相似三角形的判定课件
发布时间:2024-08-03 相似三角形判定课件 三角形判定课件 判定课件相似三角形的判定课件实用。
经过幼儿教师教育网的编辑反复校验和调整这篇“相似三角形的判定课件”得以呈现。老师在开学前需要把教案课件准备好,每个人都要计划自己的教案课件了。教案是教师对学生学习课程内容及教学方法的综合分析和总结。以下建议仅供参考最终决策需根据实际情况进行!
相似三角形的判定课件【篇1】
相似三角形是高中数学中的重要内容之一,它有着广泛的应用领域,比如地理测量、建筑设计等。为了帮助学生更好地理解相似三角形的判定条件和方法,特别准备了这份相似三角形的判定课件。在本课件中,将详细介绍相似三角形的判定方法,并通过生动的例子和图像,帮助学生深入理解和掌握这一知识点。
课件的第一部分主要介绍相似三角形的定义与性质。会通过简单明了的语言和生动的图例,解释相似三角形的定义以及相似三角形的性质。学生可以通过观察图形和运用已有的知识,理解相似三角形的概念。
课件的第二部分是相似三角形的判定方法。在这一部分中,将介绍两种常用的相似三角形判定方法:AAA相似判定和AA相似判定。对于AAA相似判定,会通过图例说明,当两个三角形的对应角度相等时,它们是相似的。对于AA相似判定,会介绍当两个三角形的两个对应角度相等,并且它们的对应边成比例时,它们是相似的。通过这些判定方法,学生可以在实际运用中准确判断两个三角形是否相似。
课件的第三部分是相似三角形的实际应用。这一部分将通过地理测量的例子,以及建筑设计的例子,展示相似三角形的实际应用。学生可以通过实际的例子,了解相似三角形在生活和工作中的实际意义,并加深对相似三角形的理解和记忆。
课件的第四部分是练习与总结。将设计一些练习题,供学生巩固所学的知识,并在最后总结本课件的内容。通过实际操作和练习,学生可以进一步掌握相似三角形的判定方法,并且能够灵活运用于解决实际问题。
这份相似三角形的判定课件旨在提供一个生动、简洁、易懂的学习资料,帮助学生更好地理解和掌握相似三角形的判定方法。相信通过这份课件的学习,学生将能够在今后的学习和实践中灵活运用所学的知识,解决实际的问题。同时,也鼓励学生在学会基本的判定方法后,通过自主学习和思考,进一步拓展和应用相似三角形的知识。
通过本课件的学习,相信学生将能够深入理解相似三角形的判定方法,并且能够运用于实际问题的解决。希望这份相似三角形的判定课件能够成为学生学习的助力,帮助他们在数学学习中取得更好的成绩,并在未来的学习和生活中能够灵活应用所学的知识。
相似三角形的判定课件【篇2】
数学教案:相似三角形的判定教学设计
课题:相似三角形的判定
教学目标
知识与技能目标:
初步掌握运用两角对应相等的方法来判定两个三角形相似;
过程与方法目标:
1、经历三角形相似判定的探索过程,体会类比三角形全等的方法来进行三角形相似的探究的过程,从而体会研究问题的方法;
2、能利用添加辅助线将三角形相似判定定理的图形转化为预备定理的基本图形。
情感与态度目标:
1.在三角形相似判定的探究过程中,培养学生大胆动手、勇于探索和勤于思考的精神.
2.在合作与交流活动中发展学生的合作意识和团队精神,在探究活动中获得成功的体验.
教学重点:探究运用两角对应相等的方法来判定两个三角形相似,并能简单运用.
教学难点:三角形相似判定方法的证明。.
教学方法:采用学生自主探索和合作学习的教学方法;
教学手段:采用多媒体辅助教学。
教学过程:
教师活动学生活动设计意图
一、复习引入:
1、两个三角形相似的定义:
2、我们已经学过的三角形相似的判定方法及各自的适用的范围:(定义及预备定理)
若使用预备定理,我们发现需要存在平行线截三角形两边的基本图形,而对于任意的两个三角形,我们只能运用定义去判定,我们需准备对应角相等,且对应边成比例,那么是否存在识别三角形相似的简单方法呢?
3、回忆并叙述三角形全等判定定理的探究过程。(由一个条件到多个条件,逐个按边、角及其组合的顺序去寻找)。
二、新课探究、巩固新知:
本节课,我们将类比三角形全等的探究方法来进行三角形相似判定的探究:
教师给出题目:
(1)在上面的网格中,已知△ABC,至少需要保证几个角对应相等才能确定出△DEF,使得△ABC∽△DEF;
(2)利用网格自己作出图形,并用刻度尺和量角器验证作出的图形与原图形相似;
(3)小组选派代表准备展示本组的成果:图形与判定三角形相似的猜想。
教师结合学生汇报的结果点评,并适时引导学生小结猜想:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
教师适时引导:借助辅助线将两个独立的三角形构造出预备定理的基本图形即可(强调作辅助线思想:平移小三角形到大三角形内部,但语言叙述应为:作线段或角等)。
教师板书判定定理1的符号语言:
在△ABC和△DEF中,
∵∠A=∠A`;∠B=∠B`(已知)
∴△ABC∽△DEF(两角对应相等的两三角形相似)
教师引导学生与三角形全等进行类比:
1、判定三角形全等的方法有ASA、AAS、SAS,至少有一组边相等;而判定相似只需两角对应相等即可。
2、证明三角形全等需要准备3个条件,而证明三角形相似需要2个条件即可。
例1、判断正误,并说明理由:
(1)任意等边三角形是相似三角形;
(2)有一角对应相等的两等腰三角形是相似三角形;
(3)顶角对应相等的两等腰三角形是相似三角形;
(4)任意直角三角形都相似;
(5)有一锐角对应相等的两直角三角形相似。
练习1:独立编写出一个能运用判定定理1来判断两三角形是否相似的题目,并与同学进行交流。
练习2:(1)如图:E是平行四边形ABCD的一边BA延长线上一点,CE交AD于点F,请找出图中的相似三角形,并说明理由:
(2)在Rt△ABC中,CD是斜边上的高,请找出图中相似的三角形,并说明理由。
教师巡视,并辅导重点学生。
解答完题目后,教师适时引导学生小结基本图形。
例2、已知△ABC和△DEF均为等边三角形,点D、E分别在边AB、AC上,请找出一个与△DBE相似的三角形,并说明理由。
教师适时点拨:由△DBE的角的特点入手,先由特殊角600作为突破口,通过观察确定方向(寻找另外的一组角相等即可),再去证明。
教师引导学生小结例2的证明思路:当存在一组角相等时,我们需寻找另外一组角相等,从而证明三角形相似。
三、小结提升:
谈谈自己的收获:
1、知识点方面:判定三角形相似的判定方法(定义、预备定理、定理1);
基本图形:双垂直;A字型、八字型。
2、学习方法:类比旧知识学习新知识。回忆知识点;
结合教师给出的探究题目学生小组合作,大胆进行
尝试。
派学生代表展示讨论结果;
结合图形,学生口述该命题的已知与求证,并思考命题的证明过程。
学生在教师的引导下口述证明过程。
思考:运用角的条件判定全等与相似的区别。
学生独立思考并作答。
学生自编题目练习:三角形相似的判定定理1。
学生独立解决后,组内交流。
体会双垂直的基本图形,小结结论。
独立分析此题目,大胆尝试此证明过程。
学生回忆本节课教学内容,归纳提升。培养学生及时小结知识点的学习方法
激发学生探究的欲望;
为探究相似铺垫思路。
培养学生探究能力与归纳能力。
运用网格既可以准确作出图形,又可以为后面两个判定打好基础。
由于证明过程对学生有一定难度,所以在学生展示完自己的猜想后,教师引导学生进行证明。
渗透转化的意识。
加强对学生学法的训练;
要求:正确的题目需结合定理1简单叙述理由,错误的题目需举出反例
加强对判定定理1的巩固。
自编题目,激发学习兴趣。
结合图形巩固判定定理1
对于比例线段的结论由学生课下完成。
总结基本图形为学生解决较复杂题目打基础。
学生自己小结本节课的知识要点及数学方法以提高学生的学习能力。
板书设计:
课题:
(投影)判定方法:(文字语言、图形语言)例2、
相似三角形的判定课件【篇3】
一、教学目标
1、使学生了解直角三角形相似定理的证明方法并会应用。
2、继续渗透和培养学生对类比数学思想的认识和理解。
3、通过了解定理的证明方法,培养和提高学生利用已学知识证明新命题的能力。
4、通过学习,了解由特殊到一般的唯物辩证法的观点。
二、教学设计
类比学习,探讨发现
三、重点及难点
1、教学重点:是直角三角形相似定理的应用。
2、教学难点:是了解直角三角形相似判定定理的证题方法与思路。
四、课时安排
3课时
五、教具学具准备
多媒体、常用画图工具、
六、教学步骤
[复习提问]
1、我们学习了几种判定三角形相似的方法?(5种)
2、叙述预备定理、判定定理1、2、3(也可用小纸条让学生默写)。
其中判定定理1、2、3的证明思路是什么?(①作相似,证全等;②作全等,证相似)
3、什么是“勾股定理”?什么是比例的合比性质?
【讲解新课】
类比判定直角三角形全等的“HL”方法,让学生试推出:
直角三角形相似的判定定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
这个定理有多种证法,它同样可以采用判定定理1、2、3那样的证明思路与方法,即“作相似、证全等”或“作全等、证相似”,教材上采用了代数证法,利用代数法证明几何命题的思想方法很重要,今后我们还会遇到。应让学生对此有所了解。
定理证明过程中的“都是正数,其中都是正数”告诉学生一定不能省略,这是因为命题“若,到”是假命题(可举例说明),而命题“若,且、均为正数,则”是真命题。
教师在讲解例题时,应指出要使___。应有点A与C,B与D,C与B成对应点,对应边分别是斜边和一条直角边。
还可提问:
(1)当BD与、满足怎样的关系时?(答案:)
(2)如图,当BD与、满足怎样的关系式时,这两个三角形相似?(不指明对应关系)
(答案:或两种情况)
探索性题目是已知命题的结论,寻找使结论成立的题设,是探索充分条件,所以有一定难度,教材为了降低难度,在例4中给了探索方向,即“BD与满足怎样的关系式。”
这种题目体现分析问题的思维方法,对培养学生研究问题的习惯有好处,教师要给予足够重视,但由于有一定难度,只要求学生了解这类问题的思考方法,不应提高要求或增加难度。
[小结]
1、直角三角形相似的判定除了本节定理外,前面判定任意三角形相似的方法对直角三角形同样适用。
2、让学生了解了用代数法证几何命题的思想方法。
3、关于探索性题目的处理。
七、布置作业
教材P239中A组9、教材P240中B组3。
相似三角形的判定课件【篇4】
【教学目标】
1、掌握相似三角形的判定定理1 。
2、会用三角形相似的判定定理1,来证明有关问题;
3、通过用三角形全等的判定方法类比得出三角形相似的判定方法,使学生进一步领悟类比的思想方法。
【重点和难点】
理解相似三角形的判定定理1,并能用其来解决有关问题
【教 具】
三角板、多媒体设备
【教学设计】
一、复习旧知识,运用类比的思想方法引导学生提出问题
1、什么叫相似三角形?怎么表示?
(在学生回答完后,教师总结)对应角相等,对应边成比例的三角形,叫做相似三角形。(注意:三角形相似不一定限定在两个三角形之间,可以是两个以上,但不能是一个。)表示:如果?ABC与?DEF相似,则记作?ABC∽?DEF
ABACBC??用数学符号表示:∵∠A=∠D,∠B=∠E,∠C=∠F,且DEDFEF,∴?ABC∽?DEF. 注意:与三角形全等的书写类似,表示对应角的`字母顺序需要一样
2、上节课我们还学习了一个判定两三角形相似的定理,哪位同学能说说?
学生回答完之后投影:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。
AAEDADEBCB图(1)CD图(2)EB图(3)C
3、除了用定义和上面的定理来判定三角形相似外,还有什么方法可判定两个三角形相似?我们知道判定两个三角形全等的方法有“AAS”、“ASA”、“SAS”、“SSS”、“HL”等,那么类似地,判定两个三角形相似还有哪些方法?今天我们开始来研究这个问题。
二、讲授新课
1、观察你和同伴的三角尺,同样角度(30度与60度,或45度与45度)的三角尺,它们相似吗?
2、任意画两个三角形,使三对角分别对应相等,再量一量对应边,看看是否成比例。
3、师生共同总结
4、结论:三角形相似判定方法1:两角分别相等的两个三角形相似
5、已知:如图(4)所示,在?ABC与?A'B'C'中,若∠A=∠A',∠B=∠B',试猜想:?ABC与?A'B'C'是否相似?并证明你猜的结论。
三、拓展运用
图24.3.5
课本练习1、2
四、课堂小结:
本节课你学到了什么?有什么感悟?
五、作业:
P75 习题23.3 第1、5题。
相似三角形的判定课件【篇5】
教学建议
知识结构
本节首先给出了的定义和表示方法,在此基础上给出相似比的概念,并利用探究法得出三角形相似的预备定理
重难点分析
的概念是本节的重点也是本节的难点。是研究相似形的最重要和最基本的图形,是在全等三角形知识的基础上的拓广和发展,全等形是相似形的特殊情况,研究比研究全等三角形更具有一般性。对应边和对应角子中占有重要地位,学生在找对应边及对应角时常常出现错误。
教法建议
1.从知识的逻辑体系出发,在知识的引入时可考虑先给出相似形的概念,在给出的概念
2.在知识的引入上,可以从生活实例的角度出发,在生活中找几个的例子,在此基础上给出的概念
3.在知识的引入上,还可以从知识的建构模式入手,给出几组图形,告诉学生这几组图形都是,由学生研究这些图形的边角关系,从而得到对的本质认识
4.在概念的巩固中,应注意反例的作用,要适当给出或由学生举出不是的例子来加深对概念的理解
5.在概念的理解过程中,要注意给出不同层次的图形,要求学生从中找出,既增加学生的参与又加深学生对概念的理解
6.在本节内容中对应边及对应角的寻找学生常常出现混淆,教师在教学过程 中可设计由浅入深的一系列题组由学生寻找其中的对应边或对应角,并说明根据,有利于知识的掌握
教学设计示例
一、教学目标
1.使学生理解并掌握的概念,理解相似比的概念。
2.使学生掌握预备定理,并了解它的承上启下的作用。
3.通过预备定理的条件所构成的图形的三种情况,教给学生对一致性问题的思考方法。
4.通过学习,培养由特殊到一般的唯物辩证法观点。
二、教学设计
类比学习、探索发现。
三、重点、难点
1.教学重点:是的概念及预备定理,教学中要让学生加深对概念的本质的认识。
2.教学难点 :是相似比的概念及找对应边。
四、课时安排
1课时
五、教具学具准备
投影仪、胶片、常用画图工具。
六、教学步骤
【复习提问】
1.什么叫做全等三角形?它在形状上、大小上有何特征?
2.两个全等三角形的对应也和对应角有什么关系?
【讲解新课】
1.
的本质特征是“具有相同形状”,它们的大小不一定相等,这是和全等三角形的重要区别。为加深学生对概念的本质的认识,教学时可预先准备几对,让学生观察或测量对应元素的关系,然后直观地得出:两个三角形形状相同,就是他们的对应角相等,对应边成比例。
定义:对应角相等,对应边成比例的三角形,叫做
符号“∽”,读作:“相似于”,记作: ∽ ,如图所示。
∴ ∽
反之亦然。即对应角相等,对应边成比例(性质).
∵ ∽ ,
∴
另外,具有传递性(性质).
注:在证两个三角形相似时,通常把表示对应顶点的字母写在对应位置上。
思考问题:(l)所有等腰三角形都相似吗?所有等边三角形呢?为什么?
(2)所有直角三角形都相似吗?所有等腰直角三角形呢?为什么?
2.相似比的概念
对应边的比K,叫做相似比(或相似系数).
注:①两个的相似比具有顺序性。
如果 与 的相似比是K,那么 与 的相似比是 .
②全等三角形的相似比为1,这也说明了全等三角形是的特殊情形。
3.预备定理:平行三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。 ∽ ,如图所示。
教材通过探讨的方法,根据题设中有平行线的条件,结合5.2节例6定理的结论,再根据三角形的定义,从而得出了这两个三角形相似的结论,这里要强调的是:
(1)本定理的导出不仅让学生复习了的定义,而且为后面的证明打下了基础,它的重要性是显而易见的。
(2)由本定理的题设所构成的三角形有三种可能,除教材中两种情况外还有如左图所示的情形,它可以看成 BC截 两边所得,其中 ,本质上与右图是一致的。
(3)根据两个三角形相似写对应边的比例式时,每个比的前项是同一个三角形的三边,而比的后项是另一个三角形的三条对应边,它们的位置不能写错,作题时务必要认真仔细,如本定理的比例式,防止出现 的错误,如出现错误,教师要及时予以纠正。
(4)根据两个三角形相似写对应边的比例式时,还应给学生强调,这两个三角形中相等的角所对的边就是对应边,对应边应写在对应位置。
(5)建议教师在教学中经常采用一些形象性语言,如:有平行就有成比例线段,有平行就有。
【小结】
1.本节学习了的概念。
2.正确理解相似比的概念,为以后学习的性质打下基础。
3.重点学习了预备定理及注意的问题。
七、布置作业
教材P238中2,3.
八、板书设计
相似三角形的判定课件【篇6】
教学目标:
1、了解相似三角形的概念,会表示两个三角形相似。
2、能运用相似三角形的概念判断两个三角形相似。
3、理解“相似三角形的对应角相等,对应边成比例”的性质。
重点和难点:
1、本节教学的重点是相似三角形的概念
2、在具体的图形中找出相似三角形的对应边,并写出比例式,需要学生具有一定的分辨能力,是本节教学的难点。
知识要点:
1、对应角相等,对应边成比例的两个三角形叫做相似三角形。
2、相似三角形的对应角相等,对应边成比例。
3、相似三角形对应边的比,叫做两个相似三角形的相似比(或相似系数)
重要方法:
1、全等三角形是相似三角形的特殊情况,它的相似比是1。
2、相似三角形中,利用对应角寻找对应边;反过来利用对应边寻找对应角。
3、书写相似三角形时,需要把对应顶点的字母写在对应的位置上。
教学过程
一、创设情境,导入新课
1、课件出示:①国旗上的☆,②同一底片不同尺寸的照片。以上图形之间可以通过怎样的图形变换得到?
2、经过相似变换后得到的像与原像称为相似图形。那么将一个三角形作相似变换后所得的像与原像称为相似三角形
二、合作学习,探索新知
1、合作学习
如图1,在方格纸内先任意画一个△ABC,然后画出△ABC经某一相似变换(如放大或缩小若干倍)后得到像△A ′B ′C ′(点A ′、B ′、C ′分别对应点A 、B 、C)。
问题讨论1:△A ′B ′C ′与△ABC对应角之间有什么关系?
问题讨论2:△A ′B ′C ′与△ABC对应边之间有什么关系?
学生相互比较得到结论:对应角相等,对应边成比例。
2、由合作学习定义相似三角形的概念
(1)相似三角形:一般地,对应角相等,对应边成比例的两个三角形,叫做相似三角形
(2)表示:相似用符号“∽”来表示,读作“相似于”
如△A ′B ′C ′与△ABC相似,记做“△A ′B ′C ′∽△ABC ” 。
注意:在表示三角形相似时,一般把对应顶点的字母写在对应的位置上
(3)定义的几何语言表述:
A B C A ′B ′C ′
相似三角形的判定课件【篇7】
九年级数学教案:相似三角形的判定
教学目标:1.使学生在经历探究相似三角形判定方法的过程中,初步掌握相似三角形的判定定理,理解定理的证明方法,初步会运用定理来解决有关问题.
2.培养学生运用类比联想,猜想命题,再加以证明的研究问题的方法以及化归的思想.
3.通过观察、猜想、归纳、探究等数学活动,给学生创造成功机会,使他们爱学、乐学、会学,同时培养学生勇于探索、积极合作的精神.
教学重点和难点:
重点:相似三角形的判定定理的理解和初步应用;
难点:相似三角形的判定定理的证明.
教学方法:自主探究与小组合作相结合
教学过程设计
一、创设情境,提出问题
请学生出示课前按要求剪好的三角形,教师利
用已知三角形模板验证两个三角形是否全等的同时
请学生回答他裁剪方法的理论依据,借此复习全等三角形的判定方法.
1.SAS;2.ASA;3.AAS;4.SSS。
在此基础上教师要求学生动手剪一个三角形与已知三角形相似.
学生可能马上利用平行线截一个三角形,教师要求学生说出这种裁剪方法的依据——预备定理.在肯定答案的同时提出,那么如何判断三角形相似呢?目前你掌握的方法有哪些?1.相似三角形的预备定理;2.定义教师提出:判定两三角形相似时,定义的条件过多,预备定理的使用要求具有局限性,那么是否还有其它的判定方法呢?本节课我们继续研究:相似三角形的判定(二).你认为我们可以从哪儿入手研究呢?引导学生类比全等三角形的判定方法进行猜想.
学生类比联想,自主探究猜想相似三角形的判定方法:
1.利用投影展示一般三角形全等的判定定理
(1)ASA:
若∠A=∠A’,∠B=∠B’,,
则有△ABC≌△A’B’C’
(2)AAS:
若∠A=∠A’,∠B=∠B’,,则有△ABC≌△A’B’C’
3)SAS:
若,∠A=∠A’,则有△ABC≌△A’B’C’
4)SSS:
若,则有△ABC≌△A’B’C’
2.猜想相似三角形的判定方法
引导学生利用相似三角形与全等三角形的区别与联系,把上述全等三角形判定定理中比值为1改成比值为正数“k”,就可得到相似三角形的判定方法,得到猜想.
猜想一(类比角边角公理和角角边定理)
△ABC与△A’B’C’中,若∠A=∠A’,∠B=∠B’,则△ABC∽△A’B’C’.
猜想二(类比边角边公理)
△ABC与△A’B’C’中,若,∠A=∠A’,则有△ABC∽△A’B’C’.
猜想三(类比边边边公理)换元
△ABC与△A’B’C’中,若,则有△ABC∽△A’B’C’.
二、小组合作,探究新知
得到猜想后学生分组动手实践,进一步探究猜想的正确性。合作探究后,以猜想1为例分析证明思路.
猜想1.两角对应相等,两三角形相似。
已知:△ABC与△A’B’C’中,
∠A=∠A’,∠B=∠B’。
求证:△ABC∽△A’B’C’。
启发学生结合刚才的动手实践思考,若平移△A’B’C’得到△ADE,则可转化为预备定理的形式.如何实现平移是关键,在此可让学生集思广益阐述观点.
方法之一:由∠A=∠A’,∠B=∠B’,能实现上述平移.
证明法一:在AB上截取AD=A’B’,且过点D作DE∥BC交AC于E.
∴∠ADE=∠B,∵∠B=∠B’【WwW.277433.cOM 正能量句子】
∴∠B’=∠ADE
又∵∠A=∠A’,AD=A’B’
∴△ADE≌△A’B’C’(ASA)
又∵DE∥BC
∴△ADE∽△ABC,∴△ABC∽△A’B’C’
法二:截取AD=A’B’且作∠ADE=∠B’交AC于E.
证法:略
师生共同总结实现上述化归的思路:
(1)利用添加辅助线的方法将问题化归为相似三角形的预备定理(图中,DE∥BC则△ADE∽△ABC).
(2)利用平移变换将证明三角形相似转化为证明三角形全等(图中△ADE≌△A’B’C’).
利用上述思路,证明猜想,得到判定定理1:如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似.简记:两角对应相等,两三角形相似.
判定定理2,3的证明过程由学生仿照定理1的证明完成.请二人上黑板板演.
猜想证明完毕,让学生观察、对比三个定理的证明方法,在证明过程中是否有共性?证法的本质是什么?让学生深入思考,感受三个判定定理的证法本质是一样的,即:将相似三角形的判定利用平移的方法,化归为预备定理的形式,最终转化为判断两个三角形全等,区别就在于全等的证明方法不同.
请学生分别说出三个定理的推理形式且提出:如果不是“夹角”,结论是否仍然成立,请学生分析并举出反例.
在△ABC与△A’B’C’中,
已知∠B=∠B’,
但△ABC不相似于△A’B’C’
三、实战演练,巩固新知
例在△ABC和△DEF中,
∠A=40,∠B=80,∠E=80,∠F=60.
求证:△ABC∽△DEF.
思考题:
如图,已知,在△ADC和△ACB中,
∠A=∠A,请你添加一个条件,
使△ADC∽△ACB。
四、复习小结,归纳新知
师生共同回忆并总结:
今天你有什么收获?
新知的获得采用了什么方法?——类比、转化
你还有困难与困惑吗?
教师根据学生的回答总结类比学习方法及转化思想的重要意义.
五、作业
整理课上定理证明.
六、板书设计:
相似三角形的判定课件【篇8】
一、教学目标
1、使学生在经历探究相似三角形判定方法的过程中,初步掌握相似三角形的判定定理,理解它的证明方法,初步会运用相似三角形的三个判定定理来解决有关问题。
2、在探究判定方法的过程中,提高学生运用类比方法,猜想命题,再加以证明的研究问题的能力以及增强用化归思想解决问题的意识。
3、通过动手实践、观察、猜想、归纳、等数学探究活动,给学生创造成功的机会,使他们爱学、乐学、会学,同时培养学生勇于探索、积极合作的精神。
二、教学重点和难点
重点:
(1)探索两个三角形相似的条件的过程;
(2)相似三角形判定定理的理解与初步应用。
难点:
相似三角形的判定定理的证明。
三、教学方法:
自主探究与小组合作相结合。
四、教学手段:
多媒体辅助教学。
五、教学过程:
请学生出示课前按要求剪好的三角形,教师利用已知三角形模板验证两个三角形是否全等的同时请学生回答他裁剪方法的理论依据,借此复习全等三角形的判定方法。在此基础上教师要求学生动手剪一个三角形与已知三角形相似。学生可能马上利用平行线截一个三角形,教师要求学生说出这种裁剪方法的依据——预各定理。在肯定答案的同时提出,那么如何判断三角形相似呢?目前你掌握的方法有哪些?教师提出:判定两三角形相似时,定义的条件过多,预备定理的使用要求具有局限性,那么是否还有其它的判定方法呢?
