五年级三角形教案
发布时间:2024-04-28 五年级三角形教案 五年级教案五年级三角形教案。
老师会对课本中的主要教学内容整理到教案课件中,所以老师写教案可不能随便对待。教案是教学流程的规范化体现,你不是否正为教案课件而苦恼呢?以下是栏目小编收集整理的“五年级三角形教案”,相信本页所提供的信息会帮助你进一步了解这个话题!
五年级三角形教案【篇1】
说教材:
今天我说课的内容是苏教版第9册的“三角形面积的计算”。
在学这课之前,学生已经有的知识基础有:长方形、正方形、平行四边形的面积计算;一些简单多边形的特征等。学习方法方面的基础有:在学习习近平行四边形面积计算的时候,学生已经初步感受了可以用剪拼、平移、旋转等操作活动,使图形等积变形。事实上,在学这课之前,部分学生对三角形面积计算的公式并不是一无所知,但那只是一种机械记忆,知道公式,说不清所以来。
说教法、学法:
这课我会采用分组学习的方式,事先给每组一些操作材料,让大家在操作中交流,在交流中丰富感知,并逐步形成正确的认识。
教学目标:
1、使学生经历操作、观察、填表、讨论、归纳等数学活动,探索并掌握三角形的面积公式,能正确计算三角形的面积,并应用公式解决简单的实际问题。
2、使学生进一步体会转化方法的价值,培养学生应用已有知识解决新问题的能力,发展学生的空间观念和初步的推理能力。
教学难点:
帮助学生认识到为什么要“÷2”
我们已经学习过哪些平面图形的面积计算?请你用字母公式来说一说。
能说说这些公式是分别用什么方法得到的呢?
[复习中的这两问,第一个问题是帮助学生回忆相关的知识基础,这是学习新知的一个重要前提。后一问,主要是从学习方法上考虑的。数面积单位的方块数或是用等积变形,这两种方法将是我们这课学习三角形面积计算的重要方法。
将刚才复习中的三种图形,利用课件的演示,添上一条对角线。
S 表示三角形的面积, a和h分别表示三角形的底和高,谁能用字母来表示上面的公式?
2、学生在小组交流的时候,可能会有不同的意见,比如就只用一个三角形,通过剪、拼,也可以得到一个平行四边形。如图:
这个三角形的面积就等于平行四边形的面积。平行四边形的底就是三角形的底,平行四边形的高是三角形高的一半,所以平行四边形的面积=底×(高÷2)
3、学生阅读第16页的“你知道吗?”,通过阅读,再与上面的方法做一比较。
师:这几种方法都正确地算出了三角形的面积。它们之间有什么相同的地方呢?
1、完成“练一练”
电脑分别演示这两题。在交流答案的时候,引导学生说清楚什么时候要“×2”,什么时候要“÷2”,为什么?以进一步加深对三角形面积公式与平行四边形面积公式之间联系的理解。
继续完成p.17想想做做的第1题。
2、完成“试一试”,算出这块三角形交通标志牌的面积。
在交流的时候,要给学生正确解答这类题书写格式的示范,培养学生规范地应用计算公式完成练习。
指名板演,讲评的时候注意发现学生练习中的问题。比如书写的格式、计算中的问题、“÷2”的遗漏、单位名称等,都要一一指出并纠正。
一个特例:第一张图画的是一个直角三角形,它的一组直角边就分别是它的底和高。
3、画一画,比一比:在方格图上画出面积是6平方厘米的三角形,你能有几种画法?
比如:
汇总学生的各种画法之后,指名说说自己在画的时候是怎么想的?通过交流,使学生进一步认识到“6平方厘米”先要考虑“12平方厘米”(对应的平行四边形面积),进而考虑只要底和高相乘得“12”就可以了;这样画出的三角形虽然形状各不相同,但面积都是6平方厘米。
四、全课总结:
这节课我们学习的是三角形面积的计算,说说你知道了哪些具体的知识?怎么得到这些知识的?
五年级三角形教案【篇2】
教学目标
1.在实际情境中,认识计算三角形面积的必要性。
2.在自主探索中,经历推导三角形面积计算公式的过程。
3.能运用三角形的面积公式,计算相关图形的面积,解决实际问题。
教学重点
经历推导三角形面积计算公式的过程。
教学难点
理解并能运用三角形的面积公式进行计算。
教具、学具
教学挂图,三角形纸片,剪刀,三角尺等。
教师指导与教学过程
学生学习活动过程
设计意图
一、复习
平行四边形和三角形的面积公式
二、计算三角形面积时应注意的些什么?
学生讨论后汇报总结。
S=ah
S=ah2
1.必须知道底和高,计算单位要统一,底和高要对应。
2.等底(底相等)等高(高相等)的两个三角形面积一定相等,形状不一定相同。
3.完全一样的三角形可以拼成一个平行四边形,三角形的面积是平行四边形的面积的一半,平行四边形的面积是三角形面积的2倍。所以:
巩固平行四边形和三角形的面积计算方法。
让学生熟练的掌握各种有关三角形面积计算的方法。能灵活运用。
教师指导与教学过程
学生学习活动过程
设计意图
三、练习
练一练第1~3题。
四、布置作业
练一练第4题。
已知三角形的底和高,求面积用底高2。
已知三角形的底和面积,求高,用面积2底。
已知三角形的高和面积,求底,用面积2高。
板书设计:三角形的面积
五年级三角形教案【篇3】
教学目标
1.理解三角形面积公式的推导过程,正确运用三角形面积计算公式进行计算。
2.培养学生观察能力、动手操作能力和类推迁移的能力。
3.培养学生勤于思考,积极探索的学习精神。
教学重点
理解三角形面积计算公式,正确计算三角形的面积。
教学难点
理解三角形面积公式的推导过程。
教学过程
一、复习铺垫。
(一)教师提问:我们学过了哪些平面图形的面积?计算这些图形面积的公式是什么?
教师:今天我们一起研究三角形的面积(板书课题)
(二)共同回忆平行四边形面积的计算公式的推导过程。
二、指导探索
(一)数方格面积。
1.用数方格的方法求出第69页三个三角形的面积。(小组内分工合作)
2.演示课件:拼摆图形
3.评价一下以上用数方格方法求出三角形面积。
(二)推导三角形面积计算公式。
1.拿出手里的平行四边形,想办法剪成两个三角形,并比较它们的大小。
2.启发提问:你能否依照平行四边形面积的方法把三角形转化成已学过的图形,再计
算面积呢?
3.用两个完全一样的直角三角形拼。
(1)教师参与学生拼摆,个别加以指导
(2)演示课件:拼摆图形
(3)讨论
①两个完全一样的直角三角形拼成一个大三角形(第三种拼法)能帮助我们推导出
三角形面积公式吗?为什么?
②观察拼成的长方形和平行四边形,每个直角三角形的面积与拼成的平行四边形
的面积有什么关系?
4.用两个完全一样的锐角三角形拼。
(1)组织学生利用手里的学具试拼。(指名演示)
(2)演示课件:拼摆图形(突出旋转、平移)
教师提问:每个三角形的面积与拼成的平行四边形的面积有什么关系?
5.用两个完全一样的钝角三角形来拼。
(1)由学生独立完成。
(2)演示课件:拼摆图形
6.讨论:
(1)两个完全相同的三角形都可以转化成什么图形?
(2)每个三角形的面积与拼成的平行四边形的面积有什么关系?
(3)三角形面积的计算公式是什么?
(4)如果用S表示三角形面积,用a和h表示三角形的底和高,那么三角形面积的计算公式可以写成什么?
(三)教学例1.
例1.一种零件有一面是三角形,三角形的底是5.6厘米,高是4厘米。这个三角形的面积是多少平方厘米?
1.由学生独立解答。
2.订正答案(教师板书)
5.642=11.2(平方厘米)
答:这个三角形的面积是11.2平方厘米。
三、质疑调节
(一)总结这一节课的收获,并提出自己的问题。
(二)教师提问:
(1)要求三角形面积需要知道哪两个已知条件?
(2)求三角形面积为什么要除以2?
(3)把三角形转化成已学过的图形,还有别的方法吗?
(演示课件:三角形剪拼法)
四、反馈练习
(一)下面平行四边形的面积是12平方厘米,求画斜线的三角形的面积。
(二)计算下面每个三角形的面积。
1.底是4.2米,高是2米;
2.底是3分米,高是1.3分米;
3.底是1.8米,高是。1.2米;
五、板书设计
教案点评:
本节课的主要特点是:1、重视知识形成的过程,注意引导学生积极参与教学过程,突出了以学生为主体,老师为主导的教学指导思想。2、注意渗透转化的思维方法和平移的思想,抓住新旧知识的衔接点和新知的生长点,形成良好的认知结构,同时培养了学生的逻辑思维能力。
探究活动
三角形面积计算公式
活动目的
1.掌握三角形面积公式的推导过程。
2.培养学生主动探究知识的能力。
活动准备
若干张长方形和三角形白纸。
活动过程
1.引导学生以长方形的一条边为三角形的底,画一个最大的三角形,观察三角形面积与长方形面积的关系。
2.引导学生用两个同样的三角形沿着其中一个三角形的高剪开,拼成一个长方形,观察三角形面积与长方形面积的关系。
3.启发学生将三角形折成两个长方形,并观察三角形面积与长方形面积的关系。
4.分小组讨论这种方法与新课所学三角形面积公式推导过程的异同点。
五年级三角形教案【篇4】
1.使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积.
2.通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力.
3.对学生进行辩诈唯物主义观点的启蒙教育.
(一)拿出事先准备好的长方形和平行四边形.量出它的长和宽(平行四边形量出底和高).
(二)观察老师出示的几个平行四边形,指出它的底和高.
(三)教师出示一个长方形和一个平行四边形.
1.使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积.
2.通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力.
3.对学生进行辩诈唯物主义观点的启蒙教育.
(一)拿出事先准备好的长方形和平行四边形.量出它的长和宽(平行四边形量出底和高).
(二)观察老师出示的几个平行四边形,指出它的底和高.
(三)教师出示一个长方形和一个平行四边形.
2.要想我们准确的答案,就要用到今天所学的知识--“平行四边形面积的计算”
1.小组合作讨论:
(1)图上标的厘米表示什么?每个小方格表示1平方厘米为什么?
(2)长方形的长是多少厘米?宽是多少厘米?面积是多少平方厘米?
(3)用数方格的方法,求出平行四边形的面积?(不满一格的,都按半格计算)
(4)比较平行四边形的底和长方形的长,再比较平行四边形的高和长方形的宽,你发现了什么?
3.请同学评价一下用数方格的方法求平行四边形的面积.
不数方格怎样能够计算平行四边形的面积呢?想一想,如果我们把平行四边形转化成我们过去学过的图形,就可以根据已学过的面积公式计算出它的面积了,转化成什么图形,怎样转化呢?请大家拿出手里的学具试试看.
2.学生动手剪拼(可以小组合作),并向周围同学说一说是怎样转化的.
3.学生到前面演示转化的方法.
5.组织学生讨论:
(1)平行四边形和转化后的长方形有什么关系?
(2)怎样计算平行四边形的面积?为什么?
(3)如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形面积的字母公式是什么?
今天你学到了哪些知识?怎样计算平行四边形面积?
1.底=8厘米,高=5厘米,
2.底=10米,高=4米,
(二)说出下面每个平行四边形的底和高,计算它们的面积.
五年级三角形教案【篇5】
教学内容:九年义务教育小学第九册69──71页的内容。
①使学生理解、掌握三角形面积的计算公式。
①通边操作,培养学生分析推理能力。
②培养学生的空间观念和思维能力。
③培养学生运用所学知识能决实际问题的能力。
德育目标:
引导学生装运用转化的方法搜规律。
美育目标:
能过演示和操作,使学生感悟数学知识的内在联系的逻辑之美,增强审美意识。
教具、学具:三角形课件,各小组准备3套三角形(同样大小的直角三角形,锐角三角表,钝角三各2个),及复合投影片。
师:请同学们打开学具袋。看看带中有那几种图形?
师:请同学们回忆一下我们在推导平行四边形面积的计算时运用那几种方法?
师:你们能不能用手中的学具想办法推倒出三角形的面积?
二、引导学生探索发现。
师:请同学们拿来出你们准备好的三组三角形(一组为两个完全一样的直角三角
形,一组为两个完全一样的锐角三角形,一组为两个完全一样的钝角三角形。)
师:能不能用每一组的'两个三角形拼成一个已学过的图形?
师:随着学生在展示台上展示,选择有代表性的三组,通过计算机课件展示拉摆
① 拼成的平行四边形、长方形、(正方形)的面积与原来每个三角形的面积有什么关系?
② 平行四边形的底和高,长方形的长和宽,正方形的边长分别是原来三角形的哪部分?
③ 三角形的面积应该怎样计算?
经过学生讨论得出:拼成的平行四边形、长方形(正方形)、的面积等于原来每个三角形面积的2倍。平行四边形的底(长 方形的长、正方形的边)等于三角形的底,平行四边形的高(长方形的宽、正方形的边长)等三角形的高。每个三角形的面积等底乘以高除以2。
师:如果有S表示三角形的面积,a表示三角形的底, b表示高,你能写出三角
师:刚才我们都是用两个完全一样的三角形通过旋转和平移,转化成了我们学过
的图形,从而得出三角形面积的计算方法,如果用一个三角形能否转化成学
过的图形呢?同学们试试看,能否得到三角形面积的计算。
生:动手操作、汇报结果。看书反思,并填上书中的空格。
②标出底(5.6厘米),高(4厘米)后,现在能算了吗,为什么?
小结:计算三角形面积一般需要什么条件?特别注意什么?
三、练习反馈、拓展应用。
⑴一个三角形的底是40厘米,高是20厘米,这个三角形的面积是( )平方厘米,和这个三角形等底等高的平行四边形的面积是( )平方厘米。
⑵一个平行四边形的面积是60平方厘米,与它等底等高的三角形的面积是( )平方厘米。
五年级三角形教案【篇6】
指导思想:
积极配合莱州市、沙河镇在效率课堂研究月推出的一课多研活动,旨在强化数学课堂教学改革,实施课堂高效研究交流,系统化理论,进一步熟悉课堂教学结构,对课堂和谐高效教学进行再思考。
全体数学教研小组成员集中听评四年级数学课一节,集中研讨方案,进行个人反思修改,然后由教研组提出评课建议,进行一课多研的课例研究。
教学目标:
1、通过观察、操作认识三角形面积计算公式,并能正确计算相应图形的面积;了解三角形面积的计算方法。
2、经历探索三角形面积计算公式的过程,培养观察、比较、推理和概括能力,渗透转化思想,发展空间观念。
3、运用计算公式解决简单的实际问题。在解决问题的过程中,感受数学和现实生活的密切联系,体会学数学、用数学的乐趣。
教学重点:
理解并掌握三角形面积的计算公式。
教学难点:
理解三角形面积计算公式的推导过程。
教学过程:
一、直接引入
师:同学们,你知道我们每天都佩戴着鲜艳的红领巾是什么形状的?(三角形),怎样计算三角形的面积呢?这节课我们就一起来研究三角形的计算方法(板书课题)
二、探究新知
1、复习平行四边形面积的求法
师:回忆一下,平行四边形面积计算公式是什么?是怎么推导的?
师:我们是先把平行四边形转化成长方形,运用学过的长方形面积的计算公式,找到平行四边形与长方形之间的联系,推导出了平行四边形面积的计算公式,今天这节课,我们继续用转化的数学思想来探索三角形的面积怎样计算。
2、第一次操作实践
师:好,那怎样把三角形转化成我们所学过的图形呢?请同学们拿出学具袋里的各种三角形,两人一组想一想,拼一拼。(教师巡回指导)
3、交流反馈
师:同学们都拼好了,谁来说说你是怎样拼的?
生:我用两个直角三角形拼成了一个平行四边形。
师:我这也有两个直角三角形,可是拼不成,为什么?你有什么发现?
生:要用完全相同的三角形来拼。
师:你拼时怎么知道是两个完全相同的三角形呢?
生:把两个三角形重合就知道了。
师:对,要用两个完全相同的三角形来拼。
师:还有不同的拼法吗?
生:我用两个完全相同的锐角三角形拼成了一个平行四边形。
生:我用两个完全相同的钝角三角形也拼成了一个平行四边形。
师:看看这几种拼法它们有什么共同点呢?认真观察,同桌互相说说。
4、第二次操作实践
师:下面我们再次合作,根据你们转化的图形,找到它们之间的联系,推导出三角形面积的计算公式。(生讨论交流)
师:谁来说说你是怎样推导的?
生汇报
师板书:三角形的面积=底高2
师:仔细观察所拼成的平行四边形的底与三角形的底,所拼成的平行四边形的高与三角形的高看看有什么发现?
师:我们把这种相等的关系叫等底等高。
师:那么三角形的底乘以三角形的高求出的是什么?
生:与三角形等底等高的平行四边形的面积。
师:为什么除以2呢?
生:因为三角形的面积是与它等底等高的平行四边形面积的一半,所以要除以2。
师:无论什么样的三角形,它的面积都可以转化成平行四边形的面积来计算,所以我们得到三角形的面积公式=底高2
师:谁能用字母表示三角形的面积公式
板书s=ah2
三、运用公式,解决问题
师:利用三角形面积公式,我们可以方便地解决一些实际问题了!老师这里有一条红领巾,求它的面积,你需要知道什么条件?你能估测一下这条底边有多长吗?
师:它的高是33厘米,你能计算出它的面积吗?
在练习本上算一算
学生打开书32页,在书中画一画
师:你画出了几个面积相等的三角形?如果给你足够的时间你能画出多少个这样的三角形?
生:无数个
师:通过画这样的三角形,你发现了什么?
生:三角形的面积与底和高有关,与形状无关。
四、总结收获
这节课我们运用转化的思想,通过拼摆把三角形转化成与它等底等高的平行四边形,推导出三角形面积公式,大家还有不明白的地方吗?实际上我们还可以运用剪拼或折叠的方法来推导三角形面积公式,课下同学们可以动手试一试。
师:同学们,这节课你最大的收获是什么?
生:我学会了三角形的面积怎样计算。
生:我学会了用转化的方法推导三角形的面积计算公式。
师:下节课我们继续运用转化的思想探究梯形面积的计算方法。
教学评课:
纵观本节课教学,教师教学思路清晰,运用了自主探究,合作交流,亲身实践的学习方式。课前导语可以创设情境,揭示课题,进一步激发孩子的求知欲。在设计教学环节时注意了学生已有知识基础,但缺乏对经验背景的引导,按照学生的认知规律组织教学,上课时应该先复习了平行四边形面积的推导过程,然后让学生探究三角形面积的计算方法,这样,教师根据学生已有的知识以旧引新,衔接自如。
五年级三角形教案【篇7】
教学要求:
1.使学生理解并掌握三角形面积的计算公式。能正确地计算三角形的面积。
2.通过操作,培养学生的分析推理能力。培养学生应用所学知识解决实际问题的能力,发展学生的空间概念。
3.引导学生运用转化的方法探索规律。
教学重点:理解并掌握三角形面积的计算公式。
教学难点:理解三角形面积计算公式的推导过程。
教学过程:
一、激发
1.出示平行四边形
1.5厘米
2厘米
提问:
(1)这是什么图形?计算平行四边形的面积我们学过哪些方法?(板书:平行四边形面积=底高)
(2)底是2厘米,高是1.5厘米,求它的面积。
(3)平行四边形面积的计算公式是怎样推导的?
2.出示三角形。三角形按角可以分为哪几种?
3.既然长方形、正方形、平行四边形都可以用数方格的方法或利用公式计算的方法,求它们的面积,三角形面积可以用哪些计算方法呢?(揭示课题:三角形面积的计算)
二、尝试
1.用数方格的方法求三角形的面积。
(1)指名读P.69页第一段。
(2)订正数的结果。
(3)如果不数方格,怎样计算三角形的面积,能不能像平行四边形那样,找出一个公式来?
(4)三角形与平行四边形不同,按角可以分为三种,是不是都可以转化成我们学过的图形。我们分别验证一下。
2.用直角三角形推导。
(1)用两个完全一样的直角三角形可以拼成哪些图形?学生自由拼图。
(2)拼成的这些图形中,哪几个图形的面积我们不会计算?
(3)利用拼成的长方形和平行四边形,怎样求三角形面积?
(4)小结:通过刚才的实验,想一想,每个直角三角形的面积与拼成图形的面积有什么关系?
引导学生得出:每个直角三角形的面积等于拼成的平行四边形面积的的一半。
面积=面积的一半
3.用锐角三角形推导。
(1)两个完全一样的锐角三角形能拼成平行四边形吗?学生试拼。
提问:你发现了什么?
引导学生得出:两个完全一样的锐角三角形也可以拼成平行四边形。
(2)刚才同学们都把两个完全一样的锐角三角形,拼成了平行四边形,在转化的过程中,怎样按照一定的规律来做呢?(教师边演示边讲述边提问)
①把两个锐角三角形重叠放置。
提问:怎样操作才能拼成一个平行四边形?直接把一个三角形向左或向右平移,能拼成一个平行四边形吗?
②怎样才能使上面的三角形倒过来,使它原来的底在上面,底所对的顶点在下面?我们用旋转的方法,按住三角形右边的顶点不动,使三角形向逆时针方向转动180度,(也可以左边顶点不动,顺时针转动180度)直到两个三角形的底成一条直线为止。
③再把右边的三角形向上沿着第一个三角形的右边平移,直到拼成一个平行四边形为止。
(3)教师带着学生规范地操作。
重点指导:哪点不动?哪点动?旋转多少度?怎样平移?转化的过程中旋转和平移有什么不同?(平移时各个点沿着直线移动,旋转时一个点不动,其它点都绕着不动点转动。)
(4)对照拼成的图形,你发现了什么?
