幼儿教师教育网,为您提供优质的幼儿相关资讯

找质数课件教案

发布时间:2023-06-18 质数课件教案

找质数课件教案(集锦6篇)。

宜未雨绸而缪,毋临竭而掘井。幼儿园的老师都希望自己讲的课学生们爱听,能学习的更好,为了加强学习效率,我们一般会事先准备好教案,教案对教学过程进行预测和推演,从而更好地实现教学目标。所以你在写幼儿园教案时要注意些什么呢?小编花时间专门编辑了找质数课件教案(集锦6篇),欢迎你参考,希望对你有所助益!

找质数课件教案 篇1

1、使学生理解质数和合数的概念,能正确地判断一个数是质数还是合数。

2、培养学生观察、比较、抽象、慨括的能力。

3、知道100以内的质数,熟悉20以内的质数。

4、让学生在学习活动中体验到学习数学的乐趣,培养学习数学的兴趣。

理解质数、合数的含义,能正确快速地判断一个数是质数还是合数。

能运用一定的方法,从不同的角度判断、感悟质数与合数。

课前谈话:

给教室里的人分类。体会:同样的事物,依据不同的分类标准,可以有多种不同的分类方法。明确:分类的标准很重要。

一、复习旧知

给自然数分类。根据自然数是不是2的倍数,把自然数可以分成奇数和偶数两类。

说明:这是一种有价值的分类方法,在以后的学习中很有用。

问:想不想学一种新的分类方法?关于新的分类方法,你想知道些什么?

二、进行新课

今天我们就用找因数的方法来给自然数分类。

复习:什么叫因数?怎样找一个数所有的因数?

小组合作:找出列举的各数的所有的因数。

引导学生观察:观察以上各数所含的因数的个数,你能把它们分成几种情况‘!

根据学生的回答板书。

自然数

(因数的个数)

(只有两个因数)(有3个或3个以上的因数)

引导学生思考:只含有两个因数的`,这两个因数有什么特点?引出因数的概念。

明确合数的概念.提问:合数至少有几个因数?

想一想:1的因数有哪几个?它是质数吗?它是合数吗?

明确:这是一种新的分类方法。

猜一猜:质数有多少个?合数呢?

明确:因为自然数的个数是无限的,所以,质数和合数的个数也是无限的。

三、组织趣味游戏

20以内的同学请起立,我们比比看,谁的反应快。

(1)你的学号如果是20以内的质数,请你往前一步。

(2)请你们将20以内的质数,按照从小到大的顺序排列起来。

(3)你的学号如果20以内的合数,请你后退一步。

(4)(询问学号是1的同学)你为什么两次都没动?

四、动手操作,制质数表。(教学例1)

出示P14例题1,找出100以内的质数,做一个质数表。

(1)提问:如何很快的制作一张100以内的质数表?

(2)按质数的概念逐个判断?也可以用筛选法。

(3)介绍筛选法:先排除2以外的所有偶数,接着排除3以外的所有3的倍数,再接着排除5以外的所有5的倍数,最后排除7以外的7的倍数。因为1既不是质数,也不是合数,所以也必须排除。学生操作后,提问:剩下的都是什么数?

(4)学生在组内制作质数表。

(5)讲:判断一个数是不是质数,除了用质数的定义进行判断外,还可以查质数表,如100以内的质数表。

告诉学生:古代的数学家就是用这样的方法来找质数的。

小结方法:同学们运用“排除”的方法,筛选出了100以内的质数。

五、练习巩固

1、找出下面各数的因数的个数,指出哪些是质数哪些是合数,再用质数表检查。

22293549517983

学生独立完成。

问:你是怎么判断的?

明确:可以找出每个数所有的因数,再根据质数和合数的意义来判断;一个数,只有找到1和它本身以外的第三个约束,就能判断这个数是合数还是质数。不必找出所有的因数来,这样可以提高判断的效率。

说明:判断一个数是不是质数还可以查表。100以内的质数比较常用,看书本上的100以内的质数表。用质数表检查对例子1的判断是否正确。

完成课件上的练一练。

六、课堂总结,畅谈收获。

师:通过这节课的学习,你们有什么收获?

找质数课件教案 篇2

质数和合数,例1,例2

1.理解质数和合数的意义。

2.会用质数表判断一个大于1的自然数是质数还是合数,熟记20以内的全部质数。

3.知道1既不是质数,也不是合数。

4.知道自然数按因数的个数分类可以分为质数、合数和1.

1.掌握质数。合数的概念。

2.正确地判断一个数是质数还是合数。

一.复习旧知。

2. 找出1~20奇数,偶数。

1 3 5 7 9 11 13 15 17 19

2 4 6 8 10 12 14 16 18 20

3.分类:

师:自然数可以分为哪两类?是按照什么标准分的?(2的倍数分的)

二.探究新知。

a:1.导入课题:

师:自然数可以按照能被2整除分为奇数,偶数两类。

那么自然数还有没有其他的分法。今天这节课,我

们就一起来研究“质数与合数”(板书课题)

2.提问:

师:看了这一课题后,你们想通过这节课的`学习学会些什么内容呢?

归纳问题(板书)

1) 怎样的数叫质数,怎样的数叫合数?

2) 自然数除了质数、合数外还有哪一类?

3) 用什么 方法判断一个数是质数还是合数?

b.学习质数,合数。

1.写出1~20各数的因数。(课件出示,学生完成表格)

1的因数1 6 1,2,3,6, 11 1,11, 16 1,2,4,8,16,

2 1,2, 7 1,7, 12 1,2,3,4,6,12, 17, 1,17,

3 1,3, 8 1,2,4,8, 13 1,13, 18 1,2,3,6,9,18,

4 1,2,4, 9, 1,3,9, 14 1,2,7,14, 19 1,19

5 1,5, 10, 1,2,5,10, 15 1,3,5,10 20 1,2,4,5,10,20

引导学生看因数(边回答,边看)

2.观察思考

师:这些书的因数的个数一样多吗?(生:不一样)

师:你能把这些数按因数的个数进行分类吗?

学生讨论,分类 (分为哪几类)

3.学

生12报结果(表格,学生完成)

只有一个因数 只有1和它本身两个因数 有两个以上因数的

1 2,3,5,7,11,13 4.,6,8,10,12

17,19 14,15,16,18,20

4. 观察比较,发现特点。归纳概念

质(1)师:观察2.,3,5,7,11,13,17,19 这几个数的因数有什么

特点?(每个数的因数只有1和它本身二个)像这样数叫做质数?

生:一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。

(板书) (课件出示)

找质数课件教案 篇3

质数与合数是青岛版五年级上册107~~109页的内容,是在约数和倍数以及能被2、3、5整除的数的特征的基础上进行教学的。是求最大公约数、最小公倍数以及约分、通分的基础。因此这部分内容的教学不仅要使学生掌握质数、合数的概念,而且能较快地看出常见数是质数还是合数。

(一)质数、合数的意义。能正确判断一个数是质数还是合数

(二)质数、合数与奇数、偶数的区别。

使学生掌握质数与合数根本区别在于:质数,只有1和本身二个约数;合数,除了1和本身,还有其它约数。能否被2整除是区别奇数与偶数的标准。

多媒体课件 1—50自然数表

一. 创设情境,激情导入

想必同学们对于我国的古典四大名著被并不陌生吧?尤其是《西游记》可谓是“深入学生之心”啊!师徒四人在取经的路上真是历经艰辛,有一次师徒四人途经荒山野岭,饥饿难耐,只好有孙悟空借着筋斗云去千里之外寻找食物,不负众望啊,不一会儿,悟空就带着一支硕果累累的桃枝回来,师徒四人终于可以饱餐一顿了。吃饱之后,唐僧就想逗一下八戒,就说:“八戒,你看你吃的桃子最多,数一下桃核看看你吃了多少?”“17个”“沙悟净呢?”“师傅,12个”“那悟空呢?”“9个”“如果我要你们把你们吃剩的桃核排成方阵,八戒你想一下你们三师兄谁的桃核组成的方阵最多?”“当然是我了,因为我的数字最大。”同学们你们说八戒说的对吗?那你猜想一下组成方阵的多少与什么有关呢?(与因数的多少有关)这节课我们就来研究一个数字因数多少的问题:质数与合数。

二. 合作探究,深入浅出

1、小组合作,验证猜想

以小组合作的形式找出

9、12、17这三个数字的所有因数,看一下能否组成方阵与数字的什么有关?在找因数之前谁能回答我怎样才能快速的找出一个数字的因数?

同学们通过我们刚才找数字的因数,能告诉我能否组成方阵与数字的什么有关吗?(因数的个数)

2、合作探究,总结概括

刚才我们知道了能否组成方阵与因数的个数有关,现在请同学们观看大屏幕,请写出这些数字的所有的因数并试着给他们分类。(小组合作,共同完成)

24 25 28 29 30 31 32

小组汇报: 24 25 28 30 32 29 31 17

我们把含有三个或三个以上因数的数字叫做合数。

把只含有1与本身这两个因数的数字叫做质数。 那数字1呢?

只有自己本身一个因数。1这个数字既不符合质数也不符合合数的意义,所以1既不是质数也不是合数。

大屏幕出示数字,37 45 51 53 91 请判断哪些数字是质数,哪些数字是合数

3、细化分类

知道奇数、偶数、质数、合数的区别

上一节课我们把自然数按照能否被2整除分为哪几类?(奇数与偶数)现在你能不能按照数字因数的多少来能他们分类?

自然数:质数合数

三、巩固深化,加深记忆 出示1~~50自然数表

请在1~20的自然数中选出质数是();合数是()。

20以内的质数非常重要,在分解质因数的时候我们都要用到,所以你必须铭记于心,现在以小组合作互相说一说20以内的质数,看谁记得快。

请圈出21~~50以内的质数。(23、29、31、37、41、43、47、)请想办法记住他们。

请写出20以内的`

1、既是质数又是奇数的数字。()

2、既是质数又是偶数的数字。()

3、既是合数又是奇数的数字。()

4、既是合数又是偶数的数字。()

下面几种说法对不对?说明理由。

1、质数都是奇数。( )

2、合数都是奇数。( )

3、除2以外的偶数都是合数.。()

4、自然数除了质数就是合数。( )

5、自然数除了奇数就是偶数。( )

6、“一个数有1和它本身两个约数,这样的数叫做质数。”(

填空:

1、最小的质数 。( )

2、最小的合数。( )

3、最小的奇数是()

4、最小的偶数是()

四、

1、这节课你学到了什么?

2、通过这节课的学习我们知道了给出某一个数字就能知道有几个因数,你能不能根据这节课的学习给我们学校每个班40人的广播操比赛设计一种或几种方阵呢?

本节课的教学从学生喜闻乐见的故事出发,引导学生先尝试猜想,然后让学生动手操作与讨论,从而得出结论。充分体现了学生的主体地位与老师的主导地位。

本节课在学生自己总结认识质数与合数的基础上让学生掌握自然数的分类,不仅仅是学生认识自然数的升华,尤其是让学生写出20以内既是质数又是奇数等等问题的数字,更对学生的理解能力起到更上一层楼的作用。

找质数课件教案 篇4

一、谈话导入

师:同学们,今天我们继续研究有关数的知识。

(出示数字卡片:把2、13、9、12、7、16、15贴在黑板上。)

师:看到这些数,你想到了什么?

生:2是12的因数,12是2的倍数,13、9、7、15是奇数,2、12、16是偶数……

师:9不仅是奇数,还有一个名字叫合数;2不仅是偶数,还有一个名字叫质数。2是质数,9是合数,那么其他的数是质数还是合数呢?

今天这节课,我们就一起来研究有关质数与合数的知识。(板书课题:质数与合数)

[通过复习,了解学生的知识储备,为下面的学习奠定基础。]

二、动手操作,探索新知

(一)操作,感悟

师:请两个同学商量一下你们想研究哪个数。

(学生商量研究的数。)

师(出示边长1厘米的正方形):今天,我们就借助这些小正方形帮助我们理解。

我来提出活动要求:

(1)你们研究哪个数,就从学具袋中取出几个正方形。

(2)用你们选好的正方形来拼摆长方形或正方形。能摆几种,就要摆出几种。

(3)将你摆的结果,填在表格中。

同时请你思考问题:

(1)你用几个小正方形拼出了你的长方形或正方形?

(2)你是怎样拼的?长方形的长、宽各是多少?或正方形的边长是多少?

(两个学生利用学具独立操作、拼摆。)

(学生依次汇报自己拼摆的结果,教师用电脑演示学生汇报的结果,并展示图形。)

[通过动手操作,让学生在操作中了解事物的特征,明确正方形的个数与长方形的长与宽之间的关系。学生通过动手操作得到了大量的学习资源,为后面的'学习奠定了基础。学生与学生之间的互相交流,更加利于学生对知识的掌握。他们在相互的探讨中,使问题得到解决。]

(二)发现图形与算式的关系

师:你们看,拼成的长方形的长、宽与正方形的个数有什么关系?

(图形消失,出示乘法算式:7=7X1。)

生:长与宽相乘就得到了正方形的个数。

师:用XX个小正方形,可以拼出几个长方形?所以写出了几个乘法算式?[考试祝福网 692P.Com]

(学生根据自己拼摆的结果作出相应的回答。)

(三)发现算式与因数的关系

找质数课件教案 篇5

教学目标:

①使学生掌握质数和合数的意义,能正确判断一个常见数是质数还是合数。

②知道100以内的质数,熟悉20以内的质数。

③培养学生自主探索、独立思考、合作交流的能力。

④让学生在学习活动中体验到学习数学的乐趣,培养学习数学的兴趣。

教学重点:质数和合数的意义。

教学难点:正确判断一个常见数是质数还是合数。

教学过程:

一、导入(课件出示)

1.在1——20的各自然数中,奇数有哪些?偶数有哪些?

2.想一想:自然数分成奇数和偶数,是按什么标准分的?自然数分几类?

师:自然数还有一种新的分类方法,今天就来学习这种分类方法。

二、出示预习提纲:

自学内容P23-24例1、做一做,P25—26的T1—5

思考:

1、按要求填书中表:

从上面的表格中的数据有什么特点?

2、什么叫质数和合数?举例说明。

3、在这个表中找出100以内的全部质数

小组讨论,你发现了什么?

4、把不理解的内容做好标记。

三、汇报展示:

1.学习质数和合数的概念。

预习反馈(1)请写出1~20各数的因数?(根据学生的回答板书)

预习反馈(2)观察:填在书中第23页表格中的数据有什么特点?

(3)学生讨论后归纳分成三类:只有因数1的;只有1和它本身这两个因数的;除了1和本身之外还有其他因数的。)

反馈:只有一个因数的:1

只有1和它本身两个因数的:2,3,5,7,11,13,17,19

有两个以上的因数的:4,6,8,9,10,12,14,15,16,18,20

(4)教学质数和合数的概念。

①自然数只有两个因数的,如:2、3、5、7、11、13、17、19等。这几个数的因数一定是多少?

讲:一个数,如果只有1和它本身两个因数,我们把这样的数叫做质数(或素数)。(板书“质数”)

②4、6、8、9、10、12、14、……这些数的因数与上面的数的因数相比有何不同?

讲:一个数,如果除了1和它本身两个因数外还有别的因数,我们把这样的数叫做合数。(板书“合数”)

注意:1既不是质数,也不是合数。

(5)提问:什么叫质数?什么叫合数?自然数按因数个数来分,可以分几类?

2、质数、合数的判断方法。

(1)我们应该怎样去判断一个数是质数还是合数?(根据因数的个数来判断)

(2)完成P23做一做,判断下列各数中哪些是质数,哪些是合数?(先独立完成,再同桌互查)

(3)提问:你是怎样判断的?(找出每个数的因数的个数)

判断是质数还是合数,是不是把所有的因数都找出来?(不必要,只要发现自然数除了1和本身指望还有其它的因数,不管有几个,它都是合数)

3.出示P24例题1,找出100以内的质数,做一个质数表。

(1)提问:如何很快的制作一张100以内的指数表?

(2)按质数的概念逐个判断?也可以用筛选法。

(3)介绍筛选法:先排除2以外的所有偶数,接着排除3以外的所有3的倍数,再接着排除5以外的.所有5的倍数,最后排除7以外的7的倍数。因为1既不是质数,也不是合数,所以也必须排除,这样剩下的就是100以内的质数。

100以内的质数:(略)

(4)讲:判断一个数是不是质数,除了用质数的定义进行判断外,还可以查质数表,如100以内的质数表。(或者看6的倍数的左右)

四、反馈检测

完成P25题1~5

第3题:质数+质数=10,质数×质数=21,分析:这两个质数一定小于10,10以内的质数有2,3,5,7,通过观察可知,只有3和7。

同样,质数+质数=20,质数×质数=91,只有3+17=20和7+13=20,而积是91的只有7和13。

板书设计

质数和合数

质数(素数):只有1和它本身两个因数。如2、3、5、7

合数:除了1和它本身还有别的因数。如4、6、15、49

附质数和合数检测题:

一、填空。(口答)课件出示

1、最小的自然数是(),最小的质数是(),最小的合数是(),最小的奇数是()。

2、20以内的质数有(),20以内的偶数有(),20以内的奇数有()。

3、20以内的数中不是偶数的合数有(),不是奇数的质数有()。

4、在5和25中,()是()的倍数,()是()的约数,()能被()整除。

二、猜一猜:(课件出示)

三、判断题,对的在括号里写“√”,错的写“×”。

(1)任何一个自然数,不是质数就是合数。()

(2)偶数都是合数,奇数都是质数。()

(3)7的倍数都是合数。()

(4)20以内最大的质数乘以10以内最大的奇数,积是171。()

(5)只有两个约数的数,一定是质数。()

(6)两个质数的积,一定是质数。()

(7)2是偶数也是合数。()

(8)1是最小的自然数,也是最小的质数。()

(9)除2以外,所有的偶数都是合数。()

(10)最小的自然数,最小的质数,最小的合数的和是7。()

找质数课件教案 篇6

人教版数学五年级下册练习四第3、4、5题

本节课是在学生学习了奇数、偶数、质数、合数等知识的基础上进行教学的。由于这些概念比较抽象,学生容易混淆,本节课的目的是让学生更好地掌握质数、合数的意义,理顺奇数、偶数、质数、合数知识间的内在联系。通过复习回顾,指导练习,提高练习,由浅入深,让学生在掌握、运用知识中提升。练习的形式多样,通过说一说,找一找,猜一猜,让学生根据所学知识解决一些实际的问题,体会数学源于生活又用于生活,感受数学知识之间的密切联系和应用价值,激发学生学习数学知识的兴趣,培养和提高学生解决问题的能力。

1、进一步掌握质数和合数的意义,会根据质数和合数解决一些实际问题。

2、掌握质数、合数、偶数、奇数之间的联系和区别。

3、经历概念的辨别和指导练习的过程,体验比较分析,归纳整理,练习提高的学习方法。

一、复习回顾

1、什么叫做质数?什么叫做合数?

学生回顾已学知识,在小组中交流后汇报。

2、20以内的质数有 。

学生在练习本上写出20以内的质数,再汇报交流。

3、在23 8 15 4 13 19 2 26 9 45 52 32 17 22 97 这些数中,质数有 ,合数有 ;

奇数有 ,偶数有 。

先找出质数、合数,然后找奇数、偶数,再让学生说出分类的标准。

【设计意图:通过回顾质数和合数的概念,找质数,把非0自然数按不同的'标准分类,在分类、对比中复习质数、合数、奇数、偶数,进一步加强概念的辨析。】

二、指导练习

(一)说一说

1、理解质数、合数、偶数、奇数之间的联系和区别。

(1)师出示以下问题

a、什么数既不是质数也不是合数?

b、最小的质数是多少?它是偶数还是奇数?

c、是不是所有的偶数都是合数,所有的质数都是奇数?

d、最小的合数是多少?

(2)组织学生在小组中讨论以上问题,并互相交流。

学生汇报时,要求学生举例说明。

【设计意图:通过讨论、交流、举例说明让学生更好地理解质数、合数、偶数、奇数之间的联系和区别。】

2、练习四第3题:

出示:

(1)先让学生在小组中自主探讨这三个问题。

(2)组织学生汇报,说一说这些数都是几?你是怎样判断的?

【设计意图:通过猜谜语这个趣味性的活动让学生熟悉20以内的质数,培养学生的学习兴趣。】

3、练习四第4题。

(1)师出示题目,引导学生观察图画,理解题意。

师:从图上你知道了哪些数学信息?小猴遇到了什么问题?3个3个地装是什么意思?和我们学得什么知识有关?2个2个地装呢?5个5个地装呢?

(2)让学生独立帮助小猴解决问题,把解决问题的过程在小组中交流。

(3)如果有75个桃子呢?

小结:2、3、5的倍数的特征。

【设计意图:把数学与生活紧密联系,让学生在解决问题中巩固2、3、5的倍数的特征。教学层次分明,先引导学生理解题意,再独立解决,然后在小组交流;补充第(3)个问题,把本题设计成题组,再让学生解决,起到举一反三的作用。】

(二)找一找

练习四第5题

(1)师说明游戏规则:先由老师说出一个大于2的偶数,同学们找出和等于这个数的两个质数,看谁找得又快又对。

(2)找质数。

14=( )+( ) 8=( )+( ) 20=( )+( )

12=( )+( ) 24=( )+( )

师:一个大于2的偶数都可以表示为两个质数的和吗?

(3)小组合作:每两个人一组,其中一人说一个大于2的偶数,另一个人来找和等于这个数的质数。找出后,两人一起讨论是否正确,然后交换角色继续游戏。

(4)引导学生学习第26页“你知道吗”。

师适时对学生进行爱国主义和探索精神的渗透。

【设计意图:通过分层的游戏活动,在学生理解、掌握知识的同时,培养学生探究知识的能力,满足每个学生数学学习的需要,让不同的人在数学上得到不同的发展。】

三、提高练习

1、猜一猜

师:学校组织郊游,可咱班还有一个同学没来,要赶紧给他打电话。咱们先玩一个游戏,我说,你们把电话号码数字按顺序写下来。看谁猜得有快又准。

小于10的最大偶数是( )。

有因数3,也有因数6是( )。

10以内最大的质数是( )。

10以内最大的奇数是( )。

既不是质数,也不是合数,也不是0是( )。

最小的质数是( )。

是5的倍数,又是5的因数是( )。

最小的合数是( )。

该电话号码是( )。

2、把自己的学号进行自我介绍。

师提示:根据本单元学习的质数、合数、偶数、奇数,2、3、5的倍数的特征向大家介绍自己的学号。

(1)4人小组互相介绍。

(2)指名介绍。

【设计意图:创设一个郊游情境,让学生解决实际问题,提高学生的综合能力。通过自我介绍学号,让学生在玩中复习巩固已学的知识,训练学生的表达能力;通过学生与学生之间的互动,提高他们的学习兴趣。体会到数学源于生活又用于生活,实现人人学有价值的数学。】

四、课堂小结

通过这节课的学习活动,你有哪些收获?

Yjs21.Com更多幼儿园教案扩展阅读

导数课件教案6篇


我们陆续为大家整理了导数课件教案,欢迎阅读,希望大家能够喜欢。老师每一堂课都需要一份完整教学课件,每个老师都需要细心筹备教案课件。 学生反应可以帮助教师调整教学方案,提高教学效果。

导数课件教案【篇1】

教学准备

1、教学目标

(1)理解平均变化率的概念、

(2)了解瞬时速度、瞬时变化率、的概念、

(3)理解导数的概念

(4)会求函数在某点的导数或瞬时变化率、

2、教学重点/难点

教学重点:瞬时速度、瞬时变化率的概念及导数概念的形成和理解

教学难点:会求简单函数y=f(x)在x=x0处的导数

3、教学用具

多媒体、板书

4、教学过程

一、创设情景、引入课题

【师】十七世纪,在欧洲资本主义发展初期,由于工场的手工业向机器生产过渡,提高了生产力,促进了科学技术的快速发展,其中突出的成就就是数学研究中取得了丰硕的成果―――微积分的产生。

【板演/PPT】

【师】人们发现在高台跳水运动中,运动员相对于水面的高度h(单位:米)与起跳后的时间t(单位:秒)存在函数关系

h(t)=-4、9t2+6、5t+10、

如何用运动员在某些时间段内的平均速度粗略地描述其运动状态?