本节课我们继续研究:相似三角形的判定(二)。“你认为我们可以从哪儿入手研究呢?”引导学生类比全等三角形的判定方法进行猜想。
引导学生利用相似三角形与全等三角形的区别与联系,把上述全等三角形判定定理中比值为1改成比值为正数“k”,就可得到相似三角形的判定方法,得到猜想。利用上述思路,证明猜想,得到判定定理1:如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似。简记:两角对应相等,两三角形相似。判定定理2、3的证明过程由学生仿照定理1的证明完成。请二人上黑板板演。猜想证明完毕,让学生观察、对比三个定理的证明方法,在证明过程中是否有共性?证法的本质是什么?让学生深入思考,感受三个判定定理的证法本质是一样的,即:将相似三角形的判定利用平移的方法,化归为预备定理的形式,最终转化为判断两个三角形全等,区别就在于全等的证明方法不同。
相似三角形的判定课件【篇9】
一、教学目标1、经历探索三角形相似的判定方法(两边对应成比例且夹角相等的两三角形相似)的`过程,掌握判定三角形相似的方法。2、能够灵活地运用两边对应成比例且夹角相等两三角形相似的判定方法解决相关问题。3、在观察、归纳、测量、实验、推理的过程中,培养学生勇于探索的精神。二、教学重点、难点重点:相似三角形的判定定理“两边对应成比例且夹角相等的两三角形相似”。难点:“两边对应成比例且夹角相等的两三角形相似”的证明思路探寻。三、教学过程(一)直接导入简要回顾:上一节课我们已经学习了两角相等的两个三角形相似,今天这节课继续来研究三角形相似的判定。(二)探究新知探索三角形相似的判定方法实验探究一:利用三角形纸片进行探究老师展示两个三角形纸片,提出问题:这两个三角形是什么关系?依据是什么?(动作:其中一个三角形纸片通过小型磁铁粘在黑板上并标上字母A,B,C),让学生在另一个三角形的基础上制作一个三角形△A′B′C′,使其满足:让学生判断这两个三角形是否相似,请同学们拿出上节课让准备好的两个三角形的纸片,动手操作完成△A′B′C′的制作。然后可以通过测量角,验证两个三角形是否相似;也可以通过三角形中位线的性质判定所构成的三角形与原三角形是否相似。实验探究二:利用教具进行探究两条直木条钉在一起,长蓝边与短蓝边的比等于长红边与短红边的比值为2,判断两个三角形是否相似?依据是什么?我们发现对应边的比为1:2或2:1且夹角相等的两个三角形相似。那么两边的比值相等且是任意值,夹角相等的两个三角形还是否相似?我们来看几何画板。实验探究三:利用几何画板进行探究问题1:两组对应边的长度发生改变,但比值不变,且夹角相等,两个三角形相似吗?问题2:两组对应边的比值不变,夹角度数改变,但保持两角相等,这两个三角形相似吗?问题3:如果两组对应边的比和夹角在保证相等的关系下,都改变他们的数值,这两个三角形相似吗?结合几何画板可以度量角的大小的功能,可以得出这三种情况两个三角形都是相似的。通过实验我们发现:对应边成比例且夹角对应相等的两个三角形相似。这个命题是真命题吗?我们还需要进行推理论证。论证过程:由证明两角相等的两个三角形相似的方法,通过类比让学生体会作全等,证明相似遇到的困难。进而引导退一步利用先作相似,再证全等的方法解决定理的证明。经过证明我们得到了定理:两边对应成比例且夹角相等,两三角形相似。到目前为止,我们有几种方法来判定两个三角形相似?(三)辨析设计意图:巩固两角相等的两个三角形相似;两边对应成比例且夹角相等,两三角形相似。以及两边对应成比例且其中一边的对角相等的两个三角形不一定相似。我们发现两边对应成比例且其中一边的对角相等的两个三角形不一定相似。很多问题是不能只通过观察就可以判断相似,需要我们分析———推理———论证。(四)典例分析设计意图:规范定理的书写格式。请同学们认真仔细找准对应边规范自己的书写格式。(五)一试身手,勇攀高峰利用实时投屏,实现同学互相评价,教师评价和鼓励。我们要善于发现别人的优点,弥补自己的不足,勇攀高峰。学生讲解。老师归纳:此题三种判定三角形相似的方法都用到了,我们要善于甄别。数学是严谨的学科,要抓住数学本质,善于观察,缜密推理。(六)小结和作业你的收获?知识、方法、思想……同学们收获颇丰。我们已经学习了三种判定三角形相似的方法,类比全等三角形的判定,还有其他方法吗?我们该如何开展后续的学习?作业:P78习题,必做题:A组1,2;选做题:B组1,2。
相似三角形的判定课件【篇10】
相似三角形是初中数学中的重要概念,它们具有相似性质,让能够研究和比较不同三角形之间的各个方面。本篇文章将以“相似三角形的判定课件”为主题,详细讲解相似三角形的判定方法,帮助读者更好地理解和掌握这一概念。
一、相似三角形的定义
相似三角形,顾名思义,是指具有相似性质的三角形。两个三角形相似的定义是:如果两个三角形的对应角相等,并且对应边的比值相等,那么这两个三角形就是相似三角形。
二、相似三角形的判定方法
1. AAA相似三角形判定法
如果两个三角形的三个内角分别相等,那么这两个三角形就是相似三角形。这种判定方法叫做AAA相似三角形判定法。
2. AA相似三角形判定法
如果两个三角形的两个角分别相等,并且这两个角之间的边比值相等,那么这两个三角形就是相似三角形。这种判定方法叫做AA相似三角形判定法。
3. SSS相似三角形判定法
如果两个三角形的三条边的比值相等,那么这两个三角形就是相似三角形。这种判定方法叫做SSS相似三角形判定法。
4. 其他判定方法
除了上述的AAA、AA、SSS相似三角形判定法外,还可以利用相似三角形的基本性质来判定两个三角形是否相似,例如:如果两个三角形的一个角相等,并且这个角的两边和另一个三角形的对应边成比例,那么这两个三角形就是相似三角形。
三、相似三角形的性质
1. 对应角相等性质:
对于相似三角形中的两个角,它们的对应角一定相等。
2. 对应边成比例性质:
对于相似三角形中的两条边,它们的对应边一定成比例。
3. 高度比例性质:
对于相似三角形中的两个三角形的高,它们的高度比一定等于对应边的比值。
4. 面积比例性质:
对于相似三角形中的两个三角形的面积,它们的面积比一定等于边长比值的平方。
四、相似三角形的应用
相似三角形在实际生活中有很多应用,例如测量高空物体的高度、建筑物的影子长度与高度的关系、航空导航中的视觉角度计算等。
1. 应用一:测量高空物体的高度
可以利用两个观察点的距离和测得的两个角度来计算高空物体的高度。假设两个观察点与地面的距离为a和b,测得的两个角度为∠A和∠B。则根据相似三角形的性质,可以得到高空物体的高度h与距离的比值为h/a = x/b,通过解方程可以计算出高度h的具体数值。
2. 应用二:建筑物的影子长度与高度的关系
在太阳辐射较好的天气条件下,可以通过测量建筑物的影子长度和影子所在的位置角度来计算建筑物的高度。假设两个测量点之间的距离为c,影子长度为d,影子所在的位置角度为∠C。根据相似三角形的性质,可以得到建筑物的高度h与影子长度d的比值为h/d = c/tan(∠C),通过测量和计算可以得到建筑物的高度。
相似三角形的判定方法以及相似三角形的性质在数学中具有重要的地位。通过灵活运用相似三角形的判定法和性质,可以解决实际生活中的各种问题,更好地理解和掌握三角形的知识。希望本篇文章能够帮助读者更好地理解相似三角形的判定课件,并在实际应用中能够灵活运用。
yJS21.com更多精选幼儿园教案阅读
相似三角形课件教案(汇总9篇)
古人云,工欲善其事,必先利其器。幼儿园的老师都想教学工作能使小朋友们学到知识,因此,老师会在授课前准备好教案,有了教案上课才能够为同学讲更多的,更全面的知识。怎么才能让幼儿园教案写的更加全面呢?在这里,你不妨读读相似三角形课件教案(汇总9篇),欢迎阅读,希望你能阅读并收藏。
相似三角形课件教案【篇1】
各位老师:
早上好
今天我说课的内容是《相似三角形的判定一》,下面我将从以下几个方面进行阐述。
一、说教材
内容选自华师大版九年级上册第二十四章第3节,是属于空间与图形领域的知识。在这之前,学生学习了全等三角形的相关知识,相似三角形是全等三角形的拓广和发展,而相似三角形的判定是相似三角形的主要内容之一,相似三角形的判定是进一步对相似三角形的本质和定义的全面研究,也是相似三角形性质的研究基础,同时还是研究圆中比例线段和三角函数的重要工具,可见相似三角形的判定占据着重要的地位。新的教学理念要求学生掌握的事思维方法,而不是仅仅记住结论,所以本节课的重点是对判定定理一的探索和理解判定定理一并学会应用,而寻找判定定理一的条件证是难点。基于以上对教材的认识,考虑到学生已有的认知结构和心理特征,我设定了以下教学目标。
二、说目标
1、知识与技能目标:
(1)、掌握两个三角形相似的方法——有两个角分别对应相等的两个三角形相似。
(2)、会用这种方法判断两个三角形相似。
2、过程与方法目标:
(1)、通过探索相似三角形判定定理(一)的过程,培养学生的动手操作能力,观察、分析、猜想和归纳能力,渗透类比、转化的数学思想方法、
(2)、利用相似三角形的判定定理(一)进行有关判断及计算,训练学生的灵活运用能力,提高表达能力和逻辑推理能力、
3、情感与态度目标:
(1)、通过实物演示和多媒体教学手段,把抽象问题直观化,激发学生学习的求知欲,感悟数学知识的奇妙无穷、
(2)、通过主动探究、合作交流,在学习活动中体验获得成功的喜悦、
三、学情分析
经过两年的几何学习,学生对几何图形的观察,几何图形的分析能力有一定的基础。部分学生解题思维能力比较高,能够正确归纳所学知识,通过学习小组讨论合作交流,能够形成解决问题的思路。现在的学生已经厌倦教师单独的说教方式,希望教师创设便于他们进行观察的几何环境,给他们自己探索、发表自己的见解和表现自己的才华的机会;更希望教师满足他们的创造愿望。
四、说教法
针对初三学生的年龄特点和心理特征,以及他们的知识水平,根据教学目标,本节课采用探究发现式教学法和参与式教学法为主,利用多媒体引导学生始终参与到学习活动的全过程中,处于主动学习的状态。通过实验探索、猜想验证、归纳总结,学习知识,培养能力。同时根据学生的不同层次,为了让每个学生得到发展,教学中还辅之以多种教学方法。
五、学法指导
为了充分体现《新课标》的要求,培养学生的动手实践能力,逻辑推理能力,积累丰富的数学活动经验。这节课主要采用动手实践,自主探索与合作交流的学习方法,使学生积极参与教学过程。在教学过程中展开思维,培养学生提出问题、分析问题、解决问题的能力,进一步理解观察、类比、分析等数学思想。
六、教学过程
根据《新课标》中“要引导学生投入到探索与交流的学习活动中”的教学要求,本节课的教学过程我是这样设计的:
1、复习三角形的定义及利用相似三角形的定义判定两个三角形相似。
2、新课引入的好坏在某种程度上关系到课堂教学的成败,本节课选择以旧孕新为切入点,创设问题情境,引入新课:
提出问题:按定义来来判定两个三角形相似需要三个角分别对应相等,三条边分别对应成比例,需要太多的条件,那么是否存在判定两个三角形相似的简便方法呢?
猜想:根据三角形的稳定性判定两个三角形相似应该可以适当的减少一些条件。
这一节课我们先从“角”入手来研究一下用尽可能少的条件判定两个三角形相似。
探究活动:
情景1、现有一块三角形玻璃ABC,不小心打碎了,但是找到了一个角∠A=40°(如图)。利用这个角能否知道原三角形的形状? (即:有一个角对应相等的两个三角形相似吗?) 利用几何画板让学生更清楚地发现:有一个角相等的两个三角形不一定相似。(条件太少)
情境2:(在情景1的基础上)于是老师在破碎的玻璃堆中详细寻找,又找到了另一个角∠B=80°.现在利用这两个角能否知道原三角形的形状?(有两个角对应相等的两个三角三角形相似吗?)
在卡纸上画一个三角形,使它的两个内角分别为40°和80°,然后再把它剪下来,跟其他同学比较一下有什么发现?同桌的两个先比较 ,再与小组的其他人比较。
学生动手操作,教师巡回指导,启发点拨。
学生经过画一画、剪一剪、量一量、算一算、拼一拼,在小组合作基础上,讨论交流,可能得出下面结论:
①通过观察三角形的形状好像一样。
②两个三角形三个角都对应相等(根据三角形内角和180°)。
③通过度量后计算,得到三边对应成比例(测量时误差较大,教师可以动手用几何画板现场操作比较准确的比值)。
由相似三角形的`定义可以发现:有两个角对应相等的两个三角形相似。
于是我们得到识别两个三角形相似的一种较为简便的方法(判定一):
如果一个三角形的两角分别与另一个三角形的两角对应相等,那么这两个三角形相似,简单地说:两角对应相等,两三角形相似。
三、练习
1、如图,AB∥CD,AC交BD于点E,证明:△CDE∽△ABE。
2、图中DG∥EH∥FI∥BC,找出图中所有的相似三角形。
3、开放性的题目:
如图△ABC中,D是AB的边上一点,过点D作一直线与AC相交于E,要使△ADE与△ABC会相似,你怎样画这条直线,并说明理由,和你的同伴交流作法是否一样?
四、小结
1、提问:“通过这节课的学习有什么收获?”
让学生同桌间畅谈自己的学习感受和体会,并请个别学生发言。
2、用定理“两角对应相等,两三角形相似”时,要注意图形中的公共角、对顶角、直角、两直线平行时的同位角、内错角等等。
相似三角形课件教案【篇2】
数学教案:相似三角形的判定教学设计
课题:相似三角形的判定
教学目标
知识与技能目标:
初步掌握运用两角对应相等的方法来判定两个三角形相似;
过程与方法目标:
1、经历三角形相似判定的探索过程,体会类比三角形全等的方法来进行三角形相似的探究的过程,从而体会研究问题的方法;
2、能利用添加辅助线将三角形相似判定定理的图形转化为预备定理的基本图形。
情感与态度目标:
1.在三角形相似判定的探究过程中,培养学生大胆动手、勇于探索和勤于思考的精神.
2.在合作与交流活动中发展学生的合作意识和团队精神,在探究活动中获得成功的体验.
教学重点:探究运用两角对应相等的方法来判定两个三角形相似,并能简单运用.
教学难点:三角形相似判定方法的证明。.
教学方法:采用学生自主探索和合作学习的教学方法;
教学手段:采用多媒体辅助教学。
教学过程:
教师活动学生活动设计意图
一、复习引入:
1、两个三角形相似的定义:
2、我们已经学过的三角形相似的判定方法及各自的适用的范围:(定义及预备定理)
若使用预备定理,我们发现需要存在平行线截三角形两边的基本图形,而对于任意的两个三角形,我们只能运用定义去判定,我们需准备对应角相等,且对应边成比例,那么是否存在识别三角形相似的简单方法呢?
3、回忆并叙述三角形全等判定定理的探究过程。(由一个条件到多个条件,逐个按边、角及其组合的顺序去寻找)。
二、新课探究、巩固新知:
本节课,我们将类比三角形全等的探究方法来进行三角形相似判定的探究:
教师给出题目:
(1)在上面的网格中,已知△ABC,至少需要保证几个角对应相等才能确定出△DEF,使得△ABC∽△DEF;
(2)利用网格自己作出图形,并用刻度尺和量角器验证作出的图形与原图形相似;
(3)小组选派代表准备展示本组的成果:图形与判定三角形相似的猜想。
教师结合学生汇报的结果点评,并适时引导学生小结猜想:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
教师适时引导:借助辅助线将两个独立的三角形构造出预备定理的基本图形即可(强调作辅助线思想:平移小三角形到大三角形内部,但语言叙述应为:作线段或角等)。
教师板书判定定理1的符号语言:
在△ABC和△DEF中,
∵∠A=∠A`;∠B=∠B`(已知)
∴△ABC∽△DEF(两角对应相等的两三角形相似)
教师引导学生与三角形全等进行类比:
1、判定三角形全等的方法有ASA、AAS、SAS,至少有一组边相等;而判定相似只需两角对应相等即可。
2、证明三角形全等需要准备3个条件,而证明三角形相似需要2个条件即可。
例1、判断正误,并说明理由:
(1)任意等边三角形是相似三角形;
(2)有一角对应相等的两等腰三角形是相似三角形;
(3)顶角对应相等的两等腰三角形是相似三角形;
(4)任意直角三角形都相似;
(5)有一锐角对应相等的两直角三角形相似。
练习1:独立编写出一个能运用判定定理1来判断两三角形是否相似的题目,并与同学进行交流。
练习2:(1)如图:E是平行四边形ABCD的一边BA延长线上一点,CE交AD于点F,请找出图中的相似三角形,并说明理由:
(2)在Rt△ABC中,CD是斜边上的高,请找出图中相似的三角形,并说明理由。
教师巡视,并辅导重点学生。
解答完题目后,教师适时引导学生小结基本图形。
例2、已知△ABC和△DEF均为等边三角形,点D、E分别在边AB、AC上,请找出一个与△DBE相似的三角形,并说明理由。
教师适时点拨:由△DBE的角的特点入手,先由特殊角600作为突破口,通过观察确定方向(寻找另外的一组角相等即可),再去证明。
教师引导学生小结例2的证明思路:当存在一组角相等时,我们需寻找另外一组角相等,从而证明三角形相似。
三、小结提升:
谈谈自己的收获:
1、知识点方面:判定三角形相似的判定方法(定义、预备定理、定理1);
基本图形:双垂直;A字型、八字型。
2、学习方法:类比旧知识学习新知识。回忆知识点;
结合教师给出的探究题目学生小组合作,大胆进行
尝试。
派学生代表展示讨论结果;
结合图形,学生口述该命题的已知与求证,并思考命题的证明过程。
学生在教师的引导下口述证明过程。
思考:运用角的条件判定全等与相似的区别。
学生独立思考并作答。
学生自编题目练习:三角形相似的判定定理1。
学生独立解决后,组内交流。
体会双垂直的基本图形,小结结论。
独立分析此题目,大胆尝试此证明过程。
学生回忆本节课教学内容,归纳提升。培养学生及时小结知识点的学习方法
激发学生探究的欲望;
为探究相似铺垫思路。
培养学生探究能力与归纳能力。
运用网格既可以准确作出图形,又可以为后面两个判定打好基础。
由于证明过程对学生有一定难度,所以在学生展示完自己的猜想后,教师引导学生进行证明。
渗透转化的意识。
加强对学生学法的训练;
要求:正确的题目需结合定理1简单叙述理由,错误的题目需举出反例
加强对判定定理1的巩固。
自编题目,激发学习兴趣。
结合图形巩固判定定理1
对于比例线段的结论由学生课下完成。
总结基本图形为学生解决较复杂题目打基础。
学生自己小结本节课的知识要点及数学方法以提高学生的学习能力。
板书设计:
课题:
(投影)判定方法:(文字语言、图形语言)例2、
相似三角形课件教案【篇3】
各位老师:
大家好!下面我就我上的《相似三角形的复习》这一课说一说我的一些想法。
一、教材分析:
(一)教材的地位和作用
相似三角形是在全等三角形知识的基础上拓广和发展的,它在工农业生产、土木建筑、测量绘图和日常生活中有着广泛的应用。比如我们在测量水塔、高楼大厦的高度时,都要利用相似三角形的判定来解决有关问题。因此,相似三角形在初中数学教学中有着举足轻重的地位。
本课主要是复习相似三角形的判定和性质及其应用。通过本节课的学习,培养学生猜想、实验、证明、探索等能力,对掌握观察、比较、类比、转化等思想有重要作用。
(二)教学目标:
根据《新课程标准纲要》对这部分内容的要求结合学生的实情,我将本节课的教学目标确定为:
知识目标:
①掌握三角形相似的判定方法。
②会用相似三角形的判定方法和性质来判断及计算。
能力目标:
①通过相似三角形的判定方法培养学生的动手操作能力。
②利用相似三角形的判定及其性质进行有关判断及计算,培养学生探究新知识,提高分析问题和解决问题的能力,
情感目标:加强对学生探究知识的兴趣和情感培养,引导学生勇于探索,大胆推想,感受数学的魅力,激发其学习的欲望与创造力
(三)教学重点与难点
这节课的重点是三角形相似的判定性质及其应用。
难点是三角形相似的判定和性质的灵活运用。
突破重难点的方法是充分运用多媒体教学手段,设置问题、探究讨论、例题讲解、小组讨论,逐一突破重难点。
二、教学方法的选择与应用
本节课采用了多媒体辅助教学,一方面能够直观、生动地反映图形,增加课堂的容量,同时有利于突出重点、分散难点,增强教学条理性,形象性,更好地提高课堂效率。教学中启发学生发现问题、思考问题,培养学生逻辑思维能力,逐步设疑,引导学生积极参与讨论,提高学生学习的兴趣和学习积极性。
三、学法
《数学新课程标准纲要》指出:有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学习数学的重要方式。为了充分体现《数学新课程标准纲要》的要求,培养学生的动手实践能力,逻辑推理能力,积累丰富的数学活动经验,本节课主要采用自主探索与合作交流的学习方法,使学生积极参与教学过程,在教学过程培养学生提出问题、分析问题、解决问题的能力,进一步理解观察、类比、分析等数学思想方法。
四、教学设计:
根据《数学课程标准》中“要引导学生投入到探索与交流的学习活动中”的教学要求,本节课教学过程我是这样设计的。
(一)、温故知新
1、选一选下列各对三角形不能判定为相似的是( )
A.一腰和底边成比例的两个等腰三角形
B.有一个角对应相等的两个等腰三角形
C.△ABC的三边为1,2,△DEF的三边为2,3
D.有一个锐角对应相等的两个直角三角形
(设计意图:使学生加深对相似三角形判定方法的理解。)
2补一补如图点P是△ABC的AB边上的一点,要使△APC∽△ACB,则需补上哪个条件?
(设计意图:通过让学生自己补条件得到到两个相似三角形,进一步让学生理解判定方法,同时激发学生自主学习,学会自己编题目,做学习的主人)
(二)、寻找相似三角形,相似三角形的证明,和图形变换
3.数一数:
已知△ABC中, BD,CE分别是高线,BD,CE交于点O
求证:△ABD∽△ACE
思考
(1)图中与△ABD相似的三角形有几个?数一数图中相似三角形有几对?
(2)如果连接ED,看看图中相似三角形还有吗?
△AED=1,S△ABC=4,求∠A的度数
(设计意图:在数相似三角形时既要不漏数也要不少数是一个重点,也是一个难点。所以一开始我先让学生数图中与△ABD相似的三角形有哪几个?再让学生数一数图中相似三角形有几对?学生就不会漏数,因为学生特别在数两两相似的三角形时学生往往漏数。另外出示的问题分三步走,由易到难,各种知识相结合,使题目进一步得到延伸与拓展,培养学生的综合运用知识的能力。)
4.证一证:
已知:△ABC内接于⊙O,AB=AC,D为BC上一点,延长AD交⊙O于E,求证:AB2=AD.AE
思考:如改为D为BC延长线上的一点,其它条件都不变,结论是否成立?
(设计意图:教师在多媒体几何画板上直观地演示从两个图形的探索,引导学生发现:尽管有时尽管图形变了,但证明的思路和方法也不变。也就是“形变实不变”。另由于采用多媒体数学,不仅增加了课堂教学的容量,而且能让学生在图形的运动中直观地获取知识,享受到几何的动感美。
(三)画图题
通过画图构造两个或三个相似三角形和在4x4的正方形网格中构造相似三角形是近年来中考中的一个亮点,本环节通过一系列画图问题的设置和解决,旨在使学生在获得新知的情况下,体验成功,从而增加对数学的兴趣。
5(1)已知:△ABC中,∠C=90,∠A=60,∠B=30;△DEF中,∠D=90,∠E=50,∠F=40,将这两个三角形各分成两个三角形,使△ABC所分成的每一个三角形与△DEF所分成的每个三角形分别对应相似。
(2)在方格纸中,每个小格的顶点叫做格点,以格点为顶点的三角形叫做格点三角形.在如图4x4的方格纸中,△ABC是一个格点三角形,请你画一个格点三角形,使它与△ABC相似(相似比不为1)
课外探究题
(3)点F是△ ABC中AB边上的一点,过点F作直线(不与直线AB重合)截△ ABC,使截得的三角形与原三角形相似,满足这样条件的直线最多有几条,最少有几条?(设计意图课堂教学中,应尽量创造愉悦的求知氛围,培养他们勇于探索、勇于发现问题的能力,形成良好的思维习惯
以上是我的本堂课的一些粗浅的想法,不足之处谨各位老师批评指正,谢谢大家。
相似三角形课件教案【篇4】
九年级数学教案:相似三角形的判定
教学目标:1.使学生在经历探究相似三角形判定方法的过程中,初步掌握相似三角形的判定定理,理解定理的证明方法,初步会运用定理来解决有关问题.
2.培养学生运用类比联想,猜想命题,再加以证明的研究问题的方法以及化归的思想.
3.通过观察、猜想、归纳、探究等数学活动,给学生创造成功机会,使他们爱学、乐学、会学,同时培养学生勇于探索、积极合作的精神.
教学重点和难点:
重点:相似三角形的判定定理的理解和初步应用;
难点:相似三角形的判定定理的证明.
教学方法:自主探究与小组合作相结合
教学过程设计
一、创设情境,提出问题
请学生出示课前按要求剪好的三角形,教师利
用已知三角形模板验证两个三角形是否全等的同时
请学生回答他裁剪方法的理论依据,借此复习全等三角形的判定方法.
1.SAS;2.ASA;3.AAS;4.SSS。
在此基础上教师要求学生动手剪一个三角形与已知三角形相似.
学生可能马上利用平行线截一个三角形,教师要求学生说出这种裁剪方法的依据——预备定理.在肯定答案的同时提出,那么如何判断三角形相似呢?目前你掌握的方法有哪些?1.相似三角形的预备定理;2.定义教师提出:判定两三角形相似时,定义的条件过多,预备定理的使用要求具有局限性,那么是否还有其它的判定方法呢?本节课我们继续研究:相似三角形的判定(二).你认为我们可以从哪儿入手研究呢?引导学生类比全等三角形的判定方法进行猜想.
学生类比联想,自主探究猜想相似三角形的判定方法:
1.利用投影展示一般三角形全等的判定定理
(1)ASA:
若∠A=∠A’,∠B=∠B’,,
则有△ABC≌△A’B’C’
(2)AAS:
若∠A=∠A’,∠B=∠B’,,则有△ABC≌△A’B’C’
3)SAS:
若,∠A=∠A’,则有△ABC≌△A’B’C’
4)SSS:
若,则有△ABC≌△A’B’C’
2.猜想相似三角形的判定方法
引导学生利用相似三角形与全等三角形的区别与联系,把上述全等三角形判定定理中比值为1改成比值为正数“k”,就可得到相似三角形的判定方法,得到猜想.
猜想一(类比角边角公理和角角边定理)
△ABC与△A’B’C’中,若∠A=∠A’,∠B=∠B’,则△ABC∽△A’B’C’.
猜想二(类比边角边公理)
△ABC与△A’B’C’中,若,∠A=∠A’,则有△ABC∽△A’B’C’.
猜想三(类比边边边公理)换元
△ABC与△A’B’C’中,若,则有△ABC∽△A’B’C’.
二、小组合作,探究新知
得到猜想后学生分组动手实践,进一步探究猜想的正确性。合作探究后,以猜想1为例分析证明思路.
猜想1.两角对应相等,两三角形相似。
已知:△ABC与△A’B’C’中,
∠A=∠A’,∠B=∠B’。
求证:△ABC∽△A’B’C’。
启发学生结合刚才的动手实践思考,若平移△A’B’C’得到△ADE,则可转化为预备定理的形式.如何实现平移是关键,在此可让学生集思广益阐述观点.
方法之一:由∠A=∠A’,∠B=∠B’,能实现上述平移.
证明法一:在AB上截取AD=A’B’,且过点D作DE∥BC交AC于E.
∴∠ADE=∠B,∵∠B=∠B’
∴∠B’=∠ADE
又∵∠A=∠A’,AD=A’B’
∴△ADE≌△A’B’C’(ASA)
又∵DE∥BC
∴△ADE∽△ABC,∴△ABC∽△A’B’C’
法二:截取AD=A’B’且作∠ADE=∠B’交AC于E.
证法:略
师生共同总结实现上述化归的思路:
(1)利用添加辅助线的方法将问题化归为相似三角形的预备定理(图中,DE∥BC则△ADE∽△ABC).
(2)利用平移变换将证明三角形相似转化为证明三角形全等(图中△ADE≌△A’B’C’).
利用上述思路,证明猜想,得到判定定理1:如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似.简记:两角对应相等,两三角形相似.
判定定理2,3的证明过程由学生仿照定理1的证明完成.请二人上黑板板演.
