幼儿教师教育网,为您提供优质的幼儿相关资讯

解方程的教案

发布时间:2024-04-01 解方程教案

2025解方程的教案。

幼儿教师教育网的编辑精选的“解方程的教案”一定能够给您带来极大的惊喜。教案课件是老师需要精心准备的东西,大家可以开始写自己课堂教案课件了。教案是教学目标实现的关键。我们将为您提供更多实用的信息希望您能够继续关注我们的网站!

解方程的教案(篇1)

《解方程》中的典型错例分析

最近一段时间我们认识了方程,学习理解了等式的性质,能根据等式的性质解简易方程。

【现象】

在教学完学生利用等式性质解简易方程后,发现学生出现的问题有一、格式上的:1.会忘写“解”字;

2.上下等号没有对齐;

二、典型错误:1.未知数在减数位置的时候,如18-2x=16;

解:18-2x+18=16+18

2x=34

2x÷2=34÷2

x=17

2.未知数在除数位置的时候,如28÷x=7。

解:28÷x×28=7×28

x=216

【分析】

格式书写问题原因:解方程是学生刚接触的新鲜知识,学生在知识经验的储备上明显不足,它的书写格式也是新的,和原先的等式计算完全不同,所以学生会受原先已有知识的负迁移而写错,因此,需要一个强调的过程。

典型错误分析:由于利用等式性质解方程时,其他题型(如,未知数在加数位置、未知数在因数位置、未知数在被减数位置)的时候,我们都先是把方程左边的数去掉。如x+12=36,我们就先在方程两边同时减去12,x+12-12=36-12,得x=24;9x=72就现在方程两边同除以9,9x÷9=72÷9,得x=8;x-19=8就现在方程两边同时加上19,x-19+19=8+19,得x=27这也比较符合孩子的思维过程。因此学生在解决未知数在除数和减数位置时,受这样的负迁移也想把左边不含未知数的数去掉,且这两类题在利用等式性质解时是要先把左边的未知数消去,如18-2x=16是先要现在方程左右两边同时加上2x,18-2x+2x =16+2x,得18=16+2x再去解,这样的逆思维学生不太容易接受,因此这两类题错误很多。

【解决策略】

基于以上原因分析,我调整了教学,在教学例3时。先让学生尝试用多种方法来解决,并说明这样解方程的依据是什么。结果孩子们出现了这3种较典型的解法。

① 20-x=9            ② 20-x=9                     ③ 20-x=9

解20-x+x=9+x             解x=20-9                    解20=9+x

20=9+x               x=11                     20-9=9+x-9

x=11

20-9=9+x-9

x=11

利用等式性质求解    根据“差=被减数-减数”求解

解释1:移项

解释2:根据“被减数=差+减数”解

再让学生说说你认为那种方法最简便?这时几乎所有同学都认为第二种解法是最简洁方便的,t:既然大家都这么认为我们再来看看这种方法是怎样解的。教师再请学生分析讲解一遍,同桌再说一说。

最后,出示相同类型题请学生尝试用这种方法解决。

未知数在除数位置的时候教学方法同上。

我发现这样教学过后,孩子们再遇到这样的方程时都会选择用关系式去解决,正确率也很高。

解方程的教案(篇2)

第五章 一元一次方程

2.求解一元一次方程

(一)太原市第三实验中学 柳翔熙

一、学生起点分析

学生在上一节已经学习了等式的基本性质,并且会用等式的基本性质解较简单的一元一次方程.本节课要通过用等式的基本性质解一元一次方程,观察、归纳得出移项法则.但学生刚学时不习惯用移项法则,而仍然借助等式的基本性质解方程,这是正常的,需要通过大量练习后才能体会到移项法则的便利.

二、学习任务分析

本节内容分三个课时完成,每课时所完成的具体任务不同.本课时主要内容是在学生进一步熟悉运用等式性质一解方程的基础上,分析、观察、归纳得到移项法则,并能运用这一法则求方程的解.三、教学目标

1.进一步熟悉利用等式的基本性质解一元一次方程的基本技能. 2.在解方程的过程中分析、归纳出移项法则,并能运用这一法则解方程.

3.体会学习移项法则解一元一次方程必要性,使学生在动手、独立思考的过程中,进一步体会方程模型的作用,体会学习数学的实用性.四、教学过程

本节课设计了六个教学环节:第一环节:复习引入;第二环节:达标训练;第三环节:合作学习;第四环节:巩固提高;第五环节:课堂小结;第六环节:布置作业.

环节一:复习引入

内容:复习上节课用等式基本性质一解方程的过程,观察、分析、概括出移项法则.要求:解下列一元一次方程,学生先自主完成,然后以小组形式交流各种解法,要说明这样解的依据.

(1)5x28 ;

解:方程两同时加上2,得5x2282.

也就是

5x=8+2.方程两边同除以5,得

x=2.此题学生可能会用差+减数=被减数的方法(2)5x28x .

解:方程两都加上28x,得5x228x8x28x

也就是

5x-8x=2.化简,得

-3x=2.2方程两边同除以-3,得

x=.3此题学生可能会用:被减数—差=减数;目的是把含有未知项放一边,已知数放一边. 设问1:在变形过程中,比较画横线的方程与原方程,可以发现什么? 设问2:上述变形过程中,方程中哪些项改变了原来的位置?怎样变的?

设问3:为什么方程两边都要加上2呢?第2小题在解的过程中两边加上28x的目的是什么? 归纳:像这样把原方程中的某一项改变 后,从 一边移到,这种变形叫做移项 思考:(1)移项的依据是什么?移项的目的是什么?

(等式的基本性质;移项使含有未知数的项集中于方程的一边,常数项集中于方程的另一边)

目的:1.让学生在复习上课时内容、归纳出移项法则的过程中,体会用等式的基本性质一解方程与用加减互为逆运算解方程的区别;同时让学生经历将算术问题“代数化”的过程,此过程也是一个抽象的过程,提炼、归纳上升到一个规律变化的过程.实际效果:

学生通过利用等式的性质,加减逆运算关系,合并未知数系数等方法化为x=a的形式.

学生在归纳“移项法则”的过程中,教师在不断的通过问题引发学生思考,学生表现出的观察、归纳、总结的能力很强,由此过程中表现出来的用“移项法则”解方程的思维强于用小学逆运算关系解方程,基本能做到:移动的项变号,不移动的项不变号,对“移项”的实质理解也比较到位,“要移就要变,左右移,变符号”.存在问题:方程两边需要移动的项多于两项时,移项过程中有的同学出现“移项”与“项的换序”混淆.如:解方程:

35x3x; 2235 x3x1.——————(1)22 1

方程(1)中的清楚造成的.5没有移项,只是“换序”不应该变号.这就是对于移项的实质没有理解2环节二:达标训练 【达标训练1】

1.把下列方程进行移项变形(未知数的项集中于方程的左边,常数项集中于方程的右边)(1)4x35移项,得 ;(2)5x27x8移项,得 ;

(3)3x204x25移项,得 ;(4)13x3x5移项,得 ;

222.下列变形符合移项法则的是()

A.由53x2,得3x25 B.由10x5=2x,得10x2x5 C.由7x94x1,得7x4x19 D.由5x29,得5x92

目的:通过及时的训练落实移项变形,并由学生总结出移项的注意事项并归纳出移项法则. 总结:移动的项要

;移项通常是将,已知项 ;(移项法则)例1 解方程:(1)2x61;

解: 移项,得 2x16.

化简,得 2x5.

方程两边同时除以2,得x(2)3x32x7.

解: 移项,得 3x2x73.

合并同类项,得

x4.

【达标训练2】

(1)4x39;

(2)4y23y;(3)3x204x25. 目的:通过例题分析,规范学生的书写步骤格式,并训练落实.(根据时间选做)2环节三:合作学习

内容:1.例2.解方程11xx3.4211xx3. 42 解: 移项,得

3x3. 4

方程两边同时除以(或同乘以),得x4

43合并同类项,得

学生独立完成例2,学生互评(有哪些方法)

2.以小组为单位,每人出一个解方程的题,题型局限于本课时的题型,组内交换解答,组长负责检查,组员负责看解答结果如何.目的:1.学生自己出题的过程本身就是对本课时题型的一种掌握.2.学生互解对方题目的过程,也是一个互相学习、取长补短的过程.3.合作学习的过程也是让学生学会协作、交流的过程,从而达到巩固所学知识的目的.实际效果:

1.我们看到学生在考虑解方程的问题时,也把有理数中各种数字的运算问题也做了迁移,有的学生还考虑到生活中会遇到的百分数问题.2.一元一次方程的解法达到了巩固的目的.环节四:巩固提高

内容:本节课后,随堂练习4个小题.目的:巩固本课时的内容.实际效果:

使用课堂检测的方式,限时完成.好的方面:80%的学生能够顺利完成;

问题方面:解类似下面的方程:-3x+1=x+1 时出现一些问题.

环节五:课堂小结

1.本节课学习了哪些内容?哪些思想方法?

2.移项的目的是什么?为什么学习了等式的性质还要学习移项法则呢?

内容:引导学生结合本课时的内容,归纳总结解一元一次方程的“移项法则”及此过程中的注意事项.目的:让学生及时归纳那总结所学知识,及时反思,因为反思是进步的关键因素.实际效果:

学生不仅会对课上的知识点进行梳理总结,而且还会对课上感悟到的数学思想-----“转化的思想方法”准确地应用到以后的数学学习中.学生在合作学习中感受到伙伴优于自己的学习热情,学习策略,他们会互相借鉴,取

长补短,共同进步的.环节六:布置作业.

习题5.3第1题

五、教学反思

教学中要注重“铺垫”与“打伏笔”,给后续教学留好生长点;本课时教学较为成功与上课时用等式基本性质一解一元一次方程学习到位有很大关系.本课引导学生体会新知识的引入与事物的发展变化总是由易到难,而解决新问题的方法往往是化“新”为“旧”,这样一个研究数学的方法,会对以后的数学学习在思维方式、解决问题的策略等方面给予启发和帮助.学生体会到了学习移项法则的必要性,就像学习了乘法分配律还学习去括号法则类似,引导学生勤于思考,善于总结.特别是通过问题的设计引发学生思考,如让学生明白移项的目的是什么?为什么学习了等式的性质还要学习移项呢?这样的问题可促进优等生的思考.

解方程的教案(篇3)

师:大家的猜想对不对呢?我们来验证一下。

1、(课件演示,学生操作)天平左侧的砝码重x克,右侧放5克的砝码,这时天平的指针指向正中央,说明了什么?你知道左侧的砝码重多少克吗?怎样用等式表示?(说明天平平衡,左侧的砝码重5克,x=5)

2、如果左侧再加上2个x克的砝码,右侧再加上2个5克的砝码,这时天平的指针指向正中央,说明了什么?你能写出一个等式吗?(说明天平平衡,3x=3×5)

3、如果左侧有2个x克的砝码,右侧有2个10克的砝码,这时天平的指针指向正中央,说明了什么?你能写出一个等式吗?(说明天平平衡,2x=20)

4、如果左侧拿走一个x克的砝码,右侧拿走一个10克的砝码,这时天平的指针指向正中央,说明了什么?你能写出一个等式吗?(说明天平平衡,2x÷2=20÷2)

5、通过上面的游戏,你发现了什么?

小结:等式两边都乘同一个数(或除以同一个不为0的数),等式仍然成立。

设计意图:利用课件的演示和动手操作,让学生体会天平两侧的变化情况,加深学生对等式的理解,体会等式的变化规律。

解方程的教案(篇4)

列方程解应用题最关键是前两步:设未知数和列方程。有的同学说解方程的部分不是篇幅很长么,为什么不是关键部分呢?其实,只要仔细观察一下,就会发现,虽然篇幅很长,但只要注意到符号变化、分配律等基本运算技巧,解的过程是较容易掌握的。相反,前两步篇幅虽然短,但列方程解应用题的精华和难点却大部分集中在这里,需要用以体会。

一般地,设什么量为未知数,最简单明了的想法是设所求为x(复杂的题目有时要采取迂回战术,间接地设未知数),当所求的数较多时,把这些所求的数量用一个或尽量少的未知数表达出来,也是很重要的。

设完未知数,就要找等量关系,来帮助列出方程。这时需要认真读题,因为许多等量关系是隐藏在字里行间的。中文有很多字、词、句表达相等的意思,如相等、是、比多、比少、是的几倍、的总和是、与的差是等等,根据这些字句的含义,再加上其中的量用未知数表达出来,就能列出方程。

解方程的教案(篇5)

教学目标:

1、初步理解“方程的解”、“解方程”的含义以及“方程的解”和“解方程”之间的联系和区别。

2、初步理解等式的基本性质,能用等式的性质解简易方程及检验的方法。

3、培养的分析能力应用所学知识解决实际问题的能力。

4、初步学会检验某个数是否是方程的解,培养学生检验的习惯,提高计算能力。帮助养成自觉检验的良好习惯。在教学中渗透环保教育。

教学重点:理解并掌握解方程的方法。

教学难点:理解并掌握解方程的方法。

教学准备:教学课件。

教学流程:

一、复习铺垫:

1、教师:前面我们学了方程的意义,你还记得什么叫方程吗?(含有未知数的等式叫方程。)怎样判断一个式子是不是方程?

2、判断下面哪些是方程吗?

(1)a+24=73(2)4x<36+17(3)234÷a>12

(4)72=x+16(5)x+85(6)25÷y=0.6

3、教师:上节课我们还通过玩天平游戏认识了等式的基本性质,还记得等式的基本性质吗?

4、新课引入:这节课,我们就来应用等式的基本性质去解简易方程。(板书课题:解简易方程)在学习解简易方程前,我们先来认识两个概念----方程的解和解方程。

二、探究新知:

认识方程的解和解方程:

1、看图写方程。

出示上节课用天平称一杯水的情景图。(100+X=250)

2、求方程中的未知数

教师:那么方程中的x等于多少呢?请同学们同桌交流,说说你是怎么想的?

学生交流后汇报:

方法一:根据加减法之间的关系250-100=150,所以X=150

方法二:根据数的组成100+150=250,所以X=150

方法三:100+X=250=100+150,所以X=150

方法四:假如在方程左右两边同时减去100,那么也可得出X=150

3、引出方程的解和解方程的概念。

教师:使方程左右两边相等的未知知数的值,叫做方程的解。像上面,x=150就是方程100+x=250的解。而求方程的解的过程叫做解方程。

4、辨析方程的解和解方程两个概念。

教师:方程的解和解方程这两个概念有什么区别?

5、完成课本57页做一做:X=3是方程5X=15的解吗?X=2呢?

探究例1:

1、出示例1图,让学生说图意后列出方程。

2、课件出示天平图,引导学生利用天平保持平衡的道理理解解方程的方法。

3、学生独立完成解方程,并板示,着重强调解方程的步骤和书写格式。

x+3=9

解:x+3-3=9-3

x=6

4、引导学生检验方程的解。

探究例2:

1、引入和出示例2:前面我们利用天平保持平衡的道理求出了方程x+3=9的解,下面我们再利用天平保持平衡的道理来求出方程3X=18的解,同学们有信心吗?

2、课件出示天平图,引导学生利用天平保持平衡的道理理解解方程的方法。

3、学生独立完成解方程。

3x=18

解:3x÷3=18÷3

x=6

方法总结:

1、交流讨论:如果方程两边同时加上或乘以一个数,左右两边会相等吗?

2、总结:利用天平保持平衡的道理(也就是等式的基本性质)等式两边都加上或减去(乘或除以相同的数),可以求出方程的解。

三、应用巩固:

1、完成课本59页“做一做”的第1题,先找到等量关系,再列出方程并解方程。

2、解方程。

x+3.2=4.6x-1.8=4x-2=15

1.6x=6.4x÷7=0.3x÷3=2.1

3、我会选

(1)32+χ=76的解是()

A、χ=42B、χ=144C、χ=44

(2)χ-12=4的解是()

A、χ=8B、χ=16C、χ=23

(3)5χ=60的解是()

A、χ=65B、χ=55C、χ=12

(4)χ÷20=5的解是()

A、χ=15B、χ=100C、χ=4

4、解决问题。

教师:请同学们认真观察图,你能根据题意列出方程并解方程吗?

四、全课小结、课外延伸:

教师:这节课你有什么收获?请同学们思考生活中哪些问题可以运用解方程和知识帮我们解决问题,把你想到的和同伴一起分享。

解方程的教案(篇6)

教学内容:义务教育课程标准实验教科书数学五年级上册55—57页内容。

教学目标:

1、通过演示操作理解天平平衡的原理。

2、初步理解方程的解和解方程的含义。

3、会检验一个具体的值是不是方程的解,掌握检验的格式。

4、、提高学生的比较、分析的能力;培养学生的合作交流的意识。

教学重点:理解方程的解和解方程的含义,会检验方程的解。

师:老师在天平的左边放了一杯水,杯重100克,水重X克,一杯水重多少?

师:在天平的右边放了多少砝码,天平保持平衡呢?(教师边讲边操作100克、200克、250克)

2、这个方程怎么解呢?就是我们今天要学习的内容——解方程。(板书课题:解方程)

师:(出示课件)那你猜一猜这个方程X的值是多少?并说出理由。

生1:我有办法,可以用250-100=150,所以X=150.

生3: 老师我也有办法,我是这样想的,假如方程的两边同时减去100,就能得出X=150

师:XXX同学的想法太棒了!我们一起探索验证一下。请看屏幕,怎样操作才使天平左边只剩X克水,而天平保持平衡。

生:我在天平的左边拿走一个重100克空杯子,在天平的右边拿走100克的砝码,天平保持平衡。

师:是的,XXX同学的想法是正确的,方程左右两边同时减100,就能得出X=150。我们表扬他。

师:根据刚才的实验,我们来认识两个新的概念———“方程的解”和“解方程”。

师:指着方程100+X=250说:“X=150是这个方程的解。(课件显示:方程的解)

师:都认识了吗?请打开课本第57页将概念读一次,并标上重点字、词。

生2:“方程的解”是指未知数的值,这个值有一个前提条件必须使这个方程左右两边相等。

师:“方程的解”和“解方程”的两个解有什么不同?

生:“方程的解”的解,它是一个数值。“解方程”的解,它是一个演变过程。

[设计意图:通过自主学习、组内交流、合作,达到培养学生自主、互助的精神。]

2.教学例1。

师:要是老师出一个方程,你会求这个方程的解吗?

[学生独立思考,再在小组内交流。]

师:(出示例1)左边有X个,右边有3个,一共用9个。根据图意列一个方程。

师:X+3=9这个方程怎么解?我们可以利用天平保持平衡的道理帮助理解,请看屏幕。

师:球在天平不好摆,老师在天平上用方块来代替它。怎样操作才使天平的左边只剩X,而天平保持平衡。

生:天平左右两边同时拿走3个方块,使天平左边只剩X,天平保持平衡。师:根据操作过程说出等式?