【板演/PPT】

让学生自由发言,教师不急于下结论,而是继续引导学生:欲知结论怎样,让我们一起来观察、研探。

【设计意图】自然进入课题内容。

二、新知探究

[1]变化率问题

【合作探究】

探究1气球膨胀率

【师】很多人都吹过气球,回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢、从数学角度,如何描述这种现象呢?

气球的体积V(单位:L)与半径r(单位:dm)之间的函数关系是

如果将半径r表示为体积V的函数,那么

【板演/PPT】

【活动】

【分析】

当V从0增加到1时,气球半径增加了气球的平均膨胀率为(1)当V从1增加到2时,气球半径增加了气球的平均膨胀率为

0、62>0、16

可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了、

【思考】当空气容量从V1增加到V2时,气球的平均膨胀率是多少?

解析:

探究2高台跳水

【师】在高台跳水运动中,运动员相对于水面的高度h(单位:米)与起跳后的时间t(单位:秒)存在函数关系h(t)=-4、9t2+6、5t+10、

如何用运动员在某些时间段内的平均速度粗略地描述其运动状态?

(请计算)

【板演/PPT】

【生】学生举手回答

【活动】学生觉得问题有价值,具有挑战性,迫切想知道解决问题的方法。

【师】解析:h(t)=-4、9t2+6、5t+10

【设计意图】两个问题由易到难,让学生一步一个台阶。为引入变化率的概念以及加深对变化率概念的理解服务。

探究3计算运动员在

这段时间里的平均速度,并思考下面的问题:

(1)运动员在这段时间里是静止的吗?

(2)你认为用平均速度描述运动员的运动状态有什么问题吗?

【板演/PPT】

【生】学生举手回答

【师】在高台跳水运动中,平均速度不能准确反映他在这段时间里运动状态、

【活动】师生共同归纳出结论

平均变化率:

上述两个问题中的函数关系用y=f(x)表示,那么问题中的变化率可用式子

我们把这个式子称为函数y=f(x)从x1到x2的平均变化率、

习惯上用Δx=x2-x1,Δy=f(x2)-f(x1)

这里Δx看作是对于x1的一个“增量”可用x1+Δx代替x2

同样Δy=f(x2)-f(x1),于是,平均变化率可以表示为:

【几何意义】观察函数f(x)的图象,平均变化率的几何意义是什么?

探究2当Δt趋近于0时,平均速度有什么变化趋势?

从2s到(2+△t)s这段时间内平均速度

当△t趋近于0时,即无论t从小于2的一边,还是从大于2的一边趋近于2时,平均速度都趋近与一个确定的值–13、1、

从物理的角度看,时间间隔|△t|无限变小时,平均速度就无限趋近于t=2时的瞬时速度、因此,运动员在t=2时的瞬时速度是–13、1m/s、

为了表述方便,我们用xx表示“当t=2,△t趋近于0时,平均速度趋近于确定值–13、1”、

【瞬时速度】

我们用

表示“当t=2,Δt趋近于0时,平均速度趋于确定值-13、1”、

局部以匀速代替变速,以平均速度代替瞬时速度,然后通过取极限,从瞬时速度的近似值过渡到瞬时速度的精确值。那么,运动员在某一时刻的瞬时速度?

【设计意图】让学生体会由平均速度到瞬时速度的逼近思想:△t越小,V越接近于t=2秒时的瞬时速度。

探究3:

(1)、运动员在某一时刻t0的瞬时速度怎样表示?

(2)、函数f(x)在x=x0处的瞬时变化率怎样表示?

导数的概念:

一般地,函数y=f(x)在x=x0处的瞬时变化率是

称为函数y=f(x)在x=x0处的导数,记作

或,

【总结提升】

由导数的定义可知,求函数y=f(x)的导数的一般方法:

[3]例题讲解

例题1将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热、如果第xh时,原油的温度(单位:)为y=f(x)=x2–7x+15(0≤x≤8)、计算第2h与第6h时,原油温度的瞬时变化率,并说明它们的意义、

解:在第2h和第6h时,原油温度的瞬时变化率就是

在第2h和第6h时,原油温度的瞬时变化率分别为–3和5、它说明在第2h附近,原油温度大约以3/h的速率下降;在第6h附近,原油温度大约以5/h的速率上升、

导数课件教案【篇2】

1教学预设

1.1教学标准

(1)通过情境的介绍,让学生知道导数的实际背景,体验学习导数的必要性;

(2)通过大量的实例的分析,让学生知道平均变化率的意义,体会平均变化率的思想及内涵,为后续建立瞬时变化率和导数的数学模型提供丰富的背景;

(3)通过实例的分析,让学生感受平均变化率广泛存在于日常生活之中,经历运用数学描述刻画现实世界的过程,体会数学知识来源于生活,又服务于生活,感悟数学的价值;

(4)通过问题探索、观察分析、归纳总结等方式,引导学生从变量和函数的角度来描述变化率,进而抽象概括出函数的平均变化率,会求函数的平均变化率。

1.2标准解析

1.21内容解析

本节是导数的起始课,主要包括三方面的内容:变化率、导数的概念、导数的几何意义。实际上,它们是理解导数思想及其内涵的不同角度。首先,从平均变化率开始,利用平均变化率探求瞬时变化率,并从数学上给予各种不同变化率在数量上精确描述,即导数;然后,从数转向形,借助函数图象,探求切线斜率和导数的关系,说明导数的几何意义。根据教材的安排,本节内容分4课时完成。第一课时介绍平均变化率问题,在“气球膨胀率”、“高台跳水”两个问题的基础上,归纳出它们的共同特征,用f(x)表示其中的函数关系,定义了一般的平均变化率,并给出符号表示。本节内容通过分析研究气球膨胀率问题、高台跳水问题,总结归纳出一般函数的平均变化率概念,在此基础上,要求学生掌握函数平均变化率解法的一般步骤。平均变化率是个核心概念,它在整个高中数学中占有极其重要的地位,是研究瞬时变化率及其导数概念的基础。在这个过程中,注意特殊到一般、数形结合等数学思想方法的渗透。

教学重点在实际背景下直观地解释函数的变化率、平均变化率。

1.22学情诊断

吹气球是很多人具有的生活经验,运动速度是学生非常熟悉的物理知识,这两个实例的共同点是背景简单。从简单的背景出发,既可以利用学生原有的知识经验,又可以减少因为背景的复杂而可能引起的对数学知识学习的干扰,这是有利的方面。但是如何从具体实例中抽象出共同的数学问题的本质是本节课教学的关键。而对本节课(导数的概念),学生是在充满好奇却又一无所知的状态下开始学习的,因此若能让学生主动参与到导数的`起始课学习过程,让学生体会到自己在学“有价值的数学”,必能激发学生学习数学的兴趣,树立学好数学的自信心。

教学难点如何从两个具体的实例归纳总结出函数平均变化率的概念,对生活现象作出数学解释。

1.23教学对策

本节作为导数的起始课,同时也是个概念课,如何自然引入导数的概念是至关重要的。为了有效实现教学目标,准备投影仪、多媒体课件等.

①在信息技术环境下,可以使两个实例的背景更形象、更逼真,从而激发学生的学习兴趣,通过演示平均变化率的几何意义让学生更好地体会数形结合思想。

②通过应用举例的教学,不断地提供给学生比较、分析、归纳、综合的机会,体现了从特殊到一般的思维过程,既关注了学生的认知基础,又促使学生在原有认知基础上获取知识,提高思维能力,保持高水平的思维活动,符合学生的认知规律。

1.24教学流程设置情境→提出问题→知识迁移→概括小结→课后延伸。

2教学简录

2.1创设情境,引入课题

为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立与自然科学中四类问题的处理直接相关:(课件演示相关问题情境)

(1)已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等;

(2)求曲线的切线;

(3)求已知函数的最大值与最小值;

(4)求长度、面积、体积和重心等。

导数是微积分的核心概念之一,它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具。导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度。

评析充分利用章引言中提示的微积分史料,引导学生探寻微积分发展的线索,体会微积分的创立与人类科技发展之间的紧密联系,初步了解本章的学习内容,从而激发他们学习本章内容的兴趣。

2.2提出问题,探求新知

问题1气球膨胀率(课件演示“吹气球”)

我们都吹过气球,回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢。从数学角度,如何描述这种现象呢?

气球的体积V(单位:L)与半径r(单位:dm)之间的函数关系是V(r)=43πr3;

如果将半径r表示为体积V的函数,那么r(V)=33V4π。

师:当V从0增加到1时,气球半径增加了多少?如何表示?

生:r(1)-r(0)≈0.62(dm).

师:气球的平均膨胀率为多少?如何刻画?

生:r(1)-r(0)1-0≈0.62(dm/L).

师:当V从1增加到2时,气球半径增加了多少?如何表示?

生:r(2)-r(1)≈0.16(dm).

师:气球的平均膨胀率为多少?如何刻画?

生:r(2)-r(1)2-1≈0.16(dm/L).

师:非常好!可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了。

归纳到一般情形,当空气容量从V1增加到V2时,气球的平均膨胀率是多少?

生:r(V2)-r(V1)V2-V1.

师生活动:教师播放多媒体,学生可以直接回答问题,教师板书其正确答案。

评析通过熟悉的生活体验,提炼出数学模型,从而为归纳函数平均变化率概念提供具体背景。自然合理地提出问题,让学生体会“数学来源于生活”,创造和谐积极的学习氛围,让学生能通过感知表象后,学会进一步探讨问题的本质,学会使用数学语言和数学的观点分析问题,避免浅尝辄止和过分依赖老师。

问题2高台跳水(观看多媒体视频)

在高台跳水运动中,运动员相对于水面的高度h(单位:m)与起跳后的时间t(单位:s)存在函数关系h(t)=-4.9t2+6.5t+10.如何用运动员在某些时间段内的平均速度粗略地描述其运动状态?

师:请同学们分组,思考计算:0≤t≤0.5和1≤t≤2的平均速度。

生:(第一组)在0≤t≤0.5这段时间里,=h(0.5)-h(0)0.5-0=4.05(m/s);

生:(第二组)在1≤t≤2这段时间里,=h(2)-h(1)2-1=-8.2(m/s)

师生活动:教师播放多媒体,学生通过计算回答问题.对第(2)小题的答案说明其物理意义。

评析高台跳水展示了生活中最常见的一种变化率――运动速度,而运动速度是学生非常熟悉的物理知识,这样可以减少因为背景的复杂而可能引起的对数学知识学习的干扰。通过计算为归纳函数平均变化率概念提供又一重要背景。

师:(探究)计算运动员在0≤t≤6549这段时间里的平均速度,并思考以下问题:

(1)运动员在这段时间内是静止的吗?

(2)你认为用平均速度描述运动员的运动状态有什么问题吗?

师生活动:教师播放多媒体,学生通过计算回答问题。对答案加以说明其物理意义(可以结合图像说明)。

评析通过计算得出平均速度只能粗略地描述运动状态,从而为瞬时速度的提出埋下伏笔即为导数的概念作了铺垫,利用图像解释的过程体现了数形结合的数学思想方法。

(1)让学生亲自计算和思考,展开讨论;

(2)老师慢慢引导学生说出自己的发现,并初步修正到最终的结论上;

(3)得到结论是:①平均速度只能粗略地描述运动员的运动状态,它并不能反映某一刻的运动状态;

②需要寻找一个量,能更精细地刻画运动员的运动状态。

思考:当运动员起跳后的时间从t1增加到t2时,运动员的平均速度是多少?

师生活动:教师播放多媒体,学生可以直接回答问题,教师板书其正确答案。通过引导,使学生逐步归纳出问题1、2的共性。

评析把问题2中的具体数据运算提升到一般的字母表示,体现从特殊到一般的数学思想,同时为归纳函数平均变化率概念作铺垫。

2.3知识迁移,把握本质

(1)上述问题中的变化率可用式子f(x2)-f(x1)x2-x1表示,称为函数f(x)从x1到x2的平均变化率.

(2)若设Δx=x2-x1,Δy=f(x2)-f(x1).(这里Δx看作是对于x1的一个“增量”,可用x1+Δx代替x2).

(3)则平均变化率为ΔyΔx=f(x2)-f(x1)x2-x1=f(x1+Δx)-f(x1)Δx.

思考:观察函数f(x)的图象,平均变化率ΔyΔx=f(x2)-f(x1)x2-x1表示什么?

生:曲线y=f(x)上两点(x1,f(x1))、(x2,f(x2))连线的斜率(割线的斜率).

生:(补充)平均变化率反映了函数在某个区间上平均变化的趋势(变化快慢),即在某个区间上曲线陡峭的程度.

师:两位同学回答得非常好!那么,计算平均变化率的步骤是什么?

生:①求自变量的增量Δx=x2-x1;②求函数的增量Δy=f(x2)-f(x1);③求平均变化率ΔyΔx=f(x2)-f(x1)x2-x1.

评析通过对一些熟悉的实例中变化率的理解,逐步推广到一般情况,即从函数的角度去分析、应用变化率,并结合图形直观理解变化率的几何意义,从几何角度理解平均变化率的概念即平均变化率的几何意义,体现数形结合的数学思想。为进一步加深理解变化率与导数作好铺垫。

2.4知识应用,提高能力

例1已知函数f(x)=-x2+x图象上的一点A(-1,-2)及临近一点B(-1+Δx,-2+Δy),则ΔyΔx=

例2求y=x2在x=x0附近的平均变化率。

2.5课堂练习,自我检测

(1)质点运动规律为s=t2+3,则在时间(3,3+Δt)中相应的平均速度为

(2)物体按照s(t)=3t2+t+4的规律作运动,求在4s附近的平均变化率

(3)过曲线f(x)=x3上两点P(1,1)和P′(1+Δx,1+Δy)作曲线的割线,求出当Δx=0.1时割线的斜率

评析概念的简单应用,体现了由易到难,由特殊到一般的数学思想,符合学生的认知规律

2.6课堂小结,知识再现

(1)函数平均变化率的概念是什么?它是通过什么实例归纳总结出来的?

(2)求函数平均变化率的一般步骤是怎样的?

(3)这节课主要用了哪些数学思想?

师生活动:最后师生共同归纳总结:函数平均变化率的概念、吹气球及高台跳水两个实例、求函数平均变化率的一般步骤、主要的数学思想有:从特殊到一般,数形结合。

评析复习重点知识、思想方法,完善学生的认知结构。

2.7布置作业,课后延伸

(1)课本第10页:习题A组:第1题

(2)课后思考问题:需要寻找一个量,能更精细地刻画运动员的运动状态,那么该量应如何定义?

3教学反思

在教学设计时,我把“平均变化率”当成本节课的核心概念。教学的预设目标基本完成,特别是知识目标,学生能较好地掌握“平均变化率”这一概念,并会利用概念求平均变化率。根据这一节课的内容特点以及学生的实际情况,在教学过程中让学生自己去感受问题情境中提出的问题,并以此作为突破口,启发、引导学生得出函数的平均变化率。

成功之处:通过生活中的实例,引导学生分析和归纳,让学生在已有认知结构的基础上建构新知识,从而达到概念的自然形成,进而从数学的外部到数学的内部,启发学生运用概念探究新问题。这样学生不会感到突兀,并能进一步感受到数学来源于生活,生活中处处蕴含着数学化的知识,同时可以提高他们学习数学的主观能动性。教学的预设目标基本完成,特别是知识目标,学生能较好地掌握“平均变化率”这一概念,并会利用概念求平均变化率。

改进之处:课堂实施过程中,虽然在形式上没有将知识直接抛给学生,但自己的“引导”具有明显的“牵”的味道.在教学过程中,虽然能关注到适当的计算量,但激发学生思维的好问题不多。整堂课学生的思维量不够,学生缺少思辩,同时留给学生判断和分析的成分、时间都不够。

4教学点评

采用相互讨论、探究规律和引导发现的教学方法,通过不断出现的一个个问题,一步步创设出使学生有兴趣探索知识的“情境”,营造生动活泼的课堂教学气氛,充分发挥学生的主体地位,通过实例,引导学生经历由平均变化率到瞬时变化率的过程,从而更好地理解变化率问题。

4.1注重情境创设,适度使数学生活化、情境化

注重情境创设,适度使数学生活化、情境化而又不失浓厚的数学味,可以激发学生学习的内在需要,把学生引入到身临其境的环境中去,自然地生发学习需求。因此,本节课以两个实际问题(吹气球和高台跳水)为情景,在激发主体兴趣的前提下,引导学生在生活感受的基础之上从数学的角度刻画“吹气球”和“高台跳水”,并注重数形结合思想方法的渗透。

4.2准确定位,精心设问,注重学生合作交流

教师的角色始终是数学活动的组织者,参与并引导学生从事有效的学习活动,并在学生遇到困难时,适时点拨,让学生体会到学习数学的过程是人生的一种有意义的经历和体验,从而发挥学生学习数学的能动性和创造性。教师精心设计好问题,从而更好地激发每个学生积极主动地参与到数学学习活动中来,让学生在解决问题时又不断产生新的思维火花,在解决问题的过程中达到学习新知识的目的和激发创新的意识.因此,本课采用自主探索、合作交流的探究式学习方式,使学生真正成为学习的主人。

4.3借用信息技术辅助,强化直观感知

在信息技术环境下,可以使两个实例(吹气球和高台跳水)的背景更形象、更逼真,从而激发学生的学习兴趣,通过演示平均变化率的几何意义让学生更好地体会数形结合思想。同时帮助学生发现规律,使探究落到实处。

导数课件教案【篇3】

【课题】导数与函数的单调性

【教材】北京师范大学出版社《数学》选修1-1

【教材分析】

“导数与函数的单调性”是北师大版普通高中课程标准实验教科书数学选修1-1第四章《导数应用》第一节的内容。本节的教学内容是在学生学习了导数的概念、计算、几何意义的基础上学习的内容,学好它既可加深对导数的理解,又可为后面研究函数的极值和最值打好基础。

函数的单调性是函数极为重要的性质。在高一学生利用函数单调性的定义、函数的图像来判断函数的单调性,通过本节课学习,利用导数来判断函数的单调性,是导数在研究处理函数性质问题中的一个重要应用。同时,为下一节学习利用导数研究函数的极值、最值有重要的帮助。因此,学习本节内容具有承上启下的作用。

【学生学情分析】

由于学生在高一已经掌握了单调性的定义,并能用定义判定在给定区间上函数的单调性。通过本节课的学习,应使学生体验到,用导数判断单调性要比用定义判断简捷得多(尤其对于三次和三次以上的多项式函数,或图像难以画出的函数而言),充分体现了导数解决问题的优越性。虽然函数单调性的概念在高一学过,但现在可能已忘记;因此对于单调性概念的理解不够准确,同时导数是学生刚学习的概念,如何将导数与函数的单调性联系起来是一个难点。

【教学目标】

1.知识与能力:

会利用导数解决函数的单调性及单调区间。

2.过程与方法:

通过利用导数研究单调性问题的探索过程,体会从特殊到一般的、数形结合的研究方法。

3.情感态度与价值观:

通过导数方法研究单调性问题,体会到不同数学知识间的内在联系,同时通过学生动手、观察、思考、总结,培养学生的探索精神,引导学生养成自主学习的学习习惯。通过导数研究单调性的步骤的形成和使用,使得学生认识到利用导数解决一些函数(尤其是三次、三次以上的多项式函数)的问题,因而认识到导数的实用价值。

【教学重点和难点】

对于本节课学生的认知困难主要体现在:用准确的数学语言描述函数单调性与导数的关系,这种由特殊到一般、数到形、直观到抽象的转变,对学生是比较困难的。根据以上的分析和新课程标准的要求,我确定了本节课的重点和难点。

教学重点:探索并应用函数的单调性与导数的关系求单调区间。

教学难点:探索函数的单调性与导数的关系。

【教学设计思路】

现代教学观念要求学生从“学会”向“会学”转变,本节可从单调性与导数的关系的发现到应用都有意识营造一个较为自由的空间,让学生能主动的去观察、猜测、发现、验证,积极的动手、动口、动脑,使学生在学知识同时形成思想、方法。

整个教学过程突出了三个注重:

1、注重学生参与知识的形成过程,体验应用数学知识解决简单数学问题的乐趣。

2、注重师生、生生间的互相协作、共同提高。

3、注重知能统一,让学生获得知识同时,掌握方法,灵活应用。

根据新课程标准的要求,本节课的知识目标定位在以下三个方面:

一是能探索并应用函数的单调性与导数的关系求单调区间;

二是掌握判断函数单调性的方法;

三是能由导数信息绘制函数大致图像。

【教法预设】

1.教学方法的.选择:

为在课堂上,突出学生的主体地位,本节课拟运用“问题--- 解决”课堂教学模式,采用启发式、讲练结合的教学方法。通过问题激发学生求知欲,使学生主动参与教学实践活动,在教师的指导下发现、分析和解决问题,总结规律,培养积极探索的科学精神。

2.教学手段的利用:

本节课采用多媒体课件等辅助手段以加大课堂容量,通过数形结合,使抽象的知识直观化,形象化,以促进学生的理解。

【学法预设】

为使学生积极参与课堂学习,我主要指导了以下的学习方法:

1.合作学习:引导学生分组讨论,合作交流,共同探讨问题;

2.自主学习:引导学生通过亲身经历,动口、动脑、动手参与数学活动;

3.探究学习:引导学生发挥主观能动性,主动探索新知。

【课时安排】 1 课时

【教学准备】

多媒体(画出函数① ② ③ 在同一个坐标系下的图像);并写出以下四个函数:① ,

② ,③ ,

【教学过程】

一、新课引入:

1.函数增减性的定义是什么?

2.导数的定义是什么?

学生活动:思考以前学习过的数学知识,说出两个问题的概念的要点来。

设计意图:引导学生理解函数的单调性概念及导数的概念

板书课题:导数与函数的单调性

二、新课教学:

1.探究函数的导数与函数的单调性的关系

显示多媒体(出示3个函数的解析式及图像)引导学生观察并回答以下问题:

①这3个函数图像都是直线,其斜率分别是多少?其值有何特点?单调性如何?

②分别求出这3 个函数的导数?并观察其导数值有何特点?

板书:

①函数 ,其直线斜率K=1,其导数值 0

②函数 ,其斜率K=2,其导数值

③函数 ,其斜率K=-3,其导数值

学生思考并归纳总结

①每一条直线的斜率值等于该函数的导数值。

②函数的导数值大于零时,其函数为单调递增;函数的导数值小于零时,其函数为单调递减。

显示多媒体(出示4个函数的解析式):引导学生完成以下问题:

①在不同坐标系下分别做出这4个函数的图像?

②分别求出这4个函数的导数?

设计意图:让各小组学生观察导数的符号与函数图像有何联系并交流、讨论总结。

学生活动:学生思考并举手,教师指定一个学生上台作图。再指定一个学生上台求出函数的导数。

a 作图(略)

b 4个函数的导数是:

① ② ③ ④

引导学生思考并提出以下问题:

①每一个函数在某一点的切线斜率值是否等于该函数在该点处的导数值?

②同一个函数在每一点处的切线的斜率值有何特点?它与该函数的单调性有何联系呢?

③同一个函数的单调性与该函数的导数值有何联系呢?

设计意图:从具体的函数出发,让学生体会从特殊到一般,从具体到抽象的过程,让学生在老师的引导下自主学习和探索总结出曲线的切线的斜率与导数的关系及曲线函数的导数与曲线的单调性之间的关系。让学生经历观察、分析、归纳、发现曲线的单调性也与函数的导数符号有关。

板书:

抽象概括:一般地,函数y=f(x)在某个区间(a,b)内

⑴如果恒有 f′(x)>0,那么 y=f(x)在这个区间(a,b)内单调递增;

⑵如果恒有 f′(x)

注意:

①正确理解 “ 某个区间 ”的含义,它必是定义域内的某个子区间。

②如果在某个区间内恒有f′(x)=0 ,则 f(x) 为常数函数。

2.例题讲解:

例1:求函数 的单调递增区间与递减区间。

分析:

根据上面结论,我们知道函数的单调性与函数导数的符号有关。因此,可以通过分析导数的符号求出函数的单调区间。

解:引导学生回答问题并同时板书。

①函数 的定义域是什么?其导数如何求?

