幼儿教师教育网,为您提供优质的幼儿相关资讯

有理数的加法课件

发布时间:2024-05-30 有理数加法课件 有理数课件

有理数的加法课件系列。

我们常说,机会是留给有准备的人。当幼儿园教师的工作遇到难题时,我们经常会用提前准备好的资料进行参考。资料的定义范围较大,可指代生产资料。资料可以帮助我们更高效地完成各项工作。你知不知道我们常见的幼师资料有哪些呢?根据你的需要,小编精心整理了有理数的加法课件系列,希望对你的工作和生活有所帮助。

有理数的加法课件 篇1

今天我说课的课题是有理数的加法。本节课选自湖南教育出版社出版的数学七年级(上)第一章第四节第一课时的内容。下面我就从教材分析、教法学法、教学程序和教学反思四个方面向大家介绍我对本节课的理解与设计。

有理数的加法是小学算术加法运算的拓展,是初中数学的起始部分,也是初中数学运算最重要,最基础的内容。熟练掌握有理数的加法运算是学习有理数其它运算的前提,同时,也为后面学习实数、代数式运算、方程、不等式、函数等知识奠定基础。有理数的加法运算是建构在生产、生活实例上,有较强的生活价值,体现了数学来源于实践,又反作用于实践。

就本章而言,有理数的加法是本章的重点。学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符号和绝对值),关键在于这一节的学习。

1、知识与能力目标:

(1)了解有理数加法的意义。

(2)理解并掌握的有理数加法的法则,并会运用法则进行准确运算,提高学生的运算能力。

2、过程与方法目标:

(1)经历法则探索的过程,培养学生归纳总结知识的能力。

(3)在探索过程中感受数形结合和分类讨论的数学思想。

(4)渗透由特殊到一般的唯物辩证法思想。

3、情感与态度目标:

(1)让学生体会到数学知识来源于生活,服务于生活,培养学生对数学的热爱。

(2)培养学生协作意识,体验成功,树立学习自信心。

我在本节课主要采用“引导——发现教学法”,并借助多媒体课件来展开教学。学生主要采用“合作探究学习法”来学习本节内容。

教学程序:

我采用的教学模式分为“引——探——结——用”四个环节。

例如,足球比赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。

如果,红队进4个球,失2个球;蓝队进1个球,失1个球。则红队的净胜球数为4+(-2)。

蓝队的净胜球数为1+(-1)。

这里用到正数和负数的加法。

那么,怎样计算4+(-2)呢?

此环节大约2分钟。

现规定正能量为正,负能量为负。

(1)若两个好人携带正能量分别为+20、+30。

则相加的结果是( )。

(2)若两个坏人携带负能量分别为—20、—30。

则相加的结果是。

这两个算式,运算有什么特点呢?

负数+负数,负能量增大。

最后概括为①定符号;②把绝对值相加。

(3)若一个好人携带正能量+30一个坏人携带负能量—10。

则两人较量的结果是( )赢,还剩( )能量。

(4)若一个好人携带正能量+20一个坏人携带负能量—40。

则两人较量的结果是( )赢,还剩( )能量。

这组算式,运算有什么特点呢?

异号两数相加,好比两人在打仗,谁的力量强大,谁就赢。如果正能量大,符号就定为正;如果负能量大,符号就定为负,又让学生理解两人打仗,彼此力量会彼此抵消,彼此消损。那么赢的一方还剩多少能量呢?故而把绝对值做减法。强调用大的绝对值减去小的绝对值。

最后概括为①定符号;②把绝对值相减。

再看两种特殊情形:

(5)若一个好人携带正能量+30,一个坏人携带负能量—30。则两人较量的结果是( ),还剩()能量。

新课程倡导让学生从“要我学”向“我会学”转变,而教师是学生学习的组织者、引导者和合作者。由于教材上利用数轴和绝对值来探究法则过于抽象,不易引起学生的兴趣。借鉴之下,我选用了学生感兴趣的卡通动画人物,激发学生的学习兴趣,营造一种轻松愉快的学习氛围;我让学生来当裁判,学生必须把6次的情况都完成后,才能得到结果,这样每个学生的注意力一直会很集中。若学生有困难,则小组内探讨交流、补充,让学生能逐步引导概括出有理数的加法法则。上述过程,大约20分钟的时间,将突出重点,突破难点。

1、同号两数相加:

取加数的符号,并把绝对值相加。

2、异号两数相加:

取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

3、互为相反数的两个数相加得0。

此题的设计是为了学生更好地理解、掌握有理数加法法则。同时,让学生知道,凡是有理数运算都要首先确定结果的符号。学生独立完成表格后,我将解题步骤,分步板书在黑板上,让学生对解题格式引起重视。

数学家皮亚杰认为:“不断的训练才能够逐渐的发展出一个合理的数学模型”。练习和科学的重复练习始终是数学学习的有效办法。为了让学生熟练应用法则准确计算,我设计了2个例题。例1是同号两数相加;例2是异号两数相加。这两种最典型的类型,以起到巩固法则和规范格式的作用。我让学生尝试独立完成,让基础组的学生板演后,并让别的学生找错误,这样充分调动了学生的积极性,活跃了课堂气氛。同时,通过学生纠错的过程,让学生对错误加深记忆,将知识转化为技能。

在新课程下,教学的本质是学习活动,学生是否有效的学习,教学目标是否落实到位,检测目标成为一节课的一个重要环节。

我设计了两个闯关小游戏。一个是学生口答抢答,另一个是男生出题女生抢答,反之女生出题男生抢答,通过男女同学竞争中巩固、应用法则。

我用卡通动画人物来引入问题情境,使学生能够形象的理解有理数加法法则。在思考问题时,首先应让学生对好人、坏人在一起有几种情况有一个明确的认识,培养学生考虑问题的完整性。然后再逐一的进行探索,通过学生谈论交流,最后得到有理数的四条加法法则。

我安排了同号两数相加和异号两数相加两种最典型的类型,以起到巩固法则和规范格式的作用。

为了培养学生的数学语言的表达能力,在课堂中我尽可能的让学生用自己的话来表达。这样可以及时纠正学生错误,引导学生规范的表达。

有理数的加法课件 篇2

1.某次数学考试成绩以80分为标准,王老师将某4名同学的成绩简记为+10,0,-8,+18,则这4名同学的最高成绩实际是(D)

A.(+20)+(-30)=10B.(-31)+(-11)=20

4.计算:

(1)5+(-3)=__2__;

(2)(-4)+(-5)=-9;

(3)(-2)+6=__4__;

(4)0+(-9.7)=-9.7.

5.不计算,比较下列各式的大小,并用“>”“

(1)(-8)+(+8)__=__0;

(2)(-8)+(-8)__(3)-25++52__>__0;(4)0+(-4)__6.一只海豚从水面先潜入水下40m,然后又上升了23m,此时海豚离水面17_m.7.小明家冰箱冷冻室的温度为-5℃,调高4℃后的温度为__-1__℃.(2)58+-47.【解】 (1)原式=-316-213=-56.(2)原式=+58-47=356.9.数轴上有一只蚂蚁,从原点出发,先向右爬行5个单位,再向左爬行12个单位,最后这只蚂蚁在数轴上所在的位置表示的数是多少?并用算式表示出来.【解】 记向右为正,则(+5)+(-12)=-7.最后这只蚂蚁在数轴上所在的'位置表示的数是-7.10.某地区气温不稳定,开始是6℃,2h后升高了4℃,再过2h又下降了11℃,求此时该地的气温.【解】 6+(+4)+(-11)=-1(℃).11.小明写作业时不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数的和是__-4__.【解】 由图可知,左边盖住的整数数值是-2,-3,-4,-5;右边盖住的整数数值是1,2,3,4.∴它们的和是-4.12.已知a,b,c的位置如图,化简:|a-b|+|b+c|+|c-a|=__-2a__.【解】 由数轴可知a0,则|a-b|+|b+c|+|c-a|=-(a-b)+(-b-c)+(c-a)=-2a.(2)(+51)+-2757.【解】 (1)原式=-227+349=-21863+32863=-54663.(2)原式=+51-2757=2327.14.若|a|=3,|b|=2,求a+b的值.【解】 ∵|a|=3,|b|=2,∴a=±3,b=±2.①当a=3,b=2时,a+b=5;②当a=3,b=-2时,a+b=3+(-2)=1;③当a=-3,b=2时,a+b=-3+2=-1;④当a=-3,b=-2时,a+b=-3+(-2)=-5.综上所述,a+b=±1或±5.

有理数的加法课件 篇3

教学目标:

1.通过现实背景理解有理数乘方的意义,能进行有理数乘方的运算.

2.已知一个数,会求出它的正整数指数幂,渗透转化思想.

3.培养学生观察、归纳能力,以及思考问题、解决问题的能力,切实提高学生的运算能力.

教学重点:正确理解乘方的意义,能利用乘方运算法则进行有理数乘方运算.

教学难点:准确理解底数、指数和幂三个概念,并能进行求幂的运算.

提问并引导学生回答:在小学里我们学过一个数的平方和立方是如何定义的?怎样表示?

a·a记作a2,读作a的平方(或a的2次方),即a2=a·a;a·a·a记作a3,读作a的立方(或a的3次方),即a3=a·a·a.(分别是边长为a的正方形的面积与棱长为a的正方体的体积)

(多媒体演示细胞分裂过程)某种细胞,每过30分钟便由1个分裂成2个,经过5小时,这种细胞由1个分裂成多少个?

1个细胞30分钟分裂成2个,1个小时后分裂成2×2个,1.5小时后分裂成2×2×2个,…,5小时后要分裂10次,分裂成个,为了简便可将记作210.

一般地,n个相同的因数a相乘,即,记作an,读作a的n次方.

求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在an中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可读作a的n次幂.

(2)一个数可以看作这个数本身的一次方,通常省略指数1不写.

(3)因为an就是n个a相乘,所以可以利用有理数的乘法运算来进行有理数的乘方运算.

(4)乘方是一种运算,幂是乘方运算的结果.

【例1】(1)(-4)3;(2)(-2)4;(3)-24.

点拨:(1)计算时仍然是要先确定符号,再确定绝对值.

(2)注意(-2)4与-24的区别.

根据有理数的乘法法则得出有理数乘方的符号规律:

负数的奇次幂是负数,负数的偶次幂是正数;

正数的任何次幂都是正数,0的任何正整数次幂都是0.

【例2】计算:

(1)3; (2)(-)3;

(3)(-)4; (4)-;

(5)-22×(-3)2; (6)-22+(-3)2.

1.引导学生作知识小结:理解有理数乘方的意义,运用有理数乘方运算法则进行有理数乘方的运算,熟知底数、指数和幂三个基本概念.

2.教师扩展:有理数的乘方就是几个相同因数积的运算,可以运用有理数乘方法则进行符号的确定和幂的求值.

乘方的含义:(1)表示一种运算;(2)表示运算的结果.乘方的读法:(1)当an表示运算时,读作a的n次方;(2)当an表示运算结果时,读作a的n次幂.

乘方的符号法则:(1)正数的任何次幂都是正数;(2)零的任何正整数次幂都是零;(3)负数的偶次幂是正数,奇次幂是负数.注意(-a)n与-an及()n与的区别和联系.

(1)在(-2)6中,指数为 ,底数为 .?

(2)在-26中,指数为 ,底数为 .?

(3)若a2=16,则a= .?

(4)平方等于本身的数是 ,立方等于本身的数是 .?

C.(-2)3与-23 D.|2|3与|-23|

C.-(-a) D.||

教学目标:

1.了解有理数混合运算的意义,掌握有理数的混合运算法则及运算顺序.

2.能够熟练地进行有理数的加、减、乘、除、乘方的运算,并在运算过程中合理使用运算律.

教学重点:根据有理数的混合运算顺序,正确地进行有理数的混合运算.

1.先乘方,再乘除,最后加减.

2.同级运算,从左到右进行.

3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.

【例1】计算:

(1)(-2)3+(-3)×[(-4)2+2]-(-3)2÷(-2);

(2)1-×[3×(-)2-(-1)4]+÷(-)3.

强调:按有理数混合运算的顺序进行运算,在每一步运算中,仍然是要先确定结果的符号,再确定结果的绝对值.

【例2】观察下面三行数:

(1)第①行数按什么规律排列?

(2)第②③行数与第①行数分别有什么关系?

(3)取每行数的第10个数,计算这三个数的和.

【例3】已知a=-,b=4,求()2--(ab)3+a3b的值.

1.计算:

(1)|-|2+(-1)101-×(0.5-)÷;

(2)1÷(1)×(-)÷(-12);

(3)(-2)3+3×(-1)2-(-1)4;

(4)[2-(-)3]-(-)+(-)×(-1)2;

(5)5÷[-(2-2)]×6.

2.若|x+2|+(y-3)2=0,求的值.

3.已知A=a+a2+a3+…+a,若a=1,则A等于多少?若a=-1,则A等于多少?

1.注意有理数的混合运算顺序,要熟练进行有理数混合运算.

有理数的加法课件 篇4

1、通过数学活动使学生共同探索有理数加法、减法法则,从而理解并掌握有理数的加法、减法的法则以及有理数的加减混合运算;

2、能熟练进行有理数的加减混合运算。

【教学重点】在有理数的范围内加法交换律、结合律的应用与简化计算。

【教学难点】应用有理数的加法、减法及运算律解决实际问题。

『问题情境』

先看一个例子:

这是一道有理数的加减混合运算题,你会做吗?请同学们思考练习。

(1)上题可以按照运算顺序,从左到右逐一加以计算;

(2)上题通常也可以用有理数减法法则,把它改写:

统一为只有加法运算的和式.把加减法统一写成加法的式子,有时也叫做代数和。

(3)在一个和式里,通常把各个加数的括号和它前面的加号,省略不写.如上式可写成省略加号的和的形式:-8+10-6-4

(象这样的式子仍看作和式,读作“负8、正10、负6、负4的和”,按运算意义也可读作“负8加10减6减4”,在这里把除第一个数外的数字前面的符号都可看作为运算符号,又可看作性质符号,这样,性质符号与运算符号既有区别,又有联系,有时可以互相转化。)

『例题讲评』

例1、计算:

(1)2+5-8;                        (2) 14-(-12)+(-25)-17

(3)-3-5+4;                       (4) -26+43-24+13-46

例2、巡道员沿东西方向的铁路巡视维护,从住地出发,他先向东巡视了7km,休息之后,继续向东维护了3km;然后折返向西巡视了11.5 km,此时他在住地的什么方向?与驻地的距离是多少?

1.把下列各式写成省略加号的和的形式,并说出它们的两种读法。

(1)(-12)-(+8)+(-6)-(-5);

2.把6-(-9)+(-15)-(-3)写成省略加号的和的形式,并计算。

3.计算:

(1)7-(-4)+(-5)                  (2)-5-(+3)+(-9)-(-7)+

(3)(-10)-(+12)-(-36)+(-23)      (4)

(5)(+16)+(-8)-|-3|+|+8|-|-12|-(+5)      (6)-21-12+33+12-67

(7)5.4-2.3+1.5-4.2               (8)

有理数的加法课件 篇5

知识与技能:

掌握有理数加法法则,并能运用法则进行有理数加法的运算。

过程与方法:

1.经历有理数加法法则的探究过程,深刻感受分类讨论、数形结合的思想,由具体到抽象、由特殊到一般的认知规律;

2.动手、发现、分类、比较等方法的学习,培养归纳能力。

情感态度与价值观:

1.通过师生合作交流,学生主动参与探索获得数学知识,从而提高学习数学的积极性;

2.体会数学来源于生活,服务于生活,培养热爱数学的情感,体会数学的应用价值;

3. 培养善于观察、勤于思考的学习习惯,树立合作意识,体验成功,提高学习自信心。

6月11日至7月11日,第19届世界杯足球赛在南非举行。来自世界各国的32支球队为全世界的球迷送上了一场完美的足球盛宴。(出示PPT2)

(出示PPT3)小组循环赛中,胜一场得3分,平一场得1分,负一场得0分,积分最多的两支队伍进入十六强。积分相同时,净胜球多者为胜(把进球数记为正数,失球数记为负数,进球数与失球数的和叫做净胜球数)。

以B组为例,进入十六强的是阿根廷和韩国。

国家赛胜平负得分阿根廷33009韩国31114希腊31023尼日利亚30121国家赛胜平负得分进球失球净胜球乌拉圭32107+40墨西哥31114+3-2南非31114+3-5法国30121+1-4

师:从A组积分榜可以看出墨西哥和南非的积分相同,那么究竟应该确定哪个队进入十六强呢?此时则需要计算各队的净胜球数。你能列出计算各队净胜球数的算式吗?

学生看图表,思考问题。

学生列出计算净胜球数的算式。

利用世界杯的例子,体现数学来源于生活,让学生体会学习有理数加法的必要性,更能激发学生的兴趣

师:净胜球数的计算实际上涉及到有理数的加法。今天我们就来研究有理数的加法运算(板书1:1.4 有理数的加减----一、有理数的加法)。

师: 我们已经知道两个非负有理数相加的方法,现在数的范围扩大了,两个有理数相加,还有哪些情形呢?请举例说明。

根据学生的回答,归纳为以下三种:

师:如何进行有理数的加法呢?我们先来看下面这个问题:

(出示PPT5)一间0℃冷藏室连续两次改变温度:

(1)第一次上升5℃,接着再上升3℃;

(2)第一次下降5℃,接着再下降3℃;

(3)第一次下降5℃,接着再上升3℃;

(4)第一次下降3℃,接着再上升5℃。

师:每一种情形下,两次变化使温度共上升了多少摄氏度?

(这里要结合前面有理数的学习,引导学生注意两次变化的结果“共”与“上升”等词语的含义,其中“共”表示求和,最终温度的升、降要通过和的正、负来体现,从而问题是求两个有理数的和。)

师:我们规定,温度上升记作正,温度下降记作负,请同学们在数轴上表示连续两次温度的变化结果,写出算式。

(引导学生将温度的变化过程在数轴上表示出来,观察得出变化结果,进而列出加法算式)

学生讨论,相互补充。

学生思考、回答问题。

学生模仿已有的算式填表。

向学生渗透分类思想,体现数学的简洁美!

从学生的生活经验出发,从学生已有的认知出发,将对新知的探索设置在学生的最近发展区,能有效激发学生兴趣.

利用数轴直观演示,数形结合,让学生参与探索的过程,直观感受有理数的加法法则。

(出示PPT6)师:第一个算式是小学已学习过的,第二个算的两个加数都是负数, 你能说说看是怎样计算的吗?(引导学生从和的符号以及和的绝对值两个方面分别说明自己的算法)

待学生说明自己的算法理由后,可得出:

1.同号两数相加,取与加数相同的符号,并把绝对值相加。(板书3)

(出示PPT7)师:第三和第四个算式是负数与正数相加,也可称为异号两数相加,你又是怎样计算的?