生2:方程左右两边同时减3,使方程左边只剩X,方程左右两边相等。

师:“方程左右两边同时减3,使方程左边只剩X,方程左右两边相等。”就是解这个方程的方法。

师:这个方程会解。我们怎么知道X=6一定是这个方程的解呢?

生:将X=6代入原方程,看方程的左边是否等于方程的右边。

师:以后解方程时,要求检验的,要写出检验过程;没有要求检验的,要进行口头检验,要养成口头检验的习惯。力求计算准确。

[设计的意图:自学思考汇报交流既有利于每个学生的自主探索,保证个性发展,也有利于教师考察学生思维的合理性和灵活性,考察学生是否能用清晰的数学语言表达自己的观点。]

师:现在老师看看同学们对于解方程掌握得怎么样。(课件展示)。

师:谁能说说解含有加法和减法的方程的步骤?(随着学生,显示全过程。)

b)方程左右两边同时加或减一个相同的数,使方程左边只剩X,方程左右两边相等。

c)求出X的值。

1、理解解方程的意义。

2、会用等式的性质解形如:ax=b的方程,并能用方程的解对方程进行验算。

1、填空:

(1)小明有30元钱。买钢笔用了m元,买本子用了10元,刚好用完。

(2)小红家买了50千克的大米,吃了n千克,还剩42千克。

(3)全班a个同学,平均分成个7小组,每个小组8人。

(4)钢笔每支4元,买X支用了24元。

师:刚才我们列出的这些方程,你能求它的解吗?(师板书:4X=24)

(1)自主探究求方程的解。

(2)汇报,抽生板演。

(3)师指导学生看书101页的内容,学习正确的书写格式,动笔勾画出你认为比较重要的地方.

(4)师规范解方程的格式。

比较两种方法的优点和缺点,请将刚才的解题过程再按正确的书写格式做一遍。

揭示解方程的含义;区分解方程和方程的解。

2、方程的检验。

刚才的几个方程,请任选一道用你喜欢的方式求方程的解,并口头检验。

师:大家认为在解方程的.时候应该注意些什么?在哪些方面需要提醒同学主义的呢?

四、全课小结。通过这节课的学习,你有什么收获?你还有哪些疑问?或者是不明白的地方吗?

2、做书上104页1、2、3题。

七、教学反思:

通过本节课的学习,学生已经基本上掌握了方程的解题的依据以及书写格式,但是很多同学在做a÷x=b这种形式的方程时还是容易搞混淆。需要加强练习和多做相关的题型,特别是在前节内容据题意列方程还得多找相关等量的关系,达到复习以前的知识和巩固现在的新知识的目的。

解方程的教案(篇7)

教学内容:教材P67例

1、教学目标:

(1)知识与技能:使学生初步理解“方程的解”与“解方程”的含义以及“方程的解”和“解方程”之间的联系和区别。(2)过程与方法:利用等式的性质解简易方程。

(3)情感、态度与价值观:关注由具体到一般的抽象概括过程,培养学生的代数思想。

教学重点:理解“方程的解”和“解方程”之间的联系和区别。教学难点:理解形如a±x =b的方程原理,掌握正确的解方程格式及检验方法。

教学方法:创设情境;观察、猜想、验证.教学准备:多媒体。教学过程 : 一.复习导入:

提问:(1)什么叫做方程?

(2)方程和等式之间的关系是什么?

(3)等式的性质有哪些。

(3)判断下面的是不是方程? 1.4x=9.8

+y<30

21÷7=3

(3x-8y=14 二.新课讲授:并出示教材第67页例1情境图。

问:从图上你知道了哪些信息? 引导学生看图回答:盒子里的球和外面的3个球,一共是9个。

(学生能快速并正确的列出方程,但是今天我们要学习的不仅是列出方程,而是如何求出x的值。同学们自己讨论,交流,最后请同学们来说一说,通过说了以后,让同学把我们刚才的文字语言转换成我们的数学符号和数字。

1.汇报:x +3-3=9-3

x =6 质疑:为什么两边都要减3呢?你是根据什么来求的?(根据等式的性质:等式的两边减去同一个数,左右两边仍然相等。)你们的想法对吗?出示第3个天平图,证实学生的想法是对的。

4.师小结:刚才我们计算出的x =6,就是使方程左右两边相等的未知数的值,叫做方程的解。也就是说,x =6就是方程x +3=9的解。求方程解的过程叫做解方程。(板书:方程的解 解方程)4.引导:谁来说一说,方程的解和解方程有什么区别?学生自主看课本学习,可能会初步知道,求出的x 的值是方程的解;求解的过程就是解方程。师引导学生小结:“方程的解”中的“解”的意思,是指能使方程左右两边相等的未知数的值,它是一个数值;而“解方程”中的“解”的意思,是指求方程的解的过程,是一个计算过程。

验算:x =6是不是正确答案呢?我们怎么来检验一下? 引导学生自主思考,并在小组内交流自己的想法。通过学生的回答小结:可以把x =6的值代入方程的左边算一算,看看是不是等于方程的右边。方程的左边:=x+3

=6+3

=9

=方程的右边

所以,X=6方程的解 让学生尝试验算,并注意指导书写。

5.我们除了用等式的性质来解方程,我们是否还可以用别的方法来解,请同学们思考并回答,还可以根据加数+加数=和。一个加数=和-另一个加数,我们就可以得到

x +3=9

解:

x=9-3 X=6

让学生对比两种解法,对比两种解法那种更好理解,更方便,三:巩固练习

(1)解方程,(用你喜欢的方法解并检验)

3.5+x=10.77 250-x=100(2)小明的妈妈以前买了100千克的大米,现在已经吃了y 千克,还剩下32千克。已经吃了的大米是多少千克?

四.总结这堂课学习了什么? 五.板书设计:

方法一:x +3=9

解:

x +3-3=9-3

x =6

检验:方程的左边 =x+3

=6+3

=9

=方程的右边

所以,X=6方程的解。

方法二:

x +3=9

解:

x=9-3 X=6

使方程左右两边相等的未知数的值,叫做方程的解。求方程的解得过程叫做解方程。

解方程的教案(篇8)

(1)知道用字母表示数和用方程表示数量关系的优越性,会用 字母和含未知数的式子表示数和常见的数量关系。

(2)认识等式和方程,理解等式的性质和方程的解法。初步学会根据字母的取值求含有字母的式子的值,比较熟练地解答含有一个或两个未知数的方程。

(3)研究简单的情景关系和数形联系,明确含字母的式子、等量及等量关系的意义。建构含字母的式子、等式和方程的数学模型,探究等式的特性和方程的特点。

(4)感受用字母表示数和构建方程在生活中的应用价值,强化应用意识,培养分析能力和归纳概括能力。

(5)学会按时间发生的基本顺序进行数量关系的提取和思维模型的加工,将生活事理关系与数学逻辑思维有机地结合。

(6)用方程的基本思想解决简单的实际问题。

(7)体会方程在数学史和人类发展史上的意义,进一步增强热爱数学的热情。

方程在小学阶段的学习,由于小学生的认识范围有限,传统的教科书都采用的是用四则运算的基本关系和几种常见应用题的数量关系作为解题的基础和列方程的基础。这种处理方法,学生能够很好地掌握和运用。但是,把它放在整个数学领域,就有一些问题。主要是传统小学教科书中的方程从解答依据到列方程的思路,都与中学的教科书内容不一致,学生到初中还要重新学习解方程和列方程的知识和技能。本教科书采用新的理念,突破传统观念,既遵循四则计算的意义列、解方程,以便适应小学生的认知基础,又用方程核心思想——等量关系来构建数学模型,先学习等量与等式,讨论出等式的性质,再学习方程与方程的解法,为第三学段的方程学习打好基础。

方程思想在现实中是普遍的,但却难以直接与学生的生活联系起来,因为人们习惯于运用已知条件构建数学模型。而方程思想不是从局部入手思考问题的,而是从宏观角度把整个事件的存在因素综合考虑的,找出各因素之间存在的等量关系,构建数学模型。

本教科书,首先从生活素材排演云南佤族的《木鼓舞》的直观现象引入等量与关系,再从已购回的若干物品问某一个物品重量的方式引入方程。同时,在后续的学习和练习的设计中,也是尽量采用现实生活素材,让学生真正把数学与生活联系起来,感受数学的价值。

方程的核心思想就是构建等量关系的数学模型。这种数学模型的组合要素就是生成事件的基本要素。比如:第91页,小学生排演舞蹈,男生、女生与演员总数的关系是一个学生熟悉的而且又很好理解的等量关系模型。其基本思考的思路是:A=A1+A2。教科书在其它类似的问题和问题解决部分的题目呈现时,尽量突出这种思想。

本教科书通过生活实例引入方程,让学生从情景到数学模型更加体会到数学的应用价值。特别是文艺演出、西气东输、唐卡艺术、商品买卖、植树育林、退耕还草和野生动物保护等多层面、多角度、多行业的实例呈现,显示出方程运用的巨大空间,为学生学习方程起到明显的激励作用。

教科书中每节内容的编写结构大多数是:正文、课堂活动、练习。正文呈现教学内容,体现具体目标要求,课堂活动是师生互动,建立教与学的双边活动的有效途径。通过活动使学生完成对知识的自主建构和理解。练习是为学生巩固和应用知识而设立的。

具体内容:

本单元的教学内容分为6个部分:① 用字母表示数 ②等式 ③方程 ④解方程 ⑤解决问题整理和复习⑥整理和复习

逻辑线索:

用字母表示数是本单元的起始课,通过学习,使学生体会用字母表示数的优越性,为下一节学习方程做好准备。接着学习了等式,用方程核的思想——等量关系来构建数学模式,再学习方程与方程的解法,为以后学习方程打好基础。解决问题是紧接着这些内容编排的,培养学生解决问题的能力。最后是整理复习,提高学生对本单元的掌握水平,教科书按照知识的逻辑顺序来编排,既有利于教师的教,有利于学生的学。

本单元是在学生对小学阶段整数、小数、分数的认识、四则运算,已全部学完,学生的数与代数的知识和经验已经积累到相当的程度,需要对更高一级的数学知识和数学思想进行学习的基础上进行教学的。

本单元因为其数学思想和解决问题的思维方式不同,它把学生习惯的由条件到问题建立数量关系的解决问题思路淡化,取而代之的是按事物发生发展的自然顺序构建数量关系,其核心思想是构建等量关系。方程作为数学领域的重要知识和重要思想,在解决数学问题方面占有重要作用,也是学生在中学学习数、理化和解决问题的重要思想和方法。

1. 学情分析:

(1)学生已有知识基础:已经掌握了小学阶段整数、小数、分数的认识、四则运算

(2)学生已有知识经验与新知识的结合点:

学生对数与代数的知识和经验已经积累到相当的程度,需要对高一级的数学知识和数学思想进行学习。

(3)方程作为数学领域的重要知识和重要思想,也是学生在中学学习数理化的重要思想和方法。作为数学上具有特殊意义的方程,对小学生来说基本上是陌生的。

数学是一门比较抽象的学科,要根据五年级学生的特点,在课堂上创设情景,调动学生的学习积极性,充分激发学生的求知欲,创设出一种轻松愉快的教学氛围。

本单元学生主要是通过生活事件构建等量关系,因此课堂上教学素材的呈现十分重要。比如:学习用字母表示数时,校园失物招领的生活原型的呈现,能够唤起学生对用字母表示数的理解。在这个情境中,他们深切地感到,生活中有时需要用到比数学更有用的符号-字母。在学习等式的意义时,出示学生排演云南佤族舞蹈《木鼓舞》时,舞蹈演员组成的舞蹈队是一个关键的认知背景。一个队的人数是他们首先关注的,这是多个元素的组合。教师依据教科书的信息提问后,学生才会去关注男演员、女演员人数以及与总数的关系。这样,在教师大力渲染霞,集合中部分元素与总数的关系被突显出来,使学生把生活问题提升为数学问题。“舞蹈队总人数”表示的因素有两个:“55”和“40+15”。这两个因素意义相同,大小相等。同理,表示“男演员人数”的两个因素是:“40”“55-15”,表示“女演员人数”的两个因素是“15”和“55-40”其它背景材料、教育因素和渲染程度要弱化,这样才是数学学习。

学生的学习过程中,既有方法和技能的习得,还有学习情感的体验和学习习惯的养成。比如:等式性质的探讨,必须由学生亲自动手探究。由于天平实验要求精度稿,教师先要在课前组织学生熟悉天平的构造,没有天平的学习一定准备好替代品,其次是要规划好实验措施和步骤。学生的操作是在教师指导下完成的。要告诉学生如何分组,先做什么再做什么?操作过程中观察什么现象?谁来做记录……第三,必须交代实验的任务和观察中思考什么问题,避免盲目性。第四,要求学生把观察的结果互动交流,以得到统一的认识和互相的启发。

教师要非常重视每一个学生对所学习的数学模型知识的认识,在学生讨论交流的叙述形成以后,教师要视其情况给予归纳和小结,强调其关键意思和关键文辞。在学习用字母表示数时,要让学生时时叙述使用该字母的缘由和表示的意义,同时让学生清楚含字母的式子不仅表示几个数之间运算关系,也表示几个数的运算结果。在等式和等式性质的认识里,要加强等式的口头交流和书面活动。学生对方程一节的学习可能有些困难,特别是一两个例题和几个作业,对他们的理解和巩固达不到量上的需要,教师可以根据需要适当补充。问题解决,与过去的列方程解应用题相比,从量上和形式上做了大量的删减,只是程序了方程解决问题的.基本要素-构建等量,列出等式(方程)。对于类型方面是无法一一顾及的,只要方法上能够运用就行了。训练中突出抓等量,列方程。

方程的学习与其它知识的学习一样,一定会遇到两极分化或发展不平衡的现象。特别是在探究等式的性质时,教师要非常细心地观察各组学生的表现和他们获得的结论,只要他们基本获得需要的数学思想和结论,只要他们基本获得需要数学思想和结论,就应该给予充分的肯定。在问题解决的过程中,学生一定会提出不同的方案,包括错误的方案。教师应本着求同存异的思想,允许不同的想法存在,同时鼓励学生对多重方法进行比较,寻求大家都能理解的方法和自己独特的方法。在解决问题时既能用自己的方法,也能用别人都理解的方法,就达到融会贯通了。

在教学用字母表示数时,首先创设一个学生喜欢的猜谜语小游戏,在此基础上导入新课,揭示课题。到学生的生活中寻找素材,为学生学习数学创设生活情境。小学数学不是枯燥的帐本,而要来源于生活,应用于生活。学生每接触一个数学知识就必须知道这些数学知识是从哪里来的。“用字母表示数”相对于小学生来说,较抽象深奥,通过创设情境,从学生的生活实践中提出问题,让学生惊奇地发现:“用字母表示数”原来就在我们身边,小小字母的作用还真大:可以表示人名、地名,还可以表示数字。这就使得“用字母表示数”具体而现实,从而调动学生学习的积极性,帮助部分学生消除学习中的畏难情绪。

方程是从学生看得见、摸得着的天平到抽象的,是学生认识上的一大飞越,要让学生达到由具体到抽象的真正理解,就要在教学过程中把传授知识变为渗透思想,教给学生学习知识的方法。要把天平与方程中“相等”联系起来,让学生在不断调整天平平衡的过程中,对方程的意义有了较好的理解。数学学习需要学生有一个主动探索的心态,有一个敢干质疑的精神。在教学时要为学生创设了一个相互交流、相互学习、相互帮助解决的和谐的课堂学习环境,同时又让学生在相互交流中深化了新知,在交流中提高了准确表达能力,这样不仅使课堂有了活气,学生放得开,学得活,而且从思想上给了学生一个思维的台阶,使得教学难点得以分解.

以前,我们是根据四则运算的互逆关系来解方程,属于算术领域的思考方法;而用等式的基本性质解方程属于代数领域的思考方法,两者有联系,但后者是前者的发展与提高,运用等式性质解方程具有更广泛的适用性。在现阶段,解简单的方程也许无法清楚明了地显现出“等式的基本性质”的优越性,但随着数学知识的深化,一些较复杂的问题(例如:把一些图书分给某班学生阅读,如果每人分3本,则剩20本;如果每人分4本,还缺25本,这个班有多少学生?解答此题时,学生容易根据等量关系列出如下方程:3X+20=4X-25)用算术思维解方程,解法如下:3X+20=4X-25,4X=3X+20+25,4X=3X+45,4X-3X=45,X=45会显繁难、费力,学生也较难理解与接受;而用等式的基本性质解答:3X+20=4X-25,3X+20-3X=4X-25-3X,X-25+25=20+25,X=45,就能明显地显示出简洁、方便的优越性。可见,运用代数的思考方法解决问题,使学生的思维水平得到了有效提高。

教师的教学效果和学生的学习情况大都是通过学生的练习反馈出来的,因此做好练习环节的反馈设计是每一节教学课教学设计的一个重点。我注重从以下几方面做起:

1、反馈形式要多样。最常用的反馈方法有同桌交换,小组轮换,实物投影展示作业,面批面改等,可以根据自己的需要来安排调整。

2、反馈要有针对性。比如一节课的重点是让学生掌握利用公式解决问题,在练习当中如果仅仅是计算错,可不必放大,提醒学生下次细心一点。如果学生在关键步骤上有了错误----不会列式解决问题,那么教师应引起重视。

3、反馈要有一定的层次性。通过层次反馈将错误类型相同的集中起来一起纠错,既节省了教学时间又提高有效性。

对于所学知识的反馈情况重在落实,每一节课抽出10分钟时间进行检测,老师很快批阅结束,发现问题,有针对性的辅导,直到弄懂会为止。

解方程的教案(篇9)

教学目标

1、会正确找出一元一次方程中存在的相等关系

2、通过列方程解应用题,提高学生分析问题与解决问题的能力

重点、难点、关键点

重点:找出应用题中存在的相等关系

难点:正确分析应用题中的条件

关键:理解题意,并能正确找出应用题中的量与量之间的关系

教 学 过 程

时间分配

1、列一元一次方程解应用题题的步骤

2、例题探究

师:列一元一次方程解应用题的步骤有哪些?

师:出示例题

已知某电视机厂生产 三种不同型号的电视 机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元,应用题,初中数学教案《应用题》。某商场根据市场调查花9万元从该厂购进两种不同型号的。电视机50台。请你分析一下是哪两种型号的电视机?

(教师引导,由学生自己解题过程)

生:思考议论回答

找等量关系

设未知数

列一元一次方程

解方程

写出答案

生:讨论

该问题需要分类讨论,有三种可能的情况

可能购买的是甲、乙两种型号的电视机,也可 能是乙丙或甲丙。

8分

20分

A组:

16个蓝球队进行循环比赛,每个队赢一场得2分,输一场得1分,比赛弃权得0分。某队参加了循环赛中的15场比赛,共得26分。这个队赢几场?输几场?