函数的定义域是 ,其导数值是:

②若 时, 的范围是什么?若 时, 的范围又是什么?

当 或 时, ,因此,在这两个区间上,函数是增加的;

当 时, ,因此,在这个区间上,函数是减少的。

所以,函数 的递增区间为 和 ;

递减区间为 。

③讨论函数单调性的一般步骤是什么?

板书:

a 求函数 的导数。

b 讨论单调区间,解不等式 ,解集为增区间;解不等式 ,解集为减区间。

c 得出结论。

设计意图:通过实例让学生掌握利用函数的导数符号来判定函数单调性的方法及过程;进一步让学生体会利用导数工具解决函数的单调性问题以及它的简便性。

3.课堂练习:

教材第83页练习题1、 2

4.课堂小结:

本节课从几个函数的图像与其在区间内的导数值之间的关系,归纳总结函数单调性与导数的关系,根据它们之间的关系通过例题讲解让学生明确了利用导数求函数单调性的方法,并掌握了求函数单调性的一般步骤。

导数课件教案【篇4】

“导学案教学”是以发挥学生在学习中的主体作用为根本目的,教师指导学生通过自主探索知识、提炼归纳知识、练习巩固知识、形成系统知识为主要途径的。导学案教学重在两个“开放”:课程和教学内容的开放,教学过程的开放。总之,导学案本着“以学定教”的理念来设计教学。

1导学案自学,尝试解决

导学案给学生引路,让其尝试预习思考,从中发现问题并尝试解决,教师交待预习时应注意的问题。因此,“学案导学”设计中,数学教师一方面要以“学”的身份,思学生“所思、所感、所难,所错、所乐”,另一方面以“教”的身份,如何帮助学生“变好动为活动、变好胜为好奇、变学答为学问、变粗心为细心、变从众为批判、变孤僻为合作、变依赖为独立、变自卑为自信”。寻求师生互动中的和谐共振,达到教学的最优化。

2质疑归纳,释疑点拨

通过预习,学生对将学内容有了较明确的了解,还应使学生明确在哪儿找疑点。教师要引导学生质疑在新旧知识的衔接处、学习过程的困惑处、法则、规律的结论处、教学内容的重难点处,概念的形成过程中、算理的推导过程中、解题思路的分析过程中、动手操作的实践中等,还要让学生学会变换视角,既可以从正面问,也可以从反面或侧面问。即无处不可生疑,无时不可生疑。如先让学生这样想:“在预习中通过比较,归纳,实践等方法,形成一定的知识结构;再将不能解决的问题,归纳出来,新课学习时才能真正有所交流,各抒己见;也才能真正有所合作,适时加以验证。教师在课堂上应重点点拨、引导预习时绝大多数学生存在的问题。这种学习方式培养了学生听、说、思、记、操作等多种能力,为终生学习、发展学习奠定了基础。

3反馈精讲,自我矫正

为了试探学生预习、交流后掌握新知识新内容的情况,此时可进行尝试练习。在练习中教师可及时发现学生对新知的掌握还存在的问题,教师不仅要精讲巧析、洞查、记录学生的缺陷,及时对症下药,并在下面检测中有所侧重,努力使学生做到“知此知彼,百战不殆”,而且要让学生学会正确地评估自我,自觉的查漏补缺。“导学案教学”是让学生不仅会学,还要会讲,学生讲明白的老师不再重复,所谓“精”,则是“解”绝大多数学生的“疑”,要把握度。通过反馈精讲,也可整理所学知识,让学生系统化,条理化形成完整的结构体系。

4达标训练,反思领悟

通过自学、讨论、释疑、精讲几个环节后,学生对新知的认识水平又有了一定的提升。达标训练是掌握数学知识,形成数学技能技巧、培养解决数学问题的能力、发展学生智力的重要手段,也是培养学生创新能力的重要途径。反思领悟对数学知识的构建起着无可替代的作用。教师根据本课的教学内容和学生的实际情况,时代的发展要求,合理选择,精心设计出能覆盖本课所学内容的题目,以查看本节课学生的学习效果,并针对学生反馈情况及时进行补偿教学。

导学案教学,主要是依据“以学定教”理念,变教为引,变学为思,以引达思,学生多多参与,教师巧妙点拨、指导。它顺应了学习内容越来越丰富、学习活动趋于多样化的教育发展的趋势。“导学案”的教学模式,彰显了“学生是学习的主人,要把课堂还给学生”的教学理念。“导学案”的设计,更多地关注了学生学习的全过程,关注学生学习的有效性,关注教师教学的针对性,关注课堂师生共同成长的互动性。

导数课件教案【篇5】

导数及其四则运算

一、考试要求:(1)导数概念及其几何意义①了解导数概念的实际背景②理解导数的几何意义.(2)导数的运算①能根据导数定义,求函数的导数.②能利用下面给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如的复合函数)的导数.

二、知识梳理:

1、如果当时,有极限,就说函数在点处可导,并把这个极限叫做在点处的导数(或变化率)。记作或,即。的几何意义是曲线在点处的切线;瞬时速度就是位移函数对时间的导数。

6、点是曲线上任意一点,则到直线的距离的最小值是;

7、若函数的图像与直线只有一个公共点,则实数的取值范围是

8、若点在曲线上移动,则过点的切线的倾斜角取值范围是

9、设函数(1)证明:的导数;

(2)若对所有都有,求的取值范围。

10、已知在区间

导数课件教案【篇6】

一、教材分析

导数的概念是高中新教材人教A版选修2-2第一章1.1.2的内容,是在学生学习了物理的平均速度和瞬时速度的背景下,以及前节课所学的平均变化率基础上,阐述了平均变化率和瞬时变化率的关系,从实例出发得到导数的概念,为以后更好地研究导数的几何意义和导数的应用奠定基础。

新教材在这个问题的处理上有很大变化,它与旧教材的区别是从平均变化率入手,用形象直观的“逼近”方法定义导数。

问题1气球平均膨胀率--→瞬时膨胀率

问题2高台跳水的平均速度--→瞬时速度

根据上述教材结构与内容分析,立足学生的认知水平,制定如下教学目标和重、难点

二、教学目标

1、知识与技能:

通过大量的实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数。

2、过程与方法:

①通过动手计算培养学生观察、分析、比较和归纳能力

②通过问题的探究体会逼近、类比、以已知探求未知、从特殊到一般的数学思想方法

3、情感、态度与价值观:

通过运动的观点体会导数的内涵,使学生掌握导数的概念不再困难,从而激发学生学习数学的兴趣.

三、重点、难点

重点:导数概念的形成,导数内涵的理解

难点:在平均变化率的基础上去探求瞬时变化率,深刻理解导数的内涵

通过逼近的方法,引导学生观察来突破难点

四、教学设想(具体如下表)

教学环节教学内容师生互动设计思路

创设情景、引入新课

幻灯片回顾上节课留下的思考题:

在高台跳水运动中,运动员相对水面的高度h(单位:m)与起跳后的时间t(单位:s)存在函数关系h(t)=-4.9t2+6.5t+10.计算运动员在这段时间里的平均速度,并思考下面的问题:

(1)运动员在这段时间里是静止的吗?

(2)你认为用平均速度描述运动员的运动状态有什么问题吗?

首先回顾上节课留下的思考题:

在学生相互讨论,交流结果的基础上,提出:大家得到运动员在这段时间内的平均速度为“0”,但我们知道运动员在这段时间内并没有“静止”。为什么会产生这样的情况呢?

引起学生的好奇,意识到平均速度只能粗略地描述物体在某段时间内的运动状态,为了能更精确地刻画物体运动,我们有必要研究某个时刻的速度即瞬时速度。

使学生带着问题走进课堂,激发学生求知欲初步探索、展示内涵根据学生的认知水平,概念的形成分了两个层次:

结合跳水问题,明确瞬时速度的定义

问题一:请大家思考如何求运动员的瞬时速度,如t=2时刻的瞬时速度?

提出问题一,组织学生讨论,引导他们自然地想到选取一个具体时刻如t=2,研究它附近的平均速度变化情况来寻找到问题的思路,使抽象问题具体化

理解导数的内涵是本节课的教学重难点,通过层层设疑,把学生推向问题的中心,让学生动手操作,直观感受来突出重点、突破难点

问题二:请大家继续思考,当Δt取不同值时,尝试计算的值?

Δt

Δt

-0.10.1

-0.010.01

-0.0010.001

-0.00010.0001

-0.000010.00001

……….….…….…

学生对概念的认知需要借助大量的直观数据,所以我让学生利用计算器,分组完成问题二,

帮助学生体会从平均速度出发,“以已知探求未知”的数学思想方法,培养学生的动手操作能力

问题三:当Δt趋于0时,平均速度有怎样的变化趋势?

Δt

Δt

-0.1-12.610.1-13.59

-0.01-13.0510.01-13.149

-0.001-13.09510.001-13.1049

-0.0001-130099510.0001-13.10049

-0.00001-13.0999510.00001-13.100049

……….….…….…

一方面分组讨论,上台板演,展示计算结果,同时口答:在t=2时刻,Δt趋于0时,平均速度趋于一个确定的值-13.1,即瞬时速度,第一次体会逼近思想;另一方面借助动画多渠道地引导学生观察、分析、比较、归纳,第二次体会逼近思想,为了表述方便,数学中用简洁的符号来表示,即

数形结合,扫清了学生的思维障碍,更好地突破了教学的重难点,体验数学的简约美

问题四:运动员在某个时刻的瞬时速度如何表示呢?

引导学生继续思考:运动员在某个时刻的瞬时速度如何表示?学生意识到将代替2,可类比得到与旧教材相比,这里不提及极限概念,而是通过形象生动的逼近思想来定义时刻的瞬时速度,更符合学生的认知规律,提高了他们的思维能力,体现了特殊到一般的思维方法助其它实例,抽象导数的.概念

问题五:气球在体积时的瞬时膨胀率如何表示呢?

类比之前学习的瞬时速度问题,引导学生得到瞬时膨胀率的表示积极的师生互动能帮助学生看到知识点之间的联系,有助于知识的重组和迁移,寻找不同实际背景下的数学共性,即对于不同实际问题,瞬时变化率富于不同的实际意义。

问题六:如果将这两个变化率问题中的函数用来表示,那么函数在处的瞬时变化率如何呢?

在前面两个问题的铺垫下,进一步提出,我们这里研究的函数在处的瞬时变化率即在处的导数,记作(也可记为)引导学生舍弃具体问题的实际意义,抽象得到导数定义,由浅入深、由易到难、由特殊到一般,帮助学生完成了思维的飞跃;同时提及导数产生的时代背景,让学生感受数学文化的熏陶,感受数学来源于生活,又服务于生活。

循序渐进、延伸

拓展例1:将原油精炼为汽油、柴油、塑料等不同产品,需要对原油进行冷却和加热。如果在第xh时候,原油温度(单位:)为

(1)计算第2h和第6h时,原油温度的瞬时变化率,并说明它的意义。

(2)计算第3h和第5h时,原油温度的瞬时变化率,并说明它的意义。

步骤:

①启发学生根据导数定义,再分别求出和

②既然我们得到了第2h和第6h的原油温度的瞬时变化率分别为-3与5,大家能说明它的含义吗?

③大家是否能用同样方法来解决问题二?

④师生共同归纳得到,导数即瞬时变化率,可反映物体变化的快慢

步步设问,引导学生深入探究导数内涵

发展学生的应用意识,是高中数学课程标准所倡导的重要理念之一。在教学中以具体问题为载体,加深学生对导数内涵的理解,体验数学在实际生活中的应用

变式练习:已知一个物体运动的位移(m)与时间t(s)满足关系S(t)=-2t2+5t(1)求物体第5秒和第6秒的瞬时速度

(2)求物体在t时刻的瞬时速度

(3)求物体t时刻运动的加速度,并判断物体作什么运动?

学生独立完成,上台板演,第三次体会逼近思想,目的是让学生学会用数学的眼光去看待物理模型,建立各学科之间的联系,更深刻地把握事物变化的规律归纳总结、内化知识

1、瞬时速度的概念

2、导数的概念

3、思想方法:“以已知探求未知”、逼近、类比、从特殊到一般引导学生进行讨论,相互补充后进行回答,老师评析,并用幻灯片给出,让学生自己小结,不仅仅总结知识更重要地是总结数学思想方法。这是一个重组知识的过程,是一个多维整合的过程,是一个高层次的自我认识过程,这样可帮助学生自行构建知识体系,理清知识脉络,养成良好的学习习惯

作业安排、板书设计(必做)第10页习题A组第2、3、4题(选做):思考第11页习题B组第1题作业是学生信息的反馈,能在作业中发现和弥补教学中的不足,同时注重个体差异,因材施教,附后板书设计清楚整洁,便于突出知识目标

五、学法与教法

学法与教学用具

学法:

(1)合作学习:引导学生分组讨论,合作交流,共同探讨问题。(如问题2的处理)

(2)自主学习:引导学生通过亲身经历,动口、动脑、动手参与数学活动。(如问题3的处理)

(3)探究学习:引导学生发挥主观能动性,主动探索新知。(如例题的处理)

教学用具:电脑、多媒体、计算器

教法:整堂课围绕“一切为了学生发展”的教学原则,突出①动——师生互动、共同探索。②导——教师指导、循序渐进

(1)新课引入——提出问题,激发学生的求知欲

(2)理解导数的内涵——数形结合,动手计算,组织学生自主探索,获得导数的定义

(3)例题处理——始终从问题出发,层层设疑,让他们在探索中自得知识

(4)变式练习题——深化对导数内涵的理解,巩固新知

六、评价分析

这堂课由平均速度到瞬时速度再到导数,展示了一个完整的数学探究过程。提出问题、计算观察、发现规律、给出定义,让学生经历了知识再发现的过程,促进了个性化学习。

从旧教材上看,导数概念学习的起点是极限,即从数列的极限,到函数的极限,再到导数。这种概念建立方式具有严密的逻辑性和系统性,但学生很难理解极限的形式化定义,因此也影响了对导数本质的理解。

新教材不介绍极限的形式化定义及相关知识,而是用直观形象的逼近方法定义导数。

通过列表计算、直观地把握函数变化趋势(蕴涵着极限的描述性定义),学生容易理解;

这样定义导数的优点:

1.避免学生认知水平和知识学习间的矛盾;

2.将更多精力放在导数本质的理解上;

3.学生对逼近思想有了丰富的直观基础和一定的理解,有利于在大学的初级阶段学习严格的极限定义。

负数的课件教案集锦


每个课堂,老师都需要准备一份完整的教学课件,这需要我们老师认真对待。有良好的教案和课件能够激发学生的学习兴趣。幼儿教师教育网小编为您搜集了一些有用的资料,题为"负数的课件教案",供您参考。希望本文内容能为您提供帮助!

负数的课件教案(篇1)

教学内容:北师大版小学数学四年级上册第七单元p87—90.

教学目标:

1、引导学生在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数;知道0不是正数也不是负数。

2、使学生初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的联系。

3、培养学生良好的数学情感和数学态度。

重点:负数的意义。

难点:理解0既不是正数,也不是负数。

教具准备:多媒体课件、温度计、练习纸、卡片等。

教学过程:

一、游戏导入(感受生活中的相反现象)

1、游戏:我们来玩个游戏轻松一下,游戏叫做《截然相反》。游戏规则:老师说一句话,请你说出与它相反意思的话。

①向上看(向下看)

②向前走200米(向后走200米)

③电梯上升15层(下降15层)

2、下面我们来难度大些的,看谁反应最快。

①我在银行存入了500元(取出了500元)。

②知识竞赛中,五(1)班得了20分(扣了20分)。

③10月份,学校小卖部赚了500元。(亏了500元)。

④零上10摄式度(零下10摄式度)。

3、谈话:王老师的一位朋友喜欢旅游, 五月上旬,他又打算去几个旅游城市走一走。我呢,特意帮他留意了一下这几个地方在未来某天的最低气温,以便做好出门前衣物的准备。下面就请大家一起和我走进天气预报。(天气预报片头)

二、探究新知

1、认识温度计,理解用正负数来表示零上和零下的温度。

课件出示地图:点击南京出示温度计和南京的图片。首先来看一下南京的气温。

这里有个温度计。我们先来认识温度计,请大家仔细观察:这样的一小格表示多少摄式度呢?5小格呢?10小格呢?

(1)现在你能看出南京是多少摄式度吗? (是0℃。)你是怎么知道的?(那里有个0,表示0摄式度)。

(2)上海的气温:上海的最低气温是多少摄式度呢?(在温度计上拨一拨)拨的时候是怎样想的呢?(在零刻度线以上四格)

指出:上海的气温比0℃要高,是零上4摄式度。(教师结合课件,突出上海的气温在零刻度线以上)。

(3)了解首都北京的最低气温:北京又是多少摄式度呢?与南京的0℃比起来,又怎样了呢?(比南京的0℃要低)你能用一个手势来表示它和0℃的关系吗?(对,北京的气温比0度低,是零下4摄式度)你能在温度计上拨出来吗?

(4)比较:现在我们已经知道了这三个地方的最低气温。仔细观察上海和北京的最低气温,它们一样吗?(不一样,一个在0℃以上,一个在0℃以下)。

①上海的气温比0℃高,是零上4摄式度,我们可以记作+4℃,读作正四摄式度,写的时候先写一个正号(指出是正号不是加号,意义和读法都不同了)再写一个4(板书),大家跟我一起来比划一下。+4也可以直接写成4,把正号省略了。所以同学们所说的4℃也就是+4℃。(板书)

②北京的气温比0℃低,是零下4摄式度。我们可以用-4℃来表示零下4摄式度(板书-4)。跟老师一起来读一下。写的时候可以先写一个负号(指出是负号不是减号)再写一个4就可以了,同桌互相比划一下。

(5)小结:通过刚才对三个城市的温度的了解,我们知道记录温度时,以0℃为界线,用象+4或4这些数可以来表示零上温度,用-4这样的数可以表示零下温度。

2、试一试:学生看温度计,写出各地的温度,并读一读。(写在卡片上)

3、听一段中央台的天气预报,将你听到城市的最低和最高温度记录下来。

4、小结:通过刚才的学习,我们得出:以零摄式度为界线,零上温度用正几或直接用几来表示,零下温度用负几来表示。

三、学习珠峰朗玛峰、吐鲁番盆地的海拔表达方法

1、同学们你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰朗玛峰的最新海拔高度。老师把有关网页带来了。(课件出现网页,上面有简单的文字介绍)。谁来读一读这段介绍。

2、今天老师还带来一张珠穆朗玛峰的海拔图,请看。(课件动态地演示珠穆朗玛峰的海拔图)。从图上,你看懂了些什么?

3、我们再来看新疆的吐鲁番盆地的海拔图。(动态演示吐鲁番盆地的海拔情况)。

你又能从图上看懂些什么呢?(引导学生交流,回答珠穆朗玛峰比海平面高8844.43米;吐鲁番盆地比海平面低155米)。

4、珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔吗?

(1)交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。

吐鲁番盆地的海拔可以记作:-155米。(板书)

(2)小结:以海平面为界线,+8844.43米或8844.43米这样的数可以表示海平面以上的高度,-155米这样的数可以表示海平面以下的高度。

四、小组讨论,归纳正数和负数。

1、通过刚才的学习,我们收集到了一些数据(课件显示)我们可以用这些数来表示零上温度和零下温度,还可以表示海平面以上的高度和海平面以下的高度。那么你们观察一下这些数,它们一样吗?你们想帮它们分分类吗?

2、学生交流、讨论。

3、指出:因为+8844.43米也可以写成8844.43米,所以有正号和没正号都可以归于一类。提出疑问:0到底归于哪一类?(引导学生争论,各自发表意见)

① 如果都同意分三类的,老师可以出难题:我觉得0可以分在4它们一类啊,你们怎么来说服我?

② 如果有学生发表分三类的,有的分两类的,可以引导他们互相争论。

4、小结:(结合图)我们从温度计上观察,以0℃为界线,0℃以上的温度用正几表示,0℃以下的温度用负几表示。同样,以海平面为界线,高于海平面的高度我们用正几来表示,低于海平面我们用负几表示。0就象一条分界线,把正数和负数分开了,它谁都不属于。但对于正数和负数来说,它却必不可少。我们把象+4、4、+8844.43等这样的数叫做正数;象-4、-155等这样的数我们叫做负数;而0既不是正数,也不是负数。(板书)正数都大于0,负数都小于0。这节课我们就和大家一起来认识正数和负数。(板书:认识负数)

五、联系生活,巩固应用

1.练习一第2、3题

2.你知道吗:水沸腾时的温度是____。 水结冰时的温度是____。

负数的课件教案(篇2)

教学目标:

1、使学生在现实情境中初步认识负数,了解负数的作用,感受运用负数的需要和方便。

2、使学生知道正数和负数的读法和写法,知道0既不是正数,又不是负数。正数都大于0,负数都小于0。

3、使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的能力。

教学重点:初步认识正数和负数以及读法和写法。

教学难点:理解0既不是正数,也不是负数。

教具准备:多媒体课件、温度计、练习纸、卡片等。

教学过程:

一、游戏导入(感受生活中的相反现象)

1、游戏:我们来玩个游戏轻松一下,游戏叫《我反我反我反反反》。游戏规则:老师说一句话,请你说出与它相反意思的话。

①向上看(向下看)②向前走200米(向后走200米)③电梯上升15层(下降15层)。

2、下面我们来难度大些的,看谁反应最快。

①我在银行存入了500元(取出了500元)。②知识竞赛中,五(1)班得了20分(扣了20分)。

③10月份,学校小卖部赚了500元。(亏了500元)。④零上10摄氏度(零下10摄氏度)。

3、谈话:周老师的一位朋友喜欢旅游,11月下旬,他又打算去几个旅游城市走一走。我呢,特意帮他留意了一下这几个地方在未来某天的最低气温,以便做好出门前衣物的准备。下面就请大家一起和我走进天气预报。(天气预报片头)。这节课我就和大家一起来认识正数和负数。(板书:认识负数)

二、教学新知

1、认识温度计,理解用正负数来表示零上和零下的温度。

(1)首先来看一下南京的气温。(课件出示地图:点击南京出示温度计和南京的图片。)

这里有个温度计。我们先来认识温度计,请大家仔细观察:这样的一小格表示多少摄氏度呢?5小格呢?10小格呢?

现在你能看出南京是多少摄氏度吗?(是0℃。)你是怎么知道的?(那里有个0,表示0摄氏度)。

(2)上海的气温:上海的最低气温是多少摄氏度呢?指出:上海的气温比0℃要高,是零上4摄氏度。(教师结合课件,突出上海的气温在零刻度线以上。)

(3)了解首都北京的最低气温:北京又是多少摄氏度呢?与南京的0℃比起来,又怎样了呢?(比南京的0℃要低)你能用一个手势来表示它和0℃的关系吗?(对,北京的气温比0度低,是零下4摄氏度。)

(4)比较:现在我们已经知道了这三个地方的最低气温。仔细观察上海和北京的最低气温,它们一样吗?(不一样,一个在0℃以上,一个在0℃以下。)

①上海的气温比0℃高,是零上4摄氏度,我们可以记作+4℃,读作正四摄氏度,写的时候先写一个正号(指出是正号不是加号,意义和读法都不同了)再写一个4(板书),大家跟我一起来比划一下。+4也可以直接写成4,把正号省略了。所以同学们所说的4℃也就是+4℃。(板书)

②北京的气温比0℃低,是零下4摄氏度。我们可以用-4℃来表示零下4摄氏度(板书-4)。跟老师一起来读一下。写的时候可以先写一个负号(指出是负号不是减号)再写一个4就可以了,同桌互相比划一下。

(5)小结:通过刚才对三个城市的温度的了解,我们知道记录温度时,以0℃为界线,用像+4或4这些数可以来表示零上温度,用-4这样的数可以表示零下温度。

2、试一试:学生看温度计,写出各地的温度,并读一读。(写在卡片上)

3、听一段中央台的天气预报,将你听到城市的最低和最高温度记录下来。

4、小结:通过刚才的学习,我们得出:以零摄氏度为界线,零上温度用正几或直接用几来表示,零下温度用负几来表示。

三、学习珠峰、吐鲁番盆地的海拔表达方法(P4第2题)

1、同学们你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。(课件出现网页,上面有简单的文字介绍。)谁来读一读这段介绍。

2、今天老师还带来一张珠穆朗玛峰的海拔图,请看。(课件演示珠穆朗玛峰的海拔图)。从图上,你看懂了些什么?

