相似三角形的应用课件 篇1
李老师非常从容淡定地为我们呈现了一堂精心设计的复习课。我们感受到李老师扎实的教学基本功,在他的引导下,课堂氛围很融洽,李老师恰到好处的解题指导和情感教育又为课堂带来了点睛之笔。李老师的课有许多值得我们借鉴之处,主要体现在以下几点:
(1)教材处理得当,教学设计巧妙。
一个题目巧妙的复习了相似三角形的四种判定,以正方形为背景,让学生画图操作,科学认证的过程,体验问题的解决过程,以一个基本的.“ K ”字图贯穿整堂课,一题多变,一课一题,减少学生读题的时间,使学生的思维得到更宽、更广、更深的培养。
(2)重视学生的动手操作能力的培养,以及数学思想方法的渗透。
学生在动手动脑的过程中,往往会迸发出意想不到的思维火花,学生的思维能力、创新能力得到了提高,更有利于学生的发展。李老师在复习了四种相似三角形的判定方法之后,问:将一块三角尺的直角顶点P放在正方形ABCD的对角线BD上滑动,直角一边始终经过点A,另一边与射线CD相交于点E,请画出图形。这样不但培养了学生的直观思维,而且渗透了数形结合、分类讨论的数学思想,让学生学会不遗不漏的解决问题。
(3)对几何画板使用的技艺令人艳羡。
“几何画板”实现了图形由静向动的渐变过程。李老师利用几何画板实现数形结合,突破教学难点,大大提高教学效率。在学生画完图形后,李老师提出一个问题:线段PE与PA的数量关系。给学生充分时间思考后,并用电脑测量,让学生直观的进行比较,用数字说话,提高课堂的效率。
个人看法:作为章节的复习课,起点是否放得低些,面向全体让更多的学生都积极参与课堂中来。
相似三角形的应用课件 篇2
杨凯老师按照新教材的课程标准,自己制作了精美的几何画板。本节是初中数学中非常重要的内容,考试所占的分值也不少。
第一、教学目标明确 ,新课标理解深刻。
本节课主要是让学生掌握相似三角形的判定,关键是让学生能根据平行得出相似来解决实际问题。教学中杨老师始终围绕教学目标举出相似的实例,引导学生不断创新和实践,逐步培养学生解决问题的能力.杨老师善于调动学生的积极性,学生在课堂上能够积极参与,积极参与教学活动,教师的主导作用和学生的主体作用发挥好,达到了预定目标。
第二、教学突出了重点又突破了难点。
杨老师通过复习引导及引例题逐层分析,由简到难,多种变式让学生灵活掌握相似三角形的`判定方法。恰当的运用现代教学手段,增加了课堂教学的容量,使学生掌握知识更容易。杨老师在教学过程中紧扣目标,内容科学正确,能把握知识和技能的内在联系.
第三、杨老师在教学中对激发学生的学习兴趣方面下了工夫
学生在老师的引导下对相似三角形的找法不断递近,得出了A型和X型,让学生能形象的、快速的找出相似。老师注重培养学生独立思考和创新意识,让学生感受、理解知识和技能产生与发展的过程,在教学中先给出具体的情景,让学生直观感知例题中的数量关系,并进行探究,然后通过思考在老师引导下得出结论。同时,执教者注重学法指导,及时总结规律,让学生学以用。
第四、杨老师的教学过程紧凑合理,导与学有机结合教学程序设计合理。
按照复习旧知、教授新课、变式练习、思维拓展、课堂练习、课堂小结、课后作业的教学过程进行教学,师生的配合非常默契,课堂气氛较为活跃,教师对整堂课有清晰的思路。
第五、在教学手段上,杨老师运用了多媒体进行教学,较大地容纳教学内容,扩大教学空间
虽然教学内容很多,但老师却显得轻松,显示出教师教学基本功的扎实。
总之,这节课学生收获颇多,能力有较大提高。我认为这是一节较为成功的初三数学新教材教学课,值得我认真学习。
相似三角形的应用课件 篇3
我在上《相似三角形的性质》这节课时,先复习全等三角形的性质:全等三角形的对应角相等;对应边相等;对应中线、对应角平分线、对应高线相等;周长相等;面积相等。根据全等三角形是特殊的相似三角形,诱导学生们在类比中,猜想相似三角形的性质,同学们积极性很高,抢着猜,大多数同学猜对了相似三角形的对应角相等;对应边成比例;对应中线、角平分线、高线的比等于相似比;周长的比等于相似比;