B组:

一列火车长250米,速度为60千米/时,一越野车其车速为90千米/时,当火车行驶时,越野车与火车同向而行,由列国车车尾追至车头,需要多长时间 ?

教后札记

Yjs21.Com更多幼儿园教案扩展阅读

解方程的教案精选


俗话说,不打无准备之仗。幼儿园的老师都希望自己讲的课学生们爱听,能学习的更好,所以,很多老师会准备好教案方便教学,教案有利于老师在课堂上与学生更好的交流。所以你在写幼儿园教案时要注意些什么呢?经过搜索整理,小编为你呈现“解方程的教案精选”,不妨参考一下。希望你喜欢!

解方程的教案(篇1)

1、华山小学三年级栽树56棵,四年级栽树是三年级的2倍,五年级栽的比三、四年级栽的总数少10棵。五年级栽树多少棵?

2、机床厂原计划每天制造机床40台,实际每天制造50台,结果16天就完成了任务。机床厂实际比原计划提前几天完成任务?

3、小胖骑车郊游,前2小时共行驶了17千米,后3小时平均每小时行驶了10千米,小胖平均每小时骑多少千米?

4、小学五年级数学家庭练习作业:小亚的'体重乘3,再减去19千克,就和爸爸的体重一样,爸爸的体重是78.5千克。小亚的体重是多少千克?

5、一间课室,长7.5米,长是宽的1.25倍,里面坐48个学生,平均每个学生占地多少平方米?(得数保留两位小数)

6、学校购买每张单价是140元的课桌,买了30张还多480元。如果用这笔钱买椅子,可以买40把。每把椅子的单价是多少元?

解方程的教案(篇2)

人教版五年级上册《解方程(1)》

一、导入

谈话:同学们,还记得什么是方程吗?等式的性质呢?

二、互动新授

(一)各小组派代表汇报并展示课前自习的结果。小组之间可互相猜疑,并提问。教师不必急于给出正确答案,只需引导各小组充分进行交流。

(二)教师通过多媒体出示教材第67页例1情境图。

问:从图上你知道了哪些信息?

引导学生看图回答:盒子里的球和外面的3个球,一共是9个。并用等式表示: x+3=9(教师板书)

1.先让学生回忆等式的性质,再思考用等式的性质来求出x 的值。

学生思考、交流,并尝试说一说自己的想法。2.教师通过天平帮助学生理解。

出示教材第67页第一个天平图,让学生观察并说一说。长方体盒子代表未知的x个球,每个小正方体代表一个球。则天平左边是x +3个球,右边是9个球,天平平衡,也就是列式:x +3=9。

观察:把左边拿掉3个球,要使天平仍然保持平衡要怎么办?(右边也要拿掉3个球。)

追问:怎样用算式表示?学生交流,汇报:x+3-3=9-3

x =6 质疑:为什么两边都要减3呢?你是根据什么来求的?

(根据等式的性质:等式的两边减去同一个数,左右两边仍然相等。)

你们的想法对吗?出示第3个天平图,证实学生的想法是对的。3.还可以根据什么方法来解这个方程?学生展示汇报

4.师小结:刚才我们计算出的x =6,这就是使方程左右两边相等的未知数的值,叫做方程的解。也就是说,x =6就是方程x +3=9的解。求方程解的过程叫做解方程。(板书:方程的解解方程)

5.引导:谁来说一说,方程的解和解方程有什么区别?学生自主看课本学习,可能会初步知道,求出的x 的值是方程的解;求解的过程就是解方程。

师引导学生小结:“方程的解”中的“解”的意思,是指能使方程左右两边相等的未知数的值,它是一个数值;而“解方程”中的“解”的意思,是指求方程的解的过程,是一个计算过程。

6.验算:x =6是不是正确答案呢?我们怎么来检验一下?

引导学生自主思考,并在小组内交流自己的想法。通过学生的回答小结:可以把 x =6的值代入方程的左边算一算,看看是不是等于方程的右边。

即:方程左边=x +3

=6+8

=9

=方程右边

让学生尝试验算,并注意指导书写。

三、练习巩固拓展

四、课堂小结。师:这节课你学会了什么知识?有哪些收获?

引导总结:

1.解方程时是根据等式的性质来解。

2.使方程左右两边相等的未知数的值,叫做方程的解。3.求方程解的过程叫做解方程。

学生展示检验(自主学习单)

板书设计 解方程(1)

x +3=9

解:x +3-3=9-3

x =6

求方程解的过程叫做解方程

使方程左右两边相等的未知数的值,叫做方程的解。

解方程的教案(篇3)

学习目标:

1、通过操作、演示,进一步理解等式的性式,并能用等式的性质解简单的方程,在解方程的过程中,初步理解方程的解与解方程。

2、通过创设情境,经历从具体抽象为代数问题的过程,渗透代数化思想,并通过验算,促进良好学习习惯的养成。

3、在观察、猜想、验证等数学活动中,发展学生的数学素养。

学习重点:用等式的的性质解方程,理解算理

学习过程:

一、创设情境,引出方程

1、研究例1:

猜球游戏:出示一个乒乓球盒,猜里面有几个球?引导学生用字母来表示球数?

x

导语:要想精确知道多少个球?再给大家一些信息(课件出示:天平左边盒子和二个球,右边有七个球)

设问:能用一个方程来表示吗?板书x+2=6

二、探究算理

设问:你们知道x等于多少吗?那这个答案4你们是怎么想出来的吗?说说你们的想法?

预设:a、7-4=2;b、4+2=7,所以x=4,c、左右二边都拿掉二个乒乓球,右边还剩下4个,所以x=4

研究第三种想法:设问:左右同时拿个二个乒乓球天平会怎么样?

学生上台用天平演示

请学生们把刚才的过程用式子表示出来,板书:x+2-2=6-2

追问:你怎么想到是拿到二个乒乓球,而不是拿到一个或者三个呢?

尝试验算:板书:左边=4+2=6=右边,所以我们就说x=4是方程的解,板书方程的解,尝试说说方程的解;刚才我们求方程的解的过程叫做解方程。(可以自学书本)

讲解解方程的书写格式(与天平相对应)

小结:刚才我们用了好多方法来解方程,重点研究了第三种解方程的方法,这种方法我们用到了什么知识?课件再次演示后,得出方程的两边同时去掉相同的数,左右两边仍相等。

尝试:解方程:x-1=3,

想一想:如果要用天平的乒乓球,如何来表示出这个方程?

指名摆一摆,学生尝试解决,并用操作来验证

2、研究例2:3x=18

学生尝试后出示:3x÷3=12÷3

用小棒操作后交流后想法:方程的左右二同时除以一个相同的数(零除外),左右二边仍旧相等。

展示,课件演示后小结:方程的左右二边可以同时除以相同的数(零除外),左右二边仍旧相等,追问得到还可以同时乘以一个相同的数

总结:解方程时,我们都是想使方程的一边只剩下一个x,而且在这个过程中还要使方程保持平衡,我们可以采用……

三、巩固练习:

1、p59页1

2、后面括号中哪个是x的值是方程的解?

(1)x+32=76 (x=44, x=108)

(2)12-x=4 (x=16, x=8)

3、解方程

p59页第2题的前面四题,要求口头验算

四、总结:

五、机动:研究练习2中的第二题,怎么用今天的方法来解方程。

让"天平"植入解方程中

《解简易方程》是数与代数领域中的一个重要内容,是“代数”教学的起始单元,对于渗透与发展学生的代数化思想有着极其重要的作用。本节课教材在编写上为了实现中小学的衔接,改变了以往利用“加减法逆运算和乘除法逆运算”而是利用天平原理即等式的性质来解方程,由于学生在前面已经积累了大量的感性经验(逆运算)来解方程,对于今天运用天平的原理来解方程,造成了极大的干扰,所以在本节课中我力图直观,让学生在直观的操作与演示中自主建构。同时借助观察、操作、猜想与验证,一方面来促使学生进一步理解等式的性质,能利用等式的性质来解方程,同时也让学生抽象方程,解释算理中来经历代数的过程,发展学生的数感及数学素养。

解方程的教案(篇4)

简易方程—解方程(1)教学设计

教学内容:新人教版五年级数学上册《解方程》 教学目标:

一、知识与能力目标:使学生初步理解“方程的解”与“解方程”的含义以及“方程的解”和“解方程”之间的联系和区别。

二、方法与过程目标:利用等式的性质解简易方程。

三、情感态度和价值观目标:关注由具体到一般的抽象概括过程,培养学生的代数思想。

教学重点:理解“方程的解”和“解方程”之间的联系和区别。教学难点:理解形如a±x =b的方程原理,掌握正确的解方程格式及检验方法。

教学方法:创设情境;观察、猜想、验证。课前准备:多媒体课件 教学过程:

一、复习

1、复习用方程表示数量关系。

2、课件出示天平图,引导得天平两边的盘里同时去掉100克就得到杯子里水的质量x的值。

二、情境导入

谈话:同学们,咱们玩一个猜一猜的游戏好吗?出示一个盒子,让学生猜一猜里面可能有几个球呢?(学生思考后会说,可以是任意数。)教师继续通过多媒体补充条件,并出示教材第67页例1情境图。问:从图上你知道了哪些信息?

引导学生看图回答:盒子里的球和外面的3个球,一共是9个。并用等式表示:x +3=9(教师板书)

三、互动新授

1、先让学生回忆等式的性质,再思考用等式的性质来求出x 的值。(学生思考、交流,并尝试说一说自己的想法)

2、教师通过天平帮助学生理解。

出示教材第67页第一个天平图,让学生观察并说一说。

长方体盒子代表未知的x 个球,每个小正方体代表一个球。则天平左边是x +3个球,右边是9个球,天平平衡,也就是列式:x +3=9。观察:把左边拿掉3个球,要使天平仍然保持平衡要怎么办?(右边也要拿掉3个球。)

追问:怎样用算式表示?学生交流,汇报:x +3-3=9-3

x =6 质疑:为什么两边都要减3呢?你是根据什么来求的?(根据等式的性质:等式的两边减去同一个数,左右两边仍然相等。)你们的想法对吗?出示第3个天平图,证实学生的想法是对的。

3、师小结:刚才我们计算出的x =6,这就是使方程左右两边 相等的未知数的值,叫做方程的解。也就是说,x =6就是方程x +3=9的解。求方程解的过程叫做解方程。(板书:方程的解

解方程)

4、引导:谁来说一说,方程的解和解方程有什么区别?学生自主看课本学习,可能会初步知道,求出的x 的值是方程的解;求解的过程就是解方程。师引导学生小结:“方程的解”中的“解”的意思,是指能使方程左右两边相等的未知数的值,它是一个数值;而“解方程”中的“解”的意思,是指求方程的解的过程,是一个计算过程。

5、验算:x =6是不是正确答案呢?我们怎么来检验一下? 引导学生自主思考,并在小组内交流自己的想法。

通过学生的回答小结:可以把x =6的值代入方程的左边算一算,看看是不是等于方程的右边。即:方程左边=x +3

=6+3

=9

=方程右边

让学生尝试验算,并注意指导书写。

6、讨论:解方程需要注意什么?让学生自主说一说,再汇报。小结:根据等式的性质来解方程,解方程时要先写“解”,等号 要对齐,解出结果后要检验。

四、巩固拓展

1、完成教材第67页“做一做”第1、2题。

2、完成作业(课件中的练习题)。

五、课堂小结

师:这节课你学会了什么知识?有哪些收获?

1、解方程时是根据等式的性质来解。

2、使方程左右两边相等的未知数的值,叫做方程的解。

3、求方程解的过程叫做解方程。课后反思

解方程的教案(篇5)

《用方程解题》教学反思

《用方程解题》教学反思

用方程解题也是小学非常重要的内容。谈到方程,教科书涉及一些用方程求解的简单应用问题。教学的时候,尤其是举例的时候,强调的是方程的方法,但是因为题目比较简单,所以题目中的等价关系也比较简单。学生可以很容易地用算术来解决问题,所以很多学生不愿意用方程来解决问题,因为用方程来解决问题,他们需要写出解决方案的假设。学生想省事,不喜欢用方程解决问题。

但是,在学习稍复杂的方程时,也是通过实际问题来介绍稍复杂的方程,进一步解释稍复杂的方程的解,一般用于求解稍复杂的方程。有很多方法可以将其中的一个视为一个整体。当然,相对而言,课后解题的类型一般都是用稍微复杂一些的方程来解决的。我记得当时教书的时候,孩子们被迫用方程式来解决问题。但是,我总觉得孩子用方程解题的能力比较弱。

比如有两个未知数的问题类型,用方程来解决这个问题是相当不错的。抽象,但方程的方法是前瞻性的,更容易理解。于是,前几天有同学来找我一道济宁外语的数学题,就是有两个未知数的类型,也就是先设一个未知数,用有这个未知数的公式表示另一个未知数,然后找到有两个未知数的类型。题目中的等价关系可以通过列出方程来求解。其实所谓的问题无非如此。

可见,用方程解决复杂的应用问题是很有必要的。

问题解决教学设计

问题解决教学设计

一年级问题解决教学设计

一年级问题解决教学设计

p>

p>

解方程的教学设计

解方程的教案(篇6)

【教学内容】:

《义务教育课程标准实验教科书数学》五年级上册第

58、59页例

1、例2。

【教材分析】:

本节课是学生在掌握了等式的性质及方程的意义的基础上正式学习解方程的初始课。主要讨论x+a=b, ax=b的方程的解法。这部分知识的学习是学生进一步学习稍复杂的方程和应用方程解决实际问题的重要基础,是本单元的.重点内容之一。对于本课中较简单的方程,教材要求,直接利用等式的性质,只要通过一次变形,即在方程两边同时加上或减去、乘上或除以一个数(0除外)就能求出方程的解。

【教学目标】:

1、能根据等式的性质解较简单的方程。

2、通过探究较简单的方程的解法,培养利用已有知识解决问题的意识和能力。

3、培养规范书写和自觉检查的习惯。

【教学准备】:

挂图、天平、小球、小黑板等。

【教学课时】:

1课时。

【教学过程】:

(一)、复习旧知,导入新课

1、什么叫方程的解?什么叫解方程?

方程的解:使方程左右两边相等的未知数的值,叫做方程的解; 解方程:求方程的解的过程叫做解方程;

揭示课题:这节课我们就来学习解最简单的方程——简易方程。 板书:解简易方程。(学生齐读课题)

(二)、提出问题,探究新知

1、提出问题,教学例1 师:请看挂图,请你说出图上的意思。(盒子里有x个小球,盒子外有3个球,合起来一共是9个小球。)

师:能不能用我们新学的方程解决这个问题

学生列出方程:X+3=9(引导学生根据加法的意义列出方程。)

师:同学们根据加法的意义的到方程X+3=9,(板书:X+3=9)那么X是多少?(异口同声说6)

- 1X+3=9 解: X+3-3=9-3 X=6 提问书写解方程的过程要注意什么?

教师示范书写格式,①、先写方程X+3=9。②、接下来写“解:”。③、方程的左右两边同时减去3。④方程的左边只剩下未知数X。方程的右边9-3是6。得到方程的解是X=6。

在这里需要强调一点,解方程时每一步得到的都是一个等式,不能连等。另外还要注意等号对齐。

师:X=6是不是就是正确答案呢?我们来验算一下。 指名学生回答,教师板书:方程的左边= X+3 =6+3 =9 =方程的右边

所以X=6是方程的解

像这样我们就把X+3=9这个方程的解解了出来,那么我们是怎么做到的?

我们是在方程两边同时减去同一个数,方程左右两边仍然相等。

5、巩固练习

20+x=47 解: 20+x○□=47○□ x=□

(自己解方程,对照答案,检查自己做的,哪儿错了。)

(设计意图:从一开始就强化必要的书写规范,以发挥首次感知先入为主的强势效应,有利于促进良好的书写习惯的形成。)

6、教学例2 师:同学们我们刚才用解方程的方法求出了X+3=9这个方程的解是X=6那么你对解方程这个概念是不是有一点感觉不知道换一种形式你还有没有把握。

出示例2:解方程3X=18 师:你能用解这个方程吗? 3X表示什么意思?

那么这个方程就可以理解成已知3个X等于18,求一个X等于多少? 师:请同学们独立思考,自己试着完成例2的填空,并自己验算。

7、讨论交流:

①、你是怎样让方程的左边只剩下X,还能让方程的两边相等? ②、怎样把这个过程在方程中表示出来,又使方程左右两边保持相等?

3X÷3=18÷3

解方程的教案(篇7)

教学目标

1.使学生在解决实际问题的过程中,理解并掌握形如ax+b=c方程的解法,会列上述方程解决两步计算的实际问题。

2.使学生在观察、分析、抽象、概括和交流的过程中,经历将现实问题抽象为方程的过程,进一步体会方程的思想方法及价值。

3.使学生在积极参与数学活动的过程中,养成独立思考、主动与他人合作交流、自觉检验等习惯。

教学重点:理解并掌握形如ax+b=c方程的解法,会列方程解决两步计算的实际问题。

教学难点:如何指导学生在观察、分析、抽象、概括和交流的过程中,将现实问题抽象为方程。

教学过程

课前谈话导入:同学们,经调查,我们班大部分同学的年龄是12岁(虚岁),也可以通过推理推算出来,7岁入学,在学校学了五年,正好是12岁。老师今年是39岁,师在黑板上板书39和12。下面请同学比较一下老师和你的年龄,并用一句话把比较的结果说出来,注意启发引导学生说出:“老师的年龄比我年龄的3倍还多3岁”,“老师的年龄比我年龄的4倍少9岁”。两种说法都可以。接着问,明年呢?“老师的年龄比我年龄的3倍还多l岁”。

【设计意图】通过学生熟悉的年龄话题引入,并训练学生对两数大小比较,为新课分析数量关系作理解铺垫。把抽象的数量关系分析生活化,利于学生进入学习情境。

一、在现实问题情境中分析数量关系,列出方程,探索解方程的方法——教学例1

(一)在情境中分析数量关系.提出问题

1.师谈话进入情境:孙悟空跟随师父历尽千辛万苦从西天取来大量经书,藏在古城西安的大雁塔中。大雁塔和小雁塔是著名的古代建筑。(出示大雁塔和小雁塔的图片)这节课.我们先来研究一个与这两处建筑高度有关的数学问题。(出示例1的一部分“西安大雁塔的高度比小雁塔高度的2倍少22米”,暂不出示所求的问题)

2.师让生读出这段文字并提问:谁比谁少22米?让学生明白“大雁塔高度和小雁塔高度的2倍比,少22米,可以把小雁塔高度的2倍看做一个整体。”

师进一步启发:这句话清楚地说明了大雁塔和小雁塔高度之间的关系,请同学们用数量关系式表示出大雁塔和小雁塔高度之间的相等关系。

出示学生可能想到的等量关系式:①小雁塔的高度×2-22=大雁塔的高度;②小雁塔的高度×2=大雁塔的高度+22;③小雁塔的高度×2-大雁塔的高度=22。

3.引导学生观察第一个等量关系式。师:经测量小雁塔高度是43米,你能利用这个关系式口答出大雁塔的高度吗?学生口答,师板书:2×43-22=64(米)。

【设计意图】运用数量关系直接求出高度,体会顺向思维。既感受数量关系的价值,又为下面的逆向思维作出对比准备,更重要的是让学生在下面列方程时也要像这样顺向思维进行思考。

4.师:如果知道大雁塔的高度是64米,你能提出什么问题?