引导学生得出:每个锐角三角形的面积等于拼成的平行四边形面积的一半。
板书:
面积=面积的一半
(5)练习十八第1题。
①两个完全一样的钝角三角形能用刚才的方法来拼吗?学生实验,教师巡回指导。
②通过刚才的操作,你又发现了什么?
引导学生得出:每个钝角三角形的面积等于拼成的平行四边形面积的面积的一半。
面积=面积的一半
4.归纳、总结公式。
(1)通过以上三个实验,同学们互相讨论一下,你发现了什么规律?
(2)汇报结果。
引导学生明确:
①两个完全一样的三角形都可以拼成一个平行四边形。
②每个三角形的面积等于拼成的平行四边形面积的一半。
(同时板书)
③这个平行四边形的底等于三角形的底。(同时板书)
④这个平行四边形的高等于三角形的高。(同时板书)
(3)三角形面积的计算公式是怎样推导出来的?为什么要加上除以2?(强化理解推导过程)
板书:三角形面积=底高2
(4)完成书空。
5.教学字母公式。
(1)学生看书71页上面3行。
(2)提问:通过看书,你知道了什么?
引导学生回答:如果用S表示三角形面积,a和h分别表示三角形的底和高,三角形的面积公式也可以用字母表示为:
S=ah2。(板书)
三、应用
1.教学例题:一种零件有一面是三角形,三角形的底是5.6厘米,高是4厘米。这个三角形的面积是多少平方厘米?
①读题。理解题意。
②学生试做。指名板演。
③订正。提问:计算三角形面积为什么要除以2?
2.做一做。
订正时提问:计算时应注意哪些问题?
3.填空。
两个完全一样的三角形可以拼成一个(),这个平行四边形的底等于(),这个平行四边形的高等于()。因为每个三角形的面积等于拼成的平行四边形的面积的(),所以()。
4.练习十七第2、3题。
5.利用公式求P.75页方格上的三角形的面积。
四、体验
今天有何收获?怎样求三角形的面积?三角形面积的计算公式是怎样推导的?
五、作业
练习十七4题。
五年级三角形教案【篇8】
一、说教材
1.说课内容:九年义务教育六年制小学数学教科书第九册第三单元多边形面积的计算中的第二节。
2.教学内容的地位、作用及意义
三角形面积的计算,是在学生掌握三角形的特征及长方形、平行四边形面积计算的基础上进行教学的。通过对这部分知识的教学,使学生掌握三角形面积的计算公式,学会运用公式正确计算三角形的面积;同时加深与长方形、平行四边形之间的内在联系,培养学生的实际操作能力和思维能力,进一步发展学生的空间观念,提高学生的数学素质。
3.教学目标的确定:
(1)掌握三角形面积的计算公式,学会运用公式正确计算;
(2)学会动手实验操作,渗透旋转、平移的数学思想和方法,培养学生分析、比较、抽象、归纳的能力,进一步发展空间观念;
(3)理解三角形面积计算公式的推导过程,渗透辩证唯物主义的思想,使学生初步懂得用运动变化的观点去观察事物;
4、教材编排的特点:
教材的编排加强了学生的动手操作。首先,通过数方格的方法求三角形的面积;过渡到运用学具实验操作观察探索总结规律,再运用规律解决实际问题的方法;为下节课学习梯形的面积具有正迁移的作用。
5、教学重点、难点及关键
教学重点:掌握三角形面积的计算公式,并能运用公式正确计算。
教学难点:理解公式的推导过程。
教学关键:通过实验操作和采用多媒体辅助手段,帮助学生掌握本节课的教学重点,突破难点,达成目标。
二、说教法:
根据教学内容的有关特点及学生的学习习惯、认知基础和接受能力;充分发挥学具和教具的作用;遵循教学的规律和原则;本节课特采用了讲解法、谈话法、实验法和激趣法等教学方法进行教学;以体现精讲、善导、激趣、引思的课堂教学八字要求;达到以教师为主导,学生为主体,训练为主线的教学指导思想。促进素质教育的发展。
三、说学法:
根据学生的年龄特点及学习能力,本节课准备指导学生学会以下两种学习方法:
(1)学会在动手操作中,实验观察、比较、分析、归纳的学习方法;
(2)学会正确使用学具解决实际问题的方法。
四、教学程序的设计
为实现教学目标,优化课堂结构,落实素质教育;根据以上的分析,本节课的教学,设计了以下几个教学环节:
1.复习旧知,作好铺垫
(1)口答(投影显示)
①长方形、平行四边形、三角形分别有什么特征?
②平行四边形的面积计算公式是怎样的?
计算下列图形的面积。
教育心理学表明:教学就是根据学生原有的基础上进行的。为此,这三道复习题都是选取与新知识有密切联系的,能为学习新知识起铺垫作用。
2.谈话设疑,引入新课
学生解答复习题后,根据学生好胜的心理特点,谈话设疑,引入新课,激发学生的求知欲望。提问:如果把复习题中第3题的三个图形从对角线剪开得出三个三角形,那么三角形的面积该怎样计算呢?这就是我们本节课要研究的内容三角形面积的计算板书揭示课题。板书后再运用语言激励学生提出:看谁学得又快又好。为学生学习新知识创设了最佳的学习情境。
3.动手动脑,指导探索
第一:数方格求面积
首先,发挥教材的作用,指导学生看教科书75页,用数方格的方法求三角形的面积,同桌对答案。
接着,教师放投影显示方格图,指名回答。
最后小结,点拨引导,质疑引思。师导:刚才大家用数方格的方法求三角形的面积,既费时又费力,并不容易求得准确,我们能不能象学习平行四边形面积一样把三角形转化成已学过的图形再求面积呢?
第二:指导实验,观察、归纳三角形的面
积公式。
首先,从直角三角形推导。根据学生准备的学具,引导学生初步感知三角形面积的计算公式的表象;要求学生拿出其中的两个完全一样的直角三角形。老师逐步提出问题,(幻灯显示)先提出:①两个完全一样的直角三角形可以拼成什么图形?再提出:②每个直角三角形的面积和拼成的平行四边形的面积有什么关系?③三角形的底和高分别与平行四边形的底和高有什么关系?让学生带着问题逐个动手操作实验观察总结。
其次,要求学生按照以上的教学和学习方法,分别用两个完全一样的锐角三角形、钝角三角形进行拼摆。其中,学生用两个完全一样的锐角三角形拼摆实验之后,教师投影显示拼摆过程边讲边演示(图):
首先把两个锐角三角形重叠位置,接着旋转、平移,就出现一个平行四边形。这个教学环节更加生动、具体形象,感染力强,帮助学生加深对公式来源的理解。
再次,归纳求三角形面积的计算公式
学生带着问题通过主动的动手操作,实验观察总结,使学生非常容易掌握本课的教学重点,突破难点。为初步检验实验的效果,教师再放投影显示题目要求学生回答以下问题:
①两个完全一样的三角形都可以拼成一个();这个平行四边形的底等于();这个平行四边形的高等于();
②每个三角形的面积等于拼成的平行四
边形面积的();
③三角形的面积=();
④如果用S表示三角形的面积,用a和h分别表示三角形的底和高,那么三角形的面积计算公式可以写成()。
根据学生的回答板书教学重点:三角形的面积=底高2,字母公式:S=ah2,学生齐读。
4运用公式,解决问题。
教学例题。先板书例题,用不同颜色表示数量关系以突出重点。接着要求学生读题、看图、解题。然后指名回答,集体纠正,教师板演解题过程。最后,质疑问题,提出:为什么要除以2?突出重点,深化理解。
5.巩固训练,深化理解
(1)基本性练习:
指出下面每个三角形的底和高,分别计算出它们的面积。
回应复习题3中的设疑,老师提问:通过这节课的学习你能求它们的面积吗?
(2)趣味性练习:
2判断题,用手势表示对的打错的打。
①两个完全相等的直角三角形可以拼成一个三角形、长方形、平行四边形。()
②两个三角形可以拼成平行四边形。()
③三角形的底边为6厘米,高为3厘米,它的面积是18平方厘米。()
④三角形的面积是平行四边形面积的一半。()
(3)对比性练习:
2.下表中给出的是三角形或平行四边形的底和高。算出每个图形的面积,填在空格里。
三角形平行四边形
底(厘米)86.29.612.5
高(厘米)3.54.86.316
面积(平方厘米)
(4)发展性练习,课本79页第7题。
以上四类形式不同的练习题为检查教学效果,根据教学目标,题目由浅入深,由易到难,有坡度;既突出重点,又分散难点,使不同层次水平的学生都有所提高,既巩固所获得的知识,又深化了知识间的联系和区别;既加强了学生动手操作的能力,又激发了学生学习的兴趣;既体现了知识的形成过程,又体现了能力的培养。符合素质教育的思想。
6、课堂总结:
课堂总结是课堂教学的重要组成部分,起画龙点睛的作用;本课的总结采用了引导回忆归纳的方法,提问:今天我们学习了什么内容和你学会了什么?这样总结,既突出教学重点,又使知识系统化、条理化,进一步培养归纳概括的能力。
7、家庭作业:练习十八第6、9题。
五年级三角形教案【篇9】
教学目标:
使学生进一步熟悉三角形面积的计算公式,熟练地计算不同三角形的面积
教学过程:
一、第5题可以通过计算解决,也可以把三角形的底和高与平行四边形逐一进行比较。教学时,重点放在后一种方法的比较上。
二、第6题要使学生画出的三角形的面积是9平方厘米,三角形底和高的乘积应是18。因此,方格纸上画出的三角形可以分别是:底6cm,高3cm;底3cm,高6cm;底9cm,高2cm;底2cm,高9cm;底1cm,高18cm。
三、第9题测量红领巾高时,可以启发学生把红领巾对折后再测量。
四、第10题要使学生认识到:涂色三角形与它所在的平行四边形等底等高,所以每个涂色三角形的面积都是它所在平行四边形面积的一半。
五、思考题每个大三角形的面积是16平方厘米;中等三角形的面积是8平方厘米;每个小三角形的面积是4平方厘米;平行四边形和小正方形的面积是8平方厘米。
五年级三角形教案【篇10】
教学目的:
1.学生比较熟练地应用三角形面积计算公式计算三角形的面积。
2.能运用公式解答有关的实际问题。
3.养成良好的审题、检验的习惯,提供正确率。
教学重点:
运用所学知识,正确解答有关三角形面积的应用题。
教学准备:
实物投影仪等。
教学过程:
一、基本练习
1.填空。
⑴三角形的面积=,用字母表示是。
为什么公式中有一个2?
⑵一个三角形与一个平行四边形等底等高,平行四边形的底是2.8米,高是1.5米。三角形的面积是()平方米,平行四边形的面积是()平方米。
二、指导练习
1.练习:下图中哪个三角形的面积与涂颜色的三角形的面积相等?为什么?你能在途中再画出一个与涂颜色的三角形面积相等的三角形吗?试试看。
⑴生用尺量一量这两条虚线间的距离,搞清这两条虚线是什么关系?
⑵看看图中哪个三角形的面积与涂了色的三角形面积相等?为什么?
⑶分组讨论如何在图中画出一个与涂了颜色的三角形面积相等的三角形,并试着画出来。
2.练习:一张边长4厘米的正方形纸,从一边的中点到邻边的中点连一条线段,沿这条线段剪去一个角,剩下的面积是多少?
分析与解:先求出原正方形的面积,再求出剪去的小三角形的面积,然后求出剩下部分的面积。因为剪去的是正方形的一个角,所以是个直角三角形,它的两条直角边都是正方形边长的一半,所以剪去的面积是222=2平方厘米。
3.练习:一块三角形土地,底是421米,高是58米。估算一下它的面积是多少平方米,大约是多少公顷。
分析与解:课先取三角形的底和高的近似数400米和60米,再算出这块三角形土地的面积约是:400602=12000(平方米)=1.2公顷。
三、课堂练习
练习。(分组完成)
YJS21.cOm更多幼儿园教案小编推荐
三角形五年级教案通用
经过细致的筛选小编为大家整理出了一篇最新的“三角形五年级教案”,如果您觉得本网页有用请不要忘记收藏它。新入职的老师需要备好上课会用到的教案课件,每位老师都应该他细设计教案课件。教案是教师系统化教学的基础。
三角形五年级教案 篇1
教学提示:以往的教学,教师总是让同学们在课前准备同样大的(即完全相同的)锐角三角形、钝角三角形、直角三角形等三角形硬纸板。让他们根据已有知识经验和学习水平在课前自己尝试着去拼、去摆、去观察、去思考、去交流。让他们在合作交流的基础上进而推导出三角形面积计算公式。今天,我想用另一个角度来展开这节课的教学。
课前准备:每位同学准备长方形、正方形纸板各一个。边长已知,尺子、剪刀、完全相同的锐角三角形、钝角三角形各一组。其中的锐角三角形、钝角三角形标明一个底上的对应的高。
教学过程:上课的第一个环节,我开门见山的出示了一个长方形。(标明长和宽)让学生试计算这个长方形的面积。学生看了学习题目,感觉太简单了。很容易地的得出问题的答案。接着我发问:“如果把它的对角线连接起来,就变成了两个直角三角形,你能知道他们的面积是多少吗?”同学们有的在认真思考,有的在观察,还有的在动手动笔比划。他们真是有思路了!一个同学站起来高手声回答说:长方形面积是两个直角三角形面积的和。其中一个三角形是长方形面积的一半。我追问到,为什么?他们又对答如流。两个完全相同的直角三角形正好拼成一个长方形。所以………同样,用我给定的正方形边长,求其中的一个等腰直角三角形的面积也就迎刃而解。
那么,对于完全两个完全相同的锐角三角形、钝角三角形是不是也能得出同样的结论呢? 拿出你的相关学具,下面以小组形式展开讨论研究,动手试试看……
三角形五年级教案 篇2
教学内容:
三角形面积公式的推导和面积的计算。课本P47--P49。练习十1-3题。
教学目标:
1、使学生理解三角形的面积正好是它等底等高的平行四边形面积的一半,引导学生推导出三角形面积计算公式。
2、使学生掌握三角形面积的计算公式,并能结合实际正确选择条件,应用公式计算三角形面积。
3、通过图形的割补、剪拼,渗透图形变化的数学思考方法,并培养学生的动手操作能力。
教学准备:
多媒体课件。学生准备剪拼的还有平行四边形、长方形等三个图形与三对三角形、剪刀等。
教学过程:
一、复习旧知,建立基础。
昨天我们学习了平行四边形的面积计算,请同学们回忆一下平行四边形的面积公式我们是怎样推导出来的?
学生回答,教师小结。平行四边形的面积公式我们是通过沿高剪割、平移的方法把平行四边形转化成了长方形后推导出来的。(演示推导过程)这样我们就把要学习的新知识转化成了已会的旧知识。(板书:转化)
我们今天也要应用这个思想来学习新知识。
二、导入新课,揭示课题
师:,这堂课我们学习"三角形面积的计算"(板书)。
三、三角形面积公式的推导
1、用数方格的方法求三角形的面积
多媒体屏幕出示3个三角形。放在边长为1厘米的正方形方格图中。每个小方格就是多少面积?
(1)、分别说说这三个三角形是什么三角形?
(2)、请你用数方格的方法求出这3个三角形的面积各是多少平方厘米(不满一个的,都按半格计算,小组里分一下工,每人数一种。看哪个小组数的最快)
边数边思考:
(1)。如果以水平方向的边为它的底,那么高在哪里?底和高分别是多少?
(2)。并且请你根据所得的结果猜一猜三角形的面积可能与什么有关?有怎样的关系呢?
思考题交流。
师:那么三角形能不能转化成我们学过的图形来推导出它的面积计算公式呢?你想转化成怎样的图形?
1、尝试操作
每个学生放有九个图形,其中六个三角形。请你剪一剪,或者拼一拼。看看三角形与我们以前学过的图形有没有关系?有怎样的关系?
要求:每个人做一次剪的实验、做一次拼的实验,小组长进行一下分工。
交流:通过剪一剪,或者拼一拼,你发现了什么?汇报剪的情况。
(1) 请学生把自己剪的图展示在投影仪上。说说你是怎样剪的?发现了什么?
根据剪的情况,谁能用一句话来概括一下?
(2)交流拼的情况,说说你是怎样拼的?通过拼一拼,你又发现了什么?
展示在投影仪上。根据拼的情况,谁能用一句话来概括一下?
三角形五年级教案 篇3
北京版五年级数学上册教案设计《三角形的特征和面积》
教学理念:
数学学习不应是简单的个体受动过程,更是一个主体对自己感兴趣的且是现实的生活性主题的探索与发现的过程。而这种探索与发现过程,就是儿童自己去观察,思考,讨论,试验,亲身体验了知识的建构过程,使其终身收益。
教学目标:
1.通过练习使学生进一步熟悉三角形的面积的计算公式,能够比较熟练地计算三角形的面积。
2.使学生通过操作和对图形的观察、比较,发展学生的空间观念,使学生知道转化的思考方法在研究三角形面积时的运用,培养学生的分析、综合、抽象、概括和运用转化方法解决实际问题的能力。
3.多元评价学生,并培养学生初步的几何知识。
教学重点与难点:
学生难灵活三角形面积公式。在学习时可借助方程的知识解决问题。
媒体与手段运用:
多媒体
教学环节:
一、复习阶段
1、出示
问:这是一个三角形,要求它的面积必须知道什么?(学生回答后指名到黑板前量出这个三角形的底和高。)
问:知道了三角形的底和高,怎样求也它的面积?用哪个公式?(学生回答后教师板书:S=ah?2)
问:这个三角形的面积是多少?(学生独立计算)
二、新授内容
1、出示练习十四第7题
(1)教师讲解,学生试做。
(2)让学生尝试用方程完成。
2、练习十四第6题(学生读题,并请同学讲讲自己的思路。)
教师提醒学生在求三角形面积时要注意除以2。
3、练习十四第9题。(学生试做)
分析题意,学生注意单位之间的转化。
4、讲解等底等高的三角形面积相等。
5、把一个三角形分成四个面积相等的三角形,可以怎么分?
学生自己先试分,然后上台反馈答案。
三、巩固练习
课后做一做
学生在做的过程中,注意面积单位。
四、总结
今天我们学习了三角形面积计算公式,我们是通过转化的方法来推导出。这种方法在今后还可以多次进行运用。
三角形五年级教案 篇4
一、说教材
首要其推导办法与平行四边形面积公式的推导办法有相通之处。一同本课也是学习梯形、组合图形面积的根底,在实践日子中这部分的使用也十分广泛,所以本课内容的学习是很重要的。
二、说教育方针及重难点
依据三维方针的要求,本节课的方针确定为三个:
1、引导学生阅历三角形面积公式的探求进程,把握三角形面积公式,并会用字母表明,会用公式核算三角形面积。
2、经过探求,培育学生实践操作才干、自主探求才干、与别人协作沟通才干以及运用数学常识处理实践问题的才干。
3、在学生阅历着手操作、评论、概括等探求学习中,领会三角形面积公式推导进程的严密性和公式确实定性,进一步感触转化的数学思想和办法,并取得活跃的、成功的情感领会。
教育要点:探求并推导三角形的面积公式,会依据公式核算三角形的面积。
教育难点:学生了解面积公式的推导进程,弄清楚为什么除以2.