可对面积的比有争议,有的说等于相似比,有的说等于相似比的平方。我又及时诱导:猜想并不能代替证明,它只是一个推理,一个假设,你们应该再进一步深入,把你们的猜想结果去证明,看到底是谁的对,让它更有说服力,同学们为了证明自己的猜想是正确的,马上开始证明,这一节课掌握的很好。而且对相似三角形面积的'比等于相似比的平方印象非常深刻。因为那是在有争议的情况下,得到的正确结论。这一节课中,引导学生复习全等三角形的性质是“诱”的过程,让学生利用这个思维惯性去“猜想”相似三角形的性质,就是“思”的过程。
这个“猜想”不是凭空瞎猜,而是在原有知识的基础上的一种思维的延伸、拓展,能够培养学生良好的思维习惯
相似三角形的应用课件 篇4
一、教学目标
1.经历两个三角形相似的探索过程,进一步发展学生的探究、交流能力。
2.掌握“两角对应相等,两个三角形相似”的判定方法。
3.能够运用三角形相似的条件解决简单的问题。
二、重点、难点
1.重点:三角形相似的判定方法1
2.难点:三角形相似的判定方法1的运用。
三、课堂引入
1.复习提问:
(1)我们已学习过哪些判定三角形相似的方法?
(2)△ABC中,点D在AB上,如果AC2=ADAB,那么△ACD与△ABC相似吗?说说你的理由。
(3)△ABC中,点D在AB上,如果∠ACD=∠B,那么△ACD与△ABC相似吗?——引出课题。
(4)教材P48的探究3。
四、例题讲解
例1(教材P48例2)。
分析:要证PA*PB=PC*PD,需要证PA/PD=PC/PB,则需要证明这四条线段所在的两个三角形相似。由于所给的条件是圆中的两条相交弦,故需要先作辅助线构造三角形,然后利用圆的性质“同弧上的圆周角相等”得到两组角对应相等,再由三角形相似的判定方法3,可得两三角形相似。
证明:略(见教材)。
例2(补充)
已知:如图,矩形ABCD中,E为BC上一点,DF⊥AE于F,若AB=4,AD=5,AE=6,求DF的长。
分析:要求的是线段
DF的长,观察图形,我们发现AB、AD、AE和DF这四条线段分别在△ABE和△AFD中,因此只要证明这两个三角形相似,再由相似三角形的性质可以得到这四条线段对应成比例,从而求得DF的长。由于这两个三角形都是直角三角形,故有一对直角相等,再找出另一对角对应相等,即可用“两角对应相等,两个三角形相似”的判定方法来证明这两个三角形相似。
五、课堂练习
下列说法是否正确,并说明理由。
(1)有一个锐角相等的两直角三角形是相似三角形;
(2)有一个角相等的两等腰三角形是相似三角形。
六、作业
1、已知:如图,△ABC的高AD、BE交于点F。
求证:AF/BF=EF/FD。
2、已知:如图,BE是△ABC的外接圆O的直径,CD是△ABC的高。
(1)求证:
ACBC=BECD;
(2)若CD=6,AD=3,BD=8,求⊙O的直径BE的长。
相似三角形的应用课件 篇5
《相似三角形的性质》是几何内容,数形结合比较多。于是我借助于多媒体教学制作了课件,节约板书的作图时间。本节课先复习相似三角形的基本性质,即相似三角形的对应角相等,对应边成比例。通过从三个边长分别为1,2,3的等边三角形入手引导学生思考:相似三角形的周长比、面积比与相似比之间有什么关系?学生进行了大胆猜想:“相似三角形周长比等于相似比,面积比等于相似比的平方”。接下来进行逻辑推理,并让学生自己尝试类推相似多边形周长比、面积比与相似比的关系。最后指导学生运用这两个性质解决实际问题,效果非常好。
这节课让我感触很多:在已有知识的基础上用类比化归的`思想去探究新知,让学生充分体会数学知识之间的内在联系,以此激发学生的学习兴趣,通过教师的点拨引导,学生积极开展小组合作学习,交流探索新知,并且在不断探索中学会创造性学习,由问题发散出新问题,培养学生的探索和创新能力。学生在得出相似三角形周长比等于相似比后,就及时提出由相似比如何求面积比,我让他们又讨论、探究,最后得出了结论。整个课堂气氛活跃。