生:小雁塔的高度是多少米?(出示“大雁塔高度是64米”和“小雁塔高度是多少米?”把例1补充完整。)

【设计意图】在清楚数量关系的基础上,学生已经把问题迁移到需要用逆向思维考虑解决的问题上。让学生自己提出问题,突出解决问题是学生自己的学习需求,也为他们探索解答作出心理准备。

(二)根据等量关系布列方程,同时唤起有关方程的旧知

1.生观察第一个等量关系式,师提问:在这个等量关系式中,这时哪个数量是已知的?哪个数量是我们去求的?

追问:让你求小雁塔的高度怎么办呢?我们可以用什么方法来解决这个问题?

生:可以列方程解答。如果学生列出正确的算式进行解答,师给予肯定,再引导学生用方程的方法解决问题。

师明确方法,并提示课题:这样的问题可以列方程来解答。今天我们继续学习列方程解决实际问题。(板书课题:列方程解决实际问题)

2.师谈话:我们在五年级已经学过列方程解决简单的实际问题,结合今天我们学习的内容,谁来说一说列方程解决实际问题一般要经过哪几个步骤?

生能大概说出“写设句、列方程、解方程和检验等即可。

3.让学生先自主尝试设未知数,并根据第一个等量关系式列出方程。

解:设小雁塔高x米。

2x-22=64

【设计意图】经历由现实问题抽象为方程的过程。在建构数学模型的过程中,先由情境抽象成数量关系式,再根据数量关系式列出方程,实现了学生在逐步抽象的过程中学习数学的方法,体现了数学的简洁性和学习数学的必要性。

(三) 自主探索解方程的方法,体会转化的思想

提问:这样的方程,你以前解过没有?运用以前学过的知识,你能解出这个方程吗?

交流中明确:首先要应用等式的性质将方程两边同时加上22,使方程变形为2x=?,即把用两步计算的方程转化为一步计算,变新知为旧知,再用以前学过的方法继续求解。

要求学生接着例题呈现的第一步继续解出这个方程。学生完成后,组织交流解方程的完整过程,核对求出的解,并提示学生进行检验,最后让学生写出答句。

【设计意图】让学生在自主探索方程解法的过程中,体会运用转化策略,把两步转化成一步、复杂转化成简单、新知转化成旧知。

(四)思考其他方法,感受解法的多样化

1.提问:还可以怎样列方程?

学生列出方程后,要求他们在小组内交流各自列出的方程,并说说列方程的根据,以及可以怎样解列出的方程。如果学生不能列出其他方程,师不能作硬性要求。

2.引导小结:刚才我们通过列方程解决了一个实际问题。你能说说列方程解决问题的大致步骤吗?其中哪些环节很重要?

引导学生关注:(1)要根据题目中的信息寻找等量关系,而且一般要找出最容易发现的等量关系;(2)分清等量关系中的已知量和未知量,用字母表示未知量并列方程;(3)解出方程后要及时进行检验。(师板书:找等量关系;用字母表示未知数并列方程;解方程,检验。)

【设计意图】通过解法的多样化,使学生明白可以根据自己学习实际和思维习惯分析数量关系,列方程解决问题,同时训练学生思维,拓展学生解决问题的思路。

二、自主尝试列方程解决实际问题,注意比较例题,进一步形成解决问题模式——自主合作学习“练一练”

“杭州湾大桥是目前世界上最长的跨海大桥,全长大约36千米,比香港青马大桥的16倍还长0.8千米。香港青马大桥全长大约多少千米?”

谈话:我们已经初步掌握列方程解决稍复杂的实际问题的方法和步骤,下面就请同学们试着解决一个实际问题。做“练一练”。

1.先让学生读题,并设想解决这一问题的方法和步骤,然后让学生独立完成。

2.小组合作交流。交流前要出示交流顺序提示:(1)说说找出了怎样的等量关系;(2)根据等量关系列出了怎样的方程;(3)是怎样解列出的方程的;(4)对求出的解有没有检验。

3.最后让学生核对自己的答案,检查自己的解题过程。

针对学生不同的思路和方法(包括用算术方法),教师在提出主导意见的基础上要予以肯定。

4.启发思考:这个问题与例1有什么相同的地方?有什么不同的地方?提炼出列方程解决稍复杂的实际问题的基本思路和解形如ax±b=c方程的一般方法。

【设计意图】让学生在独自解决问题的过程中学会解决问题,在探究中学会合作。

三、运用方程策略独立解决实际问题,牢固形成解决问题模式(建构牢固的数学模型)——做“练习一”的第1~5题

谈话:在列方程解决问题的过程中,有两个方面要引起我们重视,一个是寻找等量关系,能用含有字母的式子表示具体数量;另一个就是解方程。下面我们就对这两个方面进行进一步的学习和训练。

1.做“练习一”第1题

“解方程。4x+20=56 1.8+7x=3.9 5x-8.3=10.7”

先让学生说说解这些方程时,第一步要怎样做.依据是什么,然后让学生独立完成。交流反馈时,要在关注结果是否正确的同时,了解学生是否进行了检验。(三个同学到黑板上板演,其他同学选做一题。)

2.做“练习一”第2题

在括号里填上含有字母的式子。(1)张村果园有桃树x棵,梨树比桃树的3倍多15棵。梨树有( )棵。

(2)王叔叔在鱼池里放养鲫鱼x尾,放养的鳊鱼比鲫鱼的4倍少80尾。放养鳊鱼( )尾。

学生独立完成后,再要求学生说说写出的每个含有字母的式子分别表示哪个数量,是怎样想到写这样的式子的?(把题目中的多、少改成少、多让学生再表示)

3.做“练习一”第3题

“猎豹是世界上跑得最快的动物,时速能达到110千米,比猫最快时速的2倍还多20千米。猫的最快时速是多少千米?”

谈话:同学们,我们既能准确地找到等量关系,又能正确解方程,那么我们就具备了解决实际问题的能力了。就请同学们独立解决一个问题。

学生独立完成后,指名说说自己的思考过程,进一步突出要根据题中数量之间的相等关系列方程。

4.课堂作业:做“练习一”的第4题和第5题。

“北京故宫占地大约72公顷,比天安门广场的2倍少8公顷。天安门广场大约占地多少公顷?”

“世界上最小的鸟是蜂鸟,最大的鸟是鸵鸟。一个鸵鸟蛋长17.8厘米,比一只蜂鸟体长的3倍还多1厘米。这只蜂鸟体长多少厘米?”

【设计意图】在巩固训练和应用策略阶段采用先部分后整体的练习步骤,进一步深化认识,并在体验中达到知识和技能的内化。

四、总结列方程解决问题的思路、方法,体会方程的思想和价值——学生拓展设计

1.学生拓展设计

师:请同学们回到课前,我们师生关于年龄的对话中,看39岁和12岁,你能设计一个用今天所学的策略和方法解答的实际问题吗?

师要多听学生的发言.考虑学生所说数量之间的关系以及提出问题的贴切性并作出评价和概括。

2.今天这节课我们学习了什么内容?你有哪些收获?还有没有疑惑的地方?教师同时总结,方程是我们解决问题很重要的一个策略,正确地运用方程,能帮助我们解决很多实际问题,尤其是用算术方法不容易解决的一些问题。我相信同学们经过今天的学习,对方程会有更深的认识,并在以后的学习和运用中进一步学好和用好方程。

【设计意图】在照应课前学习和学生拓展运用的基础上,充分体会方程的思想和价值,把学生的认识进一步提升,对方程有较为全面的理解和掌握。

解方程的教案(篇8)

一、导入

谈话:同学们,还记得什么是方程吗?等式的性质呢?

二、互动新授

(一)各小组派代表汇报并展示课前自习的结果。小组之间可互相猜疑,并提问。教师不必急于给出正确答案,只需引导各小组充分进行交流。

(二)教师通过多媒体出示教材第67页例1情境图。

问:从图上你知道了哪些信息?

引导学生看图回答:盒子里的球和外面的3个球,一共是9个。并用等式表示: x+3=9(教师板书)

1.先让学生回忆等式的性质,再思考用等式的性质来求出x 的值。

学生思考、交流,并尝试说一说自己的想法。2.教师通过天平帮助学生理解。

出示教材第67页第一个天平图,让学生观察并说一说。长方体盒子代表未知的x个球,每个小正方体代表一个球。则天平左边是x +3个球,右边是9个球,天平平衡,也就是列式:x +3=9。

观察:把左边拿掉3个球,要使天平仍然保持平衡要怎么办?(右边也要拿掉3个球。)

追问:怎样用算式表示?学生交流,汇报:x+3-3=9-3

x =6 质疑:为什么两边都要减3呢?你是根据什么来求的?

(根据等式的性质:等式的两边减去同一个数,左右两边仍然相等。)

你们的想法对吗?出示第3个天平图,证实学生的想法是对的。3.还可以根据什么方法来解这个方程?学生展示汇报

4.师小结:刚才我们计算出的x =6,这就是使方程左右两边相等的未知数的值,叫做方程的解。也就是说,x =6就是方程x +3=9的解。求方程解的过程叫做解方程。(板书:方程的解解方程)

5.引导:谁来说一说,方程的解和解方程有什么区别?学生自主看课本学习,可能会初步知道,求出的x 的值是方程的解;求解的过程就是解方程。

师引导学生小结:“方程的解”中的“解”的意思,是指能使方程左右两边相等的未知数的值,它是一个数值;而“解方程”中的“解”的意思,是指求方程的解的过程,是一个计算过程。

6.验算:x =6是不是正确答案呢?我们怎么来检验一下?

引导学生自主思考,并在小组内交流自己的想法。通过学生的回答小结:可以把 x =6的值代入方程的左边算一算,看看是不是等于方程的右边。

即:方程左边=x +3

=6+8

=9

=方程右边

让学生尝试验算,并注意指导书写。

三、练习巩固拓展

四、课堂小结。

师:这节课你学会了什么知识?有哪些收获?引导总结:

1.解方程时是根据等式的性质来解。

2.使方程左右两边相等的未知数的值,叫做方程的解。3.求方程解的过程叫做解方程。

学生展示检验(自主学习单)

板书设计 解方程(1)

x +3=9

解:x +3-3=9-3

x =6

求方程解的过程叫做解方程

使方程左右两边相等的未知数的值,叫做方程的解。

教学过程:

一、创设情境,生成问题

同学们,还记得上节课我们一起玩过的天平游戏吗?谁来说说你从中获得了什

么知识?(引导学生回忆等式的性质即天平平衡原理)。同学们在游戏中的收获可真不少,还想不想玩游戏?(想)好,现在我们就一起玩个猜球游戏:

师出示一个不透明的乒乓球盒,让学生猜里面有几个球?(学生可以任意猜)师:盒子里面有几个球,1个?2个?.......你能准确说出盒子里有几个吗?

生:不能!

师引导学生可以用字母X来表示球的个数。

师:要想准确知道有几个球,再给同学们一些信息。

(师课件出示天平左边一个不透明盒子和3个球,右边透明盒子里有9个球,天平平衡)

设问:能用一个方程来表示吗?(板书X+3=9)师:现在你知道X的值是多少吗?

二、探索交流,解决问题。

(一)探究利用等式的性质解方程

1、独立思考:盒子里有几个球?也就是X所表示的数值是多少?(由于数据 较小,学生能够独立思考出结果)

2、小组内交流;你是怎样想的?

(这里给与学生一定的思考和交流的时间,重点让学生说说自己的思考过程)。

3、全班交流:X的值是多少?你是怎样想的?

学生可能有以下几种想法:(1)利用加减法的关系:9-3=6。(2)想6+3=9,所以X=6。

(3)把9分成6+3,想X+3=6+3,所以X=6。(4)在方程两边同时减去一个3,就得到X=6

师:同学们的想法真不少。我们看前三个同学都是利用加减法的关系或数的分成想出了答案。第四个同学的想法有什么不同?他的想法对吗?我们可以来验证一下。

4、操作验证:师拿出课件演示中的天平实物(天平左边一个不透明盒子和3个 球,右边透明盒子里有9个球,天平平衡。注意两个盒子的质量相等)

师问:现在谁来试一试?想想左右两边同时拿去三个乒乓球天平会怎么样?(学生拭目以待,跃跃欲试)

学生操作演示,天平平衡。

(二)指导解方程的书写格式

师:通过操作我们发现他的想法是对的!以后我们就用等式的性质来求方程中未 知数的值。这个演算过程如何书写呢?让学生先同桌交流发表自己的看法,然后师边示范边强调:首先在方程的第二行起写一个“解”字,利用等式的性质两边同时减去一个3,为了美观注意每步等号要对齐。

师板书如下:

X+3=9

解:x+3-3=9-3

x=6

重点问:左右两边同时减去的为什么是3,而不是其它数呢?

学生纷纷说出想法。

师结:方程两边减去3以后,左边刚好剩下一个x,这样,右边就刚好是x的值。因此,解方程说得实际一点就是通过等式的变换,如何使方程的一边只剩下一个 x即可。

师:我们要想知道算的对不对,不能每次都用天平来验证吧,尤其是遇到较大的 数。(学生点头认同)师:那怎麽办呢? 生:可以验算!

师:怎么验算?

学生可以交流,根据学生的回答老师板书验算方法:

验算:方程的左边 =X+3

=6+3

=9

= 方程的右边

所以,X=6是方程的解。

(三)揭示方程的解和解方程两个概念。

师:像上面X=6这样使方程左右两边相等的未知数的值,叫方程的解。而求方

程的解的过程叫做解方程。同时课件出示两个概念,让学生说说两个概念有什么不同?

师明确:方程的解是一个具体的数值,而解方程是一个过程,解方程的目的就是 求方程的解。

(四)独立尝试解方程(例2

师:同学们已掌握了解方程的方法,看这个方程你会解吗?

课件出示信息图,让学生看图列出方程3X=18。师抛出问题:这个方程如何解呢?要根据方程的哪个性质来解?

师:谁愿意来板演?(其他学生练习本上做)

教师针对学生做题情况,重点强调:根据“方程的两边同时除以一个不等于 0的数,左右两边仍然相等”来解方程。

三、巩固应用 内化提高

1、慧眼识珠

从后面括号中找哪个是x的值是方程的解?

(1)x+32=76

(x=44,x=108)

(2)12-x=4

(x=16,x=8)

2、看图列方程并解答(做一做)

3、是解题小冠军(63页第五题)

四、回顾整理,反思提升。

今天你有哪些收获?你学会了什么?

板书设计:

解方程的教案(篇9)

教学内容:教材P69例4、例5及练习十五第6、8、9、13题。

教学目标:

知识与技能:巩固利用等式的性质解方程的知识,学会解ax ±b=c与a(x ±b)=c类型的方程。

情感、态度与价值观:在学习过程中,进一步积累数学活动经验,感受方程的思想方法,发展初步的抽象思维能力。

教学重点:理解在解方程过程中,把一个式子看作一个整体。

学生自主解答练习,并说一说是怎么做的。并在订正的过程中,规范书写。

1.出示教材第69页例4情境图。

引导学生观察,并说一说图意。再让学生根据图列一个方程。

学生列出方程3x +4=40后,让学生说一说怎么想的。

在学生说自己的想法时,引导学生说出把3个未知的铅笔盒看作一部分,4支铅笔看作一部分。

2.让学生试着求出方程的解。

学生在尝试解方程时,可能会遇到困难,要让学生说一说自己的困惑。

也有学生可能会想到,把3个未知的铅笔盒看作一部分,先求出这部分有多少支,再求一盒多少支。(如果没有,教师可提示学生这样思考。)

提问:假如知道一盒铅笔盒有几支,要求一共有多少支铅笔,你会怎么算?

学生会说:先算出3个铅笔盒一共多少支,再加上外面的4支。

师小结:在这里,我们也是先把3个铅笔盒的支数看成了一个整体,先求这部分有多少支。解方程时,也就是先把谁看成一个整体?(3x )

让学生尝试继续解答,订正。

让学生同桌之间再说一说解方程的过程。

让学生尝试解方程,再在小组内交流自己的做法,然后集体订正,学生可能会有两种做法:

(1)利用例4的方法来解。

让学生说一说自己的思考,重点说一说把什么看作一个整体?

(先把x -16看作一个整体。)板书计算过程:

(2)用运算定律来解。

引导学生观察方程,有些学生会看出这个方程是乘法分配律的逆运算。可以运用乘法分配律把它转化成我们学过的方程来解。

4.让学生检验方程的解是否正确。先说一说如何检验,再自主检验。

1.完成教材第69页“做一做”第1题。

先让学生分析图意,再列方程解答。解答时,让学生说一说自己的想法,把谁看作一个整体。(可以把5个练习本的总价5x 看作一个整体。)

2.完成教材第69页“做一做”第2题。

先让学生自主解方程,再集体订正。

3.完成教材第71页“练习十五”第8题。

先让学生说一说图意,再列方程解答。特别是第一幅图,要提醒学生天平两边的砝码不一样重,审题要细心。第二幅图,学生可能会列出方程30×2+2x =158,再引导学生观察有两个30和两个x ,可以运用乘法分配律。

这节课你学会了什么知识?有哪些收获?

引导总结:1.在解较复杂的方程时,可以把一个式子看作一个整体来解。

2.在解方程时,可以运用运算定律来解。

作业:教材第71~72页练习十五第6、9、13题。

x -16=4 x -32+32=8+32 (把2x 看作一个整体)

解方程的教案(篇10)

1.甲乙两人年龄的和为29岁,已知甲比乙小3岁,甲、乙两人各多少岁?

2.一个长方形的周长是240米,长是宽的1.4倍,求长方形的面积

3.广水电影院原有座位32排,平均每排坐38人;扩建后增加到40排,可比原来多坐584人。扩建后平均每排可以坐多少人?

4.吉阳村有粮食作物84公顷,比经济作物的4倍多2公顷,经济作物有多少公顷?

5.王兰有64张画片,雷江又送给她12张,这时王兰和雷江的画片数相等。雷江原有画片多少张?

6.粮店运来大米和面粉480包,大米的包数是面粉的3倍,运来大米和面粉各多少包?

7.阿姨买4块肥皂、2条毛巾共用去2.8元,已知肥皂每块0.26元,毛巾每条多少元?

8.爷爷今年71岁,比小华年龄的6倍还多5岁,小华今年几岁?

9.甲乙两站相距255千米,一列客车从甲站开出,一列货车从乙站开出,2.5小时后相遇。客车每小时行48千米,货车每小时行多少千米?

