幼儿教师教育网,为您提供优质的幼儿相关资讯

质数和合数课件

发布时间:2023-08-12 质数合数课件 质数合数

质数和合数课件。

居安思危,思则有备,有备无患。幼儿园教师在平时的学习工作中,都会提前准备很多资料。资料主要是指生活学习工作中需要的材料。有了资料才能更好的在接下来的工作轻装上阵!你知不知道我们常见的幼师资料有哪些呢?在这里,你不妨读读质数和合数课件,欢迎阅读,希望大家能够喜欢!

质数和合数课件 篇1

教学目标:

1、掌握质数和合数的概念,并知道它们之间的联系和区别。

2、能够判断一个数是质数还是合数。

教学重难点:

质数和合数的概念。根据概念判断一个数是质数还是合数。

教学准备:

教学课件

教学互动过程:

一、创设情景,引入课题。

1、简单回顾因数和倍数的知识。

2、让学生列出1—20各数的因数,小组比一比,看谁列得快。

3、请同学们观察自己列出的这些数的因数,看看它们因数的个数有什么特点。(小组合作探究、讨论、汇报)

4、让学生按照汇报情况把这些数进行分类。

5、引出质数和合数的概念:因数只有1和它本身的数叫质数(也叫素数);除1和它本身以外,还有其他因数的数叫合数。(同时板书)

明确质数和合数的概念,结合刚才的分类进行初步理解。

二、学习质数和合数

1、在刚才的分类中,1好象没有被分到哪一类,那么1是质数还是合数呢?

2、了解了质数和合数的概念,现在同学们来判断一下,10以内的数中,哪些是质数,哪些是合数?

学生独立思考,根据概念判断,踊跃汇报。

3、组织学生做“我说你判断”的游戏,同桌之间互相说出一个数,请对方根据概念判断其为质数还是合数。

4、我们已经找出了10以内的质数,那么,大家能找出100以内的质数吗?

小组讨论找100以内的质数的方法,根据找10以内的质数的方法找,发现用这种方法找太慢。

5、对,逐个判断比较麻烦,是否有什么方法可以很快地找出来?用排除法可以吗?

6、下面同学们就用排除法来找一找100以内的质数。

小组讨论,合作探究,商讨寻找质数的方案。

7、同学们的方案真是严密呀,一个都不漏掉。现在同学们把课本24页表格中的自然数用排除法找出质数吧。

按照小组讨论的方案依次划掉不是质数的数,完整划出100以内自然数中的质数。

三、阅读材料,知识拓展,进行课堂练习。

1、让学生阅读教材第24页阅读材料“分解质因数”,了解如何对一个数分解质因数。

学生阅读材料,明确质因数的概念,知道如何对一个数进行分解质因数:把一个合数分解成几个质数的积。

2、说出几个合数,让学生对这几个数进行分解质因数:36、42、144、228。

3、让学生做练习四第1、2、3、题。

(教师巡视,了解学生对知识的掌握情况,个别指导。)

四、总结

组织学生说说这节课学到了哪些知识,以及有些什么收获。

板书设计:

质数和合数

因数只有1和它本身的数叫质数(也叫素数)。

除1和它本身以外,还有其他因数的数叫合数。

规定:1不是质数,也不是合数。

10以内的自然数:2、3、5、7是质数;4、6、8、9、10是合数。

质数和合数课件 篇2

一、教学分析

《质数与合数》是本册教材第二单元最后一个知识。它是在学生已经掌握了因数和倍数的意义,了解了2、5、3倍数的特征之后学习的又一重要内容,为学习求最大公因数和最小公倍数以及约分,通分打下基础,在本章教学内容中起着承前启后的重要作用。Internet网上有关质数与合数的相关资源非常丰富也非常有吸引力,这就使本节课与信息技术进行整合成为可能。同时,我校是全国现代信息技术实验学校,五年级学生早已具有网上搜索、交流的能力,为此我设计了《质数与合数》的专题网站,将网络中散落的资源进行整合与集中,便于学生查阅。

二、教学目标及重难点

根据本课的具体内容、《数学课程标准》的有关要求和学生实际,我确定了以下三个教学目标:

1、知识与技能目标:

掌握质数与合数的概念,并能根据概念正确判断一个数是质数还是合数。

2、过程与学习方法目标:

通过自主探索、观察、比较,经历对自然数的分类和概念揭示,体验数学问题的研究过程。

3、情感与态度目标:

在学习过程中,让学生感受现代信息技术的优越性,增进合作交流意识。

教学重点:

质数与合数的概念。

教学难点:

正确判断质数和合数。

三、教学过程及整合点分析

《数学课程标准》指出:“教师要引导学生投入到探索与交流的学习活动中”。根据本课特点以及维果茨基的“最近发展区”理论,我采用自主探索的学习方法,引导学生充分利用网络进行合作探究,自主学习,从而培养学生主动获取知识的能力。基于此,我设计了以下四个教学环节。

(一):情景设疑,激发兴趣

爱因斯坦曾经说过:“兴趣是最好的老师”。我利用学生的好奇心,从生活实际出发创设情景:如果我们把教室里的孩子分一分类,可以怎样分呢?一石激起千层浪,学生们思维活跃,很快找到了各种不同的分类,在此基础上我引导学生通过思考得出:分类的标准不同,分类的情况也就不同。这样的设计充分调动了学生的学习积极性,激发了学生的学习动机,学生主动学习的氛围得到了良好的营造。这时引入我们要研究的课题“质数与合数”已是水到渠成。

(二):网上交流,自主探究

为了给自然数的分类作好准备,我顺势提出要求:请找出你们学号的因数,并发到论坛上。这样利用论坛使每个单一的信息迅速汇集到一起,大大增加了信息量,便于学生从丰富的信息中观察因数个数的特点。这样设计不仅提高了课堂的效率,而且通过多媒体教室的转播,学生的演示,更有利于生生之间和师生之间的交流,学生能利用论坛相互了解自己的不同发现,感受思维的多样性,使课堂上的探究真正落到实处。

接下来,根据学生自己的观察、思考和发现,教师提出:你认为自然数按照约数个数的多少可以分成几类?学生立即在网上进行投票,教师通过网络能收到及时准确的信息反馈,了解每个同学的不同意见。最大限度的尊重了学生学习的差异性。教师马上提出:“那数学家按照这个标准是怎样分类的呢?”学生通过看书自学,迅速知道了自然数的另一种分类,理解了质数与合数的概念。学生立即运用概念对自己与他人的学号进行判断。这样的设计,让学生轻松愉快的掌握了质数与合数的概念,不仅突出了本课的重点,而且学生主动学习的能力也得到了培养和提升。

此时,我没有让学生直接学习“筛法”,而是对教材进行了大胆的处理,教材的编排比较抽象、枯燥,学生不易理解,也要花费大量的学习时间,不利于提高课堂效率。我把“筛法”在网站上动态的展示出来。声音、文字、图象的感官刺激,化抽象为具体,正符合学生的心理。使学习化被动为主动,学生能轻松的理解知识,从而切实激发学生发自内心的学习兴趣,激活思维,真正达到“快乐学习”的目的。利用网站有效的突破了本课的难点。

(三):网上练习,分层巩固

专题网站设计了“学习天地”“考考你”“智力快车”等练习,按照教学要求和进度安排不同层次的学习和训练。在学习和交互练习中,人机交互可以是有快有慢的、有难有易的。学生可以得到网络及时评价,因而既可充分照顾学生的个别差异性,又最大限度地调动了学生的学习兴趣与积极性。学生因需要而学习,达到了因材施教的目的。

(四):回顾总结,拓展延伸

最后全课总结。这对于帮助学生理清脉络,巩固知识,加深记忆,活跃思维、发展兴趣都具有重要作用。

四、教学效果

总之,本课利用计算机网络资源进行学习,增加了信息量,扩大了学习活动的自由空间,落实了因材施教,不仅高效地完成了本节课的学习任务,而且同学们的信息素养的到了培养。他们不但掌握了质数和合数的概念,还能用多种方法进行判断。网络环境给数学教学带来前所未有的生机与活力。

质数和合数课件 篇3

自学预设:

自学内容

p23—24例1、做一做,p25—26的t1—5

指导方法思考:

1、按要求填写下表:

从上面的表格中的数据有什么特点?

2、什么叫质数和合数?举例说明

3、在这个表中找出100以内的全部质数

小组讨论,你发现了什么?

尝试练习 1、试着完成p23的做一做练习

2、判断下列数哪些是质数,哪些是合数?

1 34 17 15 23 20

43 39 51 78 90 99

教学内容:质数和合数p23~24例题1及p25题1~5

教学目标:

①使学生掌握质数和合数的意义,能正确判断一个常见数是质数还是合数

②知道100以内的质数,熟悉20以内的质数。

③培养学生自主探索、独立思考、合作交流的能力。④让学生在学习活动中体验到学习数学的乐趣,培养学习数学的兴趣。

教学重点:质数和合数的意义。

教学难点:正确判断一个常见数是质数还是合数。

教学过程:

一、创设情境

1、谁能说说什么是因数?

2、自然数分几类?

自然数还有一种新的分类方法,就是按一个数的因数的个数来分,今天就来学习这种分类方法。

二、反馈预习,探索研究

1、学习质数和合数的概念。

预习反馈(1)请写出1~20各数的因数?(根据学生的回答板书)

预习反馈(2)观察:①每个数的因数的个数是否完全相同?②按照每个数的因数的多少,可以分几种情况?(学生讨论后归纳)

(3)可分为三种情况:(让学生填)

生反馈:

只有一个因数 1

只有1和它本身两个因数2,3,5,7,11,13,17,19

有两个以上的因数4,6,8,9,10,12,14,15,16,18,20

(4)教学质数和合数的概念。

①自然数只有两个因数的,如:2、3、5、7、11、13、17、19等。这几个数的因数一定是多少?

讲:一个数,如果只有1和它本身两个因数,我们把这样的数叫做质数(或素数)。

②4、6、8、9、10、12、14、15……这些数的约数与上面的数的约数相比有什么不同?

讲:一个数,如果除了1和它本身两个因数外还有别的因数,我们把这样的数叫做合数。(板书“合数”)

注意:1既不是质数,也不是合数。

(5)提问:什么叫质数?什么叫合数?自然数按因数个数来分,可以分几类?

2、质数、合数的判断方法。

(1)我们应该怎样去判断一个数是质数还是合数?(根据因数的个数来判断)

(2)完成p23做一做,判断下列各数中哪些是质数,哪些是合数?

(3)提问:你是怎样判断的?(找出每个数的因数的个数)

判断是质数还是合数,是不是把所有的因数都找出来?(不必要,只要发现自然数除了1和本身指望还有其它的因数,不管有几个,它都是合数)

3、出示p24例题1,找出100以内的质数,做一个质数表。

(1)提问:如何很快的制作一张100以内的指数表?

(2)按质数的概念逐个判断?也可以用筛选法。

(3)介绍筛选法:先排除2以外的所有偶数,接着排除3以外的所有3的倍数,再接着排除5以外的所有5的倍数,最后排除7以外的7的倍数。因为1既不是质数,也不是合数,所以也必须排除,这样剩下的就是100以内的质数。

100以内的质数:(略)

(4)讲:判断一个数是不是质数,除了用质数的定义进行判断外,还可以查质数表,如100以内的质数表。(或者看6的倍数的左右)

三、巩固练习:

完成p25题1~5

第3题:质数+质数=10,质数×质数=21,分析:这两个质数一定小于10,10以内的质数有2,3,5,7,通过观察可知,只有3和7。

同样,质数+质数=20,质数×质数=91,只有3+17=20和7+13=20,而积是91的只有7和13。

四、拓展延伸

1、判断

①所有的质数都是奇数

②所有的偶数都是合数

③自然数不是质数就是合数

④两个奇数相减,差一定是偶数

⑤两个偶数相加,和一定是合数

2、最小的质数是,最小的合数是 ,20以内的质数是,既不是质数也不是合数的数是 。

3、把下列各数写成两个质数相加的形式

①10=( )+( )

②16=( )+( )

①24=( )+( )=( )+( )=( )+( )

五、课后小结:

六、作业:

质数和合数课件 篇4

【教学内容】

数的奇偶性(教材第15页例2,以及第16~17页练习四第4~7题)。

【教学目标】

1.经历探索加减法中数的奇偶性变化的过程,在活动中发现加法中的数的奇偶性的变化规律,在活动中体验研究方法,提高推理能力。

2.使学生体会到生活中处处有数学,增强学好数学的信心和应用数学的意识。

【重点难点】

1.探索并理解数的奇偶性。

2.能应用数的奇偶性分析和解释生活中一些简单问题。

【复习导入】

同学们喜欢做游戏吗?今天老师就和你们一起来做抽奖游戏。其实在抽奖游戏中蕴含着许多数学规律,今天老师就看谁细心观察,在抽奖游戏中获得数学规律。同学们想要奖品吗?那就要看你们的运气了。

【新课讲授】

1.探索规律

游戏一:出示盒子,里面装的都是偶数。

游戏规则如下:从盒子中任意取出两张卡片,如果两个数的和是奇数就可以领到精美礼品一份。

(1)如果继续玩下去有中奖的可能吗?什么原因拿不到礼物呢?

(2)总结规律:偶数+偶数=偶数

(3)你能说说为什么吗?(偶数除以2余0,两个偶数相加的和除以2还是余0。所以:偶数+偶数=偶数)

游戏二:出示盒子,里面装的都是奇数

游戏规则如下:从盒子中任意取出两张卡片,如果两个数的和是奇数就可以领到精美礼品一份。

(1)如果继续玩下去有中奖的可能吗?什么原因拿不到礼物呢?

(2)总结规律:奇数+奇数=偶数

(3)你能说说为什么吗?(奇数除以2余1,两个奇数相加的和除以2正好余2。也就是没有余数了,所以:奇数+奇数=偶数)

游戏三:怎样修改游戏规则能得到奖品呢?

(1)两个盒子里各抽出一张卡片,就会中奖。

(2)总结规律:偶数+奇数=奇数

(3)你能说说为什么吗?(奇数除以2余1,偶数除以2余0,一个奇数加一个偶数的和除以2还余1.所以:偶数+奇数=奇数)

2.验证规律

这些卡片都是老师设计好的,仅仅靠卡片上的数,我们就下定论似乎还早了些。我们还需要什么呀?对,还需要进一步的“验证”,那么就请你再自己任意出几个数,验证一下这三种情况吧。验证后把你的结论跟小组同学交流一下。

独立完成后小组交流,并汇报发现的奇偶数规律。(偶数+偶数=偶数奇数+奇数=偶数奇数+偶数=奇数)

生齐读一遍

练一练:不用计算判断下列算式的结果是奇数还是偶数吗?

10389+XX11387+131268+1024

3721+XX22280+10238800-345

【课堂作业】

完成教材第16~17页练习四第4~7题。

【课堂小结】通过今天的学习,我们发现数学知识与我们的生活实际是有着非常紧密的联系的。只要我们大家在今后的学习生活中多用眼观察,多用脑去想,更重要的是多用手去做的话。数学知识就非常简单了.

【课后作业】

完成练习册中本课时练习。

质数和合数课件 篇5

一、说教材

1、课时教学内容的地位、作用和意义

“质数和合数”是一节概念教学课,是“因数和倍数”这个单元教学的难点和重点。它是在学习了因数和倍数以及2、3、5倍数的特征的基础上进行教学的,是下半学期学习求最大公因数和求最小公倍数以及约分、通分的重要基础。

2、教学目标

⑴ 知识与技能目标:使学生理解质数和合数的意义,知道它们之间的联系和区别,能根据它们的意义判断哪些数是质数,哪些数是合数。熟悉50以内的质数。

⑵ 过程与方法目标:通过求因数—找规律—探究归纳—验证等数学活动,学习观察、比较、分析、归纳、推理等数学策略。

⑶ 情感、态度、价值观目标:培养学生认真观察,仔细比较,合理分类和归纳概括的能力,培养学生优秀的数学意识和数学品质。

3、教学重、难点: 掌握质数、合数的概念,能准确判断一个数是质数还是合数。

二、说教法

数学来源于生活又应用于生活是新课程一个重要的理念。让学生学会用数学知识、方法去思考分析身边的事物是数学课堂教学的一个重要任务。根据本节知识特点和小学生的年龄特点及认知规律,结合新课程标准精神,我采用了探究发现、启发式教学、开心游戏活动等教学方法。

三、说学法

教师的任务不仅要使学生学会,更重要的是要使学生会学。结合本节课的知识特点我让学生通过观察比较、分类归纳、讨论交流等学习方法掌握本节课的学习内容。

四、说教学过程

(一)、复习引入

1:在算式“3×4=12”中,谁是谁的因数?谁是谁的倍数?

2:自然数按照是否2的倍数可分成几类?

设计意图:有研究表明小学生注意力能集中时间是15—20分钟,复习引入的时间不能太多。所以复习必须坚持精练的原则,复习内容必须是和新知识有密切联系的已有知识和经验,习题要生动有趣,使学生的注意力从上课开始就被吸引住,既从知识上起到迁移、铺垫的作用,又为学习新知识创造了良好的认知环境。

(二)、学习新课

1:学习质数、合数的概念

(1)、要求学生写出自己座号的所有因数,请1——12号的同学说出自己座号的所有因数。

(2)、要求学生观察1——12这十二个自然数的因数个数,四人小组讨论交流根据因数的个数可以把这十二个自然数分成几类?

(3)、结合学生的汇报,揭示质数和合数的概念(板书课题)。

设计意图:我运用了引导学生探究发现的教学方法,学生采用观察比较、分类归纳、讨论交流的学习方法。因为“质数和合数”是学生在学习了因数和倍数的基础上进行学习的。因此我抓住新旧知识的连接点,让学生找自己座号的因数,从学生身边熟悉的事物入手,唤起学生亲切的情感,激发他们学习的兴趣。学生是学习的主体,只有让学生参与知识的形成过程,数学知识才会内化学生自己的东西,四人小组讨论交流就是让学生在探讨中提高学习的能力。

2、引导学生深入理解质数、合数的概念。

质数和合数这两个概念关键在于因数的个数,“只有……两个……”是质数概念的关键词。“除了……还有……”是合数概念的关键词。我针对这两个概念的关键处,设计以下问题引导学生观察、思考和讨论:

(1)、观察自然数2、3、5、7、11的因数,这些自然数的因数有什么特征?

(2)、自然数4、6、8、9、10、12的因数也有1和它本身,为什么它们不是质数?

(3)、1是质数还是合数?为什么?

(4)、非0自然数按因数个数多少可分成几类?(师板书)

设计意图:我运用了质疑问难、启发式的教学方法,学生采用观察比较,自主探究的学习方法。因为学生在不断的新的问题面前,对概念已有的理解与新的问题产生了表面上的矛盾,于是通过积极思考,寻求解决问题的途径,主动找出概念的本质关键,从而较深刻地理解了质数和合数的概念。

3、学习例1(找出50以内的质数,做一张质数表)

(1)让全班50个同学判断自己的座号是否质数,座号是质数的同学举起座号卡片到讲台前集合。

(2)台下同学检查,纠正台上站错的同学并说出根据。【yJS21.cOM 幼儿教师教育网】

(3)了解最小的质数和最小的合数。

设计意图:我运用了快乐游戏活动的教学方法,学生采用观察思考、自主操作的学习方法。因为学生经过前半节课的学习,无论注意力还是思维,都已经比较疲劳。要让学生在短时间之内找齐50以内的质数又不使学生觉得是个负担,适宜采用轻松活泼的形式。所以,我设计了这个全体学生参与的游戏。这样的游戏既检查了全体学生能否根据概念快速准确地判断出质数还是合数,又能调动起课堂气氛和学生的注意力。

yJS21.com更多精选幼师资料阅读

找质数课件


教案课件是老师不可缺少的课件,所以在写的时候老师们就要花点时间咯。教案是教师个性化服务的有效保障。小编在大量资料中找到了一篇极富实用性的“找质数课件”,希望阅读本文能够为您的职业生涯带来启示!