待学生说明自己的算法理由后,可得出:

2.异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。(板书4)

学生阐述自己计算的方法。

渗透由特殊到一般的辩证唯物主义思想;鼓励学生用自己的语言描述法则,提高学生的概括能力和语言表达能力

师:同学们现在会计算这堂课刚开始时我们列出的算式了吗?哪两只队伍能进入十六强呢?(展示PPT8)

师:现在请同学们两人为一组,互相出题考察对方,看谁出的题型多,看谁算得又快又好。

(要求学生说明算理,记录学生互相出的题目与答案,针对学生回答进行讲评,适时鼓励)

学生解题。

学生之间互相出题,利用法则计算。

旨在调动学生的学习热情,以竞赛的形式激发学生的学习热情,同时巩固已学习是的法则。

(出示PPT9)探究二(如学生在互相出题时已有类似算式,则因势引入)

师:以下算式你会计算吗?你能仿照探究一中“温度的变化”说明各式的实际意义吗?

(-5)+(+5)=  ――――,(-5)+   0  =  ――――。

由计算结果你能得出什么结论?

(学生回答,教师板书5)异号两数相加,绝对值相等时和为0(即互为相反数两数之和为0)。(可接在2的后面写,见板书设计!)

(让学生观察结论2是否有需要完善的地方,待学生回答后教师在板书的基础上添加“当绝对值不等时”)

3.一个数与零相加,仍得这个数。

师:以上三条结论就构成了有理数的加法法则:(板书已有,只需再带领学生复习一下即可!)

1.同号两数相加,取与加数相同的符号,并把绝对值相加;

2.异号两数相加,绝对值不等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;绝对值相等时和为0(即互为相反数两数之和为0)。

3.一个数与零相加,仍得这个数。

学生观察、思考、讨论。

学生观察、思考、讨论,用自己的语言描述加法法则。

(出示PPT10)例1.计算:

(1)(+7)+(+6); (2)(-5)+(-7);

(3)( )+ ; (4)(-10.5)+(+21.5);

(5)(-7.5)+(+7.5);(6)(-3.5)+   0  。

= -

教师小结:

进行有理数加法,先要判断两个加数是同号还是异号,再根据两个加数符号的具体情况,选用相应的加法法则,确定和的符号以及和的绝对值。

学生观察教师的解题步骤,并按规范解题。

(出示PPT11)练习1.比比谁的眼睛亮:下列各计算结果是对还是错?如果错误请指出错在哪里,并改正错误。

学生集体口答。

采用示错式教学,展示学生在运算中容易出现的错误,减少学生解题时出错。

(1)(+  3.5)+(+  4.5); (2)+();

(3)()+(); (4)()+();

学生完成练习,同伴之间相互订正,教师对学生的板演进行评价。

学生做练习,两位学生板演(2)、(4)两题,全班同学口答其余四题。

(出示PPT13)练习3.下面的说法是否正确?如果不正确,请举例说明。(若课堂时间不够,可作为课后思考题)

(1)两个数的和一定比两个数中任何一个都大;

(2)两个数的和是正数,这两个数一定是正数。

要求学生不仅能指出说法的正误,并能举出实例证明自己的结论。

学生思考判断并举反例说明。

开放性的题目让学生在探索的过程中进一步理解法则,体会有理数的加法与小学时加法的区别。

有理数的加法法则:

1.同号两数相加,取与加数相同的符号,并把绝对值相加;

2.异号两数相加,当绝对值不等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;绝对值相等时和为0(即互为相反数两数之和为0)。

3.一个数与零相加,仍得这个数。

学生回答。

使学生对所学的知识有一个总体而深刻的认识。

2.你能将-4,-3,-2,-1,0,1,2,3,4这9个数分别填入下图幻方的9个空格中,使得处于同一横行,同一竖列,同一斜对角线上的3个数相加都得0吗?(选做题)

学生回家完成。

作业分层布置,照顾到全体学生;第二题是九宫格问题,数的范围扩大到有理数范围后就有一定的难度,激发学生挑战的意识。

1.同号两数相加,取原来的符号,并把绝对值相加。

2.异号两数相加,绝对值不等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;绝对值相等时和为0(即互为相反数之和为0)。

3.一个数与零相加,仍得这个数。

(板书6)例1.

有理数的加法课件 篇6

初中数学-有理数的加法教学设计

一、教学目标

1、知识与技能

(1)通过足球赛中的净胜球数,使学生掌握有理数加法法则,并能运用法则进行计算;

(2)在有理数加法法则的教学过程中,注意培养学生的运算能力.

2、数学思考

通过观察,比较,归纳等得出有理数加法法则。

3、解决问题

能运用有理数加法法则解决实际问题。

4、情感与态度

认识到通过师生合作交流,学生主动叁与探索获得数学知识,从而提高学生学习数学的积极性。

5、重点

会用有理数加法法则进行运算.

6、难点

异号两数相加的法则.

二、教材分析

“有理数的加法”是人教版七年级数学上册第一章有理数的第三节内容,本节内容安排四个课时,本课时是本节内容的第一课时,本课设计主要是通过球赛中净胜球数的实 例来明确有理数加法的意义,引入有理数加法的法则,为今后学习“有理数的减法”做铺垫。

三、学校与学生情况分析

冲坡中学是乐东县利国镇的一所完全中学,学生都来自农村,学生的基础及学习习惯是比较差。学生对新的课堂教学方法不是很适应;不过,在新的教学理念的指导下,旧的教学方法和学习方法逐步淡化,而是培养学生的观察,比较,归纳及自主探索和合作交流能力。现在,班级中已初步形成合作交流和勇于探究的良好学风,学生间互相评价和师生互动的课堂气氛已逐步形成。

四、教学过程

(一)问题与情境

我们已经熟悉正数的运算,然而实际问题中做加法运算的数有可能超出正数范围。例如,足球循环赛中,通常把进球数记为正数,失球数记为负数,它们的和叫作净胜球数。章前言中,红队进4个球,失2个球;蓝队进1个球,失1个球。于是红队的净胜球为

4+(-2),

黄队的净胜球为

1+(-1)。

这里用到正数与负数的加法。

(二)师生共同探究有理数加法法则

前面我们学习了有关有理数的一些基础知识,从今天起开始学习有理数的运算.这节课我们来研究两个有理数的加法.

两个有理数相加,有多少种不同的情形?

为此,我们来看一个大家熟悉的实际问题:

足球比赛中赢球个数与输球个数是相反意义的量.若我们规定赢球为“正”,输球为“负”,打平为“0”.比如,赢3球记为+3,输1球记为-1.学校足球队在一场比赛中的胜负可能有以下各种不同的情形:

(1)上半场赢了3球,下半场赢了1球,那么全场共赢了4球.也就是

(+3)+(+1)=+4.

(2)上半场输了2球,下半场输了1球,那么全场共输了3球.也就是

(-2)+(-1)=-3.

现在,请同学们说出其他可能的情形.

答:上半场赢了3球,下半场输了2球,全场赢了1球,也就是

(+3)+(-2)=+1;

上半场输了3球,下半场赢了2球,全场输了1球,也就是

(-3)+(+2)=-1;

上半场赢了3球下半场不输不赢,全场仍赢3球,也就是

(+3)+0=+3;

上半场输了2球,下半场两队都没有进球,全场仍输2球,也就是

(-2)+0=-2;

上半场打平,下半场也打平,全场仍是平局,也就是

0+0=0.

上面我们列出了两个有理数相加的7种不同情形,并根据它们的具体意义得出了它们相加的和.但是,要计算两个有理数相加所得的和,我们总不能一直用这种方法.现在请同学们仔细观察比较这7个算式,你能从中发现有理数加法的运算法则吗?也就是结果的符号怎么定?绝对值怎么算?

这里,先让学生思考,师生交流,再由学生自己归纳出有理数加法法则:

1、同号两数相加,取相同的符号,并把绝对值相加;

2、绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;

3、一个数同0相加,仍得这个数.

(三)应用举例 变式练习

例1 口答下列算式的结果

(1)(+4)+(+3); (2)(-4)+(-3); (3)(+4)+(-3); (4)(+3)+(-4);

(5)(+4)+(-4); (6)(-3)+0; (7)0+(+2); (8)0+0.

学生逐题口答后,师生共同得出

进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值.

例2(教科书的例1)

解:(1)(-3)+(-9) (两个加数同号,用加法法则的第2条计算)

=-(3+9) (和取负号,把绝对值相加)

=-12.

(2)(-)+ (两个加数异号,用加法法则的第2条计算)

=-() (和取负号,把大的绝对值减去小的绝对值)

=-

例3(教科书的例2)教师在算出红队的净胜球数后,学生自己算黄队和蓝队的净胜球数

下面请同学们计算下列各题以及教科书第23页练习第1与第2题

(1)(-)+(+)(2)(+)+(-3) (3)(-)+(-);

学生书面练习,四位学生板演,教师巡视指导,学生交流,师生评价。

(四)小结

1、本节课你学到了什么?

2、本节课你有什么感受?(由学生自己小结)

(五)练习设计

1、计算:

(1)(-10)+(+6)

(2)(+12)+(-4)

(3)(-5)+(-7) (4)(+6)+(+9) (5)67+(-73) (6)(-84)+(-59) (7)(-33)+48 (8)(-56)+37

2、计算:

(1)(-)+(-) (2)+(-) (3)(-)+3 (4)(-)+ (5)7+(-) (6)(-)+(-) (7)(-)+ (8)+(-) (9)(-)+

3、用“>”或“<”号填空:

(1)如果a>0,b>0,那么a+b ______0;

(2)如果a<0,b<0,那么a+b ______0;

(3)如果a>0,b<0,|a|>|b|,那么a+b ______0;

(4)如果a<0,b>0,|a|>|b|,那么a+b ______0.

教学反思:

作为一名教师,又面对的是新教材,对于自己的教学工作,我认为主要要从以下及点进行反思:

一、对教材的反思。这是我进入初中的第一年,对新教材的认识比较肤浅,面对新课程,教师首先要转变角色,确认自己新的教学身份,如今的教材更注重的是学生个人能力的培养,并不是一味的老师为主体,专门讲解的那种模式,新课程要求老师由传统的知识传授者转变为学生学习的引导者、组织者。经过这么长时间的教学工作,我一个最大的认识就是给学生自主交流的时间多了,学生渐渐成了教室、课堂的主体,老师只是引导学生、辅助学生的一个个体。如初一数学第一章《数学与我们同行》里,老师讲授的内容可谓微乎其微,基本都是学生自主发挥,这就是新课程的特点,让学生讨论、动脑、学会总结。老师只是引导学生思考,最后判断、汇总学生结论正确与否的人。所以作为教师的我,在如何正确引导学生学习方面还需改进。

二、对学生的反思。从学生到老师的转变我用了不到半年时间,也许是有点快了,所以看到那些学生仿佛就看到自己过去的影子,所以通过这些日子与学生的交流,发现自己并不能很快适应老师这个角色,自己仿佛是个大孩子,对同学板不下脸,威性不够,现在的孩子本生就是从父母的溺爱中成长起来的,所以越是脾气好的老师就越是不象话,这就 是我这么些月来的最大感受。年轻就得付出代价,所以对学生得反思对于年轻教师来说就更关键了,掌握好学生得心理,对学生管理得尺度掌握的好坏就影响着学生的成绩。而且,现在的学生对于感兴趣的事物才会花更多心思,数学课本就乏味,所以如何让学生提起兴趣,这对于教学质量的好坏还是有很大的影响的。

三、教学中要尊重学生已有的知识与经验。教学活动必须建立在学生的认识发展水平和已有的知识经验基础之上,体现学生学习的过程是在教师的引导下自我建构、自我生成的过程。学生不是简单被动地接受信息,而是对外部信息进行主动地选择、加工和处理,从而获得知识的意义。学习的过程是自我生成的过程,这种生成是他人无法取代的,是由内向外的生长,而不是由外向内的灌输,其基础是学生原有的知识和经验。美国著名的教育心理学家奥苏伯尔有一段经典的论述"假如让我把全部教育心理学仅仅归纳为一条原理的话,我将一言以蔽之:影响学习的惟一最重要的因素就是学生已经知道了什么,要探明这一点,并应就此进行教学。这段话道出了“学生原有的知识和经验是教学活动的起点”。掌握了这个标准以后,我在教学中始终注意从学生已有的知识和经验出发,了解他们已知的,分析他们未知的,有针对性地设计教学目的、教学方法。

四、教学中注重学生的全面发展,科学的评价每一个学 生。新课程评价关注学生的全面发展,不仅仅关注学生的知识和技能的获得情况,更关注学生学习的过程、方法以及相应的情感态度和价值观等方面的发展。只有这样,才能培养出适合时代发展需要的身心健康,有知识、有能力、有纪律的创新型人才。

1、评价不是为了证明,而是为了发展。淡化考试的功能,淡化分数的概念,使“考、考、考,老师的法宝,分、分、分学生的命根”这句流行了多少年的话成为历史。

2、评价学生应该多几把尺子。尺子是什么呢?就是评价的标准,评价的工具。如果用一把尺子来量,肯定会把一部分有个性发展的学生评下去。

3、评价中应遵循“没有最好,只有更好”。学生在这种只有更好的评价激励下,会不断的追求,不断的探索和攀登。这才是评价的真正目的。

以上几点是我在新教材的教学实践和学习时的心得。新课程改革已全面展开,我们应该尽快成长起来,不要怕摔跤,不要怕挫折和困难,要不断学习、反思,不断充实自己,积累经验,在实践中去感悟新课程理念,让实践之树常青。

有理数的加法课件 篇7

了解有理数加法的意义;理解有理数加法的法则;能根据有理数加法法则熟练地进行有理数加法运算.能运用加法运算律简化加法运算.

有理数加法法则的导出及运用过程,训练学生独立分析问题的能力及口头表达的能力.

理解加法运算律在加法运算中的作用,适当进行推理训练.

渗透数形结合地思想,培养学生运用数形结合地方法解决问题能力;

让学生感知数学知识来源于生活,培养学生用联系发展的观点、看待事物,逐步树立辨证唯物主义观点.

有理数加法法则的理解和运用,如何运用加法运算律简化运算.

异号两数相加的加法法则,灵活运用运算率.

问题1:“我从学校出发沿某条路向东走 米,再继续向东走 米,那么两次我一共向东走了多少米?”

学生活动设计:这里 都表示有理数,这显然是求两数 之和的问题,于是引出要研究的有理数的加法问题.

问题2:既然 均是有理数,它们可能是正数,也可能是负数或者零.同学思考一下: 的符号可能有几种情况?

学生活动设计:学生根据所学过的数的情况,容易想到有以下几种情况:同为正数、同为负数、一个正数一个负数、加数中有一个是0;

教师活动设计:下面我们就来研究这几种情况下有理数的加法问题.在研究之前,首先提醒同学注意正确理解“向东走  米”的含义.(用课件演示)为了研究的方便起见,用数轴来帮助我们,并设向东为正.

问题3:请你分别把a、b赋予不同情况的有理数,然后进行加法运算,你会有什么样的结论?你能发现有理数的加法法则吗?

学生活动设计:

同桌小组合作,主体探究,自主归纳;学生经过思考,可能会有以下结果(若没有讨论完整教师作适当提示).

情况1.若 同为正数:不妨设  ,用数轴表示如图:(有同学可能会说,这么简单不用数轴也能算出来.这时要告诉它,这里用数轴的目的并不是要结果,而是要体会过程,以便在其他的情况下为用数轴解决问题)显然一共走了35米,写出算式就是:

情况2.若 同为负数:不妨设  ,这时应怎样用数轴表示?(学生画数轴)这时问题的实际意义是:我向西走了20米后,再向西走了15米,我实际向东走了-35米.即:

情况3.若 一正一负:不妨设  .请同学们用数轴表示出来,并解说这时问题的实际意义.(如图)(实际意义就是我向东走了20米以后,接着我又向西走了15米.我实际是向东走了5米)即:

情况4.若 呢?这时问题的实际意义是什么?怎样用数轴来表示?(同学操作)结果:

情况5.若 时,这时问题的实际意义是什么?

结果:

情况6.若 时,这时问题的实际意义又是什么?

结果:

情况7.若 时,这时问题的实际意义是什么?

结果:

情况8.若 时,这时问题的实际意义是什么?

结果:

综合以上几种情况,得到8个式子,我们将这8个式子分成同号、异号、有零的三种情况统计如下:

同学归纳有理数的加法法则,若归纳不完整,则有其他同学进行补充,直到法则完善化,必要时教师进行点拨:

1、同号两数相加,取相同的符号,并把绝对值相加;

2、异号两数相加时:

(1)若绝对值不相等,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;

(2)若绝对值相等,和为0.也就是相反数的和为0;

3、一个数与0的和仍得这个数.

巩固练习:

计算:(先口述运用法则的过程,然后说出计算结果)从计算的过程看,你有什么发现?

(1) ;(2) ; (3) ;(4) ;

(5) ; (6) ; (7) ; (8) .

归纳:进行加法运算时首先判断关系、其次确定符号、最后计算绝对值.

(1) ; (2) ; (3) ;

(4) ; (5) .

学生活动设计:学生独立完成,在完成的过程中可以让学生进行板演,然后再共同分析过程的正确性,在分析过程的正确性时要充分发挥学生的主体性,让学生充分发表自己的看法,最后得到统一的正确的结论.

体验1:请你任意取两个有理数(至少有一个是负数),填入下列□和○中,比较它们的运算结果,你能发现什么?

□+○ ○+□

学生活动设计:

学生独立完成这项任务,自己寻找自己认为合适的有理数,经过运算,可以发现:对任意的两个有理数都有□+○=○+□,即:小学里学的加法交换律在有理数范围内仍成立

体验2:请你任意取三个有理数(至少有一个是负数),填入下列□、○和◇中,比较它们的运算结果,你能发现什么?

学生活动设计:

学生独立完成这项任务,自己寻找自己认为合适的有理数,经过运算,可以发现:对任意的两个有理数都有(□+○)+◇=□+(○+◇),即:小学里学的加法结合律在有理数范围内仍成立,即:a+b=b+a,(a+b)+c=a+(b+c).

1.计算下列各式.

(1) ;

(2) ;

(3) ;

(4)1+(-2)+3+(-4)+……++(-).

学生活动设计:学生独立思考,完成对上述问题的解决,在解决的过程中可能有不同的方法,出现时可以让学生比较各种方法间的异同、优劣,以找到最佳方法,体会运算律的作用.

(1)中运用运算律可以先把正数相加,再把负数相加,然后再把结果相加即可;(2)中运用运算律可以先把第一项和第三项相加、第二项与第四项相加;(3)运用运算律先把前三项相加、后两项相加;(4)运用结合律把2006个加数分成1003组,分别相加.