三、说教法、学法:
教法:由于小学生的认知规则是从详细到笼统,他们有猎奇好动的特色。在教育中我选用情境教育法、探求法、试验法等教育办法充沛调动学生的主观能动性,力求表现自主性教育准则。
学法:依据本课可操作性的特色,以及学生为主体,教师为主导的教育准则,在学法辅导上以学生着手操作为主,配以小组协作学习法,评论法进行自主探求式学习。
四、教育预备
多媒体课件;小黑板;学具 (两个彻底相同的直角三角形、锐角三角形、钝角三角形,一个长方形,一个平行四边形,恣意三角形3个),剪刀一把。
五、说教育流程
为了能更好凸显"自主探求"的教育理念,我规划了五个环节:(一)创设情境,激趣引进(二)协作探求,寻觅办法(三)实践应运,拓宽延伸(四)概括总结,畅谈收成
(一)创设情境,激趣引进
我经过创设故事情境来引进新课。课件演示:秋天来了,森林的小动物可快乐了,这一天,小狗、小猫、和大公鸡聚到了一同。,它们都以为自己的三角形最大,但是谁也压服不了对方。同学们,你们乐意帮他们处理这个问题吗?那么"要比较三角形的巨细便是比较什么呢?"学生会很轻松地答复"要比较三角形的巨细便是比较三角形的面积。"今日咱们就一同来探求怎么核算三角形的面积。(然后提醒课题:三角形面积核算,并板书课题。)让学生猜想三角形的面积或许和咱们学过的什么图形有联络?学生独立考虑后得出:或许与长方形和平行四边形的面积有联络。由此温习长方形和平行四边形的面积公式以及平行四边形面积公式的推导办法。引导学生考虑:能不能把三角形转化成咱们学过的图形来核算呢?此办法不只很好的温习了旧常识,为新常识学习做好衬托,还调动了学生学习的活跃性,激起了学生的探求愿望。
(二)协作探求,寻觅办法
这一环节我安排了4个小环节:
第一个环节协作探求奥苏伯尔说过:只需学生亲身阅历、感触的东西才干真实了解和把握。这儿,我没有选用传统"省时高效"直接告知学生答案的办法,而是让学生使用手中两个彻底相同的直角三角形和长方形资料小组协作想办法处理。
第二环节报告沟通在小组充沛操作、评论、沟通后,出示课件,与学生一同总结出:用两个彻底相同的直角三角形能够拼成一个长方形,或许一个长方形能够剪成两个彻底相同的直角三角形。然后得出每个直角三角形的面积等于拼成的平行四边形面积的一半;拼成的平行四边形的底等于直角三角形的底,平行四边形的高等于直角三角形的高。并对表现出色的小组给予表彰。
第三环节精讲,再次提出应战性问题:那么锐角三角形、钝角三角形与平行四边形之间是否也有这样的联络呢?同学们想不想亲自来验证一下?再次激起学生的探求愿望。此环节选用小组协作,自由发挥,自主探求,使学生成为讲堂的主人。最终每个小组选代表边演示边报告探求效果。我出示多媒体课件,引导学生得出:每个锐角三角形的面积等于拼成的平行四边形面积的一半;每个钝角三角形的面积等于拼成的平行四边形面积的一半。
经过学生着手操作和学习,他们对三角形面积公式了解得愈加透彻,能清楚的知道到由于三角形的面积是拼成的平行四边形面积的一半,所以要除以2然后打破难点。然后引导学生说出:用字母表明三角形面积的核算公式。
在学生拼摆进程中进行转化很自然地浸透"旋转""平移"的思想。一同我还留意引导学生用多种办法探求三角形面积核算公式,我用课件演示办法,经过演示,使学生的思想开阔了,他们会觉得学习数学是一件很风趣的事,会感到数学问题的处理,往往有多种办法和途径。这样学生在往后处理数学问题时,自动探求的活跃性也会逐步增强。学生着手操作,不只仅是了解三角形面积核算公式这一数学常识的需求,并且也是探求型学习办法的需求。安排学生进行小组协作沟通,让学生间彼此共享各自的学习效果,到达自我教育,彼此学习的目的。
第四环节质疑,在这节课的学习中你还有什么当地不明白?在学习中你遇到了什么困难?你是怎样战胜的?学习中你发现了什么数学问题? 这样规划的目的是使学生打破难点对这部分的常识了解的愈加的透彻。
(三)实践应运,拓宽延伸
数学是为日子服务的,在推导出平行四边形的面积公式之后,为了了解学生的把握程度,查验他们能否学以致用,经过操练,使学生加深对公式的了解与使用到达娴熟灵敏把握的目的,完成了学习数学的价值。让学生在运用常识处理问题的进程中,增强数学的使用知道,进步处理问题的才干。我规划下面几组操练:
(1)根本操练,检测学生直接运用公式进行核算的状况,并当令进行品德教育。
(2)概括操练,深化对推导原理的了解,加深学生对公式特征的知道。
(3)拓宽操练,培育学生处理问题的才干。
规划目的:操练规划由浅入深,层层递进,紧扣课题,不光使学生所学的常识进一步深化,并且使学生在操练中思想得以展开,探求才干得到进步,立异本质得到锻炼。
(四)概括总结,畅谈收成
回想这节课所学内容,说说自己有哪些收成?
这一环节首要是再次把学习的自动权交给学生,让学生在愉悦的气氛中谈收成谈领会,及时点评,学生间相互弥补,一起完善,既收拾了本课所学常识,又有利于学生学习才干的培育。
六、说板书规划
板书规划力求简略明了要点明晰,能让学生一望而知。突出了教育的要点,有利于学生更好地把握和稳固本节课所学的内容。
三角形五年级教案 篇5
教学内容:
人教版五年级上册第五单元第84~87页内容
教学目标:
1、探索并掌握三角形的面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。
2、使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化思想的价值,发展学生的空间观念和初步的推理能力。
3、让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。
教学重点:
探索并掌握三角形的面积公式,能正确计算三角形的面积。
教学难点:
理解三角形面积公式的推导过程。
教学准备:
多媒体课件、三角形学具。
教学过程:
一、创设情境,引出课题
课件出示一个平行四边形。
师:这是什么图形,你会计算它的面积吗?说一说怎么算。
根据学生的回答,板书:平行四边形的面积=底×高
师:你能把这个平行四边形分成两个完全一样的三角形吗?该怎么分?
学情预设:学生一般有以下两种分法:
师:现在请你拿出自己准备好的平行四边形,我们来验证一下。用刚才的方法画一画、剪一剪、比一比,看看这两个三角形是否完全一样?
学情预设:学生动手操作,教师巡视指导,发现:剪下来的两个三角形是完全一样的。
师:假如这个平行四边形的面积为40平方厘米,那么其中一个三角形的面积是多少?(20平方厘米)
师:为什么?(剪下的两个三角形完全一样,就说明三角形的面积是平行四边形的一半)
师:刚才我们借助已知的平行四边形的面积,知道了三角形的面积。如果我们从桌子上任意取一个三角形,(师拿起任意一个三角形模型)这个三角形的面积怎样求呢?这就是我们今天要学习研究的内容。
【设计意图】:
从不会计算面积的图形中揭示课题,激发学生的探究兴趣。
板书课题:三角形的面积
二、自主探索,得出公式
1、动手实验。
师:同学们,老师已经给每组同学的学具袋中准备了三角形学具,请你们选择合适的三角形摆一摆,推导三角形的面积计算公式,比一比,哪一组想到的方法最多。
学情预设:学生动手实验,教师巡视指导,有前面的例子做铺垫,学生自然而然会想到用两个完全一样的三角形来拼。拼出的图形有三角形、长方形和平行四边形。选出拼成长方形和平行四边形,这两种是已经会计算面积的图形。把三角形转化成已学过的平行四边形、长方形或正方形来推导三角形的面积计算公式。
【设计意图】:
给学生留出足够的空间,发挥学生的主观能动性和合作精神,自主探索三角形的面积的公式。
2、学生代表上台演示汇报
师:你是如何推导出三角形的面积公式的?谁来给我们演示?
演示一:把两个完全一样的三角形拼成平行四边形。(如下图)
师:观察这些平行四边形,它们有什么共同特点?我们把拼成的平行四边形和原来的三角形作比较,你能发现平行四边形的底和高与三角形的底和高有什么关系吗?那么三角形的面积可以怎么计算呢?
根据学生的回答,教师板书如下:
三角形的面积=平行四边形的面积÷2=底×高÷2
展示二:把两个完全一样的直角三角形拼成长方形或正方形。(如下图)
师:观察图形,我们把拼成的长方形或正方形与原来的三角形作比较,你能发现它们之间的关系吗?请你根据你拼成的图形,推导出三角形的面积计算公式。
根据学生的回答,教师板书如下:
三角形的面积=长方形的面积÷2=长×宽÷2=底×高÷2
师:同学们,如果用a表示三角形的底,h表示三角形的高,s表示三角形的面积,三角形面积的字母公式是什么?
三、学以致用,解决问题。
师:同学们,我们已经推导出了三角形面积计算公式,现在我们就用三角形的面积计算公式解决一些实际问题,好吗?(好)
1、计算生活中的三角形的面积
(1)计算红领巾的面积
师:老师这里有一条红领巾,(展示实物)如果想求它的面积有多少?需要知道什么条件?(需要知道三角形的底和高)
(课件出示例2)
红领巾的底是100cm,高33cm,它的面积是多少平方厘米?
师:请同学们算一算。
(学生练习后讲评订正)
(2)计算三角形标志牌的面积
师:我们经常见到类似以下标志的标志牌(课件出示如下图),你知道这个标志牌的面积吗?谁口算一下。(4×3÷2=6(平方分米))
师:都是这样做的吗?为什么不用3.2×3÷2呢?
(因为3.2分米不是3分米对应的底。)
师:如果与3.2分米对应的高是3.75分米(课件出示)还可以怎样列式?
(3.2×3.75÷2)
师:通过这道题的解答,你明白了什么?
师:对啊,我们要计算三角形的面积时必须找准相对应的底和高,才利用三角形面积的计算公式来计算。
(3)认识道路交通警示标志。
师:请看屏幕。(多媒体出示)
师:你们认识这些交通警告标志吗?
(学生回答后,老师边小结,课件边出示各标志的含义)
师:同学们,我们示范小学校门口到邮政局这段路,在放学时经常出现交通混乱,为了改变这种状况,交警大队准备用铁皮制作其中两块这样警示牌,你能算出需要多少铁皮吗?(课件同时出示标有底是9分米,高7.8分米的数据的图形)
(学生练习后讲评订正,订正时主要关注”用简便方法解答”的小结。)
(4)画面积相等的三角形。
师:看到同学们这么积极,小精灵也给大家带来了问题,请大家看屏幕(课件出示)
师:上图中哪两个三角形的面积相等?你还能画出和它们面积相等的三角形吗?
(学生打开书87页,在书中画一画,完成第6题)
师:你画出了几个面积相等的三角形?如果给你足够的时间你能画出多少个这样的三角形?(无数个)
师:通过画这样的三角形,你发现了什么?
生:三角形的面积与底和高有关,与形状无关。
【设计意图】:
通过分层次的解决实际问题的练习,既巩固了学生对三角形面积计算公式的理解应用,又使学生感受到三角形面积公式的变形应用,同时对学生进行交通安全教育。〕
四、课堂小结
师:本节课你学到了什么新知识?你觉得计算三角形面积时应注意什么?
(学生汇报:1、三角形的底和高必须是相对应的一组。2、别忘了除以2.)
五、布置作业:
课本P86--87页第2、4、5题
三角形五年级教案 篇6
教学内容
P84~85例子1~2
教学目标
1理解三角形面积公式的推导过程,正确运用三角形面积计算公式进行计算.
2培养学生观察能力、动手操作能力和类推迁移的能力.
知识重点
理解三角形面积计算公式,正确计算三角形的面积
教学难点
理解三角形面积公式的推导过程
学生准备的学具
每个学生准备三种类型三角形(每种类型准备2个完全一样的)和一个平行四边形。
教学过程
教学方法和手段
引入
1.出示平行四边形
提问:
(1)这是什么图形?计算平行四边形的面积。(板书:平行四边形面积=底高)
(2)底是2厘米,高是1.5厘米,求它的面积。
(3)平行四边形面积的计算公式是怎样推导的?
2.出示三角形。三角形按角可以分为哪几种?
3.既然平行四边形都可以利用公式计算的方法,求它们的面积,三角形面积可以怎样计算呢?(揭示课题:三角形面积的计算)
教师:今天我们一起研究三角形的面积(板书)
教学过程
开始探索
(一)推导三角形面积计算公式.
1.拿出手里的平行四边形,想办法剪成两个三角形,并比较它们的大小.
2.启发提问:你能否依照平行四边形面积的方法把三角形转化成已学过的图形,再计算面积呢?
3.用两个完全一样的直角三角形拼.
(1)教师参与学生拼摆,个别加以指导
(2)演示课件:拼摆图形
(3)讨论
①两个完全一样的直角三角形拼成一个大三角形能帮助我们推导出三角形面积公式吗?为什么?
②观察拼成的长方形和平行四边形,每个直角三角形的面积与拼成的平行四边形的面积有什么关系?
4.用两个完全一样的锐角三角形拼.
(1)组织学生利用手里的学具试拼.(指名演示)
(2)演示课件:拼摆图形(突出旋转、平移)
教师提问:每个三角形的面积与拼成的平行四边形的面积有什么关系?
5.用两个完全一样的钝角三角形来拼.
(1)由学生独立完成.
(2)演示课件:拼摆图形
6.讨论:
(1)两个完全相同的三角形都可以转化成什么图形?
(2)每个三角形的面积与拼成的平行四边形的面积有什么关系?
(3)三角形面积的计算公式是什么?
7、引导学生明确:
①两个完全一样的三角形都可以拼成一个平行四边形。
②每个三角形的面积等于拼成的平行四边形面积的一半。(同时板书)
③这个平行四边形的底等于三角形的底。(同时板书)
④这个平行四边形的高等于三角形的高。(同时板书)
(3)三角形面积的计算公式是怎样推导出来的?为什么要加上除以2?(强化理解推导过程)
板书:三角形面积=底高2
(4)如果用S表示三角形面积,用a和h表示三角形的底和高,那么三角形面积的计算公式可以写成什么?
―――――――――――――――――――――――
教学例1
红领巾的底是100cm,高33cm,它的面积是多少平方厘米?
1.由学生独立解答.
2.订正答案(教师板书)
课堂练习
P85做一做
P86~87练习16
小结与作业
课堂小结
课后追记
本课用了两个相同的三角形拼成一个平行四边形,化未知为已知,一定要让学生亲自来拼摆,把可以目前可以计算和暂时无法计算的摆放方法都摆出来,再进行区分,选择可以计算的方法,虽然会占用一点课堂时间,但是学生记忆深刻,对公式的理解也比较深刻。动手能力也得到一定的加强
这个方法在以后的求面积上仍然会应用到,因此有必要让学生多动脑筋想想如果割补,化未知为已知。
三角形五年级教案 篇7
教学目标
1.是学生比较熟练地应用三角形面积计算公式计算三角形的面积。
2.能运用公式解答有关的实际问题
知识重点
运用所学知识,正确解答有关三角形面积的应用题
教学过程
教学方法和手段
一、基本练习
1.填空。
(1)三角形的面积=,用字母表示是。
为什么公式中有一个2?
(2)一个三角形与一个平行四边形等底等高,平行四边形的底是2.8米,高是1.5米。三角形的面积是()平方米,平行四边形的面积是()平方米。
2、练习十六2题
二、指导练习
1.练习十六第6题:下图中哪两个三角形的面积相等?(两条虚线互相平行。)你还能画出和它们面积相等的三角形吗?
⑴生用尺量一量这两条虚线间的距离,搞清这两条虚线是什么关系?
⑵看看图中哪两个三角形的面积相等?为什么?
⑶分组讨论如何在图中画出一个与它们面积相等的三角形,并试着画出来
2.练习十六第7题
(1)让学生尝试分。
(2)展示学生的作业
可能有:a、根据等底等高的三角形面积相等这一结论,只要把原三角形分成4个等底等高的小三角形,它们的面积就必然相等。而要找这4个等底等高的小三角形,只需把原三角形的某一边4等份,再将各分点与这边相对的顶点连接起来即可。
b、也可把原三角形先二等分,再把每一份分别二等分。
3、练习十六9*
让学生抓住涂色的三角形的底只有平行四边形底的一半,它的高和平行四边形的高相等,平行四边形的面积=底高,三角形的面积=(底2)高2,所以三角形的面积等于484
4.练习十六第3题:已知一个三角形的面积和底,求高?
让学生列方程解和算术方法解,算术方法176222,要让学生明确1762是把三角形的面积转化成了平行四边形的面积。
教学过程
三角形五年级教案 篇8
教学目的:
1、通过让学生主动探索三角形面积计算公式,经历三角形面积公式的探索过程,进一步感受转化的数学思想和方法。
2、使学生理解三角形面积计算公式,能正确地计算三角形的面积。
3、通过操作、观察、比较,培养学生问题意识、概括能力和推理能力,发展学生的空间观念。
教学过程:
一、阅读质疑。
先请同学们自己阅读以下材料,然后以小组为单位交流一下你们都学会了哪些知识,可以提出什么问题,并把问题随手记录下来。
1厘米
学生阅读后首先回顾了平行四边形、长方形地面积公式及推导过程。然后学生提出了质疑,主要问题有:
(1)数方格怎么求三角形的面积?
(2)不数方格怎么求三角形的面积?有没有一个通用公式?
(3)能把三角形也转化成我们学过的图形求面积吗?
(4)转化成的这些图形跟三角形有什么关系吗?
(析:孔子曾说:疑是思之始,学之端。这里老师打破了学生等待老师提问的常规,要求学生把阅读材料作为学习主题,通过阅读提出问题,真正体现了以生为本。)
二、点拨激思
1.数方格的问题
学生根据学习材料可以解答用数方格的方法求三角形的面积。
老师接着问:有一个很大的三角形池塘,你来用数方格求它的面积。
学生小声笑了起来。为什么笑?老师问到。学生说数方格太麻烦了,池塘也不好划分方格。
嗯,看来数方格求面积是有一定局限性的,今天我们就来研究三角形的面积。
(析:一石激起千层浪,学生由数方格方法的局限性这一认识的困惑与冲突,有效地引发了学生探究面积计算公式的生长点,使学生有了探究发现的空间。)
2.转化的问题
你想把三角形转化成什么图形?学生会转化成平行四边形、长方形、正方形。梯形行吗?这时学生会有两种答案,有的说行,有的说不行,为什么不行?老师追问,学生在讨论中达成共识:必须转化成学过的,可以计算面积的图形。
师:三角形怎样才能转化成这些图形?请同学们利用手中学具,通过拼一拼,折一折,剪一剪,利用转化成这些图形来解决下面的几个问题。
(析:这里把新问题转化成了老问题来解决,有效地把学法指导融入到了教学中,给学生创造了更广阔、更真实的自主空间,无疑有利于学生可持续性发展。)
三、探索解疑
学生操作,讨论,汇报。
1.转化的图形
学生的答案有很多种,把两个完全一样的三角形转化成了平行四边形、长方形和正方形,还有把一个三角形沿高剪下拼成了正方形、长方形,还有把一个三角形沿中位线对折,两边也折转化成了2层的长方形。
2.解决转化前后图形间的关系
(1)大小的关系
通过比较学生们发现,两个完全一样的三角形拼成的图形跟三角形关系是S=S2。一个三角形转化成的图形跟三角形关系是S=S
(2)底和高的关系
拼割前后各部分有什么关系?(指底和高)能推导出三角形的面积公式吗?
生1:两个完全一样的锐角三角形转化成了平行四边形,三角形的高就是平行四边形的高,三角形的底就是平行四边形的底。因为平行四边形的面积是底高,它是由两个三角形拼成的,所以三角形的面积是底高2
师:思路真清晰,为什么2,谁还想说。
(学生依次讲拼成的长方形,正方形这两种情况)
(3)公式推导
师;同学们真了不起,想出了这么多好方法推出了三角形的面积公式,那谁能给大家说说三角形的面积等于什么?
生:底高2
师:如果我用S表示三角形的面积,a表示三角形的底,h表示三角形的高,那三角形的面积公式该怎么表示呢?
生:S=ah2
(4)推导拓展
师:我们再来看第二组,你能通过一个三角形的转化来推导它的面积公式吗?
学生1:我是把一个等腰三角形对折,然后从中间剪开拼成了一个长方形,这个长方形的底是三角形的底的一半,高是三角形的高,因为长方形的面积是长宽,长方形的面积等于三角形的面积,所以三角形的面积是底高2。
学生2:我是把一个直角三角形的上面对折下来,然后剪开,把它补在一边,拼成了一个长方形。这个长方形的长是三角形的底,高是三角形高的一半,所以也能推出三角形的面积是底高2。
生3:我是把一个三角形沿着两边的重点对折,然后又把底边的重点这样对折,折成了一个长方形,这个长方形的底是三角形底的一半,宽是三角形高的一半,再乘以2,也可以推出三角形的面积是底高2
师:这个方法怎样,谁来评价一下。学生评价,太棒了。
生4:我还有一种办法。把一个长方形沿对角线折叠,因为长方形的面积是长宽,长方形是两个三角形拼成的,所以,三角形的面积是底高2
(析:把探究的权利充分的交给学生,学生自由组合,利用已有的知识经验,通过折、移、拼、剪,得到了不同的图形,虽然是不同的角度、不同的手段、不同的方法,但达到了同一目的,得到了正确的三角形面积计算公式,更重要的是探究过程中学生的思维空间得到了拓展,思维个性得到了发挥。)
三归纳小结
出示学习材料2,学生阅读后谈感想。体会祖国的古代科学家得了不起,2000多年前就推导出了这个公式。今天同学们通过自己的研究也推导出了三角形的面积计算公式,说明同学们也很聪明,相信将来你们还会有更多更大的发现,到那时你们的名字也将载如史册,大家有信心吗?