归纳起来,这一节课从始到终,学生们都主动地参与了课堂活动,积极地交流探讨,发现的问题较多:相似三角形的周长比,面积比,相似比在书写时要注意对应关系,不对应时,计算结果正好相反;这两个性质使用的前提条件是相似三角形等等。同学们讨论非常激烈,充分体现本节课堂教学取得了明显的效果。此外,教师的肯定、表扬与鼓励,会使学生始终保持高昂的学习热情,感受在探究性学习,创造性劳动中获得成功的乐趣。
相似三角形的应用课件 篇6
一、教学目标
1.初步掌握三组对应边的比相等的两个三角形相似的判定方法,以及两组对应边的比相等且它们的夹角相等的两个三角形相似的判定方法。
2.经历两个三角形相似的探索过程,体验用类比、实验操作、分析归纳得出数学结论的'过程;通过画图、度量等操作,培养学生获得数学猜想的经验,激发学生探索知识的兴趣,体验数学活动充满着探索性和创造性。
3.能够运用三角形相似的条件解决简单的问题。
二、重点、难点
1.重点:
掌握两种判定方法,会运用两种判定方法判定两个三角形相似。
2. 难点:
(1)三角形相似的条件归纳、证明;
(2)会准确的运用两个三角形相似的条件来判定三角形是否相似。
3. 难点的突破方法
(1)关于三角形相似的判定方法
三组对应边的比相等的两个三角形相似,教科书虽然给出了证明,但不要求学生自己证明,通过教师引导、讲解证明,使学生了解证明的方法,并复习前面所学过的有关知识,加深对判定方法的理解。
(2)判定方法
的探究是让学生通过作图展开的,我们在教学过程中,要通过从作图方法的迁移过程,让学生进一步感受,由特殊的全等三角形到一般相似三角形,以及类比认识新事物的方法。
(3)讲判定方法
要扣住对应二字,一般最短边与最短边,最长边与最长边是对应边。
(4)判定方法
一定要注意区别夹角相等 的条件,如果对应相等的角不是两条边的夹角,这两个三角形不一定相似,课堂练习2就是通过让学生联想、类比全等三角形中SSA条件下三角形的不确定性,来达到加深理解判定方法2的条件的目的的。
相似三角形的应用课件 篇7
教学设计合理:
两位老师的学案设计都目标明确,融会贯通,内容恰当,思路清晰,导入简单,设计条理清晰,层次分明,注重学生动手操作。既使学生理解并掌握了等腰三角形的性质,同时又培养了学生动手操作勇于探索的能力。
成功实施教学:
两位老师都能根据学生的特点教学,照顾中下生,面向全体,使学生的思维充分展开,教师对知识的运用和引申也非常熟练。特别是实验中学那老师调动了学生认真思考及回答问题的积极性,效果甚好。
课堂结构紧凑:
两位老师的张驰有度,有条不紊,反馈调控恰当。
指导学生学习:
学生参与,师生互动效果好。特别是实验中学那老师辅导个别生,调动生生互动非常有效,表现积极主动,学生参与面广。
追求美的感受:
课堂教学中,两位老师始终面带微笑,语速不急不缓,使学生如沐春风,在轻松愉快的`氛围中完成了整堂课教学。
本教学方法设计为“合作探究型”,我觉得还应处理好以下几点:
⑴等腰三角形“三线合一”定理的梯度,缓冲度的设置。因为它需要两个条件,推出两个结论,学生第一次碰到,比较困难。我觉得应从“特殊→一般”去处理可能更好,如给出顶角的度数和底边的长来推算,再引导到推理。而仙村中学的江老师关于“三线合一”的计算题一道也没有。
⑵加强证题前的分析,引导学生从已知条件出发,探究解题思路,此时可能有多种途径选择,最好结合所要求证的结论一起考虑,按需择取。
⑶加强学生的书写能力的培养。本节课学生书写板演基本没有,比较欠缺,可能学生能说不会写,或者写不好。
⑷课件有些简单,背景色调模糊,可以做些改进。学案不够美观,新鲜感稍差。可在习题设计上做些改动,变换方式和数据,效果会更好的。
相似三角形的应用课件 篇8