〔解答〕(1)-17; (2)-1; (3)-5 ; (4)-1003.

已知每袋的额定重量为200千克,这批水泥总重量的误差总量是多少千克?

注意观察误差值有无互为相反数?所以实际误差总值是袋号7、12、19、20的误差值的和:

=

于是误差总量是不足25千克.

〔解答〕略.

3.一只乌龟沿南北方向的河岸来回爬行,假定向北爬行的路程记为正数,向南爬行的路程记为负数,它爬行的过程记录如下(单位m):-8,7,-3,9,-6,-4,10.

(1)乌龟最后距离出发点多远,在出发点的南边还是北边;

(2) 求乌龟在整个过程中一共爬行了多远的距离.

学生活动设计:

学生思考,这个问题可以运用什么知识,由于(1)求的是乌龟最后距离改为的位置与出发点的距离改为关系,因此可以把上述过程记录加起来,看运算结果即可,而(2)求的是一共爬行的路程,因此把上述过程记录取绝对值后再加起来就行了.

〔解答〕

(1)-8+7-3+9-6-4+10=5,所以在出发点的北边;

(2)|-8|+7+|-3|+|9|+|-6|+|-4|+10=47;

所以乌龟在整个过程中一共爬行了47米.

小结:

1.加法法则(主要是异号两数相加);

2.加法运算律.

作业:习题1.3 第1、2题,第7、8、9、10题.

[人教版有理数的加法优秀教案及教学设计]

Yjs21.Com更多幼师资料扩展阅读

2023有理数的加法课件


本文会向大家推荐一篇题为“有理数的加法课件”的精选文章,帮助读者更加全面了解相关信息。教案课件在教师的教学过程中不可或缺,每位教师都需要制定自己的教案课件。优秀的教案编写是教师教育和教学实践能力的必要体现。欢迎大家阅读参考!

有理数的加法课件 篇1

第一课时

三维目标

一、知识与技能

理解有理数加法的意义,掌握有理数加法法则,并能准确地进行有理数的加法运算。

二、过程与方法

引导学生观察符号及绝对值与两个加数的符号及其他绝对值的关系,培养学生的分类、归纳、概括能力。

三、情感态度与价值观

培养学生主动探索的良好学习习惯。

教学重、难点与关键

1.重点:掌握有理数加法法则,会进行有理数的加法运算。

2.难点:异号两数相加的法则。

3.关键:培养学生主动探索的良好学习习惯。

四、教学过程

一、复习提问,引入新课

1.有理数的绝对值是怎样定义的?如何计算一个数的绝对值?

2.比较下列每对数的大小。

(1)-3和-2; (2)│-5│和│5│; (3)-2与│-1│;(4)-(-7)和-│-7│。

五、新授

在小学里,我们已学习了加、减、乘、除四则运算,当时学习的`运算是在正有理数和零的范围内。然而实际问题中做加法运算的数有可能超出正数范围,例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。本章前言中,红队进4个球,失2个球;蓝队进1个球,失1个球,那么哪个队的净胜球多呢?

要解决这个问题,先要分别求出它们的净胜球数。

红队的净胜球数为:4+(-2);

蓝队的净胜球数为:1+(-1)。

这里用到正数与负数的加法。

怎样计算4+(-2)呢?

下面借助数轴来讨论有理数的加法。

看下面的问题:

一个物体作左右方向的运动,我们规定向左为负、向右为正。

(1)如果物体先向右运动5m,再向右运动3m,那么两次运动后总的结果是什么?

有理数的加法课件 篇2

一、教材分析

1.地位和作用

本节课是在学生学习有理数加法法则的基础上,经历探索有理数加法运算律的探索过程,理解和把握有理数加法运算法则,并能运用加法运算律简化计算,为后面学习有理数减法做好铺垫。

2.学情分析

学生在小学学过加法运算,知道加法的交换律和结合律,学生在上一课时已经探索总结出了有理数的加法法则,并进行了一定量的练习,但熟练程度还不够,并且对过去的加法交换律和结合律是否对有理数适用未进行探讨。

3.教学目标

知识与技能:

1.进一步熟练掌握有理数加法的法则。

2.掌握有理数加法的运算律,并能运用加法运算律简化运算。过程与方法:

启发引导式教学,能够由特殊到一般、由一般到特殊,体会研究数学的一些基本方法。

情感、态度与价值观:

1.培养学生的分类与归纳能力。

2.强化学生的数形结合思想。

3.提高学生的自学以及理解能力,激发学生学习数学的兴趣。教学重点:加法运算律的灵活运用,解决实际问题。

教学难点:能运用加法运算律简化运算,加法在实际中的应用。

二、教学方法与教材处理

1.教学方法:

采取启发式教学法及情感教学,引导学生主动思考,主动探索。用大量的实例让学生得出规律。.引导学生类比探究有理数加法运算律,形成师生互动,体现了数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上.

2.学法引导

学法突出自主探索、研讨发现.知识是通过学生自己动口、动脑,积极思考、主动探索获得.学生在讨论、交流、合作、探究活动中总结有理数的运算律.在活动中注重引导学生体会用类比和数形结合的方法扩展知识的过程,培养学生学习的主动性和积极性.

3.设计理念

教师在教学过程中应与学生积极互动、共同发展,要处理好传授知识与培养能力的关系,关注个体差异,满足不同学生的学习需要。

本节课的教学,是在学生已有的加法知识基础上,创设情景,产生认知冲突,引导学生开展观察特点、类比归纳、讨论交流等探究活动。

三、教学过程根据教材的结构特点,紧紧抓住新旧知识的内在联系,运用类比、联想、转化的思想,突破难点.本节课的教学设计环节:

◆前提诊测,复习提问:复习旧知识的目的是对学生新课应具备的“认知前提能力”和“情感前提特征进行检测判定”,所诊测的有理数的加法法则与新的内容有关。

◆提出问题,创设情景:在有理数的运算中,加法的交换律,加法的结合律还成立吗?从而提出研究有理数加法运算律的问题。

◆尝试指导,实施目标:从实例出发,让学生体会运用加法运算律可以简化运算.多个有理数相加,往往既是运用交换律,又运用结合律.

◆变式练习,巩固目标:为了更好地理解、把握有理数加法法则,根据不同学生的学习需要,按照分层递进的教学原则,设计安排了4个由浅入深的练习题。

◆归纳总结,纳入知识系统:由学生总结、归纳、反思,加深对知识的理解,并且能熟练运用所学知识解决问题.

有理数的加法课件 篇3

【目标预览】

知识技能:1、通过实例,了解有理数加法的意义,掌握有理数加法法则,并能运用法则进行计算;

2、在有理数加法法则的教学过程中,培养观察、比较、归纳及运算能力。 数学思考:1、正确地进行有理数的加法运算;

2、用数形结合的思想方法得出有理数加法法则。

解决问题:能运用有理数加法解决实际问题。

情感态度:通过师生活动、学生自我探究,让学生充分参与到数学学习的过程中来。

【教学重点和难点】

重点:了解有理数加法的意义,会根据有理数加法法则进行有理数加法计算; 难点:异号两数如何相加的法则。

【情景设计】

我们来看一个大家熟悉的实际问题:

足球比赛中进球个数与失球个数是相反意义的量.若我们规定进球为“正”,失球为“负”。比如,进3个球记为正数:+3,失2个球记为负数:-2。它们的和为净胜球数:(+3)+(-2)学校足球队在一场比赛中的胜负情况如下:

(1)红队进了3个球,失了2个球,那么净胜球数是:(+3)+(-2)

(2)蓝队进了1个球,失了1个球,那么净胜球数是:(+1)+(-1)

这里,就需要用到正数与负数的加法。

下面,我们利用数轴一起来讨论有理数的加法规律。

【探求新知】

一个物体作左右运动,我们规定向左为负,向右为正。向右运动5m,可以记作多少?向左运动5m呢?

(1)如果物体先向右运动5m,再向右运动3m,那么两次运动后总的结果是多少呢? 利用数轴演示(如图1),把原点假设为运动起点。

两次运动后物体从起点向右运动了8m。写成算式是:5+3=8①

利用数轴依次讨论如下问题,引导学生自己寻找算式的答案:

(2)如果物体先向左运动5m,再向左运动3m,那么两次运动后总的结果是多少呢?

(3)如果物体先向右运动5m,再向左运动3m,那么两次运动后总的结果是多少呢?

(4)如果物体先向左运动5m,再向右运动3m,那么两次运动后总的结果是多少呢?

(5)如果物体先向左运动5m,再向右运动5m,那么两次运动后总的结果是多少呢?

(6)如果物体先向右运动5m,再向左运动5m,那么两次运动后总的结果是多少呢?

(7)如果物体第一分钟向右(或向左)运动5m,第二分钟原地不动,那么两次运动后总的结果是多少呢?

总结:依次可得

(2)(-5)+(-3)=-8②

(3)5+(-3)=2③

(4)3+(-5)=-2④

(5)5+(-5)=0⑤

(6)(-5)+5=0⑥

(7)5+0=5或(-5)+0=-5⑦

观察上述7个算式,自己归纳出有理数加法法则:

1.同号两数相加,取相同的符号,并把绝对值相加;

2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;

3.一个数同0相加,仍得这个数。

【范例精析】

例1计算下列算式的结果,并说明理由:

(1)(+4)+(+7);(2)(-4)+(-7);

(3)(+4)+(-7);(4)(+9)+(-4);

(5)(+4)+(-4);(6)(+9)+(-2);

(7)(-9)+(+2);(8)(-9)+0;

(9)0+(+2);(10)0+0.

学生逐题口答后,教师小结:

进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值.

解:(1)(-3)+(-9) (两个加数同号,用加法法则的第2条计算)

=-(3+9)(和取负号,把绝对值相加)

=-12.

例3 足球循环比赛中,红队胜黄队4﹕1,黄队胜蓝队1﹕0,蓝队胜红队1﹕0,计算各队的净胜球数。

解:我们规定进球为“正”,失球为“负”。它们的和为净胜球数。

三场比赛中,红队共进4球,失2球,净胜球数为(+4)+(-2)=2;

黄队共进2球,失4球,净胜球数为(+2)+(-4)= -2;

蓝队共进1球,失1球,净胜球数为(+1)+(-1)=0;

【一试身手】

下面请同学们计算下列各题:

(1)(-0.9)+(+1.5);(2)(+2.7)+(-3); (3)(-1.1)+(-2.9);

全班学生书面练,四位学生板演,教师对学生板演进行讲评.

【总结陈词】

1、这节课我们从实例出发,经过比较、归纳,得出了有理数加法的法则.今后我们经常要用类似的思想方法研究其他问题。

2、应用有理数加法法则进行计算时,要同时注意确定“和”的符号,计算“和”的绝对值两件事。

【实战操练】

1.计算:

(1)(-10)+(+6);(2)(+12)+(-4);(3)(-5)+(-7);

(4)(+6)+(+9);(5)67+(-73);(6)(-84)+(-59);

(7)33+48;(8)(-56)+37.

2.计算:

(1)(-0.9)+(-2.7);(2)3.8+(-8.4);

(3)(-0.5)+3;(4)3.29+1.78;

(5)7+(-3.04);(6)(-2.9)+(-0.31);

(7)(-9.18)+6.18;(8)4.23+(-6.77);(9)(-0.78)+0.

3.计算:

4*.用“>”或“<”号填空:

(1)如果a>0,b>0,那么a+b ______0;

(2)如果a<0,b<0,那么a+b ______0;

(3)如果a>0,b<0,|a|>|b|,那么a+b ______0;

(4)如果a<0,b>0,|a|>|b|,那么a+b ______0.

5*.分别根据下列条件,利用|a|与|b|表示a与b的和:

(1)a>0,b>0;(2) a<0,b<0;

(3)a>0,b<0,|a|>|b|;(4)a>0,b<0,|a|<|b|.

有理数的加法课件 篇4

第一课时

三维目标

一、知识与技能

理解有理数加法的意义,掌握有理数加法法则,并能准确地进行有理数的加法运算。

二、过程与方法

引导学生观察符号及绝对值与两个加数的符号及其他绝对值的关系,培养学生的分类、归纳、概括能力。

三、情感态度与价值观

培养学生主动探索的良好学习习惯。

教学重、难点与关键

1.重点:掌握有理数加法法则,会进行有理数的加法运算。

2.难点:异号两数相加的法则。

3.关键:培养学生主动探索的良好学习习惯。

四、教学过程

一、复习提问,引入新课

1.有理数的绝对值是怎样定义的?如何计算一个数的绝对值?

2.比较下列每对数的大小。

(1)-3和-2; (2)│-5│和│5│; (3)-2与│-1│;(4)-(-7)和-│-7│。

五、新授

在小学里,我们已学习了加、减、乘、除四则运算,当时学习的运算是在正有理数和零的范围内。然而实际问题中做加法运算的数有可能超出正数范围,例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。本章前言中,红队进4个球,失2个球;蓝队进1个球,失1个球,那么哪个队的净胜球多呢?

要解决这个问题,先要分别求出它们的`净胜球数。

红队的净胜球数为:4+(-2);

蓝队的净胜球数为:1+(-1)。

这里用到正数与负数的加法。

怎样计算4+(-2)呢?

下面借助数轴来讨论有理数的加法。

看下面的问题:

一个物体作左右方向的运动,我们规定向左为负、向右为正。

(1)如果物体先向右运动5m,再向右运动3m,那么两次运动后总的结果是什么?

有理数的加法课件 篇5

一、教学目标

(一)知识与技能

1、使学生掌握有理数加法法则,并能运用法则进行计算;

2、在有理数加法法则的教学过程中,注意培养学生的运算能力。

(二)过程与方法

1、在教师创设的熟悉情境与学生探索法则的过程中,通过观察结果的符号及绝对值与两个加数的符号及其绝对值的关系,培养学生的分类、归纳、概括的能力。

2、在探索过程中感受数形结合和分类讨论的数学思想。

(三)情感、态度与价值观

1、认识到通过师生合作交流,学生主动参与探索获得数学知识,从而提高学生学习数学的积极性。

2、创设教学情境,使学生更好地体验教学内容中的情境,理解数学的意义与数学实际应用。

二、教学重点

会用有理数加法法则进行运算。

三、教学难点

异号两数相加的法则。

四、教学方法

探究法、引导发现法

五、教具准备

多媒体课件、导学案

六、教学过程

(一)创设情景,引入新课。

小明沿着一条直线,先走两米,又走了三米,能否确定小明现在位于原来位置的哪个方向,与原来位置相距多少米?请把你们认为可能的所有答案说出来。

(二)探究新知

1、大家开始画数轴,以原点为起点,规定向右的方向为正方向,向左的方向为负方向。

(1)若两次都是向右走,很明显,一共向右走了5米。

记作:(+2)+(+3)= +5

(2)若两次都是向左走,很明显,一共向左走了5米。

记作:(-2)+(-3)= -5

(3)若第一次向右走2米,第二次向左走3米,在数轴上,我们可以看到,小明位于原来位置的左方1米处。

记作:(+2)+(-3)= -1

(4)若第一次向左走2米,第二次向右走3米,在数轴上,我们可以看到,小明位于原来位置的右方1米处。

记作:(-2)+ (+3)= +1

2、从刚才画数轴的过程中,我们知道了加法实际上是相继活动的合并。我们可以借助数轴来得知两个有理数相加的结果。请模仿刚才演示的过程,向右表示加数中的正数,向左表示加数中的负数,在数轴上表示两个数相加的过程,得到结果。

1、(-4)+ (-1) 2、 (+5)+(-3) 3、 (-4)+(+7) 4、 (-6)+3

3、通过实践,我们发现,能借助数轴很方便地得知有理数加法结果。但对于如1700 +(-1800),1.2 +(-5.34)这样的数字在数轴上就不容易表示出来了,怎样才能迅速准确地计算出来呢?

师生讨论、归纳出有理数的加法法则:

①同号两数相加,取相同的符号,并把绝对值相加;

②绝对值不等的异号两数相加,取绝对值较大的加数的符号,并把较大的绝对值减去较小的绝对值;

除此之外,有理数相加,还有其他情况

(1)第一次向左走3米,第二次向右走3米,则小明仍位于出发点。

记作:(-3)+(+3)= 0

(2)第一次向右走3米,第二次向左走3米,则小明仍位于出发点。

记作:(+3)+(-3)= 0

(3)第一次向左(向右)走了3米,第二次在原地不动,则小明位于原来位置的左方(或右方)3米。

记作:(-3)+0 = +3 或(+3)+0 = 0

归纳为:

③互为相反数的两个数相加得0;

④一个数同0相加,仍得这个数。

(三)运用新知

1、例题讲解:(利用多媒体展示)

例1: 计算下列各题:

(1)180 +(-10); (2)(-10)+(-1);

(3)5 +(-5); (4)0+(-2)。

教师引导学生先观察符号特征,再教师示范写出过程,并强调题的类型每一步的理由。

解:(1)180+(-10)(异号型 )

=+(180-10)(取绝对值较大的数的符号,

=170 并用较大的绝对值减去较小的绝对值)

(2)(-10)+(-1) (同号型)

=-(10+1) (取相同的符号,并把绝对值相加)

=-1

对于(3)、(4) 小题,让学生解答。

在讲完例题后,教师引导学生反思刚才做题时的基本思路。教师在学生回答的基础上提炼为三句话:①确定类型、②确定符号、③确定绝对值。

2、练习

(1)(口答)确定下列各题中的符号,并说明理由:

①(+3)+(+6); ② (-6) +(-7)

③ (+12)+(-7) ④ (+5)+(-10)

(2)计算下列各式:

①(-25)+(-7); ②(-13)+5;

③(-23)+ 0; ④ 45 +(-45)。

(3)土星表面的夜间平均温度为-150度,白天比夜间高27度,那么白天的平均温度是多少?

(4)某升降机第一次上升6米,第二次下降7米,第三次又上升5米,此时升降机在初始位置的_____方(填"上"或"下")相距____米。

(四)课时小结:

1、这节课你学到了什么?

2、对于这节课你有什么困惑?