找质数课件(篇1)

教学目标:

1、知识目标:引导学生初步理解小数的性质;能运用小数的性质正确地化简小数和改写小数。

2、能力目标:激发学生积极主动的探究精神,培养学生归纳、分析的能力。

3、情感目标:培养学生爱学数学的情感。

教学重点:

理解小数的末尾添上“0”或去掉“0”,小数的大小不变的道理。并正确运用这一性质解决相关问题。

教学难点:

掌握在小数部分什么位置添“0”去“0”,小数大小不变。

教具准备:

学习纸“小魔术”纸卡多媒体课件

课时:

1课时

教学过程:

一、情景导入(小魔术)

1.师:同学们,第一次给你们上课,作为礼节,我给大家表演个魔术——数字的变化。看这是数字1?等会你们一起小声喊:1,2,3,大,老师就可以把这个数变大了。信不信?

生:1,2,3,大。

师:把1变成10,10和1比扩大了10倍。

2.老师还有一个数0.1,我们再来试一试。

引起学生的冲突:到底变大了吗?

(设汁意图:是把枯燥的数学知识贯穿在小学生喜闻乐道的游戏中,引发学生的学习兴趣,点燃他们求知欲望的火花,从而进入的学习状态,为主动探究新知识聚集动力。)

这节课,我们就来研究小数末尾“0”对小数的大小的影响。也就是我们今天要学习内容——小数的性质。

二、探求新知

(一)教学例1

1.师:0.1米、0.10米、0.100米,他们到底会不会相等呢?

师:请拿出你的学习纸把第一题完成。

汇报:请学生上台展示。填空、比较发现一样,从而得出0.1米=0.10米=0.100米。

教学中让学生说说你是怎样找出0.1米、0.10米、0.100米。

(0.1米是一位小数,它的计数单位是1/10,有1个1/10,也就是说0.1米=1/10米,把1米平均分成10分,1份就是1分米。所以0.1米=1分米。

0.10米是两位小数,它的计数单位是1/100,有10个1/100,也就是说0.10米=10/100米,把1米平均分成100分,1份就是1厘米,10份是10厘米。所以0.10米=10厘米。

0.100米是三位小数,它的计数单位是1/1000,有100个1/1000,也就是说0.100米=100/1000米,把1米平均分成1000分,1份是1毫米,100份就是100毫米。所以0.100米=100毫米。)

因为1分米=10厘米=100毫米所以0.1米=0.10米=0.100米

师:0.1米=0.10米=0.100米(板书)这三个长度是一样的,都是以“米”为单位,我们就可以把数抽象出来0.1=0.10=0.100。

(设计意图:这样,学生根据小数的意义,主动从“0.l米、0.10米、0.100米”出发研究问题。在问题得以解决的过程中,学生锻炼了运用已有知识解答新问题的能力,培养了运用数学知识的意识)。

仔细观察这组小数,你有什么发现?

生:小数的末尾添上“0”,小数的大小不变。

师:同学们的眼光真锐利。小数的末尾添上“0”,小数的大小不变。我现在有个疑问,其它的小数也有这样的特点吗?

师:现在请同学们翻开学习纸,根据方格图,自己想一组小数把它表示出来。

学生操作,交流汇报。

课件展示。

(教师在学习研究中要加强指导)

2.师:现在请同学们观察上面的题目中的小数,你能说出几组和它们类似的小数吗?

学生说说。

师:能说出这么多组,你们一定发现了什么规律吧?(交流,汇报)

总结:小数的末尾添上“0”或去掉“0”,小数的大小不变。

(设计意图:这样教学,把静态的知识结论转化动态的求知过程,让学生真正成为学习的主人,对所学的内容理解深刻,记忆牢固。同时,还培养了学生归纳概括事物本质属性的能力。)

3.联系生活,再现新知:还有同学们在商场看到货物的标价如:这样写,不但没有改变小数的大小,而且让顾客很清楚地知道是几元几角几分。

(二)小数性质的应用

1.教学例2

师:现在我们认识了小数的性质,那么应用小数的性质,我们可以根据需要对小数进行改写。

电脑演示:化简下面的小数。0.70= 105.0900=

教学0.70=0.7

问:①你是怎样化简的?(根据小数的性质,去掉小数末尾的“0”就可以把小数化简)

②0.70与0.7它们的大小不变,但意义相同吗?

(不同,0.70表示70个1/100,0.7表示7个1/10)

教学105.0900=105.09

问:小数里的其他“0”可以去掉吗?为什么?(不可以,大小改变。师要强调末尾)

2.教学例3

电脑演示:不改变数的大小,把下面各数写成三位小数。

0.2 = 4.08 = 3 =

师:你是如何把它改写成三位小数的?(根据小数的性质,在小数的末尾添上“0”小数的大小不变)

师:3如何改写成三位小数?这个小数点不点的话可以吗?

注意:A、在小数的末尾添“0”。

B、当这个数是整数时,在整数个位的右下角点上小数点,再添“0”。

师:应用小数性质时,应注意什么?(小数、末尾)

三、巩固练习

课本59页的做一做。2、开火车的形式回答59页的做一做。

问:你是怎样化简和改写这些数的?

四、全课小节

1.这节课你学到了什么?

小数的末尾添上“0”或去掉“0”,小数的大小不变。

2、我们是怎样探索小数的性质的?

在整数的末尾添上或去掉0,整数的大小发生了很大的变化,而在小数的末尾添上或去掉0,小数的大小却不变,但是通过在小数的末尾添上或去掉0,我们就给一个小数找到了许多大小不变的朋友,0就是这样一个奇妙的数字。其实,数学王国里有许多奇妙的现象,等着我们不断去探索、发现。

板书:小数的性质

小数末尾“0”对小数的大小的影响

小数的末尾添上“0”或去掉“0”,小数的大小不变。

0.1米=0.10米=0.100米

0.1=0.10=0.100

找质数课件(篇2)

教学内容:质数和合数。

教学过程:

一、创设情境,引入课题。

我们已经学习了求一个数的因数的方法,你能正确求出1――20各数的因数吗?

小组比一比,看谁列得快。教师指名汇报。

二、动手操作,制质数表。

(1)找因数。

观察这些数的因数,如果按因数的个数,你认为可以怎样分类?

动手给20以内的数按因数的个数进行分类,填书P23。

观察黑板上的三类数各有什么特点?

师:只有1和它本身两个因数的数叫做质数(或素数),除了1和它本身还有别的因数的数叫做合数。

结合1――20各数,解释一下什么是质数?什么是合数?[板书概念]

齐读20以内的质数、合数。

问:最小的质数是几?最小的合数是几?

1是质数,还是合数呢?[板书:1既不是质数,也不是合数]

如果把整数按自然数的个数来分类,可以分为几类?哪几类?再次强调:1既不是质数,也不是合数。

要判断一个数是质数还是合数,关键是看什么?

你的学号是质数,还是合数?与同桌说一说,并互相判断对错。

P23做一做。独立练习,全班交流检查。

(2)找质数。

刚才我们已经找出了20以内的质数,那“73”它是不是质数。

要想马上知道73是什么数还真不容易。如果有质数表可查就方便了。这表从哪来呢?

(教师出示百以内数表)这上面是1到100这100个数,它不是质数表,你们能不能想办法找出100以内的质数,制成质数表?谁来说说自己的想法?(让学生充分发表自己的想法。)

师:对,逐个判断比较麻烦,是否有什么方法可以很快地找出来?用排除法可以吗?

因为质数只有1和它本身两个因数,那么质数的倍数就都是合数,只要在数字表上依次划出质数的倍数,剩下的就是质数了。

学生根据教师的指导,在教材第24页用排除法动手制作100以内的质数表,然后再在全班交流。

一起把100以内的质数读一读。

附:100以内质数顺口溜

二、三、五、七、一十一

十三、十七、一十九

二三九、三一七

五三九、六一七

四一三七、七一三九

八三、八九、九十七

三、练习巩固:

完成练习四第1、2题。

四、课题小结:

这节课你在激烈的讨论中有什么收获?

找质数课件(篇3)

《质数和合数》教学设计

三友小学

张全艳

课前准备板书(0、

1、

2、

3、

4、

5、

6、

7、

8、

9、、、) 师:这节是数学课,请同学们看黑板,这些数字统称为什么数?哪些是偶数(师板书)?哪些是奇数?(板书 )最小的偶数是?最小的奇数是?没有最大的偶数也没有最大的奇数。

师:判断一个数是奇数还是偶数,你们的根据是什么? (生:是不是2的倍数)

师:对这样把自然数分成了两大类(

)和(

可见分类的方法很重要,那么这节课我们就根据一个数的因数的个数给自然数重新分类。大家有兴趣吗?想自己探究吗?

师:我们知道在研究因数和倍数时,包不包括“0”

请看合作探究一:师读要求。

课前老师给你们每人一张卡片,先拿出笔写出1---20各数的因数;然后结合自学提示自学。最后同桌之间交流下。

师:看课件第一名同学请汇报1—5各数的因数,其他同学判断。依次3名同学汇报。

师:看来同学们找因数的本领很强,那么按照因数的个数的多少,可以分为几种情况?学生汇报。 师:在数学中,像(

2、

3、

5、

7、11板书)这样的数只有1和它本身两个因数的数,我们叫它们为质数或素数。(板书生读一遍)

要想给质数或素数下个定义,该怎样说呢?(师贴定义,)这句话你认为哪个词最重要?为什么?超过两个行吗?一个呢?(齐读概念)

师:那么质数除了我们大屏幕出现的,你还能找到其他的质数吗?这样的例子太多,不一一列举, 师:板书:那像

4、

6、

8、

9、10这样的数的因数的个数都是两个以上的,数学中我们叫它们为合数(板书)什么样的数是合数,谁来准确的下个定义,(师贴)。这句话哪个词最关键?合数至少有几个因数? 师:那么判断一个数是质数还是合数,关键看什么?(因数的个数)老师这有几个数,你们能快速判断出来是质数还是合数吗?(

17、

22、

29、

35、

37、87) 师:1呢、是质数还是合数?为什么?(贴) 所以做这部分判断题就要先考虑1.师:由此可见,我们可以把自然数根据因数的个数分成哪几类?(质数、合数、1)这就是我们这节课学习的重点(板书课题)。

师:我们可以用集合形式表示出来。最小的质数是2,有最大的质数吗?质数的个数是无限的。同样最小的合数是()有没有最大的合数?合数的个数也是无限的。

师:接下来老师要考考你们的眼力,所有质数中有一个质数最特别,你们找到了吗?为什么?(所以质数中只有2是偶数,其余都是奇数,红颜色标注,)反过来说所有偶数中只有谁是质数?做判断题时要注意它。

师:再看看合数,是不是合数都是偶数呢?()有奇数

9、15等。反过来说是不是所有的偶数都是合数呢?(0、2)

师:同学们你们知道100以内都谁是质数吗?100以内有多少个质数吗?想不想做一个质数表。(出示学习探究二)师读:数学中我们把这种思考的方法叫筛法。学会这种方法可以快速准确地帮助我们做题。打开书14页例1,开始学习吧同桌之间再一起交流下。 师:谁来汇报一下100以内质数有哪些?大家认真听有没有说错的。多少个?

老师用电脑演示一下到底谁找的准? 读歌诀

师:通过学习我们知道自然数按是不是2的倍数分为()按因数的个数又可以分为() 再次读质数合数概念。同学们学会了吗?老师可要考考你,看书16页

1、

2、同学们喜欢表演吗?16页3题。

师:课本上的题同学们都学会了,你们 敢挑战更难一点的题吗?课件演示

师:同学们愉快的一节数学课结束了,回顾下本节课的知识点,你有哪些收获呢?

找质数课件(篇4)

1、了解一个花样或一个单位的排列方式。

2、学习与同伴间的合作,体验活动的快乐。

1、8个筐内装红,绿长方形纸片各10片;另备有黄纸片若干。

2、教师示范红,绿,黄纸片(小)若干,移动黑板一块。

一、提出铺小路要求。

教师出示纸片,师:看老师这里有许多纸片,今天老师就要请你和你的好朋友用这些红、绿的纸片合作铺一条长长而美丽的小路。

(1)幼儿自由结伴

师:先请你们4个好朋友一组,赶快找好。

(2)师:找好了吗?请每组推选一位组长。

(3)发放纸片(发给各位组长)

师:这组的组长是谁?请拿好。你们这组呢?

(4)讲操作要求

师:请大家听清楚老师的要求:

1、呆会儿每组找一个空地方铺。

2、铺的时候请注意不要碰坏其它组的小路。

3、听到老师倒记时,请立刻回到座位上,(教案.出自:.教案网.)组长负责将剩余的纸片收入筐中,放到椅子下面。

二、幼儿第一次操作。

(1)幼儿操作,教师巡回观察。

(2)交流操作结果。

1、师:这条小路是哪组铺的?你们是怎么铺的?请个代表说一说。

教师根据幼儿回答及时出示范例。

2、提问:小朋友你们说这条小路美丽吗?那你们有什么有趣的发现?

教师小节:像这样以红绿、红绿为规律的排列,我们把其中的一组红绿称为花样。(并圈出来)。

3、师:谁能把这条小路上的花样都圈出来?(请幼儿圈出花样)

师:我们一起来数一数在这条小路中这个花样重复了几次?

师:这条小路上的花样一样吗?原来一条小路上的花样都是一样的。

4、找出不同规律的小路,方法同上。

师:想一想这条小路上的花样是怎样的?谁能把它们都圈出来。

三、第二次操作。

(1)提出第二次操作要求。

师:刚才我们铺的花样是一张红一张绿,那么能不能用几张红和几张绿或绿多红少等方法铺出另一种花样的小路呢?和你的好朋友再去试试。

(2)幼儿操作,教师巡回指导。

(3)交流结果。

师:你们铺的小路是什么样的花样?

幼儿介绍,教师贴典型的花样。

四、第三次操作。

(1)讲第三次操作要求(添加黄色纸片)

师:下面老师再提供一种黄色纸片,请你们用红、绿、黄三种颜色的纸片铺一条更长而美丽的小路。

师:这次你想铺什么花样的小路。

(2)幼儿操作,教师巡回观察。

(3)就地交流。

师:现在大家铺出来的小路又是什么样的花样呢,我们一起来看看。

(4)及时纠正错误(重点指点花样的规律摆放)

师:有的路的花样没有有规律排好:你们自己再去动动脑筋铺好。铺好的可以参观一下其他组铺的小路。

五、修小路

师:小朋友铺了这么多条美丽的小路,有点累了,请大家闭上眼睛趴在椅子上休息会。

(1)由老师从中抽掉3-4块(保留第一个花样)

(2)幼儿按原花样修路

师:小朋友睁开眼睛一看,小路怎么了呀?那你们能不能把它修好呢?请你们帮其它小组修小路。修的时候看清楚小路原来的花样是什么样的,请你们按照原来的花样将小路修好。修好后再去检查一下其他小朋友有没有帮你把小路修好!

六、结束

师:男孩收绿纸片,女孩收红纸片,回去试试把更多的纸片放在一起看看能不能铺出更长更美的小路。

找质数课件(篇5)

1、在用小正方形拼长方形的活动中,经历探索质数与合数的过程,理解质数和合数的意义。

2、能正确判断质数和合数。

3、在研究质数的过程中丰富对数学发展的认识,感受数学文化的魅力。

1、理解质数和合数的意义。

2、能正确判断质数和合数。

一、复习。

1、请学生说说找一个数的全部因数的方法。

2、分别说出8、11的全部因数。

二、探究新知。

1、动手操作。

请学生拿出准备好的学具,按照教材第10页的要求完成表格。

2、汇报。

3、思考:

观察所填表格上的数,有什么特点?

(有的能拼一种,有的能拼两种,还有能拼三种的;能拼一种的对应的因数是1和它本身,能拼两种和两种以上的对应的因数除了1和它本身,还有其它因数。)

4、根据分类揭示质数和合数的意义。

根据2~12各数的因数特点进行分类,可以怎么分?

学生交流,教师引导。

将2、3、5、7、11这些数分为一类,像这样一个数的因数只有1和它本身的数叫做质数;

将4、6、8、9、10、12这些数分为一类,像这样一个数的因数除了1和它本身外,还有其它因数的数叫做合数。

数字1既不是质数也不是合数。

三、讨论判断质数、合数的方法。

1、尝试判断:2、13、51、37、52、93这些数中哪些是质数?哪些是合数?

学生独立思考完成。

2、交流判断方法。

51、93是3的倍数,所以它们的因数除了1和它本身外还有3,所以是合数;

52是偶数,它的因数还有2,也是合数;

2、13、37这几个数除了1和它本身外,找不到第三的因数,所以是质数。

3、归纳总结方法。

只要找到除了1和它本身外的一个因数,这个数就是合数;

除了1和它本身找不到其它因数,这个数就是质数。

四、探索活动。

教材第11页第1题。

请学生用“筛法”找100以内的质数,引导学生有步骤、有目的地操作。

教师介绍这种方法是两千多年前希腊数学家埃拉托斯特尼发明的,称为“筛法”。现在随着计算机的发展,这种操作方法可以编成程序让计算机操作。这样可以使学生了解数学发展的历史,感受数学文化的魅力,丰富学生对数学发展的认识。

教材第11页第2题。

本题引导学生通过操作、观察、探索规律。

第(1)、(2)题,学生会发现这些质数都分布在第1列和第5列,为什么?

引导观察:第2、4、6列除2外,其它数都是2的倍数,这些数的因数除了1和它本身外,还有2,所以不是质数;第3列除了3外其它数都是3的倍数,所以因数还有3,也不是质数。

第(3)题,用6除一个大于6的自然数,如果余数是0、2、4,那这个数肯定是2的倍数;如果余数是3,那这个数肯定是3的倍数。所以余数只能是1或5。

五、小结。

找质数课件(篇6)

教学目标:

使学生理解质数与合数的饿意义,掌握判断质数合数的方法,

教学过程:

一、复习

约数的概念,找约数的方法。

二、引入新课

例1写出下面每一个自然数的全部约数,在根据约数的个数,把这些自然数进行分类。

自然数约数

11

21、2

51、5

91、3、9

111、11

121、2、3、4、6、12

171、17

201、2、4、5、10、20

381、2、19、38

451、3、5、9、15、45

(1)找约数

(2)按照约数的多少进行分类?

(3)讨论:1是什么数?

最小的质数是几?

最小的合数是几?

三、巩固练习

1、练一练

第一题,练习判断一个数是质数还是合数。

分析:怎样去判断一个自然数是质数还是合数

2、试一试

第三题判断下面各题,正确的在括号里打对,不正确的打错。

四、总结归纳

使学生弄清奇数与质数,偶数与合数是不同的概念

五、布置作业

找质数课件(篇7)

本节课是北师大版小学五年级上册第一单元“倍数与因数”的第5节“找质数”。本节课是在学生已经学习了2,3,5的倍数特征以及掌握了找一个数的因数的方法的基础上进行教学的,通过本节课的学习,为后续学习公因数、约分、公倍数、通分奠定基础。这节课的知识目标是结合具体活动,认识、理解质数与合数的意义,并能运用质数与合数的概念正确判断一个数是质数或合数。

通过教材提供具体的操作材料,实现了学生活动式课堂的学习生活,学生积累了丰富的感性认识,符合学生的学习心理,同时有利于教师以学生自主活动为主体,以合作学习为学习形式,改变学习方式,引导学生经历、感受探索的过程。

首先让学生感觉到有不同类的存在,分类的标准是因数的个数,在活动中感受因数个数不同,把数分为不同种类的数,是本节课的重点,引导学生找到因数个数的特征,并把因数个数作为分类的标准,是本课的难点。

为了了解学生对概念的认识到底掌握到什么程度,在进行教学设计前,我做了一个前测,调查问卷是这样的:

下面的数学名词,按你知道的程度画符号。

结果显示:10人根本没听说过“质数”这个词,15人听说过,但不是很明白。其余16人认为自己已经知道质数是怎么回事了,9人认为自己非常理解。

所以在质数合数概念呈现之后,我为学生提供一个开放的问题,给出1~20个数,让学生重新认识这些数,并得出一些规律性的结论。这个活动为学生提供了广阔的思考时空,放手让学生去探究,关注有差异的学生去发现,实现自己的学习过程,得到不同的发展,并在辨析中,明确概念、加深理解。

1、通过用小正方形拼长方形的活动中,引导学生感受因数个数是自然数分类的标准,理解和掌握质数与合数的概念,并能运用概念,判断一个数是质数或合数。

2、通过操作活动和合作学习,培养学生合情推理以及抽象概括的能力。

3、通过了解质数研究的历史和学生感受多个角度认识数,感受数学文化的魅力。

关于数学家探索歌德巴赫猜想的动画课件、拼摆长方形的动画课件。

2、学生:

小正方形卡片、学具袋、实验报告单。

教师给学生讲一段故事:在二百多年前有一位德国的中学数学教师,他特别热衷研究数学问题,有一次他发现了一个神奇的数学现象,提出了一个猜想(画面1),但不知道对不对,就向当时最著名的数学家欧拉请教,不能发短信,更不能发伊妹儿,就写信。数学大师冥思苦想后,在回信中写道:说我确信你的论断是对的,但我无法证明它(画面2)。这个猜想轰动了整个数学界,数学家们跃跃欲试,但谁都没证明出来。直到四十二年前,我们中国的一位数学家也进行了研究,他的成果一直保持着世界领先记录,离成功只有一步之遥,但也没有完整证明出来。再后来,在20xx年,英美两国曾悬赏100万美元,奖励能证明这个猜想的人,但至今未果。(画面3)这个猜想太神奇了。想知道这个猜想吗?学完这节课我们就能了解它了。

教师用4个小正方形拼成2种长方形,并向学生说明其中拼成的正方形也是特殊的长方形。

2、玩摆长方形游戏,初步感受影响拼长方形种数的因素,并大胆提出猜想

师:我用4个小正方形最多能拼出2种不同形状的长方形,你能不能也像刚才那样,用手里的小正方形拼成长方形?师给每个小组都准备了一些小正方形,每组的块数不一样,把所有的小正方形都用上,拼成长方形。

问题:比一比,哪个小组拼成长方形的方案最多。小组成员要分工合作,把方案记录在表格里。

(老师在课前给不同的小组发放了不同数量的长方形,分别是3、7、9、10、11、12、18、24。学生活动开始,教师巡视)

学生汇报小正方形个数分别是3、7、9、10、11、12、18、24能拼成几种不同的长方形,老师根据学生的汇报,填在黑板的表格里。

师在学生汇报完24个小正方形能拼成4种长方形后,认为这组方案最多,是这次比赛的冠军,学生一定会强烈反对。

③师追问:你们为什么不同意?学生可能回答老师给每个组发的小正方形的个数不同。

师提问:请大家仔细观察黑板表格,你们认为是什么影响到了设计方案的多少?