师:好,今天这节课我们研究了三角形的面积,你们学到了哪些知识,有什么收获?回去继续反思整理,写出你们的反思报告。
(析:课堂总结不仅要关注学生学会了什么,更要关注用什么方法学,学后有什么感想,要有意识的促进学生反思:我还有什么疑问?打算怎么办?,把课后反思纳入到学习的系统连续的过程中。)
总析:本节课有以下两个特点
1.充分体现了问题意识的培养。
老师用了一种新的教学流程进行教学。即以提出问题,研究问题,解决问题为主线。当一个问题得到解决后,新的问题接着出现,学生始终处于愤和悱及对问题的探究中,有效地调动学生的学习的兴奋点,学生的问题意识得到发展。
2.重视研究问题的过程。
这节课以思维训练代替了重复练习,以发展学生的创造思维为重点,引导学生用多种方法进行转化,然后通过观察、操作、比较、归纳、抽象概括推导出公式,没有通过太多的练习却获得了超常规的解题能力。这个过程是学生自主探究的过程,这个过程是学生综合能力培养和提高的过程。
三角形五年级教案 篇9
教学内容:苏教版《义务教育课程标准实验教科书数学五年级(上册)》第15-17页。
教材简析:
三角形的面积计算是学生在学习了平行四边形面积计算的基础上进行教学的。教材安排了两道例题。例4提供了画在方格纸上的3个平行四边形,而且每个平行四边形都被分成了两个完全一样的三角形,其中一个三角形涂色,要求学生说出涂色三角形的面积。学生能通过计算或数方格的方法得出平行四边形的面积,说出涂色三角形的面积。这样的要求,既能帮助学生复习平行四边形面积的计算,更重要的是培养学生的数学感受:即用两个完全一样的三角形可以拼成一个平行四边形,每个涂色三角形面积是所在平行四边形面积的一半,从而为接下来的探索活动提供正确的方向。例5让学生动手操作,自主探索两个完全一样的三角形(锐角、直角、钝角三种三角形)都可以拼成一个平行四边形。重点探索三角形与拼成的平行四边形的联系,把学生在操作阶段获得的表象上升为理性认识,将具体问题数学化,进而通过数学推理归纳出三角形的面积公式。试一试安排学生运用面积公式计算三角形的面积,解决实际问题。练一练和练习三第1题进一步引导学生从不同角度加深对三角形与相应平行四边形面积关系的认识,练习三第2题是看图计算面积,第3题通过三角形面积计算解决实际问题。
教学目标:
1、让学生经历三角形面积公式的探索过程,理解并掌握三角形面积的计算方法。
2、能正确计算三角形面积,并解决一些简单的实际问题。
3、让学生在操作、观察、填表、讨论、归纳等数学活动过程中,体会等积变形、转化等数学思想方法,发展空间观念,发展初步的推理能力。
教学重点:理解并掌握三角形面积的计算公式。
教具准备:课本第127页三种形状的三角形6个,分别编号1-6号。放大的一组6个三角形(教师用),多媒体课件
教学过程:
一、激发兴趣,导入新课
1、情境引入,感受联系
同学们,学校新建校门口有一块长方形绿地。为了美化环境,学校准备把这块绿地平均分成二块,(课件出示),一块种红枫,一块种桂花。你认为可以怎样平均分呢?学生独立思考,交流自己的想法(课件展示三种分法)
①(沿宽分)②(沿长分)③(沿对角线分)
最终学校选择了第3种方案。你有什么办法说明这二块绿地大小一样?(课件展示:剪,旋转,平移重合)。请同学们算一算:这一块花坛的面积是多少呢?(1042)
[设计思考:新课标很强调从学生已有的生活经验和知识经验出发,从学生身边的现实生活出发。所以,上课伊始,用平分绿地的实际问题导入新课,让学生能很快地进入预设的学习状态,学生在这一情景中直观感受到分成的两个三角形大小相等,从中体会到一个三角形面积与所在长方形面积之间的联系,给探讨三角形面积的计算方法开启思路。]
2、启发猜想,揭示课题
谈话:刚才,我们借助了学过的长方形面积,求出了一块绿地,也就是一个直角三角形的面积。那绿地的形状如果是一个普通的三角形(课件出示),猜一猜:它的面积怎样求呢?(底和高乘积的一半)还能借助以前的知识来帮助解决吗?
二、自主探索,获取新知
1、实践活动:
(1)拼摆
课前你们从书上第127页上剪下了6个三角形。在小组中开展活动,把学具三角形拼一拼,摆一摆,你会发现什么?
a、学生拼摆每种形状的三角形
b、展示拼摆交流情况(三种情况:请学生在黑板上拼摆)
c、结论:任何两个完全一样的三角形都能拼成一个平行四边形(长方形是特殊的平行四边形)
(2)填表
除了对以上的认识,下面我们进一步来研究拼成的平行四边形与三角形之间的关系,将例5中的表格填一填。从中你又发现什么?
(3)讨论:初步得出三角形面积计算方法。
3分米4分米2.5分米442442
[设计思考:突出方法的应用,继续渗透转化思想,让学生感受数学与生活的联系,培养解决问题的能力。]
2、想一想:通过剪、拼,能把一个三角形转化成平行四边形吗?有兴趣的课后试一试。
三角形五年级教案 篇10
教学目标
1.在实际情境中,认识计算三角形面积的必要性。
2.在自主探索中,经历推导三角形面积计算公式的过程。
3.能运用三角形的面积公式,计算相关图形的面积,解决实际问题。
教学重点
经历推导三角形面积计算公式的过程。
教学难点
理解并能运用三角形的面积公式进行计算。
教具、学具
教学挂图,三角形纸片,剪刀,三角尺等。
教师指导与教学过程
学生学习活动过程
设计意图
一、引入
复习、平形四边形的面积
我们还学习了三角形,那么三角形的面积该如何计算,一同来研究。
二、新授
师引导,学习平行四边形面积
1、复习、平形四边形的面积。
2、我们还学习了三角形,那么三角形的面积该如何计算,一同来研究。
1、学习平行四边形面积时可以去画,剪拼,三角形也可试一试这些方法。
2、学生用数格子和图形转化两种方法试着研究三角形的面积。(或多种方法)
让学生用自己的方法去探究,培养解决问题的能力
教师指导与教学过程
学生学习活动过程
设计意图
三、巩固练习
求下面各三角形的面积
3、学生交流计算三角形的面积的方法
4、总结:
三角形的面积=(底高)2
S=(ah)2
342
=122
=6(dm)
6.41.92
=12.162
=6.08(m)
让学生逐步形成这一解决问题的思维方法
板书设计:三角形的面积
三角形的面积=底高2
S=ah2
教学反思:
三角形内角和教案十五篇
在教学过程中,老师教学的首要任务是备好教案课件,又到了写教案课件的时候了。 教案课件能够准确地反映出教学过程中的创造和智慧,对于写教案课件有哪些疑问呢?这篇文章是幼儿教师教育网从网络上认真筛选的优质“三角形内角和教案”文章,我们会不断更新和改进还请您多多关注我们的网站!
三角形内角和教案【篇1】
一、教学目标:
1、理解掌握三角形内角和是180°,并运用这一性质解决一些简单的问题。
2、通过直观操作的方法,引导学生探索并发现三角形内角和等于180°,在实验活动中,体验探索的过程和方法。
3、在探索和发现三角形内角和的过程中获得成功的体验。
难点:运用三角形内角和等于180°的性质解决一些实际问题。
学具:量角器、直角三角形、锐角三角形和钝角三角形各一个。
我们已经学过了三角形的知识,我们来复习一下,看看大屏幕,各是什么三角形?谁能说说什么是锐角三角形、直角三角形、钝角三角形?追问:不管是什么三角形它们都有几个角呢?这三个角都叫做三角形的内角,而这三个内角的和就是这个三角形的内角和。那么谁来说一说什么是三角形的内角和?三角形有大有小,形状也各不相同,那么它们的内角和有没有什么特点和规律呢?我们来看一个小片段,仔细听它们都说了什么?
教师放课件。
课件内容说明:一个大的直角三角形说:“我的个头大,我的内角和一定比你们大。”一个钝角三角形说:“我有一个钝角,我的内角和才是最大的)一个小的锐角三角形很委屈的样子说“是这样吗?”
都听清它们在争论什么吗?(它们在争论谁的内角和大。)谁能说一说你的想法?(学生各抒己见,是不评价)果真是这样吗?下面我们就来研究“三角形内角和”。
1、探究三角形内角和的特点。
(1)检查作业,并提出要求:
昨天老师让每位学生都分别剪出了锐角三角形、直角三角形和钝角三角形,并量出了每个角的度数,都完成了吗?拿出来吧,一会我们要算出三角形的内角和填在下面的表格里。我们来看一下表格以及要求。出示小组活动记录表。
②小组合作。
会使用表格了吗?下面我们就以小组为单位,按照要求把结果填在小组长手中的表格内。
各组长进行汇报。发现了三角形的内角和都是180°左右。
师:实际上,三角形三个内角和就是180°,只是因为测量有误差,所以我们才得到刚才得到的数据。
2、验证推测。
那么同学们有没有什么办法知道三角形的内角和就是180°呢?大家可以讨论一下,学生可能会想到用折拼或剪拼的方法来看一看三角形的三个角和起来是不是180°,也就是说三角形的三个角能不能拼成一个平角。师生先演示撕下三个角拼在一起是否是平角,同学们在下面操作进行体验,再用课件演示把三个内角折叠在一起(这时要注意平行折,把一个顶点放在边上)学生也动手试一试。
通过我们的验证我们可以得出三角形的内角和是180°。
3、师谈话:三个三角形讨论的问题现在能解决了吗?你现在想对这三个三角形说点什么吗?(让学生畅所欲言,对得出的三角形内角和是180°做系统的整理。)
4、同学们还有什么疑问吗?大家想一想我们知道了三角形内角和是180°可以干什么呢?(知道三角形中两个角,可以求出第三个角)
出示书28页,试一试第3题,并讲解。
说明:在直角三角形中一个锐角等于30°,求另一个锐角。
生独立做,再订正格式、以及强调不要忘记写度。
小结:同学们有没有不明白的地方?如果没有我们来做练习。
1、出示书29页第一题。说明:第一幅图是锐角三角形已知一个锐角是75°,另一个锐角是28°,求第三个锐角?第二幅图是直角三角形已知一个锐角是35°,求另一个锐角?第三幅图是钝角三角形已知一个锐角是20°,另一个锐角是45°,求钝角?
完成,并填在书上。讲一讲直角三角形还有什么解法。
2、出示29页第2题。
一个直角三角形说:我的两个锐角之和正好等于90°。让学生判断。
3、画一画:
出示四边形和六边形。运用三角形内角和是180°计算出各自的内角和。你能推算出多边形的内角和吗?
三角形内角和180度是科学家帕斯卡12岁时发现的。我们同学还没到12岁,看你能不能通过自己的努力也去探索和发现。
让学生说说在这节课上的收获!
三角形内角和教案【篇2】
1、知识与技能:
(1)理解和掌握三角形的内角和是180°。
(2)运用三角形的内角和知识解决实际问题和拓展性问题。
2、过程与方法:
(1)通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的和等于180°。
(2)知道三角形两个角的度数,能求出第三个角的度数。
(3)发展学生动手操作、观察比较和抽象概括的能力。
3、情感态度与价值观:
让学生体验数学活动的探索乐趣,通过教学中的活动体会数学的转化思想。
1、猜谜语:
形状似座山,稳定性能坚。三竿首尾连,学问不简单。
师:老师这有1个三角形,它的一部分被智慧星给遮住了,猜猜这是什么三角形?它里面会出现两个直角吗?为什么?
3、引出课题。
师:为什么不会出现两个直角?今天我们就再次走进数学王国,探讨三角形的内角和的奥秘。(板书课题)
3、验证。
让学生用自己喜欢的方式验证三角形的内角和是不是180°。
师:汇报的测量结果,有的是180°,有的不是180°,为什么会出现这种情况?有没有别的方法验证?
A、学生上台演示。
B、请大家三人小组合作,用剪拼的方法验证其它三角形。
师:有没有别的验证方法?我在电脑里收索到折的方法,请同学们看一看他是怎么折的(课件演示)。
(5)数学小知识。
5、巩固知识。
(1)解决课前问题,为什么一个三角形不可能有两个直角?一个三角形中可以有2个钝角吗?
师:接下来,利用三角形的内角和我们来解决一些相关的问题吧!
1、看图,求未知角的度数。
2、判断。
3、如果一个都不知道,或只知道1个角,你能知道三角形各角的度数吗?
求出下面三角形各角的度数。
(1)我三边相等。
(2)我是等腰三角形,我的顶角是96°。
(3)我有一个锐角是40°。
4、求四边形、五边形内角和。
四、总结。
三角形内角和教案【篇3】
冀教版七年级下册数学
9.2《三角形内角和外角》
——三角形内角和定理证明教学设计
一.教材分析:
(一)教材的地位和作用:
这节内容是在前面学生对“三角形内角和是180°”这个结论有了一定直观认识的基础上编排的,以往对这个结论也曾进行过简单的说理,这里则以严格的步骤演绎证明,旨在让学生从实践操作转移到理性思维上来,使学生初步掌握证明的要求和格式,促使学生养成严谨的数学思维方法,发展学生的证明素养。
三角形内角和定理从数量角度揭示三角形三内角之间的关系,是三角形的一个重要性质,既是今后几何推理的重要依据,又是计算角度的重要方法。教材从学生实践操作到证明过程的呈现训练了学生的抽象思维能力和逻辑推理能力;其中辅助线的作法学生第一次接触,它集中了条件、构造了新图形、形了成新关系,实现了未知与已知的转化,起到了解决问题的桥梁作用。
(二)教学目标:
1.知识与技能目标:掌握三角形内角和定理的证明,初步学会作辅助线证明的基本方法,培养学生观察、猜想、和推理论证能力。
2.过程与方法目标:
(1)对比过去折纸、撕纸等探索过程,体会思维实验和符号化的理性作用。
(2)通过一题多证、一题多变体会思维的多向性。
(3)引导学生应用运动变化的观点认识数学。
3.情感与态度目标:通过一题多证激发学生勇于探索的精神,感悟逻辑推理的价值。
(三)教学重难点:
1.重点:探索证明三角形内角和定理的不同方法
2.难点:应用运动变化的观点认识数学,从拼图过程中发现并正确引入辅助线是本节课的关键。
二.教学方法:引导发现法、尝试探究法。
三.教学过程:
一、创设情景、提出问题:
在小学,我们已经知道三角形内角和是180°,那它是怎么来的呢?你能给出说理吗?
二、探究新知
(一)动手操作、探索解法:
画出一个三角形,并将它的内角剪下,做拼角实验
归纳:可以搬一个角用“两直线平行,同旁内角互补”来说理,也可以搬两个角、三个角用“平角定义”说明。引导学生合理添加辅助线,为书写证明过程做好铺垫。
(二)议一议,开阔思野:
1.‘搬三个角’的特点:把角‘搬’到一起,让顶点重合、两条边形成一条直线,以便利用平角定义。
在证明三角形内角和定理时,可以把三个角集中到三角形的某一个顶点吗?引导学生思考。
已知:如图,△ABC
求证:∠A+∠B+∠C=180°
证明:过A点作DE∥BC
C D A E
∵DE∥BC
∴∠DAB=∠B,∠EAC=∠C(两直线平行,内错角相等)
∵∠DAB+∠BAC+∠EAC=180°
∴∠BAC+∠B+∠C=180°(等量代换)
那么是否可以把三个角集中到三角形的一边上呢?集中在内部任意一点上呢?外部呢?引导学生开阔思维,大胆探索证明方法。
2.应指出辅助线通常画为虚线,并在证明前交代说明。添加辅助线不是盲目的,而是证明需要引用某个定义、公理、定理,但原图形不具备直接使用它们的条件,这时就需要添辅助线创造条件,以达到证明的目的。
已知:如图,△ABC
求证:∠A+∠B+∠C=180°
证明:作BC的延长线CD,过点C作射线CE∥BA.∵CE∥BA
∴∠B=∠ECD(两直线平行,同位角相等)
∠A=∠ACE(两直线平行,内错角相等)
∵∠BCA+∠ACE+∠ECD=180°
∴∠A+∠B+∠ACB=180°(等量代换)
四.教学反思 :C D
本课以撕纸法验证得出“三角形内角和是180°”后,启发学生还可利用添加辅助线的方法去证明三角形内角和定理。
课堂教学充分发挥课件辅助教学的作用,将知识形象化、生动化、具体化。重视数学思想方法的引导,并及时指导归纳总结。
为了突出重点、突破难点,我对教材做了少量的补充和扩展,利用多媒体直观形象、节省时间的特点,动画演示再现学生拼图过程、解题过程,引导学生从动态角度直观地思考问题,帮助学生理解运动变化的观点。
三角形内角和教案【篇4】
教学内容:
四年级下册第78~79页的例4和“练一练”,练习十二第10~13题。
教学目标:
1、使学生通过观察、操作、比较、归纳等活动,发现三角形的内角和等于1800,并能应用这一知识求三角形中一个未知角的度数。
2、使学生经历探索和发现三角形内角和等于1800的过程,进一步增强自主探索的意识,积累类比、归纳等活动经验,发展空间观念。
3、使学生在参与学习活动的过程中,形成互助合作的学习氛围,培养大胆猜想、敢于质疑、勇于实践的科学精神。
教学重点:
让学生经历“三角形内角和等于180°”这一知识的形成、发展和应用的全过程。
教学难点:
探究和验证“三角形内角和等于180°”。
教学准备:
学生准备三角板一副、量角器;教师准备多媒体课件、信封里装三角形纸片若干。
教学过程:
一、创设情境,产生疑问
1、理解内角和含义。
2、故事激趣
提问:三兄弟围绕什么问题在争吵?你有什么看法?
二、自主学习,合作探究
1、提出猜想。
(1)计算三角板的内角和。
(2)提出猜想。
提问:通过刚才的计算,你能得出什么结论?有同学怀疑吗?
指出:“三角形的内角和等于1800”只是根据这两个特殊三角形得到的一个猜想。
引导:需用更多的三角形验证。
2、进行验证。
(1)验证教师提供的'三角形。
测量:任意三角形的内角和。
①小组合作:用量角器量出信封里不同三角形的内角和。
②交流测量结果。
③提问:根据测量结果,你能得出什么结论?
拼一拼:把一个三角形的三个角拼在一起。
①思考:除了量,还可以用什么方法验证呢?
②同桌合作:尝试把三个内角拼成一个平角。
③反馈不同的拼法。
④提问:既然三角形的三个内角能拼成一个平角,你能得出什么结论?有怀疑吗?
解释误差问题。
(2)验证学生自己画的三角形。
学生任意画一个三角形,用自己喜欢的方法去验证。
交流:自己画的三角形验证出来内角和是1800吗?有谁验证
出来不是1800的吗?
提问:你又能得到什么结论?还有怀疑吗?
3、得出结论。
指出:三角形有无穷多,课上得到的还只是一个猜想。随着验证的深入,能越来越确定这个猜想是对的。
说明:科学家们已经经过严格的论证,证明了所有三角形的内角和确实都是1800。
解决争吵:学生用三角形内角和的知识劝解三兄弟。
三、巩固应用,深刻感悟
1、算一算:求三角形中未知角的度数。
2、拼一拼:用两块相同的三角尺拼成一个三角形。
思考:拼成的三角形内角和是多少?
3、画一画:(1)你能画出一个有两个锐角的三角形吗?
(2)你能画出一个有两个直角的三角形吗?
(3)你能画出一个有两个钝角的三角形吗?
四、全课总结,课后延伸
1、学生自主总结一节课的收获。
2、介绍帕斯卡。
3、用三角形拼成四边形、五边形、六边形,引发新的问题。
三角形内角和教案【篇5】
教学目标:
1.知道三角形的内角和是180度,理解三角形内角和与三角形的大小无关。
计算、猜想、实验等数学活动,积累认识图形的方法和经验,逐步推理、归纳出三角形内角和。
3.关注学生在操作活动中遇到的真问题,培养学生诚实严谨的实验态度,实事求是的科学的态度。
教学重点:
知道三角形的内角和是形状无关。
教学难点:
经历操作活动,推理、归纳出三角形的内角和。
教学资源:
多煤体课件,各种三角形,三角板,量角器,剪刀。
教学活动:
一、创设情境,导入新课。
1.昨天我们学习了三角形的分类,三角形按角的特征怎么分类?按边的特征怎么分类?
现在能确定了吗?为什么现在就能确定了?(有一个钝角,两个锐的三角形是钝角三角形)。
二、合件交流,操作发现。
你知道三角尺内角的度数分别是多少吗?每个直角三角尺的内角度数之和都是多少度?我们能根据三角尺的内角和是(课件出示学习单)。
2.组织学生小组合作:
请同学们以。②同桌交流,你们有什么发现?
3.组织学生汇报交流:
①那个组说一说你们组测量的数据和计算的结果?(学生的计算不是正好②你们有什么发现?(锐角三角形、直角三角形、钝角三角形的内角和大约都是老师板书:三角形的内角和是,就需要我们验证,请同学们想办法验证我们的猜想对不对?(学生通过折的方法剪拼进行验证;学生通过剪、拼的方法进行验证。)
4.学生展台展示自己的难方法。通过验证,我们发现三角形的内角和是180度。老师把“?”改为“!”。
三、实践应用,拓展延伸。
°,∠°。
。
四、反思总结,自我建构。
这节课你有什么收获?
这节课我们就研究到这儿,同学们再见!