(五)布置作业

课本练习1题、2题。

有理数的加法课件 篇6

2 + 3 = 5

(—2)+(—3)=—5

2 +(—3)=—1

(—2)+ 3 =1

(—2)+ 2 = 0

0 + 3 = 3

0 +(—3)= —3

同号两数相加

绝对值不相等的异号两数

异号两数相加

绝对值相等的异号两数

一个数同0相加

(法则归纳)

先定符号,再算绝对值

教学设计的说明

布鲁纳的认知理论认为:人的认知过程要经历一个从“实物操作”到“表象操作”再到“符号操作”的过程,这时知识才真正内化到人的认知结构。我觉得,这种认知规律是我在这堂课的教学的设计过程中应该遵循并且努力实现的

《有理数的加法》是一堂纯粹的运算技能课,如何在这种我们认为理所当然而学生茫然无知的课上让学生感觉自己是知识的主人,有主动探索发现的权利是我备课时反复琢磨的一个主题,怎么才能把一堂传统的“教、记、练”的课有效地发挥教师的引导作用从而使课堂富有生命力真正培养学生的各方面能力更是我所追求的我想,数学就应该是这样一种在具体、半具体、半抽象、抽象中间的铺排,是穿梭于实物与算式之间的一种形式化过渡。

弗兰德对师生语言互动进行分类时认为,课堂上教师的讲与学生的讲有三种交流方式:回应、中立、自发,在这堂课上,我希望学生能自发地运用语言表述他们的需要与探索,我充分设想学生的可能困难同时又充分相信学生、充分调动学生的积极性与参与意识,让他们的思维动起来、跳起来再沉下去,让学生思维从形式化过渡到符号化、数字化,让学生真正成为课堂的主人。

有理数的加法课件 篇7

一、教学内容分析

本节课是有理数加法的法则推导和计算,在此基础上,学生已经学过了正数和负数的认识及实际表示的意义和有理数的大小比较。本节课将在此基础上授导学生学习有理数的加法法则,解决同号、异号两数相加的计算。

二、学习者分析

七年级的学生,其思维已经明显地具备了逻辑思维性,并且学生已经在我的要求下,学会了预习、初步养成了预习的习惯,逐渐养成了合作交流的习惯。只要我们教师通过具体的问题的指引、学生小组间的合作和交流,是可以完成本节课的教学目标的。

三、教学目标

1、使学生掌握有理数加法法则,并能运用法则进行计算;

2、让学生亲身经历探究有理数加法法则的过程,深刻感受分类讨论、数形结合的思想,感受由具体到抽象、由特殊到一般的认知规律;

3、让学生通过研讨、分类、比较等方法的学习,培养归纳总结知识的能力。

四、信息技术应用分析

由于本节课的知识点是探究有理数加法法则,要求学生掌握并会运用,所以为了节省时间和极大的提高学生的学习兴趣,选用了多媒体进行教学,把所有的内容用电子的白板展示出来。

五、教学过程

1、复习提问,引入新知

通过对小学加法及数轴知识的应用的复习,让学生既巩固了原来所学的知识,又可以引出新课。

2、出示问题情境、解决新知

在解决新知的过程中,由于学生利用已有的知识及题目提示,运用学生互相合作交流,并且由各个小组进行展示答案。

3、探索发现,归纳新知

利用学生展示的答案,学生分组进行归纳总结,得出有理数运算法则。

学生通过合作交流,养成在日常生活中和别人交流合作的好习惯。,通过展示成果培养了学生的自信心。

4、展示例题、应用新知

此环节巩固了所学知识,并且通过本环节让学生体会小组合作的乐趣,体会利用法则解决实际问题的方法。

5、达标训练,巩固新知

本环节进一步巩固了所学的知识,在互动回答是采用哪个小组举手多、举得早,让哪个小组来回答;让学生养成一种竞争意识,合作交流意识。

6、规律总结,升华新知

本环节着重总结有关有理数加法法则,让学生进行小结,逐步养成学生在解决问题时随时总结规律的习惯,并对本节课的知识进行梳理、加深和巩固。

7、作业和运用,拓展新知

通过作业学生进一步巩固所学知识,强化对知识的理解和应用,通过挑战自我来拓展学生知识面,发展学生的认识。

加法课件(系列九篇)


导师的某些职责之一是制作自己的课程教案和课件,这就需要我们的老师非常认真地去完成。按部就班的教案能够帮助学生更好地理解知识。这篇在网络上找到的优秀文章“加法课件”不仅内容充实而且语言优美,我们希望它能够帮助您更好地平衡工作和生活!

加法课件 篇1

活动目标:

1.根据不同的画面进行讲述,并列出相应的算式,从而感知加法算式所表达的数量关系。

2.理解交换规律,懂得运用互换规律列出另一道算式。

3.积极探索数学活动,乐于讲述探索结果。

活动准备:

1.教具:城堡图一副(分为三层,每一层分别有表示7的加法的三副图,用纸覆盖)、水果单一张。

2.学具:城堡图人手一份、水果单人手一张。

活动重点:看图学习7的加法

活动难点:能根据不同的画面进行讲述,并列出相应的算式

活动过程:

一.开火车:复习7的组成

师:城堡王国的国王邀请我们去他的国家玩,你们愿意吗?那让我们快点乘上7次列车(出示数字7)出发吧。

师:嘿嘿,我的火车X(1)点开,你的火车X点开?

幼:嘿嘿,我的火车X(1)点开,我的火车X(6)点开。

二.情境感知登城堡:看图学习7的加法

1.师:看,城堡王国已经到了,国王说了,他在城堡里藏了许多的问题想考考我们小朋友,那我们就先去这座最大的城堡去看看好吗?

2.师:我们先登上城堡的一楼,原来这层楼上有三幅图,谁愿意来讲讲呀?

国王想考我们的是看了这三幅图谁能列出一道算式?回答出来后就可以上二楼、三楼。

3.幼儿操作

师:那我们每人都去一个城堡回答问题吧,速度慢的呢,可以只在一楼回答,速度快的可以去二楼三楼。别忘了把你的答案写的清楚一点。

4.总结:

师:你刚刚碰到了什么问题?(用三句话表达三幅图)你是怎么回答的?(幼儿列的算式)老师记录,请幼儿观察这些算式它们有个小秘密,看谁能先找出来?

加法课件 篇2

学习目标:

1.理解有理数加法意义

2.掌握有 理数加法法则,会正确进行有理数加法运算

3.经历探究有理数有理数加法法则过程,学会与他人交流合作

学习重点:和 的符号的确定

学习难点:异号两数相加的法则

学法指导:

在探讨有理数的加法法则问题时,利用物体在同一直线上两次运动的过程,理解有理数运算法则。先仔细观察式子的特点,找到合理的运算步骤,使加法运算简便。

学习过程

(一)课前学习导引:

1. 如果向东走5米记作+5米,那么向西走3米记作

2. 比较 大小:2 -3,-5 - 7,4

3. 已知a=-5,b=+ 3, 则︱a ︳+︱ b︱=

(二)课堂学习导引

正有理数及0的加法运算,小学已经学过,然而实 际问题中做加法运算的数有可能超出正数范围。例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它 们的和叫做 净胜球数。如果,红队进4个球,失2个球;蓝队进1个球,失1个球.于是

(1)红队的净胜球数为 4+(-2) ,

(2)蓝队的净胜球数为 1+(-1) 。

这里用到正数和负数的加法。那么,怎样计算4+(-2),1+(-1)的结果呢?

现在让我们借助数轴来讨论有理数的加法:某人从一点出 发,经过下面两次运动,结果的方向怎样?离开出发点的距离是多少?规定向东为正,向西为负,请同学们用数学式子表示

①先向东走了5米 ,再向东走3米 ,结果怎样?可以 表示为

②先向西走了5米,再向西走了3米,结果如何?可以表示为:

③先向东走了5米,再向西走了3米,结果呢?可以表示为:

④先向西走了5米,再向东走了3米,结果呢?可以表示为:

⑤先向东走了5米,再向西走了5米,结果呢?可以表示为:

⑥先向西走5米,再向东走5米,结果呢?可以表示为:

从以上几个算式中总结有理数加法法则:

(1)、同号的两数相加,取 的符号,并把 相加.

(2).绝对值不相等的异号两数相加, 取 的加数 的 符号, 并用较大的绝对值 较小的绝对值. 互为相反数的 两个数相加得 .

(3)、一个数同0相加,仍得 。

例1 计算(能完成吗,先自己动动手吧!)

(-3)+( -9) (2)(-4.7)+3.9

例2 足球循环赛中,

红队胜黄队4: 1,黄队胜蓝队1 :0,蓝队胜红队1: 0,计算 各队的 净胜球数。

解:每个队的进球总数记为正数,失球总数记为负数,这 两数的`和为这队的净胜球数。

三场比赛中,

红队共进4球,失2球,净胜球数为(+4)+(2)=+(42 )= ;

黄队共进2球,失4球,净胜球数为(+2)+(4)= (4

蓝队共进( )球,失( )球, 净胜球数为 = 。

(三)课堂检测导引:

(1)(-3)+(-5)= ; (2)3+(-5)= ;

(3)5+(-3)= ; (4)7+(-7)= ;

(5)8+(-1)= ; (6)(-8)+1 = ;

(7)(-6)+0 = ; (8)0+(-2) = ;

(四)课堂学习小结

1.本节课中你学到了什么知识?

2.你觉得有理数加法比较难掌握的是哪里?

(五)学后拓延导引

1.计算:

(1)(-13)+(-18); (2)20+(-14);

(3)1.7 + 2.8 ; (4)2.3 + (-3.1);

(5) (- )+(- ); (6)1 +(-1.5 );

(7)(-3.04)+ 6 ; (8) +(- ).

2.判断题:

(1)两个负数的和一定是负数; ( )

(2)绝对值相等的两个数的和等于零; ( )

(3)若两个有理数相加时的和为负数,这两个有理数一定都是负数; ( )

(4)若两个有理数相加时的和为正数,这两个有理数一定都是正数. ( )

3.当a = -1.6,b = 2.4时,求a+b和a+(-b)的值.

加法课件 篇3

师:在小学里,同学们已经学过数的加、减、乘、除四则运算。这些数是正整数、正分数、和零,也就是说,这些运算是在非负有理数范围内进行的。自从引进负数后,数的范围就扩大到整个有理数。那么,在有理数范围内,怎样进行四则运算呢?今天,我们来探索有理数的加法运算。(教师板书课题:有理数的加法)

请同学们思考一下,两个有理数进行加法运算时,这两个加数的符号可能有哪些情况。

生1:加数都是正数或都是负数。(教师板书:同号两数相加)加数一正一负(教师板书:异号两数相加)

师:还有其他情况吗?

生2:正数与零,负数与零,或者两个都是零

师:同学们回答得很好。现在让我们一起来看一个具体问题:某人从一点出发,经过下面两次运动,结果的方向怎样?离开出发点的距离是多少?①先向东走了5米,再向东走3米,结果怎样?

生3:向东走了8米

师:如果规定向东为正,向西为负,同学们能不能用一个数学式子来表示?生4:表示为(+5)+(+3)=+8(教师板书)师:我们可以画出示意图。(教师用投影仪显示图1)

②先向西走了5米,再向西走了3米,结果如何?

生5:向西走了8米。可以表示为:(-5)+(-3)=-8[教师板书]

(教师用投影仪显示图2)

③向东走了5米,再向西走了3米,结果呢?

生6:向东走了2米。可以表示为:(+5)+(-3)=+2[教师板

(教师用投影仪显示图3)

④先向西走了5米,再向东走了3米,结果呢?

生7:向西走了2米。可以表示为:(-5)+(+3)=-2(教师板)(教师用投影仪显示图4)

⑤先向东走5米,再向西走5米,结果呢?

生8:回到原地位置。可以表示为:(+5)+(-5)=0(教师板书)(教师用投影仪显示图5)

⑥先向西走5米,再向东走5米,结果呢?

生9:仍回到原地位置。可以表示为:(-5)+(+5)=0[教师板书]

(教师用投影仪显示图6)

师:同学们开动脑筋,完成上面这组问题完成得非常好,我非常高兴,请同学们独立完成下面一组有理数加法的具体问题,用数学式子表示出来。(教师用投影仪显示下面内容):

从河岸现在水位线开始,规定上升为正,下降为负:

①上升8cm,再上升6cm,结果怎样?②下降8cm,再下降6cm,结果怎样?

③上升6cm,再下降8cm,结果怎样?④下降6cm,再上升8cm,结果怎

⑤上升8cm,再下降8cm,结果怎样?⑥下降8cm,再上升0cm,结果怎样?

师:下面同学们分组讨论,互相订正。

教师公布正确答案:

①上升14cm。 [教师板书(+8)+(+6)=+14]

②下降14cm。 [教师板书(-8)+(-6)=-14]

③下降2cm。 [教师板书(+6)+(-8)=-2]

④上升2cm。 [教师板书(-6)+(+8)=+2]

⑤回到原水位线。 [教师板书(+8)+(-8)=0]

⑥在原水位下线下8cm。 [教师板书(-8)+0=-8]

师:通过以上两组题目,从两个有理数相加的过程中你发现了什么?请同学们发表演自己的观点,与本组同学交流。

小组1:我们这一小组同学发现了正数加正数结果是正数,负数加负数结果是负数,也就是说:同号两数相加,符号不变。

师:其他小组还有没有新的发现什么?

小组2:我们发现符号不同的两个有理数相加,结果的符号与最前面加数的符号一样。

师:这一小组的看法是否正确呢?

小组3:不正确。因为(+6)+(-8)=-2,(-6)+(+8)=+2,结果和符号与第一个加数的符号不一样。应改为:符号不同的两个有理数相加,结果的符号决定于加数中较大的数的符号。

小组4:这句话也不对,如(+3)+(-5)=-2中,和的符号是负的,但+3比-5大,应改为:和的符号与绝对值大的加数符号一样。师:还有没有不同意见?

小组5:我们这一小组有不同意见。符号不同的两个数相加还有一种可能是相反数的情况,结果为0与每个的数的符号都不一样。

师:观察仔细,很好。

师:刚才同学们只是发现了两个有理数相加,结果的符号问题,结果除了

符号部分外,另一部分称为结果的什么?

众生:结果的绝对值

师:结果的绝对值与加数绝对值又有何关系呢?

小组5:同号两数相加和的绝对值等于加数绝对值的和,异号两数相加和的绝对值等于较大绝对值减去较小绝对值。

师:请同学归纳,总结出有理数的加法规律。

小组6:同号两数相加,符号不变,并把绝对值相加;异号两数相加取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值。

小组7:不对,异号两数相加应分两种情况。⑴绝对值不等的异号两数相加;⑵绝对值相等的异号两数相加。

师:很好!同学们已经感受到两个有理数相加的情况与小学加法要复杂一些,是否还有没有考虑到的情况呢?

小组8:有,一个数同0相加,仍是这个数。

师:全班同学共同说出有理数的加法法则。

教(板书):有理数加法法则:

①同号两数相加,取加数的符号,并把绝对值相加;

②异号两数相加,如果绝对值相等和为0;如果绝对值不等,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;

③一个数同0相加,仍是这个数。

(点评:学生学习知识是一个动态的过程。学生认知的效果,完全取决于学生是否以积极的心态参与认知活动。因此本节课在教学设计上有如下闪光点:

1、通过回顾已具备的部分知识与技能,让学生产生一个暂时成功感和满足感,达到一个暂时的心理平衡。

2、以提问的形式展现新矛盾、新问题,挑起学生引起心理的不平衡。旨在诱发学生好强、好胜的天性,将学生的注意力导向下一个环节。

3、再次以提问的形式,渗透分类的思想,将学生的思维导向分类探索的境地。旨在让学生的思维能圆润地过度到探索新知情境之中。

4、分类展示生活情境,放手让全体学生感受并探索,从而构建加法法则。)

加法课件 篇4

活动目标

1.学习4的加法,会用4的组成知识进行4的加法运算。

2.培养分析、推理能力和迁移能力。

活动准备

1.课件:分开和聚合

2.学具、小奖品。

教学具图片

活动过程

一、导入

以做游戏的口吻,引起幼儿兴趣,复习4的'组成。

教师:小朋友们,我们先玩一个凑数游戏,看谁接得快又对!

教师:我说1,你凑几?1和几合起来就是4。

以此方法,复习4的组成。

二、展开

1.运用4的组成,学习4的加法。

(1)小兔去拔萝卜,先来了一只小兔(出示一只小兔图片)

过了一会又来了三只小兔(出示三只小兔图片)

提问:1只小兔再添上三只小兔是几只小兔呢?用什么方法计算?为什么?

(2)幼儿摆出算式,教师进行巡回指导.

提醒幼儿按顺序摆1+3=4

请幼儿说出1、3、4的含义。

教师展出算式1+3=4,请幼儿验证自己的算式。

请幼儿读出:“1和3合起来是4,合起来就是加的意思,所以1+3=4

(3)发引导幼儿运用加法交换律列出算式:

提问:我们总结的在加法算式里,交换加号两边的数,和不变的规律,

那么,由1+3=4能推出哪一个算式呢?

根据幼儿回答,播放算式3+1=4

(4)出示小狗,幼儿列出加法算式2 +2=4、,2和2合起来是4,所以2+2=4

2.总结归纳4的加法算式:

展示4的组成和加法算式,教师进行归纳总结:

4的加法算式有3个,

3.游戏巩固:摘星台

在星星上分别出示4的加法算式,答对者奖励智慧星。

三、结束

讲评结束,表扬课堂上积极脑筋的幼儿,增强幼儿大胆探索数学知识的信心。

加法课件 篇5

师:在小学里,同学们已经学过数的加、减、乘、除四则运算。这些数是正整数、正分数、和零,也就是说,这些运算是在非负有理数范围内进行的。自从引进负数后,数的范围就扩大到整个有理数。那么,在有理数范围内,怎样进行四则运算呢?今天,我们来探索有理数的加法运算。(教师板书课题:有理数的加法)

请同学们思考一下,两个有理数进行加法运算时,这两个加数的符号可能有哪些情况。

生1:加数都是正数或都是负数。(教师板书:同号两数相加)加数一正一负(教师板书:异号两数相加)

师:还有其他情况吗?

生2:正数与零,负数与零,或者两个都是零

师:同学们回答得很好。现在让我们一起来看一个具体问题:某人从一点出发,经过下面两次运动,结果的方向怎样?离开出发点的距离是多少?①先向东走了5米,再向东走3米,结果怎样?

生3:向东走了8米

师:如果规定向东为正,向西为负,同学们能不能用一个数学式子来表示?生4:表示为(+5)+(+3)=+8(教师板书)师:我们可以画出示意图。(教师用投影仪显示图1)

②先向西走了5米,再向西走了3米,结果如何?

生5:向西走了8米。可以表示为:(-5)+(-3)=-8[教师板书]

(教师用投影仪显示图2)

③向东走了5米,再向西走了3米,结果呢?

生6:向东走了2米。可以表示为:(+5)+(-3)=+2[教师板

(教师用投影仪显示图3)

④先向西走了5米,再向东走了3米,结果呢?

生7:向西走了2米。可以表示为:(-5)+(+3)=-2(教师板)(教师用投影仪显示图4)

⑤先向东走5米,再向西走5米,结果呢?

生8:回到原地位置。可以表示为:(+5)+(-5)=0(教师板书)(教师用投影仪显示图5)

⑥先向西走5米,再向东走5米,结果呢?