《数学课程标准》要求:让学生成为行为主体“动手实践、自主探索、合作交流 ”。以上述思想为出发点,本节课的教学设计体现了活动性、开放性、探究性、合作性、体验性。
教学流程:创设情境,激发求知欲——合作交流,探索新知——应用拓展,达成目标——归纳总结,深化目标
1.关于探索
两个三角形相似条件的探索,本设计没有按照教科书那样直接指导学生按部就班地画一个角,两个角这样的程序进行。而是首先在新旧知识的转折处,创设有助于学生自主学习的问题情境——能否配制一张完全一样的玻璃来引导学生探索并深入研究。使学生经历“直观感觉――动手感知――理性思维”的活动过程,在教师指导下生动活泼地、主动地、富有个性地学习,真正感受数学创造与探索的乐趣。
2.关于应用
三角形相似的判定方法的应用是本节的一个重点,在运用时,如何找准相等的两组对应角是一个难点。本设计注重了习题的发展性作用,层层深入,逐一突破难点。同时根据变式分层的思想,设计具有一定跨度的问题串,组织学生进行变式训练,使每个学生都得到充分的发展。
3.课堂组织
本课采用“自主探索,合作交流”这一教学组织形式,鼓励学生在独立思考的基础上,积极参与数学问题的讨论,勇于发表自己的观点,能在倾听别人意见的过程中,逐渐完善自己的想法,感受到与同伴交流中获益的快乐。
4.关于评价方式:
本章定位于以直观几何为主体、附以一定程度上的说理和简单推理。本节课关注的是学生能否主动参与小组合作,积极探索。为此,教师要特别关注学生个性化的学习需求以及对个性化学习的恰当评价在课堂教学中,给学生留有充足的时间,发表自己的观点,教师应及时表扬和鼓励,这有助于学生认识自我,建立自信,发挥评价的`教育功能。
5.遗憾之处:
①题量过大,课堂时间安排较紧,有些问题落实的还不够深入。
②有些题虽然学生做了,教师讲了,但没有从题目本身往深处挖掘,仅是为做题而做题。
6.反思之处:
反思一,集体的智慧是无穷的,一定继续发扬团结协作的好作风;反思二,教材的内涵是无尽的,一定要挖掘到一定的深广度;反思三,教师的经验是宝贵的,一定要开诚不公的交流;反思四,工作的责任心是必要的,一定要无私奉献;反思五,教师的工作是高尚的,来不的半点虚假。
总之,教师的教学技艺和水平在每天的工作中慢慢的提高,我会把教学反思一直坚持下去,因为它是我们教学提高的催化剂,更是学生学习进步的助力器。
相似三角形的应用课件 篇9
一、教学目标
1.经历两个三角形相似的探索过程,进一步发展学生的探究、交流能力。
2.掌握“两角对应相等,两个三角形相似”的判定方法。
3.能够运用三角形相似的条件解决简单的问题。
二、重点、难点
1.重点:三角形相似的判定方法3--“两角对应相等,两个三角形相似”
2.难点:三角形相似的判定方法3的运用。
3.难点的突破方法
(1)在两个三角形中,只要满足两个对应角相等,那么这两个三角形相似,这是三角形相似中最常用的一个判定方法。
(2)公共角、对顶角、同角的余角(或补角)、同弧上的圆周角都是相等的,是判别两个三角形相似的重要依据。
(3)如果两个三角形是直角三角形, 则只要再找到一对锐角相等即可说明这两个三角形相似。
三、例题的意图
本节课安排了两个例题,例1是教材P48的例2,是一个圆中证相似的题目,这个题目比较简单,可以让学生来分析、让学生说出思维的方法、让学生自己写出证明过程。并让学生掌握遇到等积式,应先将其化为比例式的方法。
例2是一个补充的题目,选择这个题目是希望学生通过这个题的学习,掌握利用三角形相似的知识来求线段长的方法,为下节课学习“27.2.2 相似三角形的应用举例”打基础。
四、课堂引入
1.复习提问:
(1)我们已学习过哪些判定三角形相似的方法?
(2)如图,△ABC中,点D在AB上,如果AC2=AD?AB。
感谢您阅读“幼儿教师教育网”的《相似三角形的应用课件通用9篇》一文,希望能解决您找不到幼师资料时遇到的问题和疑惑,同时,yjs21.com编辑还为您精选准备了相似三角形说课稿专题,希望您能喜欢!