三角形内角和教案【篇6】
1.知识目标:在情境教学中,通过探索与交流,逐步发现“三角形内角和定理”,使学生亲身经历知识的发生过程,并能进行简单应用。能够探索具体问题中的数量关系和变化规律,体会方程的思想。通过开放式命题,尝试从不同角度寻求解决问题的方法。教学中,通过有效措施让学生在对解决问题过程的反思中,获得解决问题的经验,进行富有个性的学习。
2.能力目标:通过拼图实践、问题思考、合作探索、组内及组间交流,培养学生的的逻辑推理、大胆猜想、动手实践等能力。
3.德育目标:通过添置辅助线教学,渗透美的思想和方法教育。
4.情感、态度、价值观:在良好的师生关系下,建立轻松的学习氛围,使学生乐于学数学,遇到困难不避让,在数学活动中获得成功的体验,增强自信心,在合作学习中增强集体责任感。
三角形内角和教案【篇7】
各位评委:
我说课的主题是“角色扮演,引导学生猜想验证”,说课的内容是《三角形的内角和》。
一、说说我对教材与学情的分析
《三角形的内角和》是北师大版四年级下册第二单元的教学内容,是在学生学习了三角形的概念及特征、分类之后进行的,它是三角形的一个重要特征,也是掌握多边形内角和及解决其他实际问题的基础。教材的小标题为“探索与发现”,强调说明这一部分的内容要求学生通过自主探索来发现有关三角形的性质。学生已经掌握三角形特性和分类,熟悉了钝角、锐角、平角这些角的知识,大多数学生已经在课前通过不同的途径知道“三角形的内角和是180度”的结论,但不一定清楚道理,所以本课的设计意图不在于了解,而在于验证,让学生在课堂上经历研究问题的过程是本节课的重点。
二、聊聊我对教学目标及重难点的确定
以建构主义理论以及有效教学的理念为指导,结合对教材和学情的分析,我将本节课的教学目标定为下列几点:
1、通过量、剪、拼等活动发现、验证三角形的内角和是180°,并会应用这一知识解决生活中简单的实际问题。
2、经历亲自动手实践、探索三角形内角和的过程,体会运用“量一量”、“算一算”、“拼一拼”、“折一折”进行验证的数学思想方法。
3、在探究中体验成功的喜悦,激发主动学习数学的兴趣。
教学重点:经历“三角形的内角和是180°”的形成、发展和应用的全过程。
教学难点:验证“三角形的内角和是180°”以及对这一规律的灵活运用。
学具准备:量角器、三角尺、剪刀和准备一个喜欢的三角形。
三、谈谈我的主要教学流程
本节课我设计采用支架式教学方法,以猜想→验证→应用→评价四个活动环节为主线,引导学生通过自主探究学习实现对“三角形内角和是180°”这一知识规律的数学理解。同时,每一个活动环节都让学生尝试扮演一种角色,激发他们投入课堂活动的兴趣。
1.大胆设疑,提出猜想(猜想家)
在这节课之前,有不少学生通过各种渠道了解了三角形的内角和是180°。因此,第一个环节我就让学生根据已有的知识经验进行大胆设疑,提出猜想,做一个猜想家。
首先,我向学生出示一个长方形,向学生讲解长方形的四个内角,引导学生将这四个内角的度数相加算出长方形的内角和是360°。
接着,我把长方形拆成两个三角形,让学生指出其中一个三角形的三个内角,设问:这个三角形的三个内角和是多少?让学生说说各自的看法和理由,并引导提出“是不是所有的三角形的内角和是180°”的猜想。通过这一环节,学生首先获得对“三角形内角和是什么”这一陈述性知识的数学理解。
2.科学验证,探索规律(科学家)
有了大胆的猜想,就要进行科学的验证,第二个角色就是扮演科学家,对刚才的猜想进行科学验证,自主探索。
第二个环节的活动步骤如下:
(1)提供实验活动需要操作的工具,如:量角器、三角尺、剪刀等,让学生说说:“要知道三角形的内角和,怎样利用好这些工具?”
(2)明确提出操作要求:先在自己准备的三角形上作好内角的符号,选择合适的工具开展实验,遇到操作困难可以与同伴商量或请老师帮助解决。
(3)学生操作后在小组内交流,出示交流提纲:
A、通过实验操作,你发现三角形的内角和有什么特点?你是怎样发现的?
B、你认为三角形的内角和与三角形的大小、形状有关吗?为什么?
(4)集体交流,小结规律:
在组织学生交流实验的过程与成果时,我会挑选出研究不同形状或不同大小的三角形的学生进行实验汇报,并在学生提出疑问时进行合理的解释与调控,尤其是要对一些通过量一量得出180度左右的结论进行“误差解释”。最后与学生一起小结归纳出:“三角形的内角和是180°,而且与它的大小、形状无关”这一数学规律,从中感悟由特殊到一般的证明方法。
3.联系生活,实践应用(实践家)
有效教学理论指出练习要考虑它的实效性。在这个环节,我设计让学生扮演实践家,通过三个有层次有针对性的练习实践把探索得出的知识应用于生活问题之中。
第一,基本运用。即书本中“试一试”的第3题和“练一练”的第1、第2题。通过这个3练习让学生形成运用三角形内角和的知识求出未知角度数的基本技能。
第二,综合运用。即书本中“做一做”的第3题,这道题在让学生知道其中一个角等于60度的情况下,综合运用三角形内角和是180度和三角形分类知识来进行解决。
第三,拓展延伸。我设计了让学生求四边形和五边形等多边形的内角和的问题,让学生通过量、拼、分等办法尝试求多边形内角和,并找出其中的规律。
4.自我反思,评价延伸
在这个环节,我会让学生自己说说:“这节课你有什么收获?”“在扮演三个角色时,哪一个角色完成得最好,为什么?”
为了突出本课的重点,我设计了简洁明了的板书:
三角形的内角和
量角撕拼折角拼图
三角形的内角和是180度。
三角形内角和教案【篇8】
教学目标:
1、通过测量、撕拼、折叠等探索活动,使学生发现三角形内角和的度数是180?
2、已知三角形两个角的度数,会求第三个角的度数。
3、培养学生动手实践,动脑思考的习惯。
教学难点:
理解三角形三个内角大小的关系。
教具学具准备:
教材创设了一个有趣的问题情境,通过对大小两个三角形内角和的大小比较来激发学生探索的兴趣。教材为了得到三角形内角和是180的结论安排了两个活动,通过学生测量,折叠,撕拼来找到答案。
学生在已有的会用量角器来度量一个角的度数的基础上,会首先想到这种方法。但测量的误差会导致测量不同,因此,学生会想到采取其他更好的办法,通过亲手实践,得出结论。
师:今天我们来研究三角形内角和度数。这里有两个三角形,一个是大三角形,一个是小三角形(图略),到底哪一个三角形的内角和比较大呢?
学生各抒己见。
二、提出问题:
师;刚才我们观察三角形哪个内角和大,同学们有两种不同的猜想,可以肯定,必定有错下面我们来测量验证。
(1)以小组为单位请同学们拿出量角器,量一量,算一算图中大小两个三角形内角和度数,并做好记录,记录每个内角的度数。
(2)组内交流。
(4)师小结:我们通过测量发现,每个三角形的内角和测出结果接近180。
意图:通过这一操作活动,激发学生的兴趣,让学生积极参与培养学生的动手操作能力]
三、自主探索、研究问题、归纳总结:
(一)组内探索:
(1)以小组为单位探索更好的办法。
(2)以小组为单位边展示边汇报探索的过程与发现的结果。
(有的小组想不出来,可以安排小组和小组之间进行交流,目的是让学生通过实践发现结果,在探索中发现问题,在讨论中解决问题,是学生学习到良好的学习方法)
(4)根据学生的反馈情况教师进行操作演示。
撕拼法:
1、教师取出三角形教具,把三个角撕下来,拼在一起,
3、学生每人动手实践,看看是不是不同的三角形是否都有这个特点,也能拼出一个平角呢?
进行实验后,结果发现同样存在这一规律,三角形三个内角和是180。
折叠法:师:刚才我们通过测量发现三角形内角和接近180,那是因为测量的不那么精确,所以说“接近”,又通过撕拼方法发现三角形的三个内角刚好拼成一个平角,进一步说明三个内角和是180,现在再来演示另一种实验,再次证明我们的发现。
你们也来试一试好吗?
三角形三个内角和等于180?
意图:充分发挥了学生的主观能动性,让学生大胆去思考发言,把课堂交给学生,最后老师在演示达成共识,这样学生学到知识印象颇深,也理解最为透彻,提高课堂教学的效率
四、巩固练习,知识升华。
1、完成课本第28页的“试一试”第三题。
锐角三角形中的两个内角和能小于90吗?
3、有一个四边形,你能不用量角器而算出它的四个内角和吗?
意图:这样分层安排练习,注重培养学生的分析能力,同时也培养学生的思维能力和口头表达能力。
这节课同学们通过测量,发现了问题,然后运用撕拼,折叠两种方法验证自己的猜想,得出结论,这种学习方式很好,我们在今后的学习中还要用到,我们今天探究了三角形的一个秘密,其实它的秘密还很多,有兴趣的话,我们以后继续研究。课后反思:
当我设计这节课时,首先思考,学生面对这个新问题时会想到用那些方法来思考呢?很显然,学生根据三角形大的内角就大,是学生在探究时的真实想法,是一种合情推理,在探究过程中,怎样对待学生的这个错误呢?我没有简单地予以否定,迫不及待的帮助,而是引导学生否定错误猜想,寻找错误产生的原因,在这个过程中,教师启迪学生“转化”的思想求得突破,然后引导学生进行操作验证,从中得出结论,学生完整地经历探究的整个过程,不仅获得知识,还获得思想,充分发挥了学生的主观能动性,使他们轻松愉快的学习,提高了课堂效率。
三角形内角和教案【篇9】
1、通过量、拼、折、剪等方法探索和发现三角形的内角和等于180°掌握并会应用这一规律解决实际的问题。
2、通过讨论、争辩、操作、推理发展学生动手操作、观察比较和抽象概括的能力。
3、使学生掌握由特殊到一般的逻辑思辨方法和先猜想后研究问题的方法。
让学生经历“三角形内角和是180度”这一知识的形成发展和应用的全过程。
1、(出示两个直角三角板),问:这是咱们同学非常熟悉的一种学习工具,是什么呀?(三角板)它们的外形是什么形状的?(三角形)(课件:抽象出三角形)
(1)在三角形的内部相临两条边之间所夹的角叫做三角形的内角。(课件闪烁∠1)(板书:三角形内角)∠1就叫做三角形的什么?这两条边夹的角∠2呢?∠3呢?
1、根据我们以往对三角板的了解,你还记得每个三角形上每个内角各是多少度吗?(生说度数,师课件上在相应角出示度数:①90°、60°、30°,②90°、45°、45°)。
2、观察这两个三角形的度数,你有什么发现?
生1:都有一个直角,师:那我们就可以说他们是什么三角形?(板书:直角三角形)
生2:我还发现他们内角加起来是180度。师:他真会观察,你发现了吗?快算一算是不是他说的那样?
那么另一个三角板的三个内角的总度数是多少?
4、在三角形内三个内角的总度数又简称为三角形的内角和。(板书:和)
5、这个直角三角形的内角和是多少度?另一个呢?
6、你还记得180度是我们学过的是什么角吗?(平角)赶快在你的数学纸上画一个平角。
7、师述:角的两边形成一条直线就是平角。也就是180度,哦,这两个直角三角形的内角和就组成这样的一个角呀。
*“剪一剪”的方法:
我们在剪的时候要注意什么?剪完之后怎样拼?拼成的是什么?你怎么知道是平角?(提示:可以在我们画的平角上拼)
你们的直角三角形的内角和拼成的是平角吗?也就是内角和是多少度?
还有其他方法吗?
*“折一折”的方法:
②学生没有说出来,师:你们看老师还有一种方法请看:(课件:折的过程)其实折的方法和剪、撕的道理是一样的,最后都是把三个内角拼成平角。(板书:折)
*推理:
你们有用长方形来研究直角三角形内角和度数的吗?(课件:长方形)快想一想用长方形怎样去研究?(课件:长方形验证的过程)
这种方法就叫做推理,一般到中学以后我们经常会用到。(板书:推理)
(1)通过我们刚才的研究,我们发现直角三角形的内角和都是多少度呀?(板书:内角和是180°)刚才我们在测量的时候为什么会出现179度183度呢?看来只要是测量不可避免的会产生误差。
(2)在我们三角形的世界中,是只有直角三角形吗?还有什么?(板书:锐角三角形、钝角三角形)
2、直角三角形的内角和是180度,锐角三角形、钝角三角形的内角和又是多少度呢?你能利用我们刚才学到的知识来研究你所画的三角形的内角和是多少度吗?快试试,可以同桌讨论。(学生操作,汇报,课件演示)我们是用什么方法来研究的?
哪个组愿意把你们的研究成果向大家展示?
4、由此我们得到了锐角三角形的内角和是多少度?钝角三角形的内角和呢?我们就可以说所有三角形的内角和都是180度。
师:这也是三角形的一个特性,现在你对三角形的这一特性有疑问吗?(板书:三角形的内角和是180°)。
(1)每个三角形的内角和都是少度?
(2)(课件把两个三角形拼在一起)它的内角和是多少度?(这时学生答案又出现了180°和360°两种。)师:究竟谁对呢
(1)这是一个三角形,他的内角和是多少度?我从中剪去一个三角形他的内角和是多少度?
你们看这两个三角形他们的大小、形状都怎么样?但内角和都是180度,看来三角形的内角和的度数和他的大小形状都无关。
(2)我再把这个三角形剪去一部分,它的内角和是多少度?(课件:剪成四边形)
你能利用我们三角形的内角和是180度来研究这个四边形的内角和是多少度吗?
(3)如果五边形,你还能求出他的度数吗?
通过这节课的学习研究你掌握了哪些知识?我们是怎样研究的呢?
师:先研究的是特殊直角三角形的内角和是180度,接着通过量、拼等方法得到了直角三角形的内角和是180度,再利用直角三角形通过推理研究出锐角三角形和钝角三角形的内角和是180度。
三角形内角和教案【篇10】
教学目标:
1.掌握三角形内角和定理及其推论;
2.弄清三角形按角的分类,会按角的大小对三角形进行分类;
3.通过对三角形分类的学习,使学生了解数学分类的基本思想,并会用方程思想去解决一些图形中求角的问题。
4.通过三角形内角和定理的证明,提高学生的逻辑思维能力,同时培养学生严谨的科学态
5.通过对定理及推论的分析与讨论,发展学生的求同和求异的思维能力,培养学生联系与转化的辩证思想。
把问题作为教学的出发点,创设问题情境,激发学生学习兴趣和求知欲,为发现新知识创造一个最佳的心理和认知环境。
问题1三角形三条边的关系我们已经明确了,而且利用上述关系解决了一些几何问题,那么三角形的三个内角有何关系呢?
问题2你能用几何推理来论证得到的关系吗?
对于问题1绝大多数学生都能回答出来(小学学过的),问题2学生会感到困难,因为这个证明需添加辅助线,这是同学们第一次接触的新知识―――“辅助线”。教师可以趁机告诉学生这节课将要学习的一个重要内容(板书课题)
新课引入的好坏在某种程度上关系到课堂教学的成败,本节课从旧知识切入,特别是从知识体系考虑引入,“学习了三角形边的关系,自然想到三角形角的关系怎样呢?”使学生感觉本节课学习的内容自然合理。
让学生剪一个三角形,并把它的三个内角分别剪下来,再拼成一个平面图形。这里教师设计了电脑动画显示具体情景。然后,围绕问题设计以下几个问题让学生思考,教师进行学法指导。
问题2此实验给我们一个什么启示?
问题3由图中AB与CD的关系,启发我们画一条什么样的线,作为解决问题的桥梁?
其中问题2是解决本题的关键,教师可引导学生分析。对于问题3学生经过思考会画出此线的。这里教师要重点讲解“辅助线”的有关知识。比如:为什么要画这条线?画这条线有什么作用?要让学生知道“辅助线”是以后解决几何问题有力的工具。它的作用在于充分利用条件;恰当转化条件;恰当转化结论;充分提示题目中各元素间的一些不明显的关系,达到化难为易解决问题的目的。
(2)通过类比“三角形按边分类”,三角形按角怎样分类呢?
学生回答后,电脑显示图表。
(3)三角形中三个内角之和为定值,那么对三角形的其它角还有哪些特殊的关系呢?问题1直角三角形中,直角与其它两个锐角有何关系?
问题2三角形一个外角与它不相邻的两个内角有何关系?
问题3三角形一个外角与其中的一个不相邻内角有何关系?
其中问题1学生很容易得出,提出问题2之后,先给出三角形外角的定义,然后让学生经过分析讨论,得出结论并书写证明过程。
这样安排的目的有三点:第一,理解定理之后的延伸――推论,培养学生良好的学习习惯。第二,模仿定理的证明书写格式,加强学生书写能力。第三,提高学生灵活运用所学知识的能力。
三角形内角和教案【篇11】
教学内容:
教材第67页例6、“做一做”及教材第69页练习十六第1~3题。
教学目标:
1.通过动手操作,使学生理解并掌握三角形的内角和是180°的结论。
2.能运用三角形的内角和是180°这一结论,求三角形中未知角的度数。
3.培养学生动手动脑及分析推理能力。
重点难点:
掌握三角形的内角和是180°。
教学准备:
1、什么是平角?平角是多少度?
2、计算角的度数。
3、回忆三角形的相关知识。(出示直角三角形、锐角三角形、钝角三角形)
(设计意图:让学生经历质疑验证结论这样的思维过程,真正整体感知三角形内角和的知识,真正验证了“实践出真知” 的道理,这样的教学,将三角形内角和置于平面图形内角和的大背景中,拓展了三角形内角和的数学知识背景,渗透数学知识之间的联系,有效地避免了新知识的“横空出现”。同时,培养学生的综合素养)
1、读学卡的学习目标、任务目标,做到心里有数。
4、验证:
(1)初证:用一副三角板说明直角三角形的内角和是180°。
(2)质疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。
(3)再证:请按学卡提示,拿出学具,选择自己喜欢的方式验证三角形的内角和 是180°(师巡视)
6、追问:把两块三角板拼在一起,拼成的大三角形的内角和是多少?说明三角形无论大小它的内角和都是180°(课件演示)
7、看微课感知“伟大的发现”(设计意图:让学生感受自己所做的和帕斯卡发现三角形内角和是180°的过程是一样的,从而培养孩子的自信心和创造力。)
(1)一个三角形,它的两个内角度数之和是110 ,第三个内角是( ).
(2)一个直角三角形的一个锐角是50,则另一个锐角是( )。
(3)等边三角形的3个内角都是( )。
(4)一个等腰三角形,它的一个底角是50,那么它的顶角是( )。
(5)一个等腰三角形的顶角是60,这个三角形也是( )三角形。
根据所学的知识,你能想办法求出四边形、五边形的内角和吗?
1、小组讨论。2、汇报结果。3、课件提示帮助理解。
五、自我评价根据学卡要求给自己评出“优”“良好”“合格”。
今天我讲了《三角形内角和》这部分内容,学生其实通过不同途径已经知道三角形内角和是180°,是不是说这节课的重难点就已经突破了,只要学生能应用知识解决问题就算是达到这节课的教学目标了呢?我想研究的过程,学生对于这一内容的认识就不深刻,聪明的孩子还会怀疑三角形内角和是180°吗?。因此这个结论必须由实践操作得出结论。所以最终我把本课定为一个实践探究课。
如何开篇点题,是我这次要解决的第一个问题。怎样才能让学生由已知顺利转向对未知的探求,怎样直接转向研究三个角的“和”的问题呢?因此我只设计了三个简单的问题然学生快速进入主题。
如何验证内角和是180°,是我一直比较纠结的环节。由于小学生的知识背景有限,无法利用证明给予严格的验证。只能通过动手操作、空间想象来让孩子体会,这些都有“实验”的特点,那么就都会有误差,其实都无法严格的证明。但是这节课我们除了要尊重知识的严谨还应该尊重孩子的认知。如果通过剪拼、折叠、想象后,还有的孩子认为三角形内角和是180°值得怀疑的话,这无非也是件好事,说明孩子体会到了这些方法的不严谨,同时对知识有一种尊重,对自己的操作结果充满自信,否则拼个差不多也可以简单的认同了内角和是180°。
本节课的练习的设置也是努力做到有梯度、有趣味、有拓展。从开始的抢答内角和体会三角形内角和跟大小无关、跟形状无关,到已知两个角的度数求第三个角,这些都是巩固。之后的,求拼接两个完全一样的直角三角形后,得到的图形的内角和是多少度,求被剪开的三角形,形成的新图形的内角和是多少度,这些都是对三角形内角和的一次拓展。让学生的认知发生冲突,提出挑战。
给学生一个平台,她会给你一片精彩。通过动手操作来验证内角和是否是180°,学生最容易出现的就是把3个角剪下来拼一拼,个别人可能会想到折的方法。而这节课上有个小姑娘研究的是直角三角形,她的折法很巧妙,将两个锐角折过来,刚好拼成一个直角,这个直角和原来三角形已有的直角就重叠在了一起,两个直角就180°。虽然我知道这样的方法,但是通过试讲,孩子们没有这样的表现,我就没有奢求什么。但是今天的课堂太丰富多元了。这样的方法都出现了让我觉得特别值得肯定。为什么会这样呢?我想还是因为我给了他们足够的时间去思考。当有了空间,孩子才会施展他们的才华。这是我的一大收获。
前边验证时间过多,到练习时间就有些少,特别是求四边形和六边形内角和时,给的时间过短,学生没有充分思维。
总而言之,这次的公开课,给了我一次学习和锻炼的机会。在教案设计时,该怎么样把每一个环节落实到位,怎么样说好每一句话,预设好每一个环节,在教研中听取各位教师的点评,让我有了茅塞顿开的感觉。在此,我衷心感谢数学团队教师对我中肯的评价,感谢他们对我的直言不讳,无私奉献自己的想法,让我在教学中,能够在一个轻松和谐的教学氛围中与学生共同去探讨,去发现,去学习。
三角形内角和教案【篇12】
教学过程:
师:我们已经认识了什么是三角形,谁能说出三角形有什么特点?
师:请看屏幕(课件演示三条线段围成三角形的过程)。
师:三条线段围成三角形后,在三角形内形成了三个角,(课件分别闪烁三个角及的弧线),我们把三角形里面的这三个角分别叫做三角形的内角。(这里,有必要向学生直观介绍“内角”。)
师:请同学们帮老师画一个三角形,能做到吗?(激发学生主动学习的心理)
师:请听要求,画一个有两个内角是直角的三角形,开始。(设置矛盾,使学生在矛盾中去发现问题、探究问题。)
师(课件演示):是不是画成这个样子了?哦,只能画两个直角。
师:问题出现在哪儿呢?这一定有什么奥秘?想不想知道?
师:请看屏幕。(播放课件)熟悉这副三角板吗?请拿出形状与这块一样的三角板,并同桌互相指一指各个角的度数。(课件闪动其中的一块三角板)
师:也就是这个三角形各角的度数。它们的和怎样?
师:对,把三角形三个内角的度数合起来就叫三角形的内角和。
师:(课件演示另一块三角板的各角的度数。)这个呢?它的内角和是多少度呢?