3、我们再来看新疆的吐鲁番盆地的海拔图。(演示吐鲁番盆地的海拔情况)。你又能从图上看懂些什么呢?(引导学生交流,回答珠穆朗玛峰比海平面高8844.43米;吐鲁番盆地比海平面低155米。)

4、珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔吗?

(1)交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。

吐鲁番盆地的海拔可以记作:-155米。(板书)

(2)小结:以海平面为界线,+8844.43米或8844.43米这样的数可以表示海平面以上的高度,-155米这样的数可以表示海平面以下的高度。

四、小组讨论,归纳正数和负数。

1、通过刚才的学习,我们收集到了一些数据(课件显示)我们可以用这些数来表示零上温度和零下温度,还可以表示海平面以上的高度和海平面以下的高度。那么你们观察一下这些数,它们一样吗?你们想帮它们分分类吗?

2、学生交流、讨论。

3、指出:因为+8844.43也可以写成8844.43米,所以有正号和没正号都可以归于一类。提出疑问:0到底归于哪一类?(引导学生争论,各自发表意见)

①如果都同意分三类的,老师可以出难题:我觉得0可以分在4它们一类啊,你们怎么来说服我?

②如果有学生发表分三类的,有的分两类的,可以引导他们互相争论。

4、小结:(结合图)我们从温度计上观察,以0℃为界限线,0℃以上的温度用正几表示,0℃以下的温度用负几表示。同样,以海平面为界线,高于海平面的高度我们用正几来表示,低于海平面我们用负几表示。0就像一条分界线,把正数和负数分开了,它谁都不属于。但对于正数和负数来说,它却必不可少。我们把像+4、4、+8844.43等这样的数叫做正数;像-4、-155等这样的数我们叫做负数;而0既不是正数,也不是负数。(板书)正数都大于0,负数都小于0。

负数的课件教案(篇3)

【教学内容】:

人教课标版小学数学六年级下册第一单元《认识负数》

【情景说明】:

本单元教学负数,是过去小学数学里没有的内容。在小学数学里教学负数的知识(只涉及负整数的初步认识)出于两点考虑:第一,负数在日常生活中的应用还是比较多的,学生经常有机会在生活中看到负数。让他们学习一些负数的知识,有助于他们理解生活中遇到的负数的具体含义,从而拓宽数学视野。第二,适量知道一些负数的知识,扩展对整数的认识范围,能更好地理解自然数的意义。

【教材分析】:

本单元的教学内容分两部分编排:第一部分是结合现实情境教学负数的意义,让学生初步认识负数,初步能认、读、写负数,应用正数和负数表示日常生活中具有相反意义的数量,;第二部分是能借助数轴初步学会比较正数、0和负数之间的大小,引导学生进一步体会负数的意义。今天要展现给大家的是第一部分的内容

【教学目标】:

1、知识与技能目标:在熟悉的生活情境中初步认识负数,能正确的读、写正数和负数,知道

0既不是正数,也不是负数。

2、方法与过程目标:通过生活中的具体事例,充分理解“具有相反意义的量”的意思。通过练习掌握一定情境下如何用正负数表示具有相反意义量,以及正、负数在特定情

境中所表示的意义。

3、情感态度与价值观目标:初步体验数学与日常生活的密切联系,进一步激发学习数学的兴趣。

【教学重点】:

理解负数的意义

【教学难点】:

理解负数的意义以及对0的新认识。

【教具、学具】:

多媒体

【教学过程】:

一、创设激情,导入新课

1、学生记录信息。

师:同学们,我们每天都要和数打交道,今天我们就来用一用。老师现在要说几条数据信息,请你帮老师记录下来,行不行?

好,那就请你准备记录。先听一听要求:独立思考,选择自己喜欢的方式记,并想一想,怎样记才能既简洁又能让人一眼就看懂。准备好了吗?开始。

第一条:公交车上,第一次上来8人,第二次下去6人。

第二条:粮仓里上午运进粮食800千克,下午运出400千克;

第三条:商店里八月份赚了20xx元,九月份亏了1000元。

教师巡视学生的记录,从中收集几条信息。

2、反馈。

师:好,大家都记好了。老师也收集了几个同学的做法,我们一起来欣赏一下,或许,这里面就有你的想法。

(1)只写数字的。

师:你觉得他记得怎么样?有什么想说的?

其实这个8人是?这个6人呢?一个是上来,一个是下去,它们表示的意义是?(相反的)

那么这里呢?一个运进,一个运出,它们表达的意思也是?(相反的)那么盈利和亏损呢?

师:对,像这样的情况,我们称为“相反意义的量”。(板书)全班齐读一次。

那么,这些同学用学过的数还能区分这些相反意义的量吗?

(2)加上文字的。

师: 我们再来看第二种方法。现在你能看懂吗?还有谁也是这样想的?加上了文字帮助表达,很好地解决了这个问题。

(3)第三种。

师:第三位同学又是怎么表达的呢?我们再来看看。这是哪个同学的?请你来介绍一下,你是怎么想的?

(第一次上来8人,多了8人……)

师:哦,那么,后面的几个大概也是这个意思是吗?同学们,觉得这种方法怎么样?好在哪里?(简洁明了)

师:跟他一样的请举手。其实你们的想法跟数学家的想法是一样的。现在人们就是用这种方法来区分相反意义的量的。

二、学生自学,探究新知

1、揭示负数。

师:数的前面加上了符号,就产生了新的数。同学们,你知道像下面这行的数叫什么数吗?(板书负数)都知道了。

那么上面一行呢?(板书正数)。

2、读、写法。

(1)你会读这些数吗?指名读,

板书下来 -6 +8 -400 +800 -1000 +20xx

我们大家一起来读一读。全班齐读。

(2)你会写吗?就是在数的前面加上不同的符号。这两种符号你以前见过吗?(计算题里的运算符号加和减)

不过,这里的“+”或“一”所表示的意义不同了,“+”叫做正号,“一”叫做负号。板书:正号和负号。他们所表示的意义是相反的。

(出示课件)下面我们来举手抢读,并说一说是什么数。大屏幕上逐一出示:

-100 +6.8 -1.8 -3/4 36

师:36是什么数?(正数)对,有时为了书写方便,我们可以将正数前面的“+”省去。同学们想一想,去掉了正号,这样的数我们熟悉吗?就是我们以前学过的数,所以我们以前学过的数大多数都是正数。那么负数前面的负号可以省略吗?(生:不能区分意义相反的数,就变成了正数)

三、自学测评,交流汇报

1、师:同学们,刚才通过分析与讨论,我们已经认识了数家庭里的新成员---负数这个新朋友,接下来,就让我们走进生活,去进一步地了解负数,认识负数。

2、天气预报。(出示课件)

师:熟悉的音乐马上带来什么节目?

生:天气预报。(课件)

师:我们一起来看今年二月份某一天各个城市的气温情况,我们来随意选五个城市。你们想知道哪儿的气温情况?(点击课件)

谁来读一读 的气温?

(1)你们知道在数学上我们是怎样区分和表示零上和零下温度的呢?

学生回答。(板书:+℃ -℃)你们在哪见过的。(天气预报中常出现)

你看到了负数吗?谁来读一读。

(2)师:下面我们来关注太原的温度,这里的温度是—9度和9度一样吗?

不一样在什么地方?(-9表示零下9度,而另一个表示零上9度。)哪个温度更冷一些?那么与“0”度相比呢?那么这样看来,“0”度在这里是?(分界点)

(3)气温是0度时有什么感觉?科学家把自然状态下,水刚开始结冰的温

度规定为0摄氏度,简称0度。了解了吗?下面,我们一起去温度计上找找这些温度。(出示课件)

(4)反馈:仔细观察,从温度计上,你能发现哪些有关正、负数的知识?

让学生独立思考,然后小组讨论讨论。

生1:正数时,数字越大这个数就越大。负数时,数字越大这个数就越小。

生2:0既不是正数也不是负数。 生3:……

现在对照着温度计再来看,这些都是用正数来表示,跟0比起来,比0要怎么样?(大)那么下面这些都是(负数),比0要怎么样?(小)

那么0呢?0是什么?将0板书在中间。看来,0既不是正数,也不是负数。

刚才在温度计上,我们得到了很多的正数与负数,也感受到了正数和负数的关系,如果现在要你把学过的数分分类,可以分成几类,怎么分?

四、以学定教,合作探究

1、导入:同学们,刚才通过温度计,我们进一步地认识了负数这个新朋友,其实,在我们的生活中,很多地方都要用到负数,我们来看大屏幕。(出示课件)

谁来说一说存折上的数各表示什么?(学生汇报)

2、教师强调重难点。

3、负数的历史

(1)介绍。

其实,负数的产生和发展有着悠久的历史,我们一起来了解一下(配音播放):

“中国是世界上最早认识和运用负数的国家,早在20xx多年前,我国古代数学著作《九章算术》中对正数和负数就有了记载。魏朝数学家刘徽在该书的注文中则更进一步地概括了正、负数的意义:‘两算得失相反,要令正负以名之。’古代用算筹表示数,这句话的意思是:‘两种得失相反的数,分别叫做正数和负数。’并且规定用红色算筹表示正数,黑色算筹表示负数。由于记录时换色不方便,到了十三世纪,数学家还创造了在数字上面画斜杠来表示负数的方法。国外对负数的认识经历了曲折的过程,并且也出现了各种表示负数的形式,直到20世纪初,才形成了现在的形式。但比中国晚了数百年!”

(2)交流。

简单了解了负数的历史,你有什么感受?

五、巩固深练,知识拓展

今天,负数在我们的生产和生活中依然有着广泛的用途。让我们就一起走进生活,感受数与生活的密切联系。

课件逐一出示:

1、表示海拔高度。(“做一做”第2题。)

通常,我们规定海平面的海拔高度为0米,珠穆朗玛峰比海平面高8844.43米,可以记作__ ;吐鲁番盆地大约比海平面低155米,它的海拔高度应记作___。

2、表示温度。(练习一第2题。)

月球表面白天的平均温度是零上126℃,记作_________℃, 夜间的平均温度为零下150℃,记作_____________℃。

3、这是一部电梯的按键,要到5 楼,应按( )键。要到地下二层,要按( )键。

六、作业点评,知识交流

1、学生交流收获。

2、总结。

关于负数,生活中还有更广泛的应用;走进负数,还有更多的知识等待我们去探索,相信同学们在今后的生活和学习中会有更多的收获。

3、作业交流。

【教学反思】:

在我教学的过程中首先我尽可能以学生为主体,创设现实情境,认识新知。负数这一概念虽是第一次出现比较抽象,但学生对此并不是一无所知。教学中我从学生熟悉的天气预报节目引入负数,以现实生活中的温度和海拔高度作为教学起点,让学生在实际生活背景中学习和感受。我又通过教材上丰富多彩,贴近生活的素材,让学生学会用正负数表示一些具有相反意义的量。其次我应用多种方式,使学生理解新知。不过也有欠缺的地方,如对学生的鼓励性语言还有些欠缺,没有及时调动起积极性,对学困生的掌握情况不明确。

负数的课件教案(篇4)

教学目标:

1、在具体情境中了解负数产生的背景和意义,认识负数,掌握正、负数的读、写法,知道正负数和0的关系。会用正、负数描述现实生活中的现象。

2、培养学生观察、比较、联想、猜测、推理等思维能力和独立思考、合作交流等学习能力。

3、让学生体验数学和生活的联系,获得积极的情感体验,进一步激发学习数学的兴趣。

教学方法:

情境创设法、观察比较法、小组合作法、归纳概括法等

教学过程:

一、情境引入,初步认识。

1、从温度中相反量的表示方法了解正、负数。

(1)情境引入。

谈话:同学们平时看电视吗?请看屏幕(播放新闻联播片头)

这熟悉的音乐和画面告诉大家,即将播出的电视节目是?老师从这个节目中收集到了几个城市某一天的最低气温信息,并用温度计表示出来了(如下)

(2)观察汇报:仔细观察这些温度计,你知道了什么?

(上海是零上4℃,南京0℃,北京零下4℃)

(3)比较,产生冲突。

引导学生任选两个城市的温度做比较。

当有比较上海和北京时,师故作狐疑:北京和上海的温度不一样吗?让学生再次强调,一个是零上4摄氏度,一个是零下4摄氏度。

质疑:你知道在数学上是怎样表示和区分这种意义相反的量?

(4)认识+4和-4,学习读写法。

(5)练一练,及时巩固。

【说明:零上4℃和零下4℃用什么样的数来表示和区分呢?这一个问题的提出让学生感受到过去所学的数在表达相反意义的量时有局限性,从而产生了学习新数的需求,在这种积极的内驱指引下,主动学习开始了】

2、从海拔中相反的量的表示进一步认识正、负数。

(1)介绍吐鲁番和珠穆朗玛峰,引出海拔的认识。

用逐层揭示谜底的方法介绍这两个地方。

珠穆朗玛峰:这是一座山峰,这是一座世界上海拔最高的山峰……吐鲁

番盆地:这是一个盆地,这是全国陆地海拔最低的地方,因为海拔的原因,这儿一天当中的温差特别大,所以那儿的哈密瓜特别甜……(一直揭示到学生能猜出答案为止)

联系课件中的图,采用闪烁虚线的效果让学生认识海拔。

(2)用数学的方法表示海拔。

学生自主探索,用刚才学的数学方法表示出海拔。

交流,认识到可以用+8844和-155分别表示它们的海拔。

(3)巩固练习。

3、比较发现,理解正、负数的意义。

(1)观察比较,发现共同的地方。(把例1和例2放在一起引导学生观察发现)

留给学生观察、思考的时间和空间。

交流后认识:每组的两个量都是相反的关系,如果把其中的一个量用正数来表示,那么另一个数就用负数来表示。

(2)拓展认识,深化理解。

引导讨论:生活中除了温度和海拔当中有这些意义相反的量,其他地方也会有吗?他们可以怎么表示呢?

比如(课件出示,让学生思考汇报)

引导拓展:同学们也有“如果”对吗?先小组里说一说,再交流、共享成果。进一步体会:生活在中一些意义相反的量都可以用正、负数来表示,从而全面理解负数的意义。

二、分类整理,深入认识。

1、分类,认识正、负数。

(1)让学生移动帖纸分类

+4 4 -4 +18 -10 -8 +8844 -155 +3193 -400

(2)交流分法和标准,在交流中,认识正、负数,并板书数轴帮助学生形象地理解正、负数和0的关系。

2、练习。

(1)自主拓展:实际上,不管是正数还是负数,并不是只有这些,还能再说几个吗?

(2)练习:

先读一读,再把这些数填入合适的圈内。

-5 +26 8 -40 - -88.3 +103 0 12.4

提问:

① 0为什么不写?

②观察这些数和黑板上的正负数相比较,有什么发现?

三、拓展练习,活化理解。

1、猜温度。

(1)地球表面的最低气温在南极,是(-88.3)℃

(2)月球表面的最低气温是(-183)℃

【说明:让学生根据提示(冷了或热了)猜南极和月球表面的最低温度。这样安排充分挖掘习题功能,把静态的读、写转化成动态的生成,在答案步步逼近的过程中发展了数感,同时为以后学习负数的大小比较做了很好的渗透】

2、描述生活中的正、负数的意义。

(1)电梯中的负数。

(2)存折中的负数。

(3)人口信息

a、根据20xx年10月俄罗斯联邦统计局公布的资料显示:

俄罗斯平均每天增加的人数大约-20xx人。

b、根据新华网最新统计的资料显示:

中国平均每天增加的人数大约40000人。

关于(3):在理解了这两个数字所表示的意义之后,提出问题“你认为俄罗斯和中国这两种不同的人口增长情况,哪个更好一些?”进行适当的辨证思想和责任教育。

四、 小结揭题,质疑延伸。

这节课要结束了,回头反思一下,感觉有收获吗?关于负数,你还想

了解些什么呢?

五、数学文化熏陶。

放短片:你知道吗?介绍负数的来源

谈感想,适当进行思想教育。

【教学反思】:

真实、扎实、有效是评判一节好课的标准。对照重难点,我认为本节课做到以下几点:

1、真实找准基础。

以学生熟悉的生活情境为切入,迅速调动起学生已有的知识经验,为负数的认识提供了一种必要和需求,主动学习从这里开始了。

2、扎实整合教材。

我没有拘泥于教材中提供的素材和认识层面,努力挖掘出更多的具有共性背景的素材,并引导观察、讨论、比较、发现,使学生对负数的认识形成了超越温度和海拔层面更为深刻而全面的理解。

3、有效丰富理解。

练习素材的开阔性、生活性、典型性、趣味性使学生的认识更丰厚,理解更深刻,参与更主动。

负数的课件教案(篇5)

【学习目标】

1、结合具体情景初步了解正负数的意义,学会用正、负数描述生活中具有相反意义的量,会正确地读、写正负数。

2、使学生在熟悉的生活情境,经历数学化、符号化的过程,体会负数产生的必要性。

3、感受正、负数和生活的密切联系,培养对数学的学习兴趣。

【教学重难点】

本节课的重点是理解正负数的意义,难点是用正负数表示生活中的数量。

【教学准备】

课件、背景资料、温度计。

【教学过程】

一、情境引入,激发生活需要。

1、听清信息,独立思考。

师:课开始前,我们来做一个游戏,考查一下谁的注意力最集中。听要求:老师做一个动作,然后你们做意义相反的动作。注意听。 上()、南()、东()、举一下左手、摸一下右耳朵。

师:我说一个词,你说意义相反的词,看谁说得快。

上车()、增加()、上升()、零上()、赚了()。

2、自主探索,创造符号,感知正负数

这次老师说的时候加上数字,而你们当记录员,要把老师说的话用文字或者符号在练习本上记录下来,看谁记得又快又准确。开始,上车 5人、下车 3人; 赢得20分、扣掉10分;收入 1500元、支出 500元;向东走100米、向西走180米。能跟上吗?

(2)汇报:

第一种:用文字表示

第二种:用笑脸图、哭脸图表示

师:这些符号你写的你明白,我写的我明白,而数学语言是要交流的,怎么办?

生:要统一。

第三种:用 +5、 —3、 +20、 —10、 +1500、 —500、+100、—180表示 。

师:你怎么想到这种方法?这样有什么好处?

生:我觉得用加减号来表示能让人一看就明白、简明、清楚。

师:你真厉害!和数学家表达的一样, 那么它们是什么数?

生:正负数

师:非常正确。是呀,描述具有相反意义的量,可以用正、负数表示。今天这节课我们就共同来认识的数的大家族中的新成员——正、负数。(板书课题)

二、合作探索,认识正负数

1、借助温度计初步认识正负数。

师:大家喜欢看天气预报吗?天气预报上就用这种记录方法。

出示课件天气预报信息:你能读懂吗?

师:吐鲁番是我国日温差特别大的地方,现在同学们一起来看一下这条信息,(课件出示信息:“早穿棉袄午穿纱,围着火炉吃西瓜。”说的是吐鲁番日温差特别大。3月份日平均最高气温在零上13℃左右,日平均最低气温在零下3℃左右。)你从图中了解了哪些信息?

生1:吐鲁番的日温差特别大。

生2:日平均最高气温是零上13℃。 (板书:零上13℃)

生3:日平均最低气温是零下3℃。 (板书:零下3℃)

师:你能在温度计学具上分别拨出它们的刻度吗?(每个小组一个温度计学具)教师指导学生认识温度计。

(小组合作,分别在温度计学具上拨出零上13℃和零下3℃)

师:那谁能到前面拨出零上13℃?

(找一名同学到前面来拨)

师:能告诉大家你是怎么找的吗?

生:我看到这里有个零,从零向上找到13,就是13摄氏度了。

师:你为什么不找这个13℃呢?(指零下13℃)

生:那是零下13摄氏度。

师:那零下3℃怎么找?

师:为什么都从0开始找呢?

生:因为0是零上和零下的分界线。

师:“0是分界线”说的好。也就是说0度以上叫“零上”,0度以下叫“零下”。

师:小组合作:在温度计学具上拨出零上10℃和零下5℃。

师:谁能用正负数来表示?

2、结合海拔高度加深认识正负数

师:吐鲁番不但温度特殊,地形也非常奇特,吐鲁番盆地比海平面低155米,而被誉为天山 “明珠”的新疆天池,则比海平面高1980米应如何表示?

师:出示课件,小组研究。

师生小结:以海平面为分界线,海平面以上的用正数来表示,海平面以下的用负数来表示。

师:那海平面用什么来表示?

生:0

师:你认为0是正数还是负数?

师:对!0既不是正数也不是负数。

3、小结

师:像+13 、 +1980 、+49┄┄都是正数,“+”号,可以省略不写,例如:+13还可以写成13,+1980 还可以写成1980 等等。

像—3、—155、—10┄┄都是负数。

师:我们说正号可以省略不写,那么负号也省略不写行不行?

生:不行。

师:为什么?

生1:就不能表示区分两种意义相反的量了。

生2:那样就和正数一样了。

4、学以致用,感受正负数和生活的密切联系

师:我们认识了正负数,你能用正负数来描述生活中的现象吗?生:我在妈妈的银行卡上见过。如:妈妈存入 1000元,记作“ +1000”(有时“ +”省略不写)如果取出 1000元时记作“ —1000”

师:观察的真仔细!

生:我和爸爸去过股票市场,股票的“上涨”和“下跌”就是用正负数来表示的。

师:同学们知道的真多,老师也想介绍一些生活中的正、负数:上下楼梯、食品袋上。

三、课堂练习:(课件出示)

1、填空题:

(1)车内上来8位乘客用+8表示,下去5位乘客用( )表示。

(2)粮店运进大米60吨,记作60吨,运出12吨可以记作( )。

(3)妈妈领取工资1500元,记作+1500元,那么,妈妈帮小明买书用了120元,记作( )元。

(4)小张参加奥运知识竞赛,答对一题得了50分,记作( ),那么答错一题扣了50分记作( )。

(5)小平家住的楼房有15层,地面以下有2层,地面以上第12层记作+12层,地面以下第一层记作( )层。

2、做自主练习5和7题。

四、课堂小结:

通过这节课的学习你有什么收获?

师:希望同学们能用一双数学的眼睛、智慧的头脑来发现生活中更多用正负数表示的有相反意义的量。

负数的课件教案(篇6)

教学目的:

1.知识目标 使学生了解了负数产生的背景 ,理解正、负数及零的意义,掌握正、负数的表示方法 ,会用正、负数表示具有相反意义的量。

2.能力 目标 通过 本节教学,培养学生的想象 能力、理论联系 实际能力、分析解决问题的能力;并向学生渗透"对立统一"、"实践第一"等辩证唯物主义观点;

3.思想目标 对学生进行爱国主义思想教育;培养学生良好的个性品质和学习习惯。

教学设计

本课教材所处位置,是小学所学算术数之后数的范围的第一次扩充,是算术数到有理数的衔接与过渡,并且是以后学习数轴、相反数、绝对值以及有理数运算的基础。

重点

正、负数的意义,

难点

负数的意义及0的内涵。

教学方法:

鉴于初一年级学生的年龄特点 ,他们对概念的理解能力不强,精神不能长时间集中,但思维比较活跃。我决定采取启发式教学法及情感教学,创设问题情境,引导学生主动思考,用大量的实例和生动的语言激发学生学习兴趣,调节学习情绪。并利用计算机和投影胶片辅助教学,增大教学密度。

教学过程的设计,分为四部分。

一、创设情境,引入负数;

二、联系对比,突出重点;

三、课堂练习,及时反馈;

四、总结提高,渗透德育。

在引入部分,我通过介绍数的产生与发展 ,向学生渗透"实践第一"的辩证唯物主义观点:原始社会,从打猎记数开始,首先出现自然数,经过漫长岁月,人们用数"0"表示没有,随着人类 的不断进步,在丈量土地进行分配时,又用小数使测量结果更加准确。使同学们感到,数的第一次发展都是为了满足社会生产与生活的需要。

随之提问:同学们小学都学过哪些数?