10.商店运来500千克水果,其中有8筐苹果,剩下的是梨,梨有300千克。每筐苹果重多少千克?

11.东街小学现有学生960人,比解放前的12倍少26人,解放前有学生多少人?

12.一筐苹果,连筐重45.5千克,取出一半后,连筐还重24.5千克,筐重多少千克?

13.用120厘米长的铁丝围成一个长方形。要是它的长是38厘米,宽是多少厘米?

14.王妈买了2千克苹果,付出5元钱。找回0.6元,每千克苹果多少元?

15.商店运来8筐苹果和10筐梨,一共重820千克。每筐苹果重45千克,每筐梨重多少千克?

16.学校买回4个排球和5个篮球,共用476元。每个篮球56元,每个排球多少元?

17.学校买篮球比买排球多花84元。买回篮球5个,每个56元,买回的排球每个49元。学校买回多少个排球?

18.学校饲养小组今年养兔子25只,比去年养的只数的3倍少8只,去年养兔子多少只?

19.地球绕太阳一周要用365天,比水星绕太阳一周所用的时间的4倍少13天。水星绕太阳一周要用多少天?

20.有36米布,正好裁成10件大人衣服和8件儿童衣服。每件在人衣服用布2.4米,每件儿童衣服用布多少米?

21.李晖买了一支铅笔和一本练习本,一共花了0.48元,练习本的价钱是铅笔价钱的2倍,铅笔和练习本的单价各是多少钱?

22.小强妈妈的年龄是小强的4倍,小强比妈妈小27岁,他们两人的年龄各是多少?

23.有两袋大米,甲袋大米的重量是乙袋大米的3倍,如果再往乙袋大米装5千克大米,两袋大米就一样重,原来两袋大米各有多少千克?

24.爸爸的体重是66千克,比小军的2倍轻24千克,小军的体重是多少千克?

25.亚洲人口约有39亿,比欧洲人口总数物5倍还多4亿人,欧洲人口大约有多少人?

26.20雅典奥运会中国队共获得金牌32枚,比1988年汉城奥运会的7倍少3枚。1988年中国队共获金牌多少枚?

27.一辆双层巴士共有乘客51人,下层乘客人数是上层的2倍,上层有乘客多少人?

28.在一个笼子里,有鸡又有兔共8只,数一下它们的脚,共有20只。请问笼子里鸡、兔各有几只?

29.强强有奶糖14粒,比丽丽的2倍多2粒,丽丽有奶糖多少粒?

30.用一根长72cm的铁丝围成一个长方形,要使长是宽的2倍,围成的长方形的长和宽各是多少?

31.爷爷家种龙眼树的棵数是荔枝树的4倍,龙眼树比荔枝树多48棵。龙眼树有多少棵?

32.两辆汽车同时从相距345千米的两站相对开出,经过3小时两车相遇。一辆汽车每小时行55千米,另一辆汽车每小时行多少千米?

33.一座大楼高29.2米,一楼准备开商店,层高4米,上面9层是住宅。住宅每层高多少米?

34.一幅长方形画的长是宽的2倍。小芳做画框用了1.8m木条。这幅画的长、宽、面积分别是多少?

35.修一条长360米的路,每天修80米,修了若干天后,还剩40米,已修了多少天?

36.师徒两人同时加工一批零件,5小时共加工450个,师傅每小时加工50个,徒弟每小时加工零件多少个?

37. 一个长方形和一个正方形的面积相等,正方形的边长是6厘米,长方形的长是10厘米,宽是多少厘米?

38.果园里种的桃树比杏树多90棵,桃树的棵数是杏树的3倍,桃树和杏树各多少棵?

39.学校买了4副羽毛球拍和8副乒乓球拍,共付了357.6元。每副羽毛球拍25.4元,每副乒乓球拍多少元?

40.有两筐苹果,甲筐的重量是甲筐的1.8倍,如果从甲筐拿出6千克放入乙筐,则两筐重量相等,甲、乙两筐苹果原来各重多少千克?

41.故宫的面积是72万平方米,比天安门广场面积的2倍少16万平方米。天安门广场的面积多少万平方米?

42.宁夏的同心县是一个“干渴”的地区,年平均蒸发量是2325mm,比年平均降水量的8倍还多109mm,同心县的年平均降水量多少毫米?

43.猎豹是世界上跑得最快的动物,能达到每小时110km,比大象的2倍还多30km。大象最快能达到每小时多少千米?

44.世界上最大的洲是亚洲,面积是4400万平方千米,比大洋洲面积的4倍还多812万平方千米。大洋洲的面积是多少万平方千米?

45.三个数的平均数是13.5,甲是乙的4倍,丙比甲多4.5,求三个数各是多少?

46、后街粮店原有大米986包,又运来65包,第二天卖出一批后剩792包,第二天卖出多少包?

47、明到文具店买6本笔记本,付3元找回0.3元,每本笔记本多少钱?

48、甲乙两地相距380千米,客车与货车同上从两地相对开出,4小时后在中途相遇,已知客车每小时行45千米,货车每小时多少米?

49、果园里共种240棵果树,其中桃树是梨树的2倍,杏树是梨树的 3倍,这三种树各有多少棵?

50、化肥厂计划生产7200吨化肥,已经生产了4个月,平均每月生产化肥1200吨,余下的每月生产800吨,还要生产多少个月才能完成?

51、建筑工地需要沙子106吨,先用小汽车运15次,每次运2.4吨。剩下的改用大车运,每次运5吨,还要几次运完?

52、五年级同学种树,一班种40棵,比二班种的2倍少32棵,二班种多少棵?

53、某厂有一批煤,原计划每天烧5吨,可以烧45天。实际每天少烧0.5吨,这批煤可以烧多少天?

54、一批布料,原来可以制540套衣服,每套衣服用布料1.2米,经过技术改造后,平均每套衣服节约布料0.2米,现在可以多做多少套衣服?

55、河里有鹅鸭若干只,其中鸭的只数是鹅的只数的4倍.又知鸭比鹅多27只,鹅和鸭各多少只?

56、工程队要全修一条长4.8千米长的水渠,计划用15天完成。实际每天比原计划多修0.08千米,实际多少天就完成了任务?

57、小刚从家去学校,每分钟走60米,10分钟可以到达,如果每分钟多走15米,几分钟到达学校?

例题 两列火车同时从距离536千米的两地相向而行,4小时相遇,慢车每小时行60千米,快车每小时行多少小时?

降落伞以每秒10米的速度从18000米高空下落,与此同时有一热汽球从地面升起,20分钟后伞球在空中相遇,热汽球每秒上升多少米?

甲、乙两个进水管往一个可装8吨水的池里注水,甲管每分钟注水400千克,要想在8分钟注满水池,乙管每分钟注水多少千克?

两城相距600千米,客货两车同时从两地相向而行,客车每小时行70千米,货车每小时行80千米,几小时两车相遇?

两地相距249千米,一列火车从甲地开往乙地,每小时行55。5千米,行了多少小时还离乙地有27千米?

买5个本子和3支铅笔一共用去10.4元,已知铅笔每支0.9元,每本子多少元?

服装厂要做984套衣服,已经做了120套,剩下的要在12天内完成平均每天做多少套?

某生产小组9个工人要生产1926个零件,每人每小时可生产20个,工作5.5小时后,要求剩下的任务必须在4小时内完成,每人每小时必须生产多少?

⑧ 电机厂计划生产1980台电动机,已经生产了4天,每天生产45台,由于改进了技术,以后每天比原来增产15台,实际完成任务需几天?

例题 甲、乙两个粮仓一共有粮6800包,甲是乙的3倍,两仓各有多少包?

学校买来乒乓球和蓝球一共135个,买来的乒乓球是蓝球的8倍,两种球各多少个?

有一个上下两层的书架一共放了240书,上层放的书是下层的2倍,两层书架各放书多少本?

图书馆买来文艺科技书共235本,文艺书的本数比科技书的2倍多25本,两种书各买了多少本?

甲、乙、丙三人为灾区捐款共270元,甲捐的是乙捐的3倍,乙是丙的两倍,三人各捐多少元?

⑤A、B两个码头相距379.4千米,甲船比乙船每小时快3.6千米,两船同时在这两个码头相向而行,出发后经过三小时两船 还相距48.2千米,求两船的速度各是多少?

例题:化肥厂三月份用水420吨,四月份用水380吨,四月份比三月份节约水费60元,这两个月各付水费多少元?

答:三月份付水费630元,四月份付水费570元。

练一练:

新华书店发售甲种书90包,乙种书68包,甲种书比乙种快餐我1100本,每包有多少本?

一篮苹果比一篮梨子重30千克,苹果的千克数是梨子的2.5倍,求苹果和梨子各多少千克?

两块正方形的地,第一块地的边长比第二块地的边长的2倍多2米,而它们的周长相差56厘米,两块地边长是多少?

小亮购买每支0.5元和每支1.2元的笔共20支,付20元找回404元,两种笔各买了多少支?

超市运来20筐鸡蛋和230千克鸭蛋,鸡蛋比鸭蛋重多少千克?

甲、乙两数之差为100,甲数比乙数的3倍还多4,求甲、乙两数?

两个水池共贮水60吨,甲池用去6吨,乙池又注入8吨水后,乙池的水比甲池的水少4吨,原来两池各贮水多少吨?

师徒两人共同加工一批零件,徒弟每天做30个,师傅因有事只做了6天,比徒弟少做了3天还比徒弟多做12个零件,师傅每天做几个?

⑨食堂买的白菜比萝卜的3倍少20千克,萝卜比白菜少70千克,白菜、萝卜食堂各买了多少千克?

例题: 有两桶油,甲桶油重量是乙桶油的2倍,现在从甲桶中取出25.8千克,从乙桶中取出剩下的两桶油重量相等,两桶油原来各有多少千克?

答:甲桶油重4102千克,乙桶油重20.6千克,

练一练:

甲厂有钢材148吨,乙厂有112吨,如果甲厂每天用18吨,乙厂每天用12吨,多少天后两厂剩下的钢材相等?

一个两层的书架,上层放的书是下层的3倍,如果把上层的书放90本到下层,则两层的书相等,原来上下层各有书多少本?

甲车间有54人,乙车间有48人,在式作时,为了使两车间人数相等,甲车间应调多少人去乙车间?

超市存有大米的袋数是面粉的3倍,大米买掉180袋,面粉买掉50袋后,大米、面粉剩下的袋数相等,大米、面粉原各多少袋?

某校有苦于人住校。若每一间宿舍住6人,则多出34人;若每一间宿舍住7人,则多出4间宿舍。问有多少人住校?有几间宿舍?

甲仓所存的面粉是乙仓的3倍,如果从甲仓运走900千克,从乙仓运出80千克,则两仓所存的面粉相等,两仓原有面粉各多少千克?

有 箱桔子,甲箱的重量是乙箱的1.8倍,如果从甲箱中取出1.2千克放篱乙箱,那么两箱的重量相等了,原来甲乙两箱各多少千克?

一个通讯员骑自行车要在规定的时间内把信件送到某地,他每小时15千米查以早到24分钟,每小时骑12千米要迟到15分钟,规定时间是多少?他去某地的路程有多远?

一列火车从甲地开往乙地每小时 50千米,一小时后另一列火车也从甲地开往乙 地每小时行60千米,结果两列火车同时到达乙3地,甲、乙两地相距多少千米?

⑩甲级糖每千克16.60元,乙级糖每千克8.80元。商店用80千克甲级糖和若干乙级糖混合后平均每千克售价14.00元,乙级糖要多少千克?

例题:两筐苹果,每筐的个数相等,从甲筐卖出150个,从乙筐卖出194个后,剩下的苹果甲筐是乙筐的3倍,原来每筐有多少个?

练一练:

修一条水渠计划需70人挖土,50人运土,而实际上挖土人数是运土人数的3倍,问从运土的人中调多少人去挖土?

电力公司现有职工1240人,比五年前的6倍不多40人,五年前电力公司有多少人?

有两堆煤,甲堆有32吨,乙堆有57吨,以后甲堆每天增加4吨,乙堆每天增加9吨,几天后乙堆的煤是甲堆的2倍?

甲乙两厂用同样的原料生产同样的产品,甲厂有720吨,乙厂有540吨,两厂同时生产并每天都用去20吨,多少天后甲厂所剩的原料是乙厂所剩原料的2倍?

甲乙两个工程队,甲队原有240人,乙队原有168人,因工作需要将甲队的人数调整到乙队的2倍,应由乙队抽调多少人到甲队?

兄妹两人各有钱若干,如果兄给妹20元两人钱数就相等,如果妹给兄25元,则兄的钱是妹的2倍,问兄妹两人各有多少钱?

兄妹有相等的存款,如果兄给妹160 元,那么妹的存款是兄的3倍,求兄妹两人存款之和?

弟弟今年5岁,哥哥今年18岁,几年后哥哥的年龄是弟弟的2倍?

父亲今年45岁,儿子今年15岁,几年前父亲的年龄是儿子的11倍?

⑩甲原有的钱是乙的4倍,若甲给乙40元则甲的钱是乙的3倍,甲、乙现有钱各多少?

例题: 桃树有300棵,杏树比桃树的2倍多30棵,杏树有多少棵?

300×2+30=600+30=630(棵) 答:杏树有630棵。

例题: 桃树有300棵比杏树的2倍多30棵,杏有多少棵?

练一练:

地球绕太阳一周要用365天,比水星绕太阳一周要用的时间的4倍多13天,水星绕太阳一周要用多少天?

某厂计划今年生产机器480台,比去年的2倍少30台,去年生产机器多少台?

世界上最小的鸟是蜂鸟,一只蜂鸟重2.1克,一只麻雀的体重比蜂鸟的50倍多1克,一只麻雀衙多少克?

我国发射的第一颗人造地球卫星重173千克,比美国发射的第一颗人造地球卫星的2倍还重0.38千克。美国发射的第一颗人造地球卫星重多少千克?

⑤某厂今年烧煤50吨,去年烧的煤比今年的2倍少10吨,去年烧煤多少吨?

解方程的教案(篇11)

四年级解方程教学设计及反思

引言:

解方程是数学中的重要概念,能够培养学生的逻辑思维能力和问题解决能力。针对四年级学生的特点和需求,本文设计了一节解方程的教学课程,并对课程进行了反思。

一、教学目标

1. 理解方程的定义和意义。

2. 学会利用逆运算解方程。

3. 掌握一步解方程的基本方法。

二、教学准备

1. 教材:教材中的解方程相关知识点和例题。

2. 展示工具:黑板、彩色粉笔、数字卡片等。

3. 练习材料:提供给学生的解方程练习题。

三、教学过程

1. 情境引入:

引导学生回顾在一些数学问题中,如何求出未知数。例如,如果一个数加5等于12,那么这个未知数是多少?

2. 引入方程:

介绍方程的概念,将其定义为一个等式,其中包含了一个或多个未知数。如:5 + x = 12。

通过多个例子展示方程的形式,让学生理解方程的结构和意义。

3. 利用逆运算解方程:

定义逆运算为将方程两边的数互换位置。如:5 + x = 12 可以转化为 x + 5 = 12。

强调逆运算的原则是保持等式的平衡。

4. 一步解方程:

解释一步解方程的基本概念:方程中只有一个未知数,并可以通过一个运算找到未知数的值。如:x + 5 = 12。

指导学生将方程改写为 x = 12 - 5 = 7,并解释步骤和原理。

5. 练习实践:

提供给学生一些解方程的练习题,让他们运用刚刚学到的知识解决实际问题。

在学生完成练习后,逐个解答并讲解答案和解题思路。

6. 总结概括:

回顾解方程的基本概念和方法,让学生总结所学内容。

鼓励学生提问和分享解题思路,培养交流合作的能力。

四、教学反思

本节课的设计充分考虑了四年级学生的认知特点和学习需求。通过引入情境、激发学生的兴趣,帮助他们理解解方程的定义和意义。利用逆运算和一步解方程的原则,简化了解方程的过程,使学生易于理解与掌握。通过练习实践,学生得到了锻炼,并在讲解答案和解题思路中得到了反馈和巩固。

然而,在实际教学中,考虑到学生的理解能力和接受程度,可能需要增加一些示例和练习的难度。此外,考虑到学生的发展和学习进度,可以设计一些拓展练习,使学生能够更深入地理解解方程的方法和应用领域。同时,在教学过程中,要多给予学生积极的反馈和鼓励,鼓励他们发表自己的见解和思考,进一步培养他们的数学思维和创新能力。

总结:

通过本节解方程的教学设计,学生能够了解方程的定义和意义,掌握利用逆运算解方程的方法,以及一步解方程的基本原则。这对于他们进一步学习数学和培养逻辑思维能力是非常有帮助的。然而,教学设计中还有一些需要改进的地方,以适应学生的需求和提高教学效果。

解方程的教案(篇12)

1、结合具体的题目,让学生初步理解方程的解与解方程的含义。

2、会检验一个具体的值是不是方程的解,掌握检验的格式。

3、进一步提高学生比较、分析的能力。

(1)上一节课,我们学习了什么?

复习天平保持平衡的规律及等式保持不变的规律。

(2)学习这些规律有什么用呢?(用于解方程)从这节课开始我们就会逐渐发现到它的重要作用了。

教学过程一、解决问题。

出示P57的题目,从图上可以获取哪些数学信息?天平保持平衡说明什么?杯子与水的质量加起来共重250克。

能用一个方程来表示这一等量关系吗?得到:100+x=250,x是多少方程左右两边才相等呢?也就是求杯子中水究竟有多重。如何求到x等于多少呢?学生先自己思考,再在小组里讨论交流,并把各种方法记录下来。

全班交流。可能有以下四种思路:

(1)观察,根据数感直接找出一个x的值代入方程看看左边是否等于250。

(3)把250分成100+50,再利用等式不变的规律从两边减去100,或者利用对应的关系,得到x的值。

(4)直接利用等式不变的规律从两边减去100。

对于这些不同的方法,分别予以肯定。从而得到x的值等于150,将150代入方程,左右两边相等。

二、认识、区别方程的解和解方程。

得出方程的解与解方程的含:

像这样,使方程左右两边相等的未知知数的值,叫做方程的解,刚才,x=150就是方程100+x=250的解。

而求方程的解的过程叫做解方程,刚才,我们用这几种方法来求100+x=250的解的过程就是解方程。

这两个概念说起来差不多,但它们的意义却大不相同,它们之间的区别是什么呢?

方程的解是一个具体的数值,而解方程是一个过程,方程的解是解方程的目的。

P58例1P59例2。

怎么判断X=6是不是方程的解?将x=6代入方程之中看左右两边是否相等,写作格式是:方程左边=x+3

所以,x=6是方程的解。

课堂练习独立完成练习十一第4题,强调书写格式。

课堂小结这节课你学到了什么?(1)解方程和方程的解有什么区别(2)解方程要按照什么样的格式来写?(3)如何检验呢?格式又是怎么样的?