学生发表想法,影响设计方案多少的因素可能会有:①数的大小②奇偶性③因数个数

(3)师小结:

通过刚才的讨论,我们猜测设计方案的多少受到了一些因素的影响,有的认为数大方案多,有的认为偶数比奇数方案多,还有的认为和因数个数有关。是不是像你们猜想的那样,到底什么因素最终决定设计方案的多少呢?我们再试一次,好不好。

3、玩抢数游戏,进一步感受因数个数决定设计方案的多少,验证数学猜想

师:刚才是老师分给你们的数,不公平,这次老师这有一些数,你们自己挑,看哪个好要哪个。

活动要求:数比较大,设计方案时可以摆,可以不摆,探究有几种方案后,也把结果记录在表格里。每个小组只挑一个数研究,把结果记录在表格里。

(教师贴出几个数:45(2个)、48(2个)、59(2个)、62(2个)下面挂着小正方形袋),

师:刚才每个小组用自己挑的数,设计方案,结合我们刚才的猜想,现在你有什么发现?试着用手里的数据来举例说明。

(学生可能提出数大不一定方案多,偶数不一定方案多,教师相机引导,给学生交流创造的空间,掌握举一个反例就可以推翻一个猜想的推理方法,逐渐清晰结论。)

师小结:看来和因数个数有关系,我们一起来研究研究。

(1)全班同学看表格,分别说出3、7、9、10、11、12、18、24的因数有哪些?有几个?

其实我们刚才长摆几个,宽摆几个,就是这个数的因数。

(2)提出问题:如果这次我们重新选,只给你一次机会,看谁设计方案多,黑板上这些数,你一定不选哪个数?(给学生理性梳理的时空,学生可能回答不选3、7、11、59)

追问:为什么不选这些数,请同学们在小组里交流交流各自的想法。

(学生可能回答:像3、7、11、59这几个数只能设计出一种长方形,或说这样的数只有2个因数,教师适时提出质数的名词,并说一说什么样的数是质数。)

我们用质数摆出的长方形,你有什么体会?(教师分别出示数量是3、7、11、59,摆出长方形的样子,都是细长条的一种长方形。)

教师引导学生归纳黑板上剩下这些数的特点,概括出合数概念。

问题:刚才学习了质数和合数,说一说51是质数还是合数,你是怎么想的?

(51这个数学生容易引起争议,爱混淆,在辨析中深入理解质数合数概念,学会初步运用概念看一个数是质数或合数,需要看因数的个数,如果只有1和它本身两个因数,这个数就是质数,如果再找到其他一个,那这个数就是合数。)

(四)设计开放性问题,引导学生利用已有知识主动观察与思考,发现规律

师:从我们上一年级开始,就在和数打交道,已经是老朋友了,这学期我们又研究了数的特征,结合这节课我们学习的质数和合数的知识,再来重新认识这些数。

屏幕出示小组学习单:

请你从不同角度观察这些数,你有什么发现或结论,写在下面的横线上。

在学生汇报过程中,教师相机引导辨析明确每个观点,并以小组的名义写在黑板上,鼓励学生发现问题的积极性。

在此过程中重点处理:

(1)1既不是质数也不是合数;

师:我们学过的奇数、偶数、质数、合数,他们之间有着密切的联系,但是特别有意思的是,我们能不能把从4开始的偶数写成两个质数相加的形式。

师生共同从4开始写:4=2+2 6=3+3 8=3+5 10=3+7 12=5+7 14=7+7

师介绍哥德巴赫猜想。

有人把歌德巴赫猜想比做数学皇冠上一颗璀璨的明珠,这颗明珠到现在还没有被摘取,因为质数太神奇了,是永恒的迷。关于神奇的质数,要知详情,请看这本书(出示图片),这里面讲述的数学故事和数学知识一定会令你着迷,老师相信在不久的将来,我们同学也能加入探索科学之谜的队伍。

自我问答:这节课看起来简单,学生学习特轻松。但在作业中出现的问题五花八门。

找质数课件(篇8)

教育活动:

活动来源:

一次益智区活动中,孩子们进行穿珠活动,大部分小朋友只是随意串珠,其中有一个小朋友是按照颜色串珠的,一个颜色的珠子串一串,在区域讲评时孩子们非常喜欢那串漂亮的珠子,之后孩子们对串珠非常感兴趣,为了帮助孩子们串出更漂亮的珠子,并强化幼儿按规律排列的能力,进行了此次活动。

活动名称:

按顺序排列活动目标:

1.练习按物体大小、颜色、形状间隔排序,鼓励幼儿想出不同的间隔排列方法并乐意用语言表达自己的排序方法。

2.在游戏情景中体验帮助别人以及成功的快乐。

活动重难点:

按物体大小、颜色、数量间隔排序。鼓励幼儿想出不同间隔排序的方法,并乐意用语言表达出自己的意思。

活动准备:

精神准备:幼儿已有的数学经验。

物质准备:布置小鸡的家、门帘照片。各种操作材料:大小颜色各异圆形、小花卡片。

活动过程:

一、开始部分师幼一起玩游戏《开火车》,导入主题。

师:孩子们,今天老师要带你们去鸡妈妈家做客,我们一起乘火车去,好吗?火车应该有很多车厢的,那我们小朋友来做车厢好吗?我们用一个男孩子,一个女孩子的好办法来做火车车厢。一个男孩子,一个女孩子,一个男孩子,后面是谁呀?感知男女间隔排列。

二、基础部分:

1.教师创设情景:游戏《做客》

(1)教师带领全体幼儿到鸡妈妈家做客,激发幼儿参与活动的兴趣。

师:鸡妈妈,你们家真漂亮!我们能参观参观吗?

鸡妈妈:来来来,大家请坐请坐!(大家坐下后,鸡妈妈表现不开心的表情)师:哎呀,鸡妈妈怎么了?(启发宝宝观察)谁去问问鸡妈妈,她为什么不开心?请一幼儿问:鸡妈妈你为什么不开心啊?

(2)创设问题,让幼儿帮助解决问题。

鸡妈妈说:都是我的宝贝们吵的呀!我家有三个宝贝,最近他们的好朋友小猫搬家了,他有了自己的新房间,它的房间还装了一个新门帘,他们觉得很漂亮,非要我也帮他们装,可我年纪大了,眼睛也花了,不知道怎么办才好?我的宝贝就生气的离开家去外婆家了,呜呜呜。

师:鸡妈妈,不要伤心了,我们来帮你!小猫的门帘是怎么样的呢?

鸡妈妈:我把他的门帘拍成了照片,你们帮我看看到底是怎么样的门帘?(出示小猫的门帘照片)

2.欣赏讨论,找出物体排序的规律。

(1)教师引导幼儿仔细观看照片,找出规律,为后面操作做好准备。

师:我们一起来看看小猫的门帘吧!你们看看小猫的门帘是怎么穿的?(幼儿欣赏讨论,师引导幼儿发现按物体大小、颜色、形状间隔排序方法)

(2)幼儿帮助三个鸡宝宝做门帘。

师:三个鸡宝宝都有自己喜欢的门帘,快来帮助小鸡们制作漂亮的门帘吧!

3.幼儿亲身操作,体验按规律排序。

在活动过程中,启发幼儿尝试着用各种材料,用间隔模式排序的方法进行排序活动(颜色间隔、数量间隔、大小间隔),(教案出自:教案网)鼓励幼儿想出各种模式排列方法,根据幼儿各个不同发展水平进行指导。

4.欣赏交流幼儿作品,体验成功的快乐师:你做的门帘真漂亮,你是怎样做的?鼓励幼儿说出自己的排序规律,对幼儿新创造的排序规律及作品给予高度赞扬。(教案出自:教案网)最后将所有幼儿的作品展示在黑板上,让幼儿体验到成功。

三、结束部分

宝宝,今天你们真能干!鸡妈妈非常感谢我们。今天来鸡妈妈家做客已经好久了,我们也该回家了,下次再来做客吧!我们回去也开火车好吗?请幼儿按照男女规律排队,开火车回家,活动自然结束。

找质数课件(篇9)

教学内容:

苏教版义务教育教科书《数学》五年级下册第37页例6、“试一试”和“练一练”,第39页练习六第1~3题。

 教学目标:

1.使学生认识质数和合数的意义,能判断或写出质数或者合数,并说明理由;体会非0自然数的分类,了解50以内的质数。

2.使学生通过比较、分类、概括等活动认识质数和合数,积累认识数学概念的基本活动经验,进一步体会分类的思想,培养观察、比较,以及抽象、概括和判断、推理等思维能力。

3.使学生主动参与数学思考和交流等活动,体会数学内容的内在联系,产生对数学的积极情感和主动学习数学的愿望。

重点难点:

理解和认识质数和合数。

教学准备:

小黑板

 教学过程:

 一、导入新课

回顾:同学们在前面研究因数和倍数中,以是不是2的倍数为标准对大于O的自然数进行过分类,还记得按这个标准,把大于0自然数分成了哪几类吗?(板书:偶数奇数)

引入:这节课我们继续研究大于O的自然数的分类。今天要按怎样的标准分类,可以分成哪几类,分成的每一类是什么数呢?老师期望大家一起来研究分类的标准,通过自己的分类认识质数和合数。(板书课题)

 二、认识新知

1.出示例6。 了解题意,明确要求。

让学生分别写出6个数的所有因数。

交流:这6个数各有哪些因数?我们请一位同学来交流一下。 指名交流,并板书出6个数的全部因数。

引导:现在大家观察这些数的因数,看看它们因数的个数有什么不同,你想按什么分类?可以分成几类?在小组里先讨论,等会我们一起交流。

交流:你想按什么把这些数分类,分成几类?(学生交流不同想法,教师引导统一为两类)

引导:大家想到了可以按因数的个数分类,只有两个因数的为一类,有两个以上因数的为另一类。那这里只有两个因数的是哪几个数?有两个以上因数的呢?请你在课本上填一填。

交流:你是怎样填的?观察这3个数,只有两个因数的数,它们的因数是怎样的两个数?(板书:只有1和它本身两个因数)

有两个以上因数的数,它们的因数有什么特点?(板书:除了1和它本身还有别的因数) 揭示:像2、3、5这几个数,只有1和它本身两个因数,这样的数叫作质数;(板书:质数)像6,8、9这几个数,除了1和它本身还有别的因数,也就是有两个以上因数,这样的数叫作合数。(板书:合数)

追问:上面这几个数里,哪几个是质数?为什么?哪几个是合数?你是怎样想的?

2.完善分类。

提问:1是质数还是合数?说说你的想法。

说明:1只有一个因数,所以它既不是质数,也不是合数。(板书:1:既不是质数,也不是合数)

3.完成“试一试’’。

让学生先填写因数,再判断各是什么数。

交流:说说你的判断依据和判断结果。(指名交流,呈现结果) 4.回顾整理。

 三、练习内化

1.做“练一练”。

2.做练习六第1题。

3.做练习六第2题。

4.填充。(口答)

(1)质数只有( )个因数,合数至少有( )个因数。

(2)自然数中,最小的质数是( ),最小的合数是( )。

(3)比10小的数里,质数有( )个,合数有( )个。

(4) 20的因数有( ),其中是质数的有( )o

5.做练习六第3题。

 四、全课小结

提问:这节课你认识了哪些知识,学到了什么本领?回顾一下,我们是怎样认识质数和合数的,学习过程中有哪些体会?

找质数课件(篇10)

教学内容:

四年级下册教材第38、39页的内容及练习十第1、2、3、4题。

教学目的:

1.引导学生知道、掌握小数的性质,能利用小数的性质进行小数的化简和改写.

2.培养学生的动手操作能力以及观察、比较、抽象和归纳概括的能力.

3.培养学生初步的数学意识和数学思想,使学生感悟到数学知识的内在联系,同时渗透事物在一定情况下可以相互转化的观点.

教学重点:

让学生理解并掌握小数的性质.

教学难点:

能应用小数的性质解决实际问题.

教学步骤:

一、创设情境,导入新课。

创设情境:夏天的时候同学们都爱吃冷饮,老师了解到校门口左边的商店里一种雪糕标价是2.5元,右边一家则是2.50元,那你们去买的时候会选择哪一家呢?为什么?

为什么2.5元末尾添个0价钱不变呢?究竟可以添几个零呢?这节课我们就来研究这一方面的知识。

二、出示课题,提出目标。

1.知道、掌握小数的性质,能利用小数的性质进行小数的化简和改写.

2.培养动手操作能力以及观察、比较、抽象和归纳概括的能力.

3.培养初步的数学意识和数学思想,感悟到数学知识的内在联系.

三、自学尝试,探究新知。

1.出示尝试题

(1)1、10、100这三个数相等吗?你能想办法使它们相等吗?

(2)你能把1分米、10厘米、100毫米改用“米”作单位表示吗?

(3)改写成用米作单位表示后,实际长度有没有变化?说明什么?

(4)“0.1米= 0.10米=0.100米”这个等式从左往右看,小数末尾有什么变化?小数大小有什么变化?从右往左看又怎样呢?你发现了什么规律?

2.学生自学课本38页后尝试练习并讨论。(5分钟后全班交流)。

3.根据自学情况引导讲解。

四、拓展练习,验证结论。

为了验证我们的这个结论,我们再来做一个实验。

1.出示做一做:比较0.30与0.3的大小

你认为这两个数的大小怎样?(让学生先应用结论猜一猜)

2.想一下你用什么办法来比较这两个数的大小呢?(给学生独立思考的时间,可以进行小组讨论合作,想的办法越多越好)

3.在两个大小一样的正方形里涂色比较。

(1)左图把1个正方形平均分成几份?阴影部分用分数怎样表示?用小数怎样表示?

(2)右图把同样的正方形平均分成几份?阴影部分用分数怎样表示?用小数怎样表示?

(3)小数由0.3到0.30,你看出什么变了?什么没变?你从中发现了什么?(平均分的份数变了,即小数的计数单位变了,而阴影部分的大小没有变,得出0.3=0.30。)

概括总结:在小数的末尾添上“0”或者去掉“0”,小数的大小不变.这叫做小数的性质。

过度:我们如果遇到小数末尾有“0”的时候,一般可以去掉末尾的“0”,把小数化简。

五、应用新知,尝试练习。

(1)出示例3:把0.70和105.0900化简.

例4:不改变数的大小,把0.2、4.08、3改写成小数部分是三位的小数。

(2)学生自学课本后讨论交流,尝试练习。

(3)引导探究:哪些“0”可以去掉,哪些“0”不能去掉?

105.0900中“9”前面的“0”为什么不能去掉?

“3”的后面不加小数点行吗?为什么?

(4)同桌讨论:应用小数的性质时,要注意什么?

六、巩固新知,当堂检测。

1.下面的数,哪些“0”可以去掉,哪些“0”不能去掉?

3.90米0.30元500米1.80元0.70米0.04元600千克20.20米

2.下面的数如果末尾添“0”,哪些数的大小不变,哪些数的大小有变化?

3.418 0.06 700 3.0 908 104.03 150 10.01 42.00

3.化简下面的小数.

0.40 1.850 2.900 0.080 12.000

4.不改变数的大小,把下面各小数改写成小数部分是三位的小数.

0.9 30.04 5.4 8.18 14

5.判断.

5.00元=5元( ) 7元=0.7元( ) 8米=8.00米( )

2.04吨=2.4吨( ) 4.5千克=4.500千克( ) 0.60升=0.6升( )

6.用元作单位,把下面的价钱写成小数部分是两位的小数。

3元2角、6角、8元、1元零3分

找质数课件(篇11)

“找质数”这一部分知识的内容与学生的生活经验联系不多,所以学生十分困难用自己的经验进行知识的建构。因此,为了在教学中使学生更加准确地理解质数、合数的概念,本节课的设计以数学活动为主。

学生的认知活动将受课堂情绪因素的影响,宽松活跃、民主和谐的教学氛围能使学生大胆探索、勇于创新的催化剂。在教学中,建立师生间的平等、和谐的友好伙伴关系,有利于学生思维的创新。因此,本课以做拼图游戏引入,学生很快地进入了角色,通过评选冠军,让学生产生争议,“我们组有11块小正方形,只能写出一个乘法算式。只有一种设计方案。”说明比赛不公平,从而引起学生的思考,“为什么有的组设计多,而有的组只有一种设计方案?”使学生在活动中引出质数、合数的概念,教学反思《《找质数》教学反思》。

在学生解决问题的探索中,充分留足学生的思考时间,让他们在联想猜测,自主探索的基础上进行小组讨论,交流合作,得出正确结论。小组合作不要仅仅流于形式,要有详细的分工,真正达到合作交流的目的。讨论的问题要有价值,避免一问一答。今后的教学中应注意学生良好合作习惯的培养。

本节课的练习也采用了游戏的形式,目的性强,学生乐于参加。“叫号游戏”促进学生建立了新旧知识的联系,能正确的区分奇数、偶数、质数、合数。“自我介绍游戏”使学生全面认识一些自然数的特性,如:我是20号。它是偶数,也是合数,既能被2整除,又能被5整除。“动脑筋出教室”也使学生的下课形式变得新颖。

在数学活动中,学生通过观察,试验,归纳获得数学猜想,并进一步证明,能有条理地表达自己的思考过程,认识数学与生活的联系,体验数学活动中的探索与创造,感受数学的严谨及数学结论的确切。

找质数课件(篇12)

教学过程:

一、创设情境,引入课题。

我们已经学习了求一个数的因数的方法,你能正确求出120各数的因数吗?

小组比一比,看谁列得快。教师指名汇报。

二、动手操作,制质数表。

(1)找因数。

观察这些数的因数,如果按因数的个数,你认为可以怎样分类?

动手给20以内的数按因数的个数进行分类,填书P23。

观察黑板上的三类数各有什么特点?

师:只有1和它本身两个因数的数叫做质数(或素数),除了1和它本身还有别的因数的数叫做合数。

结合120各数,解释一下什么是质数?什么是合数?[板书概念]

齐读20以内的质数、合数。

问:最小的质数是几?最小的合数是几?

1是质数,还是合数呢?[板书:1既不是质数,也不是合数]

如果把整数按自然数的个数来分类,可以分为几类?哪几类?再次强调:1既不是质数,也不是合数。

要判断一个数是质数还是合数,关键是看什么?