为了给下节课讲述有理数概念及分类作好铺垫,我把学生们答出的数归类为整数和分数。

那么小学学过的这些数能否满足社会生产生活及数学自身发展的需要呢?

为了体现负数是从实践中产生的,我选择了三个学生较熟悉的例子,用计算机显示动画效果 ,采取形象化教学。

(计算机)比如零上5°C,它比0°C高5°C,可记作5°C,而零下5°C比0°C低5°C,怎么表示呢?珠穆朗玛峰高出海平面8848米,吐鲁番盆地低于海平面155米,怎样表示二者的海拔高度?又如向东走3米与向西走3米、收入50元与支出50元等等。还可以联系抗洪实际,让学生思考怎样用数学来区分高区警戒水位1米与低于警戒水位1米呢?

通过创设问题情境,激发学生的求知欲望 让不同水平的学生都在教师的引导下进行积极的思维参与,兴致勃勃的参与学习活动,既体现了教师的主导作用,又突出了学生的主体地位,师生共同进入角色。

以上实例说明,小学学过的那些数不能满足实际需要,而且数的局限也阻碍了数学自身向前发展。如小学遇到0-2、3-5这类题我们束手无策。以上种种矛盾及不便我们如何解决呢?

使学生感到数的扩充势在必行,扩充的根源是社会生产生活的需要及数学自身发展的需要。

既然小学学过的数不能满足需要,我们需要引出新的数。根据同学们的生活经验,零下5°C,比0°C低5°C,那么有没有比0还上的数呢?此时,负数已到了呼之欲出的地步,学生顺利地接受了这一事实,负数自然而然的引出了。

接下来讲解正、负数的定义及本节课的重点、难点,我采取联系对比的方法,始终不脱离小学所学知识。在给出正、负数的定义时,我采取比较轻松的态度,尽量避免使概念复杂化:小学学过的大于零的数就是正数,负数就是在正数前面加上一个"-"号。让学生觉得数学并不难学。在讲述正、负数的表示法、读法后,强调这里的"+""-"是性质符号,虽然与表示运算符号的加号、减号涵义不同,但又能完全统一,因此形式上是一样的。在学运算时会有更深刻的理解。

从温度计上观察0°C以上的温度用正数表示,0°C以下的温度用负数表表示,说明正数都大于0,负数都小于0,0是正数与负数的界限。因此,0既不是正数也不是负数。0是非正非负的中性数。对于0的认识,我们小学知道,0表示没有,又知道0的一些性质:0不能作除数、0乘以任何数都得0等。其实,0不仅仅表示没有:比如:0°C并不是没有温度,水位线定为0米并不是没有高度。在实际意义中,0是用来表示基准的数,比如海平面、警戒水位等。因此,0是一个实际存在的数量,它比所有正数都小,又比所有负数都大。当然,0的内涵还很丰富,我们将在以后陆续学到。

以上对数0表示量的意义的分析,实际上能够帮助学生加深对负数的认识和理解。正数、0、负数的大上关系在学生的头脑中初步形成,也为下一节课讲述有理数分类打下基础。

在此选取课本练习1让学生口答,巩固对正、负数的认识。并把课本例1作为练习给出。目的是使学生熟悉正、负数的特征,会判断一个数是正数还是负数。

为了突出正、负数的意义这一重点,就要突出它的实践性。那么,与引入部分呼应,有了负数以后,那些不能解决的问题就迎刃而解了。零上5°C可记作5°C或+5°C,零下5°C可记作-5°C;珠穆朗玛峰海拔8848米,吐鲁番盆地海拔-155米;收入50元记作+50元,支出50元记作-50元等等。同学们观察、正、负数所表示的两个意义正好相反的量,叫做具有相反意义的量。有趣的是,在千世界 中,有上就有下,有升就有降,有收入就有支出,有赢就有亏损。因此,上仍相反意义的量是普遍存在的。正、负数的一个重要应用就是能表示两个具有相反意义的量。为了加深学生对具有相反意义的量的理解,请学生再举一些日常生活中的例子,总结出具有相反意义的量的特征:

(1)意义相反 (2)同一种量

并解释相反与相异的区别。比如向东走3米向北走3米就不是具有相反意义的量。并通过以下练习加以巩固。

由于用负数表示实际问题对学生来说很不习惯,是理解上的难点,如何讲解难点呢?在此要向学生渗透相反意义所隐含的辩证关系。

"+""-"作为性质符号有着更深层的涵义:

"+"表示与问题中给出意义的相同意义,

"-"表示与问题中给出意义的相反意义,

如:前进+5米,表示真正前进5米,

前进-5米,表示后退5米,

那么,后退-5米就表示前进5米。并通过课本例2加以巩固。

为了加深对正、负数的意义及对具有相反意义的量的理解,我安排了这样一个练习:

图中所示是一个零件的剖面图。用φ30±0.07表示轴直径的误差范围,说明±0.07的意义。

因为学生第一次见到这种标注误差的方法,很难回答。我采取铺垫式启发,先讲解;"这是一个直径为30mm的轴,在制作过程中允许产生尺寸上的误差,既可以大些也可以小些,但不许超过一定的范围,如此标准谁能说出它的意义?"这时,学生就会根据正、负数可以表示具有相反意义的量这一特点回答出+0.07表示比30mm大0.07mm,-0.07表示比30mm小0.07mm。这样使学生把正、负数与实际问题联系起来,加深了对正、负数意义内涵的理解。

接下来是课堂练习。让更多的学生参与进来,通过练习巩固知识发现不足,教师及时得到反馈,检查教学效果,采取相应措施。在练习过程中培养学生养成用所学知识去思考问题,判断问题,解决问题的好习惯。学生的练习分出了梯度,让不同水平的学生都有所提高,有助于贯彻因材施教的教学原则。各组练习在进行中,进行后,都要掌握学生的完成情况,让学生举手,加以统计,及时纠错及再讲解,根据学生的接受情况,调整练习题目的多少与难易。在学生回答问题时,我通过语言、目光、动作给予鼓励与告诉,发挥评价的增益效应。

在整个教学过程中,教师的一言一行、语气、神态都会对学生的学习过程产生影响。因此,教师要对学生在听课过程中通过有形的精神状态如眼神等所表现出来的无形思维状态加以感知,随时捕捉反馈信息,对自己的讲课进程作出相应的调整,快、慢、停、转应用自如。

在本节课的小结部分,首先小结本课重点与难点,然后向学生提问:你知道是哪个国家最早使用负数吗?负数最早记载于中国的《九章算术》中,比国外早一千多年。借此向学生进行爱国主义思想教育。并布置思考题及作业,目的是把正、负数与第一章所学代数式联系起来,加深对正、负数的意义的理解。

通过教学实践取得了良好的效果,使我认识到教师在教学过程中,不仅要教会学生知识,还要培养学生良好的数学素养的学习习惯,更要重视教学生做人,才能真正讲出一堂好课,真正成为一名好教师。

负数的课件教案(篇7)

学习目标

引导学生在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数;知道0不是正数也不是负数。

学习重点

负数的意义。

学习难点

负数的意义。

教学过程

一、创设情境

二、探究新知

(1)活动一

(2)教学例1

出示温度计,请同学们在温度计上分别找到零上16℃和零下16℃。

请学生观察温度计,说一说有什么发现?

在学生发言的基础上,强调:以0℃为分界点,零上温度都用正数来表示,零下温度都用负数来表示。(或负数都表示零下温度,正数都表示零上温度。)

“0”是正数,还是负数呢?

在学生发言的基础上,强调:“0”作为正数和负数的分界点,它既不是正数也不是负数。

(3)活动二

(4)教学例2

说一说存折上的数各表示什么?

活动一:用不同的数分别表示零上温度和零下温度。

1.观察数学书P1的例1图:

思考:

(1)室内和室外的气温分别是多少摄氏度?

(2)你能用数学的方法区分和表示这两个不同的温度吗?我想这样表示:

2.组内交流各自的想法,有不懂的问题在小组内讨论。

3.阅读并弄懂下面两行话

零上4摄氏度记作+4℃,零下4摄氏度记作-4℃,+4读作“正四”,-4读作“负四”,+4可写作4。

活动二:理解正数与负数表示的具体意义。

看例2的存折明细示意图,从图中你能知道什么?

负数的课件教案(篇8)

一、教学目标

(一)知识与技能

让学生在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数;知道0既不是正数也不是负数。

(二)过程与方法

结合现实情境理解负数的具体含义,学会用正数、负数表示生活中相反意义的量。

(三)情感态度和价值观

让学生了解负数产生的历史,感受正数、负数与生活的联系,结合史料进行爱国主义教育。

二、教学重难点

教学重点:结合现实情境理解负数的不同含义。

教学难点:结合现实情境理解负数的不同含义。

三、教学准备

课件。

四、教学过程

(一)谈话激趣,导入新课

1.同学们,你们在生活中见过负数吗?你知道它的含义吗?

2.究竟什么是负数?它表示的含义有什么不同呢?今天我们这节课一起认识负数(揭示课题)。

【设计意图】开门见山直入主题,在谈话中了解学生的认知基础,激活学生的生活经验。

(二)结合情境,理解意义

1.初步感知负数

(1)课件出示教材第2页例1。

下面是中央气象台20xx年1月21日下午发布的六个城市的气温预报(20xx年1月21日20时—20xx年1月22日20时)。

教师:请仔细观察,说说你有什么发现?

预设:①哈尔滨的最高气温是零下19℃,最低气温是零下27℃;海口最热,最高气温是23℃……②-12℃表示零下十二摄氏度(读作负十二摄氏度);零下温度在数字前加“-”……

(2)-3℃和3℃表示的意思一样吗?请在温度计中表示出来。

预设:①-3℃表示零下三度,3℃表示零上三度;②它们表示的意义相反;③先找0℃,往下数三格表示-3℃,往上数三格表示3℃。

(3)0℃表示什么意思?

预设:①0℃表示天气很冷;②0℃表示淡水开始结冰的温度;③0℃是零上温度和零下温度的分界线。

小结:比0℃低的温度叫零下温度,通常在数字前加“-”(负号)。比0℃高的温度叫零上温度,在数字前加“+”(正号),一般情况下正号可省略不写。

(4)请在温度计上表示-18℃,比一比-3℃和-18℃哪个温度低?

【设计意图】利用学生熟悉的气温引入负数,初步了解负数的读写方法,体会0的特殊性,并通过提问“-3℃和3℃表示的意思一样吗?”引导学生初步感知用正数、负数表示两种相反意义的量。

2.认识正负数

(1)课件出示教材第3页例2。

教师:研究完气温,再来看看存折上的数。你们又有什么发现呢?说说这些数各表示什么?

预设:①20xx.00表示存入20xx元;②500.00和-500.00的意义恰好相反,一个是存入500元,一个是支出500元。

(2)教师:像零上温度与零下温度、收入与支出这样表示两种相反意义的量,生活中还有许多。你能举出这样的实例吗?

预设:水面上升2米、下降2米;乘车时上客5人、下客6人;货物运进200吨、运出150吨……

(3)我们怎样来表示像这样两种相反意义的量呢?

教师:为了表示两种相反意义的量,需要用两种数。一种是我们以前学过的数,如3、500、4.7、

,这些数是正数;另一种是在这些数的前面添上负号“-”的数,如-3、-500、-4.7、-

等,这些数是负数。那么0是什么数呢?(0既不是正数,也不是负数,它是正数与负数的分界线。)

(4)基本练习(课件出示教材第4页“做一做”第2题)

请学生独立思考,哪些是正数,哪些是负数,并填入相应的圈中。

【设计意图】在具体生活实例中让学生体会负数产生的必要性,认识正数、负数,初步建立正数、负数的概念。同时在出示的负数中有-7、-5.2、-

,让学生感知负数中有负整数、负分数和负小数。

(三)回归生活,拓展应用

教师:在日常生活中,人们还有好多时候要用到正数、负数,让我们一起接着看一看!

1.课件出示教材第6页练习一第1题。

(1)学生独立完成,集体反馈。

(2)看了这些信息,你有什么感受?月球表面白天的平均温度和夜间的平均温度相差多少度?

2. 课件出示教材第6页练习一第5题。

(1)仔细读题,你获得了什么信息?有什么不明白的?(介绍:海平面就是海的平均高度;海拔是地面某个地点高出海平面的垂直距离。)

(2)独立完成,集体反馈。

(3)你知道你所在城市的海拔高度吗?说说它的具体含义。

3.课件出示教材第6页练习一第2题。

(1)仔细读题,说说你知道了什么信息?

(2)请表示出悉尼、伦敦的时间。北京时间用什么表示?

(3)以北京时间为标准,孟加拉国首都达卡的时间记为-2时,你知道它此时的时间吗?

(4)你还知道此时其他时区的时间吗?试着表示出来。

4.课件出示练习题。

某食品厂生产的120克袋装方便面外包装印有“(120±5)克”的字样。小明购买一袋这样的方便面,称一下发现117克,请问厂家有没有欺骗行为?为什么?

(1)说说你知道了什么信息?

(2)“120±5”表示什么意思?

(3)如果120克记作0克,117克可以记作多少克?

【设计意图】通过生活中的信息,让学生学习用正数、负数表示两种具有相反意义的量,丰富了对正数、负数意义的理解。

(四)了解历史,课堂总结

1.课件出示教材第4页“你知道吗?”内容。

其实,负数的产生和发展有着悠久的历史,我们一起来了解一下。

(1)看了介绍,你对负数又有什么新的认识?

(2)你有什么感受?

【设计意图】用图文结合的方式向学生介绍负数的发展史,让学生体会负数发展的历程和中国在负数发展上做出的贡献,激发学生的民族自豪感,进一步丰富学生对负数的认识。

2.这节课你有什么收获?

教师:关于负数,生活中还有更多的知识等待我们去探索,只要同学们做善于观察的有心人,在今后的生活和学习中会有更多的收获。

负数的课件教案(篇9)

教材分析

1、在学生认识了自然数和分数的基础上结合熟悉的生活情境初步认识负数了解负数的意义。会用负数表示生活中的问题。

2、教材通过学生熟悉的生活情境如气温中蕴含的具有两种相反意义的量来体会引入负数的必要性,初步理解负数的含义。

学情分析

负数这部分内容是今后进一步学习有理数的重要基础。小学生对负数概念比较抽象难以理解。因此在教学中应注意如下几点:

1、要通过生动有趣的活动和联系实际的素材来渗透负数的概念。

2、要通过实际感知,动脑感悟,小组讨论理解,逐步培养数感,促进认识和理解。

3、教学中应注意加强知识间的联系与区别。

教学目标

知识技能:结合生活实例引导学生初步理解正负数可以表示两种相反的量。过程与方法:使学生经历负数的认识过程,体验观察比较及归纳总结的方法。情感态度与价值观:感受数学与实际生活之间的联系,激发学习兴趣,培养学生动手动脑的良好习惯。

教学重点和难点

重点:在现实情景中理解正负数的意义。突破方法:创设情景,合作探究。

难点:用正、负数描述生活中的现象。突破方法:列举、比较、分析。

负数的课件教案(篇10)

1、在学生认识了自然数和分数的基础上结合熟悉的生活情境初步认识负数了解负数的意义。会用负数表示生活中的问题。

2、教材通过学生熟悉的生活情境如气温中蕴含的具有两种相反意义的量来体会引入负数的必要性,初步理解负数的含义。

负数这部分内容是今后进一步学习有理数的重要基础。小学生对负数概念比较抽象难以理解。因此在教学中应注意如下几点:

1、要通过生动有趣的活动和联系实际的素材来渗透负数的概念。

2、要通过实际感知,动脑感悟,小组讨论理解,逐步培养数感,促进认识和理解。

3、教学中应注意加强知识间的联系与区别。

知识技能:结合生活实例引导学生初步理解正负数可以表示两种相反的量。过程与方法:使学生经历负数的认识过程,体验观察比较及归纳总结的方法。情感态度与价值观:感受数学与实际生活之间的联系,激发学习兴趣,培养学生动手动脑的良好习惯。

重点:在现实情景中理解正负数的意义。突破方法:创设情景,合作探究。

难点:用正、负数描述生活中的现象。突破方法:列举、比较、分析。

负数的课件教案(篇11)

教学内容:

义务教育课程标准实验教科书数学五年级上册(苏教版)第1-3页上的例1、例2,书上的”做一做”

教学目标:

1、在熟悉的生活情境中,使学生了解负数产生的背景,初步认识负数,知道正数和负数的读写方法,知道0既不是正数也不是负数。

2、通过观察和讨论,分析比较,培养学生的观察能力和概括能力,并在教学中渗透对立、统一的辨证思想。

3、通过实列巩固,让学生感知到数学知识来源于生活,应用于生活,提高学习数学的’兴趣。

教学重点:

认识负数,理解运用正负数表示具有相反意义的量。

教学难点:

理解正数、负数与0之间的关系。

教学准备:

多媒体课件,没有0刻度的温度计

教学过程:

一、巧设情境、感知引入–引出负数

1、选择喜欢的方式记录下列各数:

(1)、在一场足球比赛中,育明小学上半场进了2个球,下半场丢了2个球。

(2)、我校本学期转进学生6人,转出5人。

(3)、李叔叔做生意,10月份赢利1800元,11月份亏损500元。

师:出现在信息中的两个量都是怎样的两个量?

生:是有相反意义的两个量。

独立思考怎样表示这些相反意义的量?把想法记录下来。

2、小组合作交流,选择最为简练的记录方法。引出:+(正号)、-(负号)。

小结导入:在生活中,有许多意义相反的情况存在我们都要用到正负数,今天这节课,我们一起来认识负数。

二、体验内化、探求新知–认识负数

1、借助温度计进一步理解负数的意义

用温度计显示四个城市的的天气情况(课件出示)

学生用已学的知识读一读温度计上的温度,并用数表示各城市的温度情况,

2、学生动手拨一拨,感知0与正负数的关系。

质疑:0是正数还是负数?

通过实际操作得出结论:在温度计上0摄氏度是0上温度和0下温度的分界点,所以0既不是正数也不是负数。

3、出示存折上的存入与支出数

让学生说说存折上的数各表示什么,并得出结论:存入用正数表示,支出用负数表示。

4、介绍正负数的读写

师:正数前的符号可以省略不写,如+500可以写作500;

师:正号可以省略,负号呢?

生:不可以,那样正数和负数就分不清了。

三、回归生活,拓展应用–应用负数。

1、快速抢读并判断(书上做一做第一题)

2、珠穆朗玛峰大约比海平面高8844米,记为(),吐鲁番盆地大约比海平面低155米,记为()。

3、刘翔在第十届世界田径锦标赛半决赛中,110米栏的成绩是13.42秒,当时赛场风速为每秒-0.4秒。如果风速为+0.4秒,又会出现什么情况呢?

学生交流后回答,并请两位学生上台表演相对而跑。

四、课堂总结、知识延伸–拓展负数

师:这节课你有什么收获,有什么地方需要提醒其他同学注意的吗?

师:你对负数还想了解什么呢?

数字课件教案6篇


在给学生上课之前老师早早准备好教案课件,相信老师对要写的教案课件不会陌生。 教案和课件设计质量与教学效果密不可分,好的教案课件是从哪些角度来写的呢?下面是我们精心为你整理的“数字课件教案”,希望对你的工作和生活有所帮助!

数字课件教案【篇1】

教学内容:

人教版六年制小学数学第十册114-115页。

教学目标:

1、通过了解身份证号码蕴含的一些简单信息和编码的含义进一步体会数字编码的方法和作用。

2、让学生给学校的每一位学生编一个学号,通过这个实践活动来运用数字编码的简单方法进行编码,加深对数字编码思想的理解。

教学准备:

搜集有关数字与编码的生活实例,学生课前调查了解自己父母亲或爷爷奶奶的身份证号码。

教学过程:

一、提问激趣,引出课题。

师:同学们,课前老师请大家收集了解爸爸、妈妈、爷爷、奶奶的身份证号码,大家都完成了吗?举起来给我看看。嗯,真不错!

老师很聪明的哟!只要把你了解的这几个号码给我,老师就能猜出哪个身份证号码是你爸爸的,哪个号码是你妈妈的、哪个号码是你爷爷、奶奶的。谁愿意来考考老师?(师在屏幕上出示生收集的号码。)

今天这节课我们就从身份证号码入手,来进一步学习、体会数字编码的方法和意义。(出示课题——数字编码)

二、了解身份证,掌握号码的组成及含义。

师:刚才同学们考了老师,现在老师想考考同学们。请大家看屏幕(屏幕展示一个身份证号码。)这是我们班一位任课老师的身份证号码,猜猜看它的主人是谁?

先让我们一起数一数,共有多少位数字?别小看这18位数字,它里面可藏着这位老师的很多信息哟!通过这些信息,我们就能知道它的主人是谁!

(出示课件)这里有老师收集的我们班任课老师的一些信息,大家再根据课前收集的身份证的知识在小组内讨论、讨论;分析、分析。这个身份证号码会是他们中谁的呢?

各组同学汇报了解的有关身份证编码知识,教师相机提问,并板书。

交流汇报:

组1:我们认为是老师的,因为第17位上的数字是奇数,说明他是一位男老师。

师:哦!看来课前你们小组收集了很多有关的知识。年月日后面的3个数字是顺序码。顺序码就是同一地址所标识的区域范围内同年同月同日出生的人,按一定的顺序排列起来。它的最后一位表示性别,其中奇数表示男性,偶数表示女性。

组2:我们认为是老师的,我们用20xx-1979=27,方老师今年27岁,我们觉得是方老师。

师:嗯,观察得真仔细!身份证号码的第7—14位上的数字是出生日期码。表示出生年月日,这里的“19790206”表示老师是1979年2月6日出生。为什么“2月”用“02”表示而不用“2”表示呢?

组3:我们组不确定是哪位老师。只知道是一个男老师,27岁。方老师和李老师都是,27岁男老师,现在还不能肯定是哪位老师!

师:说的很有道理!我们还要看前面的行政区划代码,这六位数字表示编码对象常住户口所在地,是哪里人。前两位数字表示省、自治区或直辖市。第3、4位上的两个数字表示城市。第5、6位上的两个数字表示县(区)。它可以告诉我们老师是哪里人!

生自由提问:44、19、02表示什么?

师:“44”表示“广东省”。“14”表示“梅州市”。“02”表示“梅江区”。

生对照屏幕上的信息,得出结论:是李赟老师!

师:身份证号码里还有一个信息,就是它的最后一位数字,它是校验码。用来校验身份证的正确性。

同学们,现在让我们一起看看身份证号码的编排。(师生同答)它是由行政区划代码、顺序码、校验码四个基本信息组成。(板书:基本信息)行政区划代码有6个数字,(板书:数字)分别表示省、自治区或直辖市(板书:表示);表示城市;县(区)。出生日期码有8个数字,分别表示年、月、日。顺序码有3个数字,它的最后一位上的奇数表示男性,偶数表示女性。它的最后一位数字,它是校验码。用来校验身份证的正确性。有时也用X表示。

弄懂了身份证号码的设计方法,(完成板书:确定的基本信息、用数字表示)我们可以试着写出自己的身份证号码,愿意试试吗?课前老师调查了同学们的身份证号码,我们班同学都是东莞人,行政区划代码都是441900,其他代码中不确定的可以用x来代替。

师:谁愿意来汇报一下!

生汇报:我的身份证号码是……

师:身份证在生活中有哪些作用?