师:从刚才两个三角形内角和的计算中,你发现什么?
生2:这两个三角形都是直角三角形,并且是特殊的三角形。
1。猜一猜。
师:猜一猜其它三角形的内角和是多少度呢?同桌互相说说自己的看法。
2。操作、验证一般三角形内角和是180°。
(1)小组合作、进行探究。
师:所有三角形的内角和究竟是不是180°,你能用什么办法来证明,使别人相信呢?
师:哦,也就是测量计算,是吗?那就请四人小组共同研究吧!
师:每个小组都有不同类型的三角形。每种类型的三角形都需要验证,先讨论一下,怎样才能很快完成这个任务。(课前每个小组都发有锐角三角形、直角三角形、钝角三角形,指导学生选择解决问题的策略,进行合理分工,提高效率。)
师:没有得到统一的结果。这个办法不能使人很信服,怎么办?还有其它办法吗?
生2:用拼合的办法,就是把三角形的三个内角放在一起,可以拼成一个平角。
生1:锐角三角形的内角拼在一起是一个平角,所以锐角三角形的内角和是180°。
3课件演示验证结果。
师:请看屏幕,老师也来验证一下,是不是跟你们得到的结果一样?(播放课件)
师:为什么用测量计算的方法不能得到统一的结果呢?
三、解决疑问。
师:现在谁能说说不能画出有两个直角的一个三角形的原因?(让学生体验成功的喜悦)
生:因为三角形的内角和是180°,在一个三角形中如果有两个直角,它的内角和就大于180°。
四、应用三角形的内角和解决问题。
3、游戏巩固。在四人小组中完成:由一个同学出题,其它三个同学回答。(1)给出三角形两个内角,说出另外一个内角(有唯一的答案)。(2)给出三角形一个内角,说出其它两个内角(答案不唯一,可以得出无数个答案)。
今天你学到了哪些知识?是怎样获取这些知识的?你感觉学得怎么样?
三角形内角和教案【篇13】
学习目标:
(1) 知识与技能 :
掌握三角形内角和定理的证明过程,并能根据这个定理解决实际问题。
(2) 过程与方法 :
通过学生猜想动手实验,互相交流,师生合作等活动探索三角形内角和为180度,发展学生的推理能力和语言表达能力。对比过去撕纸等探索过程,体会思维实验和符号化的理性作用。逐渐由实验过渡到论证。
通过一题多解、一题多变等,初步体会思维的多向性,引导学生的个性化发展。
(3)情感态度与价值观:
通过猜想、推理等数学活动,感受数学活动充满着探索以及数学结论的确定性,提高学生的学习数学的兴趣。使学生主动探索,敢于实验,勇于发现,合作交流。
一.自主预习
二.回顾课本
1、三角形的内角和是多少度?你是怎样知道的?
2、那么如何证明此命题是真命题呢?你能用学过的知识说一说这一结论的证明思路吗?你能用比较简洁的语言写出这一证明过程吗?与同伴进行交流。
3、回忆证明一个命题的步骤
①画图
②分析命题的题设和结论,写出已知求证,把文字语言转化为几何语言。
③分析、探究证明方法。
4、要证三角形三个内角和是180,观察图形,三个角间没什么关系,能不能象前面那样,把这三个角拼在一起呢?拼成什么样的角呢?
①平角,②两平行线间的同旁内角。
5、要把三角形三个内角转化为上述两种角,就要在原图形上添加一些线,这些线叫做辅助线,在平面几何里,辅助线常画成虚线,添辅助线是解决问题的重要思想方法。如何把三个角转化为平角或两平行线间的同旁内角呢?
① 如图1,延长BC得到一平角BCD,然后以CA为一边,在△ABC的外部画A。
② 如图1,延长BC,过C作CE∥AB
③ 如图2,过A作DE∥AB
④ 如图3,在BC边上任取一点P,作PR∥AB,PQ∥AC。
三、巩固练习
四、学习小结:
(回顾一下这一节所学的,看看你学会了吗?)
五、达标检测:
略
六、布置作业
三角形内角和教案【篇14】
教学内容:
教材第“做一做”及教材第69页练习十六第1~3题。
教学目标:
1.通过动手操作,使学生理解并掌握三角形的内角和是180°的结论。
2.能运用三角形的内角和是180°这一结论,求三角形中未知角的度数。
3.培养学生动手动脑及分析推理能力。
重点难点:
掌握三角形的内角和是180°。
教学准备:
三角形卡片、量角器、直尺。
导学过程
一、复习
1、什么是平角?平角是多少度?
2、计算角的度数。
二、新知
(设计意图:让学生经历质疑验证结论这样的思维过程,真正整体感知三角形内角和的知识,真正验证了“实践出真知” 的道理,这样的教学,将三角形内角和置于平面图形内角和的大背景中,拓展了三角形内角和的数学知识背景,渗透数学知识之间的联系,有效地避免了新知识的“横空出现”。同时,培养学生的综合素养)
任务目标,做到心里有数。
2、揭题:课件演示什么是三角形的内角和。
3、猜想:三角形的内角和是多少度。
4、验证:
(1)初证:用一副三角板说明直角三角形的内角和是180°。
(2)质疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。
(
(
5、结论:修改板书,把“?”去掉,写“是”。
三、知识运用(课件出示练习题,生解答)
1、填空
(1)一个三角形,它的两个内角度数之和是110 ,第三个内角是( ).
(2)一个直角三角形的一个锐角是50,则另一个锐角是( )。
(3)等边三角形的3个内角都是( )。
(。
(三角形。
2、判断
(
(
(
(
(
四、拓展探究
根据所学的知识,你能想办法求出四边形、五边形的内角和吗?
汇报结果。3、课件提示帮助理解。
五、自我评价根据学卡要求给自己评出“优”“良好”“合格”。
六、谈谈自己本节课的收获。
教学反思
今天我讲了《三角形内角和》这部分内容,学生其实通过不同途径已经知道三角形内角和是180°,是不是说这节课的重难点就已经突破了,只要学生能应用知识解决问题就算是达到这节课的教学目标了呢?我想应该好好思考教材背后要传递的东西。
任何规律的发现都要经过一个猜测、验证的过程,不经历这个探究的过程,学生对于这一内容的认识就不深刻,聪明的孩子还会怀疑三角形内角和是180°吗?。因此这个结论必须由实践操作得出结论。所以最终我把本课定为一个实践探究课。
如何开篇点题,是我这次要解决的第一个问题。怎样才能让学生由已知顺利转向对未知的探求,怎样直接转向研究三个角的“和”的问题呢?因此我只设计了三个简单的问题然学生快速进入主题。
如何验证内角和是空间想象来让孩子体会,这些都有“实验”的特点,那么就都会有误差,其实都无法严格的证明。但是这节课我们除了要尊重知识的严谨还应该尊重孩子的认知。如果通过剪拼、折叠、想象后,还有的孩子认为三角形内角和是180°值得怀疑的话,这无非也是件好事,说明孩子体会到了这些方法的不严谨,同时对知识有一种尊重,对自己的操作结果充满自信,否则拼个差不多也可以简单的认同了内角和是180°。
本节课的练习的设置也是努力做到有梯度、有趣味、有拓展。从开始的抢答内角和体会三角形内角和跟大小无关、跟形状无关,到已知两个角的度数求第三个角,这些都是巩固。之后的,求拼接两个完全一样的直角三角形后,得到的图形的内角和是多少度,求被剪开的三角形,形成的新图形的内角和是多少度,这些都是对三角形内角和的一次拓展。让学生的认知发生冲突,提出挑战。
给学生一个平台,她会给你一片精彩。通过动手操作来验证内角和是否是180°,学生最容易出现的就是把3个角剪下来拼一拼,个别人可能会想到折的方法。而这节课上有个小姑娘研究的是直角三角形,她的折法很巧妙,将两个锐角折过来,刚好拼成一个直角,这个直角和原来三角形已有的直角就重叠在了一起,两个直角就180°。虽然我知道这样的方法,但是通过试讲,孩子们没有这样的表现,我就没有奢求什么。但是今天的课堂太丰富多元了。这样的方法都出现了让我觉得特别值得肯定。为什么会这样呢?我想还是因为我给了他们足够的时间去思考。当有了空间,孩子才会施展他们的才华。这是我的一大收获。
前边验证时间过多,到练习时间就有些少,特别是求四边形和六边形内角和时,给的时间过短,学生没有充分思维。
总而言之,这次的公开课,给了我一次学习和锻炼的机会。在教案设计时,该怎么样把每一个环节落实到位,怎么样说好每一句话,预设好每一个环节,在教研中听取各位教师的点评,让我有了茅塞顿开的感觉。在此,我衷心感谢数学团队教师对我中肯的评价,感谢他们对我的直言不讳,无私奉献自己的想法,让我在教学中,能够在一个轻松和谐的教学氛围中与学生共同去探讨,去发现,去学习。
三角形内角和教案【篇15】
《三角形内角和定理》说课稿
内丘县内丘镇中学 乔素霞
尊敬的各位评委、各位老师,大家好:
我是内丘县内丘镇中学的教师乔素霞,今天我说课的内容是《三角形内角和定理》。下面我将围绕本节课“教什么?”“怎么教?”“为什么这么教?”三个问题从教材分析、学情分析、教学设计、教学过程、教学反思等几个方面逐一分析说明。
一.教材分析
1.本节课所处的地位和作用
本节课是冀教版数学八年级下册第二十四章第五节《三角形内角和定理》的第一课时。其教学内容为三角形内角和定理的证明和简单运用。它是在学生对一些几何结论有了直观认识,并会简单说理的基础上,进一步认识几何图形以及规范证明过程的重要内容之一。三角形的内角和定理揭示了组成三角形的三个内角之间的数量关系,是求角的度数的有力工具,在实际生产生活中有着广泛的应用。此外,它的证明中引入了辅助线,这些都为后继学习奠定了基础。因此,本节课起着承上启下的作用。
2.教学目标
本着教学目标应科学简明,体现全面性、综合性和发展性的原则,制定目标如下:
(1)知识与技能
掌握三角形内角和定理的证明和简单运用;初步体会辅助线在证明中的作用。
(2)过程与方法
经历利用剪拼三角形验证三角形内角和定理,探索其证明思路的过程,使学生掌握一定的探索方法;通过渗透“化归”的数学思想,使学生体会解决数学问题的基本思路。(3)情感态度与价值观
培养学生合作交流意识和探索精神;培养学生有条理的思考问题和合乎情理的表达问题的能力。3.教学重点和难点
教学重点:三角形内角和定理的证明与简单运用。
教学难点:引导学生添加辅助线解决问题,并进行有条理的表达。二.学情分析
初二学生已具备了一定的学习能力,操作、归纳、推理能力。他们思维活跃,对新知识有较强的探求欲望,但是对于严密的推理论证,在知识结构和能力上都有所欠缺。
三. 教学设计 1.教法
本节课主要采用“情境创设”、“设疑诱导”等教学方法,同时利用多媒体课件作为辅助教学手段。
2.学法(1)动手操作(2)合作交流(3)自主学习3.设计思路
《新课标》指出:“教师要成为学生数学活动的组织者、引导者、合作者;要善于激发学生的学习潜能,鼓励学生大胆创新与实践。”因此我设计了以学生活动为主线,以突出重点、突破难点,发展学生素养为目的教学过程。采用创设情境、启发诱导、动手操作、合作交流等方法,在教师的引导下,通过同学间的互相探讨、启发,在自主探索中发现新知、发展能力。
四.教学过程
情境引入→活动探究→实践运用→小结反思 1.创设情境,引入新课
新课标下的数学课程倡导从学生实际出发,发挥学科自身优势,激发学生的学习兴趣,促使学生主动地学习。因此我通过一段动画引入课题,由动画中三个小动物的争论引出三角形内角和大小的问题,让学生作出评判:到底谁的内角和大?在学生评理说理中自然导入三角形内角和的学习探究。由此引入新课,既提出了数学问题,又激发了学生学习数学的兴趣。
2.活动探究,获取新知
要求学生把事先准备好的三角形纸板的三个内角剪下,然后将剪下的三个内角随意的拼接在一起,使三者顶点重合,问能发现怎样的现象。学生分组动手操作,在探讨各种拼图的方法后派代表展示拼接的图形,教师借助多媒体展示其中的具有代表性的拼接方法。通过学生的观察、猜想、度量得到结论:三角形三个内角的和是180°。但是有的学生提出质疑:有时候量出三角形三个内角的度数和要高于或低于180°。此时,教师适时说明:通过观察剪拼得到的结论虽然有一定的合理性,但是会存在误差,命题的正确性必须经过严密的推理来验证。通过实际操作让学生体会到证明的必要性。
由剪拼三角形得到三角形内角和为180°,到添加辅助线证明这个定理,对学生来说有一定的难度,因此在教学时,我对教材做了铺设台阶,化解难点的处理。先让学生指出这个命题的条件和结论,并画出图形,结合图形写出已知、求证。目的是让学生逐步学会用符号表示命题,发展他们的数学符号表达能力。然后对照刚才的拼图过程,尝试用几何图形来表示出所拼接的实物图。此环节应留给学生充分的思考、讨论、体验的时间,让学生在交流中互取所长。
几何图形描绘出来之后,师生一起探究证明思路,先引导学生观察在刚才的拼接过程中∠1和哪个角相等?这两个角具有怎样的位置关系?由它们的位置关系与等量关系我们可以得到射线CE与线段AB具有怎样的位置关系?通过学生的思考、交流引导他们说出探究1中添加辅助线的方法:延长BC到点D,过点C作射线CE∥AB.这样就可以借助平行线的性质将∠A移到∠1的位置,将∠B移到∠2的位置。(此时,教师即可给出学生辅助线的定义、作用,以及作辅助线的注意事项),然后由学生尝试写出证明过程,教师巡回指导。有一部分学生写证明过程有困难,可给予有针对性的帮助。完成之后让多名学生口答自己的证明过程,培养他们说理有据,有条理的表达自己想法的良好意识。师生共同评议,订正,在交流中发现问题、解决问题,共同提高。(学生的证明过程出现了两种不同的方法:有的学生把三个内角凑成一个平角来证明,而有的学生则借助“两直线平行,同旁内角互补”来证明)。对学生的独到的见解,不同的证题方式,我及时进行肯定与鼓励,3 使学生感受成功的喜悦。最后教师规范证明过程,给出证明的书写格式,使学生学习有章可依。
探究2的思路分析和添加辅助线的方法,由学生类比于探究1的步骤合作交流后独立完成证明过程。通过教师的正确引导,使学生掌握三角形内角和定理的证明方法,从而突出本节课的重点。对证明的格式、方法和步骤,要在学生亲身经历、体验的过程中去逐步理解和掌握。
对于探究3,引导学生观察拼接的图形,说出添加辅助线的方法,证明过程让学生课下独立完成。
探究完成之后,师生共同进行归纳得到三角形内角和定理:三角形三个内角的和等于180°。然后教师引导学生总结辅助线的添加方法,即通过添加平行线,把三角形的三个内角转化成一个平角或者转化为一组同旁内角来证明。让学生交流自己发现的其他证题思路,并进行适当的比较和讨论,努力给他们创造一个“海阔凭鱼跃,天高任鸟飞”的课堂氛围,使学生的求异思维和创新意识得到及时的表现。
通过学生的思考、争论达到思想上的碰撞,激发新思维。本节课的难点也会趁此而突破。
3.实践运用,巩固新知
新课标提倡发展应用数学知识的意识与能力。因此在推理证明完成之后,我设计了一组题目来巩固所学定理。首先是例题1的学习,教师进行适当的引导和点拨后,由学生独立完成。然后师生一起理顺思路,规范格式。
其次是基础练习。通过试一试、练一练、做一做,让学生经历运用所学知识解决问题的过程,使学生对初步感知的结论有更加深刻的认识,进一步发展他们的推理论证能力。
为了提升学生的应用能力,我还设计了两个实际问题。通过解决问题让学生体会到数学来源于生活,又服务于生活,从而激发他们学习数学的积极性,建立学好数学的自信心。4.小结反思,提高认识
回顾本节知识脉络,请学生谈谈自己学习过程中的收获,并整理自己参与数学活动的经验,回味成功的喜悦,形成良好的学习习惯,同时也是给我 4 们教者本身一个反思提高的机会。
5.布置作业
分层次留作业,尊重学生的个性差异,让不同的学生在数学学习上都有收获和进步。
6.板书设计
采用提纲式板书,突出重点,一目了然。五.教学反思
本节课教师主导作用的发挥是比较好的,主要体现在让学生的主体地位得到充分展示。例如:证明方法的发现和小结等。同时使学生感受到了学习的快乐,体会到了探究与发现带来的乐趣。教学中,我遵循的基本教学原则是激励学生展开积极的思维活动,不断的表扬学生,使学生感到自身的价值存在,给学生一个展示个性、尝试成功的机会。
总之,本节课力求从学生实际出发,通过他们的实践、思考、探索、交流获得知识,形成技能,发展思维。存在的不足之处还恳请各位评委老师批评指正。
三角形教案合集五篇
每一位教师都需要在课前准备好自己的教案课件,本学期又到了编写教案课件的时候。教案是帮助学生更好地理解学科知识和提升综合能力的有效工具,那么什么样的教案才算是优秀的教案课件呢?你难道还没有阅读过“三角形教案”吗?赶紧去看看吧,祝愿你在学习和工作上都能更上一层楼!
三角形教案【篇1】
教材简析与设计意图:
《约分》是人教版实验教材第十册内容,约分是分数基本性质的直接应用。新课标指出:义务教育阶段的数学课程应突出体现基础性、普及性和发展性,是数学教育面向全体学生,为学生的全面发展创造条件。要尊重学生身心发展特点和教育规律,转变教育观念,激发学生独立思考和创新意识,让学生既学会知识,又学会学习,使学生生动活泼积极主动地发展。
在约分教学中,注重培养学生的学习情感,激发发展动机;创造机会,提供发展条件;因材施教,扩大发展层面;激活思维,深化发展效果。引导学生积极主动地参与全过程,从而体现“以学生发展为本”的原则。
教学目标:1、经历知识的形成过程,使学生理解约分和最简分数的意义,探索约分的方法。
2、掌握约分的方法,能根据实际情况正确进行约分。
3、培养学生的观察、比较和归纳等思维能力。
教学难点:很快看出分子、分母的公因数,并能准确地判断约分的结果是不是最简分数。
师:一共100米,已经游了75米,看到这两个条件你能想到什么?
师:已经游了全程的 75/100和游了全程的3/4是一回事吗?
生: 我们组认为75/100=3/4,因为75÷100=0.75 3÷4=0.75 所以75/100=3/4
师:你们运用分数与除法的关系找到它们是相等的,还有其他的验证方法吗?
生:我们运用分数的基本性质:75/100的分子和分母同时除以25,得到3/4。
师:你们组不仅运用了分数的基本性质,而且还找到了75和100的最大公因数25,从而验证出相等,能学以致用,多好啊!
师:通过刚才的验证我们知道75/100=3/4,还能说出一些和3/4相等的分数吗?
生:6/8、12/16、15/20、30/40 ------
生:3/4最简单,因为3/4的分子和分母是一对互质数。
师:对,我们就把分子和分母只有公因数1的这样的分数就叫做最简分数。
生:因为1/4的分子和分母只有公因数1,所以它是最简分数。
师:那你现在知道1/4和25/100的关系了吗?
师:很好,你们还能再举出一些最简分数的例子吗?
教师总结:同学们通过刚才的观察、猜测、验证得出了最简分数的意义,大家表现的非常好,下面我们就来把一个分数化简称最简分数。
师:仔细读题,如何理解“化成最简分数”这句话。
生:就是把24/30变成和它大小相等,并且分子和分母的公因数只有1这样的分数。
生:24/30=24÷2/30÷2=12/15 12/15=12÷3/15÷3=4/5。
生:先用24和30的公因数2去除,发现12/15不是最简分数,还有公因数3,再用3去除,最后得到最简分数4/5。
生:24/30=24÷6/30÷6=4/5 ,我是先找到24和30的最大公因数6,再用6去除分子和分母从而得到最简分数4/5。
师:同学们对比一下这两种方法,哪种更好一些呢?
生:找最大公因数的方法能更快地把一个分数化简成最简分数。
师小结:同学们运用分数的基本性质把24/30化简成最简分数,你们知道吗,刚才的这一过程叫做约分。(板书课题)
师:看完后,你能回答小精灵提出的问题“每一步中都是用分子、分母的哪个公因数去除的?“
师:在把一个分数化简成最简分数时,如果能很快找到分子和分母的最大公因数,就可以用最大公因数去约分,如果一下子找不到最大公因数,可以一步一步地用公因数去约分。下面请你仿照这一方法,把8/12进行约分。
师:用你们手中的圆片代表蛋糕,并很快表示它的8/32。
学生积极思考,有的认真观察分数,有的急于动手折8/32,最终出现两种折法。
生1:我是把圆片对折了5次,平均分成了32份,再表示出其中的8份。
师:你很认真的折出了这个蛋糕的8/32,就是时间长了些,为什么有些同学却折得很快呢?
生2:我发现8/32的分子和分母都有最大公因数8,约分后得到1/4。
师:多好啊!通过你的认真观察,运用今天学的知识-----约分,很快地找到了这个蛋糕的“8/32”,真是个善于动脑筋的孩子。
师小结:学习约分不仅可以分蛋糕,还可以运用到生活中的很多地方,只要你是个善于观察善于思考的孩子,你一定能做得最好、用得更好。
2、下面哪些分数没有化成最简分数,请把它们化成最简分数。
16/24=4/6 15/36=5/12 28/42=14/21 16/12=8/6
3、用最简分数表示小明每项活动占全天时间的几分之几?