你的学号是质数,还是合数?与同桌说一说,并互相判断对错。

P23做一做。独立练习,全班交流检查。

(2)找质数。

刚才我们已经找出了20以内的质数,那73它是不是质数。

要想马上知道73是什么数还真不容易。如果有质数表可查就方便了。这表从哪来呢?

(教师出示百以内数表)这上面是1到100这100个数,它不是质数表,你们能不能想办法找出100以内的质数,制成质数表?谁来说说自己的想法?(让学生充分发表自己的想法。)

师:对,逐个判断比较麻烦,是否有什么方法可以很快地找出来?用排除法可以吗?

因为质数只有1和它本身两个因数,那么质数的倍数就都是合数,只要在数字表上依次划出质数的倍数,剩下的就是质数了。

学生根据教师的指导,在教材第24页用排除法动手制作100以内的质数表,然后再在全班交流。

一起把100以内的质数读一读。

附:100以内质数顺口溜

二、三、五、七、一十一

十三、十七、一十九

二三九、三一七

五三九、六一七

四一三七、七一三九

八三、八九、九十七

三、练习巩固:

完成练习四第1、2题。

四、课题小结:

这节课你在激烈的讨论中有什么收获?

板书设计:

质数和合数1

一个数,如果只有1和一个数,如果除了1和既不是质数

它本身两个因数,这样它本身,还有别的因数,也不是合数

的数叫做质数(或素数)这样的数叫做合数。

教学反思:

本课教学内容在第三单元和第五单元之间起着承上启下的作用。承上是指它的学习是建立在因数和倍数、2、3、5的倍数学习基础之上的,而启下则是指它是后面学习最大公因数、最小公倍数以及约分、通分的基础,所以必须高度重视。

今天的教学内容对学生而言,一个字可以准确概括难。分析原因,主要有以下两方面的原因:

一、即使课前进行了预习,可因为概念太抽象,所以仍旧有许多学生都难以理解。

本单元概念多,难度大,我一直要求学生提前预习。前几课时,教材适时的留白,小精灵及时的点拔性提问以及明显的概念结语,帮助许多学生在预习中就初步理解了新知,教学效果比较显着。可今天,学生普遍反映看不懂。为什么?

原来他们并未按教材要求首先写出120各数的所有因数。缺少找因数的环节,何来后继的观察、比较与分类,概念的形成更是空中楼阁,形同虚设。因此以后再教时,在预习环节一定要明确指出:必须在草稿本上找出120各数的因数。相信有这样的经历体验后,再阅读教材中的人物对话一定会有所认同,再按因数进行分类,一定有理有据。

二本课要综合应用本单元所学的各种概念、知识,如找因数的方法、2、3、5倍数的特征,所以只要某一个知识环节稍稍薄弱,就可能出现判断失误。如:练习中许多学生就将27、57、87判断成质数,这说明3的倍数特征还需进一步强化。在找质数过程中,许多学生只划了2、3、5的倍数就以为可以了,其实还要接着去掉7的倍数,如49、77、91。

针对上述情况,准备再加一节练习课,帮助学生对奇数、偶数与质数、合数加以区分,对分解质因数加以补充教学。

教学目标:

1、理解质数和合数的概念,知道它们之间的联系和区别。

2、找出100以内的所有质数,能判断一个数是质数还是合数,会把自然数按约数的个数进行分类。

3、经历质数和合数的认识和辨别过程,培养观察、比较、归纳概括的能力。

4、培养学生敢于探索科学之谜的精神,充分展示数学自身的魅力。

教学重点:

1、理解掌握质数、合数的概念。

2、初步学会准确判断一个数是质数还是合数。

教学难点:

区分奇数、质数、偶数、合数。

正数和负数课件经典


完整而深度的“正数和负数课件”信息幼儿教师教育网小编为您推荐这篇文章,想获得更多信息请关注我们的网站。教案课件是老师教学工作的起始环节,也是上好课的先决条件,每位老师应该设计好自己的教案课件。教案是教师教学的有效手段。

正数和负数课件 篇1

一、感受相反方向的数量,经历负数产生的过程。

(1)这些数很特别,都带上了符号,它们是一种“新数”。 -9、-4.5等都叫负数; +7、+988等都叫正数。你会读吗?请你读给大家听。

注意“-”叫负号,“+”叫正号。

(2)读给你的同伴听。

(3)把你新认识的负数再写两个,读一读。

二、借助实际生活情境的直观,丰富对正负数的认识。

1、负数有什么用?

用正数或负数表示下列数量。

(1向东走200米,用+200米表示;那么向西走200米元用 表示。

1、0既不是正数也不是负数。0是正负数的分界。

2、0只表示没有吗?

⑴空罐中的金币数量;

⑵温度中的0℃;

⑶海平面的高度;

⑷标准水位;

⑸身高比较的基准;

0既不是正数,也不是负数;0是正数负数的分界。

0是整数,0是偶数,0是最小的自然数。

1.探究活动一:东、西为两个相反方向,如果- 4米表示一个物体向西运动4米,那么+2米表示什么?物体原地不动记为什么?

若将28计为0,则可将27计为-1,试猜想若将27计为0,28应计为。

2、探究活动二:某大楼地面上共有20层,地面下共有5层,若用正数、负数表示这栋楼房每层的楼层号,则地面上的最高层表示为 ,地面下的最低层表示为 ,某人乘电梯从地下最低层升至地上6层,电梯一共运行了 层。

3、探究活动三:用正数和负数表示的相反意义的量,其中正确的是。

A、全球财富500强中对主要零售业的统计,大荣公司年收入为2530万美元下列,利润为-195200万美元,该公司亏损额为195200万美元。

B、如果+9.6表示比海平面高9.6米,那么-19.2米表示比海平面低-19.2米。

C、收入30元与下降2米是具有相反意义的量。

D、一天早晨的气温是-4℃,中午比早晨上升4℃,所以中午的气温是+4℃。

F、如果收入增加18元记作+18元,那么-50元表示支出减少50元

5、探究活动四:如果用一个字母表示一个数,那a可能是什么样的数?一定是正数吗?

1、例1:一个月内,小明体重增加-2kg,小华体重减少-1kg,小强体重无变化,写出他们这个月的体重增长值;

... ... ... ...

在上述的这些数中,观察它们的规律,回答数-100将在哪一列.

下列国家的商品进出口总额比上一年的变化情况是:美国减少6.4%, 德国增长1.3%,

法国减少2.4%, 英国减少3.5%,

意大利增长0.2%, 中国增长7.5%.

写出这些国家20商品进出口总额的增长率.

思考 :

负”与“正”相对,增长-2就是减少2;增长-1,是什么意思?什么情况下增长是0?

有一批食品罐头,标准质量为每听500g,现抽取10听样品进行检测,结果如下表。(单位:g)

质量 497 501 503 498 496 495 500 499 501 505

质量误差分别为:

如果在罐头的标签上注有:“质量:500g ”,则在所抽取的罐头中是否有不合格的?

3.说明下面这些话的意义:

①温度上升+3 ℃ ②温度下降+3 ℃

4、“小明这次数学考试成绩下降-20分”这句话的意思 是什么?

5.(1)向东走+5m,-6m,0m表示的实际意义是什么呢?

950t ,二月份实际生产了1000t ,三月份实际生产了1100t ,用正数和

负数表示每月超额完成计划的吨数各是多少?

正数和负数课件 篇2

正数和负数(第1课时)

教学任务分析学习目标:

1、知识技能:了解正数和负数是怎样产生的;知道什么是正数和负数;理解数0表示的量的意义。

2、数学思考:体会数学符号与对应的思想,用正、负数表示具有相反意义的量的符号化方法。

3、解决问题:会用师生合作,联系实际,激发学生学好数学的热情。重点:正、负数的意义。难点:负数的意义及0的内涵。课前准备温度计、文具盒教学流程安排

活动流程及活动内容和目的

活动1问题引入通过活动使学生了解数起源于生活。活动2活动安排使学生进入问题情境。从而引出问题。活动3举例说明用更多事例,丰富问题情境。活动4学习负数的概念说明什么是正、负数。活动5负数概念的应用进一步认识正数和负数。活动6负数概念的巩固全面认识正数和负数。教学过程设计活动1

1、请同学们数一数自己的文具盒中共有几支笔。(若干支笔)

2、请一个同学数一数老师手中的文具盒中有几支笔。(没有笔)

3、用一把小刀把一个苹果切成两半,半个苹果怎样用一个数来表示?

4、书P2图自然数的产生、分数的产生师生行为及设计意图

通过活动说明数的产生和发展离不开生活和生产的需要。原始社会,从打猎记数开始,首先出现自然数,经过漫长岁月,人们用“0”表示没有,随着人类的不断进步,在丈量土地进行分配时,又用小数使测量结果更加准确。通过创设情景问题,向学生渗透“实践第一”的辨证唯物主义观点。

正数和负数课件 篇3

教案背景

初中生爱玩、好动,处于形象思维向抽象思维过渡的阶段,过分抽象的问题,学生往往感到乏味而百思不得其解。而多媒体具有形象、直观的特点,利用它为学生构建思维想象的平台,营造良好的学习氛围,充分调动学生学习的积极性、自觉性,用以达到以快乐的形式去追求知识的目的;新课程标准要求:课堂教学要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动,内容的呈现应采用不同的表达方式,以满足多样化的学习需求。教学过程中。要加强学生的动手实践、自主探索与合作交流的意识,并着力培养学生解决实际问题的能力。

1.1《正数和负数》教学设计方案

(第1课时)

人教版 九年级数学 上册

山东省滨州市滨城区滨北街道办事处北城中学 耿新华

邮编:256651 联系电话:15865403584

教材分析:

一、教材所处的地位及作用:“1.1正数和负数”一节,是人教版七年级上册第一章第一节的内容,本节内容主要是学习正数、负数和零的定义、联系。是本章有理数学习的基础。

二、教学目标

知识与技能:借助生活中的实例理解有理数的意义,会判断一个数是正数还是负数,能应用正负数表示生活中具有相反意义的量。

过程与方法:1.体会负数引入的必要性,感受有理数应用的广泛性,并领悟数学知识来源于生活,体会数学知识与现实世界的联系。

2.能结合具体情境出现并提出数学问题,并解释结果的合理性。

情感态度与价值观:乐于接触社会环境中的数学信息,愿意谈论数学话题,在数学活动中发挥积极作用。

三、教学重、难点

重点:体会负数引入的必要性和有理数应用的广泛性, 能应用正负数表示生活中的具有相反的意义的量。

难点:能应用正负数表示生活中的具有相反的意义的量,养成把数学应用于生活实际问题的习惯。

教学方法:采用“现象──问题──目标”的教学方法,力求体现“主体参与、自主探索、合作交流、指导引探”的教学理念

教学过程

教师在轻松欢快的音乐中演示第一节首图片为主体的多媒体课件。

环节 教师活动 学生活动 设计意图

创设情境导入新课

自主学习

师生互动

合作探究

达标检测

学习总结

教师出示图片说明自然数的产生、分数的产生.接着

出示问题

问题1 天气预报:滨州市冬季某天的温度为-3~3℃,它的确切含义是什么?这一天我市的温差是多少?

问题2 2.xx年我国花生产量比去年增长1.8%油菜产量比去年增长-2.7%,这里的增长-2.7%代表什么意思?

两个问题中的-3、-2.7%是我们以前没有学过的新数,这说明随着生活和劳动的发展我们以前学过的数,已经不够用了,需要引进新的数。来服务我们的生活。从而导入新课

一、出示本节课的学习目标

1、通过生活中实例认识到引入负数的必要性。

2、知道什么是负数,零,正数。

3、会判断一个数是正数?还是负数?

4、能用正数、负数表示实际生活中具有相反意义的量

二、出示本节课的自学提纲

1、.知识点1:正数、负数的概念---------阅读教材第2页,像3、2、0.5、1.8%这样比0大的数叫,根据需要,有时在正数前面加上“+”,如+5, , , ,…。正数前面的“+”,一般省略不写:而像-3、-2、-3.5%这样在正数前面加上“—”号的数叫。如-6, ,…。“-6”读作 。

2、知识点2:对“0”的理解--------阅读教材第2 页

0既不是 数,也不是 数,它是正数与负数的分水岭。它的意义很丰富,它既可以表示“没有”,也可以表示其它特定的意义。

3、知识点3;用正数和负数表示具有相反意义的量--------阅读教材第3页

相反意义的量必须具有两个要素:一是它们的意义 ;二是它们都具有数量,而且一定是 量。

一、指导学生在本组内交流结果,收集每组不会的问题,试着让其他组解决。

二、教师收集全班不会的问题,帮着解决。

做一做:(出示幻灯片)

正数和负数课件 篇4

各位老师、同行,大家好! 今天我说课的课题是 人教版数学七年级上册第一章 1.1正数与负数。 下面 我将从 说教材,说教学目标,说教学重难点,说教法学法,说教学过程五个方面进行今天的说课内容。

正数与负数是七年级数学第一章第一节的内容,属于数与代数领域的知识。本节课是学生学过的自然数与分数的延续和拓展,又是后面研究有理数的基础,因此起到了承上启下的作用。

2.学情分析:

在本节课学习之前,学生在小学已经学习了自然数、分数等,对数已经有了一定的认识。鉴于初一学生的年龄特点,他们对概念的理解能力不强,精神不能长时间集中,但思维比较活跃。

二、说教学目标:

1.知识与技能目标:理解正负数的概念,会判断一个数是正数还是负数,明确0既不是正数也不是负数。会列举出周围具有相反意义的量,并用正负数表示。

2.过程与方法目标:通过探索负数的形成过程,建立正数与负数的数感,培养想象能力、理论联系实际能力,并渗透“对立统一”,“实践第一”等辩证唯物主义观点。

3.情感态度目标:实际例子的引入,体验数学来源于生活,服务于生活,激发学习兴趣。

三、说教学重难点:

1.重点:理解负数的意义,学会用正负数表示日常生活中具有相反意义的量。

2.难点:理解掌握负数的意义及0的含义, 培养学生的观察、想象,归纳概括的能 力。

四、说教法学法:

1.说教法:采取启发式教学法及情感教学,辅以多媒体教学,增大教学密度。

2.说学法:鼓励学生积极主动地参与到教与学的整个过程。

正数和负数课件 篇5

第二课时

三维目标

一。知识与技能

进一步巩固正数、负数的概念;理解在同一个问题中,用正数与负数表示的量具有相同的意义。

二。过程与方法

经历举一反三用正、负数表示身边具有相反意义的量,进而发现它们的共同特征。

三。情感态度与价值观

鼓励学生积极思考,激发学生学习的兴趣。

教学重、难点与关键

1.重点:正确理解正、负数的概念,能应用正数、负数表示生活中具有相反意义的量。

2.难点:正数、负数概念的综合运用。

3.关键:通过对实例的进一步分析,使学生认识到正负数可以用来表示现实生活中具有相反意义的量。

教具准备

投影仪。

教学过程

四、复习提问课堂引入

1.什么叫正数?什么叫负数?举例说明,有没有既不是正数也不是负数的数?

2.如果用正数表示盈利5万元,那么-8千元表示什么?

五、新授

例1.一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值。

2.20xx年下列国家的商品进出口总额比上年的变化情况是:

美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,中国增长7.5%.

写出这些国家20xx年商品进出口总额的增长率。

分析:在一个数前面添上负号,它表示的是与原数具有意义相反的数。负与正是相对的,增长-1,就是减少1;增长-6.4%就是减少6.4%,那么什么情况下增长率是0?当与上年持平,既不增又不减时增长率是0.

解:1.这个月小明体重增长2kg,小华体重增长-1kg,小强体重增长0kg.

2.六个国家20xx年商品进出口总额的增长率分别为:

美国-6.4%,德国1.3%,法国-2.4%,英国-3.5%,意大利0.2%,中国7.5%.

归纳:在同一个问题中,分别用正数与负数表示的量具有相反的意义,如盈利-2千元,就是亏本2千元;前进-3米,就是后退3米;浪费-14元,就是节约14元;向南走-7米,就是向北走7米,因此盈利2千元与盈利-2千元具有相反的.意义。

六、巩固练习

1.课本第5页的第8题。

点拨:增长-3.4%,就是减少3.4%,所以这一年里这六国中中国、意大利的服务出口额增长了,美国、德国、英国、日本的服务出口额都减少了,意大利增长最多,日本减少最多。

2.补充练习。

若向西走10米,记作-10米,如果一个人从A地先走12米,再走-15米,你能判断此人这时在何处吗?

解:向西走10米,记作-10米,那么这人走12米,则表示向东走12米,再走-15米,表示向西走了15米,即这个人从A地先向东走12米,接着再向西走15米,此人这时应该在A地的西方3米处。

七、课堂小结

通过本节课的学习,你对正数、负数的概念是否有了进一步理解?请你用正负数表示身边具有相反数的量。

八、作业布置

1.课本第5页习题1.1第4、5、6、7题。

九、板书设计

1.1正数和负数

第二课时

1、复习巩固,例题讲解。

2、随堂练习。

3、小结。

4、课后作业。

十、课后反思

正数和负数课件 篇6

第二课时

三维目标

一。知识与技能

进一步巩固正数、负数的概念;理解在同一个问题中,用正数与负数表示的量具有相同的意义。

二。过程与方法

经历举一反三用正、负数表示身边具有相反意义的量,进而发现它们的共同特征。

三。情感态度与价值观

鼓励学生积极思考,激发学生学习的兴趣。

教学重、难点与关键

1.重点:正确理解正、负数的概念,能应用正数、负数表示生活中具有相反意义的'量。

2.难点:正数、负数概念的综合运用。

3.关键:通过对实例的进一步分析,使学生认识到正负数可以用来表示现实生活中具有相反意义的量。

教具准备

投影仪。

教学过程

四、复习提问课堂引入

1.什么叫正数?什么叫负数?举例说明,有没有既不是正数也不是负数的数?

2.如果用正数表示盈利5万元,那么-8千元表示什么?

五、新授

例1.一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值。

2.20xx年下列国家的商品进出口总额比上年的变化情况是:

美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,中国增长7.5%.

写出这些国家20xx年商品进出口总额的增长率。

分析:在一个数前面添上负号,它表示的是与原数具有意义相反的数。负与正是相对的,增长-1,就是减少1;增长-6.4%就是减少6.4%,那么什么情况下增长率是0?当与上年持平,既不增又不减时增长率是0.

解:1.这个月小明体重增长2kg,小华体重增长-1kg,小强体重增长0kg.

2.六个国家20xx年商品进出口总额的增长率分别为:

美国-6.4%,德国1.3%,法国-2.4%,英国-3.5%,意大利0.2%,中国7.5%.

归纳:在同一个问题中,分别用正数与负数表示的量具有相反的意义,如盈利-2千元,就是亏本2千元;前进-3米,就是后退3米;浪费-14元,就是节约14元;向南走-7米,就是向北走7米,因此盈利2千元与盈利-2千元具有相反的意义。

六、巩固练习

1.课本第5页的第8题。

点拨:增长-3.4%,就是减少3.4%,所以这一年里这六国中中国、意大利的服务出口额增长了,美国、德国、英国、日本的服务出口额都减少了,意大利增长最多,日本减少最多。

2.补充练习。

若向西走10米,记作-10米,如果一个人从A地先走12米,再走-15米,你能判断此人这时在何处吗?