生9:仍回到原地位置。可以表示为:(-5)+(+5)=0[教师板书]

(教师用投影仪显示图6)

师:同学们开动脑筋,完成上面这组问题完成得非常好,我非常高兴,请同学们独立完成下面一组有理数加法的具体问题,用数学式子表示出来。(教师用投影仪显示下面内容):

从河岸现在水位线开始,规定上升为正,下降为负:

①上升8cm,再上升6cm,结果怎样?②下降8cm,再下降6cm,结果怎样?

③上升6cm,再下降8cm,结果怎样?④下降6cm,再上升8cm,结果怎

⑤上升8cm,再下降8cm,结果怎样?⑥下降8cm,再上升0cm,结果怎样?

师:下面同学们分组讨论,互相订正。

教师公布正确答案:

①上升14cm。 [教师板书(+8)+(+6)=+14]

②下降14cm。 [教师板书(-8)+(-6)=-14]

③下降2cm。 [教师板书(+6)+(-8)=-2]

④上升2cm。 [教师板书(-6)+(+8)=+2]

⑤回到原水位线。 [教师板书(+8)+(-8)=0]

⑥在原水位下线下8cm。 [教师板书(-8)+0=-8]

师:通过以上两组题目,从两个有理数相加的过程中你发现了什么?请同学们发表演自己的观点,与本组同学交流。

小组1:我们这一小组同学发现了正数加正数结果是正数,负数加负数结果是负数,也就是说:同号两数相加,符号不变。

师:其他小组还有没有新的发现什么?

小组2:我们发现符号不同的.两个有理数相加,结果的符号与最前面加数的符号一样。

师:这一小组的看法是否正确呢?

小组3:不正确。因为(+6)+(-8)=-2,(-6)+(+8)=+2,结果和符号与第一个加数的符号不一样。应改为:符号不同的两个有理数相加,结果的符号决定于加数中较大的数的符号。

小组4:这句话也不对,如(+3)+(-5)=-2中,和的符号是负的,但+3比-5大,应改为:和的符号与绝对值大的加数符号一样。师:还有没有不同意见?

小组5:我们这一小组有不同意见。符号不同的两个数相加还有一种可能是相反数的情况,结果为0与每个的数的符号都不一样。

师:观察仔细,很好。

师:刚才同学们只是发现了两个有理数相加,结果的符号问题,结果除了

符号部分外,另一部分称为结果的什么?

众生:结果的绝对值

师:结果的绝对值与加数绝对值又有何关系呢?

小组5:同号两数相加和的绝对值等于加数绝对值的和,异号两数相加和的绝对值等于较大绝对值减去较小绝对值。

师:请同学归纳,总结出有理数的加法规律。

小组6:同号两数相加,符号不变,并把绝对值相加;异号两数相加取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值。

小组7:不对,异号两数相加应分两种情况。⑴绝对值不等的异号两数相加;⑵绝对值相等的异号两数相加。

师:很好!同学们已经感受到两个有理数相加的情况与小学加法要复杂一些,是否还有没有考虑到的情况呢?

小组8:有,一个数同0相加,仍是这个数。

师:全班同学共同说出有理数的加法法则。

教(板书):有理数加法法则:

①同号两数相加,取加数的符号,并把绝对值相加;

②异号两数相加,如果绝对值相等和为0;如果绝对值不等,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;

③一个数同0相加,仍是这个数。

(点评:学生学习知识是一个动态的过程。学生认知的效果,完全取决于学生是否以积极的心态参与认知活动。因此本节课在教学设计上有如下闪光点:

1、通过回顾已具备的部分知识与技能,让学生产生一个暂时成功感和满足感,达到一个暂时的心理平衡。

2、以提问的形式展现新矛盾、新问题,挑起学生引起心理的不平衡。旨在诱发学生好强、好胜的天性,将学生的注意力导向下一个环节。

3、再次以提问的形式,渗透分类的思想,将学生的思维导向分类探索的境地。旨在让学生的思维能圆润地过度到探索新知情境之中。

4、分类展示生活情境,放手让全体学生感受并探索,从而构建加法法则。)

加法课件 篇6

【活动目标】

1、学习6的加法,进一步理解加法的意义,理解加法交换律。

2、能运用数学解决生活、游戏中的简单问题。

3、通过各种感官训练培养幼儿对计算的兴致及思维的准确性、敏捷性。

4、引导幼儿对数字产生兴趣。

【活动准备】

1、教师演示材料:5以内的加法算式若干,小花(1朵白色的花,5朵粉红色的花),苹果树的图片(树上2个绿色的苹果,4个红色的苹果),列式用的卡片若干。

2、幼儿分组活动材料:

1)、编有3、4、5、6的`号码大树四棵,写有6以内加法式子的树叶若干;

2)、分别编上2、3、4、5、6号码车厢的火车,写有6以内加法的算式的火车票若干;

3)、盘子上摆放6只鸭子(1只大鸭、5只小鸭,两只戴帽子、四只没戴帽子,3只红色,3只黄色);

4)、服装柜上有6件服装(3件上衣、3条裤子,2件红色、4件黄色,1件厚的、5件薄的)。

【活动过程】

一、以游戏复习5以内的加法和6以内数的组成分解。

1、玩游戏"开火车":教师出示5以内数的加法算式,幼儿按座位顺序以开火车形式一个接一个答出得数。

2、玩游戏"碰球",复习6以内数的组成分解。

二、引导幼儿根据教师口述应用题用卡片列式计算。

1、教师操作手上的花编题:孙悟空先变出1朵白色的花,又变出5朵粉色的花,一共变出几朵花。

2、请幼儿列出加法式子并计算,教师观察幼儿列式情况。

3、交流分享:请说一说你列的式子(1+5=6)。孙悟空一共变出了几多花?你是用什么方法算的?你怎么知道用加法算?

三、运用交换规律列加法算式。

1、引导语:如果老师把手上的花交换下,你们能列出一道新的式子吗?

2、引导幼儿运用交换律列出另一道加法式子,并请一名幼儿到黑板上用卡片列式(5+1=6)。

3、教师结合两个加法算式"1+5=6"、"5+1=6",引导幼儿观察:交换加号前后两个加数的位置,得数不变。

四、用同一张卡片列出两道加法算式。

1、引导语:孙悟空又变出一棵苹果树,树上有2个苹果核4个苹果,一共有几个苹果?

2、引导幼儿用卡片列出两道加法式子并计算,教师观察幼儿列式情况。

3、请个别幼儿到黑板上用卡片列出两道加法式子并计算(2+4=6,4+2=6)。

4、引导幼儿继续观察苹果树上的3个大苹果和3个小苹果列一道加法算式计算(3+3=6)。

五、师幼共同梳理6的五道加法算式:1+5=6、5+1=6、2+4=6、4+2=6.

六、幼儿分组活动,巩固6以内数的加法。

1、介绍分组材料。

(1)帮助树叶宝宝找树叶妈妈:先算出树叶上式子的得数,再去找和得数一样的树,并将树叶贴在树上。

(2)找火车车厢:先算出火车票上的加法算式的得数,再找出和得数一样的火车车厢,并把车票贴在车厢上。

(3)根据盘子上的情景列式:根据鸭子的不同特点列出五道6以内数的加法算式并计算。

(4)根据服装柜上的情景列式:根据服装的不同特点列出五道6以内数的加法算式并计算。

(5)幼儿自选小组活动。

(6)师幼分享交流。

【活动反思】

我觉得,这个活动让孩子们学会了很多,在快乐的心情中讲述,幼儿也很快乐的学习,而且6的加法算式他们全都学会了。最重要的是快乐,孩子们快乐,作为老师的我也很快乐。

加法课件 篇7

1.口答9的组成并让同桌学生互相说一遍给对方听,再填写教材49页的准备题。

2.看教师摆点子图,让学生观察,按要求列算式并回答问题:(1)列一道加法算式;(2)列两道减法算式;(3)看图填空(习题八第九题中间的一组)。学生边回答,教师边板书如下:(1)●●●○○(3)●●●●●○○○3+2=55+3=(2)●●●●。。。○○○3+=7-4=38-3=7-3=48-=

(4)回答:上面三个图各表示几个算式?你是怎样想的?把算式和图意联系起来说一说。这样的复习设计是根据鲁宾斯坦强调课题类化在学习迁移中作用的理论,即他认为,"在解决问题时,为了实现迁移,必须把新旧课题联系起来并包括在统一的分析综合活动中。"这样通过数的组成和图示、算式、问题回答三者结合,使学生理清了新旧知识之间的联系,暗示了一图四式的新知,渗透了递进学习、不断发现问题的主动学习意识,为突出本课的教学重点、解决难点铺好路,顺利地实行正迁移准备了必要的条件。

加法课件 篇8

学习过程:

一、自主学习不动笔墨不读书!请拿出你的笔和你的激情,探究新知:

1.小学学过的加法运算律有哪些?举例说明运用运算律有何好处?

2.加法的交换律:

两个数相加,交换xx的位置,和不变.用式子表示:a+b=。

3.加法的结合律:

《1.3.1有理数的加法》同步练习含答案

在进行两个异号有理数的加法运算时,其计算步骤如下:

①将绝对值较大的有理数的符号作为结果的符号并记住;

②将记住的符号和绝对值的差一起作为最终的计算结果;

③用较大的绝对值减去较小的绝对值;

④求两个有理数的绝对值;⑤比较两个绝对值的大小.其中操作顺序正确的是( )

A.①②③④⑤B.④⑤③②①C.①⑤③④②D.④⑤①③②

《1.3.1有理数的加法》同步练习题(含答案)

10.小虫从某点A出发在一直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬行的各段路程依次为(单位:cm):+5,-3,+10,-8,-6,+12,-10。

(1)小虫最后是否回到出发点A?

(2)在爬行过程中,如果每爬行1cm奖励一粒芝麻,那么小虫一共得到多少粒芝麻?

解析(1)是.(+5)+(-3)+(+10)+(-8)+(-6)+(+12)+(-10)=[(+5)+(+10)+(+12)]+[(-3)+(-8)+(-6)+(-10)]=27-27=0,

所以小虫最后回到出发点A。

(2)小虫爬行的总路程为|+5|+|-3|+|+10|+|-8|+|-6|+|+12|+|-10|=5+3+10+8+6+12+10=54(cm)。

所以小虫一共得到54粒芝麻。

加法课件 篇9

活动目标

1、学习按所出物品列算式,进一步理解加号、等号的含义。

2、体验共同游戏的愉悦。

3、引导幼儿积极与材料互动,体验数学活动的乐趣。

4、让幼儿懂得简单的数学道理。

重点难点

6的加法算式 难点:能例举一两个简单的6的应用题

活动准备

实物卡、看图列算式卡。看图列算式卡、数字卡、实物卡、记录卡、看图分类计数等。

活动过程

1、碰球游戏。

师:我们来玩一玩碰碰球的游戏,我和你合起来是5,嘿嘿,我的2球碰几球?

幼:嘿嘿,我的2球碰3球。

师:我和你合起来是6,嘿嘿,我的4球碰几球?

幼:嘿嘿,我的4球碰2球。

2、出示实物卡,复习6的组成,引出6的加法

师:看,这张图片上有几只小猫啊?

幼:6只

师:上一次啊我们帮这些小猫分过类了,现在我们来动动脑筋,怎么样用算式表示

一、引出新游戏

出示看图列算式卡,请幼儿操作

二、分组操作

(1)看图列算式(实物卡、数字卡)

(2)6的组成卡

(3)看图分类计数或用算式记录

(4)看实物用算式记录 (5)算式接龙

三、总结评价

集体验证部分幼儿的操作卡。

表扬认真操作的幼儿,鼓励其他幼儿。

教学反思

本节课用游戏开始,调动了幼儿的活动积极性。这节课的活动气氛也很好,达到了本节课的目标。 反思:这节课在幼儿进行分组操作时,我没能全面的关注每一位幼儿的操作,下次教学时在这上面我会多关注反应较慢,及时给予他们指导。

小百科:加法是基本的四则运算之一,它是指将两个或者两个以上的数、量合起来,变成一个数、量的计算。表达加法的符号为加号“+”。进行加法时以加号将各项连接起来。

分数与除法课件系列


作为一名优秀的教育工作者,常常要根据教学需要编写教学设计,教学设计是对学业业绩问题的解决措施进行策划的过程。那么教学设计应该怎么写才合适呢?以下是小编精心整理的分数与除法教学设计及反思系列,供大家参考借鉴,希望可以帮助到有需要的朋友。

分数与除法课件 篇1

第一单元的教学也基本上完成了。回顾分数乘法这一单元的教学,在备课时一直被如何处理分数乘法意义困惑。后来一想,如果从数学应用的角度来看,学生只要能从具体的实际问题中判断两个数据之间存在相乘的关系就可以了,而这个相乘的关系在本单元有了新的拓展,即求几个相同加数的和、求一个数的几倍是多少和求一个数的几分之几是多少。

在教学分数和整数相乘时,根据学生的已有的知识基础,引导学生回忆复习整理整数乘法的意义和同分母分数的加法的计算法则。另外科学的学习方法,能提高学习效率,能使学生的智慧得到充分发挥。在教学分数和整数相乘的计算法则时,从学生所熟悉的整数和小数乘法的意义入手,引入分数乘法。

此外本单元在备课之初,师傅就提示自己在教学完分数乘整数和一个数乘分数后要先补充一个课时比较分数加法和分数乘法之间的区别,再进行分数乘法混合运算和简便计算的教学。当时的自己是听的一头雾水,不明白师傅的用意。直到真的开始教学分数乘法混合运算时,才明白了师傅的良苦用心。虽然在师傅的提醒下自己有进行分数加法和乘法的对比教学。但是晚上的作业还是有部分学生计算分数加法时按照分数乘法运算的`规则进行计算(按分子和分子相加,分母和分母相加),到这时自己才知道师傅当时为什么要让自己对比分数乘法和加法。看到学生的作业,自己在第二天的分数乘法混合运算时,在课前复习时再次讲解分数乘法和加法的不同。让学生在计算的时候有个比较清楚的认识。虽然这个问题解决了,但是学生在分数乘法混合运算时又遇到了另一个问题,部分学生在计算加乘混合运算时,特别是加法在前面而乘法在后面的问题时,先计算加法而不是先计算乘法,在老师的指点之下才恍然大悟。说明学生对于四则运算的运算顺序不够熟练。自己在今后的教学中,也应着重强调四则运算的运算顺序。

本单元的教学,分数乘法解决问题也是一个重点内容。在帮助学生分析题意时,学生如果会画线段图,对于理解题意会有很大的帮助。但可能是由于在五年级时,比较少要求学生画出线段图,根据线段图理解题意。因此当六年级明确要求要根据题意画出线段图时,学生刚开始时很不习惯,画出的线段图也不能很好的反应题意,对于这一方面,教学时需要再进行加强,因为这对于提高学生分析问题,解决问题的能力将会有很大提高。而下一单元的教学如果学生能根据题意画出合适的线段图,对正确解答问题将会有很大的帮助。

此外,在教学中注重对单位1的理解,重点放在在应用题中找单位1的量以及怎样找的上面先找出问题中的分率句再从分率句中找出单位1,为以后应用题教学作好辅垫。在以后教学前我还要深钻教材,把握好课本的度,向其他教师请教,取长补短。在课堂上多激发学生的兴趣,课后多与学生沟通,了解他们的学习动态。根据实际情况来教学,提高教学质量。

分数与除法课件 篇2

教学目标

1.使学生掌握列方程解答“已知一个数的几分之几是多少,求这个数”的应用题的解答方法

2.培养学生分析问题、解答问题能力,以及认真审题的良好习惯.

教学重点

找准单位“1”,找出等量联系.

教学难点

能正确的分析数量联系并列方程解答应用题.

教学过程

一、复习、引新

(一)确定单位“1”

1.铅笔的支数是钢笔的 倍.

2.杨树的棵数是柳树的 .

3.白兔只数的 是黑兔.

4.红花朵数的 相当于黄花.

(二)小营村全村有耕地75公顷,其中棉田占 .小营村的棉田有多少公顷?

1.找出题目中的已知条件和未知条件.

2.分析题意并列式解答.

二、讲授新课

(一)将复习题改成例1

例1.小营村有棉田45公顷,占全村耕地面积的 ,全村的耕地面积是多少公顷?

1.找出已知条件和问题

2.抓住哪句话来分析?

3.引导学生用线段图来表示题目中的数量联系.

4.比较复习题与例1的相同点与不同点.

5.教师提问:

(1)棉田面积占全村耕地面积的 ,谁是单位“1”?

(2)如果要求全村耕地面积的 是多少,应该怎样列式?(全村耕地面积× ).

(3)全村耕地面积的 就是谁的面积?(就是棉田的面积)

解:设全村耕地面积是 公顷.

答:全村耕地面积是75公顷.

6.教师提问:应怎样进行检验?你还能用别的方法来解答吗?

(1)把 代入原方程,左边 ,右边是45,左边=右边,所以 是原方程的解.)

(公顷)

(根据棉田面积和 是已知的,全村耕地面积是未知的,根据分数除法意义,已知两个因数的积与其中一个因数,求另一个因数应该用除法计算.)

(二)练习

果园里有桃树560棵,占果树总数的 .果园里一共有果树多少棵?

1.找出已知条件和问题

2.画图并分析数量联系

3.列式解答

解1:设一共有果树 棵.

答:一共有果树640棵.

解1: (棵)

(三)教学例2

例2.一条裤子75元,是一件上衣价格的 .一件上衣多少钱?

1.教师提问

(1)题中的已知条件和问题有什么?

(2)有几个量相比较,应把哪个数量作为单位“1”?

2.引导学生说出线段图应怎样画?上衣价格的`

3.分析:上衣价格的 就是谁的价钱?(是裤子的价钱)谁能找出数量间相等的联系?(上衣的单价× =裤子的单价)

4.让学生独立用列方程的方法解答,并加强个别辅导.

解:设一件上衣 元.

答:一件上衣 元.

5.怎样直接用算术方法求出上衣的单价?

(元)

6.比较一下算术解法和方程解法的相同之处与不同之处.

相同点:都要根据数量间相等的联系式来列式.

不同点:算术解法是按照分数除法的意义直接列出除法算式;而方程解法则要先设未知数,再按照等量联系式列出方程.

三、巩固练习

(一)一个修路队修一条路,第一天修了全长 ,正好是160米,这条路全长是多少米?

提问:谁是单位“1”?数量间相等的联系式是什么?怎样列式?

(米)

(二)幼儿园买来 千克水果糖,是买来的牛奶糖的 ,买来牛奶糖多少千克?

(三)新风小学去年植树320棵,相当于今年植树棵数的 .今年、去年共植树多少棵?

1.演示:分数除法应用题

2.列式解答

四、课堂小结

这节课我们学习了列方程解答分数除法应用题的方法.这类题有什么特点?解题时分几步?

五、课后作业

(一)一桶水,用去它的 ,正好是15千克.这桶水重多少千克?