生:(自由说)登机、贷款、开户……

(师播放录像:身份证号码在生活中的作用及用数码表示的优越性):

身份证有这么多作用,你们将来要注意保管好自己的身份证,不要借给他人使用。

三、设计学号方案。

通过刚才的学习,同学们明白了身份证号码的编码方法和意义。现在,老师想请你们做个小小设计师,设计一个编学号的方案,给我们学校每个学生编一个学号。

(课件出示实践活动的内容和要求)我们学校有5个年级,19个班,共703名学生。我们先来看看,学号中要包含哪些信息?

学生自由说:年级、班级、性别、座号……

师:这些信息你认为哪些是一定要的,哪些是可以删减的?

小组汇报:我们认为……,因为……。

师:我们已经确定了编码中要包含的信息,如何用数字来体现这些信息呢?请大家分小组讨论后完成设计方案。

交流汇报:

我们是这样设计的:有个数字,有信息。

四、联系实际,拓展思维

师:其实,数字编码在我们的生活中随处可见,请大家看屏幕(放课件)。

你的身边还有哪些数字编码的事物,请你选择一种感兴趣的事物,给它编码。

生交流汇报:

师:数字编码在我们的生活中无处不在,感兴趣的同学可以课后继续调查、了解这些编码所传递的信息。

数字课件教案【篇2】

一、说教材、说学情。

“字母表示数”是小学生学习代数初步知识的启蒙课,是后续学习简易方程以及中学进一步学习代数知识的前提和基础,在数学知识整体结构和学生学习过程中有着至关重要的作用。用字母表示数这一内容,看似浅显,平淡,但它是由具体的数和运算符号组成的式子过渡到含有字母的式子,是学生学习数学的一个转折点,也是认识过程上的一次飞跃。教材通过三个情境,学习用字母和含有字母的式子表示数及数量关系,并体会其方法和作用,学会用字母表示学过的有关图形计算公式和运算定律,体现了由具体到抽象、由浅入深、层层推进的意图与特点。

四年级学生已经有了用字母表示一定一种事物或含义的生活经验以及用字母表示运算定律的知识经验,但是用字母表示数是由个别到一般的抽象化过程,是学生认识上的一次飞跃,所以对学生来讲有很大难度。因此,我将教材进行了一些处理:

1.加法交换律激活学生已有知识经验,初步体会字母表示数的优越性和必要性。

2.将算淘气妈妈的年龄改为贴近学生实际的“猜老师”年龄,以此激发学生兴趣,深入学习内容,更好解决问题。

3.将“青蛙儿歌”整体呈现分段进行,作为拓展练习,减缓学生认知上的坡度,培养学生灵活解决问题能力。

二、说学习目标

依据《课标》与学生实际,我将本课的学习目标确立如下:

知识与技能:结合具体情境,体会字母表示数的意义,学会用字母表示数,学会含有字母的乘法算式的简写、略写方法。

过程与方法:经历观察、发现、交流、归纳的过程,发展抽象概括能力。

情感、态度与价值观:在学习过程中逐步感受符号化思想,发展学生的数感,培养学生的抽象概括能力,渗透函数思想。

教学重点:探索用字母表示数的过程,理解字母表示数的意义,学会用字母表示数。

教学难点:在解决实际问题中正确地用含有字母的式子表示数量间的关系。

三、说教法和学法

《数学新课标解读》中要求:“要尽可能的从实际问题引入,使学生感受到字母表示数的意义。”以及“让学生经历数学知识形成与应用的过程。”为此,我在教法运用和学法指导上努力做到三个注重:注重创设贴近生活实际的问题情境;注重引导学生自主探究、合作交流;注重现代多媒体教学手段和传统方式的结合。结合上述分析,我将教学流程设计如下:

四、教学流程

(一)结合生活实际导入

本环节,我以字母a、b引入,激活学生用字母表示加法交换律已有的知识经验,引出课题《字母表示数》使学生初步感知字母表示数的简洁性和必要性,激发学生继续探索字母还可以表示什么的学习积极性。

(二)创设情境探究新知

这部分,我结合教材,创设三个教学情境来完成。

情境一:数青蛙

这个环节中我从学生喜欢的儿歌入手,激发学生的学习兴趣和探究意识,明晰课堂教学。

首先出示课件《数青蛙》,学生共同说儿歌,在意识到这样说下去永远也说不完,激发学生想办法把说不完的话表示出来,结合学生的回答,区别n只青蛙n张嘴和n只青蛙m张嘴两种说法的不同,使学生明确,第二种说法不能表达出青蛙只数和嘴的张数之间的关系,所以不采纳,然后让学生试着用其他字母代替说一说,同时使学生明确两种量相等时可以用同一个字母表示。

然后继续出示课件《数青蛙》,学生共同说儿歌,然后老师说出一个数字18只青蛙,学生已经没有前面的说的快了,但通过计算也能接下去,接着我又说了54只,126只,学生速度越来越慢,但明白都能通过计算得出来青蛙腿的条数。这个时候让学生明白,不管有多少只青蛙,它的腿的条数永远是只数的4倍,这样学生就轻轻松松理解了青蛙腿数和只数的关系,水到渠成的用n只青蛙4×n条腿来表示这首儿歌。

情境二:学简写

当学生用4×n表示青蛙条数时,我告诉他们我还有一种更简单的写法,问他们想不想知道,一下吊起来了他们的胃口,接着我出示自学资料,学生读一读和同桌交流一下,学生在交流自学中马上找到了4n这种简单的写法。

情境三:猜年龄

因为在课前交流是学生已经猜过老师的年龄,并已经揭示了老师的年龄,所以在这个环节中,我先偷偷的告诉一个学生我儿子的年龄和我的关系,学生迅速算出我儿子的年龄,然后让其它学生猜一猜我告诉了那个学生哪句话?在学生知晓了我和儿子的年龄关系后,引导学生用字母来表示年龄,再通过换位思考:老师b岁时,儿子的年龄怎样表示?促进学生有效思考的同时学会字母表示数,懂得字母的取值要符合实际生活,体会用含有字母的式子表示一个结果及两个数量间的关系。此环节设计更贴近生活实际有利于激发学生兴趣。

(三)巩固练习

结合《课标》的要求,因此我把练习题的目的定位于对本节知识点的强化,共设计了三种形式的与生活密切相关的练习题。

1.小练习:

(1)笑笑有20元钱,买书包用去a元,还剩()元。

(2)一个储钱罐里有a元钱,平均分给4人,每人分()元。

(3)同学们做早操,每排站了a人,共站了a排,共有()人做早操。

(4)操场上有a个小朋友在跑步,又来了a个小朋友,现在操场上共有()人在跑步。

通过练习,使学生明白字母表示数可以是多少、倍数关系,并引导学生区分2a和a2意义的不同。

2.课堂检测

(1)你能用一句话说说下面的儿歌吗?与同伴交流你的想法。

(2)填空。

通过课堂检测检验学生对知识的掌握情况,学生在交流对改过程中,如有答案不统一的在组内讨论交流解决,组内解决不了的在课堂进行集体讨论解决。

让学生进行自评、互评,培养学生的合作学习能力。

(四)梳理新知,归纳总结

此环节让学生说一说本节课的收获,是为了让学生经历一次再学习、再巩固的过程,达到充分吸收巩固的目的。

(五)拓展提升

4a还能解决生活中哪些问题?举例说一说

数字课件教案【篇3】

活动目标:

1、萌发幼儿对数字的兴趣

2、引导幼儿发现数字在生活中的运用

3、帮助幼儿将数字运用于生活中

活动准备:

1、活动前布置任务,请幼儿在周围生活中找一找“哪里有数字?它们表示什么意思?

2、教具:0—9的数卡二套,有数字信息的物品若干,数字信息若干条

3、学具:幼儿人手三套0—9的数卡

活动过程:

一、游戏“请出数字娃娃”

数字娃娃来做客,听来得是几?

1、我比3多1,是几?

2(拍六下手)听我拍了几下手?

3、7可以分为4和几?

4、我排在6的后面8的前面,猜猜我是谁?

5、3和5合起来是几?

6、1个娃娃,1朵花,1个苹果都可以用数字几来表示?

7、我像鸭子,我是几?

8、我比8多1比10少1,猜猜我是几?

9、2加3等于几?

10、1减1等于几?

教师按0—9的数序排列数字,请幼儿集体读

二、联想生活中的数字

1、我们周围生活中有许多数字,想想你们在什么地方看到过数字?并说说它们表示什么意思?

2、幼儿自由回答,师随时引导归纳数字表示什么意思?

三、感知数字在生活中的应用

1、说说我们幼儿园有几个班?我们班共有几个小朋友?(数字可表示个数的多少)

2、认读尺子上的数字。(数字可表示长度的长短)

3、看温度计的刻度(数字可表示高低)

4、看电子称上的读数说出物重(可表示重量的多少)

5、认读人民币,邮票的面值,物价牌上的价格?(可表示金额的多少)

6、找出表示当天日期的日历,说说今天是几年几月几日(可表示时间的顺序)

7、认读邮编,书页码,车牌号,信用卡 号码(可表示号码的顺序)

8、我们是大几班的小朋友?第3组的小朋友起立(数字可表示排列的次序)

四、讨论“假如没有数字,生活会变得怎么样?

五、按指令摆数字

1、请找出表示自己年龄的数字

2、摆出自家电话号码,门牌号

六、活动延伸:用扑克牌表示大小,次序。

数字课件教案【篇4】

活动目标:感知10以内数与量的对应关系,复习1~20的数数,了解各数之间的关系。

活动准备:

1、数字1~10卡片人手一套。1~20数字卡片一套。

2、小型玩具。

活动过程:

1、数量对应:

幼儿将1~10数字卡依次排好。

幼儿在数字卡片下面排出对应量的玩具。引导幼儿发现1~10数量按顺序排放的递增(递减)关系。

教师随意取几张数字卡片,请幼儿按照从大到小或从小到大排列。

2、游戏“大了、小了”:

玩法:请一名幼儿离开教室,教师出示一张数字卡片,给在场的幼儿看,然后将卡片合上。请离开的幼儿,猜猜这个数字是几。如果他说的数字比卡片上的数字大,其他幼儿立刻说“大了”,反之,则说“小了”。以此类推,脸续猜3~5次为宜。

(1)幼儿分成两组,以小组的形式做游戏“大了、小了”。

(2)以竞赛的方法,比比哪组得胜。

(3)指导在游戏中有困难的幼儿,帮助幼儿逐步建立1~20之间数的顺序。

教学反思:

数学活动对于小朋友来说是个很愉快的课程,因为整节活动中游戏的时间多,而且小朋友动手操作的机会比较多,但是要让孩子们能真正的理解这节教学活动的内容,并做到熟练掌握、灵活运用却不是那么容易。

数字课件教案【篇5】

教学内容:

人教版三年级数学下册第77、78页综合实践课程。

教学目标:

1、初步了解邮政编码、身份证号码、学号等蕴含的一些简单信息和编码的含义,初步学会编码。

2、体会数字编码在日常生活中的广泛应用,增强应用意识和实践能力。

教学重点:

了解身份证编码的规律,初步学会编码。

教学难点:

如何科学合理地编码。

教具准备:

课件、身份证。

教学过程:

一、创设情境,激趣导入。(2分钟)

1、激趣导入:同学们,在学校里为了区分每个同学要用到学号;生活中,为了识别身份要用到身份证,辨别不同的车辆要用到车牌号,传递信件要用到邮政编码……这些都是用来验证身份的数字编码。今天,老师和大家共同来学习有关“数字编码”的知识。

2、板书课题:数字编码

二、出示目标(1分钟)

这节课的学习目标是:

1、初步了解邮政编码、身份证号码、学号等蕴含的一些简单信息和编码的含义,初步学会编码。

2、体会数字编码在日常生活中的广泛应用,增强应用意识和实践能力。

三、探究体验,经历过程。(17分钟)

1、活动一:认识邮政编码,感知编码信息

(1)介绍邮政编码的作用:

邮政编码是我国的邮政代码。机器能根据邮政编码对信件进行分拣,这样就大大提高了信件传递的速度。

(2)出示信封,引导学生仔细观察。

思考并交流:

①你从信封上发现了什么?(信封左上角有一排数)

②信封左上角那排数是什么?(邮政编码)

③你想知道这些邮政编码是怎样编排的吗?

(3)(课件出示第77页)引导学生了解其中的信息。

邮政编码由六位数组成。

前两位数字表示省(直辖市、自治区),

前三位数字表示邮区,

前四位数字表示县(市),

最后两位数字表示投递局(所)。

(4)说一说:我们学校的邮政编码是多少?它们是怎样组成的?(我校邮政编码是472143)

(5)指名汇报:对邮政编码的认识。

2、 活动二:认识身份证号码,加深感知和理解

(1)教师展示自己搜集的图片(身份证的作用)

说明:身份证可以参与户口登记、汇款、乘坐飞机等。

(2)(实物出示自己的身份证)

学生读出号码,教师写出来。

(3)教师出示搜集的身份证号码,引导学生观察、比较,从中能获得哪些信息?学生独立思考。

指名汇报,学生可能出现的情况:

a、地址码 b、生日码 c、顺序码 d、效验码

教师补充说明:

看到生日,你还能知道年龄。顺序码表示在同年同月同日生的人中的顺序。第17位单数表示男性,双数表示女性。效验码是电脑根据前17位数字按一定公式自动生成的,是电脑识别身份证真假的。

(4)拿出一个你自己调查到的身份证号码,同桌互相说说你所了解到的信息。

(5)结合身份证“371312198311056986”具体让学生认识身份证号码的组成。

(6)出示有关身份证的资料,加深学生了解。

资料一: 每个公民一出生,就有一个身份证号码。公民身份证号码是每个公民唯一的、终身不变的身份代码,是由公安机关按照公民身份号码国家标准编制的。在乘坐飞机、银行办理存款、取款等很多场合为证明身份时都需要出示本人的居民身份证。

资料二:1999年后签发的身份证号码是18位,

如360735198306250218,含义如下:

(1)第1~6位是地区代码,其中1、2位是各省级政府的代码,3、4位是地市级政府的代码,5、6位是县、区级政府代码;

(2)第7 ~14位是出生日期码;

(3)第15 ~17位是顺序码,为县、区级政府所辖派出所的分配码,其中第17位表示性别,为男单女双;

(4)第18位是校验码,通过复杂公式算出,普遍采用计算机自动生成。

3、活动三:认识学号,尝试编学号

(1)引导:生活中哪些地方还用到数字编码?

(2)请同学们运用数字编码,尝试给自己编学号。

例如:张明20xx年入学,是三年级三班的5号男生。他的学号就是20xx0303051。

(3)说一说:你的学号是什么?学号中包含哪些信息?

(4)交流汇报:学号要编入“入学时间、班级序号、班级座号和性别”。

4、活动四:走进生活,了解其他编码信息。

展示搜集的图片。

四、总结提升。(5分钟)

像这样把一些数字或字母按一定标准排列,就叫数字编码。以前我们学习了用数表示数量和顺序,这节课我们进一步知道了数还可以用来编码。可见,数字在我们日常生活中应用非常广泛。数字编码真是又方便又快捷。同学们,未来社会将更是一个数字信息时代,还有许多数字编码有

待我们去发现,等着我们去设计,希望同学们运用学到的知识去解决更多的实际问题。

五、课堂作业。(15分钟)

1、小小设计师

请你为下面的学生设计学号:

(1)王红:20xx年入学,四年级二班的15号女生,她的学号是( )。

(2)李飞:20xx年入学,三年级一班的8号男生,他的学号是( )。

2、请你帮帮他

“小马虎”在课前收集了爷爷、奶奶、爸爸、妈妈四个人的身份证号码,但是不记得这四个号码分别是谁的了,你能帮帮他吗?

440306197012210412

440306194506073311

440306194401010240

440306197209280161

3、实践作业:

生活中还有哪些编码?

请你查找并记录相应的信息。

板书设计:

数字编码

邮政编码 4 7 2 1 4 3

身份证号码 371312 19831105 69 8 6

出生年月 性别

学 号 20xx 03 03 05 1

入学年份 年级 班级 班级学号 性

数字课件教案【篇6】

尊敬的各位领导:大家好!今天我要说的是《用字母表示数》这节课,下面我将会从以下几方面进行说课。

一、教材分析

教学内容:本节课是冀教版七年级数学第五章第一课时《用字母表数》。由于学生由具体的数过渡到用字母表示数,是认识上的一次飞跃。对于他们来说是很抽象的、显得较枯燥的,而且用字母表示数有许多知识和规则与原来的认识和习惯不同,而这些知识和规律又是学习代数、方程、以及函数的主要基础。

《用字母表示数》这一内容,看似浅显,平淡,但它是由具体的数和运算符号组成的式子过渡到含有字母的式子,使学生学习数学的一个转折点,也是认识过程上的一次飞跃。因此,我设立了如下的教学目标:

知识技能目标:

①借助生活中的实例,体会用字母表示数的必要性和重要性。

②在具体的情境中能利用字母表示数进行表达和交流。

过程方法目标:

①在探索现实世界数量关系的过程中,体验用字母表示数的简明性。

②培养学生的数学意识,渗透归纳猜想、数形结合等数学思想方法。

情感态度目标:

①学生在动手实践、自主探索、合作交流中获得成功的体验。

②在合作学习及相互交流中,培养学生的团结协作的精神。

我们大家都知道,数学来源于生活,而又服务于生活,本节课的内容都是生活实际中的问题,所以我确立了如下教学重点。

教学重点:理解字母表示数的意义。

而又因七年级学生思维推理能力及语言表达能力和符号感较弱,而探索规律的内容将为后面的学习打基础,所以把教学难点确立为如下。

教学难点:探索规律,并用字母表示一般规律的过程。

二、说教学方法

“教无定法”,只有方法得当,才会有效。根据本课教学内容的特点和学生思维活动的特点,我采用了情景教学法和讲练结合的教学方法。

三、说学生学法

首先教师创造良好的环境,引导学生从喜欢的、已知的、熟悉的生活内容入手,让学生自己在特定的环境下不知不觉中建立字母就在生活中,就在我们身边,再通过一系列活动,学生合作交流、自主探索进一步了解字母可以表示数,含有字母的式子既可以表示数量关系,也可以表示数量。再通过各种联系将其转化为解决问题的策略,发掘不同层次学生的不同能力,从而达到培养学生挖掘问题能力、交流能力和解决问题的能力。

四、说教学活动

(一)激发兴趣,引入课题。

(良好的开端是成功的一半,一节课的开始对整节课的学习是十分重要的,它可以让学生怀着良好的心情和好奇心不知不觉地进入角色,在这个环节中不是让学生懂得怎样用字母表示数,而是让学生知道为什么要这样表示?)

师:多媒体出示数青蛙歌谣。

生:全体根据生活经验咏读歌谣,认真观察对比归纳出规律,把这一规律表示出来。

师:好,那么我们今天就来探究数学知识中用字母表示数,板书课题-----用字母表示数。

设计意图:从儿歌入手,学生感觉比较亲切,也降低了学生对字母表示数的难度与知识间的衔接。

(二)合作学习,领悟新知。

1、提出问题,感悟新知:

师:出示问题(1)让学生分别提供父亲的年龄。选用一个学生提供的数据进行下列的学习。

(2)提问:比较父亲比×××同学大____岁。

(3)让学生推算在一年后,父亲的岁数是多少岁?2年后,3年后,……。

(4)引导:能否用一个式子概括出同学们的所有算式?

(5)提示:如果你们的年龄为a岁,那么你父亲的年龄是多少岁呢?

(6)拓展:老师比同学们大24岁,当老师b岁时,请你用含有的字母的式子表示自己岁数。

生:交流口答。

设计意图:从实际出发,以小学中的算术为基础,通过活动,让学生初步体会用字母表示数的方法。

2、数数猜猜,发现规律。

师:提出要求(1)动手操作,摆出一个正方形。

生:动手操作

师:(2)提出问题:摆1个正方形需要多少根小棒?(4根)那摆2个这样的正方形需要多少根小棒?摆10个呢?请算一算。摆a个呢?

生:交流讨论2×4=8(根) 10×4=40(根)

师:(3)电脑演示:分析过程及表格

正方形个数数

1

2

3

……

a

小棒根数

1×4

2×4

3×4

……

a×4

设计意图:从找规律入手,结合学生的实验体会用字母表示数的方法,并强调表示的规范性,让学生既能从实验中得到数学规律,又要掌握数学表示的严密性。

师:出示(5)练习:填空:

(1)1只手有5个手指,2只手有10个手指,n只手有______个手指。

(2)我们每76年才见到一次的哈雷彗星,在公元s年出现后,再一次出现将是公元___年。

生:交流口答。

师生:(6)小结:从这个例子,我们可以看出,用字母表示数之后,有些数量之间的关系用含有字母的式子表示,看上去更加简明易记。

设计意图:通过练习,让学生进一步理解用字母表示数的方法与格式,由浅入深,让学生体会到知识学习后成功的喜悦感与成就感,增强学生的学习兴趣。

(三)应用新知,体验成功。

师:归纳公式:既然用字母表示数有这么多的好处,那我们就将以前学过的有关图形的计算公式、运算律用字母表示来表示。(图形中用“a表示边长(或长),b表示宽,c表示周长,s表示面积。”)

正方形周长 C=4a;长方形周长______;正方形面积______;长方形面积_________

加法交换律 a+b=b+a;加法结合律_______;乘法交换律________;乘法结合律_______;乘法分配律___________;

生:口答。

师:问对比:比较加法交换律的文字叙述和字母表示,哪一种表示方法好?好在什么地方?

生:讨论试答。

师:小结:计算图形周长时,我们只要将相应数字代入公式即可解决,用字母表示数,使数量关系的表示简单明了。(板书)。

设计意图:通过合作、对比,使学生进一步理解一些公式与运算律的字母表示方法,加深学生对公式和运算律的认识,从而加强学生对新旧知识的联系。

(四)巩固练习,加深理解。

师;出示1、填一填:

(1)如果圆的半径是a厘米,那么这个圆的周长为 厘米,面积是 平方厘米.

(2)某型号计算机的原价是m元/台,现在下调220元.下调后的价格是 元/台.

(3)如果m是整数,那么与m相邻的两个整数的和可以表示为

生:口答。

师:提问2、说一说:你能仿照“数青蛙”这首儿歌,自己编一首儿歌,并用含有字母的式子结束全歌吗?

生:交流讨论,试说。

设计意图:通过练习,突出字母表示数的意义和应用,加深理解。巩固新知,加深对字母表示数的认识

(五)归纳总结,反思自我。

1、你还有什么问题要向同学和老师请教吗?

2、总结:用字母不仅可以表示数,还可以简明地表示一些数量关系,图形的计算公式,运算律等等……

3、赠言:科学家爱因斯坦在谈成功的秘决时,写下了一个公式:A=X+Y+Z,A代表成功,X代表艰苦的劳动,Y代表正确的方法,Z代表少说空话。

设计意图:培养学生反思自己学习过程的意识,充分发挥学生的主体作用,从而培养归纳、整理、表达的能力。

(六)、 布置作业:教材142页习题1题。

设计意图:习题让学生在课后巩固本节的知识,以达到牢固掌握的目的。总之,在整个教学过程中,我将学生积极主动的探究贯穿始终,注重让学生参与到知识的发现和形成过程中,使学生自主学习、合作学习,培养学生的创新精神与合作意识。

板书设计

用字母表示数

(一)激发兴趣,引入课题。 (三)应用新知,体验成功

数青蛙 小结

(二)合作学习,领悟新知。 (四)巩固练习,加深理解

字母的式子 字母式

数数猜猜,发现规律

五、评价分析:

用字母表示数这一内容,它是由具体的数和运算符号组成的式子过渡到含有字母的式子,是学生学习数学的一个转折点,也是认识过程上的一次飞跃。其整个教学过程实质上是从个别到一般的抽象化过程。为体现课改精神,以建构主义为理论依据构建信息环境下“主体参与”教学模式,立足于学生的知识基础和认知水平,采用多样性的教学方式,让学生逐步理解用字母表示数的意义,并使学生在获取知识的同时,抽象思维能力得到提高,成为学习的真正主人。

数列的课件教案集锦


作为老师的任务写教案课件是少不了的,认真规划好自己教案课件是每个老师每天都要做的事情。老师在上课时会按照教案课件来实施。幼儿教师教育网编辑收集并整理了“数列的课件教案”,相信你能找到对自己有用的内容!