解:向西走10米,记作-10米,那么这人走12米,则表示向东走12米,再走-15米,表示向西走了15米,即这个人从A地先向东走12米,接着再向西走15米,此人这时应该在A地的西方3米处。

七、课堂小结

通过本节课的学习,你对正数、负数的概念是否有了进一步理解?请你用正负数表示身边具有相反数的量。

八、作业布置

1.课本第5页习题1.1第4、5、6、7题。

九、板书设计

1.1正数和负数

第二课时

1、复习巩固,例题讲解。

2、随堂练习。

3、小结。

4、课后作业。

十、课后反思

正数和负数课件 篇7

《正数与负数》是在学生对温度有一定的认识,对负数有了初步感知的基础上进行教学的。下面我将确定教学目标。

教学本节课内容主要是让学生知道什么是正数和负数,它们是怎样产生的,数0表示着怎样的意义及能初步会用正、负数表示具有相反意义的量。

因为授课的对象是初中七年级的学生,他们对数学有了一定的概念,但因每个学生接受知识的能力不同,我将本节课的教学目标分为三类:

①认知目标:在熟悉的生活情景中,了解负数的意义,学会用正、负数表示日常生活中具有相反意义的量,会正确地读、写负数。

②能力目标:感受正、负数和生活的密切联系,享受创造性学习的乐趣。

③情感目标:通过实际问题的解决和从不同角度对有理数分类,可提高学生应用数学能力和培养学生的分类思想。

本着新课标,在吃透教材的基础上,我确立了如下的教学重点、难点。

①教学重点:了解负数的意义,学会用正、负数表示日常生活中具有相反意义的量。

学生刚刚升初中,基础不一,为了能让学生都吸收本节课的知识,我采取了以下教法与学法

1、教学方法:

在本节课的讲解中,我采用了讲授法与发现法,主要包括以下方法:情境创设法:通过情境创设,引起学生注意,激发学生的学习兴趣。案例分析法:通过对实例的分析,帮助学生更好地理解所学内容。

2、学习方法:自主探究法:研究实际问题→认识负数→负数在实际中的应用

根据本节课教学内容及数学的学科特点,结合学生的认知水平,我设计了如下教学流程:

下面进行详细阐述:

p首先展示一张标有气温的地图,同时说“同学们有没有看过天气预报呢?”学生回答后,教师就接着说,“那你们看看这张地图上的数字,它们有着怎样的区别呢?”让学生通过观察去发现其特点,根据学生的回答,我及时提出:“那你们知道它表示什么意义吗?”观察学生的反应,引入本节课所要讲解的课题。p此环节的设计目的是创设美好的学习情景,调动学生的积极性,使学生在情境中主动、积极的接受学习任务,激发学生的学习兴趣,让学生带着问题去学习,这样就可以为后面的教学做好铺垫。

在创设了情境,明确了学习任务后,根据学生的特点及本课的重点难点,教师从学生原有的认知结构出发,主要从以下方式进行讲解:从旧经验中引导新学习。首先提出问题:“大家知道,数学与数是分不开的,它是一门研究数的学问,现在我们一起来回忆一下,小学里已经学过哪些类型的数?”然后让学生思考讨论,互相补充回答。接着,教师指出:小学里学过的数可以分为三类:自然数(正整数)分数和零(小数包括在分数之中),它们都是由于实际需要而产生的。

日常生活中,为了表示一个人、两只手,我们用到整数1,2;为了表示一半的事物,我们经常用1/2;为了更能准确的读取尺子上的数值,我们经常要用到小数;当什么都没有的时候,我们总是用0来表示。但在实际生活中,还有许多量不能用上述所说的自然数,零或分数、小数来表示的。像零下温度、低于海平面某地的海拔高度等等,我们如何去表示呢?某市某一天的最高温度是零上5℃,最低温度是零下5℃要表示这两个温度,如果只用小学学过的数,都记作5℃,就不能把它们区别清楚,可它们是具有相反意义的两个量,那我们又如何去区别它们呢?接着再进行课本内容讲解;

此环节的设计目的不仅可以让学生巩固旧知识,同时也引导他们发现在所学过的知识中,没有找到相关的知识来回答我所提出的问题,这样就进一步激发他们的学习兴趣,使得课堂在一个在一个积极、主动、愉快的氛围中进行

设计意图:及时掌握学生的学习情况,肯定答对的同学,纠正错误的同学下面是详细的阐述:

学生在明确了教学任务,掌握了一定的基本知识之后,就有一种跃跃欲试的欲望,这时教师应把握时机让学生独立练习,而在学生练习的同时,教师巡回指导,及时掌握学生的学习情况,最后提问一两个同学,肯定他们的能力及纠正其存在的错误,这样学得好的学生感觉自己的能力得到肯定,会更加的努力,同时可以让那些自学能力差的学生及时的学到新知识,不至于掉队。

课堂小结:教师与学生共同回顾本节课的知识要点,帮助学生巩固所学知识。

详细阐述:在这一阶段,教师可以用“这节课,我学会了……”、“通过这堂课的学习,我会做……了”这样的形式来让学生总结,学生一边说教师一边纠正或提示学生,并且显示相应的内容以课件形式展示出来。

为了检验和促进每个学生是否达到预期的目标,发现教学中的问题,对学生的学习效果进行总结是必须的,也是有效的。目的在于加深学生对知识的记忆、理解,使知识成为一个体系。

拓展练习:布置有点难度的作业,培养学生自主探究及知识迁移的能力。详细阐述:

在本节课讲授结束后,我将给学生布置与本节课相关的较有难度的作业,让学生在自我独立完成作业的同时,巩固了所学的知识,也可以从中发挥他们的自主创新能力以及独立思考问题思维。

上面是我对《七年级数学》的这一小节的授课方式,最后,我对本节课进行预测,总结如下:

1、通过情境创设,可以引起学生注意,激发学生的学习兴趣;

2、在新课讲授过程中,使用讲授法和发现法,让学生了解负数的意义,学会用正、负数表示日常生活中具有相反意义的量,会正确地读、写负数;感受正、负数和生活的密切联系,享受创造性学习的乐趣;通过实际问题的解决和从不同角度对有理数分类,可提高学生应用数学能力和培养学生的分类思想;

3、让同学们独立完成练习,意在加深同学们对本课内容的理解和掌握他们的学习情况;

4、最后小结及布置作业,让学生掌握本课所学知识,并培养学生的独立思考能力。

正数和负数课件 篇8

教学目标:

1.通过对“零”的意义的探讨,进一步理解正数和负数的概念,能利用正负数正确表示具有相反意义的量(规定了向指定方向变化的量);

2.进一步体验正负数在生产生活中的广泛应用,提高解决实际问题的能力.

通过对上节课的学习,我们知道在实际生产和生活中存在着具有两种不同意义的量,为了区分它们,我们用正数和负数来分别表示它们.

:“零”为什么既不是正数也不是负数呢?

学生思考讨论,借助举例说明.

参考例子:用正数、负数和零表示零上温度、零下温度和零度.

思考 “0”在实际问题中有什么意义?

归纳 “0”在实际问题中不仅表示“没有”的意思,它还具有一定的实际意义.

:引入负数后,数按照“具有两种相反意义的量”来分,可以分成几类?分别是什么?

【例1】(1)一个月内,小明体重增加2 kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;

【例2】(2)某年,下列国家的商品进出口总额比上年的变化情况是:

美国减少6.4%,德国增长1.3%,

法国减少2.4%,英国减少3.5%,

意大利增长0.2%,中国增长7.5%.

写出这些国家这一年商品进出口总额的增长率.

解后语:在同一个问题中,分别用正数和负数表示的量具有相反的意义.写出体重的增长值和进出口的增长率就暗示着用正数来表示增长的量.类似的还有水位上升、收入上涨等等.我们要在解决问题时注意体会这些指明方向的量,正确地用正负数表示它们.

1.通过例题(2)提醒学生审题时要注意要求,题中求的是增长率,不是增长值.

2.让学生再举出一些常见的具有相反意义的量.

3.1990~1995年下列国家年平均森林面积(单位:千米2)的变化情况是:

中国减少866,印度增长72,

韩国减少130,新西兰增长434,

泰国减少3247, 孟加拉减少88.

(1)用正数和负数表示这六国1990~1995年平均森林面积的增长量;

(2)如何表示森林面积减少量,所得结果与增长量有什么关系?

(3)哪个国家森林面积减少最多?

(4)通过对这些数据的分析,你想到了什么?

(课本P6)用正数和负数表示加工允许误差.

问题:1.直径为30.032 mm和直径为29.97 mm的零件是否合格?

2.你知道还有哪些事件可以用正负数表示允许误差吗?请举例.

1.甲冷库的温度是-12℃,乙冷库的温度比甲冷库低5 ℃,则乙冷库的温度是 .

2.一种零件的内径尺寸在图纸上是9±0.05(单位:mm),表示这种零件的标准尺寸是9 mm,加工要求不超过标准尺寸多少?最小不小于标准尺寸多少?

3.摩托车厂本周计划每天生产250辆摩托车,由于工人实行轮休,每天上班的人数不一定相等,实际每天生产量(与计划量相比)的增减值如下表:

根据上面的记录,问:哪几天生产的摩托车比计划量多?星期几生产的摩托车最多,是多少辆?星期几生产的摩托车最少,是多少辆?

类比例题,要求学生注意书写格式,体会正负数的应用.

2.能把给出的有理数按要求分类.

3.了解0在有理数分类中的作用.

讨论交流 现在,同学们都已经知道除了我们小学里所学的数之外,还有另一种形式的数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.

3,5.7,-7,-9,-10,0, , ,-3 , -7.4,5.2…

议一议 你能说说这些数的特点吗?

学生回答,并相互补充:有小学学过的正整数、0、分数,也有负整数、负分数.

说明 我们把所有的这些数统称为有理数.

试一试 你能对以上各种类型的数作出一张分类表吗?

做一做 以上按整数和分数来分,那可不可以按性质(正数、负数)来分呢,试一试.

把所有正数组成的集合,叫做正数集合.

试一试 试着归纳总结,什么是负数集合、整数集合、分数集合、有理数集合.

【例1】 把下列各数填入相应的集合内:

,3.1416,0,,- ,-0.23456,10%,10.1,0.67,-89

【例2】以下是两位同学的分类方法,你认为他们分类的结果正确吗?为什么?

由学生自己小结,然后教师总结:今天我们学习了有理数的定义和两种分类的方法.我们要能正确地判断一个数属于哪一类,要特别注意“0”的正确说法.

下面两个圈分别表示负数集合和分数集合,你能说出两个图的重叠部分表示什么数的集合吗?

(2)分数集合{};

(3)负分数集合{ };

(4)非负数集合{ };

(5)有理数集合{ }.

3.字母a可以表示数,在我们现在所学的范围内,你能否试着说明a可以表示什么样的数?

教学目标:

1.掌握数轴三要素,能正确画出数轴.

2.能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数.

师:对照大家画的图,为了使表达更清楚,我们把0左右两边的数分别用正数和负数来表示,即用一直线上的点把正数、负数、0都表示出来,也就是本节要学的内容——数轴.

【点拨】(1)引导学生学会画数轴.

第二步:规定从原点向右的方向为正(左边为负方向).

第四步:拿出教学温度计,由学生观察温度计的结构和数轴的结构是否有共同之处.

对比思考 原点相当于什么;正方向与什么一致;单位长度又是什么?

(2)有了以上基础,我们可以来试着定义数轴:

规定了原点、正方向和单位长度的直线叫数轴.

做一做 学生自己练习画出数轴.

试一试 你能利用你自己画的数轴上的点来表示数4,1.5,-3,-2,0吗?

讨论 若a是一个正数,则数轴上表示数a的点在原点的什么位置上?与原点相距多少个单位长度?表示-a的点在原点的什么位置上?与原点又相距多少个单位长度?

小结 整数在数轴上都能找到点表示吗?分数呢?

可见,所有的 都可以用数轴上的点表示; 都在原点的左边, 都在原点的右边.

【例1】 下列所画数轴对不对?如果不对,指出错在哪里?

【例2】试一试:用你画的数轴上的点表示4,1.5,-3,-,0.

【例3】下列语句:

①数轴上的点只能表示整数;②数轴是一条直线;③数轴上的一个点只能表示一个数;④数轴上找不到既不表示正数,又不表示负数的点;⑤数轴上的点所表示的数都是有理数.正确的说法有( )

【例4】在数轴上表示-2 和1,并根据数轴指出所有大于-2 而小于1 的整数.

【例5】数轴上表示整数的点称为整点,某数轴的单位长度是1cm,若在这个数轴上随意画出一条长为cm的线段AB,则线段AB盖住的整点有( )

数轴是非常重要的工具,它使数和直线上的点建立了一一对应的关系.它揭示了数和形的内在联系,为我们今后进一步研究问题提供了新方法和新思想.大家要掌握数轴的三要素,正确画出数轴.提醒大家,所有的有理数都可以用数轴上的相关点来表示,但反过来并不成立,即数轴上的点并不都表示有理数.

1.规定了 、 、的直线叫做数轴,所有的有理数都可从用上的点来表示.

2.P从数轴上原点开始,向右移动2个单位长度,再向左移5个单位长度,此时P点所表示的数是 .

3.把数轴上表示2的点移动5个单位长度后,所得的对应点表示的数是( )

5.数轴上表示5和-5的点离开原点的距离是 ,但它们分别表示 .

6.与原点距离为3.5个单位长度的点有2个,它们分别是 和 .

7.画出一条数轴,并把下列数表示在数轴上:

+2,-3,0.5,0,-4.5,4,3.

8.在数轴上与-1相距3个单位长度的点有 个,为 ;长为3个单位长度的木条放在数轴上,最多能覆盖 个整数点.

教学目标:

1.借助数轴了解相反数的概念,知道互为相反数的位置关系.

2.给一个数,能求出它的相反数.

活动 请一个学生到讲台前面对大家,向前走5步,向后走5步.

交流 如果向前走为正,那向前走5步与向后走5步分别记作什么?

1.观察下列数:6和-6,2 和-2 ,7和-7, 和- ,并把它们在数轴上标出.

想一想 (1)上述各对数有什么特点?

(2)表示这四对数的点在数轴上有什么特点?

(3)你能够写出具有上述特点的n组数吗?

观察 像这样只有符号不同的两个数叫相反数.

互为相反数的两个数在数轴上的对应点(0除外)是在原点两旁,并且与原点距离相等的两个点.即:我们把a的相反数记为-a,并且规定0的相反数就是零.

总结 在正数前面添上一个“-”号,就得到这个正数的相反数,是一个负数;把负数前的“-”号去掉,就得到这个负数的相反数,是一个正数.

2.在任意一个数前面添上“-”号,新的数就是原数的相反数.如-(+5)=-5,表示+5的相反数为-5;-(-5)=5,表示-5的相反数是5;-0=0,表示0的相反数是0.

(1)-5.8是 的相反数, 的相反数是-(+3),a的相反数是 ;a-b的相反数是 ,0的相反数是 .

(2)正数的相反数是 ,负数的相反数是 , 的相反数是它本身.

①互为相反数的两个数一定不相等;②互为相反数的数在数轴上的点一定在原点的两边;③所有的有理数都有相反数;④相反数是符号相反的两个点.

【例3】 化简下列各符号:

(1)-; (2)+{-};

(3)-{-{-…-(-6)}…}(共n个负号).

【归纳】 化简的规律是:有偶数个负号,结果为正;有奇数个负号,结果为负.

【例4】 数轴上A点表示+4,B、C两点所表示的数是互为相反数,且C到A的距离为2,则点B和点C各对应什么数?

【归纳】 (1)相反数的概念及表示方法.

(2)相反数的代数意义和几何意义.

2.分别写出下列各数的相反数,并把它们在数轴上表示出来.

5.数轴上表示互为相反数的两个点之间的距离为4,则这两个数是 .

6.若a与a-2互为相反数,则a的相反数是 .

7.已知有理数m、-3、n在数轴上位置如图所示,将m、-3、n的相反数在数轴上表示出来,并将这6个数用“

正数和负数课件 篇9

教学目标:

1、在熟悉的生活情境中,了解负数的意义,会用负数表示一些日常生活中的问题和现象。

2、在具体的情境中,认、读、写负数,同时渗透“对应”和“集合”的数学思想。

3、培养学生获取信息,并进行分析的意识和能力。

4、进行德育渗透,培养学生科学精神和民族自豪感。

教学重点:

了解负数的意义和负数在生活中的应用。

教学难点:

理解负数的意义。

教学用具:

电脑课件、实物投影仪、温度计。

教学过程:

一、创设情境,导入新知。

同学们,这节课老师和你们一起上数学,数学和什么打交道最多?数学课离不开数,数与我们的日常生活联系得也非常密切。(边说边板书:数数)下面老师要说些数据,请你们认真听,当一名小记录员,看谁能经过思考,将老师所说的数据信息,用你喜欢的方式准确地记录下来。能开始吗?

1、中国队参加足球比赛,上半场进了2个球,下半场输了2个球。

2、寒假开学,我校四年级转进学生7人,五年级转出学生3人。

3、小刚的妈妈卖服装,今年三月份赚了900元,四月份赔了100元。

二、探讨交流,感知新知。

(一)交流记录的数据信息,初步感受正数和负数是表示相反意义的两个量。

1、展示同学们的记录单(随机进行)

根据同学们的记录情况,启发同学进行分析,相互之间交流看法。

谁写完了,举起来让我看看(教师桌间巡视,收集相关信息。)

足球比赛

转学情况

账目结算

上半场2四年级7三月份900下半场

2五年级3四月份100

刚才老师收集了几个同学的记录单,请你们看看,有什么想法?(不能准确地表达老师所说的意思)

看来用我们已有的知识,来记录一些数据,有时候是说明不了问题的。刚才老师说的这些信息进球和输球;转进和转出;赚和赔都是相对应的。(渗透对应的数学思想)表示相反意义的两个量。这张记录单,只把数据记了下来,没有说明情况。请看这张记录单,你觉得怎样?(请学生们交流看法)

足球比赛

转学情况

账目结算

上半场进2个四年级进7人三月份900下半场输2个五年级出3人四月份100

这位同学能把前两条信息准确的记录下来,用的是什么方法?(汉字)这种方法怎么样?(麻烦)

还有不同的记录方法吗?(请同学进一步交流自己的想法,教师分别展示学生不同的记录方法。)

2、小结:你用的符号意思你明白,他用的符号意思他明白,那我们要想让大家都明白,就应该用共同的符号。(视课堂学习的情况而定,如果有用“+”、“-”就来展示一下,让同学们了解。)

3、统一记录的方法和形式看,咱们同学还有用这种方法记录的:

足球比赛

转学情况

账目结算

上半场+2四年级+7三月份+900下半场-2五年级-3四月份-100

谁说说用这种方法记录好在哪儿?(能准确表达老师要说的意思,简单)

小结:这种记录方法中所用的这两个符号“+”、“-”是数学符号,(教师边说边板书:+、-)。数学符号是数学的语言,是帮助大家进行交流的。以前我们见过它,想想在哪儿见得最多?现在它们可有新的名字啦,我们管它“+”叫正号(师边说边板书:正号),跟我读:正号。它“-”叫负号(板书:负号)读:负号,人们在数学中就用这种符号来区别意义相反的量。

(二)认识正数和负数,读、写正、负数。

1、认、读正、负数。

像记录单中这个数+2,我们就读正2(板书:+2)跟我读:正2;它“-2”,读作:负2(板书:-2)跟我读:负2。

用刚才的方法,谁能读出后面的4个数?(指名读,随着生读师板书:+7,-3,+900,-100)

小结:刚才我们用正号和负号能清楚地记录数学信息,从中我们也认识了正数和负数(师板书:正、负)。

练一练:谁能说出几个正数和负数,说的完吗?正、负数是无穷多的。(渗透集合思想)用一个符号表示……(师同时板书)

课件出示:-100,+68,-1.5,+,-,36

请同学们开火车读,其他同学判断。

讨论36是什么数,介绍为了简便起见,正号可以省略不写。

猜猜看,36是正数还是负数?

告诉你,像这样的数是正数,为了简便起见,正号可以省略。同学们想一想,负号可不可以省略,为什么?(区分不开)

在学生充分发表自己的意见后,教师归纳:为了正确的.区分正数和负数,负号不能省略,正号可以省略。我们已经初步的认识了正数和负数,下面老师考考大家,行吗?

2、写数,认识“0”

课件出示练习

做完后同学交流结果。

谁想把你做的结果跟大家交流一下。(学生说,教师同时用课件演示。)

重点讨论“0”的问题,让学生初步感知大于0的数是正数,小于0的数是负数,0既不是正数,也不是负数。

3、介绍负数的历史

通过以上的学习,大家已经认识了负数这个新朋友,其实对负数的认识,我们祖国有着悠久的历史,古代人在很早以前就想出了用不同方法记录正数和负数,大家想知道吗?请看大屏幕。

⑴、出示课件,请同学读上面的信息,其他同学思考:你从中知道了什么?

听了他们的介绍,你们想说些什么吗?