(二)王新买了一本书和一枝钢笔.书的价格是4元,正好是钢笔价格的 .钢笔价格是多少元?

(三)一种小汽车的最快速度是每小时行140千米,相当于一种超音速飞机速度的,这种超音速飞机每小时飞行多少千米?

分数与除法课件 篇3

教学内容:

教材第29~30页“分数除法(三)”。

教学目标:

1.能用方程解决简单的有关分数的实际问题,初步体会方程是解决实际问题的重要模型。

2.在解方程中,巩固分数除法的计算方法。

教学重难点:

1.能够体会方程是解决实际问题的重要模型。

2.能够用方程解决实际问题。

教学过程:

一、创设情景激趣揭题

1.出示课外活动情况图问:从图中,你们能获得哪些数学信息呢?

2.引入并板书课题。

二、扶放结合探究新知

1.根据这些数学信息,你能提出哪些数学问题?

2.引导学生逐一解答提出的问题。

3.重点引导:跳绳的有6人,是操场上参加总人数的`2/9,操场上有多少人?该怎样解答?

4.引导观察,找出有什么相同点和不同点?

三、反馈矫正落实双基

1.指导完成P29的试一试的1,2题。

2.你能根据方程

X×1/5=30

编一道应用题吗?

3.请你想一个问题情景,遍一道分数应用题。

四、小结评价布置预习

1.引导小结

通过本节课的学习你有哪些收获?

2.布置预习

整理前面所学知识。

板书设计:

分数除法(三)

跳绳的小朋友有6人,是操场上参加活动总人数的2/9,操场上有多少人参加活动?

参加活动总人数×2/9=跳绳的人数

解:设操场有X人参加活动。

分数与除法课件 篇4

一、说教材

这部分内容,是在学生学过分数除法的意义和计算法则、分数乘法应用题、用方程解“已知一个数的几分之几是多少,求这个数”的文字题的基础上进行教学的。同求一个数的几分之几是多少的应用题一样,本小节的教学的“已知一个数的几分之几是多少,求这个数是多少”的应用题,也是由于分数乘法意义的扩展,相应的除法意义的具体含义也有了扩展,从而产生了新的应用题。这类应用题历来是学生学习的难点。教材安排仍采用先列方程求解的方法,加强了与求一个数的几分之几是多少的乘法应用题的联系,重点帮助学生分析题里的数量关系,特别是对单位“1”的量的准确分析,明确它是已知还是未知,以此来确定怎样用方程解。此外也加强了方程解与算术除法解的联系,使学生通过方程解领会此类应用题的特征,学会用算术法直接列式计算。这样既培养学生灵活解答分数应用题的能力,也有助于发展学生思维的广度。

二、说教学目标和教学重、难点

(一)教学目标(出示多媒体)

1、知识目标:使学生学会用方程解答“已知一个数的几分之几是多少,求这个数的分数除法应用题,并掌握检验的方法。

2、能力目标:培养学生的观察尝试、创新的能力。

3、情感目标:让学生通过两种方法解答应用题的体会,感受获得成功体会的经历,树立学好数学的信心,有良好的数学情操。

(二)教学重点(出示多媒体)

用方程解答“已知一个数的几分之几是多少,求这个数”的分数除法应用题,也是由于分数除法意义的扩展,相应的除法的意义的具体含义也有所扩展,而产生新的应用题。掌握这类应用题的结构特征,能用方程和算术方法解决,是难点所在。

三、说教法、学法。

为了真正地落实新课程标准,把课堂的主动权还给学生,激发学生求知的欲望,使探索发现成为学生自身发展的需要,让他们主动参与探索学习的过程,变教为主为学为主,提高获取知识的本领,因此本节课我主要采用自主探索的方法进行教学,从而达到教是为了不教的目的`。六年级学生已具备了较强的动手操作能力和观察推理能力,并且仍具有好玩、好奇的特征,因此我主要指导学生采取以下的学法,使学生不仅“学会”,更要“会学”。以分组合作的形式,充分调动学生的感官,让学生积极主动地参与知识的产生和发展过程,有充分的时间讨论、思考,自己主动的获取知识,获得成功的体验,感到学习带来的快乐,真正实现教师角色的转变,使学生成为课堂的主人。

四、说教学过程

(一)引出新知

好的开始是成功的一半。新课的引入是课堂教学的重要环节,是一堂课成功的起点。

第一个环节:复习旧知,促进迁移

该环节主要复习与新知有密切联系的旧知,为新知的探究铺路搭桥,激发学生探究新知的欲望,调动学生的学习积极性,设计如下:

1、根据题意写出下面的数量关系。

共三个小题,让学生思考后口答,教师板书数量关系。

2、出示与例题有关的分数乘法应用题。学生练习后,提问:这道题为什么用乘法计算?怎样用图表示已知条件和问题,把谁看作单位“1”?

第二个环节:创设情境,探究新知

对小学生来说,通过自己的探索获取新知,就是一种再创造,第二个环节的教学,我设计如下层次展开:

第一层次:独立探索

出示例3后,激励:老师相信同学们一定会解决这个难题,开始行动吧!先放手让学生尝试列式计算。教师提示可根据复习题的数量关系式,用未知数X帮助自己解这道题。

第二层次:合作探索

在学生计算出例3的结果后,再组织学生分组合作,讨论交流是怎么做的?为什么这样做?我做得对吗?存在什么疑问?

在此基础上,教师引导学生学习如何画图表示题意,找数量关系,根据数量关系列方程。该环节是学生学习时的难点所在,只有让学生深入理解题意,了解此类题型的结构特征,把握题中所含的数量关系,才能真正把知识内化为能力,做到举一反三,运用自如。我如此设计,正基于此。这样做既培养了学生的团结合作的精神,又培养了学生的分析推理调整的能力。

第三层次:尝试练习

让学生独立完成教材117页的第3题,个别学生板演,教师在学生完成后集体点评,强调学习的难点。

第三个环节:变式练习,巩固深化

练习的设计要抓基础知识与发展创新能力紧密结合起来,以达到发展思维,形成技能的目标。在此环节我设计了如下练习:

1、定位练习。

仿照例3出示类似的两道应用题,要求学生读题,画图,深入理解题里的数量关系,列出数量关系式。强化难点,形成技能。

2、提高题:同来互相编题,互相解答。

通过以上练习,促使学生将新的知识溶入到已有认知结构中,以利于更好的迁移和运用。

第四个环节课堂作业反馈信息

完成课本练习二十三第4-7题

(二)说“诱思探究”在本节课的具体体现

1、以学生为主体,教学中多次引导学生尝试练习,引导学生把旧知与新知进行对比;引导学生自主探索,亲身体验,切实把学生推向学习探索的第一线。体现了“诱思探究”对当代课堂教学的要求。

2、设计多层次,多形式的练习,促使知识的形成和内化。教学中,我做到复习铺垫练,新知尝试练,难点强化练,是练习面向全体学生,人人参与,全员动手,从而使学生的创新能力培养得到了落实。

五、说板书设计

分数除法应用题

例3:白海货运码头有一批货物,运走了,还剩240吨,这批货物原有多少吨?运走了剩下240吨?

(一)解:设这批货物原有X吨。

(二)240÷(9-5)×9

X—X=240=

X=240=

我这样板书,对启迪学生思维,开发学生智力,增强学生的记忆,加深对所学的知识的理解,都起到了“画龙点睛”的作用。

分数与除法课件 篇5

一.说教材

我说课的内容是人教版课程标准实验教科书六年级上册的分数除法单元中的例1和例2。例1是分数除法的意义认识,例2是分数除以整数的计算。在这之前学生已经掌握了整数除法的意义和分数乘法的意义及计算,而本课的学习将为统一分数除法计算法则打下基础。

例1先是对整数除法意义的回顾,再由100克=1/10千克,从而引出分数乘除法算式,通过类比使学生认识到分数除法的意义与整数除法的意义相同,都是‘已知两个因数的积和其中一个因数,求另一个因数的运算’。例2是分数除以整数的计算教学,意在通过让学生进行折纸实验、验证, 引导学生将‘图’和‘式’进行对照分析,从而发现算法,感悟算理,同时也初步感受数形结合的思想方法。

根据刚才对教材的理解,本节课的教学目标是:

1、通过实例,使学生理解分数除法的意义与整数除法的意义是相同的。

2、动手操作,通过直观认识使学生理解分数除以整数,引导学生正确地总结出计算法则,能运用法则正确地进行计算。

3、经历观察、猜测、实验、验证和归纳的过程,感受数形结合的思想方法,并从中发展抽象思维能力。

本课的重点是理解分数除法的意义和分数除以整数的计算方法;

本课的难点是分数除法一般算法的理解。这是因为要将除以一个数转化为乘以它的倒数,在运算形式上由除法转化为乘法,变化较大,而学生往往由于思维的定势,一时不容易接受。所以本课的关键是如何引导学生在实验和验证中自主体验和感悟。

二.说教法、学法

为了达成教学目标,本课的教学必须贯彻以学生为主体,坚持启发与发现法相结合的教学方法,引导学生大胆猜想,提出有价值的问题,让学生的思维活动得到有效的提升,动手实践,在体验中、在交流中发现规律。

学习方法上强调以探究学习法和动手操作法为主。认知结构理论告诉我们,学习是学生积极主动的内化过程。只有通过主动参与获得的知识,才是有意义的。因此,在重难点的学习上,通过折纸实验与验证,数形结合,从而实现真正的理解。

三.说教学过程

开课,就对前一单元所学的分数乘法的计算和一个数乘分数的意义进行复习,目的在于为教学分数除以整数的计算方法打下基础,因为分数除以整数就等于这个分数的几分之一,根据一个数乘分数的意义,就用分数乘几分之一就可以得到结果,而对于分数除法的意义,就直接利用例1的素材导出整数除法的意义再迁移到分数除法的意义。

(一) 问题创境,对比迁移,理解分数除法的意义。

在教学例1时,我没有直接把教材中的三个问题端出来,而是让学生通过教师给出的信息来提出数学问题,学生编出乘法问题并列式解答后,问学生:你能根据这个乘法问题编出两个除法问题吗?然后再一一列式解答,再通过对这三个算式的观察比较,得到整数除法的意义。这样安排教材,我的理解是:如果直接将素材一一呈现出来,感觉很单调泛味生硬,不能留住学生的注意力和激起学生学习的兴趣,对思维活动就是一种压抑,反过来我这样安排,感觉是把静态的教材动态的出现在学生面前,利用素材自问自答,对学生来说是一次有价值有效的思维活动,对学生的思维能力应该是有一个提升的,同时问题也可以激发学生学习数学的兴趣,吸引学生的注意力。

然后指出问题中是以克为单位,如果以千克为单位,100克应该怎么改写?改写后,算式应该怎么列?后面两题中的单位也改写了,又怎么列式计算?用一系列的问题,迁引出分数乘除法的`算式,再通过对分数乘除法算式的仔细观察,观察时引导学生对照整数乘除法的算式,找到之间的共同点,从而得到分数除法的的意义与整数除法的意义相同,我这样教学的想法是:第一因为问题更有挑战性而能更有效激发学生的兴趣;第二锻炼提高学生的观察比较事物的能力;第三通过比较自然得出分数除法的的意义与整数除法的意义相同,让学生有种水到渠成的感觉,体味到在数学中知识是存在相互联系的。

在完成做一做中,学生快速回答了2/3×4=8/3 8/3÷4=( ) 8/3÷2/3=( )的结果后,问:你怎么这么快就得到结果了呢?这个问题能更好让学生利用除法的意义来解决问题,从而加深对除法意义的理解。

分数与除法课件 篇6

教材分析:

本节课是在学生已掌握分数除法的意义,分数乘法应用题以及用方程解已知一个数的几分之几是多少,求这个数的文字题的基础上进行教学的,通过教学使学生理解已知一个数的几分之几是多少,求这个数的应用题是求一个数的几分之几是多少的应用题的逆解题,从而认识到乘、除法之间的内在联系,也突出了分数除法的意义,本课教学的重点是数量关系的分析,判断哪个量是单位“1”,难点是用解方程的方法解答分数除法应用题.

教学要求:

1、使学生认识分数除法应用题的特点,能根据应用题的特点理解解题思路和解题方法,学会解答已知一个数的几分之几是多少求这个数的应用题。

2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。

教学重难点:

分数除法应用题的特点及解题思路和解题方法。

教学过程:

一、谈话激趣,复习辅垫

1.师生交流

师:同学们,你们知道在我们体内含量最好多的物质是什么吗?(水)

对,水是我们体内含量最多的物质,它对我们人体是至关重要的,是构成我们人体组织的主要成分。那么你们了解体内水分占体重的几分之几吗?

师:老师查到了一些资料,我们一起来看一下。(课件出示)

2.复习旧知

师:现在你们知道了吧!同学们如果告诉你们,我的体重是50千克,你们能很快算出我体内水分的质量吗?

学生回答后说明理由。

师:算一算你们自己体内水分的质量吧!

生答

师:一儿童的体重是35千克,你们能帮他算出他体内水分的质量吗?你们都是怎么算出来的呢?

生回答后出示:儿童的体重× 5(4)=儿童体内水分的重量

35× 5(4)=28(千克)

师:谁还能根据另一个信息写出等量关系式?

成人的体重× 3(2)=成人体内的水分的重量

2.揭示课题

师:同学们以前的知识学得可真好,如果老师告诉你们小朋友们体内有28千克水分,你们能算出他的体重吗?这就是我们今天要来研究的分数除法应用题。

二、引导探究,解决问题

1.课件出示例题。

2.合作探究

师:同桌互相商量一下,要解决这个问题,数量关系是怎样的?用自己喜欢的方式把它表示出来并解答出来。

3.学生汇报

生1:根据数量关系式:儿童的体重× 5(4)=儿童体内水分的重量,再根据关系式列出方程进行解答。(师随着学生的发言随机出示课件)

生2:直接用算术方法解决的,知道体重的5(4)是28千克,就可以直接用除法来做。

28÷ 5(4)=35(千克)

4.比较算法

比较算术做法与方程做法的优缺点?

(让学生进行何去讨论,通过比较使学生看到列方程解,思路统一,便于理解。)

5.对比小结

和前面复习题进行比较一下,看看这题和复习题有什么异同?

(1)看作单位“1”的数量相同,数量关系式相同。

(2)复习题单位“1”的量已知,用乘法计算;

例1单位“1”的量未知,可以用方程解答。

(3)因为它们的数量关系式相同,所以这两种题目的解题思路是一致的,都是先找出把哪个数量看作单位“1”,根据单位“1”是已知还是未知,再确定是用乘法解还是方程解。

6.试一试:一条裤子的价格是75元,是一件上衣的3(2)。一件上衣多少元?

问:这道题已知什么?求什么?谁和谁在比?哪个量是单位“1”?

单位“1”是已知还是未知的?

根据学生回答画线段图。

根据题中的数量关系找学生列出等量关系式。

学生根据等量关系式列方程解答(找学习板演,其它学生在练习本上做)。

师:这道题你还能用其它方法解答吗?

(根据分数除法的意义,已知两个因数的只与其中一个因数,求另一个因为用除法计算。)

三、联系实际,巩固提高

1.(投影)看图口头列式,并用一句话概括题中的等量关系。

2.练一练:

(1)、小明体重24千克,是爸爸体重的3/8,爸爸体重是多少千克?

(2)、一个修路队修一条路,第一天修了全长的5(2),正好是160米,这条路全长是多少米?

3.对比练习

(1)一条路50千米,修了5(2),修了多少千米?

(2)一条路修了50千米,修了5(2),这条路全长是多少千米?

(3)一条路50千米,修了5(2)千米,还剩多少千米?

四、全课小结畅谈收获

①今天这节课我们研究了什么问题?

②解答分数除法应用题的关键是什么?

③单位“1”是已知的.用什么方法解答?单位“1”是未知的可以用什么方法解答。

教师强调:分析应用题数量关系比较复杂,因此在解答分数应用题时要注意借助线段图来分析题中的数量关系,解答后要注意检验。

设计意图:

一、从生活入手学数学。

《国家数学课程标准》指出:“数学教学要从学生的生活经验和已有的知识背景出发,向他们提供充分的从事数学活动和交流的机会。”教学一开始教师就改变由复习旧知引入新知的传统做法,直接取材于学生的生活实际,用介绍该班的情况引发学生参与的积极性,使学生感到数学就在自己的身边,在生活中学数学,让学生学习有价值的数学。

二、关注过程,让学生获得亲身体验。

教学中,为让学生认识解答分数乘法应用题的关键是什么时,我故意不作任何说明,通过省略题中的一个已知条件,让学生发现问题,亲自感受应用题中数量之间的联系,想方设法让学生在学习过程中发现规律。从而让学生真切地体会并归纳出:解答分数乘法应用题的关键是从题目的关键句找出数量之间的相等关系。

在教学中体现了“自主、合作、探究”的教学方式。以往分数除法应用题教学效率并不高,究其原因,主要是教师教学存在偏差。教师喜欢重关键词语琐碎地分析,喜欢用严密的语言进行严谨地逻辑推理,虽分析得头头是道,但容易走两个极端,或者把学生本来已经理解的地方,仍做不必要的分析;或者把学生当作学者,对本来不可理解的,仍做深入的、细碎的剖析,这样就浪费了宝贵的课堂时间。教学中我把分数除法应用题与引入的分数乘法应用题结合起来教学,让学生通过讨论交流对比,亲自感受它们之间的异同,挖掘它们之间的内在联系与区别,从而增强学生分析问题、解决问题的能力,省去了许多烦琐的分析和讲解。在教学中准确把握自己的地位。我想真正把自己当成了学生学习的帮助者、激励者和课堂生活的导演,凸显学生的主体地位,体现了生本主义教育思想。

三、多角度分析问题,提高能力。

在计算应用题的时候,我通过鼓励学生对同一个问题积极寻求多种不同的解法,拓展学生思维,引导学生学会多角度分析问题,从而在解决问题的过程中培养学生的探究能力和创新精神。另外,改变以往只从例题中草草抽象概括数量关系,而让学生死记硬背,如“是、占、比、相当于后面就是单位1”;“知1求几用乘法,知几求1用除法”等等的做法,充分让学生亲身实践体验,让学生在探究中加深对这类应用题数量关系及解法的理解,提高能力,为学生进入更深层次的学习做好充分的准备。

四、有破度有层次地设计练习,提高学生的思维能力。

教案还精心设计了练习题,通过看图,找等量关系,巩固了学生的分析思路;通过三类题的对比练习,使学生掌握了三类题的异同点,增强了学生的辨析能力,对于学生分析和解题起到了很好的推动作用,使学生无论遇到什么题,都会做到:抓住特点,学而不乱。

分数与除法课件 篇7

教学目标

1.使学生理解两个整数相除的商可以用分数来表示.

2.明确分数与除法的关系,加深学生对分数意义的理解.