本课应用方程平衡原理来解方程,要注意的是检验方程的时候,最后一句话,所以××是方程的解(这里的××学生容易写成方程右边的值)

1、结合具体图例,根据等式不变的规律会解方程。

2、掌握解方程的格式和写法。

3、进一步提高学生分析、迁移的能力。

引入前面,我们学习了等式保持不变的规律,等式在哪些情况下变换仍然保持不变呢?等式这些规律在方程中同样适用吗?完全可以,因为方程就是等式,今天我们将学习如何利用等式保持不变的规律来解方程。板书:解方程。

出示例1,从图中可以获取哪些信息?图中表示了什么样的等量关系?盒子中的皮球与外面的3皮个球加起来共有9个,方程怎么列?得到x+3=9

要求盒子中一共有多少个皮球,也就是求x等于什么,我们该怎么利用等式保持不变的规律来求出方程的解呢?

抽答。

方程两边同时减去一个3,左右两边仍然相等。板书:x+3-3=9-3

这就是方程的解,谁再来回顾一下我们是怎样解方程的?

左右两边同时减去的为什么是3,而不是其它数呢?因为,两边减去3以后,左边刚好剩下一个x,这样,右边就刚好是x的值。因此,解方程说得实际一点就是通过等式的变换,如何使方程的一边只剩下一个x即可。

追问:x=6带不带单位呢?让学生明白x在这里只代表一个数值,因此不带单位。

要检验x=6是不是正确的答案,还需要验算。怎么验算呢?可抽学生回答。

所以,x=6是方程的解。

小结:通过刚才解方程的过程,我们知道了在方程的左右两边同时减去一个相同的数,左右两边仍然相等。不过需要注意的是,在书写的过程中写的都是等式,而不是递等式。

利用等式不变的规律,我们再来解一个方程。

出示方程:3x=18,怎样才能求到1个x是多少呢?同桌的同学互相讨论,如有问题,可以出示书上的示意图帮助分析。

解方程设计教案


欢迎阅读我为您准备的“解方程设计教案”相关内容。教案课件是老师不可缺少的课件,所以在写的时候老师们就要花点时间咯。写好教案,才能营造完整课堂教学。我们骄傲地欢迎您来到我们网站上阅读我们的内容!

解方程设计教案(篇1)

教学内容P58-P59及“做一做”,练习十一第5-7题

教学目标

1、结合具体图例,根据等式不变的规律会解方程。

2、掌握解方程的格式和写法。

3、进一步提高学生分析、迁移的能力。

知识重点掌握解方程的方法

教学过程教学方法和手段

引入前面,我们学习了等式保持不变的规律,等式在哪些情况下变换仍然保持不变呢?等式这些规律在方程中同样适用吗?完全可以,因为方程就是等式,今天我们将学习如何利用等式保持不变的规律来解方程。板书:解方程。

教学过程新知学习

(一)教学例1

出示例1,从图中可以获取哪些信息?图中表示了什么样的等量关系?盒子中的皮球与外面的3皮个球加起来共有9个,方程怎么列?得到x+3=9

要求盒子中一共有多少个皮球,也就是求x等于什么,我们该怎么利用等式保持不变的规律来求出方程的解呢?

抽答。

方程两边同时减去一个3,左右两边仍然相等。板书:x+3-3=9-3

化简,得到x=6

这就是方程的解,谁再来回顾一下我们是怎样解方程的?

左右两边同时减去的为什么是3,而不是其它数呢?因为,两边减去3以后,左边刚好剩下一个x,这样,右边就刚好是x的值。因此,解方程说得实际一点就是通过等式的变换,如何使方程的一边只剩下一个x即可。

追问:x=6带不带单位呢?让学生明白x在这里只代表一个数值,因此不带单位。

要检验x=6是不是正确的答案,还需要验算。怎么验算呢?可抽学生回答。

板书:方程左边=x+3

=6+3

=9

=方程右边

所以,x=6是方程的解。

小结:通过刚才解方程的过程,我们知道了在方程的左右两边同时减去一个相同的数,左右两边仍然相等。不过需要注意的是,在书写的过程中写的都是等式,而不是递等式。

(二)教学例2

利用等式不变的规律,我们再来解一个方程。

出示方程:3x=18,怎样才能求到1个x是多少呢?同桌的同学互相讨论,如有问题,可以出示书上的示意图帮助分析。

解方程设计教案(篇2)

解方程教学设计

(一)教学内容

义务教育课程标准实验教科书数学(人教版)小学《数学(第九册)》第57、58页的内容。

(二)教学目标

(1)使学生初步理解“方程的解”、“解方程”的含义以及“方程的解”和“解方程”之间的联系和区别。

(2)初步理解等式的基本性质,能用等式的性质解简易方程。

(3)关注由具体到一般的抽象概括过程,培养学生初步的代数思想。

(4)重视良好学习习惯的培养。

(三)教学重、难点

(1) “方程的解”和“解方程”之间的联系和区别。

(2)利用天平平衡的道理理解比较简单的方程的方法。

(四)教学准备

多媒体课件、单行纸一张

(五)教学过程

1.揭示课题,复习铺垫

师:(出示课件)老师在天平的左边放了一杯水,杯重100克,水重X克,一杯水重多少?

生:(100+X)克

师:在天平的右边放了多少砝码,天平保持平衡呢?(教师边讲边操作100克、200克、250克)

师:请你根据图意列一个方程。

生:100+X=250(课件显示:100+X=250)

师:这个方程怎么解呢?就是我们今天要学习的内容——解方程。(板书课题:解方程)

[设计意图:从复习天平保持平衡的道理入手,引出课题,引导学习质疑,有利于激发学生主动探究、深入学习的积极性。]

2.探究新知,理解归纳

(1)概念教学:认识“方程的解”和“解方程”的两个概念

师:(出示课件)那你猜一猜这个方程X的值是多少?并说出理由。

生1:我有办法,可以用250-100=150,所以X=150.

生2:我有办法,因为100+150=250,所以X=150

生3: 老师我也有办法,我是这样想的,假如方程的两边同时减去100,就能得出X=150

师:XXX同学的想法太棒了!我们一起探索验证一下。请看屏幕,怎样操作才使天平左边只剩X克水,而天平保持平衡。

生:我在天平的左边拿走一个重100克空杯子,在天平的右边拿走100克的砝码,天平保持平衡。(教师随着学生的回答演示课件)

师:你能根据操作过程说出等式吗?

生:100+X-100=250-100(课件显示:100+X-100=250-100)

师:这时天平表示未知数X的值是多少?

生:X=150(课件显示:X=150)

师:是的,XXX同学的想法是正确的,方程左右两边同时减100,就能得出X=150。我们表扬他。

师:根据刚才的实验,我们来认识两个新的概念———“方程的解”和“解方程”。

师:(课件显示X=150的下画线)指着方程100+X=250说:“X=150是这个方程的解。(课件显示:方程的解)

师:(课件显示:方框)

100+X=250

100+X-100=250-100

指着方框说:“这是求方程的解的过程,叫解方程。(课件显示:方框的左边的箭头与解方程。)

师:在解方程的开头写上“解:”,表示解方程的全过程。(课件显示:解:)

师:同时还要注意“=”对齐。

师:都认识了吗?请打开课本第57页将概念读一次,并标上重点字、词。

师:你们怎么理解这两个概念的?

(学生独立思考,再在小组内交流。)

师:谁来说说你想法?

生1:“解方程”是指演算过程

生2:“方程的解”是指未知数的值,这个值有一个前提条件必须使这个方程左右两边相等。

师:“方程的解”和“解方程”的两个解有什么不同?

生:“方程的解”的解,它是一个数值。“解方程”的解,它是一个演变过程。

[设计意图:通过自主学习、组内交流、合作,达到培养学生自主、互助的精神。]

(2)教学例1。

师:要是老师出一个方程,你会求这个方程的解吗?

生:会。

师:请自学第58页的例1的有关内容。

[学生独立学习例1的有关内容,设计意图:给足够的时间让学生学习,让学生发现]

师:四人小组讨论方程左右两边为什么同时减3?

[学生独立思考,再在小组内交流。]

师:(出示例1)左边有X个,右边有3个,一共用9个。根据图意列一个方程。

生:X+3=9(板书:X+3=9)

师:X+3=9这个方程怎么解?我们可以利用天平保持平衡的道理帮助理解,请看屏幕。

师:球在天平不好摆,老师在天平上用方块来代替它。怎样操作才使天平的左边只剩X,而天平保持平衡。

生:天平左右两边同时拿走3个方块,使天平左边只剩X,天平保持平衡。(教师随着学生的回答演示课件)

师:根据操作过程说出等式?

生:X+3-3=9-3(板书:X+3-3=9-3)

师:这时天平表示X的值是多少?

生:X=6(板书:X=6)

师:方程左右两边为什么同时减3?

生1:使方程左右两边只剩X。

生2:方程左右两边同时减3,使方程左边只剩X,方程左右两边相等。

师:“方程左右两边同时减3,使方程左边只剩X,方程左右两边相等。”就是解这个方程的方法。

师:这个方程会解。我们怎么知道X=6一定是这个方程的解呢?

生:验算。

师:对了,验算方法是什么?

生:将X=6代入原方程,看方程的左边是否等于方程的右边。

(板书:

验算:方程的左边=6+3=9

方程的右边=9

方程的左边=方程的右边

所以,X=6是方程的解。)

师:以后解方程时,要求检验的,要写出检验过程;没有要求检验的,要进行口头检验,要养成口头检验的习惯。力求计算准确。

[设计的意图:自学思考汇报交流既有利于每个学生的自主探索,保证个性发展,也有利于教师考察学生思维的合理性和灵活性,考察学生是否能用清晰的数学语言表达自己的观点。]

(3)练习

师:现在老师看看同学们对于解方程掌握得怎么样。(出示课件)

判断题

A.X=3是方程5X=15的解。( )

B.X=2是方程5X=15的解。( )

考考你的眼力,能否帮他找到错误所在呢?

X+1.2=4 X+2.4=4.6

X+1.2-1.2=4-1.2 =4.6-2.4

X=2.8 =2.2

填空题

X+3.2=4.6

X+3.2○( )=4.6○( )

X=( )

将课本59页做一做的第1题的左边一小题写在单行纸上。

[设计意图:游戏练习形式有趣,有利于激发学生的学习兴趣,活跃课堂气氛。让学生在轻轻松松中,及时有效地巩固强化概念。]

(4)小结:解含有加法方程的步骤。(口述过程)

3.拓展延伸。

(1)解方程 X一2=15(课件显示)

师:看来,解加法方程同学们掌握得很好,老师得提高一点难度,敢挑战吗?

生:敢。

师:谁愿意读读这个方程?

[学生都争着读这个方程,可激烈了]

师:这是一个含有减法的方程,你能根据解加法方程的步骤,尝试完成。(指名XXX同学到黑板板演,其他同学在单行纸完成)

[学生试着解方程并进行口头验算]

(2)集体交流、评价、明确方法。

师:XXX同学做对了吗?

生:对。

师:方程左右两边为什么同时加2?

生:方程左右两边同时加2,使方程左边只剩X,方程左右两边相等。(由板演XXX同学面向大家回答)

4. 提炼升华

师:谁能说说解含有加法和减法的方程的步骤?(随着学生,课件显示全过程。)

生:

解方程的步骤:

a)先写“解:”。

b)方程左右两边同时加或减一个相同的数,使方程左边只剩X,方程左右两边相等。

c)求出X的值。

d)验算。

5.全课小结,评价深化

1、通过今天的学习,同学们有哪些收获?

2、以小组为单位自评或互评课堂表现,发扬优点、改正缺点。

3、对老师的表现进行评价。

[设计意图:教师始终把学生放在主体地位,为学生提供了一个自己去想去说,去回味知识掌握过程的舞台,这样将更有助于学生掌握正确的学习方法,总结失败原因,发扬成功经验,培养良好的学习习惯。]

[板书设计]

解方程

例1:书本图

X+3=9 验算: X-2=15

解:X+3-3 =9-3 方程左边= 6+3=9 解: X-2+2=15+2

X=6 方程右边= 9 X=17

方程左边=方程右边

所以,X=6是方程的解。

解方程设计教案(篇3)

教学内容:

教材P67~68例1、例2、例3及练习十五第1、2、7题。

教学目标:

知识与技能:使学生初步理解“方程的解”与“解方程”的含义以及“方程的解”和“解方程”之间的联系和区别。

情感、态度与价值观:关注由具体到一般的抽象概括过程,培养学生的代数思想。

教学重点:

理解“方程的解”和“解方程”之间的联系和区别。

教学难点:

理解形如a±x =b的方程原理,掌握正确的解方程格式及检验方法。

教学方法:

创设情境;观察、猜想、验证.

谈话:同学们,咱们玩一个猜一猜的游戏好吗?出示一个盒子,让学生猜一猜里面可能有几个球呢?(学生思考后会说,可以是任意数。)

教师继续通过多媒体补充条件,并出示教材第67页例1情境图。

1.先让学生回忆等式的性质,再思考用等式的性质来求出x 的值。

学生思考、交流,并尝试说一说自己的想法。

2.教师通过天平帮助学生理解。

出示教材第67页第一个天平图,让学生观察并说一说。

长方体盒子代表未知的x 个球,每个小正方体代表一个球。则天平左边是x +3个球,右边是9个球,天平平衡,也就是列式:x +3=9。

观察:把左边拿掉3个球,要使天平仍然保持平衡要怎么办?

质疑:为什么两边都要减3呢?你是根据什么来求的?

你们的想法对吗?出示第3个天平图,证实学生的想法是对的。

3.师小结:刚才我们计算出的x =6,这就是使方程左右两边相等的未知数的值,叫做方程的解。也就是说,x =6就是方程x +3=9的解。求方程解的过程叫做解方程。(板书:方程的解 解方程)

4.引导:谁来说一说,方程的解和解方程有什么区别?学生自主看课本学习,可能会初步知道,求出的x 的值是方程的解;求解的过程就是解方程。

师引导学生小结:“方程的解”中的“解”的意思,是指能使方程左右两边相等的未知数的值,它是一个数值;而“解方程”中的“解”的意思,是指求方程的解的过程,是一个计算过程。

5.验算:x =6是不是正确答案呢?我们怎么来检验一下?

引导学生自主思考,并在小组内交流自己的想法。

通过学生的回答小结:可以把x =6的值代入方程的左边算一算,看看是不是等于方程的右边。

让学生尝试验算,并注意指导书写。

6.出示教材第68页例2情境图。

学生自主尝试解决,教师巡视指导。

引导小结:根据等式的性质:等式两边同时乘或除以一个不为O的数,左右两边仍然相等。

让学生尝试检验计算结果是否正确。

7.出示教材第68页例3,并让学生尝试解答。

由于此题是“a-x ”类型,有些学生在做题时可能会出现困难,不知道怎么做。有些学生可能会在等号两边同时加上“x ”,但x 在等号的右边,不会继续做了。

教师可以引导学生思考,根据等式的性质,只要等式的两边同时加或减相等的数或式子,左右两边仍然相等,那么我们可以同时加上“x ”。

通过计算让学生发现,等号左边只剩下“20”,而右边是“9+x ”。

继续引导学生思考:20和9+x 相等,可以把它们的位置交换,继续解题。学生继续完成答题,汇报。根据汇报板书:

8.讨论:解方程需要注意什么?让学生自主说一说,再汇报。

小结:根据等式的性质来解方程,解方程时要先写“解”,等号要对齐,解出结果后要检验。

1.完成教材第67页“做一做”第1、2题。

2.完成教材第68页“做一做”第1、2题。学生自主计算解答,并集体订正答案。

引导总结:1.解方程时是根据等式的性质来解。2.使方程左右两边相等的未知数的值,叫做方程的解。3.求方程解的过程叫做解方程。

作业:教材第70~71页练习十五第1、2、7题。

x -3=9 方程左边=x +3 3x =18 20 - x =9

x +3-3=9-3 =6+3 3x ÷3=18÷3 20- x + x =9+x

使方程左右两边相等的未知数的值,叫做方程的解。求方程解的过程叫做解方程。

教学反思:

在这节课的教学中,我从以下几个方面入手:

一、感受天平的平衡现象,悟出等式的性质变化。

在学习中,我以多媒体中天平的平衡来呈现等式的性质,学生能直观形象的理解性质,平衡的条件是两边同时加上、或减少相同的重量,才能保持平衡。但具体到方程中应用起来学生感觉活动是获取真知的有效途径,通过以上的活动,学生可以很顺利地得出结果:天平的两侧都加上相同的质量,天平仍平衡。

在课堂上学生对用等式的性质来解方程感到很陌生,在他们原有的经验中更喜欢用加减法各部分的关系来解,所以我们要特别注意引导学生认识到用等式的性质来解方程的优越性,从而养成用等式的性质来解方程的习惯。

解方程设计教案(篇4)

引言:

解方程是数学中的重要概念,能够培养学生的逻辑思维能力和问题解决能力。针对四年级学生的特点和需求,本文设计了一节解方程的教学课程,并对课程进行了反思。

一、教学目标

1. 理解方程的定义和意义。

2. 学会利用逆运算解方程。

3. 掌握一步解方程的基本方法。

二、教学准备

1. 教材:教材中的解方程相关知识点和例题。

2. 展示工具:黑板、彩色粉笔、数字卡片等。

3. 练习材料:提供给学生的解方程练习题。

三、教学过程

1. 情境引入:

引导学生回顾在一些数学问题中,如何求出未知数。例如,如果一个数加5等于12,那么这个未知数是多少?

2. 引入方程:

介绍方程的概念,将其定义为一个等式,其中包含了一个或多个未知数。如:5 + x = 12。

通过多个例子展示方程的形式,让学生理解方程的结构和意义。

3. 利用逆运算解方程:

定义逆运算为将方程两边的数互换位置。如:5 + x = 12 可以转化为 x + 5 = 12。

强调逆运算的原则是保持等式的平衡。

4. 一步解方程:

解释一步解方程的基本概念:方程中只有一个未知数,并可以通过一个运算找到未知数的值。如:x + 5 = 12。

指导学生将方程改写为 x = 12 - 5 = 7,并解释步骤和原理。

5. 练习实践:

提供给学生一些解方程的练习题,让他们运用刚刚学到的知识解决实际问题。

在学生完成练习后,逐个解答并讲解答案和解题思路。

6. 总结概括:

回顾解方程的基本概念和方法,让学生总结所学内容。

鼓励学生提问和分享解题思路,培养交流合作的能力。

四、教学反思

本节课的设计充分考虑了四年级学生的认知特点和学习需求。通过引入情境、激发学生的兴趣,帮助他们理解解方程的定义和意义。利用逆运算和一步解方程的原则,简化了解方程的过程,使学生易于理解与掌握。通过练习实践,学生得到了锻炼,并在讲解答案和解题思路中得到了反馈和巩固。

然而,在实际教学中,考虑到学生的理解能力和接受程度,可能需要增加一些示例和练习的难度。此外,考虑到学生的发展和学习进度,可以设计一些拓展练习,使学生能够更深入地理解解方程的方法和应用领域。同时,在教学过程中,要多给予学生积极的反馈和鼓励,鼓励他们发表自己的见解和思考,进一步培养他们的数学思维和创新能力。

总结:

通过本节解方程的教学设计,学生能够了解方程的定义和意义,掌握利用逆运算解方程的方法,以及一步解方程的基本原则。这对于他们进一步学习数学和培养逻辑思维能力是非常有帮助的。然而,教学设计中还有一些需要改进的地方,以适应学生的需求和提高教学效果。

解方程设计教案(篇5)

教学目标:

1、学会利用等式性质1解方程;

2、理解移项的概念;

3、学会移项.