⑵、学生谈感受

使学生了解我国在很早以前就有使用负数的历史,从而培养学生的科学精神和民族自豪感。(进行德育渗透)

(三)寻找生活中的负数,进一步理解负数的意义。

1、从天气预报入手,感知负数的意义。

负数在我们生活中有很多的应用。请看大屏幕,这是20xx年11月3日北京市气温分布图。

出示课件:找同学读一读。

谁能读出上面的气温?

区别-1℃和1℃所表示的意义,感知0是正、负数的分界点。

这个气温分布图上,有这样两个温度:-1℃和1℃,谁能说说它们有什么不同?为什么?(-1℃是零下,1℃是零上)(-1℃比1℃要冷)

小结:在通常情况下,把水结冰的温度定为0℃,把水沸腾时的温度定为100℃,100℃在0℃以上,可用正数表示,0℃以下的温度可用负数表示。由此可见,0℃很关键。

2、在温度计上找温度,体会水银柱越往上升温度越高,水银柱下降温度降低,0℃以上为正数,0℃以下为负数。

把你的温度计准备好,请你在温度计上表示出10摄氏度。(展示同学们的温度计,有两种可能,一种是10℃,另一种是-10℃)从温度计中更能看出0℃的重要性了。

(四)用直线上的点表示正、负数,并总结规律。

正数和负数还可以用直线上的点表示。(边说边演示)请看大屏幕,直线上有无数个点,我们选择其中的一个点为0点,每小格代表单位1,如果我要写正数,在0的哪边写?还可以写好些,正数都在0的右边,那0的左边就是(负数了)。

负数正数

越来越大

-3 -2 -1 0 1 2 3

越来越小

请你观察这个图,从左向右看,你发现了什么?(从左向右数越来越大)还可以从哪边看?你又发现了什么规律?(从右向左数越来越小)从这个图中你能看出0是什么数吗?(板书:0)(0既不是正数,也不是负数)0和正、负数之间有怎样的关系?(0小于所有的正数,大于所有的负数)可以用这个符号“<”把它们连接起来吗?(同时板书:“<”)

三、走进生活,巩固新知。

负数在我们的生活中随处可见。

1、电梯中的负数(出示课件)

下面请同学看大屏幕,叔叔应该按哪个键?阿姨应该按哪个键?

2、存折上的负数。

3、方向问题(出示课件)

我们继续往下看,默读题目,谁读懂了,谁能填空?

4、课本p73例4(出示课件)

请看这幅图,我们以海平面为分界线,图中高于海平面有两点,低于海平面有哪几点?用正、负数读出图中的数据。

5、刘翔跨栏的画面(出示课件)

认识他吗?请你默读信息,思考当时赛场风速每秒-0.4米是什么意思?谁能解释一下?

四、归纳总结,质疑问难。

可见,正、负数在我们的生活中应用得很广泛,以后大家千万要留心身边的生活,在我们的日常生活中,处处都有要学的数学知识。

时间过得真快,马上就要下课了,你们过得高兴吗?说说有什么收获?

看着你们举起的手,大家都有所收获。

哪儿不明白?

我们不仅学会了知识,还学会了思考问题。下节课我们一起讨论解决大家提出的问题。

五、留心生活,完成作业。

作业:1、完成自主丛书p43 1、2、3题;

2、课后思考:还有哪些事物可以用正、负数来表示。

板书:

负数<0<正数

-2+2+正号

-3+7-负号

-100+900

正数和负数课件 篇10

《1.1正数和负数》教学设计

教学目标

1. 通过对“零”的意义的探讨,进一步理解正数和负数的概念,能利用正负数正确表示相反意义的量(规定了向指定方向变化的量);

2. 进一步体验正负数在生产生活中的广泛应用,提高解决实际问题的能力;

3. 激发学生学习数学的兴趣.

[教学重点与难点]

重点:深化对正负数概念的理解.

难点:正确理解和表示向指定方向变化的量

《1.1正数和负数》同步练习

1、下列说法正确的是( )

A、零 是正数不是负数 B、零既不是正数也不是负数

C、零既是正数也是负数 D、不是正数的数一定是负数,不是负数的数一定是正数

2、向东行进-30米表示的意义是( )

A、向东行进30米 B、向东行进-30米

C、向西行进30米 D、向西行进-30米

3、零上13℃记作 +13℃,零下2℃可记作( )

A、2 B、-2 C、2℃ D、-2℃

4、某市20 15年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高 气温比 最低气温高( )

A、-10℃ B、-6℃ C、6℃ D、10℃

5、 中,正数有 ,负数有 .

6、如 果水位升高5m时水位变化记作+5m,那么水位下降3m时水位变化记作 m,

水位不升不降时水位变化记作 m.

7、在同一个问题中,分别用正数与负数表示的量具有 的意义.

8、甲、乙两人同时从A地出发, 如果向南走48m,记作+48m,则乙向北走32m,记为 ,

这时甲乙 两人相距 m. .

9、某种药品的说明书上标明保存温度是(20±2)℃,由此可知在 ℃~ ℃范围内保存才合适.

10、2015年我国全年平均降水量比 上年减少24㎜,2014年比上年增长8㎜,2013年比上年减少20㎜。用正数和负数表示这三年我国全年平均降水量比上年的增长量.

11、如果把一个物体向右移动5m记作移动-5m,那么这个物体又移动+5m是什么 意思?这时物体离它两次移动前的位置多 远?

12、某老师把某一小组五名同学的成绩简记为:+10,-5,0,+8,-3,又知道记为0的成绩表 示90分,正数表示超过90分,则五名 同学的平均成绩为多少分?

13、某地一天中午12时的气温是7℃,过5小时气温下降了4℃ ,又过7小时气温又下降了4℃,第二天0时的气温是多少?

《1.1正数和负数》同步练习含答案

19.体育课上,对初三(1)班的学生进行了仰卧起坐的测试,以能做28个为标准,超过的次数用正数来表示,不足的次数用负数来表示,其中10名 女学生成绩如下:1、4、0、8、6、8、0、6、-5、-1.

(1)这10名女生的达标率为多少?

(2)没达标的同学做了几个仰卧起坐?

解:(1)这10名女生的达标率为8÷10 ×100%=80%.

(2)没达标的同学做仰卧起坐的个数分别是23个和27个.

正数和负数课件 篇11

1.1.1正数和负数

教学目的:

(一)知识点目标:

1.了解正数和负数是怎样产生的。

2.知道什么是正数和负数。

3.理解数0表示的量的意义。

(二)能力训练目标:

1.体会数学符号与对应的思想,用正、负数表示具有相反意义的量的符号化方法。

2.会用正、负数表示具有相反意义的量。

(三)情感与价值观要求:

通过师生合作,联系实际,激发学生学好数学的热情。

教学重点:知道什么是正数和负数,理解数0表示的量的意义。

教学难点:理解负数,数0表示的量的意义。

教学方法:师生互动与教师讲解相结合。

教具准备:地图册(中国地形图)。

教学过程:

引入新课:

1.活动:由两组各派两名同学进行如下活动:一名按老师的指令表演,另一名在黑板上速记,看哪一组记得最快、最好?

内容:老师说出指令:

向前两步,向后两步;

向前一步,向后三步;

向前两步,向后一步;

向前四步,向后两步。

如果学生不能引入符号表示,教师可和一个小组合作,用符号表示出+2、-2、+1、-3、+2、-1、+4、-2等。

[师]其实,在我们的生活中,运用这样的符号的地方很多,这节课,我们就来学习这种带有特殊符号、表示具有实际意义的数-----正数和负数。

讲授新课:

1.自然数的产生、分数的产生。

2.章头图。问题见教材。让学生思考-3~3℃、净胜球数与排名顺序、±0.5、-9的意义。

3、正数、负数的定义:我们把以前学过的0以外的数叫做正数,在这些数的前面带有“一”时叫做负数。根据需要有时在正数前面也加上“十”(正号)表示正数。

举例说明:3、2、0.5、等是正数(也可加上“十”)

-3、-2、-0.5、-等是负数。

4、数0既不是正,也不是负数,0是正数和负数的分界。

0℃是一个确定的温度,海拔为0的高度是海平面的平均高度,0的意义已不仅表示“没有”。

5、让学生举例说明正、负数在实际中的应用。展示图片(又见教材p5图1.1-2-3)让学生观察地形图上的标注和记录支出、存入信息的本地某银行的存折,说出你知道的信息。

巩固提高:练习:课本p5练习

课时小结:这节课我们学习了哪些知识?你能说一说吗?

课后作业:课本p7习题1.1的第1、2、4、5题。

活动与探究:在一次数学测验中,某班的平均分为85分,把高于平均分的高出部分记为正数。

(1)美美得95分,应记为多少?

(2)多多被记作一12分,他实际得分是多少?

课后反思

1.1.2正数和负数

教学目的:

(一)知识点目标:

1.了解正数和负数在实际生活中的应用。

2.深刻理解正数和负数是反映客观世界中具有相反意义的理。

3.进一步理解0的特殊意义。

(二)能力训练目标:

1.体会数学符号与对应的思想,用正、负数表示具有相反意义的量。

2.熟练地用正、负数表示具有相反意义的量。

(三)情感与价值观要求:

通过师生合作,联系实际,激发学生学好数学的热情。

教学重点:能用正、负数表示具有相反意义的量。

教学难点:进一步理解负数、数0表示的量的意义。

教学方法:小组合作、师生互动。

教学过程:

创设问题情境,引入新课:分小组派代表,注意数学语言规范。

1.认真想一想,你能用学过的知识解决下列问题吗?

某零件的直径在图纸上注明是,单位是毫米,这样标注表示零件直径的标准尺寸是()毫米,加工要求直径最大可以是()毫米,最小可以是()毫米。

2.下列说法中正确的()

A、带有“一”的数是负数;B、0℃表示没有温度;

C、0既可以看作是正数,也可以看作是负数。

D、0既不是正数,也不是负数。

[师]这节课我们就来继续认识正、负数及它们在生活中的实际意义,特别是数0。

讲授新课:

例1.仔细找一找,找了具有相反意义的量:

甲队胜5场;零下6度;向南走50米;运进粮食40吨;乙队负4场;零上10度;向北走20米;支出1000元;收入3500元。

例2(1)一个月内,小明的体重增加2千克,小华体重减少1千克,小强体重无变化,写出他们这个月的体重增长值;

(2)xx年下列国家的商品进出口总额比上年的变化情况是:

美国减少6.4%,德国增长1.3%,法国减少2.4%,

英国减少3.5%,意大利增长0.2%,中国增长7.5%。

写出这些国家xx年商品进出口总额的增长率。

例3.下列各数中,哪些是正数,哪些是负数?哪些是正整数,哪些是负整数?哪些是正分数(小数),哪些是负分数(小数)?

例4.小红从阿地出发向东走了3千米,记作+3千米,接着她又向西走3千米,那么小红距阿地多少千米?

复习巩固:练习:课本p6练习

课时小结:这节课我们学习了哪些知识?你能说一说吗?

课后作业:课本p7习题1.1的第3、6、7、8题。

活动与探究:海边的一段堤岸高出海平面12米,附近的一建筑物高出海平面50米,海里一潜水艇在海平面下30米处,现以海边堤岸为基准,将其记为0米,那么附近建筑物及潜水艇的高度各应如何表示?

数学函数课件合集


每个老师在上课前需要规划好教案课件,因此想要随便写的话老师们就要注意了。 学生反应是教学过程中动态反馈的重要组成部分。为了您的方便编辑编辑了这份专业的“数学函数课件”,这会帮助你更好地理解事物!

数学函数课件 篇1

一、说教学内容:

(一)、本课时的内容、地位及作用:

本课内容是华东师大版八年级(下)数学第十八章《函数及其图象》第四节《反比例函数》的第一课时,是继一次函数学习之后又一类新的函数——反比例函数,它位居初中阶段三大函数中的第二,区别于一次函数,但又建立在一次函数之上,而又为以后更高层次函数的学习,函数、方程、不等式间关系的处理奠定了基础。函数本身是数学学习中的重要内容,而反比例函数则是基础函数,因此,本节内容有着举足轻重的地位。

(二)本课题的教学目标:

教学目标是教学的出发点和归宿。因此,我根据新课标的知识、能力和德育目标的要求,以学生的认知点,心理特点和本课的特点来制定教学目标:

1.知识目标

(1)、通过对实际问题的探究,理解反比例函数的意义。

(2)、体会反比例函数的不同表示法。

(3)、会判别反比例函数。

2.能力目标

(1)、通过两个实际问题,培养学生勤于思考和分析归纳的能力。

(2)、在思考、归纳等过程中,发展学生的合情说理能力。

(3)、让学生会求反比例函数关系式

3.情感目标

(1)、通过已有的知识经验探索的过程,体验数学研究和发现的过程,逐步培养学生在教学活动中的主动探索的意识和合作交流的习惯。

(2)、理论联系实际,让学生有学有所用的感性认识。

4、本课题的重点、难点和关键:

重点:反比例函数的意义;

难点:求反比例函数的解析式;

关键:如何由实际问题转化为数学模型。

二、说教学方法:

本课将采用探究式教学,让学生主动去探索,并分层教学将顾及到全体学生,达到优生得到培养,后进生也有所收获的效果。同时在教学中将理论联系实际,让学生用所学的知识去解决身边的实际问题。

由于学生才第一次接触函数,对一次函数尽管已经学习了,但对函数这部分内容不是十分熟练。因此,在教这节课时,要注意和一次函数,尤其是正比例函数与反比例函数的类比。引导学生从函数的意义、自变量的取值范围等方面辨明相应的差别,在学生探索过程中,让学生体会到在探索的途径和方法上与一次函数相似。

对于所设置的两个问题为学生所熟悉,尽量贴近学生生活,或者进入学生生活的圈子里,让学生感受到亲切、自然,激发学生的学习兴趣,提高学生思考问题的积极主动性和解决问题的能力,从而培养对数学学科的浓厚兴趣,使部分学生由不爱学变得爱学。让学生真正体会到:生活处处皆数学,生活处处有函数,

资料共享平台

《初中数学说课稿:反比例函数》()。

三、说学法指导:

课堂,只有宝贵的四十五分钟,有相当一部分学生很难驾驭,身不由已,注意力不能集中。针对这种情况,故意设置两个贴近生活的实例,让学生展开想象的翅膀,主动思考,相互探讨,学生互动,师生互动。在想象与探讨的互动中,迸发出思想的火花,寻求问题的答案――反比例函数的意义。

为了让学生对反比例函数的意义牢牢掌握和深刻理解,启发学生回忆正比例函数并与之相类比,从内容到形式,学生自主地体会出反比例函数的真正内涵。

在本课时的教学双边活动过程中,抓住初中学生的心理生理特点,尽量运用生动的语言,引发学生的兴趣,吸引他们的注意力;另一方面积极创造条件和机会,让学生发表见解,发挥学生学习的主动性。

教师要善于捕捉学生的反馈信息,并能立即反馈给学生,矫正学生的学法和知识错误。力求体现以学生为主体,教师为主导的原则,在轻松愉快的氛围中,顺利地“消化”本节课的内容。同时,让学生体会到“理论来自于实践,而理论又反过来指导实践”的哲学思想。从而培养和提高学生分析问题和解决问题的'能力。

四、说教学程序:

(一)复习引入:

由于学生所学过的一次函数、正比例函数等概念时间已较长,所以在创设情境时对这些知识加以复习,以换取学生以有知识的记忆。回忆师生共同回忆前一阶段所学知识,同时启开新的课题——反比例函数(教师板书)

设计意图:旧知的回顾,为了新知的探索作好铺垫)

(二)创设情景,激发热情

用两个最贴近学生生活实例引出反比例函数的概念,教师发挥主导作用,启发学生思考。

问题1、

小华的爸爸早晨骑自行车带小华到15千米的镇外去赶集,回来时让小华乘公共汽车,用的时间少了。假设两人经过的路程一样,而且自行车和汽车的速度在行驶过程中都不变,爸爸要小华找出从家里到镇上的时间和乘坐不同交通工具的速度之间的关系。

师问:

(1)、在这个故事中,有几种交通工具?(生答:两种)

(2)、两种交通工具的正常行驶速度一样吗?来去的路程一样吗?时间呢?(生答:不一样、一样、不一样)

师生共同探究,时间的变化是由速度的变化所引起,设小华乘坐交通工具的速度是v千米/时,从家里到镇上的时间是t小时。因为在匀速运动中,时间=路程÷速度, 则有 t=15/v

你从这个关系式中发现了什么?

教师分析变量t与v之间的关系:

① 路程一定时,时间t就是速度v的反比例函数。即速度增大了,时间变小;速度减小了,时间增大。

② 自变量v的取值是v﹥0

问题2、

学校校外生物小组的同学准备自己动手,用旧围栏建一个面积为24平方米的矩形饲养场。设它的一边长为x(米),求另一边的长y(米)与x的函数关系式。

仿上一问题让学生分析变量关系,然后教师总结:依矩形面积可得

xy=24 即y=24/x

数学函数课件 篇2

八年级数学一次函数教案(教学目标)

1、经历一般规律的探索过程,发展学生的抽象思维能力。

2、理解一次函数和正比例函数的概念,能根据所给条件写出简单的一次函数表达式,发展学生的数学应用能力。

八年级数学一次函数教案(重难点)

教学重点:

正比例函数的概念及两者之间的关系。

2、 会根据已知信息写出一次函数的表达式。

教学难点: 一次函数知识的运用教学方法教师引导学生自学法教具准备弹簧一根、

八年级数学一次函数教案(课件教学过程)

一、创设问题情境,引入新课

1、 简单复习函数的概念(设在某一变化过程中有两个变量X和Y,如果 ,那么我们称Y是X的函数,其中X是自变量,Y是因变量)

2、 演示弹簧在力的作用下发生形变现象,提出问题:在弹簧长度发生变化过程中,弹簧的长度是哪个变量的函数?为什么?

3、 汽车匀速行驶途中,油箱中的剩余油量与什么有关系?这其中有函数吗?

二、新课学习

1、 做一做。让学生做书上157页上面两个题目,使学生在探索一般规律的过程中,发展抽象思维能力。

正比例函数的概念学习讨论:刚才写出的.两个关系式y=y=100-0.18x在形式上有什么相同之处?

让学生分析出他们的共同点:①左边都是因变量,右边都是含自变量的代数式;②自变量X与因变量Y的次数都是1;③从形式上看,形式都为y=kx+b,K,b为常数。

问:从自变量的次数上看,这样的函数大家认为可以取个什么名字?引导学生归纳出一次函数的概念:若两个变量x,y间的关系可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x是自变量,y是因变量)。

问:一次函数y=kx+b中,k可以为0吗?b可以为0吗?引导学生得出正比例函数的概念。

并接着引导学生比较一次函数与正比例函数的关系(用集合的方法比较):一次函包括正比例函数,正比例函数是一次函数的特殊情况。

3、 例题学习

例题1是考察学生对一次函数与正比例函数概念的理解,学生直接进行口答。

例题2是培养学生根据题意列出简单一次函数关系式及利用一次函数解决实际问题的能力。其中第三问严格地讲应先判断出工资的范围是800

三、随堂练习

b的值。若不是一次函数,请说明理由。

A、y= +x B、y=-y=y=6-

2、已知函数y=(m+1)x+(m2-1),当m ,y是x的一次函数;当m ,y是x的正比例函数。

四、拓展应用

学校组织部分学生去井岗山体验革命历史。出行方面准备从甲、乙两家旅行社中选择一家代办,已知两家旅行社报价相同,都是每人y乙,解答下列问题:(

让学生归纳本节课学习内容:

正比例函数概念以及它们之间的关系。

2、会根据已知信息写出一次函数的关系式。

数学函数课件 篇3

所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。

韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等

在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。

在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。

数学函数课件 篇4

第四课时(2.1,2.2)教学目的:1.掌握求函数值域的基本方法(直接法、换元法、判别式法);掌握二次函数值域(最值)或二次函数在某一给定区间上的值域(最值)的求法.2.培养观察分析、抽象概括能力和归纳总结能力;教学重点:值域的求法教学难点:二次函数在某一给定区间上的值域(最值)的求法教学过程:一、复习引入:函数的三要素是:定义域、值域和定义域到值域的对应法则;定义域和对应法则一经确定,值域就随之确定。  已学过的函数的值域 二、讲授新课1.直接法:利用常见函数的值域来求例1.求下列函数的值域① y=3x+2(-1 x 1)      ②      ③             ④ 2.二次函数比区间上的值域(最值):例2 求下列函数的最大值、最小值与值域:① ;          ② ;③ ;  ④ ;3.判别式法(△法):判别式法一般用于分式函数,其分子或分母中最高为二次式且至少有一个为二次式,解题中要注意二次项系数是否为0的讨论及函数的定义域.例3.求函数 的值域4.换元法例4.求函数 的值域5.分段函数例5.求函数y=|x+1|+|x-2|的值域. 三、单元小结:函数的概念,解析式,定义域,值域的求法.四、作业:《精析精练》p58智能达标训练

数学函数课件 篇5

平面解析几何初步:

①直线与方程是解析几何的基础,是重点考查的内容,单独考查多以选择题、填空题出现;间接考查则以直线与圆、椭圆、双曲线、抛物线等综合为主,多为中、高难度,往往作为把关题出现在题目中。直接考查主要考查直线的倾斜角、直线方程,两直线的位置关系,点到直线的距离,对称问题等,间接考查一定会出现在中 高考,主要考查直线与圆锥曲线的综合问题。

②圆的问题主要涉及圆的方程、直线与圆的位置关系、圆与圆的位置关系以及圆的集合性质的讨论,难度中等或偏易,多以选择题、填空题的形式出现,其中热点为圆的切线问题。③空间直角坐标系是平面直角坐标系在空间的推广,在解决空间问题中具有重要的作业,空间向量的坐标运算就是在空间直角坐标系下实现的。空间直角坐标系也是解答立体几何问题的重要工具,一般是与空间向量在坐标运算结合起来运用,也不排除出现考查基础知识的选择题和填空题。

直线方程及其应用

直线是最简单的几何图形,是解析几何最基础的部分,本章的基本概念;基本公式;直线方程的各种形式以及两直线平行、垂直、重合的判定都是解析几何重要的基础内容。应达到熟练掌握、灵活运用的程度,线性规划是直线方程一个方面的应用,属教材新增内容,中单纯的直线方程问题不难,但将直线方程与其他综合的问题是比较棘手的。

难点磁场

已知a<1,b<1,c<1,求证:abc+2>a+b+c.