教学重点

理解、归纳分数与除法的关系.

教学难点

用除法的意义理解分数的意义.

教学步骤

一、铺垫孕伏.

1.读题说得数.

3.2+1.68 0.8×0.5 14-7.4 0.3÷1.5 4.8×0.02

7.8+0.9 1.53-0.7 0.35÷15 0.4×0.8 0.8-0.37

2.口述 表示的意义.

3.列式计算.

(1)把40棵树苗平均分给5个小组栽,每组栽多少棵?

(2)把8米长的钢管平均分成2段,每段长多少米?

二、探究新知.

1.新课导入.

出示例2:把1米长的钢管平均截成3段,每段长多少米?

板书: 1÷3

教师提问:1÷3的结果能用准确的数表示出来吗?怎么办?学习了分数与除法的关系就明白了.(板书、分数与除法)

2.教学例2.

(1)从分数的意义上理解1÷3,即把1米长的钢管着成单位“1”,把单位“1”平均分成3份,表示这样一份的数,可用分数 来表示,1米的 就是 米.(板书 米)

(2)学生完整叙述自己想的过程.

(3)反馈练习.

①把1米长的钢管,平均分成8段,每段长多少?

②把1块饼平均分给5个同学,每个同学得到多少块?

3.教学例3.

出示例3:把3块饼平均分给4个孩子,每个孩子分得多少块?

(1)读题列式: 3÷4

(2)动手操作:怎样把3块饼平均分给4个同学呢?

(3)学生交流.

甲生:先把每个圆剪成4个 块,然后把12个 平均分成4份,再把3个 拼在一起,每份是 块.

乙生:把3个圆放在一起,平均分成4份后,剪下其中的一份,再把1份中的3个 拼在一起,得到每个分 块.(在3÷4后板书 块)

(4)看图根据乙生分饼的过程说出 表示的意义.

①乙生把3块饼平均分成了4份,这样的一份是3块饼的 ,即

②甲生把1块饼平均分成了4份,表示这样的3份的数是 .

(5)都是 ,意义有何不同?(结合算式说出 的两种意义)

明确: 表示把3平均分成4份,取其中的1份;

还表示把单位“1”平均分成4份,取这样的3份.

(6)反馈练习:说说下面分数的两种意义

4.归纳分数与除法的关系.

(1)教师提问:怎样用分数来表示整数除法的商呢?

学生归纳:可以用分数表示整数除法的商,用除数做分母,用被除数作分子.也就是说分数既表示分数的意义,又表示整数除法的商.

(板书: )

教师明确:分数是一种数,除法是一种运算,所以确切地说,分数的分子相当于除法的`被除数,分数的分母相当于除法的除数.

(2)讨论:用字母表示分数与除法的关系有什么要求?

(3)反馈练习.

三、全课小结.

通过今天的学习,你明白了什么?

四、随堂练习.

1.填空.

分数可以用来表示除法算式的( ).其中分数的分子相当于( ),分母相当于( ).

2.用分数表示下列各式的商.

4÷5 11÷13 27÷35

9÷9 13÷16 33÷29

3.列式计算.

(1)把5米长的绳子,平均分成12段,每段长多少米?

(2)把一个4平方米的圆形花坛分成大小相同的5块,每一块是多少平方米?

(用分数表示)

(3)小明用15分钟走了1千米路,平均每分走几分之几千米?

五、布置作业.

用分数表示下面各式的商.

3÷4 7÷12 16÷49 25÷24 9÷9

分数与除法课件 篇8

一、说教材

我说课的教学内容是《分数与除法的关系》。

本课时内容是在学生学习了第七册分数的初步认识及上一单元数的整除等知识的基础上来学习的,为下面进一步学习分数与小数的互化、分数的大小比较、分数的基本性质及求一个数是另一个数的几分之几等知识打基础。本课时内容,教材安排了例1、例2两个例题,以引导学生发现、归纳出分数与除法的关系,然后安排了5道练习题(可说说各题意图),通过练习使学生能初步地应用这个关系进行相应的除法计算,以及解决简单的实际问题,巩固所学的新知识,并从中培养学生的探究能力。本课时内容是学生进行除法计算中,商从整数向分数拓展的转折点。(说教材的前后联系、地位作用)

本课时的教学目标,我从知识与技能、数学思考、情感态度方面确定了以下三点:

1、通过学生的合作探究活动,引导学生发现归纳出分数与除法的关系,理解并掌握这个关系。

2、能根据分数与除法的关系,进行基本的除法计算,以及解决一些简单的实际应用问题。

3、培养学生的发现归纳的探究能力以及认真仔细的学习习惯。

我认为本课时的教学重点是引导学生发现、掌握分数与除法的关系。

教学难点是理解分数与除法的关系教学准备:多媒体课件一套、学生课堂作业题纸。

二、说教学方法

新课标指出:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。根据以上分析,我认为本课时的教学以分数的意义、分数单位、等分除法的意义为基点,以直观图(数形结合)为手段,在学生对两个例题的自主探究合作学习中,引导学生发现归纳出分数与除法的关系,然后通过有层次的练习,以及解决简单的实际问题的过程中,进一步巩固对这个关系的掌握,发展学生的计算技能,培养学生的探究能力。

三、说教学过程:

本节课的教学,我设计了以下三个环节。

(一)复习铺垫、引入新课。

可以出示分数,让学生结合生活中的事例说说这个分数表示的意义。这里复习分数的意义、分数单位,主要目的是为下面的探究分数与除法的关系作了知识上铺垫准备。数学学习要让学生利用已有的知识经验,通过自己的探究去学习。本环节的复习可以起到唤起记忆,思维定向的作用。

(二)自主探究、发现关系。

本环节的教学是本节课的重难点所在。课标指出有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。本环节的教学

我设计了以下五步来完成。

第一步

设计了一个准备题“把6米长的铁丝平均截成3段,每段长多少米?”要求学生自己列式计算,并说出列式的依据——总米数÷段数=每段米数(总数÷份数=每份数,这个数量关系也是本课中两个例题的列式依据),搭起解题的框架,以实现解法迁移。

第二步

是教学例1(1),通过改题出示例1(1)“把1米长的铁丝平均截成3段,每段长多少米?”,要求学生尝试列式计算,并说出思考过程,引导学生比较上两题的异同,得出除法计算的结果在不能用整数表示的情况下,可以用分数来表示,通过画图使学生1米的3(1)就是3(1)米即1÷3=3(1)(米)。然后追问:如果把1米长的铁丝平均截成7段、10段,每段长多少米?这里使学生认识到1÷m=m(1),初步感受分数与除法的关系。

第三步

再改题出示例1⑵“把2米长的铁丝平均截成3段,每段长多少米?”要求学生尝试列式计算,请学生动手画一画,想一想你可以怎样来说明这个计算结果是正确的,并能让同学确信、理解。这里是本课学生理解上的一个难点。可以应

用数形结合的思想,充分借助线段图,画一画,移一移,比一比,使学生理解2米的3(1),有2个3(1)米,就是3(2)米,即2÷3=3(2)(米)

第四步

是教学例2“把3块蛋糕平均切成4份,每份是多少块?”,可以通过学具折剪,移拼展示,力求直观形象,使学生理解3块的4(1),有3个4(1)块,就是4(3)块,即3÷4=4(3)(块)。

第五步

是引导发现,得出关系。引导学生仔细观察板书,相一想刚才的学习内容,可以组织学生把自己的发现在四人小组内交流、讨论。从而得出并完善分数与除法的关系。

新课标强调有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。从以上设计,分数与除法的关系的得出,体现了学生是学习的主人,教师是数学学习的组织者、引导者与合作者的教学理念。前面两例的教学其实是为发现归纳分数与除法的关系积累表象,准备素材。所以前面两例的教学不要消耗过多的时间,要发挥教师的主导作用对学生的自主探究过程也要适当的调控。发现归纳分数与除法的关系是本节课的重点,可以组织学生讨论,体现多向互动学习的学习方式。

(三)巩固练习、应用拓展。

数学知识的掌握、数学能力素养的培养形成需要通过练习,通过对所学新知的应用,才能内化和掌握。巩固练习的设计要遵循准对性、层次性、开放性、趣味性、综合性等要求。本课的巩固练习我设计了以下三个层次的练习。

第一层次是让学生用分数表示一组除法算式的商。

第二层次是让学生填空。如除法中的被除数相当于分数中的(),除数相当于分数中的(),除号相当于分数中的(),()不能为零。()÷()=。这里是直接巩固分数与除法的关系。

第三层次是让学生列式计算,解决简单的实际问题。可以出示例如:

①一个正方形的周长是3分米,它的边长是多少分米?(用分数表示)

②小华15分钟走2千米,他平均每分钟走多少千米?(用分数表示)

③把3米长的铁丝平均截成7段,每段长多少米?(用分数表示)

每段占全长的几分之几?

(要求:比较本题两问的区别,明确第一问是根据“总米数÷段数”得到每段数,即3÷7=7(3)米,所求结果表示一个具体的数量,是带单位名称的;第二问是把全长看作单位“1”,把单位“1”7等份中取1份,即1÷7=7(1),所求结果表示部分与总数的分数关系,是根据分数的意义来思考,结果不带单位名称。通过本题使学生辨析清楚分数表示具体数量、表示份数关系的两种意义。)

以怎样来说明这个计算结果是正确的,并能让同学确信、理解。这里是本课学生理解上的一个难点。可以应用数形结合的思想,充分借助线段图,画一画,移一移,比一比,使学生理解2米的3(1),有2个3(1)米,就是3(2)米,即2÷3=3(2)(米)

有理数的乘法课件范例


每个老师都需要在课前有一份完整教案课件,相信老师对要写的教案课件不会陌生。教案是教学手段的增强与创新,好的教案课件是从哪些角度来写的呢?想要更好地掌握这个话题不妨阅读一下“有理数的乘法课件”,别忘了收藏这个网页方便以后查看!

有理数的乘法课件(篇1)

教学目的:

1、要求学生会进行有理数的加法运算;

2、使学生更多经历有关知识发生、规律发现过程。

教学分析:

重点:对乘法运算法则的运用,对积的确定。

难点:如何在该知识中注重知识体系的延续。

教学过程:

一、知识导向:

有理数的乘法是小学所学乘法运算的延续,也是在学习了有理数的加法法则与有理数的减法法则的基础上所学习的,所以应注意到各种法则间的必然联系,在本节中应注重学生学习的过程,多让学生经历知识、规律发现的过程。在学习中应掌握有理数的乘法法则。

二、新课:

1、知识基础:

其一:小学所学过的乘法运算方法;

其二:有关在加法运算中结果的确定方法与步骤。

2、知识形成:

(引例)一只小虫沿一条东西向的跑道,以每分钟3米的速度爬行。

情形1:小虫向东爬行2分钟,那么它现在位于原来位置的哪个方向?相距出发地点多少米?

列式:

即:小虫位于原来出发位置的东方6米处

拓展:如果规定向东为正,向西为负

情形2:小虫向西爬行2分钟,那么它现在位于原来位置的哪个方向?相距出发地点多少米?

列式:

即:小虫位于原来出发位置的西方6米处

发现:当我们把中的一个因数3换成它的相反数-3时,所得的积是原来的积6的相反数-6

同理,如果我们把中的一个因数2换成它的相反数-2时,所得的积是原来的积6的相反数-6

概括:把一个因数换成它的相反数,所得的积是原来的积的相反数

3、设疑:

如果我们把中的一个因数2换成它的相

反数-2时,所得的积又会有什么变化?

当然,当其中的一个因数为0时,所得的积还是等于0。

综合:有理数乘法法则:

两数相乘,同号得正,异号得负,并把绝对值相乘;

任何数与零相乘,都得零。

三、巩固训练:

P52.1、2、3

四、知识小结:

本节课从实际情形入手,对多种情形进行分析,从一般中找到规律,从而得到有关有理数乘法的运算法则。在运算中应强调注意如何正确得到积的结果。

五、家庭作业:

P57.1、2,3

六、每日预题:

1、小学多学过哪些乘法的运算律?

2、在对有理数的简便运算中,一般应考虑到哪些可能的情况?

有理数的乘法课件(篇2)

学习目标:

1、要熟记有理数除法的法则,会进行有理数除法的运算。

2、掌握求有理数倒数的方法,并能熟练地求出一个给定的有理数的倒数。

3、能熟练地进行简单的有理数的加减乘除混合运算。

4、体会比较、转化、分类的思想方法,在探索有理数除法法则时的应有

学习重点:有理数除法的法则及应用;求一个有理数的倒数。

学习难点:在进行有理数除法运算时,能根据题目特点,恰当地选择有理数的除法法则。

学习过程:

一 前置复习 :

1、有理数的乘法法则是:

举例说明。

2、多个有理数乘法:(1)几个不等于0的有理数相乘,积的符号由 决定,当 时积为正;当 时积为负。

(2)几个有理数相乘, ,积就为零。

二 探究新知:(教师寄语: 现实世界中的事物都是既相互联系又可以相互转化的,在数学上加与减,乘与除也是可以相互转化的.)

自学课本58页至59页例4之前的内容,并且认真体会在探索除法与乘法的关系时,用到的比较、转化、分类的思想方法。,一定要熟记:

(1) 有理数除法运算转化为乘法运算的法则:除以一个数,________________________。

____________________。

(2) 有理数的除法法则:两数相除,_____________,_____________,_____________。

0除以任何_______________________________。

(3) 与以前学过的倒数的概念一样,___________两个有理数互为倒数。

如,3与____互为倒数,-6与_____互为倒数,2.25是____的倒数,___是 的倒数。

三 新知应用:

例1、独立完成课本58页例4,然后对比课本上的解答,思考交流:在两个________数相除时,可选择法则(1),在两个_______数相除时,可选择法则(2)

学以致用 计算:

(1) (42)7 (2) ( )( )

例2、计算(1) ( )( )( ) (2) ( )( )

(温馨提示:1、 有理数的乘除混合运算,应把除以一个数转化成乘这个数的倒数,然后统一成乘法来进行计算。2、 加减乘除混合运算的运算顺序和小学一样。)

四 课堂练习:独立完成课本P59练习2,3题。(将完整的计算过程写在下面空白处)

五 达标测试:(独立完成)

1 填空:(1)2 的倒数与 的相反数的积是_______。

(2)(1)(3)( )=______。

(3)两个数的商为正数,那么这两个数一定是_________。

(4)一个数的倒数是它本身,则这个数是____________。

2、计算:(1) (2)

(3)、 (4) ( + )

六 总结反思:

1、说一说:

本节课我学会了 ;

使我感触最深的是 ;

我感到最困难的是 ;

我想进一步探究的问题是 。

2、:评一评

自我评价 小组评价 教师评价

七 布置作业

1(必做题) 课本60页习题A组3,4题。(要求:做在作业本上)

2(选做题) 课本60页习题B组1,2题。(要求:将答案直接写在课本上,明天课堂上用5分钟时间讨论交流)

有理数的乘法课件(篇3)

一、知识与能力

掌握有理数乘法以及乘法运算律,熟练进行有理数乘除运算,发展观察,归纳等方面的能力,用相关知识解决实际问题的能力

二、过程与方法

经历归纳,总结有理数乘法,除法法则及乘法运算律的过程,会观察,选择适当的、较简便的方法进行有理数乘除运算

三、情感、态度、价值观

培养学生学习的自信心,上进心,通过用乘除运算解决简单的实际问题,让学生明确学习教学的目的是学以致用,从而培养学生的主动性、积极性

四、教学重难点

一、重点:熟练进行有理数的乘除运算

二、难点:正确进行有理数的乘除运算

预习导学

通过看课本§1.4的内容,归纳有理数的乘法法则以及乘法运算律

五、教学过程

一、创设情景,谈话导入

我们已经学习了有理数的乘除法,同学们归纳,总结一下有理数的乘法法则以及乘法运算律

二、精讲点拨质疑问难

根据预习内容,同学们回答以下问题:

1.有理数的乘法法则:

(1)同号两数相乘___________________________________

(2)异号两数相乘_____________________________________

(3)0与任何自然数相乘,得____

2.有理数的乘法运算律:

(1)乘法交换律:ab=_________

(2)乘法结合律:(ab)c=_______

(3)乘法分配律:(a+b)c=________

3.有理数的除法法则:

除以一个不等于0的数,等于乘这个数的__________

比较有理数的乘法,除法法则,发现_________可能转化为__________

三、课堂活动强化训练

某公司去年1~3月份平均每月亏损1.5万元,4~6月份平均每月盈利2万元,7~10月份平均每月盈利1.7万元,11~12月份平均每月亏损2.3万元,这个公司去年总的盈亏情况如何?

注:学生分组讨论练习,教师在巡视过程中,引导、辅导部分基础较差的学生后,各小组进行交流,总结

四、延伸拓展,巩固内化

例2.(1)若ab=1,则a、b的关系为()

(2)下列说法中正确的个数为( )

0除以任何数都得0

②如果=-

1,那么a是非负数若若⑤(c≠0)⑥()⑦1的倒数等于本身

A 1个B 2个C 3个D 4个

(3)两个不为零的有理数相除,如果交换被除数与除数的关系,它们的商不变( )

A两数相等B两数互为相反数

C两数互为倒数D两数相等或互为相反数

有理数的乘法课件(篇4)

教学目标

1.理解有理数乘法的意义,掌握有理数乘法法则中的符号法则和绝对值运算法则,并初步理解有理数乘法法则的合理性;

2.能根据有理数乘法法则熟练地进行有理数乘法运算,使学生掌握多个有理数相乘的积的符号法则;

3.三个或三个以上不等于0的有理数相乘时,能正确应用乘法交换律、结合律、分配律简化运算过程;

4.通过有理数乘法法则及运算律在乘法运算中的运用,培养学生的运算能力;

5.本节课通过行程问题说明有理数的乘法法则的合理性,让学生感知到数学知识来源于生活,并应用于生活。

教学建议

(一)重点、难点分析

本节的教学重点是能够熟练进行有理数的乘法运算。依据有理数的乘法法则和运算律灵活进行有理数乘法运算是进一步学习除法运算和乘方运算的基础。有理数的乘法运算和加法运算一样,都包括符号判定与绝对值运算两个步骤。因数不包含0的乘法运算中积的符号取决于因数中所含负号的个数。当负号的个数为奇数时,积的符号为负号;当负号的个数为偶数时,积的符号为正数。积的绝对值是各个因数的绝对值的积。运用乘法交换律恰当的结合因数可以简化运算过程。

本节的难点是对有理数的乘法法则的理解。有理数的乘法法则中的“同号得正,异号得负”只是针对两个因数相乘的情况而言的。乘法法则给出了判定积的符号和积的绝对值的方法。即两个因数符号相同,积的符号是正号;两个因数符号不同,积的符号是负号。积的绝对值是这两个因数的绝对值的积。

(二)知识结构

(三)教法建议

1.有理数乘法法则,实际上是一种规定。行程问题是为了了解这种规定的合理性。

2.两数相乘时,确定符号的依据是“同号得正,异号得负”.绝对值相乘也就是小学学过的算术乘法.