猜想证明完毕,让学生观察、对比三个定理的证明方法,在证明过程中是否有共性?证法的本质是什么?让学生深入思考,感受三个判定定理的证法本质是一样的,即:将相似三角形的判定利用平移的方法,化归为预备定理的形式,最终转化为判断两个三角形全等,区别就在于全等的证明方法不同.
请学生分别说出三个定理的推理形式且提出:如果不是“夹角”,结论是否仍然成立,请学生分析并举出反例.
在△ABC与△A’B’C’中,
已知∠B=∠B’,
但△ABC不相似于△A’B’C’
三、实战演练,巩固新知
例在△ABC和△DEF中,
∠A=40,∠B=80,∠E=80,∠F=60.
求证:△ABC∽△DEF.
思考题:
如图,已知,在△ADC和△ACB中,
∠A=∠A,请你添加一个条件,
使△ADC∽△ACB。
四、复习小结,归纳新知
师生共同回忆并总结:
今天你有什么收获?
新知的获得采用了什么方法?——类比、转化
你还有困难与困惑吗?
教师根据学生的回答总结类比学习方法及转化思想的重要意义.
五、作业
整理课上定理证明.
六、板书设计:
相似三角形课件教案【篇5】
今天,我的说课将分三大部分进行:一、说教材;二、说教学策略;三、说教学程序。
一、说教材
从教材地位、学习目标、重点难点、学情分析、教学准备五个方面阐述
1、本课内容在教材中的地位
本节教学内容是本章的重要内容之一。本节内容是在完成对相似三角形的判定条件进行研究的基础上,进一步探索研究相似三角形的性质,从而达到对相似三角形的定义、判定和性质的全面研究。从知识的前后联系来看,相似三角形可看作是全等三角形的拓广,相似三角形的性质研究也可看成是对全等三角形性质的进一步拓展研究。另外相似三角形的性质还是研究相似多边形性质的基础,也是今后研究圆中线段关系的有效工具。
从新课程对几何部分的编写来看,几何知识的结论较之老教材已经大为减少,教材首要关注的不是掌握多少几何知识的结论,相对更重视的是对学生合情推理能力的训练与培养。从这个角度上说,不论是全等还是相似,教材只是将它们作为训练学生合情推理的一个有效素材而已,正因为此,本节课应重视学生有条理的思考及有条理的表达。
2.学习目标
知识与技能方面:
探索相似三角形、相似多边形的性质,会运用相似三角形、相似多边形的性质解决有关问题;
过程与方法方面:
培养学生提出问题的能力,并能在提出问题的基础上确定研究问题的基本方向及研究方法,渗透从特殊到一般的拓展研究策略,同时发展学生合情推理及有条理地表达能力。
情感态度与价值观方面:
让学生在探求知识的活动过程中体会成功的喜悦,从而增强其学好数学的信心。
3.教学重点、难点
立足新课程标准和学生已有知识经验、数学活动经验,我确立了如下的教学重点和难点。
教学重点:相似三角形、相似多边形的性质及其应用
教学难点:①相似三角形性质的应用;
②促进学生有条理的思考及有条理的表达。
4.学情分析
从七上开始到现在,学生已经经历了一些平面图形的认识与探究活动,尤其是全等三角形性质的探究等活动,让学生初步积累了一定的合情推理的经验与能力,这是学生顺利完成本节学习内容的一个有利条件。
对相似形的性质的结论,学生是有生活经验与直观感受的。比如说两幅大小不等的中国地图,如果其相似比为2:1,我们在较大的地图上量出北京到南京的图上距离为4cm,问在较小的地图上北京到南京的图上距离是几厘米?学生肯定知道是2cm,这个问题中学生又没有学过相似形的性质,他怎么会知道呢?从中可以看出学生对比例尺的理解实际上是基于生活经验的。再比如说,如果你找一个没学过相似形性质的学生来问他:“如果用放大镜将一个小五角星的边长放大到原来的5倍,则这个小五角星的周长被放大到原来的几倍?面积被放大到原来的几倍?”这些问题学生基本上能给出较准确的回答。其实这就是学生对相似形性质的一种生活化的直观感受。
大家知道,源于学生原有认知水平和已有生活经验的教学设计才更能激发学生学习的内驱力,从而取得良好的教学效果。所以本节课在教学设计过程中不能把学生当作是对相似形的性质一无所知的,而是应在充分尊重学生已有的生活经验的基础上展开富有成效的教学设计。
5.教学准备
教师:直尺、多媒体课件
学生:必要的学习用具
二、说教学策略
从设计的指导思想、教学方法、学习方法三方面阐述
新课程标准指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者”,那么如何让学生在教学过程中真正成为学习的主人,同时教师在教学过程中又引导什么,与学生如何合作?这就是我这节课处理教学设计时的指导思想。为了更好地体现“学生主体”“教师主导”的地位,我打算从两条主线进行教学设计:一是从知识研究的大背景出发,结合知识的生长点拓展延伸、合理整合、组织教学;二是从尊重学生已有的知识与生活经验出发,利用学生已有的生活本能体验感受相似形的一系列性质的结论,并在此基础上创设教学情境,组织教学。力图将这两条线索有机融合,行成完整的教学体系。
采取引导发现法进行教学,充分发挥教师的主导作用与学生的主体作用,加强知识发生过程的教学,环环紧扣、层层深入,逐步引导学生观察、比较、分析,用探索、发现的方法,使学生在掌握知识的同时,逐步形成技能。
有一位教育家说过:“教给学生良好的学习方法比直接教给学生知识更重要。”本节课教给学生的学习方法有:提出问题,感受价值,探究解决的研究问题的基本方法,从特殊到一般的拓展研究方法等。以此发展学生思维能力的独立性与创造性,逐步训练学生由“被动学会”变成“主动会学”。
三、说教学程序
(一)类比研究,明确目标
师:同学们,回顾我们以往对全等三角形的研究过程,大家会发现,我们对一个几何对象的研究,往往从定义、判定和性质三方面进行。类似的我们对相似三角形的研究也是如此。而到目前为止,我们已经对相似形进行了哪些方面的研究呢?
生:已经研究了相似三角形的定义、判别条件。
师:那么我们今天该研究什么了?
生:相似三角形的性质。
设计意图:
从几何对象研究的大背景出发,给学生一个研究问题的基本途径。从而让学生自然明白本节课的学习目标:相似三角形的性质。
(二)提出问题,感受价值,探究解决
师:就你目前掌握的知识,你能说出相似三角形的1-2条性质吗?并说明你的依据。
生:相似三角形的对应角相等,对应边成比例。根据是相似三角形的定义。
师:对于相似三角形而言,边和角的性质我们已经得到,除边角外你认为还有哪些量之间的性质值得我们研究呢?
设计意图:
我们常常会说:提出问题比解决问题更重要。但是作为教师,我们应该清醒地认识到,学生提出问题的能力是需要逐步培养的。此处设问就是要培养学生提出问题的能力。我希望学生能提出周长、面积、对应高、对应中线、对应角平分线之间的关系来研究,甚至于我更希望学生能提出所有对应线段之间的关系来研究。估计学生能提出这其中的一部分问题。如果学生能提出这些问题(如相似三角形周长之比等于相似比等),就说明他的生活经验的直觉已经在起作用了。如果学生提不出这些问题,说明他的生活直觉经验还没有得到激发,我可以利用前面提到的放大镜问题、大小两幅地图问题等逐步启发,激发学生的一些源自生活化的思考,从而回到预设的教学轨道。
师:对于同学们提出的一系列有价值的问题,我们不可能在一节课内全部完成对它们的研究,所以我们从中挑出一部分内容先行研究。比如我们来研究周长之比,面积之比,对应高之比的问题。
师:为了让同学们感受到我们研究问题的实际价值。我们来看一个生活中的素材:
给形状相同且对应边之比为1:2的两块标牌的'表面涂漆。如果小标牌用漆半听,那么大标牌用漆多少听?
师:(1)猜想用多少听油漆?(2)这个实际问题与我们刚才的什么问题有着直接关联?
生:可能猜半听、1听、2听、4听等。同时学生能感受到这是与相似三角形面积有关的问题。
设计意图:从学习心理学来说,如果能知道自己将要研究的知识的应用价值,则更能激发起学生学习的内在需求与研究热情。
师:同学们的猜测到底谁的对呢?请允许老师在这儿先卖个关子。让我们带着这个疑问来对下面的问题进行研究。到一定的时候自然会有结论。
情境一:如图,ΔABC∽ΔDEF,且相似比为2:1,DE、EF、FD三边的长度分别为4,5,6。(1)请你求出ΔABC的周长(学生只能用相似三角形对应边成比例求出ΔABC的三边长,然后求其周长)
(2)如果ΔDEF的周长为20,则ΔABC的周长是多少?说出你的理由。(通过这个问题的研究,学生已经可以得到相似三角形周长之比等于相似比的结论)
(3)如果ΔABC∽ΔDEF,相似比为k:1,且ΔDEF三边长分别用d、e、f表示,求ΔABC与ΔDEF的周长之比。
结论:相似三角形的周长之比等于相似比。
情境二:
师:相似三角形周长比问题研究完了,下面我们该研究什么内容了?
生:面积比问题。
师:那么对于相似三角形的面积比问题你打算怎样进行研究?请你在独立思考的基础上与小组同学一起商量,给出一个研究的基本途径与方法。
设计意图:人类在改造自然的过程中,会遇到很多从未见过的新情境、新课题。当我们遇到新问题的时候,确定研究方向与策略远比研究问题本身更有价值。如果你的研究方向与研究策略选择错误的话,你根本就不可能取得好的研究成果。而这种确定研究问题基本思路的能力也是我们向学生渗透教育的重要内容。所以对于相似三角形面积比的研究,我认为让学生探索所研究问题的基本走向与策略远比解题的结论与过程更有价值。
(师)在学生交流的基本研究方向与策略的基础上,与学生共同活动,作出两个三角形的对应高,通过相似三角形对应部分三角形相似的研究得到“相似三角形的对应高之比等于相似比”的结论。进而解决“相似三角形的面积比等于相似比的平方”的问题。体现教材整合。
(三)拓展研究,形成策略,回归生活
拓展研究一:由相似三角形对应高之比等于相似比,类比研究相似三角形对应中线、对应角平分线之比等于相似比的性质;(留待下节课研究,具体过程略)
拓展研究二:由相似三角形研究拓展到相似多边形研究
师:通过上述研究过程,我们已经得到相似三角形的周长之比等于相似比,面积之比等于相似比的平方。那么这些结论对一般地相似多边形还成立吗?下面请大家结合相似五边形进行研究。
情境三:如图,五边形ABCDE∽五边形A/B/C/D/E/,相似比为k,求其周长比与面积之比。
说明:对于周长之比,可由学生自行研究得结论。对于面积之比问题,与前面一样,先由学生讨论出研究问题的基本方向与策略——转化为三角形——来研究。然后通过师生活动合作研究得结论。
拓展结论1:相似多边形的周长之比等于相似比;
相似多边形的面积之比等于相似比的平方。
(结合相似五边形研究过程)
拓展结论2:相似多边形中对应三角形相似,相似比等于相似多边形的相似比;
相似多边形中对应对角线之比等于相似比;
进而拓展到:相似多边形中对应线段之比等于相似比等。
回归生活一:
师:通过前面的研究,我们得到了有关相似形的一系列结论,现在让我们回头来看前面的标牌涂漆问题。你能确定是几听吗?如果把题中的三角形条件改成更一般的“相似形”你还能解决吗?
回归生活二:(以师生聊天的方式进行)
其实我们生活中对相似形性质的直觉解释是正确的,线段、周长都属于一维空间,它的比当然等于相似比,而面积就属于二维空间了,它的比当然等于相似比的平方了,比如两个正方形的边长之比为1:2,面积之比一定为1:4。甚至在此基础上我们也可以想像:相似几何体的体积之比与相似比的关系是什么?
生:相似比的立方。
设计意图:新课程标准指出“数学教学活动要建立在学生已有生活经验的基础上---”;教育心理学认为:“源于学生生活实际的教育教学活动才更能让学生理解与接受,也更能激发学生的学习热情,从而导致好的教学效果”;于新华老师在一些教研活动中曾经说过:“源于学生的生活经验与数学直觉来展开教学设计,构建知识,发展能力,最终还要回到学生的生活经验理解上来,形成新的数学直觉。这才是教学的最高境界。”
而我的设计还有一个意图就是向学生渗透从生活中来回到生活中去的思想,让学生体会学好数学的重要性。
(四)操作应用,形成技能
课内检测:
1.已知两上三角形相似,请完成下面表格:
相似比2
对应高之比0.5
周长之比3 k
面积之比100
2.在一张比例尺为1:20xx的地图上,一块多边形地区的周长为72cm,面积为200cm2,求这个地区的实际周长和面积。
设计意图:落实双基,形成技能
(五)习题拓展,发展能力
已知,如图,ΔABC中,BC=10cm,高AH=8cm。点P、Q分别在线段AB、AC上,且PQ∥BC,分别过点P、Q作BC边的垂线PM、QN,垂足分别为M、N。我们把这样得到的矩形PMNQ称为△ABC的内接矩形。显然这样的内接矩形有无数个。
(1)小明在研究这些内接矩形时发现:当点P向点A运动过程中,线段PM长度逐渐变大,而线段PQ的长度逐渐变小;当点P向点B运动的过程中,线段PM逐渐变小,而线段PQ的长度逐渐变大,根据此消彼长的想法,他提出一个大胆的猜想:在点P的运动过程中,矩形PQNM的面积s是不变的。你认为他的猜想正确吗?为什么?
(2)在点P的运动过程中,矩形PMNQ的面积有最大值吗?有最小值吗?
答:最大值,最小值(填“有”或“没有”)。请你粗略地画出矩形面积S随线段PM长度x变化的大致图象。
(3)小明对关于矩形PMNQ的面积的最值问题提出了如下猜想:
①当点P为AB中点时,矩形PMNQ的面积最大;
②当PM=PQ时,矩形PMNQ的面积最大。
你认为哪一个猜想较为合理?为什么?
(4)设图中线段PM的长度为x,请你建立矩形PQNM的面积S关于变量x的函数关系式。
设计意图:将课本基本习题改造成发展学生能力的开放型问题研究,体现了课程整合的价值。
(六)作业(略)
另外值得一提的是:本节课对学生的评价,更多的应关注对学生学习的过程性评价。在整个教学过程中,我都将尊重学生在解决问题过程中所表现出的不同水平,尽可能地让所有学生都能主动参与,并引导学生在与他人的交流中提高思维水平。在学生回答时,我通过语言、目光、动作给予鼓励与表扬,发挥评价的积极功能。尤其注意鼓励学有困难的学生主动参与学习活动,发表自己看法,肯定他们的点滴进步。
相似三角形课件教案【篇6】
一.教材分析
(一)教材的地位和作用
相似三角形的知识是在全等三角形知识的基础上的拓广和发展,相似三角形承接全等三角形,从特殊的相等到一般的成比例予以深化,学好相似三角形的知识,为今后进一步学习三角函数及与固有关的比例线段等知识打下良好的基础。
本节课是为学习相似三角形的判定定理做准备的,因此学好本节内容对今后的学习至关重要。
(二)教学的目标和要求
1.知识目标:理解相似三角形的概念,掌握判定三角形相似的预备定理。
2.能力目标:培养学生探究新知识,提高分析问题和解决问题的能力,增进发放思维能力和现有知识区向最近发展区迁延的能力。
3.情感目标:加强学生对斩知识探究的兴趣,渗透几何中理性思维的思想。
(三)教学的重点和难点
1.重点:相似三角形和相似比的概念及判定三角形相似的预备定理。
2.难点:相似三角形的定义和判定三角形相似的预备定理。
二、教法与学法
采用直观、类比的方法,以多媒体手段辅助教学,引导学生预习教材内容,养成良好约自学才惯,启发学生发现问题、思考问题,培养学生逻辑思维能力。逐步设疑,引导学生积极参与讨论,肯定成绩,使其具有成就感,提高他们学习约兴趣和学习的积极性。
三、教学过程的分析
看我国国旗,国旗上约大五角星和小五角星是相似图形。本节课要学习的新知识是相似三角形,准备分四个步骤进行。
1. 关于相似三角形定义的学习,是从实践中总结得出定义的两个条件,培养学生观察归纳的思维方法,从感性认识转化为理性认识。我准备用三角形的中位线定理引入,让学生动手画一个具有三角形中位线的三角形,然后问:三角形的中位线所截得的三角形与原三角形的各角有什么关系?各边有什么关系?再从中位线所在的直线上下平移进行观察,想一想怎么回答。学生容易由学过的知识得出:所截得的三角形与原三角形的“对应角相等,对应边成比例”,最后指明具有这两个特性的两个三角形就叫做相似三角形。这一段教学方法的设计是要培养学生的动手能力和观察能力。并逐步培养从具体到抽象的归纳思维能力。将所截得的三角形移出记为 △ABC,原三角形记为△A'B'C'。因此,如果有:
∠A=∠A',∠B=∠B',∠C=∠C',
那么△ABC与△A'B'C'是相似的。以此来加强两个三角形相似定义的认识。
2. 关于用相似符号“∽”来表示两个三角形相似时,考虑与全等三角形的全等符号“≌”表示相类比引入。全等符号“≌”可看成由形状相同的符号“∽”和大小相等的符号“=”所合成,而相似形只是形状相同,所以只用符号“∽”表示,这样的讲法是格数学符号形象化了。学生会比较容易记住,是否可以,请同行们提意见。必须注意:用相似符号“∽”表示两个三角形相似,书写时应把对应顶点写在对应位置上。例如,在两个相似三角形中,其顶点D与A对应,E与B对应,F和C对应,就应写成△ABC∽△DEF,而不能任意写成△ABC∽△FDE。把对应顶点写在对应位置上的问题,在以后的解题中常常显示出它的重要性。根据相似三角形约定义可知:
如果两个三角形相似,那么它们的对应角相等,对应达成比例。在由相似来判断它们的对应角及对应边时,如果其对应项点是按对应位置书写的,那么这个判断就准确而且迅速。如△ABC∽△DEF,则AB、BC、AC就分别与DE、EF、DF相对应,∠A、∠B、∠C就分别与∠D、∠E、∠F相对应。这样就可避免产生混乱和错误。对学生也是一种思维方法的训练,引导学生考虑问题时要有条理和方法。在判断相似三角形的对应边及对应角时,还常用另外一种方法,即:对应角的夹边是对应边。对应边的夹角是对应角。
3. 关于相似比概念的教学,应向学生讲清:如果两个三角形相似,那么第一个三角形的一边和第二个三角形的对应边的比叫做第一个三角形和第二个三角形的相似比 (或相似系数),这里,必须注意的是顺序问题和对应问题。例如:△ABC∽△DEF,那么是△ABC与△DEF的相似比,而是指△DEF与△ABC的相似比,而这两相似比互为倒数。由此可说明全等三角形是相似三角形当相似比等于l时约特殊情况。
4. 在教学预备定理前,可先复习上节课学习的P215页例6的结论[平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例。]对命题的引出,可以先画出一个三角形,然后作出平行于其中一边,并且和其他两边相交的直线,使学生直观地得到:所截得的三角形与原三角形相似,从而引出命题“平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似”。即如图,若DE∥BC,则 △ADE∽△ABC,然后分析命脉题的结论是要证明两个三角形相似。可以问学生:
当没有判定两个三角形相似约定理的情况下,应考虑利用什么方法来证明相似?如获至宝果用定义来证,应从哪几个方面来证?然后按教材内容给出证明。强调指出每个比的前项是同一个三角形的三边,而比的后项为另一个三角形的三边,位置不能写错。
因此我们可得(预备)定理:
定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。
以教材的内容为出发点,启动学生自发学习,引导学生探究思维,以达知识目标。为了巩固本节保所学的知识,安排课堂练习,之后进行提问与调板,了解学生掌握知识的情况。
相似三角形课件教案【篇7】
一、教学目标
1、使学生了解直角三角形相似定理的证明方法并会应用。
2、继续渗透和培养学生对类比数学思想的认识和理解。
3、通过了解定理的证明方法,培养和提高学生利用已学知识证明新命题的能力。
4、通过学习,了解由特殊到一般的唯物辩证法的观点。
二、教学设计
类比学习,探讨发现
三、重点及难点
1、教学重点:是直角三角形相似定理的应用。
2、教学难点:是了解直角三角形相似判定定理的证题方法与思路。
四、课时安排
3课时
五、教具学具准备
多媒体、常用画图工具、
六、教学步骤
[复习提问]
1、我们学习了几种判定三角形相似的方法?(5种)
2、叙述预备定理、判定定理1、2、3(也可用小纸条让学生默写)。
其中判定定理1、2、3的证明思路是什么?(①作相似,证全等;②作全等,证相似)
3、什么是“勾股定理”?什么是比例的合比性质?
【讲解新课】
类比判定直角三角形全等的“HL”方法,让学生试推出:
直角三角形相似的判定定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
这个定理有多种证法,它同样可以采用判定定理1、2、3那样的证明思路与方法,即“作相似、证全等”或“作全等、证相似”,教材上采用了代数证法,利用代数法证明几何命题的思想方法很重要,今后我们还会遇到。应让学生对此有所了解。
定理证明过程中的“都是正数,其中都是正数”告诉学生一定不能省略,这是因为命题“若,到”是假命题(可举例说明),而命题“若,且、均为正数,则”是真命题。
教师在讲解例题时,应指出要使___。应有点A与C,B与D,C与B成对应点,对应边分别是斜边和一条直角边。
还可提问:
(1)当BD与、满足怎样的关系时?(答案:)
(2)如图,当BD与、满足怎样的关系式时,这两个三角形相似?(不指明对应关系)
(答案:或两种情况)
探索性题目是已知命题的结论,寻找使结论成立的题设,是探索充分条件,所以有一定难度,教材为了降低难度,在例4中给了探索方向,即“BD与满足怎样的关系式。”
这种题目体现分析问题的思维方法,对培养学生研究问题的习惯有好处,教师要给予足够重视,但由于有一定难度,只要求学生了解这类问题的思考方法,不应提高要求或增加难度。
[小结]
1、直角三角形相似的判定除了本节定理外,前面判定任意三角形相似的方法对直角三角形同样适用。
2、让学生了解了用代数法证几何命题的思想方法。
3、关于探索性题目的处理。
七、布置作业
教材P239中A组9、教材P240中B组3。
相似三角形课件教案【篇8】
尊敬的各位老师:
大家好!
今天我说课的题目是义务教育数学课程标准实验教材八年级下册第四章第六节的《探索相似三角形的条件(一)》这一课内容。下面我分五部分来汇报我这节课的教学设计,这就是“教材分析“、“教学”、“学法”、“教学过程”、“教学评价”。
一、教材分析:
(一)教材的地位和作用:
“探索相似三角形的条件”是在学习了相似图形及相似三角形的概念等知识后,单独研究如何探索相似三角形的条件的一课,本课是判定三角形相似的起始课,是本章的重点之一。既是前面知识的延伸和全等三角形性质的拓展,也是今后证明线段成比例,求几何图形和研究相似多边形性质的重要工具,它在工农业生产、土木建筑、测量绘图和日常生活中有着广泛的应用。比如我们在测量水塔、高楼大厦的高度时,都要利用相似三角形的判定来解决有关问题。在本课中,学生学习的主要内容是三角形相似的判定定理1及其初步应用,这就为下节课学习相似三角形的判定条件(二)(三)打下好的基础。通过本节课的学习,还可培养学生猜想、实验、证明、探索等能力,对掌握观察、比较、类比、转化等思想有重要作用。因此,这节课在本章中有着举足轻重的地位。
(二)教学目标:
根据《新课程标准纲要》对这部分内容的要求及本课的特点,结合学生的实情,我本节课的教学目标确定为:
l知识目标:
①掌握三角形相似的判定方法(一)。
②会用相似三角形的判定方法(一)来判断及计算。
l能力目标:
①通过亲身体会得出相似三角形的判定方法(一),培养学生的动手操作能力。
②利用相似三角形的判定方法(一)进行有关判断及计算,训练学生的灵活运用能力。
l情感目标:通过实物演示和电化教学手段,把抽象问题直观化,从而发
展学生的合情推理能力,进一步培养逻辑推理能力。
(三)教学重点与难点
这节课的重点是三角形相似的判定定理1及应用。
难点是三角形相似的判定方法1的运用。
突破重难点的方法是充分运用多媒体教学手段,设置问题、探究讨论、例题讲解、课后小结直至布置作业,突出主线,层层深入,逐一突破重难点。
二、教学方法的选择与应用
根据本节课的教学目标、教材内容以及学生的认知特点,教学上采用以引导发现法为主,并以讨论法、演示法相结合,设计“实验、观察、讨论”的教学方法,意在帮助学生通过直观情景观察和自己动手实验,从自己的实践中获取知识,并通过讨论来深化对知识的理解。本节课采用了多媒体辅助教学,一方面能够直观、生动地反映图形,增加课堂的容量,同时有利于突出重点、分散难点,增强教学条理性,形象性,更好地提高课堂效率。
三、学法
《数学新课程标准纲要》指出:有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学习数学的重要方式。为了充分体现《数学新课程标准纲要》的要求,培养学生的动手实践能力,逻辑推理能力,积累丰富的数学活动经验,这节课主要采用动手实践,自主探索与合作交流的学习方法,使学生积极参与教学过程,在教学过程展开思维,培养学生提出问题、分析问题、解决问题的能力,进一步理解观察、类比、分析等数学思想方法。
四、教学设计:
根据《数学课程标准》中“要引导学生投入到探索与交流的学习活动中”的教学要求,本节课教学过程我是这样设计的。
(一)、点燃思维火花(趣味题目引入,配以动画演示)
1、为了测量一个大峡谷的宽度,地质勘探人员在对面的岩石上观察到一个特别明显的标志点O,再在他们所在的这一侧选点A、B、D,使得AB┷AO,DB┷AB,然后确定DO和AB的交点C,测得AC=120m,CB=60m,BD=50m,你能帮助他们算出峡谷的宽度AO吗?
(设计意图:以趣味性题目引入,从而引起悬念,激发学生的学习兴趣。)
假如利用相似三角形原理可不可以解决这个问题呢?那么如何判定这两个三角形相似呢?这就是我们这节课要学习的内容。(引出课题)
(二)、动手实验探索(分小组研究讨论)
还记得全等三角形的判定方法吗?那么判定相似三角形要不要这么多条件呢?假如当条件只有角这个元素时,能不能判定两个三角形相似呢?
1、若有一个角对应相等,能否判定两个三角形相似?
(投示)(1)每人画一个△ABC,使∠BAC=60°,与同伴交流,两个三角形是否相似。
结论:只有一个角对应相等,不能判定两个三角形相似。
2、若有两个角对应相等,能否判定两个三角形相似?
(2)一人画△ABC,另一人画△A′B′C′,使∠A与∠A′都等于60°,∠B与∠B′都等于45°,比较∠C和∠C′是否相等,测量三边长度,探求是否相等。
改变角的度数再试一次。(用三个小组测量结果)
在此过程中,给学生充分的时间画图、观察、比较、交流,最后通过活动让学生用语言概括总结。
引出判定条件1:(学生总结,教师纠正)
如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.
可简单说成:两角对应相等,两三角形相似.
组织学生进行讨论,在此基础上教师引导学生从对应边和对应角入手进行观察。教师在多媒体几何画板上直观地演示。在教学中,通过以趣味性题目引入,从而引起悬念,引起学生的注意,激发他们的求知欲,让每个学生都积极参与。
通过学生自己探索、讨论,由学生自己得出结论:如果两个三角形中有两对角对应相等,那么这两个三角形相似。即两角对应相等的两个三角形相似。这样,从学生自己动力手操作、实验所得出的判定条件,让学生产生自豪感及满足感,培养学生的自信心及逻辑推理能力。
(三)、例题讲解:
例:如图,D、E分别是△ABC这AB、BC上的点,DE∥BC,
(1)图中有哪些相等的角?
