和课件,因此需要老师花费一些时间来编写。教案在监测教学质量方面具有重要作用。...

2023-11-27 阅读全文

小二班的小朋友有一个整体的习惯,就是“杜绝”吃早餐。我们班的王思琪入园以来早、晚餐的牛奶是绝对不碰的。(早上做“神仙”不吃不喝,有时软硬兼施也不吃。中午的两碗绝对不少。)不管老师如何宣传食物的美味与香...

2021-05-17 阅读全文

张老师正在教小班小朋友一首新歌,大家都坐在椅子上不动,一边听老师弹琴一边学唱,只有丁丁在椅子上动来动去,他一会儿推推旁边的佳佳,一会儿转过身来,趴在椅背上,看着后面的墙壁发呆,张老师看了看他,没理会,...

2021-05-17 阅读全文

经验告诉我们,成功是留给有准备的人。作为一位幼儿园教师,我们希望能让小朋友们学到更多的知识,教案的作用就是为了缓解学生的压力,提升效率,有了教案才能有计划、有步骤、有质量的完成教学任务。幼儿园教案的内容具体要怎样写呢?经过整理,小编为你呈上比例应用题教案收藏12篇,欢迎阅读,希望对你有帮助。教学目标...

2023-06-16 阅读全文
Baidu
map