教学重点:利用等式性质1解方程及移项法则;

教学难点:利用等式性质1来解释方程的变形.

教学方法:引导发现

教学过程:

一、引入新课:

1、上节课的想一想引入新课:等式和方程之间有什么区别和联系?

方程是等式,但必须含有未知数;

等式不一定含有未知数,它不一定是方程.

2、下面的一些式子是否为方程?这些方程又有何特点?

①5x+6=9x;②3x+5;③7+5×3=22;④4x+3y=2.

由学生小议后回答:①、④是方程.

分析这些方程得:①等式两边都是一次式或等式一边是一次式,另一边是常数,②这些方程中有的含一个未知数,也有的含两个未知数.

我们先来研究最简单的(只含有一个未知数的)的一元一次方程.

3、一次方程:我们把等号两边是一次式、或等号一边是一次式另一边是常数的方程叫做一次方程.

注意:一次方程可以含有两个或两个以上的未知数:如上例的④.

4、一元一次方程:只含有一个未知数的一次方程叫做一元一次方程.

5、判断下列方程哪些是一次方程,哪些是一元一次方程?(口答)

①2x+3=11;②y=16;③x+y=2;④3y-1=4y.

6、什么叫方程的解?怎样解方程?

关键是把方程进行变形为x=?即求得方程的解.今天我们就来研究如何求一元一次方程的解(点出课题)利用等式性质1解一元一次方程

二、讲解新课:

1、等式性质1:

出示天平称,在天平平衡的两边同时都添上或拿去质量相同的物体,天平仍保持平衡,指出:等式也有类似的情形.

强调关键词:“两边”、“都”、“同”、“等式”.

2、利用等式性质1解方程:x+2=5

分析:要把原方程变形成x=?只要把方程两边同时减去2即可.

注意:解题格式.

例1 解方程5x=7+4x

分析:方程两边都有含x的项,要解这个方程就需要把含x的项集中到一边,即可把方程变形成x=?(一般是含x的项集中到方程的左边,使方程的右边不含有x的项),此题的关键是两边都减去4x.

(解略)

解完后提问:如何检验方程时的计算有没有错误?(由学生回答)

只要把求得的解代替原方程中的未知数,检查方程的左右两边是否相等,(由一学生口头检验) 2

观察前面两个方程的求解过程:

x+2=5

x=5-2 5x=7+4x 5x-4x=7

思考:(1)把+2从方程的一边移到另一边,发生了什么变化?

(2)把+4x从方程的一边移到另一边,又发生了什么变化?(符号改变)

3、移项:

从变形前后的两个方程可以看到,这种变形相当于:把方程中的某一项改变符号后,从方程的一边移到另一边,我们把这种变形叫做移项.

注意:①移项要变号;

②移项的实质:利用等式性质1对方程进行变形.

例2 解方程:3x+4=2x+7

解:移项,得3x-2x=7-4,

合并同类项,得x=3.

∴x=3是原方程的解.

归纳:①格式:解方程时一般把含未知数的项移到方程的左边,把常数项移到方程的右边,以便合并同类项;

②解方程与计算不同:解方程不能写成连等式;计算可以写成连等式;

③一个方程只写一行,每个方程只有一个等号(理由:利用等式性质1对方程进行变形,前后两个方程之间没有相等关系).

四、课堂小结:

①什么是一次方程,一元一次方程?

②等式性质1(找关键词);

③移项法则;

④应用等式性质1的注意点(例2归纳的三条).

六、板书设计

七、教学后记

解方程设计教案(篇6)

教学目标:

1、理解解方程的意义。

2、会用等式的性质解形如:ax=b的方程,并能用方程的解对方程进行验算。

教学重点:学生利用等式的性质来解方程。

教学难点:学生利用等式的性质来解方程。

教学过程:

一、 复习引入

1、填空:

加数=( )-另一个加数 被减数=( )+( )

被除数=( )×( ) 因数=( )÷( )

2、CIA课件出示:根据题中的数量关系,列出方程。

(1)小明有30元钱。买钢笔用了m元,买本子用了10元,刚好用完。

(2)小红家买了50千克的大米,吃了n千克,还剩42千克。

(3)全班a个同学,平均分成个7小组,每个小组8人。

(4)钢笔每支4元,买X支用了24元。

师:刚才我们列出的这些方程,你能求它的解吗?(师板书:4X=24)

这个方程的解是多少呢?(X=6)

今天我们就一起来学习怎样求方程的解——解方程

揭示课题并板书:解方程

二、探究学习

1、学习解方程

(1)自主探究求方程的解。

(2)汇报,抽生板演。

(3)师指导学生看书101页的内容,学习正确的书写格式,动笔勾画出你认为比较重要的地方.

(4)师规范解方程的格式。

第一种:根据四则混合运算各部分之间的关系

4X=12

解: X=12÷4

X=3

第二种:根据等式的性质

4X=12

解: 4X÷4=12÷4

X=3

比较两种方法的优点和缺点,请将刚才的解题过程再按正确的书写格式做一遍。

揭示解方程的含义;区分解方程和方程的解。

2、方程的检验。

3、巩固练习:CIA课件出示(学生独立完成,集体评讲)

三、自主学习

刚才的几个方程,请任选一道用你喜欢的方式求方程的解,并口头检验。

师:大家认为在解方程的时候应该注意些什么?在哪些方面需要提醒同学主义的呢?

四、全课小结。通过这节课的学习,你有什么收获?你还有哪些疑问?或者是不明白的地方吗?

五、课堂练习:

1、解方程

20-X =9 25+ X =80 6.3 ÷X =7

2、做书上104页1、2、3题。

六、板书设计:

解方程

法一:四则混合运算各部分之间的关系 法二:等式的性质

4X=12 4X=12

解: X=12÷4 解: 4X÷4=12÷4

X=3 x=3

七、教学反思:

通过本节课的学习,学生已经基本上掌握了方程的解题的依据以及书写格式,但是很多同学在做a÷x=b这种形式的方程时还是容易搞混淆。需要加强练习和多做相关的题型,特别是在前节内容据题意列方程还得多找相关等量的关系,达到复习以前的知识和巩固现在的新知识的目的。

解方程五年级教案通用


俗话说,不打无准备之仗。作为人民教师,我们会认真负责对每一堂课做好准备,为了给孩子提供更高效的学习效率,教案是个不错的选择,有了教案,在上课时遇到各种教学问题都能够快速解决。幼儿园教案的内容要写些什么更好呢?考虑到你的需求,小编特意整理了“解方程五年级教案通用”,如果对这个话题感兴趣的话,请关注本站。

解方程五年级教案【篇1】

教学过程:

一、导入新课

上一节课,我们学习了什么?

复习天平保持平衡的规律及等式保持不变的规律。学习这些规律有什么用呢?从这节课开始我们就会逐渐发现到它的重要作用了。

二、新知学习。

1、解决问题。

出示P57的题目,从图上可以获取哪些数学信息?天平保持平衡说明什么?杯子与水的质量加起来共重250克。

能用一个方程来表示这一等量关系吗?得到:100+x=250,x是多少方程左右两边才相等呢?也就是求杯子中水究竟有多重。如何求到x等于多少呢?学生先自己思考,再在小组里讨论交流,并把各种方法记录下来。

全班交流。可能有以下四种思路:

(1)观察,根据数感直接找出一个x的值代入方程看看左边是否等于250。

(2)利用加减法的关系:250-100=150。

(3)把250分成100+50,再利用等式不变的规律从两边减去100,或者利用对应的关系,得到x的值。

(4)直接利用等式不变的规律从两边减去100。

对于这些不同的方法,分别予以肯定。从而得到x的值等于150,将150代入方程,左右两边相等。

2、认识、区别方程的解和解方程。

得出方程的解与解方程的含:

像这样,使方程左右两边相等的未知知数的值,叫做方程的解,刚才,x=150就是方程100+x=250的解。

而求方程的解的过程叫做解方程,刚才,我们用这几种方法来求100+x=250的解的过程就是解方程。

这两个概念说起来差不多,但它们的意义却大不相同,它们之间的区别是什么呢?

方程的解是一个具体的数值,而解方程是一个过程,方程的解是解方程的目的。

3、练习。(做一做)

齐读题目要求。

怎么判断X=3是不是方程的解?将x=5代入方程之中看左右两边是否相等,写作格式是:方程左边=5x

=53

=15

=方程右边

所以,x=3是方程的解。

用同样的方法检查x=2是不是方程5x=15的解。

二、作业。

独立完成练习十一第4题,强调书写格式。

三、小结。

通过这节课学到了什么?还有什么问题?

教学内容:数学书P57,及做一做,练习十一第4题。

教学目标:

1、结合具体的题目,让学生初步理解方程的解与解方程的含义。

2、会检验一个具体的值是不是方程的解,掌握检验的格式。

3、进一步提高学生比较、分析的能力。

教学重难点:比较方程的解和解方程这两个概念的含义。

解方程五年级教案【篇2】

师:解方程的第二步,方程两边同时进行计算,得出的值。左边+3-3,等于什么?

生:等于。

师:(板书:)右边9-3呢?

生:等于6。

师:(板书:=6)天平在变化的过程中,始终保持平衡,说明解方程时,得到的每一步都是等式,要求大家把所有的等号对整齐。为了把等号对整齐,一般要把解写到前面一点。

师:=6是不是这个方程的解?验算一下就知道了!把=6代入方程中,看方程的两边是否相等。我们一起来写验算过程。

师:先看方程左边,(板书:方程左边=+3)把=6代入方程中,+3就变成了几加3?

生:6+3

师:(板书:=6+3)6+3等于9。(板书:=9)方程左边等于9。再看看方程右边等于几?

生:等于9。

师:也是等于9。方程左边等于9,方程右边也等于9,说明了什么?

生:方程左边等于方程右边,=6是这个方程的解。

师:(板书:=方程右边)最后,下结论:所以,=6是方程的解。(板书:所以,=6是方程的解。)

师:验算的过程就写完了。现在,请同学们把课本打开,翻到58页,请小组的同学一边对照书中解方程的过程,一边讨论:解方程需要注意什么?(小组讨论)

师:现在,请同学们说一说:解方程需要注意什么?

生:......

师:还有没有要补充的?

生:......

师:把刚才几位同学说的,合起来就很完整了。会解方程了吗?

生:会了。

师:那就试一试!(解方程+7=10)

师:哪位同学愿意到黑板上来做?请你来吧!

(学生做题)

师:都做完了吗?一起来看看这位同学做的!你们觉得他做得好不好?

生:他全部都做对了。

生:我觉得有一点不好,他把等号没有对整齐!......

师:刚才这位同学给你提的意见能接受吗?

生:能!

师:有错就改就是好孩子!解方程不仅要注意方法,还要注意书写格式。做完后还要养成验算的好习惯。

师:老师还有一个问题想请教一下:为什么要在方程的两边同时减去7?

生:左边减去7是为了是方程左边只剩,右边减去7是为了使方程两边仍然相等!

师:说得很好!这道题你们都解对了吗?

生:解对了!

师:你们真聪明!一下子都学会了!老师还想考考大家,出一个和它们不一样的方程:-3=9

你们会做吗?

生:会!

师:这题也会呀!那好,试试看吧!请同学们先独立完成,然后在小组内进行交流。(点一名学生板演)

师:一起来看看黑板上的作业!他做得怎样?

生:做得很好,......

师:谁来说说:为什么要在方程的两边同时加上3?

生:是为了使方程左边只剩而有保持两边仍然相等!

师:你们同意他的说法吗?

生:同意!

师:看来,你们已经掌握解方程的方法了!

三、拓展应用

师:解方程还能帮助我们解决很多生活中的问题呢!

请看大屏幕:(课件出示)能解决吗?

师:能!

师:开始吧!(注意:可以不写出演算的过程,但是要进行口头验算。)

学生做题后汇报交流!

四、课堂小结

师:同学们真不了不起,不但学会了解方程,还学会了用解方程的方法解决问题!

今天的课就上到这里,下课!

解方程五年级教案【篇3】

解方程(第一课时)

大庄小学:薛兵珍

一、教学内容

(人教版)小学《数学(第九册)》第57、58页的内容.二、教学目标

1、初步理解“方程的解”、“解方程”的含义,能用等式的性质解简易方程.并掌握检验的方法。

2、关注由具体到一般的抽象概括过程,培养学生初步的代数思想.3、重视良好学习习惯的培养.三、教学重、难点

1、“方程的解”和“解方程”之间的联系和区别.2、利用天平平衡的道理理解比较简单的方程的解法.四、教学准备

多媒体课件

五、教学过程

1、复习铺垫

2.探究新知

(一)理解“方程的解”和“解方程”两个概念

(1)、看图写方程

(2)、求方程中的未知数

(3)、引出方程的解和解方程两个概念

(二)教学例1

强调解方程的格式和步骤,检验的方法。

3、提炼升华

解方程 X一2=15(课件显示)

4、巩固练习

5、课堂总结

六、布置作业。

解方程五年级教案【篇4】

五年级数学《解方程》教学教案

十东小学

授课教师:徐国

(一)教学内容

教材第57页内容。

(二)教学目标 知识与技能

⑴初步理解方程的解与解方程的含义。⑵会检验一个具体的值是不是方程的解。过程与方法

经历方程的解和解方程的认识过程,提高学生比较、分析的能力。情感态度与价值观

在学习活动中,激发学生的学习兴趣,体验知识之间的联系和区别,培养检验学习习惯。

(三)教学重点与难点

重点:“方程的解”和“解方程”的含义。突破方法:通过比较理解二者的区别。难点:会检验方程的解。

突破方法:小组讨论,练习体验。

(四)教法与学法

教法:设置设置问题,引导学生。

学法:观察理解,讨论交流,练习体验。

(五)教学过程

一、复习引入

⑴在上节课的学习活动中,我们探究了哪些规律。

在小组中组织相互交流,说一说:①什么是方程,②如何判断方程,③方程的性质是什么?

⑵学生回顾天平平衡的规律,结合天平的平衡规律对我们学习方程有什么作用?这节课我们开始学习如何解方程。

上一节课我加了一些水在天平里,添加了砝码,让天平平衡,同时得到方程100+X=250,但到现在我们都还不知道那些水的质量到底是多少?那我们今天就来解决这个问题,看看水到底是重。这就是我们今天将要学习的——解方程。

[板书课题:解方程。]

二、研究新知

⑴投影出示昨天所做的课题教材P57天平称一标水的画面。学生回忆昨天教学时的情景画面,交流。

师根据学生汇报板书:方程100+X=250。⑵教师:你知道方程100+X=250中的未知数X等于多少吗?你是怎么知道的?

组织学生讨论,交流,然后汇报。可能出现以下几种方法:

*根据数感经验得到X=150 *利用算式100+150=250,得到X=150。

*利用一个加数=和—另一个加数,得到X=150。

*利用天平平衡规律,两边同时减少100,得到X=150。

„„

师:同学们非常聪明,想到了这么多的方法求出了X=150,(同时,也可能没有学生能说出来,教师相机点拨,引出解方程所要运用的规律。)

⑶引导学生检验方程的解的方法,根据学生回答板书:

当X=150时,方程左边=100+150

=250

=方程右边

⑷认识、区别方程的解和解方程。教师:使方程左右两边相等的未知数的值,叫做方程的解。刚才,X=150就是方程的解100+X=250的解。而求方程的解的过程叫做解方程。刚才同学们想出办法求出X=150的过程就是解方程。

教师边讲解边板书:使方程左右两边相等的未知数的值,叫做方程的解。

求方程的解的过程就叫解方程。

②方程的解与解方程有什么不同呢?组织学生议一议,使学生明确:

方程的解是一个数值,而解方程是求方程解的过程。刚才我们把X=150代入方程中,得到方程左边=右边,说明X=150是方程100+X=250的解。(板书:所以,X=150是方程的解)

三、巩固练习

⑴教材P57页“做一做”。

教师:怎样判断X=3是不是方程的解呢?X=2呢?

组织学生将X=3代入方程中进行检验。教师指名一名学生板演。⑵教材P63练习十一第4题。

组织学生先独立完成,再在小组中相互交流。

四、课堂小结

教师:通过这节学习,你有什么收获?

什么叫方程的解,什么叫解方程。学会了检验一个未知数的值是不是方程的解。学生畅谈。

板书设计 100+X=250 X=150 当X=150时,使方程左右两边相等的未知数。

方程左边=100+150的值,叫做方程的解 =250 =方程右边 求方程的解的过程叫做解方程。所以,X=150是方程的解。课时作业: 一判断。

⑴含有未知数的式子叫方程。()⑵X=36是方程X3=12的解。()

二、X=15是方程42-X=28的解吗?X=14呢?

三、X=12是下列哪些方程的解?把这些方程标出来。

X+18=30 4X=50 X÷3=5 72÷X=6 64-X=5 2X-9=5

解方程五年级教案【篇5】

教学内容:教科书第6页第7-12题

教学目标:1、进一步理解并熟练应用等式的这一性质解简单的方程。

2、理解解方程过程的简化书写,并且解题时适当运用简化书写。

3、培养良好的作业习惯,自觉进行检验。

教学重点:理解并熟练应用等式的这一性质解简单的方程

教学难点:理解并熟练应用等式的这一性质解简单的方程

教学过程:

一、基础练习

1、说出下面的式子哪些是方程,哪些不是,为什么?

20+17=3712-Y=4a+12=35

21-b<14x=14+2316+a=27+b

2、解方程

X+125=370520+X=710X-4.9=6.4

120-X=257.8+X=2.5X+8.5=12

学生独立完成,指名学生板演。

选3题让学生说说想的过程。

集体订正,帮有错的同学分析错误原因,使其明白。

二、完成第6页的7~12题。

第7题:

(1)学生独立完成后指名回答,让学生说说是怎样想的。

(2)这里的方程与前面所学解方程的过程比较有什么不同?

省略了什么?

这样写有什么优点?