(2)找出图中的相似三角形,并说明理由。
(3)写出三组成比例的线段。
分析:本例意在渗透平行与相似的内在联系,同时,本例有意识地渗透了简单逻辑推理的思想,承前启后。
解:(1)DE//BC
∠ADE与∠ABC是同位角∠ADE=∠ABC,∠AED=∠ACB
∠AED与∠ACB是同位角
(2)△ADE∽△ABC理由是:
∠ADE=∠ABC
∠AED=∠ACB△ADE∽△ABC
(3)△ADE∽△ABC==
想一想:在上面的例题的条件下,=吗?=吗?(学生画图,交流,老师用多媒体演示出来。)
解:由DE//BC得,=
根据比例基本性质得:
=
即=
两边同时减去1,得
1=1
即=
课后思考:若DE与BC不平行,它们还可能相似吗?说明理由。
(设计意图:分三个问题显示,由易到难,新旧知识相结合,分散难点,让学生明白判定方法(一)在实际问题中的应用,最后设置一道课后思考与讨论,使题目进一步延伸与拓展,培养学生的发散思维。)
(三)随堂练习:
判断题:(让学生判断,老师用几何画板演示)
(1)有一个锐角对应相等的两个直角三角形相似。()
(2)所有的直角三角形都相似。()
(3)有一个角相等的两个等腰三角形相似。()
(4)顶角相等的两个等腰三角形相似。()
(5)所有的等边三角形都相似。()
解:(1)对。有一个锐角对应相等的两个直角三角形相似。
因为是两个直角三角形,所以有一对直角相等,再加上一对锐角相等,根据判定方法1,得,这两个三角形相似。
(2)错。
(3)错。有一个角相等的两个等腰三角形不相似。
例:一个顶角为30°的等腰三角形与一个底角等于30°的等腰三角形就不相似.
(4)对。顶角相等的两个等腰三角形相似。
因为两个等腰三角形的顶角相等,所以它们的四个底角都相等,因此有三对角对应相等,所以这两个三角形相似。
(5)对。因为等边三角形的三个角都是60°。
(设计意图:使学生加深对判定方法(一)的理解。)
(四)补充练习:
(1)已知:△ABC和△A′B′C′中,∠B=∠B′=75°,∠C=50°,∠A′=55°,问:这两个三角形相似吗?为什么?
解:(1)在△ABC中,
∵∠B=75°,∠C=50°
∴∠A=55°
∴∠B=∠B′,∠A=∠A′
∴△ABC∽△A′B′C′
(2)已知△ABC和△A′B′C′中,∠B=∠B′=75°,∠A=50°,∠A′=55°,问:这两个三角形相似吗?为什么?
解:(1)在△ABC中,
∵∠B=75°,∠A=50°
∴∠C=55°
而在△A′B′C′中,
∵∠B′=75°,∠A′=55°
∴∠C′=50°
∴根据判定方法(一),△ABC和△A′B′C′不相似。
(设计意图:通过让学生比较这两道题中条件的异同,进一步让学生理解判定方法(一)的运用)
现再请学生回头看看引入那道题,利用判定方法(一)让学生自己去发现两个三角形相似,然后再运用相似三角形的对应边成比例来解这道题,这样一来可以加深对判定方法(一)的理解,二来可以增强学生的自信心,培养学生分析问题、解决问题的能力。
通过系列问题的设置和解决,旨在降低难度,使难度点予以突破,同时使学生在获得新知的情况下,体验成功,从而增加对数学的兴趣。
(五)、总结提高:
提问:“通过这节课的学习有什么收获?”
(同桌对讲,畅谈自己的感受和体会,学生发言,老师总结与归纳)
(设计意图:让学生自己小结,活跃了课堂气氛,做到全员参与,理清了知识脉络,强化了重点,培养了学生口头表达能力。)
(六)、分层作业:
(必做题):P119的习题4.7的1、2
(选做题):
如图,已知D是△ABC的边AB上任一点,DF∥AC交BC于E.AF交BC于M,且∠B=∠F,△AMC∽△BDE吗?请说明理由。
(设计意图:让学生巩固所学内容并进行自我检验与评价,既面向全体学生,又因材施教,照顾到学有余力的学生。)
l新的探索:(提高题)
(4)如图梯形ABCD中,AD∥BC,∠ABC=90°,对角线BD⊥DC,求证:△ABD∽△DCB.
分析:由已知条件不可能推出有关比例式时,只能找相等的角.用定理“两角对应相等,两三角形相似”时,要注意图形中的公共角、对顶角、直角、两直线平行时的同位角、内错角或等角的余角、补角等等.
(设计意图:旨在体现因材施教、分层教学的原则。同时上述问题的进一步伸展,给学生展示了一个思维发散的平台。而且这也为下节课学习证明作了必要的铺垫。)
四、教学评价:
为了实现教学目标,优化教学过程,提高课堂效率,在教学上组织学生参与“创设问题、实验、观察、讨论、总结”这符合现代教学理论的'观点,把素质教育落到实处。另一方面对学生暴露思维过程,拓展性和开放性题目的设计编排,培养了学生的直觉思维能力和发散思维能力。
五分钟小测:
1、
C
如图,AB,CD相交于E,ΔAEC∽ΔDEB,∠A与∠D是对应角,则其余的对应角为xx,对应边的比例式为xx
A
E
B
D
2、
A
如图:∠BAC=∠ADB,图中有相似三角形吗?
为什么?
D
C
B
3、已知ΔABC,P是AB上一点,连接CP,满足什么条件时,ΔACP与ΔABC相似.
相似三角形课件教案【篇9】
今天,我的说课将分三大部分进行:一、说教材;二、说教学策略;三、说教学程序。
一、说教材
从教材地位、学习目标、重点难点、学情分析、教学准备五个方面阐述
1、本课内容在教材中的地位
本节教学内容是本章的重要内容之一。本节内容是在完成对相似三角形的判定条件进行研究的基础上,进一步探索研究相似三角形的性质,从而达到对相似三角形的定义、判定和性质的全面研究。从知识的前后联系来看,相似三角形可看作是全等三角形的拓广,相似三角形的性质研究也可看成是对全等三角形性质的进一步拓展研究。另外相似三角形的性质还是研究相似多边形性质的基础,也是今后研究圆中线段关系的有效工具。
从新课程对几何部分的编写来看,几何知识的结论较之老教材已经大为减少,教材首要关注的不是掌握多少几何知识的结论,相对更重视的是对学生合情推理能力的训练与培养。从这个角度上说,不论是全等还是相似,教材只是将它们作为训练学生合情推理的一个有效素材而已,正因为此,本节课应重视学生有条理的思考及有条理的表达。
2.学习目标
知识与技能方面:
探索相似三角形、相似多边形的性质,会运用相似三角形、相似多边形的性质解决有关问题;
过程与方法方面:
培养学生提出问题的能力,并能在提出问题的基础上确定研究问题的基本方向及研究方法,渗透从特殊到一般的拓展研究策略,同时发展学生合情推理及有条理地表达能力。
情感态度与价值观方面:
让学生在探求知识的活动过程中体会成功的喜悦,从而增强其学好数学的信心。
3.教学重点、难点
立足新课程标准和学生已有知识经验、数学活动经验,我确立了如下的教学重点和难点。
教学重点:相似三角形、相似多边形的性质及其应用
教学难点:①相似三角形性质的应用;
②促进学生有条理的思考及有条理的表达。
4.学情分析
从七上开始到现在,学生已经经历了一些平面图形的认识与探究活动,尤其是全等三角形性质的探究等活动,让学生初步积累了一定的合情推理的经验与能力,这是学生顺利完成本节学习内容的一个有利条件。
对相似形的性质的结论,学生是有生活经验与直观感受的。比如说两幅大小不等的中国地图,如果其相似比为2:1,我们在较大的地图上量出北京到南京的图上距离为4cm,问在较小的地图上北京到南京的图上距离是几厘米?学生肯定知道是2cm,这个问题中学生又没有学过相似形的性质,他怎么会知道呢?从中可以看出学生对比例尺的理解实际上是基于生活经验的。再比如说,如果你找一个没学过相似形性质的学生来问他:“如果用放大镜将一个小五角星的边长放大到原来的5倍,则这个小五角星的周长被放大到原来的几倍?面积被放大到原来的几倍?”这些问题学生基本上能给出较准确的回答。其实这就是学生对相似形性质的一种生活化的直观感受。
大家知道,源于学生原有认知水平和已有生活经验的教学设计才更能激发学生学习的内驱力,从而取得良好的教学效果。所以本节课在教学设计过程中不能把学生当作是对相似形的性质一无所知的,而是应在充分尊重学生已有的生活经验的基础上展开富有成效的教学设计。
5.教学准备
教师:直尺、多媒体课件
学生:必要的学习用具
二、说教学策略
从设计的指导思想、教学方法、学习方法三方面阐述
新课程标准指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者”,那么如何让学生在教学过程中真正成为学习的主人,同时教师在教学过程中又引导什么,与学生如何合作?这就是我这节课处理教学设计时的指导思想。为了更好地体现“学生主体”“教师主导”的地位,我打算从两条主线进行教学设计:一是从知识研究的大背景出发,结合知识的生长点拓展延伸、合理整合、组织教学;二是从尊重学生已有的知识与生活经验出发,利用学生已有的生活本能体验感受相似形的一系列性质的结论,并在此基础上创设教学情境,组织教学。力图将这两条线索有机融合,行成完整的教学体系。
采取引导发现法进行教学,充分发挥教师的主导作用与学生的主体作用,加强知识发生过程的教学,环环紧扣、层层深入,逐步引导学生观察、比较、分析,用探索、发现的方法,使学生在掌握知识的同时,逐步形成技能。
有一位教育家说过:“教给学生良好的学习方法比直接教给学生知识更重要。”本节课教给学生的学习方法有:提出问题,感受价值,探究解决的研究问题的基本方法,从特殊到一般的拓展研究方法等。以此发展学生思维能力的独立性与创造性,逐步训练学生由“被动学会”变成“主动会学”。
三、说教学程序
(一)类比研究,明确目标
师:同学们,回顾我们以往对全等三角形的研究过程,大家会发现,我们对一个几何对象的研究,往往从定义、判定和性质三方面进行。类似的我们对相似三角形的研究也是如此。而到目前为止,我们已经对相似形进行了哪些方面的研究呢?
生:已经研究了相似三角形的定义、判别条件。
师:那么我们今天该研究什么了?
生:相似三角形的性质。
设计意图:
从几何对象研究的大背景出发,给学生一个研究问题的基本途径。从而让学生自然明白本节课的学习目标:相似三角形的性质。
(二)提出问题,感受价值,探究解决
师:就你目前掌握的知识,你能说出相似三角形的1-2条性质吗?并说明你的依据。
生:相似三角形的对应角相等,对应边成比例。根据是相似三角形的定义。
师:对于相似三角形而言,边和角的性质我们已经得到,除边角外你认为还有哪些量之间的性质值得我们研究呢?
设计意图:
我们常常会说:提出问题比解决问题更重要。但是作为教师,我们应该清醒地认识到,学生提出问题的能力是需要逐步培养的。此处设问就是要培养学生提出问题的能力。我希望学生能提出周长、面积、对应高、对应中线、对应角平分线之间的关系来研究,甚至于我更希望学生能提出所有对应线段之间的关系来研究。估计学生能提出这其中的一部分问题。如果学生能提出这些问题(如相似三角形周长之比等于相似比等),就说明他的生活经验的直觉已经在起作用了。如果学生提不出这些问题,说明他的生活直觉经验还没有得到激发,我可以利用前面提到的放大镜问题、大小两幅地图问题等逐步启发,激发学生的一些源自生活化的思考,从而回到预设的教学轨道。
师:对于同学们提出的一系列有价值的问题,我们不可能在一节课内全部完成对它们的研究,所以我们从中挑出一部分内容先行研究。比如我们来研究周长之比,面积之比,对应高之比的问题。
师:为了让同学们感受到我们研究问题的实际价值。我们来看一个生活中的素材:
给形状相同且对应边之比为1:2的两块标牌的表面涂漆。如果小标牌用漆半听,那么大标牌用漆多少听?
师:(1)猜想用多少听油漆?(2)这个实际问题与我们刚才的什么问题有着直接关联?
生:可能猜半听、1听、2听、4听等。同时学生能感受到这是与相似三角形面积有关的问题。
设计意图:从学习心理学来说,如果能知道自己将要研究的知识的应用价值,则更能激发起学生学习的内在需求与研究热情。
师:同学们的猜测到底谁的对呢?请允许老师在这儿先卖个关子。让我们带着这个疑问来对下面的问题进行研究。到一定的时候自然会有结论。
情境一:如图,ΔABC∽ΔDEF,且相似比为2:1,DE、EF、FD三边的长度分别为4,5,6。(1)请你求出ΔABC的周长(学生只能用相似三角形对应边成比例求出ΔABC的三边长,然后求其周长)
(2)如果ΔDEF的周长为20,则ΔABC的周长是多少?说出你的理由。(通过这个问题的研究,学生已经可以得到相似三角形周长之比等于相似比的结论)
(3)如果ΔABC∽ΔDEF,相似比为k:1,且ΔDEF三边长分别用d、e、f表示,求ΔABC与ΔDEF的周长之比。
结论:相似三角形的周长之比等于相似比。
情境二:
师:相似三角形周长比问题研究完了,下面我们该研究什么内容了?
生:面积比问题。
师:那么对于相似三角形的面积比问题你打算怎样进行研究?请你在独立思考的基础上与小组同学一起商量,给出一个研究的基本途径与方法。
设计意图:人类在改造自然的过程中,会遇到很多从未见过的新情境、新课题。当我们遇到新问题的时候,确定研究方向与策略远比研究问题本身更有价值。如果你的研究方向与研究策略选择错误的话,你根本就不可能取得好的研究成果。而这种确定研究问题基本思路的能力也是我们向学生渗透教育的重要内容。所以对于相似三角形面积比的研究,我认为让学生探索所研究问题的基本走向与策略远比解题的结论与过程更有价值。
(师)在学生交流的基本研究方向与策略的基础上,与学生共同活动,作出两个三角形的对应高,通过相似三角形对应部分三角形相似的研究得到“相似三角形的对应高之比等于相似比”的结论。进而解决“相似三角形的面积比等于相似比的平方”的问题。体现教材整合。
(三)拓展研究,形成策略,回归生活
拓展研究一:由相似三角形对应高之比等于相似比,类比研究相似三角形对应中线、对应角平分线之比等于相似比的性质;(留待下节课研究,具体过程略)
拓展研究二:由相似三角形研究拓展到相似多边形研究
师:通过上述研究过程,我们已经得到相似三角形的周长之比等于相似比,面积之比等于相似比的平方。那么这些结论对一般地相似多边形还成立吗?下面请大家结合相似五边形进行研究。
情境三:如图,五边形ABCDE∽五边形A/B/C/D/E/,相似比为k,求其周长比与面积之比。
说明:对于周长之比,可由学生自行研究得结论。对于面积之比问题,与前面一样,先由学生讨论出研究问题的基本方向与策略——转化为三角形——来研究。然后通过师生活动合作研究得结论。
拓展结论1:相似多边形的周长之比等于相似比;
相似多边形的面积之比等于相似比的平方。
(结合相似五边形研究过程)
拓展结论2:相似多边形中对应三角形相似,相似比等于相似多边形的相似比;
相似多边形中对应对角线之比等于相似比;
进而拓展到:相似多边形中对应线段之比等于相似比等。
回归生活一:
师:通过前面的研究,我们得到了有关相似形的一系列结论,现在让我们回头来看前面的标牌涂漆问题。你能确定是几听吗?如果把题中的三角形条件改成更一般的“相似形”你还能解决吗?
回归生活二:(以师生聊天的方式进行)
其实我们生活中对相似形性质的直觉解释是正确的,线段、周长都属于一维空间,它的比当然等于相似比,而面积就属于二维空间了,它的比当然等于相似比的平方了,比如两个正方形的边长之比为1:2,面积之比一定为1:4。甚至在此基础上我们也可以想像:相似几何体的体积之比与相似比的关系是什么?
生:相似比的立方。
设计意图:新课程标准指出“数学教学活动要建立在学生已有生活经验的基础上---”;教育心理学认为:“源于学生生活实际的教育教学活动才更能让学生理解与接受,也更能激发学生的学习热情,从而导致好的教学效果”;于新华老师在一些教研活动中曾经说过:“源于学生的生活经验与数学直觉来展开教学设计,构建知识,发展能力,最终还要回到学生的生活经验理解上来,形成新的数学直觉。这才是教学的最高境界。”
而我的设计还有一个意图就是向学生渗透从生活中来回到生活中去的思想,让学生体会学好数学的重要性。
(四)操作应用,形成技能
课内检测:
1.已知两上三角形相似,请完成下面表格:
相似比2
对应高之比0.5
周长之比3 k
面积之比100
2.在一张比例尺为1:20xx的地图上,一块多边形地区的周长为72cm,面积为200cm2,求这个地区的实际周长和面积。
设计意图:落实双基,形成技能
(五)习题拓展,发展能力
已知,如图,ΔABC中,BC=10cm,高AH=8cm。点P、Q分别在线段AB、AC上,且PQ∥BC,分别过点P、Q作BC边的垂线PM、QN,垂足分别为M、N。我们把这样得到的矩形PMNQ称为△ABC的内接矩形。显然这样的内接矩形有无数个。
(1)小明在研究这些内接矩形时发现:当点P向点A运动过程中,线段PM长度逐渐变大,而线段PQ的长度逐渐变小;当点P向点B运动的过程中,线段PM逐渐变小,而线段PQ的长度逐渐变大,根据此消彼长的想法,他提出一个大胆的猜想:在点P的运动过程中,矩形PQNM的面积s是不变的。你认为他的猜想正确吗?为什么?
(2)在点P的运动过程中,矩形PMNQ的面积有最大值吗?有最小值吗?
答:最大值,最小值(填“有”或“没有”)。请你粗略地画出矩形面积S随线段PM长度x变化的大致图象。
(3)小明对关于矩形PMNQ的面积的最值问题提出了如下猜想:
①当点P为AB中点时,矩形PMNQ的面积最大;
②当PM=PQ时,矩形PMNQ的面积最大。
你认为哪一个猜想较为合理?为什么?
(4)设图中线段PM的长度为x,请你建立矩形PQNM的面积S关于变量x的函数关系式。
设计意图:将课本基本习题改造成发展学生能力的开放型问题研究,体现了课程整合的价值。
(六)作业(略)
另外值得一提的是:本节课对学生的评价,更多的应关注对学生学习的过程性评价。在整个教学过程中,我都将尊重学生在解决问题过程中所表现出的不同水平,尽可能地让所有学生都能主动参与,并引导学生在与他人的交流中提高思维水平。在学生回答时,我通过语言、目光、动作给予鼓励与表扬,发挥评价的积极功能。尤其注意鼓励学有困难的学生主动参与学习活动,发表自己看法,肯定他们的点滴进步。
三角形教案实用
接下来的文章将从不同角度来剖析和探讨“三角形教案”,以下是我个人总结和归纳的建议希望对你有所帮助。作为老师的任务写教案课件是少不了的,要是还没写的话就要注意了。 良好的教案和课件是提高教学质量和效益的保障。
三角形教案(篇1)
教学目标:
1.进一步认识三角形的概念及其基本要素,会按照边长、角的大小对三角形进行分类,掌握三角形三边的关系;
2.通过实验、操作、讨论等活动,进一步发展空间观念,逐步形成动手实践能力和数学语言表达能力.
教学重点:三角形的相关概念,三角形三边关系的探究和归纳.
教学难点:三角形三边关系的应用..
作业布置:1.课本26页习题7.4第2、4题;
教学过程:
一、探究:
播放“自行车”“金字塔”等含有三角形的图片.
请同学们从图片中找出熟悉的几何图形,举出生活中常见的三角形.
活动1
从播放的图片中抽象出的三角形有什么共同的特点呢?能否利用身边的笔摆一个三角形(黑板上画出一个三角形)?
活动2
投影出一个含有多个三角形的图片,要求学生从中找出不同的三角形.怎样表示三角形的三个顶点、三条边、三个内角呢?怎样表示三角形呢?
(利用黑板上三角形标上字母,用符号表示出来).
活动3
把含有多个三角形的图片中三角形抽取出来,分清哪些三角形是锐角三角形、直角三角形、钝角三角形?并将三角形的序号填入相关的椭圆框内.
活动4
1.从准备好的长度分别为3cm、4cm、5cm、6cm、和9cm的小木棒中任意取3根,能否搭成一个三角形?
2.小明说我上学走中间这条路最近,你知道这是什么原因吗?
二、合作:
1.图中共有几个三角形?把它们分别表示出来,并用量角器检验它们是锐角三角形、直角三角形,还是钝角三角形.
2.下列每组数分别是三根小棒的长度,用它们能摆成三角形吗?
3cm、 4cm、 5cm ( )
8cm、 7cm、 15cm ( )
5cm、 5cm、 11cm ( )
3.现有五根长度分别为3cm,4cm,5cm,6cm,9cm的小木棍,从中任意取3根,能搭成多少个不同的三角形?
三、展示:
1.有两根长度分别为4cm和7cm的木棒,
(1)再取一根长度为2cm的木棒,它们能摆成三角形吗?为什么?
(2)如果取一根长度为11cm的木棒呢?
(3)你能取一根木棒,与原来的两根木棒摆成三角形吗?
2.被公认为目前“世界第一高人”的土耳其公民苏坦科森身高2.51米,若他的腿长为1.3米,他一步(两脚着地时两脚的间距)能迈3米多?你相信吗?
四、拓展:
如图,方格中的点A、B、C、D、E称为“格点”,以这5个格点中的任意3点为顶点,一共可以画多少个三角形?其中,哪些是直角三角形、钝角三角形、锐角三角形?哪些是等腰三角形?
五、评价:
1.三角形如何表示?
2.三角形三边有何关系?根据是什么?
3.如何判定三条线段能否是同一个三角形的三条边?
4. 通过今天的学习,你还有什么困惑?
六:教学反思
三角形教案(篇2)
一、教材分析
本节课的教学内容是人教版数学八年级上册第十一章 《全等三角形》的第一节.这是全章的开篇,也是全等条件的基础.它是继线段、角、相交线与平行线及三角形有关知识之后出现的.通过本节的学习,可以丰富和加深学生对已学图形的认识,同时为学习其他图形知识打好基础,具有承上启下的作用.
教材根据初中学生的认知规律和特点,采用由浅入深、由易到难、抓联系、促迁移的方法.通过生活中的实例创设情景,形成概念,再通过平移、翻折、旋转说明变换前后的两个三角形全等,进而得出全等三角形的相关概念及其性质.
二、教学目标分析
知识与技能
1.了解全等三角形的概念,通过动手操作,体会平移、翻折、旋转是考察两三角形全等的主要方法.
2.能准确确定全等三角形的对应元素.
3.掌握全等三角形的性质.
过程与方法
1.通过找出全等三角形的对应元素,培养学生的识图能力.
2.能利用全等三角形的概念、性质解决简单的数学问题.
情感、态度与价值观
通过构建和谐的.课堂教学氛围,激发学生的学习兴趣,调动学生的学习积极性,使学生勇于提出问题,乐于探索问题,同时注重培养学生善于合作交流的良好情感和积极向上的学习态度.
三、教学重点、难点
重点:全等三角形的概念、性质及对应元素的确定.
难点:全等三角形对应元素的确定.
四、学情分析
学生在七年级时已经学过线段、角、相交线与平行线及三角形的有关知识,并学习了一些简单的说理,已初步具有对简单图形的分析和辨识能力,但八年级的学生仍处于以形象思维为主要思维形式的时期.为了发展学生的空间观念,培养学生的抽象思维能力,本节课将充分利用动画演示,来揭示图形的平移、翻折和旋转等变换过程,以便让学生在观察、分析中获得大量的感性认识,进而达到对全等三角形的理性认识.
五、教法与学法
本节课坚持“教与学、知识与能力的辩证统一”和“人人都能获得必需的数学”的原则,博采启发教学法、引探教学法、讲授教学法等诸多方法之长,借助多媒体手段引导学生观察、猜想和探究,促进学生自主学习,努力做到教与学的最优组合.
六、教学教程
Ⅰ.课题引入
1.电脑显示
问题:各组图形的形状与大小有什么特点?
一般学生都能发现这两个图形是完全重合的。
归纳:能够完全重合的两个图形叫做全等形。
2.学生动手操作
⑴在纸板上任意画一个三角形ABC,并剪下,然后说出三角形的三个角、三条边和每个角的对边、每个边的对角。
⑵问题:如何在另一张纸板再剪一个三角形DEF,使它与△ABC全等?
(学生分组讨论、提出方法、动手操作)
3.板书课题:全等三角形
定义:能够完全重合的两个三角形叫做全等三角形
“全等”用“≌”表示,读着“全等于”
如图中的两个三角形全等,记作:△ABC≌△DEF
Ⅱ.全等三角形中的对应元素
1. 问题:你手中的两个三角形是全等的,但是如果任意摆放能重合吗?该怎样做它们才能重合呢?
2.学生讨论、交流、归纳得出:
⑴.两个全等三角形任意摆放时,并不一定能完全重合,只有当把相同的角重合到一起(或相同的边重合到一起)时它们才能完全重合。这时我们把重合在一起的顶点、角、边分别称为对应顶点、对应角、对应边。
⑵.表示两个全等三角形时,通常把表示对应顶点字母写在对应的位置上,这样便于确定两个三角形的对应关系。
Ⅲ. 全等三角形的性质
1.观察与思考:
寻找甲图中两三角形的对应元素,它们的对应边
有什么关系?对应角呢?