数列的课件教案【篇1】

教学目标:

知识技能

(1)通过观察、猜测、操作等活动,找出最简单的事物的排列数。

(2)经历探索简单事物排列的过程。

(3)培养学生有序、全面思考问题的意识,感受教学与生活的紧密联系。

过程与方法

经历观察、比较、自主合作探究等活动,讨论事物排列的规律。

情感态度与价值观

让学生感受数学与生活的紧密联系,培养学生学习数学的兴趣和用数学解决问题的意识。

教学重、难点:

重点:探索简单事物的排列规律。

难点:掌握排列不重复不漏掉的方法。

教法与学法:

教法:谈话法。

学法:小组研讨法。

教学准备:

每组三张数字卡片、课件。

教学过程:

一、创设情境,激发兴趣

(课件出示智慧城堡)这节课我们将在智慧城堡里学习,这是为爱动脑筋的、有智慧的小朋友准备的,你爱动脑筋吗?

二、动手操作,探索新知

(1)初步感知排列。

(课件出现一把锁)这是一把密码锁,密码是1和2组成的两们数。用1和2能组成几个两位数呢?

指名学生回答。

密码正确,我们进去吧!欢迎同学们进入智慧城堡!走,我们先去哪好呢?

(2)自主探究。

在游乐园里玩是需要游戏卡的,每个游戏都有一张对应的游戏卡,想知道怎样才能取得游戏卡吗?

(课件出示:在数字卡片1、2、3中拿其中两张,组成一个两位数。)同学们大声地读一遍。

请同学们摆卡片。

(3)汇报结果。

谁愿意告诉大家你摆了几个两位数?

指名回答。

合作探究排列。

①合作讨论。

不重复,不漏掉。

②观察、比较、分析。

③总结规律。

三、联系生活,应用拓展

(1)3名学生在智慧乐准备合影留念,3名同学坐成一排合影,有几种坐法?(学生操作)

学生展出回答。

(2)有3本书,分别是《儿童文学》《数学趣题》《自然奥秘》,送给小丽、小清和小红各一本,一共有多少种送法?

(指名学生说一两个)

还有吗?看来有很多种送法,究竟一共有多少种送法呢?拿出学习卡,把你的想法摆出来。

四、课堂小结

这节课有趣吗?说说你学会了什么。

板书设计

排列

用1、2、3三张数字卡片可以组成6个两位数。

方法一:方法二:方法三:

121212

231321

132113

212331

313123

323232

与顺序有关,有序思考

课后反思

本节课我运用了分组合作、共同探究的学习模式,让学生互相交流,互相沟通。比如“1、2、3这三个数字可以组成多少个两位数”,不是学生一眼就能看出的,一下子就想明白的,它需要认真观察、思考。因此我要求学生独立思考、独立完成,小组合作交流后选择最佳方案汇报。这就给学生留出了自己动脑思考的空间,再通过小组交流获得自我表现的机会,实现了信息在群体中多向交流。

同时我也考虑:在本节课中,很多同学表现非常出色,对这部分学生该怎么处理?在孩子起点高时是否可以让学生通过这节课的学习学会对事物进行整合分类?对于有的同学能用简单符号代替实物的又是否可以要求他们进一步深化理解?这些都是在课堂上没有深入研究的。

数列的课件教案【篇2】

学习内容:二年级下册第116页例2

学习目标:

1、通过一系列的活动,使学生发现数的排列规律,认识新的数列即等差数列。

2、培养学生的观察、归纳及推理能力,激发学习兴趣和探索欲望。

学习重点、难点:认识并发现等差数列的规律,能初步运用规律。

教具准备:课件

预设流程:

一、课前轻松,请同学们互相猜谜语

师:大家情绪这么活跃,能不能课堂上也这样。我发现同学们,特别喜欢猜,这节课就让同学们玩一玩,猜一猜,好不好?

二、谈话导入

师:今天我们班还来了一位数学王国的小朋友,猜,他是谁?(课件出示明明)明明觉的大家很聪明,想和大家来猜谜,你们愿意吗?(愿意)

明明带来了一堆小气球,第一组他挂出了一格。(课件出示)第二组他会挂出几个小旗子呢?你能猜出来吗?

三、初步探索

1、小组讨论,猜测明明第2组会挂出几个小气球子。

2、汇报:可能有以下几种情况:

第二组挂出2个小气球

第二组挂出3个小气球

第二组挂出10个小气球

3、揭示谜底

师:我们来看看明明是怎样想的吧。(课件出示)是几个小气球?(2面)

谁猜中了举一下手。其他同学虽然你们和明明的想法不一样,但是都很好,很有想法。

仔细看图,你还能发现什么?(第2组比第1组多出1个小气球。)

大家愿不愿意继续来猜猜明明是怎样想的?我们来听听明明是怎样说的吧。课件出示。(画外音:我想让小旗子有规律的摆放)

四、深入探讨

1、师明确要求:老师来提一个要求,请同学这次继续想出下面3组气球的摆放,如果同学们想和明明想的一样的几率大一些,可以多想几种情况。先自己利用小旗子代替学具摆一摆。

2、4人小组,讨论交流,并把想法画在纸上(播放音乐)。

3、汇报:(明确先说一说,每组摆了多少个小气球,再说一说有什么摆放规律)

(1)第一种12345(课堂上生是指着所画小气球来说的)

规律:每次都比上一次多一面。

师在纸上画出来,每组都比上一组多出一面。问:大家看明白了吗?是有规律的吗?谁和他们组想法一样?

(2)第二种12121

生说出每组小旗的摆放数量,让大家共同找出其中的规律。

师:谁和他们组想法一样请举手。

(3)第三种124711

生说完之后,师:这么多的小气球,大家能数的过来吗,你有更好的方法表示吗?

生在黑板用数字上记录,横着记录。

124711

+1+2+3+4

师引导生继续发现1234都相差1。

明确再继续汇报时,一人指着图说,一人在黑板上写。

第四种:1251017(板书)

第五种124816(板书)

4、汇报后,揭示谜底

师:我们来看看明明是怎样想的吧.

课件出示,先出示第3组,再出示4,5组。

请一个学生说一说明明是按着怎样的规律去想的。

师:谁和明明的想法一样,举一下手,你们真棒。如果明明能像大家一样再添上黑板上的表示方法,我想大家能看的更清楚,对吗?

五、揭示课题

师:同学们的想法真是又多又好。

真善于动脑筋!这节课我们探索的就是事物中存在的一些简单的数量规律。板书:找规律

六、巩固练习

1、师:刚才有的同学猜的小气球的摆放是这样的

出示1101001000

最后一组,应是多少?(生齐答10000)师:为什么?

提示:数量上是怎样有规律的变化的?几个1变成了10,几个10变成100

指明答后,师总结:也就是说,每次增加10倍,就变成了下一个数。

2、师:老师也摆出了几组小气球,课件出示

24814224458

师:你能不摆出图片,就猜出老师空中所要摆的数字是几吗?规律是什么,想好后,可以像黑板上的样子,写出来。

指明订正,出示正确答案。让学生说一说,还有什么发现。(即增加数字都相差5)

3、师:明明从同学们的讨论中也得到了许多知识,现在他想带同学们到森林中走一走,坐一坐运动,你们想去吗?(想)不过,要去森林王国必须要闯过三关,你们能闯过去吗?(能)

第一关27173252

第二关100907040

第三关139

每一关都让学生说一说答案,以及找出的规律。

师:同学们,你们真棒,三关都闯过了,我们就一起随着明明到达森林里去吧。

播放课件(让学生欣赏一段大森林里的动画美景。)

师:大森林里这样美,明明做起了运动。你知道他是怎样运动的吗?

出示练习十二第四、五题,学生完成。

七、拓展练习

师:聪聪看大家玩的这样高兴,也来了。他给大家带来了一个拼摆游戏。

课件出示,练习十二思考题。

第四组该是几个圆片,是多少,应该怎样放呢?愿不愿意和聪聪一起想一想,分成4人小组,利用学具代替圆片,摆一摆想一想。

八、小结

师:通过这节课的学习,我发现同学们有着丰富的想象和推理。在我们生活中到处都存在着规律,希望同学们做个有心人,不断的来发现它,创造它,丰富它,好不好?

数列的课件教案【篇3】

教学目标:

1.知识与技能目标:理解等差数列的概念,了解等差数列的通项公式的推导过程及思想,掌握并会用等差数列的通项公式,初步引入“数学建模”的思想方法并能运用。

2.过程与方法目标:培养学生观察分析、猜想归纳、应用公式的能力;在领会函数与数列关系的前提下,渗透函数、方程的思想。

3.情感态度与价值观目标:通过对等差数列的研究培养学生主动探索、勇于发现的求知的精神;养成细心观察、认真分析、善于总结的良好思维习惯。

教学重点:

等差数列的概念及通项公式。

教学难点:

(1)理解等差数列“等差”的特点及通项公式的含义。

(2)等差数列的通项公式的推导过程及应用。

教具:多媒体、实物投影仪

教学过程:

一、复习引入:

1.回忆上一节课学习数列的定义,请举出一个具体的例子。表示数列有哪几种方法——列举法、通项公式、递推公式。我们这节课接着学习一类特殊的数列——等差数列。

2.由生活中具体的数列实例引入

(1).国际奥运会早期,撑杆跳高的记录近似的由下表给出:

你能看出这4次撑杆条跳世界记录组成的数列,它的各项之间有什么关系吗?

(2)某剧场前10排的座位数分别是:

48、46、44、42、40、38、36、34、32、30

引导学生观察:数列①、②有何规律?

引导学生发现这些数字相邻两个数字的差总是一个常数,数列①先左到右相差0.2,数列②从左到右相差-2。

二.新课探究,推导公式

1.等差数列的概念

如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列,这个常数叫做等差数列的公差,通常用字母d来表示。

强调以下几点:

① “从第二项起”满足条件;

②公差d一定是由后项减前项所得;

③每一项与它的前一项的差必须是同一个常数(强调“同一个常数” );

所以上面的2、3都是等差数列,他们的公差分别为0.20,-2。

在学生对等差数列有了直观认识的基础上,我将给出练习题,以巩固知识的学习。

[练习一]判断下列各组数列中哪些是等差数列,哪些不是?如果是,写出首项a1和公差d,如果不是,说明理由。

1.3,5,7,…… √ d=2

2.9,6,3,0,-3,…… √ d=-3

3. 0,0,0,0,0,0,…….; √ d=0

4. 1,2,3,2,3,4,……;×

5. 1,0,1,0,1,……×

在这个过程中我将采用边引导边提问的方法,以充分调动学生学习的积极性。

2.等差数列通项公式

如果等差数列{an}首项是a1,公差是d,那么根据等差数列的定义可得:

a2 - a1 =d即:a2 =a1 +d

a3 – a2 =d即:a3 =a2 +d = a1 +2d

a4 – a3 =d即:a4 =a3 +d = a1 +3d

……

猜想: a40 = a1 +39d

进而归纳出等差数列的通项公式:an=a1+(n-1)d

此时指出:这种求通项公式的办法叫不完全归纳法,这种导出公式的方法不够严密,为了培养学生严谨的学习态度,在这里向学生介绍另外一种求数列通项公式的办法------迭加法:

n=a1+(n-1)d

a2-a1=d

a3-a2=d

a4-a3 =d

……

an –a(n-1) =d

将这(n-1)个等式左右两边分别相加,就可以得到

an-a1=(n-1)d

即an=a1+(n-1)d (Ⅰ)

当n=1时,(Ⅰ)也成立,所以对一切n∈N﹡,上面的公式(Ⅰ)都成立,因此它就是等差数列{an}的通项公式。

三.应用举例

例1求等差数列,12,8,4,0,…的第10项;20项;第30项;

例2 -401是不是等差数列-5,-9,-13,…的项?如果是,是第几项?

四.反馈练习

1.P293练习A组第1题和第2题(要求学生在规定时间内做完上述题目,教师提问)。目的:使学生熟悉通项公式对学生进行基本技能训练。

五.归纳小结提炼精华

(由学生总结这节课的收获)

1.等差数列的概念及数学表达式.

强调关键字:从第二项开始它的每一项与前一项之差都等于同一常数

2.等差数列的通项公式an= a1+(n-1) d会知三求一

六.课后作业运用巩固

必做题:课本P284习题A组第3,4,5题

数列的课件教案【篇4】

一、教学内容分析

本节课是《普通高中课程标准实验教科书·数学5》(人教版)第二章数列第二节等差数列第一课时。

数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面,数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了“联想”、“类比”的思想方法。

二、学生学习情况分析

教学内容针对的是高二的学生,经过高中一年的学习,大部分学生知识经验已较为丰富,具备了较强的抽象思维能力和演绎推理能力,但也可能有一部分学生的基础较弱,所以在授课时要从具体的生活实例出发,使学生产生学习的兴趣,注重引导、启发学生的积极主动的去学习数学,从而促进思维能力的进一步提高。

三、设计思想

1.教法

⑴诱导思维法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性。

⑵分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性。

⑶讲练结合法:可以及时巩固所学内容,抓住重点,突破难点。2.学法

引导学生首先从四个现实问题(数数问题、女子举重奖项设置问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法。

用多种方法对等差数列的通项公式进行推导。

在引导分析时,留出“空白”,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。

四、教学目标

通过本节课的学习使学生能理解并掌握等差数列的概念,能用定义判断一个数列是否为等差数列,引导学生了解等差数列的通项公式的推导过程及思想,掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题;并在此过程中培养学生观察、分析、归纳、推理的能力,在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力。

五、教学重点与难点

重点:

①等差数列的概念。

②等差数列的通项公式的推导过程及应用。难点:

①理解等差数列“等差”的特点及通项公式的含义。②理解等差数列是一种函数模型。关键:

等差数列概念的理解及由此得到的“性质”的方法。

六、教学过程(略)

数列的课件教案【篇5】

各位老师你们好!

今天我要为大家讲的课题是:等差数列的前n项和

一、教材分析(说教材):

1、教材所处的地位和作用:《等差数列的前n项和》是高中数学人教版第一册第三章第三节内容在此之前学生已学习了集合、函数的概念、等差数列的概念、通项公式和它的一些性质等基础知识,这为过渡到本节的学习起着铺垫作用。

2、教育教学目标:

根据上述分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:

(1)知识目标:深刻理解等差数列求和公式的推导方法;熟记求和公式;能够应用求和公式并发现求和公式的函数本质;

(2)能力目标:通过教学初步培养学生分析问题,解决实际问题的能力;初步培养学生运用知识、探索知识间联系的能力。

(3)情感目标:通过对等差数列求和公式的认识使学生感受到现实生活中数据间存在的规律性,这种规律性体现数学美从而激发学生学习兴趣。

3、重点,难点以及确定依据:

教学重点是等差数列前项和公式的推导和应用,难点是公式推导的思路。推导过程的展示体现了人类解决问题的一般思路,即从特殊问题的解决中提炼一般方法,再试图运用这一方法解决一般情况,所以推导公式的过程中所蕴含的思想方法比公式本身更为重要.等差数列前项和公式有两种形式,应根据条件选择适当的形式进行计算;另外反用公式、变用公式、前项和公式与通项公式的综合运用体现了方程(组)思想.高斯算法表现了大数学家的智慧和巧思,对一般学生来说有很大难度,但大多数学生都听说过这个故事,所以难点在于一般等差数列求和的思路上。

二、教学策略(说教法)

1、教学手段:

应着重采用启发式的教学方法层层推进:

①本节内容分为两课时,一节为公式推导及简单应用,一节侧重于通项公式与前项和公式综合运用。

②前项和公式的推导,建议由具体问题引入,使学生体会问题源于生活。

③强调从特殊到一般,再从一般到特殊的思考方法与研究方法。

④补充等差数列前项和的最大值、最小值问题。

2、教学方法及其理论依据:

坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,采用学生参与程度高的学导式讨论教学法在学生看书,讨论的基础上,在老师启发引导下,运用问题解决式教法,师生交谈法,图像信号法,问答式,课堂讨论法在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情有效的开发各层次学生的潜在智能,力求使学生能在原有的基础上得到发展同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的知识和技能,在教学中积极培养学生学习兴趣和动机,明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力

三、学情分析:(说学法)

(1)学生特点分析:中学生心理学研究指出,高中阶段是(查同中学生心发展情况)抓住学生特点,积极采用形象生动,形式多样的教学方法和学生广泛的积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展生理上表少年好动,注意力易分散

(2)知识障碍上:学生原有的知识等差数列的性质许多学生出现遗忘,所以应全面系统的去讲述;并进行适当的复习。学生学习本节课的知识,关键是推导思路的获得学生不易理解,所以教学中深入浅出的分析

(3)动机和兴趣上:明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力

四、教学程序及设想:

1、新课引入(由实例得出本课新的知识点)

提出问题(播放媒体资料):一个堆放铅笔的V形架的最下面一层放一支铅笔,往上每一层都比它下面一层多放一支,最上面一层放100支。这个V形架上共放着多少支铅笔?(课件设计见课件展示或在黑板上画出简图)

问题就是(板书)

这是小学时就知道的一个故事,高斯的算法非常高明,回忆他是怎样算的。(由一名学生回答,再由学生讨论其高明之处)高斯算法的高明之处在于他发现这100个数可以分为50组,第一个数与最后一个数一组,第二个数与倒数第二个数一组,第三个数与倒数第三个数一组,…,每组数的和均相等,都等于101,50个101就等于5050了。高斯算法将加法问题转化为乘法运算,迅速准确得到了结果。

我们希望求一般的等差数列的和,高斯算法对我们有何启发?

2、讲解新课

1、公式推导(板书)

问题(幻灯片):设等差数列的首项为,公差为,由学生讨论,研究高斯算法对一般等差数列求和的指导意义。

思路一:运用基本量思想,将各项用和表示,得,有以下等式,问题是一共有多少个,似乎与的奇偶有关。这个思路似乎进行不下去了。

思路二:上面的等式其实就是个改写,为回避个数问题,做一,两式左右分别相加,得于是有:。这就是倒序相加法。

思路三:受思路二的启发,重新调整思路一,可得于是得到了两个公式(投影片):和。

2、公式记忆:公式中含有四个量,运用方程的思想,知三求一。 3。公式的应用例1。求和:(结果用表示)

评:解题的关键是数清项数,小结数项数的方法。

例2。等差数列中前多少项的和是9900?本题实质是反用公式,解一个关于的一元二次函数,注意得到的项数必须是正整数。

五、小结

1、推导等差数列前项和公式的思路;

2。公式的应用中的数学思想。

3。进一步提醒学生前n项和公式的函数本质

六、板书设计

七、布置作业

针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有余力的学生有所提高,(可分必做题,选做题,思考题)

数列的课件教案【篇6】

教学目标:

(1)理解等差数列的概念,掌握等差数列的通项公式;

(2)利用等差数列的通项公式能由a1,d,n,an“知三求一”,了解等差数列的通项公式的推导过程及思想;

(3)通过作等差数列的图像,进一步渗透数形结合思想、函数思想;通过等差数列的通项公式应用,渗透方程思想。

教学重、难点:等差数列的定义及等差数列的通项公式。

知识结构:一般数列定义通项公式法

递推公式法

等差数列表示法应用

图示法

性质列举法

教学过程:

(一)创设情境:

1.观察下列数列:

1,2,3,4,……;(军训时某排同学报数)①

10000,9000,8000,7000,……;(温州市房价平均每月每平方下跌的价位)②

2,2,2,2,……;(坐38路公交车的车费)③

问题:上述三个数列有什么共同特点?(学生会发现很多规律,如都是整数,再举几个非整数等差数列例子让学生观察)

规律:从第2项起,每一项与前一项的差都等于同一常数。

引出等差数列。

(二)新课讲解:

1.等差数列定义:

一般地,如果一个数列从第项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母表示。

问题:(a)能否用数学符号语言描述等差数列的定义?

用递推公式表示为或.

(b)例1:观察下列数列是否是等差数列:

(1)1,-1,1,-1,…

(2)1,2,4,6,8,10,…

意在强调定义中“同一个常数”

(c)例2:求上述三个数列的公差;公差d可取哪些值?d>0,d=0,d

(d有不同的分类,如按整数分数分类,再举几个等差数列的例子观察d的分类对数列的影

响)

说明:等差数列(通常可称为数列)的单调性:为递增数列,为常数列,为递减数列。

例3:求等差数列13,8,3,-2,…的第5项。第89项呢?

放手让学生利用各种方法求a89,从中找出合适的方法,如利用不完全归纳法或累加法,然

后引出求一般等差数列的通项公式。

2.等差数列的通项公式:已知等差数列的首项是,公差是,求.

(1)由递推公式利用用不完全归纳法得出

由等差数列的定义:,,,……

∴,,,……

所以,该等差数列的通项公式:.

(验证n=1时成立)。

这种由特殊到一般的推导方法,不能代替严格证明。要用数学归纳法证明的。

(2)累加法求等差数列的通项公式

让学生体验推导过程。(验证n=1时成立)

3.例题及练习:

应用等差数列的通项公式

追问:(1)-232是否为例3等差数列中的项?若是,是第几项?

(2)此数列中有多少项属于区间[-100,0]?

法一:求出a1,d,借助等差数列的通项公式求a20。

法二:求出d,a20=a5+15d=a12+8d

在例4基础上,启发学生猜想证明

练习:

梯子的最高一级宽31cm,最低一级宽119cm,中间还有3级,各级的宽度成等差数列,请计算中间各级的宽度。

观察图像特征。

思考:an是关于n的一次式,是数列{an}为等差数列的什么条件?

课后反思:这节课的重点是等差数列定义和通项公式概念的理解,而不是公式的应用,有些应试教育的味道。有时抢学生的回答,没有真正放手让学生的思维发展,学生活动太少,课堂氛围不好。学生对问题的反应出乎设计的意料时,应该顺着学生的思维发展。

数列的课件教案【篇7】

一、教材分析

1、教材的地位和作用:

《等差数列》是人教版新课标教材《数学》必修5第二章第二节的内容。数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面,数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。

2、教学目标

根据教学大纲的要求和学生的实际水平,确定了本次课的教学目标

a知识与技能:理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想;初步引入“数学建模”的思想方法并能运用。培养学生观察、分析、归纳、推理的能力;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。

b.过程与方法:在教学过程中我采用讨论式、启发式的方法使学生深刻的理解不完全归纳法。

c.情感态度与价值观:通过对等差数列的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。

3、教学重点和难点

重点:①等差数列的概念。

②等差数列的通项公式的推导过程及应用。

难点:①等差数列的通项公式的推导

②用数学思想解决实际问题

二、学情教法分析:

对于高一学生,知识经验已较为丰富,具备了一定的抽象思维能力和演绎推理能力,所以我本节课我采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。学生在初中时只是简单的接触过等差数列,具体的公式还不会用,因些在公式应用上加强学生的理解

三、学法分析:

在引导分析时,留出学生的思考空间,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。

四、教学过程

1.创设情景 提出问题

首先要学生回忆数列的有关概念,数列的两种方法——通项公式和递推公式

数列的课件教案【篇8】

一、教材分析

1、从在教材中的地位与作用来看

《等比数列的前n项和》是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养。

2、从学生认知角度看

从学生的思维特点看,很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导。不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q=1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错。

3、学情分析

教学对象是刚进入高中的学生,虽然具有一定的分析问题和解决问题的能力,逻辑思维能力也初步形成,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因此片面、不严谨。

4、重点、难点

教学重点:公式的推导、公式的特点和公式的运用。

教学难点:公式的推导方法和公式的灵活运用。

公式推导所使用的"错位相减法"是高中数学数列求和方法中最常用的方法之一,它蕴含了重要的数学思想,所以既是重点也是难点。

二、目标分析

知识与技能目标:

理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础上能初步应用公式解决与之有关的问题。

过程与方法目标:

通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转

化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力。

情感与态度价值观:

通过对公式推导方法的探索与发现,优化学生的思维品质,渗透事物之间等价转化和理论联系实际的辩证唯物主义观点。

三、过程分析

学生是认知的主体,设计教学过程必须遵循学生的认知规律,尽可能地让学生去经历知识的形成与发展过程,结合本节课的特点,我设计了如下的教学过程:

1、创设情境,提出问题

在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,对他说:我可以满足你的任何要求。西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,第二格放2粒,第三格放4粒,往后每一格都是前一格的两倍,直至第64格。国王令宫廷数学家计算,结果出来后,国王大吃一惊。为什么呢?