4、 我校六年级三个班在3.12的植树活动中,一班种了总数的17/30,二班种了总数的20/60,三班种了总数的7/30,你知道哪个植树最多吗?
生:20/60化简成10/30,在比较这三个分数的大小,发现哦一班种得最多。
师:你用约分的方法解决了生活中的实际问题,很好!完成了这道题后,同学们想说些什么呢?
生:看来约分不一定必须化简成最简分数,要根据实际而定。
师:说的多好啊!你们不仅会学以致用,而且还会根据实际情况灵活运用。
三角形教案【篇2】
教学内容:
人教版四年级下册第85面——87面。
教学目标:
1、让学生亲自动手,通过量、剪、拼等活动发现三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。
2、让学生在动手获取知识的过程中,渗透“转化”数学思想,掌握简单的数学推理方法,培养学生的创新意识、探索精神和实践能力。
3、让学生感受到数学的价值,体会成功的喜悦,激发学生主动学习数学的兴趣。
教学重点:
让学生经历“三角形内角和是180°”这一知识的发现过程。
教学准备:
教具:多媒体课件、三角板一个、两个完全一样的直角三角形。
学具:锐角三角形、直角三角形、钝角三角形各一个。
师:同学们的歌声真嘹亮,老师站在这里和大家一起学习感到很高兴,
今天老师还给大家带来了一个老朋友,请看,是什么?
师:前面我们已经认识了三角形,谁能给大家介绍一下?
学生讲学过的三角形知识。
师:看来大家对三角形已经非常熟悉了,老师还为大家带来了两个特殊的三角形,请看,它们是什么三角形?(点击FLASH出示直角三角形实物图)
师:(师指第一个三角形)谁知道这个直角三角形每个角的度数吗?
师:答的真准确,(FLASH:生说完后师边说边点出度数)30度、60度、90度都在这个三角形的内部,我们把这样的角叫做三角形的内角。
角的和叫做三角形的内角和。(板书课题)下面请大家认真观察这两个算式,从结果上看,你发现了什么?
师:观察的真仔细!(点击课件,出示多种多样的三角形后提问)同学们,咱们都知道,这两个三角形是特殊三角形,在我们的生活中还有许许多多不是这个样子的三角形,请看大屏幕,这些任意三角形,它们的内角和是不是都是180度呢?
师:看来,大家是通过这两个三角形猜想的,是吗?想不想验证一下你们的猜想,(生:想)好,咱们一起走进三角形王国,一起去研究它们内角和的秘密吧!(师在课题“内角和”下面划上横线,打上问号)
师:看来,大家的意见不一致,想不想验证一下你们的猜想,(生:想)好,咱们一起走进三角形王国,一起去研究它们内角和的秘密吧!(师在课题“内角和”下面划上横线,打上问号)
师:老师看你们有答案了,哪位同学愿意说一说你的奇思妙想?
生:然后把它们三个内角的度数相加起来,就知道了三角形的内角和是多少?
生:我是把三角形的三个角剪下来,拼在一起(师鼓励:你的想法很有创意,等一会儿用你的行动来验证你的猜想吧!)
(如生一时想不到,师可引导:他是把三个内角的度数相加在一起,我们能不能想办法把三个内角放在一起进行观察,看看能不能发现些什么呢?)
师:好啦,老师相信咱们班的同学个个都是小数学家,一定能找出更多的方法的,请你们在研究之前,也像老师一样,在三个内角上编上序号,角一、角二、角三,现在就请同学们对锐角三角形、直角三角形和钝角三角形等各种类型的三角形进行研究,看看它们的内角和各有什么特点。咱们比一比,看一看,哪个小组的方法多,方法好!
师:老师看各小组已经研究好了,哪位同学愿意上来交流一下?
师:请你告诉大家,你是怎么研究的,最后发现了什么结果?
师:刚才有的同学测量的结果是180度,有的同学测量的结果是179度,有的同学测量的结果是182度,各不相同,但是这些结果都比较接近于多少?
师:那到底三角形的内角和是不是180度呢?还有哪位同学有其它的方法进行验证吗?
生:我是先把三角形的三个角剪掉以后粘在一起,然后在量出它们三个角组成的度数。
师:他演示的真好,你们听明白了吗?李老师把他的过程给大家在大屏幕上演示一下。
(师边讲解边点击FLASH:把三角形按照三个内角撕成三块,先把角一放在右边,再把角二放在左边,最后把角三调个头,插在角一角二的中间,这样它们三个内角就形成了一个大角,角一的这条边,角二这条边看起来在一条直线上,那到底是不是在一条直线上呢,我们一起用直尺来量一下,师演示后问学生:是不是在一条直线上,那这个大角是个什么角呢?通过刚才拼的过程,你有什么发现?)
师:好极了,刚才这个小组的同学用拼的方法得到XX三角形的内角和是180度,你们还有别的方法吗?
师:你们听明白了吗?李老师把他的过程给大家在大屏幕上演示一下。
(师边讲解边点击FLASH:先找到两条边的中点,把它连起来,把角一沿着中间的这条线向对边对折,再把角二向里对折,使它的顶点与角一对齐,最后把角三也用同样的方法对折,这样它们三个内角就形成了一个大角,这个大角是个什么角呢?)
师:除了用了量、拼、折的方法来研究以外,刚才在操作的过程中老师还发现了一个同学用了一种方法来进行研究,大家想知道吗?
生:我把两个相同的直角三角形拼成了一个长方形,因为长方形里面有四个直角,所以它的内角和是360度,那么一个三角形的内角和就是180度。
师:刚才我们用量、拼、折、推理的方法都得到了三角形的内角和是180度,同学们,现在我们回想一下,刚才测量的不同结果是一个准确数还是一个近似数?为什么会出现这种情况呢?
师:对,这就是测量的误差,如果测量仪器再精密一些,我们的方法再准确一些,那么任意一个三角形的内角和也将是180度。
师:同学们,我们刚才用不同的方法,不同的三角形研究了三角形的内角和,得到了一个相同的发现,这个发现就是?
师:请看老师手上的这两个三角形,左边这个内角和是多少度?(生:180度)右边呢(生:也是180度)
师:现在老师把它们拼在一起,这个大三角形的内角和又是多少度呢?
(生答后师引导归纳得出:三角形的内角和与形状大小无关,组成的大三角形的内角和依然是180度。)
师:刚才我们在讨论学习三角形知识的时候,三角形中的两个好朋友却争执了起来,想知道怎么回事吗?让我们一起去看看吧!(出示课件,课件内容:一个大一些的直角三角形说:“我的个头比你大,我的内角和一定比你大”。另一个稍小的锐角三角形说:“是这样吗”?)
师:到底谁说的对呢?今天我们就用我们今天学到的知识来为它们解决解决吧!
师:真不错,你们当了一回小法官,帮助三角形兄弟解决了问题,它俩很感谢你们,三角形王国中还有很多生活中的问题,小博士们,你们愿意解答吗?
(出示基础练习)在一个三角形中角一是140度,角三是25度,求角二的度数。
出示自行车、等边三角形的路标牌、告诉顶角求底角的房顶、直角三角形的电线杆架进行练习。
(出示)小红的爸爸给小红买了一个等腰三角形的风筝,它的一个底角是70度,它的顶角是多少度?
师:看来啊,三角形的知识在咱们生活中还有着这么广泛的运用呢!昨天,我们班发生了一件事情,小明不小心将镜框上的一块三角形玻璃摔破了,(课件呈现情境)他想重新买一块玻璃安上,小明非常聪明,只带了其中的一块到玻璃店去,就配到了和原来一模一样的玻璃了。你知道他带的是哪一块吗?
(预设:师:根据三角形的内角和是180度,你能求出下面四边形、五边形、六边形的内角和吗?
师:太棒了,这位同学把这个四边形分割成了二个三角形求出了它的内角和,你能像他一样棒求出五边形和六边形的内角和吗?
师:同学们,今天我们一起学习了三角形的内角和,你有哪些收获呢?
师:嗯,真不错,你们知道吗?三角形的内角和等于180度是法国著名的数学家帕斯卡在1635年他12岁时独自发现的,今天凭着同学们的聪明智慧也研究出了三角形的内角和是180度,老师为你们感到骄傲,老师相信在你们的勤奋学习和刻苦钻研下,你们就是下一个“帕斯卡”!
三角形教案【篇3】
苏教版小学数学四年级下册第22~23页,第24页“想想做做”第1~3题。
这节课的教学内容是“空间与图形”的重要内容之一。通过学习可以加深和拓展学生对三角形的认识,同时也可以让学生积累一些认识图形的经验与方法。例题1首先提供现实背景让学生从中找三角形,并说说生活中看到过的三角形,从整体上初步感知三角形。接着让学生动手做出一个三角形,从而体会三角形是由三条线段围成的,并抽象出图形,进而介绍三角形各部分的名称,形成三角型概念。例题2则是让学生在活动中感受三角形三条边的长度关系,发现三角形两条边的长度和大于第三边。教材还安排来“想想做做”,让学生通过画图、观察、操作及时巩固所学的知识。
1、通过观察、操作、交流等活动,进一步认识三角形;让学生经历合作探究的过程,自主发现三角形的三边关系,并能利用关系解决简单实际问题。
2、引导学生经历探索、发现、创造、交流等有趣的数学活动过程,培养学生的观察理解能力、动手操作能力、合作交流能力、分析概括能力,进一步发展空间观念,提高学生运用知识解决问题的能力,增强学生的创新意识。
3、激发学生对数学的好奇心,增强学生学习数学的兴趣,培养学生用数学的眼光去判断、解决生活中的问题,使其产生对生活的理性思维的数学习惯。
【教学重点】认识三角形的特征。
【教学难点】探究三角形三条边之间的关系。
在学习活动中,学生对于一个知识点更多的是关注它是什么,而忽视它为什么是这样。因此在教学中添加了从以前学过的旧知识“角”中引出三角形,找到新旧知识间的生长点。在教学三角形的特征后,回过来让学生给三角形取名,让学生明白“三角形”名称存在的理由。既开阔了学生的知识视野,又加深了学生的知识理解。
1、图形王国里有许多图形,今天老师要带大家认识一个新的图形(板书:认识)
2、你想通过这堂课的学习,了解这个新图形的哪些方面呢?
1、同学们,赵老师要来看看谁的眼睛最亮,谁的记性最好,准备好了吗?
2、多媒体出示长方形、直角三角形、正方形、锐角三角形、圆。(2秒后隐去)提问:刚才出现的图形中哪种图形最多?再看一遍。
4、同学们,在以前的学习中我们已经初步认识了三角形。(补充板书:三角形。)
5、(出示例题1的图片)你能在这张图片中找到三角形吗?
在我们身边你能找到三角形吗?(指名说)在教室里你能找到三角形吗?
6、谈话:生活中的许多物体上都有三角形,一起来看看。
1、感受三角形的边角特征。
(1)谈话:刚才同学们在生活中找到了许多三角形,,那你能用老师提供的材料想办法做出一个三角形吗?(小组活动)谁来说说你是怎么做的?
③沿三角尺的边画的。(你画了几条首尾相接的线段?)(板书:3条线段)
④用直尺在方格纸上画的。(你画了几条首尾相接的线段?)(板书:3条线段)
(3)同学们真棒,都能用自己的方法做出了三角形。请看黑板,这个图形认识吗?请说出角各部分的名称。你能把它变成一个三角形吗?(指名到黑板上画)
(4)你会把角变成一个三角形吗?由角的各部分名称,你能说说三角形各部分的名称吗?(板书:3条边、3个角、3个顶点。)
(5)通过刚才的做一做和现在的变一变,你知道三角形有哪些特征?现在你知道为什么这个图形的名字是三角形了吧?
不过啊,我们生活中还是习惯叫它三角形。
(1)同学们会做三角形了,下面我们要在点子图上画出两个不同的三角形。(出示想想做做第1题)
师拿学生作业交流:你是怎么画的?(画三角形时我们可以先确定它的三个顶点。)
(2)这三个点能画在同一条直线上吗?看来啊,只要三个点不在同一条直线上,两两相连就能够画出三角形,那么是不是任意的三条线段都能围成三角形呢?
3、研究三角形三条边的关系。
(1)谈话:老师给大家准备了长度分别为10厘米、6厘米、5厘米、4厘米的四根小棒,任意选三根围一围,看看能否围成三角形。可以把每一次所用小棒的数据记录在作业纸的表格中。
(2)交流:谁来说说你选了哪三根小棒,能围成三角形吗?
(3)同学们每次都是选三根小棒,为什么有的能围成三角形,有的不能围成三角形呢,这里面又有怎样的奥秘呢?我们先来观察这个三角形(6cm、5cm、10cm)。
(4)仔细观察,比较三根小棒的长度,说说你有什么发现?可以和你的同桌交流交流。引导学生发现:6+5>10、6+10>5、5+10>6。
(5)是不是这样呢?我们来看这个三角形(4cm、5cm、6cm)的三条边是不是也有这样的关系?
(6)现在我们来看看这三根小棒为什么不能围成三角形?(出示6cm、4cm、10cm。)
(7)出示(4cm5cm10cm):指出:再次说明两条边的长度和要大于第三边,但现在有两条边的长度和等小于第三边,所以不能围成三角形。
请同学们思考:在判断任意的三条线段能不能围成三角形时,是不是要把所有的两边之和都算出来和第三边作比较?
1、老师这里还有几组线段要请同学们来判断一下能不能围成三角形。下面我们要采取抢答的形式,老师说开始,你就可以站起来回答,看看哪位同学的反应最快。好吗?①6cm、9cm、3cm;②7m、6m、5m;③4dm、10dm、8dm。
2、放学后老师还要去趟少年宫,请看(出示地图),从学校到少年宫有几条路线?走哪一条路最近呢?你是怎么想的,能用今天的知识来解释吗?
(1)有一个活动角,已知这条边是2cm,这条边是5cm,请问第三条边可以是几厘米(填整数)?
(2)如果一个三角形的最短边是5cm,另外两条边可以是几厘米?
(3)如果三条边的和是5cm,三条边分别是几厘米?
刚才同学们都想了解新图形的名字、样子、特征,现在都了解了吗?谁愿意把你了解的知识介绍给同学听一听。
三角形教案【篇4】
一、说教材
1、教材分析
《与三角形有关的角》是九年制义务教育新人教版七年级下册第七章第二节的内容,本节课是在学生学习了“与三角形有关的线段”之后,由线至面进一步研究三角形的角。本节知识不仅是对前面“角”知识的升华与综合运用,也是研究多边形中角的问题的基础。
2、教学目标分析
根据新课标的要求及七年级学生的认知水平,我确定本节课的教学目标如下:
(1)知识与技能目标:
发现并证明三角形内角和定理,使学生体验合情推理与演绎推理的相互依赖和相互补充的辨证关系,进一步体会证明的必要性。
(2)过程与方法目标:
经历“猜想验证—逻辑证明—应用拓广—归纳概括”的探究过程,使学生体会命题研究的一般方法,进而提升学生的数学推理能力和推理意识。
(3)情感、态度与价值观目标:引导学生通过小组合作学习,培养动手实践、合作交流和语言表达的能力,丰富与人交往的经历和体验。
3、教学重难点分析
重点:三角形内角和定理;
难点:三角形内角和定理的证明;
二、说教法
本节课结合七年级学生的理解能力、思维特征和依赖直观图形学习数学的年龄特征,采用多媒体辅助教学,将知识形象化、生动化、具体化。在教学中采用启发式、师生互动式等方法,充分发挥学生的主动性、积极性,特别是用拼图法探索三角形内角和是180°的证明方法,教师采用点拨的方法,启发学生主动思考,尝试用多种方法来证明这个结论,使整个课堂生动有趣,极大限度地培养了学生观察问题、发现问题、归纳问题的能力和一题多解,一题多法的创新能力,使课本知识成为学生自己的知识。
三、说学法
课堂中逐步设置疑问,让学生动手、动脑、动口,积极参与知识学习的全过程,渗透多观察、动脑想、大胆猜、勤钻研的研讨式学习方法,培养学生学习数学的兴趣,给学生提供更多的活动机会和空间,使学生在参与的过程中得到充足的体验和发展。
四、说教学过程
【环节一】复习回顾,导入新课
1、在本上画一个任意三角形。
2、和同桌交流你前面学习了哪些三角形中的线段?三角形的角有怎样的性质?
设计意图:设计操作活动回顾旧知识,并将操作活动与学生的思维活动、语言表达有机结合,实现数学思考的内化,避免了传统的问答式回顾、参与人数少、顾及不到各层面学生、用时较多等问题。
【环节二】猜想发现
1、三角形内角和是多少度?
2、你能用实验的方法来验证你的猜想吗?
拼图实验,分两步完成。
第一步:我先示范图(1)的拼法,分析拼图,发现三角形内角和;
第二步:每个学生把课前准备好的三角形纸片的两个内角剪下,和第三个内角拼在一起。学生展示自己的拼法。
在拼角时,如果让学生剪下三角形的内角,学生很可能会把三角形的三个内角都剪下,把这个三角形分成四块,虽然三个角拼在一起构成了平角,但从这种拼法中寻找证明三角形内角和定理的方法有一定难度。于是,我采取了先示范图(1)的拼法(即剪下三角形两个内角的拼在第三个内角的两旁),然后让学生动手操作:剪下两个角,拼在第三个角的一旁。
在本环节中,我还有一点困惑:如果在图(1)把∠B拼在∠A的右边,把∠C拼在∠A的左边;或者在图(2)中把∠B拼在中间,能找到三角形内角和定理的`证明方法吗?
【环节三】逻辑证明
从刚才的操作过程中,你能发现证明的思路吗?
小组活动流程:
1、先独立思考;
2、组内交流你的证明思路;
3、选出小组代表发言。
设计意图:第一,通过作平行线“搬两个角”,运用平行线的性质和平角的定义证明。启发学生过△ABC的顶点A作直线∥BC,指导学生写出已知、求证、证明过程,规范证明格式;第二,在证明三角形内角和定理时,可以“搬两个角”来说理。如果只“搬一个角”行吗?“搬三个角”呢?这个问题留给同学们在课后研讨。
【环节四】应用练习:
1、求出图中x的值。
2、在△ABC中,∠A︰∠B︰∠C=1︰2︰3,则最小的内角为x度。
设计意图:通过课堂练习,使学生掌握三角形的内角和定理。
3、如图,C岛在A岛的北偏东50°方向,B岛在A岛的北偏东80°方向,C岛在B岛的北偏西40°方向。从C岛看A,B两岛的视角∠ACB是多少度?
对于第3题的讲解,我是分三步进行的:
第一步:分析,根据题意,找到图形中∠1、∠1+∠2、∠4的度数;
第二步:板书解答过程,师生共同完成;
第三步:寻找其他的解法,由学生小组讨论、交流,然后汇报,老师点评。学生说了一种解法,我补充了另一种解法的思路,解答过程留给学生课后完成。
其他解题思路:
(1)如图1,过点C作AD的垂线,交直线AD于点M,交直线BE于点N。
(2)如图2,过点C作CF∥AD。
设计意图:1、使学生了解数学与生活的紧密联系;2、通过例题的解析,让学生体会分析问题的基本方法,渗透数形结合思想;3、培养学生的一题多思,一题多解的创新精神。
【环节五】课堂小测
1、如图,一种滑翔伞的形状是左右对称的四边形ABCD,其中∠A=150°,∠B=∠D=40°,则∠C的度数为。
2、如图:从A处观测C处时仰角∠CAD=30°,从B处观测C处时仰角∠CBD=45°,从C处观测A,B两处时视角∠ACB是多少?
测验结束,汇报交流,老师及时点评。
【环节六】回顾反思
三角形教案【篇5】
教学难点:
帮助学生认识到为什么要“÷2”
我们已经学习过哪些平面图形的面积计算?请你用字母公式来说一说。
能说说这些公式是分别用什么方法得到的呢?
[复习中的这两问,第一个问题是帮助学生回忆相关的知识基础,这是学习新知的一个重要前提。后一问,主要是从学习方法上考虑的。数面积单位的方块数或是用等积变形,这两种方法将是我们这课学习三角形面积计算的重要方法。
将刚才复习中的三种图形,利用课件的演示,添上一条对角线。
S 表示三角形的面积, a和h分别表示三角形的底和高,谁能用字母来表示上面的公式?
3、学生在小组交流的时候,可能会有不同的意见,比如就只用一个三角形,通过剪、拼,也可以得到一个平行四边形。如图:
这个三角形的面积就等于平行四边形的面积。平行四边形的底就是三角形的底,平行四边形的高是三角形高的一半,所以平行四边形的面积=底×(高÷2)
4、学生阅读第16页的“你知道吗?”,通过阅读,再与上面的方法做一比较。
师:这几种方法都正确地算出了三角形的面积。它们之间有什么相同的地方呢?
1、完成“练一练”
电脑分别演示这两题。在交流答案的时候,引导学生说清楚什么时候要“×2”,什么时候要“÷2”,为什么?以进一步加深对三角形面积公式与平行四边形面积公式之间联系的理解。
继续完成p.17想想做做的第1题。
2、完成“试一试”,算出这块三角形交通标志牌的面积。
在交流的时候,要给学生正确解答这类题书写格式的示范,培养学生规范地应用计算公式完成练习。
指名板演,讲评的时候注意发现学生练习中的问题。比如书写的格式、计算中的.问题、“÷2”的遗漏、单位名称等,都要一一指出并纠正。
一个特例:第一张图画的是一个直角三角形,它的一组直角边就分别是它的底和高。
3、画一画,比一比:在方格图上画出面积是6平方厘米的三角形,你能有几种画法?