(引导学生从全等三角形可以完全重合出发找等量关系)
三角形教案(篇3)
全等三角形是八年级上册人教版数学教材第十三章第一节的教学内容。本节课是“全等三角形”的开篇,是全等三角形全等的条件的基础,也是进一步学习其它图形的基础之一。本章是在学过了线段、角、相交线、平行线以及三角形的有关知识以及在七年级教材中的一些简单的说理内容之后来学习,为学习全等三角形奠定了基础。通过本章的学习,可以丰富和加深学生对已学图形的认识,同时为学习其它图形知识打好基础。
本节教材在编排上意在通过全等图案引入新课教学,在新课教学中又由直观演示图形的平移、翻折、旋转过渡,学生容易接受。根据课程标准,确定本节课的目标为:
1、知道什么是全等形,全等三角形以及全等三角形对应的元素;
2、能用符号正确地表示两个三角形全等;
3、能熟练地找出两个全等三角形的对应顶点、对应边、对应角;
4、知道全等三角形的性质,并能用其解决简单的问题要求学生会确定全等三角形的对应元素及对全等三角形性质的理解;
5、通过感受全等三角形的对应美,激发热爱科学勇于探索的精神。通过文字阅读与图形阅读,构建数学知识,体验获取数学知识的过程,培养学生勇于创新,多方位审视问题的创造技巧。
本节课以阅读法、实验法为主,讨论法、情境激学法为辅等教学方法。教师一边用幻灯片演示讲解,一边让学生动手、动脑,充分调动学生的积极性和主动性,在“全等三角形”教学中要以“实验为基础”,增强学生的感性认识突破口。有机融合各种教法于一体,做到步步有序,环环相扣,不断引导学生动手、动口、动脑。积极参与教学过程,才能圆满完成教学任务,收到良好的教学效果。
为了适应学生的认识思维发展水平,有序的引导学生观察、分析,得出结论,让学生通过观察——认识——实践——再认识,完成认识上的飞跃。
根据练习情况设疑引导,重在让学生理解全等三角形的概念,展开学生的思维。
学生在学习过程中可能难于理解全等三角形的对应顶点、对应边、对应角。教师要做到教法与指导学习的学法有机统一。通过幻灯片演示,学生用学具操作体会,最终完成学习过程,达到教学目标。
1、看听结合,形成表象。看教师演示,听教师讲解,形成表象。
2、手脑结合,自主探究,学生为主体,充分使用学具,动手操作体会全等三角形。
本节课的教学过程是:首先,展示教材上的图案以及制作的一些图案,引导学生读图,激发学生兴趣,从图中去发现有形状与大小完全相同的图形。然后教师安排学生自己动手随意去做两个形状与大小相同的图形,通过动手实践,合作交流,直观感知全等形和全等三角形的概念。其次,通过阅读法让学生找出全等形和全等三角形的概念。然后,教师随即演示一个三角形经平移,翻折,旋转后构成的两个三角形全等。通过教具演示让学生体会对应顶点、对应边、对应角的'概念,并以找朋友的形式练指出对应顶点、对应边、对应角,加强对对应元素的熟练程度。此时给出全等三角形的表示方法,提示对应顶点,写在对应的位置,然后再给出用全等符号表示全等三角形练习,加强对知识的巩固,再给出练习判断哪一种表示全等三角形的方法正确,通过对图形及文字语言的综合阅读,由此去理解“对应顶点写在对应的位置上”的含义。再次,通过学生对全等三角形纸板的观察,小组讨论,合作交流,观察对应边、对应角有何关系,从而得出全等三角形的性质。并通过练习来理解全等三角形的性质并渗透符号语言推理。最后教师小结,这节课我们知道了什么是全等形、全等三角形,学会了用全等符号表示全等三角形,会用全等三角形的性质解决一些简单的实际问题。
三角形教案(篇4)
教材的小标题为“探索与发现”,说明这部分内容要求学生自主探索,并发现有关三角形内角和的性质。
三角形的内角和为何等于180度?小学阶段如何比较严密的验证这个性质,培养学生科学的数学素养,是这节课的重难点。在学生明确了“内角“的.含义后,通过学生的大胆猜想,从而引导学生探索三角形内角和等于多少度。大多数学生会想到测量的方法,但这只是一种不完全归纳法,还不能严密的证明。还可以引导学生想到将3个角转换成平角(180度)的方法,即撕角和拼角的方法,这也为今后在初中学习内角和的证明做知识储备。教师还可以在此基础上,再加上1—2种形象的证明方式,如:利用“极限”思想和转动角的方式。就是想让更多的学生感觉到,三个内角的和是180°的可能性很大,拓宽学生思路,并培养学生的空间想象能力。
四年级是发展学生逻辑思维能力的黄金时期,如何才能完整、严密的进行数学思考,培养推理能力,是我本节课关注的重点之一。对于“三角形的内角和等于180度”这个性质,有很多学生已经知道,但却是“知其然不知其所以然”。应在学生的学习基础上设置更高的目标,重视猜想与验证、培养学生事实求是的科学态度,学生对于验证的方式和方法,老师要做到适当点拨,及时鼓励。
1、学生亲自动手,通过量、剪、拼、折等方法推导出三角形内角和是180度,会应用这一规律进行计算。
2、通过动手操作,找到规律,并能灵活运用。
3、培养学生的创新意识、探索精神和实践能力,在学生亲自动手和归纳中,感受到理性的美。
教学重点:学生亲自动手,通过量、剪、拼、折等方法推导出三角形内角和是180度。
三角形教案(篇5)
我的发现
(4)学生汇报量的方法,师请同学评价这种方法。
师小结:直接量的方法挺好,虽然测量有误差,不准,但我们能知道,三角形的内角和只能在180°左右,究竟是不是一定就是180度呢,谁还有别的方法?
(二)剪拼法
学生汇报后师小结:能想到这个方法不简单,拼成的看起来像平角,到底是不是平角呢,我们一起来试试看。(教师和学生剪一剪、拼一拼)
师:把三角形的三个内角凑到了一起,拼成了一个大角,角的两条边是不是在一条直线上呢?看起来挺象的,但在操作的过程中难免会产生误差,有时会差一点点,谁还有别的方法确定三角形的内角和一定是180°?
(三)折拼法
学生汇报后师小结:我们要研究三角形的内角和,实际上就是想办法把三角形的三个内角凑到一起,像剪和折的方法,看三个内角拼到一起是不是180度,都是借助我们学过的.平角解决的问题。
这三种方法都不错,在操作的过程中,有时会有误差,不太有说服力。想一想,你还能不能借助我们学过的哪种图形,想办法说明三角形的内角和一定是180度?
(四)演绎推理法
(借助学过的长方形,把一个长方形沿对角线分成两个三角形。)
师:你认为这种方法好不好?我们看看是不是这么回事。
(演示课件:两个完全相同的三角形内角和等于360°,一个三角形内角和等于180°)
师小结:这种方法避免了在剪拼过程中由于操作出现的误差,非常准确的说明了三角形的内角和一定是180度。
(学生通过小组合作的方式学到方法,分享经验,更重要的是领悟到科学研究问题的方法。就学生的发展而言,探究的过程比探究获得的结论更有价值。)
学生用的方法会非常多,但它们的思维水平是不平行的。
直接测量法是学生利用已有的知识,测量出每个角的度数,再用加法求和;
拼角求和法,也就是间接剪拼和折拼这两种方法,都是通过拼成一个特殊角,也就是平角来解决问题;
而演绎推理法,即把两个完全相同的三角形合二为一,或把长方形一分为二,成为两个三角形,这是更深层次的思考。
前两种方法是不完全归纳法,能使我们确定研究的范围只能是180度左右,而不可能是其他任意猜想的度数。最后一种方法具有演绎推理的色彩,把一个长方形沿对角线分成两个完全相同的三角形后,因为两个三角形的内角和是原来长方形的四个内角之和360度,所以一个三角形的内角和就是360°÷2=180°,这种方法从科学证明的角度阐述了三角形的内角和,它有严密性和精确性。
本节课引导学生经历从直观到抽象、思维程度从低到高的过程,感悟数学的严谨性。让学生在经历量和拼之后,逐渐会在思维发散的过程中得到集中,集中为分的方法,最后将四边形一分为二,五边形一分为三,六边形一分为四……,又会发现一些新的规律。】
4.验证猜想“三角形的内角和是180度”
5.进一步感受
(1)三角形内角和与三角形大小的关系
教师出示一个小三角形,问学生内角和是多少度?再出示一个大的等腰三角形,问学生它的内角和是多少度?把这个大三角形平均分成两份,每份内角和是多少度?你有什么发现吗?
(2)三角形内角和与三角形形状的关系
(演示不断变化的三角形。)仔细观察,在这个过程中,什么变化了?什么没变化?(三个角的度数都在变化,内角和却总是不变的)你有什么新发现吗?
如果老师把一个角一直往下拽,猜一猜会怎样?
(通过变化的三角形和三个内角的数据显示,进一步感受三角形的内角和与三角形的形状、大小都没有关系;当把三角形的一个角一直向下拽,这个角变成了一个180度的平角,另外两个角变成了0度角,虽然已经不再是三角形,也能从一个侧面证明三角形的内角和是180度,使学生感受到极限的思维方法。)
6.解释课前问题
用内角和的知识解释课前的问题,为什么在三角形中不能有两个直角或钝角。
三、拓展应用,深化创新
本节课的练习由易到难,设计成三个层次。
1、基本练习--形成技能 2、变式练习--巩固技能
3、 综合练习--发展提高技能
○1.介绍科学家帕斯卡(出示帕斯卡的资料)
师:帕斯卡为科学作出了巨大的贡献,在我们以后学习的知识中,也有很多是帕斯卡发现和验证的,他12岁就发现三角形内角和是180度,我们同学还没到12岁,看你能不能通过自己的努力也去探索和发现。
○2.多边形边形内角和
(设计求多边形的内角和,旨在把新问题转化归结为求几个三角形内角和的问题上,渗透化归的数学学习方法。)
四、总结全课,全面提升
我们用三角形内角和的知识知道了六边形内角和,那么五边形、七边形……这些多边形的内角和是多少度?有没有什么规律可循,你能用学到的知识和方法去探究问题,相信你还会有一些精彩的发现。
整个教学设计以《新课程标准》的基本理念为指导,做到“导入新课--新,引导探究--实,分层训练--活,新课总结--精”。
三角形教案(篇6)
1.寻找生活实例中的等腰三角形,给等腰三角形下定义,探求等腰三角形的轴对称性和它的相关性质.
2.培养学生自主、合作、探究的学习方式,亲身体验“再发现”过程.
在探究过程中,增强协作交流,培养学生多角度思考问题的习惯,提高学生分析问题和解决问题的能力.
经历探索等腰三角形的轴对称及相关性质的过程,进一步体验轴对称的特征,发展学生的空间意识.重点难点
教师出示学生熟悉的人字梁屋架:
师:图中的人字架屋架的外观结构形式是什么图形?
师:我们从这节课开始学习等腰三角形的有关知识(板书课题).
教师引导学生操作:
画一个等腰三角形ABC,把边AB叠合到边AC上,这时点B与点C重合,并出现折痕AD,如图
学生思考,教师参与探究.
学生口答:AB与AC相等,DB与DC相等,∠B=∠C,∠BAD=∠CAD,∠ADB=∠ADC.
学生小组讨论.
生:等腰三角形是轴对称图形,底边上的中线所在的直线是它的对称轴.
师:很好!这样也就是说等腰三角形的两个底角相等,简称“等边对等角”.
学生交流讨论.
教师提示:你先把这个命题分解为条件和结论两部分,写出已知、求证,然后给出证明.
教师找一名学生板演,其余同学在下面做,然后集体订正.
证明:取BC的中点D,连接AD.在△ABD和△ACD中,
师:很好!等腰三角形顶角的平分线垂直平分底边,∠BAD和∠CAD有什么关系呢?
学生思考.
共同总结:等腰三角形顶角的平分线平分底边并且垂直于底边,即等腰三角形顶角的平分线是底边上的中线也是底边上的高(简称三线合一).
根据性质1,师生共同得到等边三角形的性质:等边三角形的三个内角都相等,并且每一个角都等于60°.
教师多媒体出示:
【例1】 已知:如图所示,在△ABC中,AB=AC,∠BAC=120°,点D、E是底边上两点,且BD=AD,CE=AE.求∠DAE的度数.
学生讨论方法.
教师巡视指导,然后集体订正.
∴∠B=∠C=×(180°-120°)=30°.
同理∠CAE=∠C=30°.
=120°-30°-30°
=60°
【例2】 已知:如图所示,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求∠A和∠C的度数.
师:你能找出∠A与∠C的关系吗?你能找出∠A与∠BDC的关系吗?
生:能.∠BDC=∠A+∠ABD,又因为∠ABD=∠A,所以∠BDC=2∠A.
教师找一名学生板演,其余同学在下面做,然后集体订正.
∴∠ABC=∠C=∠BDC,
设∠A=x°,
则∠BDC=∠A+∠ABD=2x°.(三角形的一个外角等于与它不相邻的两个内角的和)
∵∠ABC=∠C=∠BDC=2x°,
等腰三角形是轴对称图形,可以借助轴对称变换来研究等腰三角形的一些特征.为此,我以轴对称图形为切入点,先让学生通过折纸、猜想、验证等腰三角形的性质,然后运用全等三角形的知识加以论证,使学生思维由形象直观过渡到抽象的逻辑演绎,层层展开,步步深入,从而实现教学目的.善于做解题后的反思、方法的归类、规律的小结和技巧的揣摩,再进一步做一题多变、一题多问、一题多解,挖掘例题的深度和广度,扩大例题的辐面,无疑对能力的提高和思维的发展是大有裨益的.
1.掌握等腰三角形的判定定理及推论,并能够灵活应用它进行有关的论证和计算.
2.掌握等边三角形的判定定理,并能够 灵活应用它进行有关论证和计算.
1.在探究过程中,增强协作交流,培养学生多角度思考问题的习惯,提高学生分析问题和解决问题的能力.
2.通过观察等腰三角形和等边三角形的判定定理,培养学生的观察、分析能力,发展学生的形象思维能力.
1.发展学生的动手、归纳猜想能力,培养学生的文字表达能力和几何证明能力.
2.掌握归纳思维方法,领会数学的转化思想.
3.发展学生的独立思考、勇于探索的创新精神.
师:请同学们回顾一下,等腰三角形的性质有哪些?
生:等腰三角形的两底角相等,简写为“等边对等角”.
师:这是个真命题吗?我们今天就来研究这个问题.
师:作出图形,根据图形,在△ABC中,∠C=∠B,AB=AC吗?
学生讨论交流、思考回答.
教师让学生作一个有两个角相等的三角形,量一量它们所对的边.
生:在△ABC中,过点A作∠A的平分线交BC于点D,则顶角被平分,又两底角相等,由三角形内和性质得∠ADB=∠ADC.沿直线AD折叠,点B与点C重合,因此AB=AC.
师:很好,这就是等腰三角形的`判定定理:有两个角相等的三角形是等腰三角形(简称等角对等边).
学生熟记.
师:大家想一下,三个角都相等的三角形是什么三角形?
师:有一个角是60°的等腰三角形是什么三角形呢?
生:有一个角是60°的等腰三角形是等边三 角形.
师:在证明中,由△ABD≌△ACD我们能得到什么?
生:BD=DC,∠BAD=∠CAD,∠ADB=∠ADC=90°.
师:对,同学们观察得很仔细.所以我们能得到等腰三角形的又一性质:等腰三角形顶角的平分线垂直平分底边.换句话说,等腰三角形的顶角平分线、底边上的中线和底边上的高三线合一.
生:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边是斜边的一半.
生:能,如上图所示,易证得△ACD≌△ACB,∴AD=AB,∠BAC=∠DAC=30°,∠BAD=60°,∴△ABD是等边三角形,∴BD=AB,BC=BD=AB,故得证.
求证:Rt△ABC≌Rt△A'B'C'中,∠C=∠C'=90°,AB=A'B',AC=A'C'.
已知:如图(1),在Rt△ABC≌Rt△A'B'C'.
证明:在平面内移动Rt△ABC和Rt△A'B'C',使点A和点A'、点C和点C'重合,点B和点B'在AC的两侧,如图(2).
在Rt△ABC和Rt△A'B'C'中,
教师多媒体出示:
【例】 如图,一艘船从A处出发,以每小时10n ile(海里)的速度向正北航行,从A处测得一礁石C在北偏西30°的方向上.如果这艘船上午8:00从A处出发,10:00到达B处,从B处测得礁石C在北偏西60°的方向上.
生:根据“在A处测得礁石C在北偏西30°的方向”和“从B处测得礁石C在北偏西60°的方向上”这两句.
生:以B为顶点,向北偏西60°作角,这角一边与AC交于点C,则C点就是礁石C的位置.
本节课我先让学生复习了上节课学习的等腰三角形的性质定理,然后让他们说出它的逆定理,由判断它的真假引出本节课,增强学生的好奇心和求知欲.在教法设计上,我把重点放在了逐步展示知识的形成过程上,由个别现象到一般抽象,体现出了学生从感性认识到理性认识发生发展的认知过程.在教学过程中,注意引导学生对解题思路和方法进行总结,渗透化归思想与分类讨论数学思想,注意培养学生形成积极探索主动学习的态度,充分体现数学教学主要是数学活动的教学,促进学生之间的合作、交流意识,培养学生的语言表达能力,增强小组合作意识.
三角形教案(篇7)
教学内容:
人教版四年级数学下册第五单元三角形P80、81页例1、例2,练习十四1、2、3题。
教材分析:
《三角形的特性》是人教版义务教育课程标准实验教科书四年级数学下册第80——81页的内容。学生通过第一学段以及四年级上册对空间与图形的学习,对三角形已经有了直观的认识,能够从平面图形中分辨出三角形。本节内容的设计是在上述的基础上进行的,教材的编写注意从学生已有的经验出发,创设丰富多彩的与现实生活联系紧密的情境和动手实验活动,以帮助学生理解三角形概念,构建数学知识。
学生分析:
学生在日常生活中经常接触到三角形,对三角形有一定的感性认识,但几何初步知识无论是线、面、体的特征还是图形的特征、特性,对于小学生来说,都比较抽象。要解决数学的抽象性与小学生思维特点之间的矛盾,就要充分运用其直观性进行教学。
设计理念:
学生对几何图形的认识是通过操作、实践而获得的。因此本节课从学生已有的生活经验出发,创设教学情境,让学生动手操作,自主探究、合作交流掌握三角形概念以及特性。
教学目标:
1、通过动手操作和观察比较,使学生认识三角形,知道三角形的特征及三角形高和底的含义,会在三角形内画高。
2、通过实验,使学生知道三角形的稳定性及其在生活中的应用。
3、培养学生观察、操作的能力和应用数学知识解决实际问题的能力。
4、体会数学与生活的联系,培养学生学习数学的兴趣。
教学重点、难点:
重点:理解三角形的含义,掌握三角形的特征、特性。
难点:三角形高的确定及画法。
教具、学具准备:
教师准备:多媒体课件,硬纸条制作的长方形和三角形,三角板,作业纸等。
学生准备:学具小棒、彩色笔、三角板,直尺等。
教学过程:
一、联系生活,情境导入
1、播放视频短片。
师:为了上好今天这节课,老师特意拍了一小段视频,考考你们,看你们能否发现短片中你比较熟悉的图形?(课件播放视频:三角形的木梯、空调外机的支架和电视塔)
学生自由汇报。
师:老师很高兴你们都有一双智慧的眼睛。
2、学生举例说生活中的三角形。
师:你还能说出生活中哪些物体上有三角形吗?
生:红领巾、房梁、自行车、交通标志牌、电视接收塔、高压线塔……
从你们的回答中老师感受到你们都是善于观察、善于发现的好孩子!看来生活当中的三角形还真不少啊!这节课你想研究三角形的什么知识?
1、根据学生的汇报,相机揭示课题并板书:
三角形的特性、定义、特点等。
二、操作感知,理解概念
1、发现三角形的特点。
师:用你喜欢的颜色在作业纸上画一个三角形。边画边想:三角形是由哪些部分组成的?
展示学生画的三角形,组织小组交流:和小组内的同学交流一下,你们画的三角形有什么共同的特点?
反馈,根据学生的汇报出示课件标出三角形各部分的名称。(板书:三条边、三个角、三个顶点)
2、概括三角形的定义。
师:看来大家对三角形的特点达成了一致的看法。能不能用自己的话概括一下,什么样的图形叫三角形?
学生的回答可能有下面几种情况:
(1)有三条边的图形叫三角形或有三个角的图形叫三角形;
(2)有三条边、三个角的图形叫三角形;
(3)有三条边、三个角、三个顶点的图形叫三角形;
(4)由三条边组成的图形叫三角形;
(5)由三条线段围成的图形叫三角形。
师:请你们对照上面的说法,判断下面的哪个图形是三角形?
课件出示一组图形:
讨论:哪种说法更准确?
阅读课本:课本是怎样概括三角形的定义的?(根据学生汇报板书:由三条线段围成的图形叫做三角形。)你认为三角形的定义中哪些词最重要?
组织学生在讨论中理解“三条线段”“围成”(边画三角形边强调“每相邻两条线段的端点相连接”。)
学生看着书齐读三角形的定义。
师小结:数学是一门严谨的学科,我们在用数学语言表达的时候也要讲求其严谨性。
3、探究三角形的特性。
(1)联系生活,了解三角形的特性。
师:细心观察,我们就会发现生活中有许多地方都会用到三角形的知识。
课件出示练习十四第2题“围篱笆”图。
师:瞧!小兔和小猴分别在各自的菜地边围上篱笆,小兔围成的是长方形,小猴围成了三角形。
请同学们想想哪种围法更牢固?为什么?下面我们来做个实验。
(2)动手操作,发现三角形的特性。
师拿出长方形框架。
师:谁想来拉一拉这个长方形的框架,你有什么发现?(容易变形,不稳定。)
课件演示:如果我们在小兔的篱笆上轻轻一推,会出现什么情况?(篱笆会倒下去。)
指导学生操作:去掉一条边,再扣上拼组成三角形框架。
师:再拉一拉有什么感觉?
请一名学生上前演示。
师:其他同学也想体验一下吗?(学生兴趣高涨,想要动手试试。)拿出你们的学具小棒和小组内的同学一起动手感受一下。
师小结:通过实验发现三角形不易变形,可见三角形具有稳定性。(板书:稳定性。)
点击课件,小猴的篱笆上有个红色的三角形在闪烁。
师:现在你能说说为什么小猴的篱笆更牢固了吗?
生:因为小猴的篱笆是三角形的,所以更牢固。
师:你知道生活中还有哪些地方用到了三角形稳定性的特征吗?
生:自行车、篮球架、电线杆……
小结:(点击课件,物体中红色的三角形在闪烁)生活中常见的自行车、篮球架、电线杆等物体之所以制成三角形,其中一个重要原因是利用了三角形的稳定性,使其结实耐用。
(3)运用三角形的特性解决生活中的实际问题。
课件出示练习十四第3题图片。
师:了解了三角形具有稳定性这一特性,我们可以用这个知识来解决生活中的难题。看,这是一把旧椅子,摇晃得很厉害。扔掉可惜,该怎样加固它呢?
指名学生上台演示具体怎样做。
追问:为什么要在椅子的两条腿上斜斜地钉上一根木条?这样做运用了什么知识?
生汇报后师小结:这样做是应用了三角形的“稳定性”。同学们能够学以致用,真了不起!
4、认识三角形的底和高。
(1)初步感知三角形的高。
课件出示松鼠和斑马的“别墅”。
师:聪明的松鼠和斑马也利用了三角形的这一特性各给自己做了套漂亮的别墅。你知道哪个是松鼠的家?哪个是斑马的家吗?你是怎么想的?
生:高的别墅是斑马的,矮的别墅是松鼠的。
师:你说的房子的“高”指的是哪部分?请上来指一指。(学生上台比划三角形的高。)
师:(出示课件)老师这里有三幅图,那幅图把你心目中的高画下来了?
生:第(1)幅。
师:第二幅为什么不是?(第二幅是斜的,高应该是垂直线段。)
师:那第三幅是垂直的呀?为什么也不是呢?(没有经过顶点)
(2)理解三角形高的概念。
师:那你能说说什么是三角形的高吗?
结合学生的描述板书揭示三角形高的定义。
师边揭示三角形高的定义边出示课件演示三角形高的画法。
板书:顶点、(画高,标直角符号)高、底。
(3)动手画三角形的高。
在你画的三角形上确定一个顶点,再画出它的对边上的'高。(学生动手画高。)
师:谁来说说你是怎么画的?(指名学生上台演示,结合学生的汇报出示课件演示)
强调:其实画三角形的高就是我们上学期学过的过直线外一点画已知直线的垂线。要注意的是代表高的这条线段要画成虚线段,别忘了标上直角符号。
师:为了方便表达,我们习惯用连续的三个字母A、B、C分别表示三角形的三个顶点,(板书:给三角形标三个顶点标上A、B、C)上面的三角形就可以表示成三角形ABC。那么和A点相对应的底是哪条边?(BC)(课件同步演示)你们也可以用自己喜欢的字母来表示你画的三角形,在你的三角形中,你将哪个点定为顶点的?和它相对应的底是哪条边?(学生汇报)
师:想一想,从三角形的一个顶点到它的对边可以画一条高,三角形有几个顶点?(3个)那也就是说一个三角形有几条高?(板书:三条高)
刚才我们是从顶点A到和它相对应的底BC画出了三角形的一条高,现在我们将AC作为三角形的底来画一条高,你能找到AC这条底所对应的顶点吗?(B点)对,找到底边所对应的顶点,我们就可以用同样的方法画出已知底边上的高了。
请你们在作业纸上画出每个三角形指定底边上的高。(练习十四第1题)
学生画完后汇报的同时,师点击课件演示。强调直角三角形的两条直角边中当其中一条作为底边时,另一条就是高。
(4)拓展画钝角三角形外的两条高。
学生试着画高,汇报的同时课件辅助演示画高的过程。
三、课堂小结
通过这节课的学习,你对三角形又有了哪些新的认识?
你还想了解三角形的哪些知识?
设计反思:
阅读教材发现,教材在《三角形》这一单元第一课时的安排是从对身边的实物的观察中提炼出三角形,通过学生的观察,总结出三角形的基本特点及定义,然后介绍了三角形的高和底,再通过观察三角形在生活中的应用及自身的体验感受到三角形的稳定性。本节课中所要达到的教学目标有理解三角形的定义,掌握三角形的特点和特性,会画三角形的高。其中理解三角形的定义,掌握三角形的特征、特性是本课的教学重点。三角形高的确定及画法是本课的教学难点。
三角形的“高”历来是教师们公认的教学难点,在教学中如何有效破解这个难点成了我思考的主要方向。从以往的教学情况来分析,对于三角形的“高”,学生的困难主要是:一、什么是“高”;二、如何画“高”。其实,关于“高”学生是具有一定的知识和经验基础的。这种基础主要体现为“平行四边形的高”的学习经验和“生活中的高”的生活经验两个方面。而这些经验基础对于三角形的“高”的概念的形成并没有呈现出多少同化效应,而是存在许多有待调适顺应的问题。因为平行四边形的“高”是从平行四边形的一边任意一点到对边引出的垂直线段,而三角形的“高”是从三角形的一个顶点到它的对边引出的垂直线段。从“任意点”到“指定点”,学生的心理需要有一个调适的过程。生活中的“高”往往是以水平面为基准进行观察的,一旦“高”发生了变化,学生就会陷入“斜面上的垂直线段是不是高”的迷惘状态。基于以上思考,我对教材内容进行了重组。
在导入新课环节,通过播放视频短片,既勾起学生大脑中对三角形的记忆,又让学生感受到三角形大量地存在于生活当中,体验到数学知识与实际生活的紧密联系。教学的重难点都在第二个环节“操作感知,理解概念”,首先通过组织学生动手画三角形,小组交流所画三角形有什么共同特点来引导学生发现三角形具有“三条边、三个顶点、三个角”的特点。在学生交流汇报的基础上让学生试着说说什么样的图形是三角形,此时,学生对三角形的认识还只是停留在“三条边、三个顶点、三个角”的直观认识上。因此,我设计了一组图形,让学生对照自己的说法,判断其中的哪个图形是三角形。用“哪种说法更准确?”引出三角形的科学定义。三角形具有稳定性这一特性是本节课的一个重点,在“探究三角形的特性”这个环节,我设计了三个层次的内容来突出这个教学重点:(1)联系生活,了解三角形的特性。(2)动手操作,发现三角形的特性。(3)运用三角形的特性解决生活中的实际问题。这个环节的设计从发现生活中的问题开始到运用所学知识解决生活中的问题结束,密切了数学知识与实际生活的联系,培养学生发现问题,运用数学知识解决问题的能力。其中的第(2)个环节组织学生动手操作,亲身体验三角形的特性。第四个环节“认识三角形的底和高”是本课的重点,更是难点。设计“哪个是斑马的别墅?哪个是松鼠的别墅?”激起了学生“生活中高”的经验,一句“老师这里有三幅图,哪幅图把你心目中的高画下来了?”再通过追问“第二幅为什么不是?”“那第三幅是垂直的呀?为什么也不是呢?”使学生初步感知三角形的高必须具备两个条件:“是垂直线段”和“从顶点开始画起”。在引导学生理解三角形高的概念时,我从让学生自主阅读课本上三角形高和底的概念,结合学生对课本的阅读辅以课件进行直观的演示,最后画高及板书三个方面来加强学生对三角形高和底的概念的理解。在学生初步理解三角形高和底的概念后,组织学生动手画三角形的高,引导学生画高前先确定一个顶点,是为了帮助学生建立“一个顶点对应一条底边”印象,为后面得出“三角形有三条高”这个结论以及画直角三角形和钝角三角形的高铺路搭桥。课件演示从三角形ABC的顶点A到它的对边BC作一条高后,我没有急于让学生练习“练习十四第1题:画出下面三角形指定边上的高。”而是缓了一步,设计了“现在我们将AC作为三角形的底来画一条高,你能找到AC这条底所对应的顶点吗?”这个问题,再次加强学生对“一条底边同样对应一个顶点”这个难点的理解,使学生明白,画三角形指定边上的高时要先找到和这条底边相对应的顶点。有了这些铺垫,三角形的“高”怎么去画,我想对于学生而言,已不再是多么困难的事情了。
2025三角形课件系列
老师会对课本中的主要教学内容整理到教案课件中,所以老师写教案可不能随便对待。教案是评估学生学习效果的有效依据,好的教案课件是怎么写成的?我们听了一场关于“三角形课件”的演讲让我们思考了很多,经过阅读本页你的认识会更加全面!