案例探究

[例1]某校一年级为配合素质,利用一间教室作为学生绘画成果展览室,为节约经费,他们利用课桌作为展台,将装画的镜框放置桌上,斜靠展出,已知镜框对桌面的倾斜角为α(90°≤α<180°)镜框中,画的上、下边缘与镜框下边缘分别相距a m,b m,(a>b)。问学生距离镜框下缘多远看画的效果最佳?

命题意图:本题是一个非常实际的问题,它不仅考查了直线的有关概念以及对三角知识的综合运用,而且更重要的是考查了把实际问题转化为问题的。

知识依托:三角函数的定义,两点连线的斜率公式,不等式法求最值。

错解分析:解决本题有几处至关重要,一是建立恰当的坐标系,使问题转化成解析几何问题求解;二是把问题进一步转化成求tanACB的最大值。如果坐标系选择不当,或选择求sinACB的最大值。都将使问题变得复杂起来。

技巧与:欲使看画的效果最佳,应使∠ACB取最大值,欲求角的最值,又需求角的一个三角函数值。

解:建立如图所示的直角坐标系,AO为镜框边,AB为画的宽度,O为下边缘上的一点,在x轴的正半轴上找一点C(x,0)(x>0),欲使看画的效果最佳,应使∠ACB取得最大值。

由三角函数的定义知:A、B两点坐标分别为(acosα,asinα)、(bcosα,bsinα),于是直线AC、BC的斜率分别为:

kAC=tanxCA=

于是tanACB=

由于∠ACB为锐角,且x>0,则tanACB≤,当且仅当=x,即x=时,等号成立,此时∠ACB取最大值,对应的点为C(,0),因此,学生距离镜框下缘cm处时,视角最大,即看画效果最佳。

[例2]预算用20xx元购买单件为50元的桌子和20元的椅子,希望使桌椅的总数尽可能的多,但椅子不少于桌子数,且不多于桌子数的1.5倍,问桌、椅各买多少才行?

命题意图:利用线性规划的思想方法解决某些实际问题属于直线方程的一个应用,本题主要考查找出约束条件与目标函数、准确地描画可行域,再利用图形直观求得满足题设的最优解。

知识依托:约束条件,目标函数,可行域,最优解。

错解分析:解题中应当注意到问题中的桌、椅张数应是自然数这个隐含条件,若从图形直观上得出的最优解不满足题设时,应作出相应地调整,直至满足题设。

技巧与方法:先设出桌、椅的变数后,目标函数即为这两个变数之和,再由此在可行域内求出最优解。

解:设桌椅分别买x,y张,把所给的条件表示成不等式组,即约束条件

为由

∴A点的坐标为(,)

∴B点的坐标为(25,)

所以满足约束条件的可行域是以A(,),B(25,),O(0,0)为顶点的三角形区域(如下图)

由图形直观可知,目标函数z=x+y在可行域内的最优解为(25,),但注意到x∈N,y∈N*,故取y=37.

故有买桌子25张,椅子37张是最好选择。

[例3]抛物线有光学性质:由其焦点射出的光线经抛物线折射后,高中数学,沿平行于抛物线对称轴的方向射出,今有抛物线y2=2px(p>0)。一光源在点M(,4)处,由其发出的光线沿平行于抛物线的轴的方向射向抛物线上的点P,折射后又射向抛物线上的点 Q,再折射后,又沿平行于抛物线的轴的方向射出,途中遇到直线l:2x-4y-17=0上的点N,再折射后又射回点M(如下图所示)

(1)设P、Q两点坐标分别为(x1,y1)、(x2,y2),证明:y1.y2=-p2;

(2)求抛物线的方程;

(3)试判断在抛物线上是否存在一点,使该点与点M关于PN所在的直线对称?若存在,请求出此点的坐标;若不存在,请说明理由。

命题意图:对称问题是直线方程的又一个重要应用。本题是一道与中的光学知识相结合的综合性题目,考查了学生理解问题、分析问题、解决问题的能力。

知识依托:韦达定理,点关于直线对称,直线关于直线对称,直线的点斜式方程,两点式方程。

错解分析:在证明第(1)问题,注意讨论直线PQ的斜率不存在时。

技巧与方法:点关于直线对称是解决第(2)、第(3)问的关键。

(1)证明:由抛物线的光学性质及题意知

光线PQ必过抛物线的焦点F(,0),

设直线PQ的方程为y=k(x-) ①

由①式得x=y+,将其代入抛物线方程y2=2px中,整理,得y2-y-p2=0,由韦达定理,y1y2=-p2.

当直线PQ的斜率角为90°时,将x=代入抛物线方程,得y=±p,同样得到y1.y2=

-p2.

(2)解:因为光线QN经直线l反射后又射向M点,所以直线MN与直线QN关于直线l对称,设点M(,4)关于l的对称点为M′(x′,y′),则

解得

直线QN的方程为y=-1,Q点的纵坐标y2=-1,

由题设P点的纵坐标y1=4,且由(1)知:y1.y2=-p2,则4.(-1)=-p2,

得p=2,故所求抛物线方程为y2=4x.

(3)解:将y=4代入y2=4x,得x=4,故P点坐标为(4,4)

将y=-1代入直线l的方程为2x-4y-17=0,得x=,

故N点坐标为(,-1)

由P、N两点坐标得直线PN的方程为2x+y-12=0,

设M点关于直线NP的对称点M1(x1,y1)

又M1(,-1)的坐标是抛物线方程y2=4x的解,故抛物线上存在一点(,-1)与点M关于直线PN对称。

锦囊妙计

1.对直线方程中的基本概念,要重点掌握好直线方程的特征值(主要指斜率、截距)等问题;直线平行和垂直的条件;与距离有关的问题等。

2.对称问题是直线方程的一个重要应用,里面所涉及到的对称一般都可转化为点关于点或点关于直线的对称。中点坐标公式和两条直线垂直的条件是解决对称问题的重要工具。

3.线性规划是直线方程的又一应用。线性规划中的可行域,实际上是二元一次不等式(组)表示的平面区域。求线性目标函数z=ax+by的最大值或最小值时,设t=ax+by,则此直线往右(或左)平移时,t值随之增大(或减小),要会在可行域中确定最优解。

4.由于一次函数的图象是一条直线,因此有关函数、数列、不等式、复数等代数问题往往借助直线方程进行,考查学生的综合能力及创新能力

数学函数课件 篇6

一、教学目标:

1.掌握用待定系数法求三角函数解析式的方法;

2.培养学生用已有的知识解决实际问题的能力;

3.能用计算机处理有关的近似计算问题.

二、重点难点:

重点是待定系数法求三角函数解析式;

难点是选择合理数学模型解决实际问题.

三、教学过程:

【创设情境】

三角函数能够模拟许多周期现象,因此在解决实际问题中有着广泛的应用.

【自主学习探索研究】

1.学生自学完成P42例1

点O为做简谐运动的物体的平衡位置,取向右的方向为物体位移的正方向,若已知振幅为3cm,周期为3s,且物体向右运动到距平衡位置最远处时开始计时.

(1)求物体对平衡位置的位移x(cm)和时间t(s)之间的函数关系;

(2)求该物体在t=5s时的位置.

(教师进行适当的评析.并回答下列问题:据物理常识,应选择怎样的函数式模拟物体的运动;怎样求和初相位θ;第二问中的“t=5s时的位置”与函数式有何关系?)

2.讲解p43例2(题目加已改变)

2.讲析P44例3

海水受日月的引力,在一定的时候发生涨落的现象叫潮汐,一般的早潮叫潮,晚潮叫汐.在通常的情况下,船在涨潮时驶进航道,靠近船坞;卸货后落潮是返回海洋.下面给出了某港口在某季节每天几个时刻的水深.

(1)选用一个三角函数来近似描述这个港口的水深与时间的函数关系,并给出在整点时的近似数值.

(2)一条货船的吃水深度(船底与水面的距离)为4米,安全条例规定至少要有1.5米的安全间隙(船底与海底的距离),该船何时能进入港口?在港口能呆多久?

(3)若船的吃水深度为4米,安全间隙为1.5米,该船在2:00开始卸货,吃水深度以每小时0.3米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域?

问题:

(1)选择怎样的数学模型反映该实际问题?

(2)图表中的最大值与三角函数的哪个量有关?

(3)函数的周期为多少?

(4)“吃水深度”对应函数中的哪个字母?

3.学生完成课本P45的练习1,3并评析.

【提炼总结】

从以上问题可以发现三角函数知识在解决实际问题中有着十分广泛的应用,而待定系数法是三角函数中确定函数解析式最重要的方法.三角函数知识作为数学工具之一,在以后的学习中将经常有所涉及.学数学是为了用数学,通过学习我们逐步提高自己分析问题解决问题的能力.

四、布置作业:

P46习题1.3第14、15题

数学函数课件 篇7

教学目标

(一)知道函数图象的意义;

(二)能画出简单函数的图象,会列表、描点、连线;

(三)能从图象上由自变量的值求出对应的函数的近似值。

教学重点和难点

重点:认识函数图象的意义,会对简单的函数列表、描点、连线画出函数图象。

难点:对已恬图象能读图、识图,从图象解释函数变化关系。

教学过程设计

(一)复习

1.什么叫函数?

2.什么叫平面直角坐标系?

3.在坐标平面内,什么叫点的横坐标?什么叫点的纵坐标?

4.如果点A的横坐标为3,纵坐标为5,请用记号表示A(3,5).

5.请在坐标平面内画出A点。

6.如果已知一个点的坐标,可在坐标平面内画出几个点?反过来,如果坐标平面内的一个点确定,这个点的坐标有几个?这样的点和坐标的对应关系,叫做什么对应?(答:叫做坐标平面内的点与有序实数对一一对应)

(二)新课

我们在前几节课已经知道,函数关系可以用解析式表示,像y=2x+1就表示以x 为自变量时,y是x的函数。

这个函数关系中,y与x的函数。

这个函数关系中,y与x的对应关系,我们还可通知在坐标平面内画出图象的方法来表示。

数学函数课件 篇8

第一块平面直角坐标系及函数平面直角坐标系是研究数学问题的一种基本工具之一.函数是数学中一个十分重要的概念,它借助于平面直角坐标系架起了数形结合的桥梁。

正确理解函数的概念,掌握函数图象及其性质大分析解决问题中起关键作用。

1.函数的概念比较抽象,初中生理解时有一定难度,关键是应了解我们研究函数的实质就是研究两个变量之间的关系。

在同一问题中,变化的数量之间往往有一定的联系,提示出某种规律,一个量变化,另一个量随之变化。

2.建立了平面直角坐标系后,平面内的点与有序实数对之间建立了一一对应关系。

坐标平面内,由点的坐标找点和由点求坐标是“数”与“形”相互转换的最基本形式。

点的坐标是解决函数问题的基础,函数解析式是解决函数问题的关键。

所以,求点的坐标和探求函数解析式是研究函数的两大重要课题。

3.函数体现的是一个变化过程,在这一变化过程中要具备下列三点:(1)只能有两个变量;(2)一个变量随另一个变量的数值变化而变化;(3)对于自变量的每一个确定值,函数有唯一的值与它对应,允许多个x对应同一个y,但不允许一个x对应着多个y。

4.函数自变量的取值范围是一个重要的内容,它既要保证函数关系式有意义,又要保证符合实际意义。

5.函数的表示方法一般有三种:表格、图象、解析式,它们各有优缺点。

6.在平面直角坐标系中,如果以自变量的值为横坐标、相应的函数值为纵坐标描点,所有这样的点组成的图形就是这个函数的图象。

一般分三个步骤画函数的图象:列表——描点——连线(平滑曲线)。

7.函数与图象的关系必须理解:函数图象上的点的坐标满足函数关系式;满足函数关系式的点一定在函数图象上。

就是我们常说的纯粹性和完备性。

8.坐标平面内的点的坐标特征:包括坐标轴上的点,各象限角平分线上的点,关于坐标轴、原点对称的点,平行于坐标轴的直线上的点及点的平移变换等都应熟练掌握。

第二块一次函数一次函数是初中阶段函数的一种具体形态。

如果两个变量x和y之间的函数关系可以表示为y=kx+b(k,b为常数,且k等于0)的形式,那么称y是x的一次函数,其中自变量x可取一切实数。

当b=0时,y也叫做x的正比例函数。

1.正比例函数是一次函数,但一次函数不一定是正比例函数,只有b=0时,才是正比例函数。

2.一次函数的图象是一条直线,画直线y=kx+b时,一般选点(0,b)和点(-b/k,0),这恰好是直线与y轴和x轴的交点。

而当-b/k不是整数时,(-b/k,0)也常被横纵坐标均为整数的点所替代。

当b=0时,图象过原点,即正比例函数y=kx的图象是过原点的一条直线,画直线y=kx时,一般选原点(0,0)和点(1,k)。

3.一次函数y=kx+b中,k,b的符号与函数的增减性及直线的位置(指经过的象限)有直接关联,应熟练掌握。

一般来说,kgt;0时,图象经过第一、三象限,y随x的增大而增大;klt;0时,图象经过第二、四象限,y随x的增大而减小;bgt;0时,图象过第一、二象限;blt;0时,图象过第三、四象限;b=0时,图象过原点。

4.求一次函数y=kx+b的表达式,实际上是求出k,b的值,一般需要两个条件,用二元一次方程组求得k,b,然后写出表达式。

5.两个一次函数的图象的交点坐标,即为两个一次函数解析式所组成的方程组的解。

数学函数课件 篇9

二次函数的应用

教学设计思想

本节主要研究的是与二次函数有关的实际问题,重点是实际应用题,在教学过程中让学生运用二次函数的知识分析问题、解决问题,在运用中体会二次函数的实际意义。二次函数与一元二次方程、一元二次不等式有密切联系,在学习过程中应把二次函数与之有关知识联系起来,融会贯通,使学生的认识更加深刻。另外,在利用图像法解方程时,图像应画得准确一些,使求得的解更准确,在求解过程中体会数形结合的思想。

教学目标:

1、知识与技能

会运用二次函数计其图像的知识解决现实生活中的实际问题。

2、过程与方法

通过本节内容的学习,提高自主探索、团结合作的能力,在运用知识解决问题中体会二次函数的应用意义及数学转化思想。

3、情感、态度与价值观

通过学生之间的讨论、交流和探索,建立合作意识和提高探索能力,激发学习的兴趣和欲望。

教学重点:

解决与二次函数有关的实际应用题。

教学难点:

二次函数的应用。

教学媒体:

幻灯片,计算器。

教学安排:

3课时。

教学方法:

小组讨论,探究式。

教学过程:

第一课时:

Ⅰ。情景导入:

师:由二次函数的一般形式y= (a0),你会有什么联想?

生:老师,我想到了一元二次方程的一般形式 (a0)。

师:不错,正因为如此,有时我们就将二次函数的有关问题转化为一元二次方程的问题来解决。

现在大家来做下面这两道题:(幻灯片显示)

1、解方程 。

2、画出二次函数y= 的图像。

教师找两个学生解答,作为板书。

Ⅱ。新课讲授

同学们思考下面的问题,可以共同讨论:

1、二次函数y= 的图像与x轴交点的横坐标是什么?它与方程 的根有什么关系?

2、如果方程 (a0)有实数根,那么它的根和二次函数y= 的图像与x轴交点的横坐标有什么关系?

生甲:老师,由画出的图像可以看出与x轴交点的横坐标是-1、2;方程的两个根是-1、2,我们发现方程的两个解正好是图像与x轴交点的横坐标。

生乙:我们经过讨论,认为如果方程 (a0)有实数根,那么它的根等于二次函数y= 的图像与x轴交点的横坐标。

师:说的很好;

教师总结:一般地,如果二次函数y= 的图像与x轴相交,那么交点的横坐标就是一元二次方程 =0的根。

师:我们知道方程的两个解正好是二次函数图像与x轴的两个交点的横坐标,那么二次函数图像与x轴的交点问题可以转化为一元二次方程的根的问题,我们共同研究下面问题。

[学法]:通过实例,体会二次函数与一元二次方程的关系,解一元二次方程实质上就是求二次函数为0的自变量x的取值,反映在图像上就是求抛物线与x轴交点的横坐标。

问题:已知二次函数y= 。

(1)观察这个函数的图像(图34-9),一元二次方程 =0的两个根分别在哪两个整数之间?

(2)①由在0至1范围内的x值所对应的y值(见下表),你能说出一元二次方程 =0精确到十分位的正根吗?

x 0 0.1 0.2[ 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y -1 -0.89 -0.76 -0.61 -0.44 -0.25 -0.04 -0.19 0.44 0.71 1

②由在0.6至0.7范围内的x值所对应的y值(见下表),你能说出一元二次方程 =0精确到百分位的正根吗?

x 0.60 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.70

y -0.040 -0.018 0.004 0.027 0.050 0.073 0.096 0.119 0.142 0.166 0.190

(3)请仿照上面的方法,求出一元二次方程 =0的另一个精确到十分位的根。

(4)请利用一元二次方程的求根公式解方程 =0,并检验上面求出的近似解。

第一问很简单,可以请一名同学来回答这个问题。

生:一个根在(-2,-1)之间,另一个在(0,1)之间;根据上面我们得出的结论。

师:回答的很正确;我们知道图像与x轴交点的横坐标就是方程的根,所以我们可以通过观看图象就能说出方程的两个根。现在我们共同解答第(2)问。

教师分析:我们知道方程的一个根在(0,1)之间,那么我们观看(0,1)这个区间的图像,y值是随着x值的增大而不断增大的,y值也是从负数过渡到正数,而当y=0时所对应的x值就是方程的根。现在我们要求的是方程的近似解,那么同学们想一想,答案是什么呢?

生:通过列表可以看出,在(0.6,0.7)范围内,y值有-0.04至0.19,如果方程精确到十分位的正根,x应该是0.6。

类似的,我们得出方程精确到百分位的正根是0.62。

对于第三问,教师可以让学生自己动手解答,教师在下面巡视,观察其中发现的问题。

最后师生共同利用求根公式,验证求出的近似解。

教师总结:我们发现,当二次函数 (a0)的图像与x轴有交点时,根据图像与x轴的交点,就可以确定一元二次方程 的根在哪两个连续整数之间。为了得到更精确的近似解,对在这两个连续整数之间的x的值进行细分,并求出相应得y值,列出表格,这样就可以得到一元二次方程 所要求的精确度的近似解。

Ⅲ。练习

已知一个矩形的长比宽多3m,面积为6 。求这个矩形的长(精确到十分位)。

板书设计:

二次函数的应用(1)

一、导入 总结:

二、新课讲授 三、练习

第二课时:

师:在我们的实际生活中你还遇到过哪些运用二次函数的实例?