比如:
汇总学生的各种画法之后,指名说说自己在画的时候是怎么想的?通过交流,使学生进一步认识到“6平方厘米”先要考虑“12平方厘米”(对应的平行四边形面积),进而考虑只要底和高相乘得“12”就可以了;这样画出的三角形虽然形状各不相同,但面积都是6平方厘米。
四、全课总结:
这节课我们学习的是三角形面积的计算,说说你知道了哪些具体的知识?怎么得到这些知识的?
解直角三角形教案
这是一篇非常优秀的“解直角三角形教案”网络文章大家一定要看看。老师在正式上课之前需要写好本学期教学教案课件,现在着手准备教案课件也不迟。教案是自我管理的重要手段。感谢您来参考并逐篇阅读这些文章!
解直角三角形教案 篇1
一、麸曲白酒的生产工艺流程 当前麸曲白酒的生产,主要采用清蒸法和混烧法两种生产方法,其工艺流程如下: 1.混烧法工艺流程 2.清蒸法工艺流程 二、麸曲白酒生产工艺 (一)原料的粉碎 1. 原料粉碎的目的 原料粉碎可以促进淀粉的均匀吸水,加速膨胀,利于蒸煮糊化。通过粉碎又可增大原料颗粒的表面积,在糖化发酵过程中以便加强和曲、酵母的接触,使淀粉尽量得到转化,利于提高出酒率。原料粉碎后可使其中的有害成分易于挥发排除出去,有利于提高成品酒的质量。 2.粉碎要求 一般薯干原料经过粉碎应能通过直径为1.5―2.5毫米的筛孔,高梁、玉米等原料也不应低于这个标准。 3.粉碎设备及操作 薯干原料可用锤式粉碎机粉碎,高梁等粒状原料可用磙式粉碎机破碎。目前许多工厂的粉碎设备已和原料的气流输送设备配套,劳动强度和劳动条件得到极大的改善(气流输送详细内容请参阅酒精工艺第二节)。 (二)配料 1.配料的目的和要求 配料是白酒生产工艺的重要环节,其目的是要通过主、辅原料的合理配比,给微生物的生长繁殖和生命活动创造良好的条件,并使原料中的淀粉在糖化酶和酒化酶的作用下,尽可能多地转化成酒精。同时使发酵过程中形成的香味物质得以保存下来,使成品白酒具备独特的风格。配料时要根据原料品种和性质、气温条件来进行安排,并考滤生产设备、工艺条件、糖化发酵剂的种类和质量等因素,合理配科。 2.配料的主要依据 麸曲白酒的生产一般都在水泥池、石窖或大缸内进行,发酵过程中无法调节温度,只有适当控制入池淀粉浓度和入池温度,才能保证整个发酵过程在适宜的温度下进行。但入池温度往往受到气温的限制,因此只有通过控制入池淀粉浓度来保证发酵过程中产生的热量和酒精浓度,使不超过微生物正常活动所能忍受的限度。 (1)热量问题 酒精发酵是个放热过程,热量的产生有两种途径,即呼吸热和发酵热。产生呼吸热的反应式如下: C6H12O6十6O2 ――→ 6CO2十6H2O十热量(2817千焦耳) 在麸曲白酒发酵时,因为氧气少,所以呼吸热在总热量中占的比例很小,而是以发酵热为主 的,其反应式如下: C6H12O6 ――→2C2H5OH十2 CO2十热量(83.6―96.1千焦耳) 根据测定,每100克葡萄糖在酒精发酵时生成下列主要产物: 发酵产物 数量(克) 热能(千焦耳) 酒精 51.1 1500 甘油 3.1 60.2 琥珀酸 0.56 8.35 酵母残渣 1.3 21.55 二氧化碳 49.2 0 合计 1590.1 每100克葡萄糖具有1660千焦耳热量,因而在发酵过程中每100克葡萄糖能释放出70千焦耳的热量,相当于每克葡萄糖放出700焦耳的热。根据淀粉水解生成葡萄糖的数量,即每克淀粉在酒精发酵时能放出770焦耳热量。若以酒醅中含60%的水分计算,当酒醅中淀粉浓度由于发酵而降低1%时,酒醅温度应升高约2.4℃。考虑到热量散失和发酵过程中产生其它成分的影响,发酵过程中当淀粉浓度下降1%时,酒醅温度实际约升高2℃左右。 发酵温度的`高低与酵母的发酵力有着密切的关系。当温度升高,又有酒精存在时,酵母的发酵力会受到很大抑制。较高温度(例如36℃左右)会使酵母发酵到一定程度就停止。较低温度下发酵(例如28℃左右),酵母的酶活力不易被破坏,发酵持续性强,对糖分的利用比较彻底,因而出酒率也较高。麸曲白酒在发酵过程中,由于固体酒醅的传热系数较小,无法采取降温措施,只能靠控制入池温度和入池淀粉浓度来调节发酵温度,其中入池温度又往往受到气温的影响,所以主要是利用适当的入池淀粉浓度来控制池内发酵温度的变化,使发酵温度在整个发酵过程中不超过一定的限度,保证发酵的正常进行。根据酵母的生理特性,要求发酵温度最高不超过36℃6,若入池温度控制在18―20℃左右,也就是在发酵过程中允许升温在16―18℃左右的范围,根据每消耗1%淀粉浓度醅温约升高2℃计算,那末在发酵过程中可以消耗淀粉浓度9%左右,而一般酒醅的残余淀粉浓度为5%左右,说明入池淀粉浓度应控制在14―15%左右。如果采用续渣法生产,因为酒醅反复发酵,入池淀粉浓度可以适当提高一些,可控制在15―16%左右。如果采用配糟一次发酵法生产,因为配糟量较大(一般在1∶5左右),大多数酒糟可参与反复发酵,因此入池淀粉浓度可控制在13―14%左右。当然还要考虑到气温条件,原料品种和质量等其它因素的影响,应该根据具体情况进行灵活掌握。 (2)酒精浓度的问题 淀粉是产生酒精的源泉,在发酵过程中,当酒精达到一定的浓度时,会对微生物产生毒性,对酶起抑制作用,所以要在配料时注意适宜的淀粉浓度,使形成的酒精不超过微生物能忍受的限度。 根据淀粉经水解形成葡萄糖,又经酵母发酵转化成酒精的反应式计算,淀粉的理论出酒率为56.78%,或者说,每消耗1.53克淀粉可产生1毫升纯酒精。 酵母的品种不同,耐酒精的能力也不一样,一般在8.5%(容量),就明显阻碍酵母繁殖,酒精浓度达到12―14%(容量)时,酵母逐步开始停止发酵。但对酵母发酵而言,还受到温度、糖度、酵母品种等因素的影响。固体发酵白酒,酒醅所含水分较少,相对酒精浓度就较大,成熟酒醅中若含70%的水分,酒精浓度达7%(容量)时,那么相对酒精浓度就是10%(容量),这样的酒精浓度对酵母发酵还不致造成很大影响。 霉菌的蛋白酶在酒精浓度达4―6%(容量)以上时,酶活力就会损失一半,而霉菌的淀粉酶在酒精浓度高达18―20%(容量)以上时,酶活力才开始受到抑制。 从以上分析中可以看出,只要控制一定的酒精浓度(例如一般8%),对霉菌糖化和酵母发酵不会产生多大的影响。 (3)pH值问题 入池淀粉浓度过高,发酵过猛,前期升温过快,则因产酸细菌的生长繁殖,造成了酒醅酸度升高,影响出酒率和酒的质量。但各种微生物和各种酶都是由蛋白质所组成,微生物的生长和酶的作用都有适宜的pH值范围,如果pH值过高或过低,就会抑制微生物的生长,使酶活性钝化,影响发酵过程的正常进行。而适当的pH值可以增强酶活性,并能有效地抑制杂菌的生长繁殖。例如酵母菌繁殖的最适pH值为4.5―5.0,再低一些对酵母菌的生长繁殖影响也不大,但这样低的pH值对杂菌会产生很大的抑制力,若培养基的pH值为4.2或更低一点时,仅酵母可以发育,而细菌则不能繁殖,所以用调节培养基的pH值,来抑制杂菌的生长是个有效的方法。目前工厂里根据长期实践的经验,常用滴定酸度的高低来表示培养基或发酵醪中含酸量的多少。pH值是表示溶液中的H+浓度高低,而滴定酸度表示溶液中的总酸量,包括离解的酸和未离解的酸,它在某些情况下和pH值有一定的关系。麸曲白酒生产中,酸度最主要的来自酒醅,其次来自曲和酒母。在发酵过程中引起酸度增加的主要原因是杂菌的污染。 3.填充材料 酿制麸曲白酒,在配料时往往需要加入填充料,目的是为了调整淀粉浓度,增加蔬松性,调节酸度,以利于微生物的生长和酶的作用,并能吸收浆水和保持酒精,为发酵和蒸馏创造良好的条件。常用填充材料的种类和特性见表4―20。选用填充科要田地制宜,注意其特点和所含有害成分的影响。 常用作填充料的是稻壳、小米壳、花生壳等。以吸水性讲,玉米芯最大,这对出酒率有利。高梁壳含单宁较多,会影响糖化发酵。对酒的质量来讲,玉米芯含有较多的聚戊糖,生成的糠醛量较多。稻壳含有大量的硅酸盐,用量过多,会影响酒精的饲料价值。所以在选用各种填充料时要全面考滤,合理使用。 固态法麸曲白酒生产中,目前配料时均配人大量酒糟,主要是为了稀释淀粉浓度,调节酸度和疏松酒醅,并能供给微生物一些营养物质,同时酒糟通过多次反复发酵,能增加芳香物质,对提高成品白酒的质量有利。虽然酒糟经化验还含有5%左右的残余总糖,但主要是一些纤维素、淀粉l,6键结构的片段以及其它一些还原性物质,这些物质较难形成酒精,而被残留在酒糟中。 4.配料的比例和方法 由于原料性质不同、气温高低不同、酒糟所含残余淀粉量不同及填充料特性的不同,配料比例应有所变化。如果原料淀粉含量高,酒糟和其它填充料配入的比例也要增加;如果酒糟所含残余淀粉量多,则要减少酒糟配比而增加稻壳或谷糠用量。填充料颗较粗,配入量可减少。根据经验计算,一般薯类原料和粮谷类原料,配料时淀粉浓度应在14―16%左右为适宜。填充料用量占原料量的20―30%,根据具体情况作适当调整。粮醅比一般为1∶4―6。 例如以薯干粉为原料(以含淀粉为65%计算),采用清蒸一次发酵法生产,原料配比为: 冬天 薯干粉∶鲜酒糟∶稻壳=1∶5∶0.25―0.35 夏天 薯干粉∶鲜酒糟∶稻壳 =1∶6―7∶0.25―0.35 配料时要求混和均匀,保持疏松。拌料要细致,混蒸时拌醅要尽量注意减少酒精的挥发损失,原料和辅科配比要准。 (三)蒸煮 1.蒸煮的目的 蒸煮是利用水蒸汽的热能使淀粉颗粒吸水膨胀破裂,以便淀粉酶作用,同时借蒸煮把原料和辅料中的杂菌杀死,保证发酵过程的正常进行。在蒸煮时,原料和辅料中所含的有害物质也可挥发排除出去。 2.蒸煮过程中的物质变化 (1)淀粉 淀粉在蒸煮时先吸水膨胀,随着温度的升高,水和淀粉分子运动加剧,当温度上升到60℃以上,淀粉颗粒会吸收大量水分,三维网组织迅速扩大膨胀,体积扩大50―100倍,淀粉粘度大大增加,呈海绵状糊,这种现象称为糊化。这时淀粉分子间的氢键就被破坏,使淀粉分子变成疏松状态,最后和水分子组成氢键,而被溶于水,有效地被淀粉酶糖化。 原料不同淀粉颗粒的大小、形状、松紧程度也不同,因此蒸煮糊化的难易程度也有差异。麸曲白酒是采用固体发酵,原料蒸煮时一般都采用常压蒸煮。由于要破坏植物细胞壁,又考虑到淀粉受到原料中蛋白质和盐类的保护,以及为了达到对原料的杀菌作用,所以实际蒸煮温度都在100℃以上。 (2)蛋白质及含氮有机物质 由于常压蒸煮,温度不太高,蛋白质在蒸煮过程中主要发生凝固变性,极少分解。而原料中氨态氮在蒸煮时便溶解于水,使可溶性氮增加,有利于微生物的作用。 (3)糖分 蒸煮过程中使戊糖脱水成
解直角三角形教案 篇2
解方程”(二)教学设计 教学目标: 1、初步学会如何利用方程来解应用题 2、能比较熟练地解方程。 3、进一步提高学生分析数量关系的能力。 教学重难点: 找出题中的等量关系,并根据等量关系列出方程。 教学过程: 一 创设情景,提出目标 1:出示洪泽湖的图片――洪泽湖是我国五大淡水湖之一,位于江苏西部淮河下游,风景优美,物产丰富。但每当上游的洪水来临时,湖水猛涨,给湖泊周围的人民的生命财产带来了危险。因此,密切注视水位的`变化情况,保证大坝的安全十分重要,如果湖水到了警戒水位的高度,就要引起高度警惕,超出警戒水位越多,大坝的危险就越大。下面,我们来就来看一则有关大坝水位的新闻。谁来当主持人,为大家播报一下。 “今天上午8时,洪泽湖蒋坝水位达14.14m,超过警戒水位0.64m.” 2、我们结合这幅图片来了解警戒水位、今日水位,及其关系。 3、提出学习目标:同学们能解决这个问题吗?你还想知道什么? (1)根据已知条件,找出题目中的数量关系。 (2)根据具体找出的数量关系列出方程,并正确解方程。 【设计意图:从生活实例激发学生的学习兴趣。简洁提出目标让学生明白知识点。】 二 展示成果,激发冲突 1、学生独立解决例3、例4,小组内个人展示。 小组内展示内容主要有例3、例4: (1)根据刚才所了解的信息,这个问题中有哪几个关键的数量呢?(警戒水位、今日水位、超出部分) (2)它们之间有哪些数量关系呢? 2、全班展示 (1)第一种,学生根据的是“警戒水位+超出部分=今日水位”这一数量关系(由于左右相等,也称等量关系)所得到的:x+0.64=14.14 引导质疑:还有不同的方法列方程解吗?(以此引出第二、第三种方法: 14.14x= 0.64与14.140.64= x) 学生:第二种,可以肯定学生所列的方程是正确的,但方程不容易解,为什么呢?因为x是被减去的。 学生:第三种,可让学生让算术解法与之作比较,让其发现,大同小异,因此,在列方程的过程中,通常不会让方程的一边只有一个x。 师:在解决问题中,我们是怎样来列方程的?(将未知数设为x,再根据题中的等量关系列出方程。) (2)展示例4,其他学生自由提出疑问,教师辅导解释。 【设计意图:教师始终把学生放在主体地位,为学生提供了一个自己去想去说,去回味知识掌握过程的舞台,这样将更有助于学生掌握正确的学习方法,总结失败原因,发扬成功经验,培养良好的学习习惯。】 三 拓展延伸 1:P61页“做一做”的题目 2:独立完成练习十一中的第6、8、9题。
解直角三角形教案 篇3
一、说教材
今天我执教的这一课是二年级第二学期第五单元中《锐角、钝角、直角三角形》这一课。
教学目标:
知识与技能目标:知道三角形可以按角分为锐角三角形、钝角三角形和直角三角形以及它们的特征。能辨别锐角三角形、钝角三角形和直角三角形。
过程与方法目标:培养学生观察能力、动手操作能力和合作交流能力。
情感与价值观目标:提高学生对三角形的学习兴趣,感受三角形在生活中无处不在。
教学重点:
能将三角形按角分类,并知道锐角三角形、钝角三角形和直角三角形的特征。
教学难点:
辨别锐角三角形、钝角三角形和直角三角形。
二、说教学过程
这节课由引入、新授、练习和总结四部分组成。
首先是从生活中引入三角形,让学生介绍和观察一些生活中的三角形,感受到三角形在生活中无处不在,以此引出课题。新授部分主要是由以下几个环节构成。
第一个环节通过学生动手操作来判断教师给出的6个三角形的三个角分别是什么角,并填写表格。这里不仅要学生把表格填写完整,还要学生总结出判断一个角是什么角的方法,首先用眼睛观察,如果明显比直角大或比直角小的就马上能够判断了,如果跟直角很接近或者拿不定主意的时候才要用直角量具去验证。填写表格不单单是记录数据,更重要的是让学生数形结合对锐角、钝角和直角三角形初步有所感知。
第二个环节是让学生通过观察刚才填写的表格来发现其中的规律,总结出这6个三角形中,每个三角形至少有2个锐角,最多有一个直角,最多有一个钝角。并且让学生通过验证自己带来的三角形,得出所有的三角形都有这样的特点。
第三个环节是根据刚才找到的三角形的角的特点,来给三角形分类。并且总结出三角形按角分类可以分成锐角、钝角和直角三角形三类。然后通过学生对刚才自己带来的三角形和老师出示的三角形进行判断,巩固三类三角形的定义,并总结出判断三角形属于什么三角形的方法。
第四个环节就是通过三角板和三角尺的比较,和改变三角板摆放的位置,让学生发现判断一个三角形是什么三角形只跟三角形角的特点有关,跟三角形的大小和它摆放的位置没有关系。最后的练习部分有两个练习,第一个练习是给出三角形的一个角让学生判断是什么三角形。给出一个直角和一个钝角时学生很容易就判断出来,但是给出一个锐角的时候,由于前面学习的负迁移,学生很容易脱口而出是锐角三角形,然后通过实际的演示、谜底的揭晓,让学生认识到判断一个三角形是锐角三角形必须要知道三个角都是锐角才行,给出一个锐角是不能判断它是什么三角形的。第二个练习其实是这节课的一个综合运用,学生不仅是要知道判断一个三角形是什么三角形的方法,还要以最快的速度来判断,也就是一开始讲的,明显比直角大或者小的角用眼睛就可以判断,比较像直角或者拿不定主意的时候一定要用直角量具去测量。最后总结的时候,还让学生把今天学到的知识跟自己的实际生活联系起来,整个一堂课从生活中提炼出数学知识,再把数学知识回归到生活中去。
解直角三角形教案 篇4
二、基础知识:
1、在倾斜角为300的山坡上种树,要求相邻两棵数间的水平距离为3米,
2、升国旗时,某同学站在离旗杆底部20米处行注目礼,当国旗升至旗
杆顶端时,该同学视线的仰角为300,若双眼离地面1.5米,则旗杆
3、如图:B、C是河对岸的两点,A是对岸岸边一点,测得∠ACB=450,
BC=60米,则点A到BC的距离是 米。
3、如图所示:某地下车库的入口处有斜坡AB,其坡度I=1:1.5,
则AB=
三、典型例题:
例2、右图为住宅区内的两幢楼,它们的高AB=CD=30米,两楼间的距
线的夹角为300时,求甲楼的影子在乙楼上有多高?
例3、如图所示:某货船以20海里/时的速度将一批重要货物由A处运往正西方的B处,
经过16小时的航行到达,到达后必须立即卸货,此时接到气象部门通知,一台
风中心正以40海里/时的速度由A向北偏西600方向移动,距离台风中心200海
里的圆形区域(包括边界)均会受到影响。
(1)问B处是否会受到台风的影响?请说明理由。
(2)为避免受到台风的影响,该船应该在多少小时内卸完货物?
四、巩固提高:
的.位置升高 米。
2、如图:A市东偏北600方向一旅游景点M,在A市东偏北300的
公路上向前行800米到达C处,测得M位于C的北偏西150,
A、sin450 B、sin600 C、cos300 D、cos600
A向外移动到A,使梯子的底端A到墙根O的距离等于3米,
5、如图所示:某学校的教室A处东240米的O点处有一货物,经过O点沿北偏西600
方向有一条公路,假定运货车辆形成的噪音影响范围在130米以内。
(1)通过计算说明,公路上车辆的噪音是否对学校造成影响?
(2)为了消除噪音对学校的影响,计划在公路边修一段隔音墙,请你计算隔音墙的
解直角三角形教案 篇5
一、教学目标
(一)知识教学点
巩固用三角函数有关知识解决问题,学会解决坡度问题。
(二)能力目标
逐步培养学生分析问题、解决问题的能力;渗透数形结合的数学思想和方法。
(三)德育目标
培养学生用数学的意识,渗透理论联系实际的观点。
二、教学重点、难点和疑点
1.重点:解决有关坡度的实际问题。
2.难点:理解坡度的有关术语。
3.疑点:对于坡度i表示成1∶m的形式学生易疏忽,教学中应着重强调,引起学生的重视。
三、教学过程
1.创设情境,导入新课。
例 同学们,如果你是修建三峡大坝的工程师,现在有这样一个问题请你解决:如图
水库大坝的横断面是梯形,坝顶宽6m,坝高23m,斜坡AB的坡度i 1∶3,斜坡CD的坡度i=1∶2.5,求斜坡AB的坡面角α,坝底宽AD和斜坡AB的长(精确到0.1m)。
同学们因为你称他们为工程师而骄傲,满腔热情,但一见问题又手足失措,因为连题中的术语坡度、坡角等他们都不清楚。这时,教师应根据学生想学的心情,及时点拨。
通过前面例题的教学,学生已基本了解解实际应用题的方法,会将实际问题抽象为几何问题加以解决。但此题中提到的坡度与坡角的概念对学生来说比较生疏,同时这两个概念在实际生产、生活中又有十分重要的应用,因此本节课关键是使学生理解坡度与坡角的意义。