三角形课件【篇1】
《三角形的特性》是人教课标版小学数学第八册第五单元的内容,三角形是平面图形中最简单也是最基本的多边形,一切多边形都可以分割成若干个三角形,并借助三角形来推导有关的性质。因此,三角形的认识是平面图形知识的起点,也为平面几何、立体几何打下基础。
本节课是在学生已经学习了线段、角和直观认识了三角形的基础上进行教学的,所以本节课是三角形认识的第二阶段。
根据本节课在教材中的地位和作用,依据新课程标准的基本理念和学生的认知水平,我拟定了以下教学目标:
1、知识目标:理解三角形的定义,掌握三角形特征和特性,并会给三角形画高。
2、能力目标:学会通过观察、操作、分析和概括去获得的学习方法,体验数学与生活的联系,培养学生的观察、分析、操作的能力,进一步发展空间观念。
3、情感目标:在小组合作、探究与交流的过程中,增强学生创新意识和团结协助的精神。
教学重点:理解三角形的定义,掌握三角形的特征和特性。
(五)学具准备:
本节课我根据教师是组织者、引导者和合作者这一理念,以学生参与活动为主线,创建新型的教学结构。先创设情境激发学生的学习兴趣,然后让学生自学课本,独立探索,再让学生操作实践,合作交流,从而达到概念的自主建构;在整个教学过程中充分体现了以学生为主体,教师为主导的教学思想,让学生在活动中感受数学之美。
根据本节课的教学目标和教法,我主要采用独立探索、合作交流、实践操作相结合的学习方法,让学生通过动脑、动口、动手来亲身经历做数学的过程,真正理解和掌握基本的数学知识和技能,获得广泛的数学活动经验,建立学习成就感和信心,使学生成为数学学习的主人。
这节课的教学过程,我是秉着新课标的精神,在整个教学流程设计上力求充分体现以学生为主体、以学生发展为本的教育理念,我将教学思路拟定为创设情境、诱发兴趣合作交流、探索新知深化训练,拓展延伸质疑反思,总结评价,努力构建探索型的和谐课堂教学模式。
本节课的板书精简明了,突出重点,体现本课时的内在联系,更进一步加深了学生对三角形的特征和特性的认识。
三角形课件【篇2】
一、教学内容
本单元教学三角形的相关知识,这是在学生直观认识过三角形的基础上教学的,也是以后学习三角形面积计算的基础。内容分五段安排:第一段通过例1、例2第22~25页形成三角形的概念教学三角形的基本特征,三角形的高和底;第二段通过第26~27页教学三角形的分类,认识锐角三角形、直角三角形和钝角三角形;第三段第28~29页通过例4教学三角形的内角和;第四段通过第30~32页例5、例6认识等腰三角形和等边三角形及其特征。第五段第33~34页单元练习。全面整理知识,突出三角形的分类以及关于边和角的性质。
教材中的思考题有较大的思维容量,能促进学生进一步理解并应用三角形的知识。编写的三篇“你知道吗”介绍三角形的稳定性、制作雪花图案的方法和埃及的金字塔,能激发学生学习三角形的兴趣,丰富对三角形的认识。
二、教材编写特点和教学建议
1、让学生在“做”图形的活动中感受三角形的形状特点和结构特征。
空间与图形的概念教学,一般要让学生经历感知——表象——形成概念的过程,教材注意按学生的认识规律安排教学过程。学生在第一学段直观认识了三角形,本单元继续教学三角形的知识,教材经常采用“活动——体验”的教学策略,即组织学生“做”图形,让他们在做的过程中体会图形的特点,主动构建对图形的比较深入的认识。
(1) “做”三角形,感受边、角和顶点。第22页例题教学三角形的边、角和顶点,分三个层次编写:首先呈现一幅宜昌长江大桥的照片,引起学生对三角形的回忆,并联系生活里的三角形进行交流,感知三角形;;然后安排学生想办法做每人至少“做”一个三角形并在小组里交流进一步强化表象;;最后讲解三角形的边、角和顶点。
学生“做”三角形并不难,做的方法必定是多样的。用小棒摆、在钉子板上围、在方格纸上画三角形在第一学段都曾经做过,现在学生还可能剪、折、拼……“做”三角形的目的不在结果,要注重学生在做的过程中是怎样想的、怎样做的,把精力放在建立边、角和顶点等概念上。所以,交流的时候要分析各种做法的共同点,如用三根小棒、三段细绳、三条线段……才能“做”成三角形,三角形有三条边;小棒、细绳、线段……必须两两相连,三角形有三个顶点和三个角。
(2)围三角形,体会两条边的长度和必须大于第三边。《标准》要求:
通过观察、操作,了解三角形的两边之和大于第三边。这是新课程里增加的教学内容,第23页例题教学这个知识。教材通过学生的具体体验来使学生知道这一点。首先,为学生提供四根长度分别是10cm、6cm、5cm、4cm的小棒,向学生提出问题:任意选三根小棒,能围成一个三角形吗?然后让学生在操作中发现有时能围成三角形,有时围不成三角形,并直觉感受这是为什么。最后通过比较每次选用的三根小棒的长度,找到原因、理解规律。
例题的编写特点是不把知识结论呈现给学生,而让学生在“做”图形活动中发现现象、研究原因、体会规律。因此,教学这道例题时要注意三点:第一,课前作好充分的物质准备,力求让每一名学生都有长10cm、6cm、5cm、4cm的四根小棒。第二,课上要让学生自由地选择小棒,充分地围,经历围成和围不成三角形的过程,并给学生提供思考“为什么”的时间。第三,要引导学生从直觉感受上升到理性认识。在用小棒围的时候,他们的直觉感受是如果两根较短的小棒的另一端能够碰到一起,就围成了三角形;如果不能碰到一起,就围不成三角形。这种直觉感受是必要的,但不是最终的。要在直觉感受的基础上,进一步对三根小棒的长度进行分析研究,这才是“数学化”的过程,才能在获得数学结论的同时又学习用数学的方法进行思考。
(3)对图形量、剪、折,亲身感知并认识体会等腰三角形、等边三角形的特点。第30页的两道例题分别教学等腰三角形和等边三角形,认识等腰三角形和等边三角形,首先要感知各自的特点,教材注意突出教学的这一过程。都分三个层次教学:
第一层次是通过学生量三角形边的长度,理解“等腰”“等边”的含义;第二层次是仿照例题示范的方法剪出一个等腰三角形和一个等边三角形,继续体会它们的边的长度关系;第三层次是给出等腰三角形各部分的名称,发现等腰三角形、等边三角形的角的大小关系。其中第二层次的教学比较难。两道例题里“茄子”和“白菜”提的问题不同,前一道例题的问题是“用下面的方法剪成的三角形是等腰三角形吗”,因为学生容易看懂图文结合表述的剪法,通过这个问题引导学生关注到两条腰是同时剪的,长度肯定相同。后一道例题的问题是“你会像下面这样剪出一个等边三角形吗”,因为学生不容易看懂教材展示的方法,教材希望通过这个问题引导学生先研究剪法、弄懂剪法。关键在找到那个红色的点,先对折又斜折是为了让三条边的长度都相同。
2、从已有经验中提炼数学概念。
在具体的感性材料里提取本质特征,形成理性认识是概念教学的渠道之一。丰富的感性经验与清晰地认识特征是建立正确概念的前提。
(1)循序渐进,帮助学生逐步理解三角形的高。三角形的底和高是三角形里的重要概念,为了让学生自己感受底和高,教材用人字梁为素材,利用学生在生活中对人字梁“高度”的认识进行测量,感受三角形人字梁的高,以此为基础引入三角形高的概念。第24页例题、“试一试”以及“想想做做”里的部分习题把三角形高的教学分成四步进行:
第一步让学生量出人字梁图形的高度是多少厘米。这里讲的“高”度还是生活中的高,是从上往下竖直的距离。虽然与数学里的高含义不同,但也有相似的地方——垂直的、最短的。设计这一步教学的目的是唤醒已有的生活经验,营造认识三角形高的基础。第二步结合图形讲述三角形的高。学生对教材里的一段话,既要联系人字梁的高来体会,又要超越人字梁这个具体实物比较概括地理解。联系人字梁的高能降低理解概念内涵的难度,超越人字梁具体实物才能形成真正的数学概念。教材表述的是三角形高的描述式定义,描述了高的位置,描述了画高的方法。教学时可以把教师边画边讲与学生边描边体会相结合,重在对概念的理解,不要死记硬背。第三步通过“试一试”扩大概念的外延。数学里平面图形的高的本质属性是“垂直”而不是“竖直”,竖直是“从上往下”,垂直是“相交成直角”。例题教学三角形的高先从竖直的位置讲起,“试一试”举出各种摆放位置的、不同类型的三角形以及不同边上的高,要求学生测量三角形的高和底的长度,使学生在操作中进一步体会高的概念,认识只要是从一个顶点到对边的垂直线段就是三角形的高,感受底和高的相应关系,进一步理解三角形底和高的意义。这样让学生准确地理解概念的内涵,全面地把握概念的外延,深刻地体会高与底之间的对应联系。第四步通过“想想做做”P25第1题的画高练习,进一步感受描述式定义,巩固对高的理解。其中最右边的是直角三角形,它的两条直角边互为高和底,学生在画高的时候能够体会到这一点。另外让学生阅读资料了解三角形的稳定性三角形的稳定性是其重要特性,教材安排了“你知道吗”,让学生通过阅读并做实验体会这一特性。这里注意一点本册教材知识要求学生画请指定底边的高,这些高都是在三角形里面的,三角形外的高不做要求。还有就是在作图的时候一定要注意一些作图规范。
(2)联系对直角、锐角、钝角的认识,引导学生探索三角形的分类。三角形的分类教学,必须使学生在充分的感知中体会三个内角大小有几种情况,理解三角形分类的方法及分类的合理性。第26页例题让学生在给角分类的活动中体会三角形的分类。首先呈现了6个不同形状的三角形,要求学生仔细观察各个三角形的每个角是什么角,并把观察结果填在预设的表格里。然后引导学生分析研究表格里的数据信息,发现有些三角形的三个角都是锐角,有些三角形里有一个直角和两个锐角,有些三角形里有一个钝角和两个锐角,从而引发可以给三角形按角分类,获得直角三角形、锐角三角形和钝角三角形的认识,掌握不同三角形的特点。准确而精炼的语言总结了什么样的三角形是锐角三角形、直角三角形和钝角三角形。最后还用集合图表达三角形的分类以及各类三角形与三角形整体的关系。
教学三角形的分类要特别注意三点:第一,必须组织学生积极参与分类活动,在独立思考的基础上合作交流,逐渐形成共识。第二,要扣紧概念的关键,让学生理解为什么锐角三角形强调三个角都是锐角,直角三角形和钝角三角形只讲一个直角或一个钝角,从而掌握判断时的思考要点。如第33页第2题里左边和中间的三角形能确定它们分别是钝角三角形和直角三角形,因为在图中分别看到了1个钝角和1个直角。右边的三角形只看到1个锐角,不能确定它是什么三角形。第三,要用好第27页“想想做做”第3~7题,让学生在图形的变换中加强对各类三角形的认识。认识了三角形的分类,还要通过具体的观察、判断和操作、画图等活动进一步巩固对不同三角形的认识。教材在这方面有比较多的安排。例如P27的“想想做做”第3~7题,分别让学生判断各是什么三角形,巩固对各类三角形的认识;围出、折出、剪出和画出指定的三角形,使各类三角形的表象再现。特别是第7题是一道开放题,可以让学生通过画一画、说一说,互相交流,加深对各类三角形的认识,掌握各类三角形的特征。
3、从特殊到一般,通过实验得出三角形的内角和是180°。
让学生“了解三角形的内角和是180°”是《标准》规定的教学内容和教学要求,这里讲的“了解”不是接受和知道,而是发现并简单应用。教材安排三角形内角和的学习,主要让学生由特殊到一般,通过自己的探索活动认识与掌握三角形内角和是180°。
(1)第28页教学三角形的内角和,采用了“质疑——解疑”的教学策略,实验是策略的核心,是解疑的手段。
首先计算同一块三角尺上的3个角的度数和。由于学生在四年级(上册)教材里已经知道了两块三角尺上的每一个角的度数,所以能够很快求得每块三角尺的3个角的和都是180°。并由此产生疑问:其他三角形的内角和也是180°吗?由此产生学习的愿望。接着安排学生通过实验解疑,用实验的方法验证、确认三角形内角和的结论。把一个三角形的3个角拼在一起,从拼成的是平角得出3个角的度数和是180°。教材要求小组合作,剪出不同类型的三角形进行实验,通过实验获得直接认识,验证自己的猜想,从而确认三角形的三个内角的和是180°,得出结论。因此,实验的对象有较大的包容性,实验的结论有很强的可靠性。学生会完全信服三角形的内角和是180°这一普遍规律。最后并通过“试一试”,应用三角形内角和求未知角的度数,巩固三角形内角和的结论。
(2)为了让学生深刻地理解三角形内角和的规律。在认识三角形内角和以后,教材通过应用促进学生掌握这一内容,并应用解决问题。如P29.“想想做做”1~3题,应用三角形内角和求未知角的度数,在三角形的变换中判断内角和各是多少,巩固所获得的结论;。“想想做做”巧妙地设计了两道辨析题一道是第2题:一块三角尺的内角和180°,两块同样的三角尺拼成的一个大三角形的内角和又是多少呢?另一道是第3题:正方形内角和360°,对折出的三角形内角和180°,再对折成的小三角形内角和又是多少呢?解答这两道题时,学生的思考会在180°和360°以及180°和90°不同答案上碰撞,碰撞的结果是进一步认识三角形的内角和是一个普遍规律,不因三角形的大小而改变,不因拼、折等图形变换而改变。另外,教材还从两个方面引导学生应用三角形的内角和:一是根据三角形中已知的两个角的度数,求另一个角的度数;二是解释为什么直角三角形里只有1个直角,钝角三角形里只有1个钝角。第6题,通过思考一个三角形中最多有几个钝角或直角,并应用三角形内角和的知识合理解释,加深认识三角形内角和及钝角三角形、直角三角形的特征。
4、注意三角形知识的内在联系
三角形的分类是按角的大小为标准的,而等腰三角形和等边三角形是以边的长度特点来定义的。不同特征的三角形中又存在内在联系,认识三角形应该让学生了解这些联系。在P31~32第2~4题里,就让学生了解等腰三角形可以同时是直角三角形、锐角三角形或钝角三角形,体会等腰三角形都是轴对称图形。P33第2题通过判断,进一步认识钝角三角形、直角三角形分别只有一个钝角或直角,而每类三角形都有锐角,即只看一个锐角无法判断是什么三角形。第3题使学生体会两个一样的直角三角形,可以拼成三角形,也可以拼成四边形,而且可以有不同的拼法。第5题需要综合本单元学习的三角形知识,依据三角形边长之间的关系,选择小棒按要求摆出等腰三角形和等边三角形。第6题,要应用对等边三角形特征的认识进行解释,第7题,让学生观察三角形判断各是什么三角形,感受可以从不同角度判定一个三角形是什么三角形,体会知识之间的内在联系。
5.注意培养学生的空间观念
观察、举例、做图形感受三角形
在P22例题里,引导学生先观察情景中的三角形,举出日常生活里接触过的三角形,加强三角形的表象,同时还要求学生做一个三角形,P23第1题也要求学生画三角形,把表象转化成具体的三角形再现出来,形成三角形的空间形象。
学生在看、围、折、剪等活动中获得各类三角形特征的直接体验
在空间与图形的学习中,引导学生实际操作,具体感受所学图形,积累对其形状、大小、位置关系的的感性认识,可以发展空间观念。教材在P27第2题通过观察、判断加强不同三角形形状的直接感受,第3~6题让学生围、折、剪图形,依据头脑里的表象再现出相应的图形,可以培养空间观念。第7题,需要依据三角形的特点进行分析、判断,知道可以分成两个怎样的`三角形,才能有不同的分法。这些都有利于空间观念的发展。
让学生折一折、剪一剪、画一画掌握等腰三角形和等边三角形的直观形象
同样地,在认识等腰三角形和等边三角形时,也注重学生的动手实践,促进空间观念的发展。如P30、P31例中折一折、剪一剪,得出相应的图形,进一步体验各自的特点;P31“想想做做”第2~4题,也是动手剪一剪、画一画图形,并运用对图形特点的认识辨析相关图形,也是加强空间观念的手段与方法。
三角形课件【篇3】
教育方针:
1.经过着手操作和调查比较,领会三角形的本质特征,了解三角形的含义,知道三角形各部分的称号,了解三角形的特性。知道三角形高和底的含义,会在三角形内画高。
2.经过试验,使学生知道三角形的稳定性及其在日子中的使用。
3.在调查、操作等活动中,开展调查操作才干和比较、笼统、概括等思维才干。
教育要点:三角形的概念,感知稳定性
教育难点:高的画法和含义
教育进程:
一、三角形的概念
1、在画中树立概念
其实三角形咱们并不生疏,现在请你把心目中的三角形画下来。
展现著作。
2、沟通中完善概念
三条线段怎样画才会是三角形?
由3条线段围成(每相邻两条线段的端点相连)的图形叫做三角形。
3、延伸中强化概念
不在一条线上的三个点就能确认一个三角形。
4、介绍各部分称号
二、三角形的稳定性
1、设疑
为什么要把篱笆围成这种形状?
2、操作
围一围、拉一拉、比一比小结:当三角形的三条边长确认后,三角形的形状和巨细也就确认了,所以在拉的时分,三角形才不会变形,这便是三角形的稳定性。
3、赏识
三、三角形的高
1、初认高
回想点到直线的笔直线段。
其实在三角形中,像这样,从三角形的一个极点到它的对边所作的笔直线段便是三角形的高,这条对边叫做三角形的底。
2、再识高
移动极点,找高。
旋转三角形,辨高。小结:只要是从极点向对边做的笔直线段便是三角形的高。
三角形还有其他高吗?
3、画高
①画AB边上的高。
展现学生著作。
画高时,有什么需求留意的当地?小结:看来咱们的高不只要笔直、要从极点动身,还要留意所画的高与底要对应。
②再画出AC边上的高。
③在指定底上画高。
四、讲堂总结
三角形课件【篇4】
教学目标
1、掌握证明的基本步骤和书写格式。
2、经历“探索-发现-猜想-证明”的过程。能够用综合法证明直角三角形的有关性质定理和等边三角形的判定定理。
教学重点
等边三角形的判定定理和直角三角形的性质定理。
教学难点
能够用综合法证明等边三角形的判定定理和直角三角形的性质定理。
教学方法
教学后记
教学内容及过程
教师活动学生活动
一、定理:一个角等于60°的等腰三角形是等边三角形
1.引导学生回忆上节课的'内容,让学生思考:等腰三角形满足什么条件时便成为等边三角形?让学生对普遍联系和相互转化有一个感性的认识。
2.肯定学生的回答,并让学生进一步思考:有一个角是60°的等腰三家形是等边三角形吗?组织学生交流自己的想法。渗透分类讨论的思维方法。
3.关注学生得出证明思路的过程,讲评。讲解定理:有一个角是60°的等腰三角形是等边三角形。
二、一种特殊直角三角形的性质
1.让学生拼摆事先准备好的三角尺,提问:能拼成一个怎样的三角形?能否拼出一个等边三角形?并说明理由。
2.肯定学生的发现和解释,在此基础上进一步深入提问:在直角三角形中,30°所对的直角边与斜边有怎样的大小关系?
3.演示规范的证明步骤,同时引导学生意识到:通过实际操作探索出的结论还需要给予理论证明。
4.让学生准备一张正方形纸片,,按要求动手折叠。
5.讲解例题,应用定理。
6.布置学生做练习。
练习:课本随堂练习1
三、课堂小结:
通过这节课的学习你学到了什么知识?了解了什么证明方法?
四、作业:同步练习
板书设计:
1.积极地自主探索、思考等腰三角形成为等边三角形的条件。可能会从边和角两个角度给出答案。
2.积极思考,通过老师的点拨,分类讨论当这个角分别是底角和顶角的情况。
3.认真听讲,体会分类讨论的数学思维方法,理解定理。
1.积极动手操作,并很快得到结果:可以拼出等边三角形。
2.在拼摆的基础上继续探索,得出结论。并在探索的过程中得到证明的思路。
3.认真听讲,体会从探索和尝试中得到结论的过程和证明方法的步骤,掌握定理。
4.很有兴趣地折叠纸片,体会定理的应用。
5.听讲,体会定理的应用。
6.认真做练习。
(学生小结:掌握证明与等边三角形、直角三角形有关的性质定理和判定定理)
三角形课件【篇5】
三角形内角和教学设计_模板
三角形内角和教学设计(一)
执教:董家沟小学林茂慧
内容:北师大版小学数学四年级下册第二单元27页至29页。
一、教学目标:
1、理解掌握三角形内角和是180°,并运用这一性质解决一些简单的问题。
2、通过直观操作的方法,引导学生探索并发现三角形内角和等于180°,在实验活动中,体验探索的过程和方法。
3、在探索和发现三角形内角和的过程中获得成功的体验。
二、教学重、难点:
重点:探索并发现三角形内角和等于180°。
难点:运用三角形内角和等于180°的性质解决一些实际问题。
教具:课件、三角形若干。
学具:量角器、直角三角形、锐角三角形和钝角三角形各一个。
三、教学过程
(一)创设情境,导入新课
我们已经学过了三角形的知识,我们来复习一下,看看大屏幕,各是什么三角形?谁能说说什么是锐角三角形、直角三角形、钝角三角形?追问:不管是什么三角形它们都有几个角呢?这三个角都叫做三角形的内角,而这三个内角的和就是这个三角形的内角和。那么谁来说一说什么是三角形的内角和?三角形有大有小,形状也各不相同,那么它们的内角和有没有什么特点和规律呢?我们来看一个小片段,仔细听它们都说了什么?
教师放课件。
课件内容说明:一个大的直角三角形说:“我的个头大,我的内角和一定比你们大。”一个钝角三角形说:“我有一个钝角,我的内角和才是最大的)一个小的锐角三角形很委屈的样子说“是这样吗?”
都听清它们在争论什么吗?(它们在争论谁的内角和大。)谁能说一说你的想法?(学生各抒己见,是不评价)果真是这样吗?下面我们就来研究“三角形内角和”。
(板书课题:三角形内角和)
(二)自主探究,发现规律
1、探究三角形内角和的特点。
(1)检查作业,并提出要求:
昨天老师让每位学生都分别剪出了锐角三角形、直角三角形和钝角三角形,并量出了每个角的度数,都完成了吗?拿出来吧,一会我们要算出三角形的内角和填在下面的表格里。我们来看一下表格以及要求。出示小组活动记录表。
小组活动记录表
小组成员的姓名
三角形的形状
每个内角的度数
三角形内角的和
(要求:填完表后,请小组成员仔细观察你发现了什么?)
②小组合作。
会使用表格了吗?下面我们就以小组为单位,按照要求把结果填在小组长手中的表格内。
各组长进行汇报。发现了三角形的内角和都是180°左右。
师:实际上,三角形三个内角和就是180°,只是因为测量有误差,所以我们才得到刚才得到的数据。
2、验证推测。
那么同学们有没有什么办法知道三角形的内角和就是180°呢?大家可以讨论一下,学生可能会想到用折拼或剪拼的方法来看一看三角形的三个角和起来是不是180°,也就是说三角形的三个角能不能拼成一个平角。师生先演示撕下三个角拼在一起是否是平角,同学们在下面操作进行体验,再用课件演示把三个内角折叠在一起(这时要注意平行折,把一个顶点放在边上)学生也动手试一试。
通过我们的验证我们可以得出三角形的内角和是180°。
板书:(三角形内角和等于180°。)
3、师谈话:三个三角形讨论的问题现在能解决了吗?你现在想对这三个三角形说点什么吗?(让学生畅所欲言,对得出的三角形内角和是180°做系统的整理。)
4、同学们还有什么疑问吗?大家想一想我们知道了三角形内角和是180°可以干什么呢?(知道三角形中两个角,可以求出第三个角)
出示书28页,试一试第3题,并讲解。
说明:在直角三角形中一个锐角等于30°,求另一个锐角。
生独立做,再订正格式、以及强调不要忘记写度。
小结:同学们有没有不明白的地方?如果没有我们来做练习。
(三)巩固练习,拓展应用
1、出示书29页第一题。说明:第一幅图是锐角三角形已知一个锐角是75°,另一个锐角是28°,求第三个锐角?第二幅图是直角三角形已知一个锐角是35°,求另一个锐角?第三幅图是钝角三角形已知一个锐角是20°,另一个锐角是45°,求钝角?
完成,并填在书上。讲一讲直角三角形还有什么解法。
2、出示29页第2题。
说明:一个钝角三角形说:我的两个锐角之和大于90°。
一个直角三角形说:我的两个锐角之和正好等于90°。让学生判断。
3、画一画:
出示四边形和六边形。运用三角形内角和是180°计算出各自的内角和。你能推算出多边形的内角和吗?
三角形内角和180度是科学家帕斯卡12岁时发现的。我们同学还没到12岁,看你能不能通过自己的努力也去探索和发现。
(四)课堂总结
让学生说说在这节课上的收获!
三角形内角和教学设计(二)
探索三角形内角和的度数以及已知两个角度数求第三个角度数。
教学目标:
1、通过测量、撕拼、折叠等探索活动,使学生发现三角形内角和的度数是180?
2、已知三角形两个角的度数,会求第三个角的度数。
3、培养学生动手实践,动脑思考的习惯。
教学重点:
了解三角形三个内角的度数。
教学难点:
理解三角形三个内角大小的关系。
教具学具准备:
课件三角形若干量角器剪刀。
教材与学生
教材创设了一个有趣的问题情境,通过对大小两个三角形内角和的大小比较来激发学生探索的兴趣。教材为了得到三角形内角和是180的结论安排了两个活动,通过学生测量,折叠,撕拼来找到答案。
学生在已有的会用量角器来度量一个角的度数的基础上,会首先想到这种方法。但测量的误差会导致测量不同,因此,学生会想到采取其他更好的办法,通过亲手实践,得出结论。
教学过程:
一、呈现真实状态。
师:今天我们来研究三角形内角和度数。这里有两个三角形,一个是大三角形,一个是小三角形(图略),到底哪一个三角形的内角和比较大呢?
学生各抒己见。
二、提出问题:
师;刚才我们观察三角形哪个内角和大,同学们有两种不同的猜想,可以肯定,必定有错下面我们来测量验证。
(1)以小组为单位请同学们拿出量角器,量一量,算一算图中大小两个三角形内角和度数,并做好记录,记录每个内角的度数。
(2)组内交流。
(3)全班交流。由小组汇报测出结果(三角形内角和)
(4)师小结:我们通过测量发现,每个三角形的内角和测出结果接近180。
[意图:通过这一操作活动,激发学生的兴趣,让学生积极参与培养学生的动手操作能力]
三。自主探索、研究问题、归纳总结:
师引导提问:三角形的内角和会不会就是180呢?