生:老师,我见过好多。如周长固定时长方形的面积与它的长之间的关系:圆的面积与它的直径之间的关系等。

师:好,看这样一个问题你能否解决:

活动1:如图34-10,张伯伯准备利用现有的一面墙和40m长的篱笆,把墙外的空地围成四个相连且面积相等的矩形养兔场。

回答下面的问题:

1、设每个小矩形一边的长为xm,试用x表示小矩形的另一边的长。

2、设四个小矩形的总面积为y ,请写出用x表示y的函数表达式。

3、你能利用公式求出所得函数的图像的顶点坐标,并说出y的最大值吗?

4、你能画出这个函数的图像,并借助图像说出y的最大值吗?

学生思考,并小组讨论。

解:已知周长为40m,一边长为xm,看图知,另一边长为 m。

由面积公式得 y= (x )

化简得 y=

代入顶点坐标公式,得顶点坐标x=4,y=5。y的最大值为5。

画函数图像:

通过图像,我们知道y的最大值为5。

师:通过上面这个例题,我们能总结出几种求y的最值得方法呢?

生:两种;一种是画函数图像,观察最高(低)点,可以得到函数的最值;另外一种可以利用顶点坐标公式,直接计算最值。

师:这位同学回答的很好,看来同学们是都理解了,也知道如何求函数的最值。

总结:由此可以看出,在利用二次函数的图像和性质解决实际问题时,常常需要根据条件建立二次函数的表达式,在求最大(或最小)值时,可以采取如下的方法:

(1)画出函数的图像,观察图像的最高(或最低)点,就可以得到函数的最大(或最小)值。

(2)依照二次函数的性质,判断该二次函数的开口方向,进而确定它有最大值还是最小值;再利用顶点坐标公式,直接计算出函数的最大(或最小)值。

师:现在利用我们前面所学的知识,解决实际问题。

活动2:如图34-11,已知ab=2,c是ab上一点,四边形acde和四边形cbfg,都是正方形,设bc=x,

(1)ac=______;

(2)设正方形acde和四边形cbfg的总面积为s,用x表示s的函数表达式为s=_____.

(3)总面积s有最大值还是最小值?这个最大值或最小值是多少?

(4)总面积s取最大值或最小值时,点c在ab的什么位置?

教师讲解:二次函数 进行配方为y= ,当a0时,抛物线开口向上,此时当x= 时, ;当a0时,抛物线开口向下,此时当x= 时, 。对于本题来说,自变量x的最值范围受实际条件的制约,应为02。此时y相应的就有最大值和最小值了。通过画出图像,可以清楚地看到y的最大值和最小值以及此时x的取值情况。在作图像时一定要准确认真,同时还要考虑到x的取值范围。

解答过程(板书)

解:(1)当bc=x时,ac=2-x(02)。

(2)s△cde= ,s△bfg= ,

因此,s= + =2 -4x+4=2 +2,

画出函数s= +2(02)的图像,如图34-4-3。

(3)由图像可知:当x=1时, ;当x=0或x=2时, 。

(4)当x=1时,c点恰好在ab的中点上。

当x=0时,c点恰好在b处。

当x=2时,c点恰好在a处。

[教法]:在利用函数求极值问题,一定要考虑本题的实际意义,弄明白自变量的取值范围。在画图像时,在自变量允许取得范围内画。

练习:

如图,正方形abcd的边长为4,p是边bc上一点,qpap,并且交dc与点q。

(1)rt△abp与rt△pcq相似吗?为什么?

(2)当点p在什么位置时,rt△adq的面积最小?最小面积是多少?

小结:利用二次函数的增减性,结合自变量的取值范围,则可求某些实际问题中的极值,求极值时可把 配方为y= 的形式。

板书设计:

二次函数的应用(2)

活动1: 总结方法:

活动2: 练习:

小结:

第三课时:

我们这部分学习的是二次函数的应用,在解决实际问题时,常常需要把二次函数问题转化为方程的问题。

师:在日常生活中,有哪些量之间的关系是二次函数关系?大家观看下面的图片。

(幻灯片显示交通事故、紧急刹车)

师:你知道两辆车在行驶时为什么要保持一定的距离吗?

学生思考,讨论。

师:汽车在行驶中,由于惯性作用,刹车后还要向前滑行一段距离才能停住,这段距离叫做刹车距离。刹车距离是分析、处理道路交通事故的一个重要原因。

请看下面一个道路交通事故案例:

甲、乙两车在限速为40km/h的湿滑弯道上相向而行,待望见对方。同时刹车时已经晚了,两车还是相撞了。事后经现场勘查,测得甲车的刹车距离是12m,乙车的刹车距离超过10m,但小于12m。根据有关资料,在这样的湿滑路面上,甲车的刹车距离s甲(m)与车速x(km/h)之间的关系为s甲=0.1x+0.01x2,乙车的刹车距离s乙(m)与车速x(km/h)之间的关系为s乙= 。

教师提问:

1、你知道甲车刹车前的行驶速度吗?甲车是否违章超速?

2、你知道乙车刹车前的行驶速度在什么范围内吗?乙车是否违章超速?

学生思考!教师引导。

对于二次函数s甲=0.1x+0.01x2:

(1)当s甲=12时,我们得到一元二次方程0.1x+0.01x2=12。请谈谈这个一元二次方程这个一元二次方程的实际意义。

(2)当s甲=11时,不经过计算,你能说明两车相撞的主要责任者是谁吗?

(3)由乙车的刹车距离比甲车的刹车距离短,就一定能说明事故责任者是甲车吗?为什么?

生甲:我们能知道甲车刹车前的行驶速度,知道甲车的刹车距离,又知道刹车距离与车速的关系式,所以车速很容易求出,求得x=30km,小于限速40km/h,故甲车没有违章超速。

生乙:同样,知道乙车刹车前的行驶速度,知道乙车的刹车距离的取值范围,又知道刹车距离与车速的关系式,求得x在40km/h与48km/h(不包含40km/h)之间。可见乙车违章超速了。

同学们,从这个事例当中我们可以体会到,如果二次函数y= (a0)的某一函数值y=m。就可利用一元二次方程 =m,确定它所对应得x值,这样,就把二次函数与一元二次方程紧密地联系起来了。

下面看下面的这道例题:

当路况良好时,在干燥的路面上,汽车的刹车距离s与车速v之间的关系如下表所示:

v/(km/h) 40 60 80 100 120

s/m 2 4.2 7.2 11 15.6

(1)在平面直角坐标系中描出每对(v,s)所对应的点,并用光滑的曲线顺次连结各点。

(2)利用图像验证刹车距离s(m)与车速v(km/h)是否有如下关系:

(3)求当s=9m时的车速v。

学生思考,亲自动手,提高学生自主学习的能力。

教师提问,学生回答正确答案,教师再进行讲解。

课上练习:

某产品的成本是20元/件,在试销阶段,当产品的售价为x元/件时,日销量为(200-x)件。

(1)写出用售价x(元/件)表示每日的销售利润y(元)的表达式。

(2)当日销量利润是1500元时,产品的售价是多少?日销量是多少件?

(3)当售价定为多少时,日销量利润最大?最大日销量利润是多少?

课堂小结:本节课主要是利用函数求极值的问题,解决此类问题时,一定要考虑到本题的实际意义,弄明白自变量的取值范围。在画图像时,在自变量允许取的范围内画。

板书设计:

二次函数的应用(3)

一、案例 二、例题

分析: 练习:

总结:

数学网

教学目标

(一)教学知识点

1、经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。

2、理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根。

3、理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标。

(二)能力训练要求

1、经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神。

2、通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想。

3、通过学生共同观察和讨论,培养大家的合作交流意识。

(三)情感与价值观要求

1、经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性。

2、具有初步的创新精神和实践能力。

教学重点

1、体会方程与函数之间的联系。

2、理解何时方程有两个不等的实根,两个相等的实数和没有实根。

3、理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标。

教学难点

1、探索方程与函数之间的联系的过程。

2、理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。

教学方法

讨论探索法。

教具准备

投影片二张

第一张:(记作§2.8.1a)

第二张:(记作§2.8.1b)

教学过程

Ⅰ。创设问题情境,引入新课

[师]我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,讨论了它们之间的关系。当一次函数中的函数值y=0时,一次函数y=kx ww . w. +b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解。

数学函数课件 篇10

本节课是北师大版《数学》(必修1)第二章第3节函数单调性的第一课时,主要学习用符号语言(不等式)刻画函数的变化趋势(上升或下降)及简单应用.

它是学习函数概念后研究的第一个、也是最基本的一个性质,为后继学习奠定了理性思维基础.如研究幂函数、指数函数、对数函数和三角函数的性质,包括导函数内容等;在对函数定性分析、求最值和极值、比较大小、解不等式、函数零点的判定以及与其他知识的综合问题上都有重要的应用.因此,它是高中数学核心知识之一,是函数教学的战略要地.

函数单调性的概念,判断和证明简单函数的单调性.

函数单调性概念的生成,证明单调性的代数推理论证.

学生在初中阶段,通过学习一次函数、二次函数和反比例函数,已经对函数的单调性有了“形”的直观认识,了解用“随的增大而增大(减小)”描述函数图象的上升(下降)的趋势.亳州一中实验班的学生基础较好,数学思维活跃,具备一定的观察、辨析、抽象概括和归纳类比等学习能力.

本节课的最大障碍是如何用数学符号刻画一种运动变化的现象,从直观到抽象、从有限到无限是个很大的跨度.而高一学生的思维正处在从经验型向理论型跨越的阶段,逻辑思维水平不高,抽象概括能力不强.另外,他们的代数推理论证能力非常薄弱.这些都容易产生思维障碍.

1.理解函数单调性的相关概念.掌握证明简单函数单调性的方法.

2.通过实例让学生亲历函数单调性从直观感受、定性描述到定量刻画的自然跨越,体会数形结合、分类讨论和类比等思想方法.

3.通过探究函数单调性,让学生感悟从具体到抽象、从特殊到一般、从局部到整体、从有限到无限、从感性到理性的认知过程,体验数学的理性精神和力量.

4.引导学生参与课堂学习,进一步养成思辨和严谨的思维习惯,锻炼探究、概括和交流的学习能力.

在学生认识函数单调性的过程中会存在两方面的困难:一是如何把“随的增大而增大(减小)”这一描述性语言“翻译”为严格的数学符号化语言,尤其抽象概括出用“任意”刻画“无限”现象;二是用定义证明单调性的代数推理论证.对高一学生而言,作差后的变形和因式符号的判断也有一定的难度.

为达成课堂教学目标,突出重点,突破难点,我们主要采取以下形式组织学习材料:

1.指导思想.充分发挥多媒体形象、动态的优势,借助函数图象、表格和几何画板直观演示.在学生已有认知基础上,通过师生对话自然生成.

2.在“创设情境”阶段.观察并分析沙漠某天气温变化的趋势,结合初中已学函数的图象,让学生直观感受函数单调性,明确相关概念.

3.在“引导探索”阶段.首先创设认知冲突,让学生意识到继续学习的必要性;然后设置递进式“问题串”,借助多媒体引导学生对“随的增大而增大”进行探究、辨析、尝试、归纳和总结,并回顾已有知识经验,实现函数单调性从“直观性”到“描述性”再到“严谨性”的跨越.

4.在“学以致用”阶段.首先通过3个判断题帮助学生从正、反两方面辨析,逐步形成对概念正确、全面而深刻的认识.然后教师示范用定义证明函数单调性的方法,一起提炼基本步骤,强化变形的方向和符号判定方法.接着请学生板演实践.

实例 科考队对沙漠气候进行科学考察,下图是某天气温随时间的变化曲线.请你根据曲线图说说气温的变化情况?

预设:学生的关注点不同,如气温的最值,某时刻的气温,某时间段气温的升降变化(若学生没指明时间段,可追问)等.图象在某区间上(从左往右)“上升”或“下降”的趋势反映了函数的一个基本性质──单调性(板书课题).

设计说明:从科考情境导入新课,了解“早穿棉袄午穿纱,围着火炉吃西瓜”这一独特的沙漠气候,直观形象感知气温变化,自然引入函数的单调性.

函数是描述事物变化规律的数学模型.如果清楚了函数的变化规律,那么就基本把握了相应实物的变化规律.在事物变化过程中,保存不变的特征就是这个事物的性质.因此,研究函数的变化规律是非常有意义的.

问题1:观察下列函数图象,请你说说这些函数有什么变化趋势?

设计说明:学生回答时可能会漏掉“在某区间上”,规范表达“函数在哪个区间上具有怎样的单调性”.借此强调函数的单调性是相对某区间而言的,是函数的局部性质.

设函数的定义域为,区间.在区间上,若函数的图象(从左向右)总是上升的,即随的增大而增大,则称函数在区间上是递增的,区间称为函数的单调增区间(学生类比定义“递减”,接着推出下图,让学生准确回答单调性.)

设计说明:从图象直观感知到文字描述,完成对函数单调性的第一次认知.明确相关概念,准确表述单调性.学生认为单调性的知识似乎够用了,为下面的认知冲突做好铺垫.

问题2:(1)下图是函数的图象(以为例),它在定义域R上是递增的吗?

(2)函数在区间上有何单调性?

预设:学生会不置可否,或者凭感觉猜测,可追问判定依据.

设计说明:函数图象虽然直观,但是缺乏精确性,必须结合函数解析式;但仅凭解析式常常也难以判断其单调性.借此认知冲突,让学生意识到学习符号化定义的必要性.自然开始探索.

问题3:(1)如何用数学符号描述函数图象的“上升”特征,即“随的增大而增大”?

以二次函数在区间上的单调性为例,用几何画板动画演示“随的增大而增大”,生成表格(每一秒生成一对数据).

设计说明:先借助图形、动画和表格等直观感受“随的增大而增大”,然后让学生思考、讨论得出,若,则必须有.

(2)已知,若有.能保证函数在区间上递增吗?

拖动“拖动点”改变函数在区间上的图象,可以递增,可以先增后减,也可以先减后增.

(3)已知,若有,能保证函数在区间上递增吗?

拖动“拖动点”,观察函数在区间上的图象变化.

设计说明:先让学生讨论交流、举反例,然后借助几何画板动态说明验证两个定点不能确定函数的单调性,三个点也不行,无数个点行不行呢?引导学生过渡到符号化表示,呈现知识的自然生成.

(4)已知,若有能保证函数在区间上递增吗?

设计说明:可先请持赞同观点的同学说明理由,再请持反对意见的学生画出反驳,然后追问:无数个也不能保证函数递增,那该怎么办呢?若学生回答全部取完或任取,追问“总不能一个一个验证吧?”

紧接着师生一起回顾子集的概念(PPT展示教材上子集的定义),再次体验对“任意一个”进行操作,实现“无限”目标的数学方法,体会用“任意”来处理“无限”的数学思想.

问题4:如何用数学语言准确刻画函数在区间上递增呢?

预设:请学生自愿尝试概括定义.板书“任意,当时,都有,则称函数在区间上递增”,则突出关键词“任意”和“都有”;若缺少关键词“任取”或“任意”,则追问“验证两个点就能保证函数在区间上递增吗?”.

问题5:请你试着用数学语言定义函数在区间上是递减的.

预设:为表达准确规范,要求学生先写下来,然后展示.并有意引导使用“任意,当时,都有,则称函数在区间上递减”,以此打破必须“”的思维定式.

(1)设函数的定义域为,若对任意,都有,则在区间上递增;

(2)设函数的定义域为R,若对任意,且,都有,则是递增的;

(3)反比例函数的单调递减区间是.

设计说明:让学生分组讨论,然后进行展示性回答.若学生认为正确,则要求说明理由;若学生认为错误,则要求学生到黑板上画出反例(题(3)可追问怎么修改).通过构造反例,逐步完善和加深对函数单调性的理解.

设计说明:对照定义板书示范,指明变形的目的是变出因式等,并让学生提炼证明的基本步骤.

(2)在上递增.

设计说明:回答“问题2”悬而未决的问题.先请两位学生板演,然后由其他学生完善步骤.

思考题:物理学中的玻意耳定律(为正常数)告诉我们,对于一定量的气体,当其体积减小时,压强将增大.试用函数的单调性证明.

设计说明:引导学生用数学知识解释其他学科的规律,培养学生应用数学的意识和能力.

设计说明:先给出问题,要求学生自主小结,再推出引导性关键词,使得总结简明、到位、拔高.

(2)判断并证明函数的单调性.

探究题:向一杯水中加一定量的糖,糖加得越多糖水越甜.请你运用所学的数学知识解释这一现象.

设计说明:课堂作业是为及时巩固初学的知识和方法,完善对“对勾函数”的认识.探究题是为培养学生运用数学的意识(从地理情境开始,中间解答物理定律,最后以化学实验结束),感受数学的实用性和人文性.

反思“三个理解”的理解程度、教学策略和落实情况等.

相关推荐

  • 找质数课件 教案课件是老师不可缺少的课件,所以在写的时候老师们就要花点时间咯。教案是教师个性化服务的有效保障。小编在大量资料中找到了一篇极富实用性的“找质数课件”,希望阅读本文能够为您的职业生涯带来启示!...
    2024-06-15 阅读全文
  • 正数和负数课件经典 完整而深度的“正数和负数课件”信息幼儿教师教育网小编为您推荐这篇文章,想获得更多信息请关注我们的网站。教案课件是老师教学工作的起始环节,也是上好课的先决条件,每位老师应该设计好自己的教案课件。教案是教师教学的有效手段。...
    2023-09-30 阅读全文
  • 数学函数课件合集 每个老师在上课前需要规划好教案课件,因此想要随便写的话老师们就要注意了。 学生反应是教学过程中动态反馈的重要组成部分。为了您的方便编辑编辑了这份专业的“数学函数课件”,这会帮助你更好地理解事物!...
    2024-03-27 阅读全文
  • 数一数课件 幼儿教师教育网为您提供了一篇关于“数一数课件”的文章您一定不要错过,这些资料仅供大家参考希望大家仔细阅读。做好教案课件是老师上好课的前提,因此在写的时候就不要草草了事了。教案是教学模式和教育思想的体现。...
    2023-09-30 阅读全文
  • 正数和负数的课件(汇集9篇) 下面让我们一起探索“正数和负数的课件”的奥秘。每个老师需要在上课前弄好自己的教案课件,没有写的老师就需要抓紧完成了。教案是激励学生自主学习的重要途径。如果这篇文章对你有所帮助请将其保存下来以备需要!...
    2024-07-25 阅读全文

教案课件是老师不可缺少的课件,所以在写的时候老师们就要花点时间咯。教案是教师个性化服务的有效保障。小编在大量资料中找到了一篇极富实用性的“找质数课件”,希望阅读本文能够为您的职业生涯带来启示!...

2024-06-15 阅读全文

完整而深度的“正数和负数课件”信息幼儿教师教育网小编为您推荐这篇文章,想获得更多信息请关注我们的网站。教案课件是老师教学工作的起始环节,也是上好课的先决条件,每位老师应该设计好自己的教案课件。教案是教师教学的有效手段。...

2023-09-30 阅读全文

每个老师在上课前需要规划好教案课件,因此想要随便写的话老师们就要注意了。 学生反应是教学过程中动态反馈的重要组成部分。为了您的方便编辑编辑了这份专业的“数学函数课件”,这会帮助你更好地理解事物!...

2024-03-27 阅读全文

幼儿教师教育网为您提供了一篇关于“数一数课件”的文章您一定不要错过,这些资料仅供大家参考希望大家仔细阅读。做好教案课件是老师上好课的前提,因此在写的时候就不要草草了事了。教案是教学模式和教育思想的体现。...

2023-09-30 阅读全文

下面让我们一起探索“正数和负数的课件”的奥秘。每个老师需要在上课前弄好自己的教案课件,没有写的老师就需要抓紧完成了。教案是激励学生自主学习的重要途径。如果这篇文章对你有所帮助请将其保存下来以备需要!...

2024-07-25 阅读全文
Baidu
map