3.基础较差的同学,要注意乘法求积的符号法则与加法求和的符号法则的区别。

4.几个数相乘,如果有一个因数为0,那么积就等于0.反之,如果积为0,那么,至少有一个因数为0.

5.小学学过的乘法交换律、结合律、分配律对有理数乘法仍适用,需注意的是这里的字母a、b、c既可以是正有理数、0,也可以是负有理数。

6.如果因数是带分数,一般要将它化为假分数,以便于约分。

有理数的乘法课件(篇5)

各位专家,各位同仁:;大家好!;我说课的课题是北师大版《数学》七年级上册教材中的;

一。教材分析;

(一)教材的地位与作用;本课时既是有理数加减混合运算的自然延续,又是后面;

(二)教学目标分析;

1、知识与技能目标:借助实际情境,使学生理解有理;

2、方法与过程目标:让学生经历有理数乘法法则的探;

3、情感﹑态度与价值观目标:通过学习

2.8. 有理数的乘法(第一课时)

各位专家,各位同仁 :

大家好!

我说课的课题是北师大版《数学》七年级上册教材中的第二章第8节"有理数的乘法".第一课时。我将从以下四个方面谈一谈这节课的教学设计。

一。教材分析

(一)教材的地位与作用

本课时既是有理数加减混合运算的自然延续,又是后面学习有理数除法、乘方运算的基础,还是今后学习代数式运算﹑方程﹑函数等内容的必要知识储备。因此本节课的学习有着承上启下﹑铺路架桥的作用。学好这部分内容,对于学生理解"类比和化归"这些重要数学思想,应用"不完全归纳法",发展学生数学探究能力,增强学生学习数学的信心都具有十分现实的意义。

(二)教学目标分析

1、知识与技能目标:借助实际情境,使学生理解有理数乘法的意义,掌握有理数的乘法法则,并运用法则解决实际问题。

2、方法与过程目标:让学生经历有理数乘法法则的探索过程,发展学生观察、猜想、归纳、验证、运算的能力,让学生领会类比、数学建模,以及从特殊到一般的数学思想方法。

3、情感﹑态度与价值观目标:通过学习,激发学生的学习动机和好奇心理,锻炼学生的思维意志品质,张扬学生个性,培养学生科学严谨的学习态度,使学生树立正确的价值观、人生观。

(三)教学重、难点及成因分析

教学重点定为:掌握有理数的乘法法则,会进行有理数的乘法运算。

教学难点定为:有理数的乘法法则的探索和对法则的理解。

为了突破教学重难点,教学的关键是运用猜想验证的方式,利用水位变化的直观性,帮助学生掌握有理数乘法运算法则。

二、教法、学法分析

(一)、学情分析

1、学生在小学已经明确正数乘法的意义和正数之间、正数与零之间的乘法运算法则。

2、通过对有理数加法运算的学习,学生对负数参与运算有了一定的认识,已经明确计算时要先确定和的符号,再确定和的绝对值的基本方法。

(二)、教法分析

《课程标准》中明确指出:学生是学习的主人,教师是学习的组织者、引导者与合作者。基于以上理念,结合本节课内容及学生的实际情况,教学中我主要采用"引导——探究法"组织教学。

(三)、学法指导

本节课我鼓励学生采用自主探索与合作交流相结合的方式进行学习,让学生亲身体验知识的发生、发展、发现的全过程,增强学生的参与意识,促进学生对知识的理解和掌握,真正提升学生的数学素养。

三、教学过程分析

我根据数学课程"倡导积极主动,勇于探索的学习方式"的基本理念,将本节课的基调定为对于创设情境,引入课题,我考虑了两种方式:

1.直接提出问题:你能给出下列各式的结果吗?

(1)2×3=____;(2)(-2)×(-3)=____;(3)2×(-3)=____;(4)0×(-4)=____. 这种引入由学生所熟悉的正数乘法运算引入未知的负数参与的乘法运算,能做好中学与小学知识的衔接,激起学生认知上的冲突。但它较难让学生快速进入学习情境。

2、通过演示实际生活中甲,乙两水库的水位上升或下降的情景,得到乘法算式,以次引入课题。这种引入符合七年级学生形象思维能力强的认知特点,易激发学生的学习兴趣,在复习乘法意义的同时,也为后面利用水位变化研究课题打下基础。因此我选择第二种方式引出课题。

(二)自主探究,归纳结论

根据学生思维活跃,善于交流的特点,本着由浅入深,由易到难,由形象思维过渡到抽象思维的原则,我设计了:出示问题,建立模型;独立思考,探索规律; 归纳总结,得出法则 这样三个层次,来逐步展开对课题的探究。以便更好的展示知识的形成过程,突出重点,突破难点;减轻学生对法则的理解难度。

1.出示问题 ,建立模型

问题1. 议一议

(-3)×4= -12

(-3)×3=

(-3)×2=

(-3)×1=

在出示问题,建立模型这一环节,先提出问题1. 议一议,我要求学生按6人一组,进行探究活动,在充分合作并取得一致意见的基础上,然后由学生主动进行展示。学生可能会从以下两个方面进行回答。1.把乘法转化成加法(链接);2.利用乙水库水位的变化来说明。点评时,教师通过动画演示验证学生结论的正确性。

问题2:①你知道(-3)×0的结果吗?

②如何用水位的变化来解释(-3)×0= 0 ?

通过演示,学生很容易就能看出当时间没有变化时,水位不会发生变化。

问题3.认真观察上述5个算式,其中包含什么规律?

此处是本节课的一个难点,学生要得到答案,比较困难。我将从以下几个方面对学生进行引导。1.观察算式的左边,找出变化的因数和不变的因数;2.观察算式的右边,找出积的变化规律;3.要求学生在独立思考之后,将两边的变化规律总结成一个结论。即:一个因数不变,另一个因数每次减小1.算式右边的积每次增加-3.

上述三个问题的解决,渗透了高效课堂教学的理念,让学生通过自主交流,自我展示,达到理解知识、培养能力、张扬个性的效果。学生通过独立思考,自己发现规律,也能提高学习数学的兴趣,同时也为解决下面的问题4打下坚实的基础。

2. 独立思考,探索规律

问题4.猜一猜

(-3)×(-1)=

(-3)×(-2)=

(-3)×(-3)=

(-3)×(-4)=

由于有了上面的铺垫,学生很容易猜出这4个算式的结果,但是为什么是这四个结果,学生却并不明白,为突破这一关键点,我给出了教科书上的一个规定: 水位上升为正,水位下降为负 ; 为区分时间,我们规定:"现在前"为负,"现在后"为正 .根据上述规定,我先让学生说一说这4个算式的实际意义,如(-3)×(-1)表示乙水库一天前的水位等。接着让学生看动画演示,然后再让他们充分发表自己的意见,在争辩讨论中弄清楚此时各种情况下水位的总变化量,最后达成共识。

这样做的目的为了让学生知其然更知其所以然,感受数学结论的合理性。

问题5.你能猜出 3×(-2)的结果,并解释理由吗?

通过与第四个问题进行类比,学生很容易得出此题答案。这里补充正数与负数相乘,是为后面学生归纳有理数的乘法法则打下伏笔。

本环节我以学生的发展为本,让学生经历探索的过程,培养学生自主学习的能力。通过文字的叙述和算式的有机结合,使得乘法结果的得出自然合理,更有助于一般结论的归纳。课件动画效果可以使情境更生动,有助于学生思考问题得出结论,使学生由感性认识上升到理性思维。

接着我引导学生进入第三步:归纳总结,得出法则。

3、归纳总结,得出法则

完成问题6后,学生对有理数的乘法法则已经到了呼之欲出的地步,于是我提出了问题7:

由于学生对负数的意义理解不深,()计算时很容易算对绝对值的乘积而忽视了符号问题,或者,注意了符号而又忘记了把绝对值相乘,于是我设置了做一做及问题8,让学生清楚运算时的几个步骤。并引导学生进行归纳:有理数相乘,先确定积的符号,再决定积的绝对值。

通过层层设置的问题,我引导学生讨论发现,归纳结论。这些环节展示了知识的形成过程,培养了学生探究能力,锻炼了学生概括表述能力。在探究归纳的过程中,也渗透了类比和分类讨论、从特殊到一般、数学建模的思想方法。

(三)知识运用,加深理解

1、运用法则进行计算

在这一环节,为了提高学生计算的准确度,培养学生的运算能力,并为多个有理数的乘法及乘除法混合运算奠基,在选题时,例1安排了分数、小数、带分数及整数参与运算。在(2)中设计了整数与小数相乘、(4)设计了小数与带分数相乘,(5)设计了有理数的连乘,在学生解题的基础上,都分别总结了两种计算方法;并由学生总结解题的方法和技巧:当因数是小数时,一般可化为分数再相乘;当因数是带分数时,一般要化为假分数再相乘,有理数的连乘

可以两两相乘,也可以先确定积的符号,再确定积的绝对值。同时通过(1)的计算要让学生明白:乘积是1的两个数互为倒数。

2、运用法则解决实际问题

有理数的乘法运算法则只是计算工具,更主要的还是运用它来解决生活中的实际问题,因此我设计了例2,这个问题的解决对学生来说,难度不大,因此我打算让学生上黑板演板。通过这个问题的解决,

让学生体验到数学来源于生活又服务于生活的数学理念,培养学生的应用意识。

两个例题的解决采取了师生互动方式,评价采取生生评价的方式,提高了学生学习兴趣,培养了学生严谨的数学思维习惯。

(四)变式训练,拓展思维。

通过变式训练,可加深学生对法则的理解,使学生的学习巩固过程成为再深化、再创造的过程。开放性的试题,让不同学生的思维潜能得到展示,体现了"不同的人在数学上得到不同的发展"的理念。

(五)回顾反思,感悟提升。

在课堂临近尾声时,我鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价,让学生对所学知识有比较清晰的轮廓体系,也让学生形成善于反思、总结的学习习惯。

(六)布置作业,延伸知识。

数学课程提出:人人学有价值的数学,人人获得必须的数学,不同的人在数学上得到不同的发展。因此我设计了A、B两组作业:

分层设置作业,兼顾了不同学生的学习水平,关注了学生的个体差异。设置开放性的作业,充分挖掘了学生的学习潜力,锻炼了学生的思维意志品质,同时也让学生的学习延伸到课外,使他们学会时刻"用数学的眼光"来观察生活。

四、教学反思

最后,对这节课我做了如下的反思:

在教学过程中,我始终坚持以观察为起点,以问题为主线,以能力培养为核心的宗旨;遵照学生为主体,教师为主导,训练为主线的教学原则;遵循由已知到未知、由浅入深、由易到难的认知规律,采用诱思探究教学法,通过课件和师生的双边活动,使学生的知识和能力得到提高。通过创设、引导、渗透、归纳等活动随时搜集和评价学生的学习情况,及时反馈调节,查漏补缺,让全体学生参与教学的全过程,从而更好的促进学生全面、持续、和谐的发展。

我的说课到此结束,恳请各位专家批评,指正。谢谢大家!

有理数的乘法课件(篇6)

积的符号 ;

积的符号 。

2完成下面填空:

(2)(-10)×(- )×(-0.1)× 6 =________

(3)(-10)×(- )×(-0.1)×(-6)=________

(4)(-5)×(- )× 3 ×(-2)× 2=________

(5)(-5)×(-8.1)× 3.14 × 0=________

(1)8+(-0.5)×(-8)× (2)(-3)× ×(- )×(- )

(3)(- )× 5 × 0 ×(- ) (5) (-6)×(+37) × (- )×(- )

4.计算:(1)(-4)×(-7)×(-25) (2)(- )×8×(- )

(3)(-0.5)×(-1)× ×(-8) (4)(-5)-(-5)× ×(-4).

(5)(-3)×(7)×-3 ×(-6) (6)(-1)×(-7)+6×(-1)×

有理数的乘法课件(篇7)

目标:

1、知识与技能

使学生理解有理数乘法的意义,掌握有理数的乘法法则,能熟练地进行有理数的乘法运算。

2、过程与方法

经历探索有理数乘法法则的过程,理解有理数乘法法则,发展观察、探究、合情推理等能力,会进行有理数和乘法运算。

重点、难点:

1、重点:有理数乘法法则。

2、难点:有理数乘法意义的理解,确定有理数乘法积的符号。

过程:

一、创设情景,导入新

1、由前面的学习我们知道,正数的加减法可以扩充到有理数的加减法,那么乘法是可也可以扩充呢?

乘法是加法的特殊运算,例如5+5+5=5×3,那么请思考:

(-5)+(-5)+(-5)与(-5)×3是否有相同的结果呢?本节我们就探究这个问题。

3、在一条由西向东的笔直的马路上,取一点O,以向东的路程为正,则向西的路程为负,如果小玫从点O出发,以5千米的向西行走,那么经过3小时,她走了多远?

二、合作交流,解读探究

1、小学学过的乘法的意义是什么?

乘法的分配律:a×(b+c)=a×b+a×c

如果两个数的和为0,那么这两个数 互为相反数 。

2、由前面的问题3,根据小学学过的乘法意义,小玫向西一共走了 (5×3)千米,即(-5)×3=-(5×3)

3、学生活动:计算3×(-5)+3×5,注意运用简便运算

通过计算表明3×(-5)与3×5互为相反数,从而有

3×(-5)=-(3×5),由此看出,3×(-5)得负数,并且把绝对值3与5相乘。

类似的,(-5)×(-3)+(-5)×3=(-5)×[(-3)+3]=0

由此看出(-5)×(-3)得正数,并且把绝对值5与3相乘。

4、提出:从以上的运算中,你能总结出有理数的乘法法则吗?

鼓励学生自己归纳,并用自己的语舞衫歌扇,并与同伴交流。

在学生猜测、归纳、交流的过程中及时引导、肯定

两数相乘,同号得正,异号得负,绝对值相乘。

任何数与0相乘,积仍为0

(板书)有理数乘法法则:

三、应用迁移,巩固提高

1、计算

(-5)×(-4) 2×(-3.5) × (-0.75)×0

(1)学生根据乘法法则,在练习本上完成。指定四位同学到黑板演习。

(2)教师:要求学生明确算理,学生做练习时,教师巡视,及时引导。

2、计算下列各题

① (-4)×5×(-0.25) ② ×( )×(-2)

③ ×( )×0×( )

指定三名同学在黑板上做,使学生明确,做有理数的乘法时,要先确定积的符号,再求出积的绝对值。

教师提出问题:几个有理数相乘时,因数都不为0时,积是多少?

学生小结后,教师归纳:

几个不为0的有理数相乘,积的符号由负因数的符号决定,负因数有奇数个时,积为负;负因数有偶数个时,积为正;只要有一个因数为0,则积为0

练习:本P31练习

四、总结反思(学生先小结)

1、有理数乘法法则

2、有理数乘法的一般步骤是:

(1)确定积的符号; (2)把绝对值相乘。

五、作业:P39习题1.5 A组 1、2

相关推荐

  • 2023有理数的加法课件 本文会向大家推荐一篇题为“有理数的加法课件”的精选文章,帮助读者更加全面了解相关信息。教案课件在教师的教学过程中不可或缺,每位教师都需要制定自己的教案课件。优秀的教案编写是教师教育和教学实践能力的必要体现。欢迎大家阅读参考!...
    2023-07-04 阅读全文
  • 加法课件(系列九篇) 导师的某些职责之一是制作自己的课程教案和课件,这就需要我们的老师非常认真地去完成。按部就班的教案能够帮助学生更好地理解知识。这篇在网络上找到的优秀文章“加法课件”不仅内容充实而且语言优美,我们希望它能够帮助您更好地平衡工作和生活!...
    2023-11-11 阅读全文
  • 最新10的加减法课件系列 老师都需要为每堂课准备教案课件,每位老师都需要认真准备自己的教案课件。教案是教学效果的可视化呈现,我们需要从哪些角度来写教案课件呢?本文旨在为大家整理一篇关于“10的加减法课件”的文章,感谢你的阅读我会不断学习为你呈现更好的作品!...
    2024-08-22 阅读全文
  • 分数与除法课件系列 作为一名优秀的教育工作者,常常要根据教学需要编写教学设计,教学设计是对学业业绩问题的解决措施进行策划的过程。那么教学设计应该怎么写才合适呢?以下是小编精心整理的分数与除法教学设计及反思系列,供大家参考借鉴,希望可以帮助到有需要的朋友。分数与除法课件 篇1第一单元的教学也基本上完成了。回顾分数...
    2024-11-26 阅读全文
  • 有理数的乘法课件范例 每个老师都需要在课前有一份完整教案课件,相信老师对要写的教案课件不会陌生。教案是教学手段的增强与创新,好的教案课件是从哪些角度来写的呢?想要更好地掌握这个话题不妨阅读一下“有理数的乘法课件”,别忘了收藏这个网页方便以后查看!...
    2023-08-22 阅读全文

本文会向大家推荐一篇题为“有理数的加法课件”的精选文章,帮助读者更加全面了解相关信息。教案课件在教师的教学过程中不可或缺,每位教师都需要制定自己的教案课件。优秀的教案编写是教师教育和教学实践能力的必要体现。欢迎大家阅读参考!...

2023-07-04 阅读全文

导师的某些职责之一是制作自己的课程教案和课件,这就需要我们的老师非常认真地去完成。按部就班的教案能够帮助学生更好地理解知识。这篇在网络上找到的优秀文章“加法课件”不仅内容充实而且语言优美,我们希望它能够帮助您更好地平衡工作和生活!...

2023-11-11 阅读全文

老师都需要为每堂课准备教案课件,每位老师都需要认真准备自己的教案课件。教案是教学效果的可视化呈现,我们需要从哪些角度来写教案课件呢?本文旨在为大家整理一篇关于“10的加减法课件”的文章,感谢你的阅读我会不断学习为你呈现更好的作品!...

2024-08-22 阅读全文

作为一名优秀的教育工作者,常常要根据教学需要编写教学设计,教学设计是对学业业绩问题的解决措施进行策划的过程。那么教学设计应该怎么写才合适呢?以下是小编精心整理的分数与除法教学设计及反思系列,供大家参考借鉴,希望可以帮助到有需要的朋友。分数与除法课件 篇1第一单元的教学也基本上完成了。回顾分数...

2024-11-26 阅读全文

每个老师都需要在课前有一份完整教案课件,相信老师对要写的教案课件不会陌生。教案是教学手段的增强与创新,好的教案课件是从哪些角度来写的呢?想要更好地掌握这个话题不妨阅读一下“有理数的乘法课件”,别忘了收藏这个网页方便以后查看!...

2023-08-22 阅读全文
Baidu
map