(一)组内探索:
(1)以小组为单位探索更好的办法。
(2)以小组为单位边展示边汇报探索的过程与发现的结果。
(有的小组想不出来,可以安排小组和小组之间进行交流,目的是让学生通过实践发现结果,在探索中发现问题,在讨论中解决问题,是学生学习到良好的学习方法)
(3)把你没有想到的方法动手做一次
(使学生更直观地理解三角形的内角和是180的证明过程)
(4)根据学生的反馈情况教师进行操作演示。
(二)教师演示
撕拼法1。教师取出三角形教具,把三个角撕下来,拼在一起,如图所示
2.师:这三个内角放在一起你有什么发现?
生:发现三个内角拼成一个平角。
师:平角是多少度呢?说明什么?
生:180?说明三个内角和刚好等于180。
师:这种方法是不是适用各种三角形呢?
3。学生每人动手实践,看看是不是不同的三角形是否都有这个特点,也能拼出一个平角呢?
进行实验后,结果发现同样存在这一规律,三角形三个内角和是180。
折叠法:师:刚才我们通过测量发现三角形内角和接近180,那是因为测量的不那么精确,所以说“接近”,又通过撕拼方法发现三角形的三个内角刚好拼成一个平角,进一步说明三个内角和是180,现在再来演示另一种实验,再次证明我们的发现。
你们也来试一试好吗?
在学生完成这一实践后肯定这一发现
三角形三个内角和等于180?
[意图]:充分发挥了学生的主观能动性,让学生大胆去思考发言,把课堂交给学生,最后老师在演示达成共识,这样学生学到知识印象颇深,也理解最为透彻,提高课堂教学的效率
四。巩固练习,知识升华。
1.完成课本第28页的“试一试”第三题。
2.想一想:钝角三角形最多有几个钝角?为什么?
锐角三角形中的两个内角和能小于90吗?
3.有一个四边形,你能不用量角器而算出它的四个内角和吗?
[意图:这样分层安排练习,注重培养学生的分析能力,同时也培养学生的思维能力和口头表达能力。
五。总结延伸
这节课同学们通过测量,发现了问题,然后运用撕拼,折叠两种方法验证自己的猜想,得出结论,这种学习方式很好,我们在今后的学习中还要用到,我们今天探究了三角形的一个秘密,其实它的秘密还很多,有兴趣的话,我们以后继续研究。课后反思:
当我设计这节课时,首先思考,学生面对这个新问题时会想到用那些方法来思考呢?很显然,学生根据三角形大的内角就大,是学生在探究时的真实想法,是一种合情推理,在探究过程中,怎样对待学生的这个错误呢?我没有简单地予以否定,迫不及待的帮助,而是引导学生否定错误猜想,寻找错误产生的原因,在这个过程中,教师启迪学生“转化”的思想求得突破,然后引导学生进行操作验证,从中得出结论,学生完整地经历探究的整个过程,不仅获得知识,还获得思想,充分发挥了学生的主观能动性,使他们轻松愉快的学习,提高了课堂效率。
三角形内角和教学设计(三)
教学内容: 人教版四年级下册第 85 面—— 87 面。
教学目标:
1、让学生亲自动手,通过量、剪、拼等活动发现三角形内角和是 180° ,并会应用这一知识解决生活中简单的实际问题。
2、让学生在动手获取知识的过程中,渗透 “ 转化 ” 数学思想,掌握简单的数学推理方法,培养学生的创新意识、探索精神和实践能力。
3、让学生感受到数学的价值,体会成功的喜悦,激发学生主动学习数学的兴趣。
教学重点:
让学生经历 “ 三角形内角和是 180°” 这一知识的发现过程。
教学准备:
教具:多媒体课件、三角板一个、两个完全一样的直角三角形。
学具:锐角三角形、直角三角形、钝角三角形各一个。
教学过程 :
( 一 ) 创设情境,提出问题。
师:同学们的歌声真嘹亮,老师站在这里和大家一起学习感到很高兴,
今天老师还给大家带来了一个老朋友,请看,是什么?
生:三角形!
师:前面我们已经认识了三角形,谁能给大家介绍一下?
学生讲学过的三角形知识。
(学生叙述到部分主要内容即可)
师: 看来大家对三角形已经非常熟悉了, 老师还为大家带来了两个特殊的三角形,请看,它们是什么三角形?(点击 FLASH 出示直角三角形实物图)
师:(师指第一个三角形)谁知道这个直角三角形每个角的度数吗?
师:答的真准确, (FLASH :生说完后师边说边点出度数 )30 度、60 度、90 度都在这个三角形的内部,我们把这样的角叫做三角形的内角。
师:有谁知道这个三角形三个内角的度数?
(FLASH :生说完后师点击出第二个三角形,边说边点出度数 )
[U1]试一试,看谁算得快。
师:谁来说说自己的计算过程?
[U2]角的和叫做三角形的内角和。(板书课题)下面请大家认真观察这两个算式,从结果上看,你发现了什么?
生:它们的内角和都是 180 度。
师:观察的真仔细!(点击课件,出示多种多样的三角形后提问)同学们,咱们都知道,这两个三角形是特殊三角形,在我们的生活中还有许许多多不是这个样子的三角形,请看大屏幕,这些任意三角形,它们的内角和是不是都是 180 度呢?
[回答可能有二]:
(一种全部说是:)
师:请问,你们是怎么想的,为什么这么认为?
生: ……
师:看来,大家是通过这两个三角形猜想的,是吗?想不想验证一下你们的猜想,(生:想)好,咱们一起走进三角形王国,一起去研究它们内角和的秘密吧!(师在课题“内角和”下面划上横线,打上问号)
(一种有一部分同学说是,有一部分同学说不是:)
师:看来,大家的意见不一致, 想不想验证一下你们的猜想,(生:想)好,咱们一起走进三角形王国,一起去研究它们内角和的秘密吧!(师在课题“内角和”下面划上横线,打上问号)
(二)动手操作,探究新知
[U3]
师:老师看你们有答案了,哪位同学愿意说一说你的奇思妙想?
生:我准备用量的方法。
师:然后呢?
生:然后把它们三个内角的度数相加起来,就知道了三角形的内角和是多少?
师:说的真不错,还有没有其它的方法?
生:我是把三角形的三个角剪下来,拼在一起( 师鼓励: 你的想法很有创意, 等一会儿用你的行动来验证你的猜想吧!)
生:……
(如生一时想不到,师可引导:他是把三个内角的度数相加在一起,我们能不能想办法把三个内角放在一起进行观察,看看能不能发现些什么呢?)
师: 好啦, 老师相信咱们班的同学个个都是小数学家, 一定能找出更多的方法的, 请你们在研究之前,也像老师一样,在三个内角上编上序号,角一、角二、角三,现在就请同学们对锐角三角形、直角三角形和钝角三角形等各种类型的三角形进行研究,看看它们的内角和各有什么特点。咱们比一比,看一看,哪个小组的方法多,方法好!
[U4]开始吧!(学生研究,师巡回指导)预设时间:5 分钟
师:老师看各小组已经研究好了,哪位同学愿意上来交流一下?
师:请你告诉大家,你是怎么研究的,最后发现了什么结果?
( 预设: 如果第一类同学说的是量的方法)
师:你是用什么来研究的?
生:量角器。
师: 那请你说一下你度量的结果好吗?
( 生汇报度量结果)
师: 刚才有的同学测量的结果是180 度,有的同学测量的结果是179 度,有的同学测量的结果是182 度,各不相同,但是这些结果都比较接近于多少?
生:180 度。
师:那到底三角形的内角和是不是180 度呢?还有哪位同学有其它的方法进行验证吗?
生:我是先把三角形的三个角剪掉以后粘在一起,然后在量出它们三个角组成的度数。
师:他演示的真好,你们听明白了吗? 李 老师把他的过程给大家在大屏幕上演示一下。
(师边讲解边点击 FLASH :把三角形按照三个内角撕成三块,先把角一放在右边,再把角二放在左边,最后把角三调个头,插在角一角二的中间,这样它们三个内角就形成了一个大角,角一的这条边,角二这条边看起来在一条直线上,那到底是不是在一条直线上呢,我们一起用直尺来量一下,师演示后问学生:是不是在一条直线上,那这个大角是个什么角呢?通过刚才拼的过程,你有什么发现?)
师:好极了,刚才这个小组的同学用拼的方法得到XX 三角形的内角和是180 度,你们还有别的方法吗?
生:我们还用了折的方法(生介绍方法)
师: 你们听明白了吗? 李老师把他的过程给大家在大屏幕上演示一下。
(师边讲解边点击 FLASH :先找到两条边的中点,把它连起来,把角一沿着中间的这条线向对边对折,再把角二向里对折,使它的顶点与角一对齐,最后把角三也用同样的方法对折,这样它们三个内角就形成了一个大角,这个大角是个什么角呢?)
生:是个平角。180 度。
师:除了用了量、拼、折的方法来研究以外,刚才在操作的过程中老师还发现了一个同学用了一种方法来进行研究,大家想知道吗?
师:请这位同学来说给大家听听吧!
生:我把两个相同的直角三角形拼成了一个长方形,因为长方形里面有四个直角,所以它的内角和是360 度,那么一个三角形的内角和就是180 度。
师:刚才我们用量、拼、折、推理的方法都得到了三角形的内角和是 180 度,同学们,现在我们回想一下,刚才测量的不同结果是一个准确数还是一个近似数?为什么会出现这种情况呢?
生 1 :量的不准。
生 2 :有的量角器有误差。
师:对,这就是测量的误差,如果测量仪器再精密一些,我们的方法再准确一些,那么任意一个三角形的内角和也将是 180 度。
师:同学们,我们刚才用不同的方法,不同的三角形研究了三角形的内角和,得到了一个相同的发现,这个发现就是?
生:三角形的内角和是180 度。(师板书)
师:把你们伟大的发现读一读吧!
(三)拓展应用,深化认识
师:请看老师手上的这两个三角形,左边这个内角和是多少度?(生: 180 度)右边呢(生:也是 180 度)
师:现在老师把它们拼在一起,这个大三角形的内角和又是多少度呢?
(生答后师引导归纳得出:三角形的内角和与形状大小无关,组成的大三角形的内角和依然是 180 度。)
师:刚才我们在讨论学习三角形知识的时候,三角形中的两个好朋友却争执了起来,想知道怎么回事吗?让我们一起去看看吧!(出示课件,课件内容:一个大一些的直角三角形说:“我的个头比你大,我的内角和一定比你大”。另一个稍小的锐角三角形说:“是这样吗”?)
师:到底谁说的对呢?今天我们就用我们今天学到的知识来为它们解决解决吧!
师:真不错,你们当了一回小法官,帮助三角形兄弟解决了问题,它俩很感谢你们,三角形王国中还有很多生活中的问题,小博士们,你们愿意解答吗?
师:好,请看大屏幕!
(出示基础练习)在一个三角形中角一是 140 度,角三是 25 度,求角二的度数。
生答后,师提问:你是怎样想的?
生陈述后,师鼓励:说的真好!
出示自行车、等边三角形的路标牌、告诉顶角求底角的房顶、直角三角形的电线杆架进行练习。
(出示)小红的爸爸给小红买了一个等腰三角形的风筝,它的一个底角是 70 度,它的顶角是多少度?
师:看来啊,三角形的知识在咱们生活中还有着这么广泛的运用呢!昨天,我们班发生了一件事情,小明不小心将镜框上的一块三角形玻璃摔破了,(课件呈现情境)他想重新买一块玻璃安上,小明非常聪明,只带了其中的一块到玻璃店去,就配到了和原来一模一样的玻璃了。你知道他带的是哪一块吗?
(预设:师:根据三角形的内角和是180 度,你能求出下面四边形、五边形、六边形的内角和吗?
师:太棒了,这位同学把这个四边形分割成了二个三角形求出了它的内角和,你能像他一样棒求出五边形和六边形的内角和吗?
师: 同学们,今天我们一起学习了三角形的内角和,你有哪些收获呢?
师:嗯,真不错, 你们知道吗? 三角形的内角和等于 180 度是 法国著名的数学家帕斯卡 在 1635 年他 12 岁时独自发现的, 今天凭着同学们的聪明智慧也研究出了三角形的内角和是180 度,老师为你们感到骄傲,老师相信在你们的勤奋学习和刻苦钻研下,你们就是下一个“帕斯卡”!
师:好,下课!同学们再见!
教学内容: 练习二十六的第8~13题。
教学目标:通过教学,使学生能正确地进行小数加减法的笔算和比较熟练地进行小数加减法的口算。
教学过程: 一、复习
1、根据第一个算式,写出后两个算式的结果。
-= += -=
+= -= -=
2、计算下面各题,并进行验算。
+ - -
3、口算下面各题
+ + - -4 - +
8- - + 1- + +
二、练习
练习二十六中的习题
第8题:先说一说怎样验算,再让学生做第一行的3个。
第9题:请学生说一说这张表中的结存金额怎样算,再由学生算出得数。(可以用计算器进行计算。
第10题:说一说题中的一些分数怎样改写成小数,再由学生进行计算。
三、作业:
练习二十六中的习题。
第7、11、12题。
帮助学生解决第13题的困难。
一、教学内容:苏教版小数教材第七册P115-116线段、射线、直线和角。
二、教学目标:
1、通过比较迁移认识直线、射线和角,了解直线、射线和角的性质。
2、通过操作讨论知道角的大小跟两边叉开的大小有关。
3、学会用三角板和直尺画直线、射线和角。
4、通过学习,发展学生的空间观念和想象力。
三、教学重点、难点:掌握射线和角的概念及性质
四、教学准备:
多媒体、实物投影、活动角、直尺、三角板。
五、教学过程:
(一)线段、射线与直线的认识:
1、出示一条线段:
问:a.这是什么?(板书:线段)
b.为什么说它是线段?(即线段的特点?)
c.你能画一条3cm长的线段吗?
2、画一画:
你能画出一条与线段不同的线吗?
自由练(根据学生实际情况进行适当启发)
3、反馈汇报。(根据学生的反馈选择直线或射线的教学)
(1) 投影展示”直线”
a.问:你画的这条线和线段有什么不同?(即直线的特点)
b.师:在数学上,我们把这种没有端点,可以向两端无限延长的线叫直线。(板书:直线)
c.你会画直线吗?(对照定义,说明”无限延长”表现在”没有端点”)
(2) 投影展示”射线”
a.这条线与线段有什么不同之处?
b.说明”射线”的概念。(只有一个端点,可以向一端无限延长)
c.你会画”射线”吗?(自由画,一生板演)
反馈:讲评画法。先定点然后引出一条线。(再画一条巩固)
(3)你在生活中看到过这样的线吗?(自由说一说)
(4)小结:大家说的这些都可以看作是射线。
(5)演示一些射线,如手电筒光、多媒体演示太阳光等。
4、线段、射线与直线的比较
a.出示一条直线,中间取一点。问:这条直线上有射线吗?(学生讨论)
b.其中一段射线下移。(说明射线是直线的一部分)
c.直线中间取两点。问:这条直线上有线段吗?(说明线段也是直线的一部分)
d.师问:比较一下,线段、射线和直线有什么异同点?
5、练习一
(1) P117/1(判断各图是线段、射线还是直线)
(2)过一点画射线。
如果给你一点,你能画出多少条射线?
a.先定点,(30秒画射线比赛)
b.汇报。如果给你时间你还能画吗?
c.电脑演示无数条。
d.公共端点的认识。
(二)角的认识:
1、观察有公共端点的许多条射线,你发现了什么图形?
自由说(如果学生回答不出,逐步减少射线的条数。)板书:角
问:那你知道角是由什么组成的吗?(出示没有公共端点的两条射线)
学生概括得出角的概念(板书角的概念)
2、分别演示三个角的形成过程P116
问:它们有什么不同的地方?(大小不同,板书:角的大小)
3、得出角的概念,并自学P116角的各部分名称。
打开课本划一划,读一读。
4、继续自学角的符号介绍,书写并与小于号比较。
5、判断下面图形哪些是角,哪些不是。
说说为什么?(注意引导学生运用”概念”去判断)
6、画角(先自由画,再一生实物投影演示)
说说你是这么画的?(定点,引出两条射线)
再画一个,并写出各部分名称,并用角的符号来表示。(独立练)
7、活动角介绍。玩活动角
a、个人玩 摆大小不同的角(初步感知角的大小与边叉开大小有关)
b、同桌玩 一人拉一角,另一个同学拉出一个比他大的角。(进一步感知)
c、想一想 角的大小与什么有关?
小结:角的大小与两边叉开的大小有关。
d、多媒体出示一组大小差异很大的角,哪一个角大?(观察法)
多媒体出示一组大小相近的角,哪一个角大?(重叠法,分两步进行,注意让学生讨论概括方法。)
比一比三角板上角的大小,并说给同桌听。
e、出示一组大小相同,边长短不同的角。哪一个角大?
小结:角的大小与边的长短无关。
8、练习二
(1) 判断P121/3
a.线段有两个端点,能量出它的长度。…( )
c.小明画了一条5厘米长的直线。……………( )
d.小冬用一个能放大10倍的放大镜去看一个角,结果这个角的大小放大了10倍。…
(2) 数角
(三)小结:
这节课,你学会了什么?你是怎么学会的?
教学内容:苏教版小学数学第七册 “简单的统计”。 教学目标:
1、让学生经历提出问题,收集数据、整理数据、描述、分析数据作出决策和预测的过程,使学生初步学会简单的数据整理方法,会制作会看简单的统计表。
2、培养学生分类整理和初步应用知识解决实际问题的能力,让学生认识到数学与人类生活的密切联系,体会数学的价值,发展应用意识。
3、让学生学会与他人合作,并能与他人交流思维的过程和结果,培养学生的合作意识。 一、谈话导入:
同学们喜欢看动画片吗?老师今天特意给大家带来了三位朋友,他们分别是……(多媒体展示米老鼠、机器猫、孙悟空)喜欢吗? 二、引导探索: 1、设置情境
老师不仅给大家带来了三位朋友,而且也给大家带来了一个问题。课前老师收到一位印刷厂厂长的这样一封来信:(出示) 周老师:
我们厂想生产一批印有米老鼠、机器猫、孙悟空的卡片,可又不知道同学们到底最喜欢什么,可以帮我在同学中调查一下吗?……
老师想把这个任务交给同学们,你能想办法帮老师了解到每一位同学最喜欢哪一位卡通人物吗?有什么办法?
2、小组讨论,交流方法
师:每个小组选一名代表发言,组内其他同学可以补充发言。其他小组的同学如果你赞同发言小组同学的意见就请你为他们鼓掌,鼓励他们;如果你认为他们的方法很独特,有创意,而且发言也很精彩,就请你为他们热烈地鼓掌,祝贺他们;如果他们的发言你没有听明白或者疑问,可以向老师举手示意,大家说好不好?
4、引导交流:你认为这个问题应用哪种方法来整理数据比较好?请阐述你的理由,其他同学通过掌声来进行评价。
5、师小结:①解决这个问题,确实有很多不同的方法。②面临一个具体问题选择整理数据方法时,一定要根据情况而定,要选择自己喜欢的便捷的方法,但要注意不论用何种方法来整理数据,都必须做到不重复不遗漏。 (说明:教学中教师充分尊重学生有个性的思维方式,不强求使用统一的方法解决同样的问题,让学生充分体验到解决问题策略的多样性,并通过引导学生比较各种方法,陈述各种理由,来促进学生自主进行方法的选择和优化。)
6、谈话:下面请同小组的同学商议一下,选择一种大家都喜欢的整理数据的方法在各自组内进行一次统计,做好分工,合作统计一次,比一比看哪个小组完成得最快? 小组合作统计。 生谈合作后的体会。 (说明:让学生学会合作的方法,并充分体验到合作的优越性,进一步增强学生的合作意识) (二)自主探索、学制统计表
1、师:可是由于这些统计反映的都是各组的情况,老师仍不清楚我们班到底有多少人喜欢米老鼠和机器猫和孙悟空,那么用什么方法才能把刚才各组收集整理的数据总结一下表示得更清晰,排列得更整齐规范呢?(生:制成表格)你们想由老师讲怎样制表,还是自己试试? 2、小组合作制表。
3、展示交流合作制表的成果。每组一名代表上台展示,并做适当说明。 4、引导学生说说:你认为制表时要注意些什么? 7、揭示课题
看来在同学们的共同努力下帮助周老师和那位印刷厂厂长解决了一个非常棘手的问题。那么这是一项什么工作呢? 揭示课题并板书课题。 9、自学课本
阅读第100-101页上的内容,让学生观察书上的统计表结合我们刚才所做的一次统计。 思考以下几个问题:
(1)统计需要分为几个步骤?
(2)你认为作统计表时要注意些什么? 三、巩固练习:
1、做课本上的“练一练”。 2、小游戏;
两人一组,拿一枚1角硬币,从离桌面约30厘米的高度自由落下,共做10次。一个做一个记录落下的情况,然后整理好数据填入发给大家的表格中。
落下情况 字“1角”朝上 国徽图案朝上 次 数
四、课堂小结:
1、本节课你学到了一项什么新本领? 五、课后实践:
我们日常生活中,还有哪些问题需要通过统计来解决的?请你选择一个问题,展开调查,搜集相关信息,完成一份统计表。
三角形课件【篇6】
教育意图:
1、使学生了解三角形的含义,把握三角形的特征和特性。
2、阅历衡量三角形边长的实践活动,了解三角形三边不等的联络
3、经过引导学生自主探究、着手操作、培育开始的立异精力和实践才干。
4、让学生树立几许常识源于客观实践,用于实践的观念,激起学生学习爱好。
教育要点:
把握三角形的特性
教育难点;
懂得判别三角形三条线段能否构成一个三角形的办法,并能用于处理有关的问题;
教育进程:
一、联络日子
找一找日子中有哪些物体的形状或外表是三角形?请搜集和拍照这类的图片。
二、创设情境,导入新课:
1让学生说说日子中有哪些物体的形状是三角形的。展现学生搜集的有关三角形的图片
2播映录像
师:接下来来看教师搜集的到的一组有关三角形的录像材料。
3导入新课。
师:咱们咱们知道了三角形,三角形看起来简略,但在工农业生产和日常日子中有许多用途,看来日子中的三角形无处不在,三角形还有些什么奥妙呢?今日这节课咱们就一同来研讨这个问题。(板书:三角形的知道)
三、师生互动引导探究
(一)三角形的含义:
1活动。要求:(1)每个小组使用教师事先为其预备的三根小棒,把小棒当作一条线段,使用这三条线段摆一个三角形。比一比,看哪一个小组做得最快!
(供给的小棒有一组摆不成的。)
2学生拼图时可能会呈现以下几种状况:
请同学一同来观看做得有代表性和做得有特征的图画(展现学生所摆的图)
请同学们一同做裁判,看看哪些是三角形?[学生会以为(1)、(2)、(3)(4)为三角形,但对(2)、(3)(4)有争议]
师:那你以为怎样样的图形才是三角形?究竟这几个图是不是三角形呢?同学们能够从书上找到答案!请学生阅览讲义的内容。
板书:三条线段围城的图形叫做三角形。
因而判别图画(2)(3)(4)不是三角形。
判别:下面图形,哪些是三角形?哪些不是三角形?
3。教师问:除了三角形概念,书中还向咱们介绍了什么?
(1)三角形的边、角、极点
(2)三角形表明法;
(3)三角形的高和底
(二)三角形的特性:
1课件出示自行车、屋檐、吊架等三角形的图片,为什么这些部位要用三角形?
2处理这个问题,下面咱们先做个试验:
出示三角形和平行四边形的教具,让学生试拉它们,并考虑,你发现了什么?
3要使平行四边形不变形,应怎样办?试试看。
4那些物体中用到三角形,你知道为什么了吗?三角形的这种特性在日子中的使用十分广泛,在往后学习数学的时分,咱们应该多想想,怎样把数学中的有关常识使用到实践日子中去。
(三)三角形两头之和大于第三边
1师:在咱们围三角形的时分,有一组同学的三条线段围不成三角形,看来不是恣意三个小棒就能够围成三角形,这里边也有奥妙。
这与它三条线段的长短有关。现在咱们就来评论这个问题——究竟组成三角形的这三条线段有什么特色?
2学生小组活动:(时刻约6分钟)。
下列每组数是三根小棒槌的长度,用它们能摆成三角形吗?(学生每答复一题后就使用电脑动画进行演示:三条线段是否能组成三角形)
(1)6,7,8;(2)5,4,9;(3)3,6,10;
你发现了什么?
3学生讨论完毕后让学生代表讲话,总结概括三角形三边的不等联络。学生代表可结合教具演示。
教师问:咱们是否要把三条线段中的每两条线段都相加后才干作出判别?有没有方便的办法?(用较小的两条线段的和与第三条线段的巨细联络来查验)。
4得到定论:三角形恣意两头之和大于第三边(电脑显现)。
教师问:三角形的两头之和大于第三边,那么,三角形的两头之差与第三边有何联络呢?
感爱好的同学还能够下课持续研讨。
5稳固操练:为了营建更美的城市,许多城市加强了美化建造。这些美化地带是不允许踩的。(电脑动画演示有人斜穿草地的实践问题)。他运用了咱们学习过的什么常识?
6(1)有人说自己脚步大,一步能走两米多,你信任吗?为什么?
(由学生小组评论后答复。然后电脑演示篮球明星姚明的身高及腿长,以此来判别步幅应有多大?)
7有两根长度分别为2cm和5cm的棒槌
(1)用长度为3cm的`棒槌与它们能摆成三角形吗?为什么?
(2)用长度为1cm的棒槌与它们能摆成三角形吗?为什么?
(3)在能摆成三角形,第三边能用的棒槌的长度规模是
四、反思回想
经过这节课的学习,你有什么收成?
三角形课件【篇7】
教育意图
1、使学生知道三角形、圆的形状和称号;经过调查和着手操作,使学生能辨认和区别出这两种图形。
2、使学生开始树立起空间观念,培育学生开始的逻辑思维才干,浸透分类计算思维。
3、激起学生学习数学的爱好,进行爱祖国、爱科学的思维教育和环保知道教育。
4、培育学生的问题知道。
教育进程
一、导入新课。
上节课咱们在机器人图图的带领下来到了图形国,那么同学们想不想知道图形国里究竟有什么瑰宝呢?今日咱们就持续跟着图图去旅游图形国。
二、教学新课。
1、开始知道三角形(持续演示动画知道图形)。
(1)学生举例。还有哪些图形是三角形的?
(2)教师出示红领巾。问:红领巾的面是什么形状的?再拿出三角板、七巧板,问:它们的面是什么形状的?
小结:这些大巨细小不同的形状,都能够用这样一个图形表明△(画三角形),问:这叫什么形?(板书三角形)
(3)数一数三角形有几条边?用三根小棒摆三角形。(三生在前,学生分三组用三种不同长度的小棒)摆后问:这三个三角形的形状、巨细相同吗?为什么不相同?
教师概括:从上边用小棒摆三角形来看,三角形的三条边纷歧定是相同长的。因而三角形的形状也纷歧定是相同的。
(4)反应操练,请说出几号图形是三角形。
1234
2、开始知道圆(持续演示动画知道图形)。
(1)日子中还有哪些图形是圆形的?
(2)学生举例。教师一起出示钟面、硬币、圆纽扣等,问:这些物体的面是什么形状的?学生答复后,教师板书:圆。一起在黑板上画圆。阐明这样的图形是圆。
(3)拿出预备好的圆形纸和一个球。问:圆和球相同吗?教师概括:圆和球不相同;圆是一个面,球是一个别。
(4)你还能向教师和同学们提出什么问题?