设计意图:设计这个情境目的是在引入课题的同时激发学生的兴趣,调动学习的积极性。故事内容紧扣本节课的主题与重点。

此时我问:同学们,你们知道西萨要的是多少粒小麦吗?引导学生写出麦粒总数。带着这样的问题,学生会动手算了起来,他们想到用计算器依次算出各项的值,然后再求和。这时我对他们的这种思路给予肯定。

设计意图:在实际教学中,由于受课堂时间限制,教师舍不得花时间让学生去做所谓的"无用功",急急忙忙地抛出"错位相减法",这样做有悖学生的认知规律:求和就想到相加,这是合乎逻辑顺理成章的事,教师为什么不相加而马上相减呢?在整个教学关键处学生难以转过弯来,因而在教学中应舍得花时间营造知识形成过程的氛围,突破学生学习的障碍。同时,形成繁难的情境激起了学生的求知欲,迫使学生急于寻求解决问题的新方法,为后面的教学埋下伏笔、

2、师生互动,探究问题

在肯定他们的思路后,我接着问:1,2,22,.....,263是什么数列?有何特征?应归结为什么数学问题呢?

探讨1:,记为(1)式,注意观察每一项的特征,有何联系?(学生会发现,后一项都是前一项的2倍)

探讨2:如果我们把每一项都乘以2,就变成了它的后一项,(1)式两边同乘以2则有,记为(2)式。比较(1)(2)两式,你有什么发现?

设计意图:留出时间让学生充分地比较,等比数列前n项和的公式推导关键是变"加"为"减",在教师看来这是"天经地义"的,但在学生看来却是"不可思议"的,因此教学中应着力在这儿做文章,从而抓住培养学生的辩证思维能力的良好契机。

经过比较、研究,学生发现:(1)、(2)两式有许多相同的项,把两式相减,相同的项就消去了,得到:。老师指出:这就是错位相减法,并要求学生纵观全过程,反思:为什么(1)式两边要同乘以2呢?

设计意图:经过繁难的计算之苦后,突然发现上述解法,不禁惊呼:真是太简洁了!让学生在探索过程中,充分感受到成功的情感体验,从而增强学习数学的兴趣和学好数学的信心。

3、类比联想,解决问题

这时我再顺势引导学生将结论一般化,

这里,让学生自主完成,并喊一名学生上黑板,然后对个别学生进行指导。

设计意图:在教师的指导下,让学生从特殊到一般,从已知到未知,步步深入,让学生自己探究公式,从而体验到学习的愉快和成就感。

对不对?这里的q能不能等于1?等比数列中的公比能不能为1?q=1时是什么数列?此时sn=?(这里引导学生对q进行分类讨论,得出公式,同时为后面的例题教学打下基础。)

再次追问:结合等比数列的通项公式an=a1qn—1,如何把sn用a1、an、q表示出来?(引导学生得出公式的另一形式)

设计意图:通过反问精讲,一方面使学生加深对知识的认识,完善知识结构,另一方面使学生由简单地模仿和接受,变为对知识的主动认识,从而进一步提高分析、类比和综合的能力。这一环节非常重要,尽管时间有时比较少,甚至仅仅几句话,然而却有画龙点睛之妙用。

4、讨论交流,延伸拓展

在此基础上,我提出:探究等比数列前n项和公式,还有其它方法吗?我们知道,

那么我们能否利用这个关系而求出sn呢?根据等比数列的定义又有,能否联想到等比定理从而求出sn呢?

设计意图:以疑导思,激发学生的探索欲望,营造一个让学生主动观察、思考、讨论的氛围、以上两种方法都可以化归到,这其实就是关于的一个递推式,递推数列有非常重要的研究价值,是研究性学习和课外拓展的极佳资源,它源于课本,又高于课本,对学生的思维发展有促进作用、

5、变式训练,深化认识

首先,学生独立思考,自主解题,再请学生上台来幻灯演示他们的解答,其它同学进行评价,然后师生共同进行总结。

设计意图:采用变式教学设计题组,深化学生对公式的认识和理解,通过直接套用公式、变式运用公式、研究公式特点这三个层次的问题解决,促进学生新的数学认知结构的形成。通过以上形式,让全体学生都参与教学,以此培养学生的参与意识和竞争意识。

6、例题讲解,形成技能

设计意图:解题时,以学生分析为主,教师适时给予点拨,该题有意培养学生对含有参数的问题进行分类讨论的数学思想。

7、总结归纳,加深理解

以问题的形式出现,引导学生回顾公式、推导方法,鼓励学生积极回答,然后老师再从知识点及数学思想方法两方面总结。

设计意图:以此培养学生的口头表达能力,归纳概括能力。

8、故事结束,首尾呼应

最后我们回到故事中的问题,我们可以计算出国王奖赏的小麦约为1、84×1019粒,大约7000亿吨,用这么多小麦能从地球到太阳铺设一条宽10米、厚8米的大道,大约是全世界一年粮食产量的459倍,显然国王兑现不了他的承诺。

设计意图:把引入课题时的悬念给予释疑,有助于学生克服疲倦、继续积极思维。

9、课后作业,分层练习

必做:P129练习1、2、3、4

选作:

(2)"远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?"这首中国古诗的答案是多少?

设计意图:出选作题的目的是注意分层教学和因材施教,让学有余力的学生有思考的空间。

四、教法分析

对公式的教学,要使学生掌握与理解公式的来龙去脉,掌握公式的推导方法,理解公式的成立条件,充分体现公式之间的联系。在教学中,我采用"问题――探究"的教学模式,把整个课堂分为呈现问题、探索规律、总结规律、应用规律四个阶段。

利用多媒体辅助教学,直观地反映了教学内容,使学生思维活动得以充分展开,从而优化了教学过程,大大提高了课堂教学效率。

五、评价分析

本节课通过三种推导方法的研究,使学生从不同的思维角度掌握了等比数列前n项和公式。错位相减:变加为减,等价转化;递推思想:纵横联系,揭示本质;等比定理:回归定义,自然朴实。学生从中深刻地领会到推导过程中所蕴含的数学思想,培养了学生思维的深刻性、敏锐性、广阔性、批判性。同时通过精讲一题,发散一串的变式教学,使学生既巩固了知识,又形成了技能。在此基础上,通过民主和谐的课堂氛围,培养了学生自主学习、合作交流的学习习惯,也培养了学生勇于探索、不断创新的思维品质。

数列的课件教案【篇9】

教学准备

教学目标

知识目标:使学生掌握等比数列的定义及通项公式,发现等比数列的一些简单性质,并能运用定义及通项公式解决一些实际问题。

能力目标:培养运用归纳类比的方法发现问题并解决问题的能力及运用方程的思想的计算能力。

德育目标:培养积极动脑的学习作风,在数学观念上增强应用意识,在个性品质上培养学习兴趣。

教学重难点

本节的重点是等比数列的定义、通项公式及其简单应用,其解决办法是归纳、类比。

本节难点是对等比数列定义及通项公式的深刻理解,突破难点的关键在于紧扣定义,另外,灵活应用定义、公式、性质解决一些相关问题也是一个难点。

教学过程

二、教法与学法分析

为了突出重点、突破难点,本节课主要采用观察、分析、类比、归纳的方法,让学生参与学习,将学生置于主体位置,发挥学生的主观能动性,将知识的形成过程转化为学生亲自探索类比归纳的过程,使学生获得发现的成就感。在这个过程中,力求把握好以下几点:

①通过实例,让学生发现规律。让学生在问题情景中,经历知识的形成和发展,力求使学生学会用类比的思想去看待问题。②营造民主的教学氛围,把握好师生的情感交流,使学生参与教学全过程,让学生唱主角,老师任导演。③力求反馈的全面性、及时性。通过精心设计的提问,让学生思维动起来,针对学生回答的问题,老师进行适当的调控。④给学生思考的时间和空间,不急于把结果抛给学生,让学生自己去观察、分析、类比得出结果,老师点评,逐步养成科学严谨的学习态度,提高学生的推理能力。⑤以启迪思维为核心,启发有度,留有余地,导而弗牵,牵而弗达。这样做增加了学生的参与机会,增强学生的参与意识,教给学生获取知识的途径和思考问题的方法,使学生真正成为教学的主体,使学生学会学习,提高学生学习的兴趣和能力。

三、教学程序设计

(4)等差中项:如果a 、 A 、 b成等差数列,那么A叫做a与b的等差中项。

说明:通过复习等差数列的相关知识,类比学习本节课的内容,用熟知的等差数列内容来分散本节课的难点。

2.导入新课

本章引言中关于在国际象棋棋盘各格子里放麦粒的问题中,各个格子的麦粒数依次是:

1 , 2 , 4 , 8 , … , 263

再来看两个数列:

5 , 25 ,125 , 625 , ...

···

说明:引导学生通过“观察、分析、归纳”,类比等差数列的定义得出等比数列的定义,为进一步理解定义,给出下面的问题:

判定以下数列是否为等比数列,若是写出公比q,若不是,说出理由,然后回答下面问题。

-1 , -2 , -4 , -8 …

-1 , 2 , -4 , 8 …

-1 , -1 , -1 , -1 …

1 , 0 , 1 , 0 …

提出问题:(1)公比q能否为零?为什么?首项a1呢?

(2)公比q=1时是什么数列?

(3)q>0是递增数列吗?q

说明:通过师生问答,充分调动学生学习的主动性及学习热情,活跃课堂气氛,同时培养学生的口头表达能力和临场应变能力。另外通过趣味性的问题,来提高学生的学习兴趣。激发学生发现等比数列的定义及其通项公式的强烈欲望。

3.尝试推导通项公式

让学生回顾等差数列通项公式的推导过程,引导推出等比数列的通项公式。

推导方法:叠乘法。

说明:学生从方法一中学会从特殊到一般的方法,并从次数中去发现规律,以培养学生的观察能力;另外回忆等差数列的特点,并类比到等比数列中来,培养学生的类比能力及将新知识转化到旧知识的能力。方法二是让学生掌握“叠乘”的思路。

4.探索等比数列的图像

等差数列的图像可以看成是直线上一群孤立的点构成的,观察等比数列的通项公式,你能得出什么结果?它的图像如何?

变式2.等比数列{an}中,a2 = 2 , a9 = 32 , 求q.

(学生自己动手解答。)

说明:例1的目的是让学生熟悉公式并应用于实际,例2及变式是让学生明白,公式中a1 ,q,n,an四个量中,知道任意三个即可求另一个。并从这些题中掌握等比数列运算中常规的消元方法。

6.探索等比数列的性质

类比等差数列的性质,猜测等比数列的性质,然后引导推证。

7.性质应用

例3.在等比数列{an}中,a5 = 2 , a10 = 10 , 求a15

(让学生自己动手,寻求多种解题方法。)

方法一:由题意列方程组解得

方法二:利用性质2

方法三:利用性质3

例4(见教材例3)已知数列{an}、{bn}是项数相同的等比数列,求证:{an·bn}是等比数列。

8.小结

为了让学生将获得的知识进一步条理化,系统化,同时培养学生的归纳总结能力及练习后进行再认识的能力,教师引导学生对本节课进行总结。

1、等比数列的定义,怎样判断一个数列是否是等比数列

2、等比数列的通项公式,每个字母代表的含义。

3、等比数列应注意那些问题(a1≠0,q≠0)

4、等比数列的图像

5、通项公式的应用 (知三求一)

6、等比数列的性质

7、等比数列的概念(注意两点①同号两数才有等比中项

②等比中项有两个,他们互为相反数)

8、本节课采用的主要思想

——类比思想

9.布置作业

习题3.4 1②、④ 3. 8. 9.

10.板书设计

数列的课件教案【篇10】

一、教材分析:

等比数列的前n项和是高中数学必修五第二章第3、3节的内容。它是“等差数列的前n项和”与“等比数列”内容的延续。这部分内容授课时间2课时,本节课作为第一课时,重在研究等比数列的前n项和公式的推导及简单应用,教学中注重公式的形成推导过程并充分揭示公式的结构特征和内在联系。意在培养学生类比分析、分类讨论、归纳推理、演绎推理等数学思想。在高考中占有重要地位。

二、教学目标

根据上述教学内容的地位和作用,结合学生的认知水平和年龄特点,确定本节课的教学目标如下:

1、知识与技能:理解等比数列的前n项和公式的推导方法;掌握等比数列的前n项和公式并能运用公式解决一些简单问题。

2、过程与方法:通过公式的推导过程,提高学生的建模意识及探究问题、类比分析与解决问题的能力,培养学生从特殊到一般的思维方法,渗透方程思想、分类讨论思想及转化思想,优化思维品质。

3、情感与态度:通过自主探究,合作交流,激发学生的求知欲,体验探索的艰辛,体味成功的喜悦,感受思维的奇异美、结构的对称美、形式的简洁美、数学的严谨美。

三、教学重点和难点

重点:等比数列的前项和公式的推导及其简单应用。

难点:等比数列的前项和公式的推导。

重难点确定的依据:从教材体系来看,它为后继学习提供了知识基础,具有承上启下的作用;从知识本身特点来看,等比数列前n项和公式的推导方法和等差数列的的前n项和公式的推导方法可比性低,无法用类比的方法进行,它需要对等比数列的概念和性质能充分理解并融会贯通;从学生认知水平来看,学生的探究能力和用数学语言交流的能力还有待提高。

四、教法学法分析

通过创设问题情境,组织学生讨论,让学生在尝试探索中不断地发现问题,以激发学生的求知欲,并在过程中获得自信心和成功感。强调知识的严谨性的同时重知识的形成过程,

五、教学过程

(一)创设情境,引入新知

从故事入手:传说,波斯国王下令要奖赏国际象棋的发明者,发明者对国王说,在棋盘的第一格内放上一粒麦子,在第二格内放两粒麦子,第三格内放4粒,第四格内放8米,……按这样的规律放满64格棋盘格。结果是国王倾尽国家财力还不够支付。同学们,这几粒麦子,怎能会让国王赔上整个国家的财力?

关键就在于计算麦粒的总数。很明显,这是一个以1为首项,以2为公比的等比数列前64项和的问题,即如何计算1+2+22+……+263?

(二)师生讨论、探究新知

总结归纳:当q=1时,Sn=na1

当q≠1时,

公式说明:①对等比数列{an}而言,a1,an,Sn,n,q知三可求二②运用公式时要根据条件选取适当的公式,特别注意的是,在公比不知道的情况下要分类讨论;③错位相减的思想方法。

(三)例题讲解,形成技能

例1:等比数列{an}中,

①已知a1=-4,q=1/2,求S10 ②已知a1=1,an=243,q=3,求Sn

③已知a1=2,S3=26,求q。

通过例题一,渗透知三求二的思想。

练习:求等比数列1,-1/2,1/4,-1/8,…,-1/512的各项的和。

例2、等比数列{an}中,已知a1=3,S3=9,求q,an。

练习:等比数列{an}中,若S3=7/2,S6=63/2,求an、S9。

通过练习得出等比数列前项和的一个性质:成等比数列。

例3:(1)求数列1+1/2,2+1/4,3+1/8,… n+,…的前n项和。

首先由学生分析思路,观察出这组数列的特点,它既不是等差数列,也不是等比数列,而是等差加等比。归纳出这类数列求和的方法。

思考:求和:1+a+a2+a3+…+an

(四)课堂小结

以问题的形式出现,引导学生回顾公式、推导方法,鼓励学生积极回答,然后老师再从知识点及数学思想方法两方面总结。

『设计意图:以此培养学生的口头表达能力,归纳概括能力。』

六、板书设计

七、课后记

本节课的设计体现呢“以学生为主体,教师是课堂活动的组织者、引导者和参与者”的现代教育理念。在教学的每一个环节中军设计了问题,始终以教师提出问题,引导学生解决问题的方式进行,让课堂活动变得生动而愉悦。

数列的课件教案【篇11】

教学内容:

人教版小学数学教材六年级下册第107~108页例2及相关练习。

教学目标:

1.在学习过程中引导学生探索研究数与形之间的联系,寻找规律,发现规律,学会利用图形来解决一些有关数的问题。

2.让学生经历猜想与验证的过程,体会和掌握数形结合、归纳推理、极限等基本数学思想。

重点难点:

探索数与形之间的联系,寻找规律,并利用图形来解决有关数的问题。

教学准备:

教学课件。

教学过程:

一、直接导入,揭示课题

同学们,上节课我们探究了图形中隐藏的数的规律,今天我们继续研究有关数与图形之间的联系。(板书课题:数与形)

【设计意图】直奔主题,简洁明了,有利于学生清楚本节课学习的内容和方向。

二、探索发现,学习新知

(一)教师与学生比赛算题

1.教师:你知道等于多少吗?(学生:)

教师:那等于多少呢?(学生计算需要时间)教师紧接着说:我已经算好了,是,不信你算算。

2.只要按照这个分子是1,分母依次扩大2倍的规律写下去,不管有多少个分数相加,我都能立马算出结果。有的同学不相信是吗?咱们试试就知道。为了方便,我请我们班计算最快的同学跟我一起算,看看结果是否相同。谁来出题?

在学生出题后,老师都能立刻算出结果,并且是正确的,学生感到很惊奇。

3.知道我为什么算得那么快吗?因为我有一件神秘的法宝,你们也想知道吗?

【设计意图】一方面,教师通过与学生比赛计算速度,且每次老师胜利,使学生产生好奇心,再通过教师幽默的语言,吸引学生的注意力,激发学生的学习兴趣和求知欲。另一方面,为接下来学习例题做好铺垫。

(二)借助正方形探究计算方法

1.这件法宝就是(师边说边课件出示一个正方形),让我们来把它变一变,聪明的同学们一定能看明白是怎么回事了。

2.进行演示讲解。

(1)演示:用一个正方形表示“1”,先取它的一半就是正方形的(涂红),再剩下部分的一半就是正方形的(涂黄)。

想一想:正方形中表示的涂色部分与空白部分和整个正方形之间有什么关系呢?(涂色部分等于“1”减去空白部分)空白部分占正方形的几分之几?()那么涂色部分还可以怎么算呢?(),也就是说。

(2)继续演示,谁知道除了通分,还可以怎么算?

根据学生回答,板书。

(3)演示:那么计算就可以得到?()。

3.看到这儿,你发现什么规律了吗?

4.小结:按照这样的规律往下加,不管加到几分之一,只要用1减去这个几分之一就可以得到答案了。

5.这个法宝怎么样?谁来说说它好在哪里?你学会了吗?

6.尝试练习

【设计意图】将复杂的数量运算转化为简单的图形面积计算,转繁为简,转难为易,引导学生探索数与图形的联系,让学生体会到数形结合、归纳推理的数学思想方法。

(三)知识提升,探索发现

1.感受极限。

(1)刚才我们已经从一直加到了,如果我继续加,加到,得数等于?()再接着加,一直加到,得数等于?()随着不断继续加,你发现得数越来越?(大)无数个这样的数相加,和会是多少呢?

(2)这时候你心中有没有一个大胆的猜想?(学生猜想:这样一直加下去,得数会不会就等于1了。)

(3)想象一下,如果我们在刚才加的过程中在正方形上不断涂色,那空白部分的面积就越来越?(小)而涂色部分的面积越来越接近?(1)也就是求和的得数越来越接近?(1)最终得数是1吗?你有什么方法来证明得数就是1?

(学情预设:学生提出书本的圆形图和线段图,若没有学生提出,教师自己提出。)

2.利用线段图直观感受相加之和等于“1”。

(1)书本上有两幅图,我们一起来看看(课件出示)。一幅是圆形图,一幅是线段图,你能看懂它的意思吗?请你想一想,然后告诉大家你的想法。

(2)学生看书思考。

(3)全班交流,课件演示,得出结论:这些分数不断加下去,总和就是1。

【设计意图】利用数与形的结合,让学生直观体会极限数学思想,并让学生经历猜想得数等于“1”,到数形结合证明得数等于“1”的过程,激发学生学习兴趣,培养学生探索新知的精神。

3.课堂小结。

对于这种借用图形来帮助我们解决问题的方法,你有什么感受?

教师小结:是的,“数”与“形”有着紧密的联系,在一定条件下可以相互转化。当用数形结合的方法解决问题时,你会发现许多难题的解决变得很简单。

4.举一反三。

其实在以前的学习中,我们也常用到到数形结合的数学方法帮助我们解题,你能想到些例子吗?(如学生有困难,教师举例:一年级加法,分数的认识,复杂的路程问题线段图等。)

相关推荐

  • [荐]找春天课件教案集锦 今天我们为您提供找春天课件教案,希望能对你有所帮助,请收藏。上课前准备好课堂用到教案课件很重要,因此就需要老师自己花点时间去写。 教案和课件编排得好有助于激发学生的创造力。...
    2023-04-25 阅读全文
  • 找因数课件 宜未雨绸而缪,毋临竭而掘井。在日常的学习工作中,幼儿园教师都会提前准备一些能用到的资料。资料可以指人事物的相关多类信息、情报。参考相关资料会让我们的学习工作效率更高。那么,想必你在找可以用得到的幼师资料吧?经过搜索和整理,小编为大家呈上找因数课件,如果合你所需,不妨马上收藏本页。教学目标:知识目标:...
    2023-09-18 阅读全文
  • 导数课件教案6篇 我们陆续为大家整理了导数课件教案,欢迎阅读,希望大家能够喜欢。老师每一堂课都需要一份完整教学课件,每个老师都需要细心筹备教案课件。 学生反应可以帮助教师调整教学方案,提高教学效果。...
    2023-03-10 阅读全文
  • 负数的课件教案集锦 每个课堂,老师都需要准备一份完整的教学课件,这需要我们老师认真对待。有良好的教案和课件能够激发学生的学习兴趣。幼儿教师教育网小编为您搜集了一些有用的资料,题为"负数的课件教案",供您参考。希望本文内容能为您提供帮助!...
    2023-06-26 阅读全文
  • 数字课件教案6篇 在给学生上课之前老师早早准备好教案课件,相信老师对要写的教案课件不会陌生。 教案和课件设计质量与教学效果密不可分,好的教案课件是从哪些角度来写的呢?下面是我们精心为你整理的“数字课件教案”,希望对你的工作和生活有所帮助!...
    2023-05-10 阅读全文

今天我们为您提供找春天课件教案,希望能对你有所帮助,请收藏。上课前准备好课堂用到教案课件很重要,因此就需要老师自己花点时间去写。 教案和课件编排得好有助于激发学生的创造力。...

2023-04-25 阅读全文

宜未雨绸而缪,毋临竭而掘井。在日常的学习工作中,幼儿园教师都会提前准备一些能用到的资料。资料可以指人事物的相关多类信息、情报。参考相关资料会让我们的学习工作效率更高。那么,想必你在找可以用得到的幼师资料吧?经过搜索和整理,小编为大家呈上找因数课件,如果合你所需,不妨马上收藏本页。教学目标:知识目标:...

2023-09-18 阅读全文

我们陆续为大家整理了导数课件教案,欢迎阅读,希望大家能够喜欢。老师每一堂课都需要一份完整教学课件,每个老师都需要细心筹备教案课件。 学生反应可以帮助教师调整教学方案,提高教学效果。...

2023-03-10 阅读全文

每个课堂,老师都需要准备一份完整的教学课件,这需要我们老师认真对待。有良好的教案和课件能够激发学生的学习兴趣。幼儿教师教育网小编为您搜集了一些有用的资料,题为"负数的课件教案",供您参考。希望本文内容能为您提供帮助!...

2023-06-26 阅读全文

在给学生上课之前老师早早准备好教案课件,相信老师对要写的教案课件不会陌生。 教案和课件设计质量与教学效果密不可分,好的教案课件是从哪些角度来写的呢?下面是我们精心为你整理的“数字课件教案”,希望对你的工作和生活有所帮助!...

2023-05-10 阅读全文
Baidu
map