(5)反应操练:请说出几号图形是圆形。
三角形课件【篇8】
教学目标
1、掌握证明的基本步骤和书写格式。
2、经历“探索-发现-猜想-证明”的过程。能够用综合法证明等腰三角形的关性质定理和判定定理。
3、结合实例体会反证法的含义。
教学重点
等腰三角形的关性质定理和判定定理。
教学难点
能够用综合法证明等腰三角形的关性质定理和判定定理。
教学方法
教学后记
教学内容及过程
教师活动学生活动
一、等腰三角形性质的探究
1.让学生回忆上节课的教学内容,引导学生思考从等腰三角形中能找到哪些相等的线段。
2.播放课件,结合刚才的问题讲解例1的命题,并为后面将此性质拓展埋下伏笔。
3.分别演示:
∠ABC,∠ACE=∠ACB,k=,时,BD是否与CE相等。引导学生探究、猜测当k为其他整数时,BD与CE的关系。
4.引导学生探究,对于上述例题,当AD=AC,AE=AB,k=,时,通过对例题的引申,培养学生的发散思维,经历探究—猜测—证明的学习过程。
5.引导学生进一步推广,把上面3、4中的k取一般的自然数后,原结论是否仍然成立?要求学生说明理由或给出证明。
6.对学生探究的结果予以汇总、点评,鼓励学生在自己做题目的时候也要多思多想,并要求学生对猜测的结果给出证明。
7.提出新的问题,引导学生从“等角对等边”这个命题的反面思考问题,即思考它的逆命题是否成立。适时地引导学生思考可以用哪些方法证明?培养学生的推理能力。
8.归纳学生提出的各种证法,清楚的分析证明的思路,培养学生演绎证明的初步的推理能力。
9.启发学生思考:在一个三角形中,如果两个角不相等,那么这两个角所对的边也不相等,这个结论是否成立?如果成立,能否证明。这实际上是“等边对等角”的逆否命题,通过这样的表述可以提高学生的思维能力。
10.总结这一证明方法,叙述并阐释反证法的含义,让学生了解。
11.小结这两个课时的内容。
作业:
同步练习
板书设计:
1.积极思考,回忆以前所学知识,联想新问题。
2.认真观看例1图形中线段的关系,积极思考,认真听讲。
3.对于课件的演示很感兴趣,凭直观感觉可以猜测,不管k为何值,BD=CE总成立。基于前面例题的.启发,想要给出证明。一部分学生可以自己给出证明,一部分学生需要老师的帮助。
4.在已经探究了角的大小的改变对于BD,CE的等长性没有影响,有了一些成就感之后,又面临新的任务:BD=CE吗?因此学生会满怀热情地进行这部分探究活动,而且有了前面的体验,探究也会比较顺利。
5.兴致高涨,凭直觉猜测结论仍然成立。但有些学生给出全部证明可能会有困难。
6.认真听讲,在掌握结论的同时受到老师的鼓励,有很高的热情进行后续学习。
7.较少接触这样的命题,因此会感到新鲜,有用已知公理和定理对命题的真假性进行判断的欲望。在老师指导下完成证明。
8,积极动脑思考,认真听讲,获得对演绎证明的初步体会。
9.可以从直观上得出结论,但是此处要求证明,体会到证明的必要性。遇到认知上的冲突,激起学习欲望。
10.怀有强烈的求知欲听讲,对反证法有了感性认识和一定的理解。
11.体会老师的讲解,并根据小结记忆掌握知识。
(学生小结:掌握证明的基本步骤和书写格式。经历“探索-发现-猜想-证明”的过程。能够用综合法证明等腰三角形的两条腰上的中线(高)、两底角的平分线相等,并由特殊结论归纳出一般结论。等腰三角形的判定定理。了解反证法的推理方法。)
三角形的分类课件教案6篇
幼儿教师教育网小编搜集与处理,为您奉上三角形的分类课件教案,相信能给您带来很大帮助。在教师的工作中,写教案课件是一个重要的部分,因此每位老师都会精心规划每份教案课件的重点难点。经过精心编制的教学教案,教师能够更好地指导学生的学习。
三角形的分类课件教案(篇1)
教学目的:
1。通过动手操作,会按角的特征及边的特征给三角形进行分类。
2。培养学生动手动脑及分析推理能力。
教学重点:
会按角的特征及边的特征给三角形进行分类。
教学难点:
会按角的特征及边的特征给三角形进行分类,。
教学用具:
量角器、直尺。
教学过程:
一、引入:
我们认识了三角形,三角形有什么特征?今天这节课我们就按照三角形的特征对三角形进行分类。怎样分?
二、新课:
1小组活动:
(1)出示小片子,观察每个三角形。可以动手量一量,分工合作。根据你发现的特点将三角形分类。
2按角分的情况
引导学生明确:相同点是每个三角形都至少有两个锐角;不同点是还有一个角分别是锐角、钝角和直角。
我们可以根据它们的不同进行分类
(1)分类。
根据上边三个三角形三个角的特点的分析,可以把三角形分成三类。
图①,三个角都是锐角,它就叫锐角三角形。(板书)
提问:图②、图③只有两个锐角,能叫锐角三角形吗?(不能)
引导学生根据另一个角来区分。图②还有一个角是直角,它就叫直角三角形,图③还有一个钝角,它就叫钝角三角形。
请同学再概括一下,根据三角形角的特征可以把三角形分成几类?分别叫做什么三角形?
教师板书:
三个角都是锐角的三角形叫做锐角三角形;
有一个角是直角的三角形叫做直角三角形;
有一个角是钝角的三角形叫做钝角三角形。
(2)三角形的关系。
我们可以用集合图表示这种三角形之间的关系。把所有三角形看作一个整体,用一个圆圈表示。(画圆圈)好像是一个大家庭,因为三角形分成三类,就好象是包含三个小家庭。
(边说边把集合图补充完整。)
每种三角形就是这个整体的一部分。反过来说,这三种三角形正好组成了所有的三角形。
(3)三角形中至少要有两个锐角,所以判断三角形的类型,应看它最大的内角。……
问:还有没有其他的分法?
3按边分的情况:
(1) 我发现有两条边相等的三角形,还有三条边都相等的。
(2) 师:我们把两条边相等的三角形叫做等腰三角形,相等的两条边叫腰,另外一条边叫底。
(3) 师:把三条边都相等的三角形叫等边三角形。
(4) 分别量一量等腰三角形和等边三角形的各个角,你有什么发现?
(5) 从红领巾、三角板、慢行标志中找一找哪里有这两种特殊的三角形?
三巩固练习:
1。判断题。
(1)由三条线段组成的图形叫三角形。
(2)锐角三角形中最大的角一定小于90°。
(3)看到三角形中一个锐角,可以断定这是一个锐角三角形。
(4)三角形中能有两个直角吗?为什么?
2。87页7题猜一猜小组同学模仿练习
(四)作业
板书设计
按角分类
三个角都是锐角的三角形叫做锐角三角形;
有一个角是直角的三角形叫做直角三角形;
有一个角是钝角的三角形叫做钝角三角形。
三角形的分类课件教案(篇2)
一、教学目标
1、知识与技能:学生通过动手操作,实践学习,能够按照三角形各个角、各条边的关系,给在三角形分类。
2、数学思考:利用已有的分类知识,概况出三角形的特点。
3、解决问题:在分类的过程中掌握三角的共性与个性,从而为进一步学习三角形的认识奠定定基础。
4、情感与态度:在共同学习中,训练学生的自我探索能力,培养学生主动探索精神中和创新意识。
二、教学准备
1、课件一个。内有三角形分类的标准,按角分、按边分的集合图及各个练习。
2、每个学生课前准备好各不相同的6个三角形。
三、教学过程
(一)复习旧知导入新课
同学们,上节课我们已初步认识了三角形,知道每个三角形都有三条边,三个角和三个顶点。今天这节课我们一起来学习三角形的分类。
(二)探索交流,解决问题
师:老师给大家带来了一幅图片,这是?生:三角形。
师:这艘船里面有很多各种各样的三角形,我们整理一下,看看有几类三角形。要给三角形分类,就要依据一定的标准,三角形可以按照什么来分呢?生:可以按照角,也可以按照边。
师:我们回顾一下角的知识。角可以分为锐角、直角、钝角。(白板演示)师:拿出你们的自学探究1,把这艘大船上的三角形先按照角分一分。
1、小组合作、讨论。
学生动手操作,教师巡视。(学生拿出信封里的8个三角形,动手操作,有的用量角器量角的度数,并进行讨论)
2、选择一名同学上黑板分一分。
同学们,经过大家的合作、讨论,你发现了三角形的三个角有什么特征?(学生会说出:我发现有些三角形有3个锐角,有些有2个锐角。我发现三角形有2个锐角,1个直角,我发现三角形有2个锐角,1个钝角??)
3、师生共同优化
根据角你认为可以把三角形分成几类?(交流。最后结论:三个角都是锐角,两个锐角一个直角,两面个锐角一个钝角)
在这些三角形中一定会有几个锐角?第三个角又会出现几种情况?(锐角、直角、钝角)
那三角形按角的大小可分几类?(分三类。一类是三个角都是锐角,另一类是有一个角是直角,还有一类是有一个角是钝角,我觉得这样既简单又清楚三角形各类的特点)
请大家根据它们的主要特征,给这三类取个名字好吗?(三个角是锐角的叫锐角三角形,有一个角是钝角的叫钝角三角形,有一个角是直角的叫直三角形)
那为什么直角、钝角三角形只要说出有一个角是直角、钝角就可以,而锐角三角形要说出三个角都是锐角呢?(因为每个三角形都有2个锐角,而锐角三角形才有3个锐角,没有说出3个锐角。我们就不能确定它属于什么三角形)
4、得出结论。
三角形按角可分三类(幻灯片出示集合图)。
直角三角形
锐角三角形
钝角三角形
5、研究按边的分类
(1)根据角可以把三角形分成三类,你们还有其他发现吗?看看边有什么规律呢?(①我发现我这个锐角三角形三边相等。②我这个三角形只有两边相等。③我的这个三角形三边都不相等)
交流中得到:三角形按边的长短也有三种情况,一种是三边不相等,一种是两边相等,另一种是三边都相等。
(2)教师归纳:我们根据三角形三边的长短,可把三角形分为三种。(板书:按边分类)
①三边都不相等的三角形,我们把它叫做不等边三角形(任意三角形)。 ②两边相等的三角形,叫做等腰三角形,是特殊的三角形。③三边都相等的三角形叫等边三角形,是特殊的等腰三角形,也叫做正三角形。
6、认识等腰、等边三角形各部分的名称。
(1)课件出示。认识等腰三角形的腰和底,等边三角形的三条边。师生在交流中指出各部分名称:
等腰三角形中相等的两边我们把它叫做腰,另一边叫做底。我们把等边三角形叫做特殊的等腰三角形。等边三角形一定是等腰三角形,而等腰三角形只有两边相等,等腰三角形不一定是等边三角形。
(2)探究等腰三角形和等边三角形角的待征。
7、同桌合作研究这两种三角形的三个角。(量一量角的大小)
师生交流得出:等腰三角形两条腰所对的角叫底角,两个底角也相等。另一个角叫顶角。等边三角形的三个角都相等。
8、掌握按边分类三角形之间的关系。三角形按边分类的情况(课件出示集合图)。
(三)巩固应用,内化提高
1、说书上84页三个生活中的例子分别是什么三角形?
2、判断
(四)回顾整理,反思提升
今天这节课你们学会了什么?你是怎样学到这个知识的?最高兴的上什么?还有什么不懂的地方吗?对老师有什么建议?教学反思
在设计本课教学时,我觉得“要无限地相信学生的潜力”,我决定只要学生自己能说的、能做的我就绝对不说、不做。整堂课学生的自主学习相当充分,并不是留于形式,浮于表面,而是实实在在的自主学习。特别是在探索三角形分类的过程中,多次让学生观察、思考、讨论,自主探索三角形的分类知识,教师仅仅起了组织和引导的作用
三角形的分类课件教案(篇3)
《三角形的分类》教学设计
教学内容:义务教育课程标准实验教科书数学四年级下册第83页至第84页及做一做。
教学目标:
1、通过观察、操作、比较发现三角形角和边的特征,会给三角形分类,理解并掌握三角形的种类特征,能解决一些简单的问题。
2、培养学生观察能力、操作能力和形象灵活的思维能力。
3、激发学生的主动参与、合作学习意识、自我探究意识和创新精神。
教学重、难点:
1、会按角和边的特征给三角形分类。
2、区别和掌握各种三角形的特征。
教具准备:备件二合一软件、课件、实物展示台
学具准备:直尺、量角器、不同三角形若干
教学过程:
一、激趣导课,揭示课题
1、师生谈话(课件出示主题图)
今天,老师带大家坐轮船到岛上旅游,课件出示图片:这艘船是由许多三角形组成的,,他们都有三个角和三条边,这节课我们就从这角和边两方面给三角形分类。
2、揭示课题:三角形的分类
二、自主合作、探究新知
(一)任务一:按角或边给三角形分类(课件出示任务)
1、观察三角形学具,讨论分类方案。
2、小组合作选一种进行分类,研究他们各自特点,并填写表格
3、小组活动
4、汇报交流
(1)按角分
①选一组同学汇报结果
②学生实物展示台汇报,教师根据汇报在白板上拖动三角形分类,并逐个出示其特征介绍锐角三角形、直角三角形、钝角三角形的特征。对有争议三角形(如接近直角的角)用工具(三角尺或量角器)验证。
③用集合圈表示三种三角形的关系
(2)按边分
①选一组同学汇报结果
②教师根据学生汇报在白板上拖动三角形分类,并逐个出示其特征介绍等腰三角形和等边三角形的特征
③用集合圈表示等腰三角形、等边三角形的关系。
(二)任务二:探究等腰三角形、等边三角形特性
自主学习84页探究等腰三角形、等边三角形特性
①认识等腰三角形和等边三角形各部分的名称
②量一量、折一折探索等腰三角形、等边三角形的特征
等腰三角形两个底角()等边三角形三个角()
利用素材库画等腰三角形,并进行顶角变化演示,认识与锐角、直角、钝角三角形的关系。
三、游戏应用。
1、蚂蚁搬家。
2、猜猜猜。
3、在方格图上按要求围三角形。
四、课堂总结。
同学们,我们生活中到处都有三角形的利用,点击“链接网络图片”,只要大家做个有心人,多观察,多思考,一定会学到更多有关三角形的知识。
三角形的分类课件教案(篇4)
一、说教材
1.教学内容
九年义务教育六年制小学数学教科书(西师版)四年级下册第40至43页的内容及相关练习题。
2.教材简析
“三角形分类”是新课程教材中“空间与图形”领域内容的一部分。学生在学习此内容之前,已经学习了三角形的认识,能够在物体的面中找出三角形,学习了角的知识,认识了常见的角,为学生学习三角形的特征从角和边的不同角度对三角形进行分类做好了有力的知识支撑。三角形是最简单也是最基本的多边形,一切多边形都可以分割成若干个三角形,学好这部分内容,为学习其他多边形积累了知识经验,为进一步学习三角形的有关知识打下基础。
3.教学目标
根据教材内容及学生的知识水平和心理年龄特点,制定了以下教学目标:
(1)让学生通过学习活动,发现三角形和边的特征会给三角形的分类,理解并掌握各种三角形的特征。
(2)培养学生观察,操作和抽象概括能力。
(3)激发学生的主动参与意识,自我探索意识和创新精神。
4.教学重点、难点的确定
根据《三角形分类》这一知识的地位和作用,本课设计的“观察、操作、比较、小组讨论”等教学环节都是为了使学生能根据角的特点给三角形分类,因此这是教学重点。根据学生的认识水平和年龄特点,如何引导学生归纳出各种三角形的特征,这是学生掌握本课知识的一个质的飞跃。因而,“能理解并掌握各种三角形的特征”是本课教学的难点。
5.教学准备
三角板、多媒体课件、学生用表格等
二、说教法、学法
根据新课标的要求和学生的实际,以直观教学为主,运用观察动手操作,小组讨论等多种方法,结合教材,让学生在“看一看”,“量一量”,“比一比”,,“说一说”的自主探索过程中发挥学生相互之间的作用,让学生自己在动脑、动手、动口中促进思维的发展,培养学生的动手操作能力,语言表达能力和自学能力。在教学中,首先把握新旧知识的衔接点,利用教材6个三角形组成的图案,让学生说说自己对三角形的认识,引出课题“三角形的分类”。放手让学生动手操作,小组讨论交流,寻找三角形分类的方法,最后让学生说说自己归类的依据,归纳出各种三角形的特征,培养学生的抽象概括能力。
三、说教学过程
为了完成本课的教学目标,设计了以下的教学过程。
(一)创设情景,揭示课题
由学生对三角形的.认识引入课题,即为学生接受新知识做好铺垫,也让学生明确学习内容直奔放主题。
(二)动手操作,探讨三角形分类方法
1.根据角的特点,对三角形进行分类。
新课标倡导学生主动参与,乐于探究,勤于动手,培养学生搜集和处理信息的能力,分析解决问题的能力,以及交流与合作的能力,把学习变成人的主动性、能动性、独立性不断生成、张扬、发展、提升的过程。
我设计了如下环节:
(1)学生先是独立思考、独立操作,独立探索分类。(事先给每个学生准备一个学袋:一张表格)
①学生根据表格对这个三角形进行观察,再填表。填完表格,再对表格中的数据进行观察,就能容易地进行分类。
②把分类的结果填在表中。
小组交流
学生在小组内分别展示自己的劳动成果,说说自己的分类依据。
(3)展示学生代表作品,学生互评。
(4)师小结归纳(边把分类依据板书出来)
(5)鼓励学生给自己分类的三角形取个名字。
让学生感受到自己就是学习的主人,体验劳动成果的喜悦心情,增强学习的信心。
(6)引导学生对三类的三角形进行比较,得出相同点:每个三角形至少有两个锐角。
(三)指导完成课堂活动及练习十一第1至3题。主要目的是巩固复习更好引领后进生掌握按角对三角形分类。
(四)全课总结
让学生学会自我评价,体现了新课标评价的多样性,还可以训练学生的语言发展能力。
(五)说板书设计
本课的板书意在突出重点,解决知识难点,有学生分类的作品展示,有教师板书的知识点。教学内容一目了然,也便于学生观察、比较。
(六)作业设计。
目的加强巩固,能更好的掌握本课知识点。
三角形的分类课件教案(篇5)
一、导入新课。
1.谈话:今天我们继续来研究三角形,研究内容与三角形的角有关。
先回忆一下我们学过哪几种角?怎样判断一个角是直角、锐角还是钝角呢?
2.学生交流。
(直角可以用三角板上的直角去比一比,比直角大的是钝角,小的是锐角,如果用眼睛观察不能确定,也可以用三角板上的直角去比一比。还可以使用量角器测量。)
二、学习新课。
1.谈话:每个三角形都有几个角?这些角在三角形的内部,我们称之为三角形的内角。
出示:
谈话:这里有6个各式各样的三角形,请同学们仔细观察每个三角形的内角,看看它们各有几个锐角、直角和钝角,并把结果填在表格中。
2.学生观察并填表。
例如:1号这个三角形有2个锐角、1个直角、0个钝角
提问:观察表格中的数据,你有什么发现?
(学生在小组里讨论后交流。如:在一个三角形中锐角个数最多,至少2个;直角或钝角个数最多有1个,且不同时存在……)
3.自己任意画一个三角形,看看是三个内角各是什么角。
归纳:每一个三角形都有两个锐角,另外一个角有的是锐角、有的是直角、有的是钝角。
4.提问:想一想,这些三角形可以分成几类?怎样分?
(在小组里讨论后指名交流。
归纳:三个角都是锐角的三角形,一个钝角两个锐角的三角形,一个直角两个锐角的三角形。
谈话:每一类三角形有自己的名称。谁来猜猜看?(让学生试着说说)
小结:三角形按角的确可以分为锐角三角形、钝角三角形、直角三角形三类。5.提问:刚才例题中的三角形哪几个是锐角三角形、钝角三角形、直角三角形?
你画的三角形是什么三角形?
(学生交流)
6.提问:你觉得什么样的三角形是锐角三角形?什么样的三角形是直角三角形?什么样的三角形是钝角三角形?
(1)学生交流。
(2)结合书本出示各类三角形的定义:
三个角都是锐角的三角形是锐角三角形;
有一个角是直角的三角形是直角三角形;
有一个角是钝角的三角形是钝角三角形;
(1)提问:为什么直角三角形只说有一个角是直角而不说有两个锐角和一个直角,钝角三角形只说有一个角是钝角而
不说有两个锐角和一个钝角?
(学生交流)
7.用集合图表示分类结果。
1)出示一个椭圆。
提问:如果我们用这个圆表示三角形这个整体,你能把它分成几个部分,填写出每部分的名称?(2)学生思考后试一试,交流。
(把所有的三角形看作一个整体,锐角三角形、直角三角形、钝角三角形都是这个整体的一部分。)
(3)结合学生汇报板书出示
三、巩固练习,完成“想想做做”。
1.第2题。
(1)学生独立完成。
(2)指名交流,说说自己是怎样判断的,是否三个角都要看是什么角?
(只要看最大的角是什么角就可以判断)
2.第3题。
(1)学生在钉子板上分别围出锐角三角形、直角三角形和钝角三角形。
(2)同桌检验。
3.第4题。
(1)学生动手折一折。
(2)指名上前交流折法。
4.第5题。
(1)学生审题后独立思考,在小组里说说自己打算怎么做。
(2)指名交流。
5.第6题。
(1)学生审题后独立画一画。
(2)展示一份作业,交流画法。(右边的三角形画法不止一种。)
(3)提问:仔细观察,画出的线段有什么特点?
(学生交流:就是三角形的高。)
6.第7题。
(1)学生独立完成,同桌交流。
(2)全班展示交流,有多种不同的答案。
四、课堂小结。
1.谈话:今天我们学习了什么内容?你有什么收获?
2.布置作业:补充习题第18页。
三角形的分类课件教案(篇6)
一、教材依据
北师大版、小学四年级第二章、第一节、图形分类(教材22页—23页)
二、设计思想
1、指导思想:本节课注重发展学生数学感、空间感。利用学生生活经验,能对常见图形进行分类,并能找出三角形及四边形特点。
2、设计理念:利用学生在一、二年级认识图形的基础上,通过观察、操作、比较、概括等活动,对常见图形可根据自己想象进行分类。
3、教材分析:本节课学生要对一些图形进行分类,教材安排了三次对图形分类的活动。第一次是对已经学过的图形按是否是平面图形进行分类,第二次是对平面图形按是否由线段围成进行分类,第三次是按线段所围成的边数进行分类。教材呈现的内容包括三个方面:一是提供了需要学生分类的直观图形;二是对学生每次的分类结果,让他们说一说分类的标准,体会图形分类的特征;三是通过“找一找”,让学生根据分类标准,重新观察图形,提高对图形类别的认识。
4、学情分析:学生在一年级下册已经初步认识了长方形、正方形、三角形、圆,二年级下册对长方形、正方形及平行四边形加深了理解,可以说,这节课接触到的图形,学生都认识过,对它们进行分类,学生思维活跃,可能出现不同的分类标准,教师要做好引导,帮助学生从本质上去分类。
三、教学目标
1、知识与能力
①、学会把图形按一定的标准进行分类,并会说明分类依据。
②、培养观察、比较、抽象、概括、推理能力及空间观念。
③、认识四边形易变形的特性及其实际应用;认识三角形的稳定性及其实际应用。
1、方法与途径
让学生在观察、思考、操作及合作交流中探索新知。 3情感与评价
通过认识图形使学生进一步体会数学的应用价值,增强学生学习数学的积极情感。
4现代教学手段的运用
充分利用现代教育设施进行直观教学。
四、教学重点
通过分类对已学过的一些图形进行整理归类,了解图形的类别特征。
五、教学难点
通过分类对已学过的一些图形进行整理归类,了解图形的类别特征。
六、教学准备
课件、纸、笔、表格、正方体、长方体、圆柱体、球体、实物图等
七、教学过程
(一)谈话引入,提示课题
师:谁能说一说我们学过了哪些图形?(指名让学生回答,让学生回忆已学过的图形,并尽可能地说出来,学生在列举学过的图形时,可能与教材上呈现的不一致,只要合理也是可以的,应该加以肯定。)
(出示课本教学情境图)
师:这节课让我们一起来学习图形分类。
(二)合作交流,探索新知
1、观察
师:请同学们仔细观察刚才的图形,看看它们有哪些不同的特点? (让学生观察,自由发言)
1、分类
师:同学们,请你们形成四人小组讨论:你是怎样将图形分类的?将你的想法与同组的同学进行交流。
2、交流汇报
师:谁愿意说一说你将图形分成几类?为什么这样分?说说你的理由。
指名汇报讨论结果,重点是让学生说一说是怎样分的,分类的依据是什么。
3第一次分类时,学生可能按是否平面图形进行分类:
然后,教师进一步引导学生对平面图形进行分类,学生可能是按照平面图形是否由线段围成的来分类:(直线图和曲线图)
最后,教师引导学生再进一步对图形进行分类:同学们,请想一想,还能不能将图形进行分类呢?
有些学生可能想到对线段所围成图形的边数进行分类:
四边形三角形
甚至有些学生还能按四边形所围成的角是不是直角来分类:
不同的学生可能有不同的分类方法,学生针对每一次分类结果表述分类标准时,可能会出现多种标准,比如,在第二次分类时,可以是按“图形是否由线段围成来分”,也可以是按“图形是否是圆来分”只要学生说得合理,教师都给予充分的肯定。
2、课件演示
师出示课件进一步加深对知识的巩固,让学生对比和自己分法有什么不同。
在分一分活动中,我采取开放式的教学。先让学生仔细观察、独立思考去发现图形的特点,然后,小组合作,探索、交流图形分类的方法。让他们在活动中体会到立体图形与平面图形的区别,并引导学生对平面图形进行进一步的分类,使他们更全面的认识图形、形成体系。通过这样的设计,使学生体验到了学习数学的乐趣,感受数学的思想、方法,有效地发展学生的思维能力和创新意识。
(三)联系生活,深化认识
指导学生完成课本23页第1题:看一看,说一说。该题主要是展现三角形和平等四边形在日常生活中的应用。看一看:(出示教学情境图,让学生去观察。)
说一说:这些图片中的物体,你们见过吗?它们包含着哪一些我们已经学过的图形呢?为什么要这样设计呢?(让学生来说一说他的发现及
5理由)
1、运用三角形的稳定性,设计出大吊车的结构
2、利用四边形的不稳定性,制作铁的栅栏大门,四边形的伸缩变形。
3、生活中你还见过运用三角形和四边形的情况吗?
三角形:自行车三角车架;木屋架等
四边形:超市中电动升降车等
(四)动手操作
让学生进行探索:拉一拉,你发现什么?
活动要求:
(1)分组合作:四人小组
(2)动手操作:
先将课前准备好的学具摆成一个四边形,然后两手握着对角互拉,看看图形出现哪些变化?将你的发现在小组内进行交流。
你发现了什么?
四边形受力易变性,即四边形有不稳定性三角形
接着,让学生根据已有的经验,动手拼成一个三角形并探索它的特性。(根据上面的经验,学生可能很快发现:把三角形的任意两条边对拉,它的形状和大小都没有改变,也就是说,只要三角形三条边的长度
6确定,它的形状和大小也就确定了,说明三角形具有稳定性。)
1、学生自己拉一拉
2、提出问题:你有什么发现?
通过实际操作,学生发现把三角形的任意两条边对拉,图形不改变形状,它具有稳定性。
3、你能解释吗为什吗吗?
先让学生思考在组织交流,通过交流引导学生认识三角形稳定性的应用。
四、总结。
你对所学图形又有哪些新的认识?
五、作业安排
观察生活中有哪些地方利用了三角形和平行四边形的特点板书设计图形分类
按照图形是否是平面图形来分。按照图形是否由线段围成来分。按照围成图形的边数来分。平行四边形不稳固三角形具有稳固性