在解方程时,先在头脑中想好方程两边应同时加上或减去什么数,但书写时可以省略。同学们在解方程时可以照这种方法解。

使学生明白:根据等式的性质让含有未知数的一边只剩下未知数,就能很快知道

最后的结果。

第9题:

先由学生独立完成。

指名学生说:错在哪里,帮他分析一下,可能是什么原因造成的?怎样改正,我

们在做题时要注意一些什么?

第8题:

(1)学生独立完成,要按照上一题的方法适当省略,简化过程。

教师要特别关注前面解题还有错的学生,争取人人过关。

指名板演。

(2)集体订正,说说自己的解题思路。分析错误原因。

第10题:

(1)学生独立完成。

(2)在小组中交流,每人选择一题说思考方法。

(3)错误汇报。

说说错误的原因与正确方法。

第11题:

1、学生看图列式。

提问:什么是等式?什么是方程?

2、解出上述方程。

学生板演,并说明怎么解?

3、教学解方程的简化书写。

X10+10、X3.5+3.5结果是多少?

介绍解方程的简化书写,并板书。

学生试做,板演,讲评。

第12题:

学生读题后独立思考解决问题的方法。

小组内交流。

全班交流,只要学生说出的方法是有道理的,教师都要给于肯定。

也可以提示:两人用去的钱同样多什么意思?

你能用一种方法来表示题中的相等关系吗?

(1本练习本+3枝铅笔=7枝铅笔)

你看出了什么?(1本练习本相当于4枝铅笔)

三、课堂总结

通过本节课的练习,你有什么收获?

你认为解决数学问题时,方程用处大吗?

习题超市:

一、数学小诊所

1、2.8+X=9.5改正:

解:X=9.5+2.8

X=12.3()

2、X-43=156改正:

解:X=156+43

X=199()

二、当x=18时,是下面哪几个方程的解。

18+x=1818-x=0x+15=33

X-10=8x-18=18x+3=18+3

三、解方程并检验

X+350=600150+X=725X-60=950

7.8+X=12.30.8+X=7.6X-3.5=6.4

教材简析:

帮助学生逐渐掌握解方程的方法并形成相应的技能,是教材编写时认真思考的问题。用好教材设计的两道题,能培养学生这方面的能力。另一处是第6页第7题,简化解方程过程的书写,浓缩思路,是在基本掌握解方程的方法以后安排的。如解方程x-20=30,在方程的两边都加20这一步,省写了虚线框里的内容:

x-20+20=30+20,直接写出x=30+20。这样做能使解方程的思考流畅、书写简便,从而提升解方程的能力。教学时要让学生体会简化的过程,重点讨论圆圈里填什么符号、方框里填什么数以及为什么。

解方程五年级教案【篇6】

教学内容

解方程:教材P69例4、例5。

教学目标

1.巩固利用等式的性质解方程的知识,学会解ax±b=c与a(x±b)=c类型的方程。

2.进一步掌握解方程的书写格式和写法。

3.在学习过程中,进一步积累数学活动经验,感受方程的思想方法,发展初步的抽象思维能力。

教学重点

理解在解方程过程中,把一个式子看作一个整体。

教学难点

理解解方程的方法。

教学过程

一、导入新课

我们上节课学习了解方程,这节课我们来继续学习。

二、新课教学

1.教学例4。

师:(出示教材第69页例4情境图)你看到了什么?

生:有3盒铅笔和4只铅笔,一盒铅笔盒中有x支铅笔。

师:你能根据图列一个方程吗?

生:3x+4=40。

师:你是怎么想的?

生:一盒铅笔盒有x支铅笔,3盒铅笔盒就有3x支铅笔。据此,可列出方程。

师:说得好,你能解这个方程吗?

学生在尝试解方程时,可能会遇到困难,要让学生说一说自己的`困惑。学生可能会疑惑:方程的左边是个二级运算不知识如何解。也有学生可能会想到,把3个未知的铅笔盒看作一部分,先求出这部分有多少支,再求一盒多少支。(如果没有,教师可提示学生这样思考。)

师:假如知道一盒铅笔盒有几支,要求一共有多少支铅笔,你会怎么算?

生:先算出3个铅笔盒一共多少支,再加上外面的4支。

师:在这里,我们也是先把3个铅笔盒的支数看成了一个整体,先求这部分有多少支。解方程时,也就是先把谁看成一个整体?我们可以先把“3x”看成一个整体。

让学生尝试继续解答,教师根据学生的回答,板书解题过程。也可以让学生同桌之间再说一说解方程的过程。

2.教学例5。

师:(出示教材第69页例5)你能够解这个方程吗?

生1:我们可以参照例4的方法,先把x-16看作一个整体。

学生解方程得x=20。

生2:我们也可以用运算定律来解。

师:2x-32=8运用了什么运算定律?

生:运用了乘法分配律。然后把2x

看作一个整体。

学生解方程得x=20。

师:你的解法正确吗?你如何检验方程是否正确?

生:可以把方程的解代入方程中计算,看看方程左右两边是否相等。

三、巩固练习

教材第69页“做一做”第1、2题。

第1题的形式、内容都与例4基本相同。第2题的4个方程在两道例题的基础上略有变化,使学生学会举一反三。

这两道练习要让学生独立完成,教师可提醒学生解一题,代入检验一题,以促进检验习惯的养成。

四、课堂小结

1.在解较复杂的方程时,可以把一个式子看作一个整体来解。

2.在解方程时,可以运用运算定律来解。

五、布置作业

教材第71页“练习十五”第6、8、9.题。

解方程五年级教案【篇7】

1.某校六年级有两个班,上学期级数学平均成绩是85分。已知六(1)班40人,平均成绩为87.1分;六(2)班有42人,平均成绩是多少分?

2.一条公路长360m,甲乙两支施工队同时从公路两端向中间铺柏油。甲队的施工数度是乙队的1.25倍,4天后纸条公路全部铺完。甲乙两队分别铺白有多少米? 3.甲乙两车从相距272千米的两地同时相向而行,3小时后两车还相隔17千米。甲每小时行45千米,乙每小时行多少千米?

4.李师傅买来72米布,正好做20件大人衣服和16件儿童衣服。每件大人衣服用2.4米,每件儿童衣服用布多少米?

5.某班46名同学去划船,一共乘坐10只船,大船坐6人,小船坐4人,全部坐满。问大船和小船各几只?

6.两城相距480千米,甲乙两辆汽车同时从两城相对开出,3小时后两车相遇,已知甲车每小时行85千米,乙车每小时行多少千米?

7.新岭要修一条长3300米的公路,甲乙两个工程队同时施工,15天完成,甲队每天修125米,乙队每天修多少米?

8.甲乙两车同时从相距528千米的两地相向而行,6小时相遇,甲车每小时比乙车快6千米,求甲乙每小时各行多少千米?

9.甲乙两地相距350千米,甲乙两车同时从两地相对开出,经过3.5小时后两车相遇,甲车每小时行49千米,乙车每小时行多少千米?(用两种方法解答)

10.两个施工队开凿一条隧道,甲施工队每天开凿15米,乙施工队平均每天开凿12米,这条长270米的隧道需要多少天开凿?(用两种方法解答)

11.汽车站有480箱货物,一辆货车运了5次,还剩30箱,平均每次运多少箱?(列方程解答)12.有两组学生去采花,甲组采了123朵,乙组采了57朵,问从甲组拿多少朵到乙组会使乙组是甲组的4倍? 13.两人水池共储存税40吨,甲池注进水4吨,乙池放水8吨,甲池中水的吨数就与乙池中水的吨数相等。两个水池原来各有水多少吨?

14.甲油库存油112吨,乙油库存油80吨,每天从两个油库各运走8吨油,多少天后甲油库剩下的油是乙油库剩下油的2倍?

15.甲贮水池存水40吨,乙贮水池存水66吨,每分钟从乙池中抽出2吨水放入甲池,多少分钟后,两个贮水池存水同样多?

16.甲仓库粮是乙仓库的3倍,如果从甲仓库运出90吨,从乙仓运出10吨,则两仓库存粮相等,甲乙两仓库原各存粮多少吨? 17.有两袋大米,甲袋大米的重量是乙袋的1.2倍,如果从甲袋中取出10千克,两袋的重量就相等。甲、乙两袋大米原来各重多少千克?

18.两人水池共储存税40吨,甲池注进水4吨,乙池放水8吨,甲池中水的吨数就与乙池中水的吨数相等。两个水池原来各有水多少吨?

19.鸡兔同笼,共有35个头,94条腿,求鸡兔各有几只? 20.在植树活动中,六年级植树棵数比五年级的2倍少10棵,五年级比六年级少62棵。两个年级各植树多少棵

21.利民学校合唱团有100人,比舞蹈队人数的3倍少5人,舞蹈队有学生多少人?

22.用48分米铁丝,做一个长方形框架,要使长是宽的2倍,这个长方形框架的长和宽分别是多少?

23.甲乙两辆汽车分别从相距800千米的两城相向开出,8小时相遇,已知甲车每小时行驶45千米, 乙车每小时会驶多少千米? 24.A,B两城相距150千米,甲乙两人同时骑自行车从两地相对出发,甲每小时行16千米,4小时后,两人还相距30千米, 乙每小时行多少千米? 25.两辆汽车从相距400千米的两地同时相对开出,3小时后还相距10千米,已知一辆汽车每小时行驶55千米,求另一辆汽车速度?(26.AB两城相距720千米,一列客车从A城开往B城,行2小时后,另一辆货车从B城开往A城,4小时后与客车相遇,已知客车每小时行80千米,货车平均每小时行多少千米? 27.师徒两人共同加工一批零件,师傅每小时加工60个,徒弟每小时加工50个,两人共同加工275个零件要多少小时?

28.某车间计划四月份生产零件5480个。已生产了9天,再生产908个就能完成生产计 划,这9天中平均每天生产多少个?

29.新岭要修一条长3300米的公路,甲乙两个工程队同时施工,15天完成,甲队每天修125米,乙队每天修多少米?

30.小军有邮票的张数是小林的3倍,他们一共有邮票240张,求小军和小林各有邮票多少张?

31.某植物园有松树和榕树120棵,已知松树是榕树棵数的2倍,问榕树,松树各有多少棵? 32.果园里有苹果树和梨树共3600棵,苹果树是梨树的3倍,苹果树和梨树各有多少棵? 33.小红和小军一共储蓄了235元,已知小红储蓄的是小军的1.5倍,小红和小军各储蓄多少元? 34.一根绳子长13.4米,第一次剪去3.2米,第二次剪去多少米才能使剩下的长度刚好是第一次剪去的2倍? 35.食堂买来大米和面粉共595千克,其中大米是面粉的2.5倍,买来大米、面粉各多少千克?

36.一套餐桌椅有一张桌子和6张椅子组成,桌子价格是椅子的8倍,总价是2100元,求桌子和椅子的单价是多少元?

37.3年前母亲岁数是女儿的6倍,今年母亲33岁,女儿今年几岁?

38.学校买来10箱粉笔,用去250盒后,还剩下550盒,平均每箱多少盒?

39.食堂运来150千克大米,比运来的面粉的3倍少30千克。食堂运来面粉多少千克? 40.果园里有52棵桃树,有6行梨树,梨树比桃树多20棵。平均每行梨树有多少棵? 41.某班有男生30人,比女生的2倍少10人,这个班有女生多少人?

42.小明和哥哥的年龄和是23岁,哥哥比小明大5岁,问小明和哥哥各多少岁?

43.一个图书馆有儿童读物2.5万册,其它读物是儿童读物的3倍少0.2万册,其它读物有多少册?

44.一张桌子125元,是一张凳子的5倍还多15元,一张方凳多少元?

45.饲养场有公鸡和母鸡480只,母鸡比公鸡的2倍还多30只,这个饲养场公鸡和母鸡各有多少只?

46.小青家今年养了50只鸡,比鹅的3倍还多5只,小青家今年养鹅多少只? 47.果园里有桃树和杏树一共1080棵,已知杏树比桃树的棵数多180棵,杏树和桃树各有多少棵? 48.同学们植树,一班比二班多植63棵,一班42人,平均每人植8棵,二班39人,平均每人植多少棵?(用方程解答)49.甲乙丙三数之和是183,甲数比乙数的2倍多7,丙数比乙数的3倍少4,求甲乙丙三数各是多少? 50.学校第一次买来200盒粉笔,第二次买来150盒,第一次比第二次多付100元,每盒粉笔多少元?

51.大车每次运1.3吨,小车每次运1.2吨,运多少次后,大车比小车多运2.4吨? 52.某机械厂今年每月生产机床150台,比去年每月产量的3倍少30台,去年每月生产机床多少台? 53.师徒合做180个零件。师傅每小时做18个,徒弟每小时做12个,几小时做完? 54.某地下管道由甲工程队单独铺设需要12天,由乙工程队单独修设需要18天。如果有由两个工程队从两端同时想象施工,要多少天可以铺好?

55.幼儿园小朋友分糖,每人分5块就多出13块,每人分6块就还少7块,请问有多少小朋友,有多少块糖?

56.四年级共有学生200人,课外活动时,80名女生都去跳绳。男生分成5组去踢足球,平均每组多少人?

57.小芳买了2本笔记本和5枝圆珠笔,共用去7.5元,每枝圆珠笔0.5元,每本笔记本多少元?

58.水果店运来4箱苹果和6箱梨,共用去244元,已知苹果每箱28元,梨每箱多少元 59.面粉每千克1.9元,大米每千克1.8元,买面粉和大米各10千克,付出50元,应找回多少元?(用两种方法解答)

60.香蕉每千克4.50元,梨每千克4元,小红的妈妈买了4千克香蕉,给了营业员30元,剩下的钱去买梨,能买梨多少千克? 61.买3张桌子和4把椅子一共用了308元,每把椅子32元,每张桌子多少元?(62.一枝钢笔的价钱是一枝圆珠笔的2.5倍,现各买2支,一共用了10.5元,每支钢笔和圆珠笔各是多少元? 63.小明买了1元一张和2元一张的邮票共33张,这些邮票的面值共48元,每种邮票各买了多少张?

64.一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米? 65.一块三角形地的面积是840平方米,底是140米,高是多少米? 66.一个平行四边形面积是125平方厘米,底是50厘米,高是多少厘米? 67.一个三角形高是18厘米,面积是180平方厘米,底是多少厘米? 68.一个梯形面积是126平方米,上底是13米,下底是17米,这个梯形的高是多少米? 69.一个三角形面积是24.8平方米,底是12.4米高是多少米? 70.一个长方形操场周长是348米,宽是69米,它的面积是多少平方米? 71.一个长方形周长和一个正方形周长相等,已知长方形长24厘米,宽16厘米,求正方形面积? 72.一块长方形地,长是宽的4倍,周长是120米。这个长方形的面积是多少平方米?

73.有三个数,它们的平均数是8.6,其中第一个数是9.1,第二个数比第三个数小0.1,求第三个数

74.三个连续自然数之和153,这三个自然数分别是多少?

75.三个数的平均数是120,甲数是乙数的2倍,丙数比甲数多5,甲, 乙,丙三个数各是多少? 76.甲数是x,乙数是甲数的3倍少0.2, 乙数是5.8,甲数是多少?(列方程解答)77.一辆时速是50千米的汽车,需要多少时间才能追上2小时前开出的一辆时速为40千米汽车?

78.甲乙两地相距300千米,一辆汽车由甲地开出5小时后,距离乙地还有74.5千米,这辆汽车平均每小时行多少千米?

79.龟兔赛跑,全程200米,龟每分钟跑2.5米,兔每分钟跑32米,兔自以为是,在途中睡了一觉,当龟到达终点时,兔子离终点还有40米,兔子在途中睡了几分钟? 80.运送29.5吨煤,先用一辆载重4吨的汽车运3次,剩下的用一辆载重为2.5吨的货车 运。还要运几次才能运完?

81.一堆煤重20吨,一辆货车运了4次,还剩一半没有运,这辆货车平均每次运多少吨?

解方程五年级教案【篇8】

西师大版五年级下册《解方程》数学教案

教学目标:

1、理解等式的基本性质一,并能较熟练地运用它解形如x+a=b的方程。

2、能较为熟练地运用形如x+a=b的方程解决简单的实际问题。

3、初步理解方程的解、解方程的含义,会检验给出的未知数的值是不是某方程的解。

4、培养学生规范书写和自觉检验的好习惯。

教学重点:

1、对等式的基本性质一的理解和运用。

2、掌握解形如x+a=b的方程的依据、步骤和书写格式。

3、能较为熟练地运用形如x+a=b的方程解决简单的实际问题。

教学难点:

1、掌握解形如x+a=b的方程的依据、步骤和书写格式。

2、较为熟练地运用形如x+a=b的方程解决简单的实际问题。

教学过程:

教学时由复习方程的意义入手,在出示情境图后提出问题,学生最先想到的是算术方法,此时引导:你能列方程解决这一问题吗?在列出方程600+x=860

后,怎样求x呢?在学生渴望解决这一问题的内在需求的驱使下,展开合作探索活动。

在教学等式的基本性质时,可利用实物演示,通过提问:怎样变换,能使天平仍然保持平衡呢?,以引导学生思考,启发学生把两组图的内容归纳成一句话。这样,及时引导学生超脱实例的具体性,实现必要的抽象概括。

这时就可以让学生自己思考、探索x的值的求法,然后在小组讨论后汇报。学生在陈述自己的想法时,不仅要说出自己是怎样推算的,还要请学生说出这样推算的理由。在这一过程中,要特别强调解方程的每一步得到的都是等式,而不是递等式。

教学中还要重视对学生书写的要求,初学时,可要求学生等号对齐。方程两边同时减去一个数的计算过程,开始练习时也要求学生写出来,待熟练之后再简写。无论是解方程还是检验,都要从一开始就强化书写规范,以发挥首次感知先入为主的强势效应,促进良好的书写习惯的形成。

最后引出方程的解和解方程的概念时,要强调:方程的解是一个数,而解方程是一个过程,帮助学生理解、区别这两个概念。

模式方法:观察――实验――讨论――交流――概括结论

作业设计:自主练习1-3题。

讨论要点

1、教学时,要充分利用天平,让学生通过观察、实验、讨论、交流,帮助学生理解等式的基本性质一。

2、教学时,要关注学生的算术思维向方程思维的转变。

3、在检验的问题上,要注重引导学生由算术法的验算向方程法的检验转变。

4、教学时,要加大引领力度,充分发挥教师的作用。一要做好学生解决问题的思维方式的引领,进一步拓宽学生解决问题的渠道,提高学生解决问题的能力。二是对解方程以及列方程解决问题的思路、步骤及格式的引领。

活动总结

本次教研活动,使老师们更加清楚地了解学生已有的知识基础,较为准确地把握教学的重点和难点。设计较为实际的教学环节,降低学生学习的难度,同时也为教师在教学中围绕重点、突破难点指明了方向。

解方程五年级教案【篇9】

解方程

教学目标:

1.在会解简单的两步方程的基础上,初步学会解三步的方程。2.掌握解三步方程的顺序和方法。

3.培养学生的分析、推理能力和思维的灵活性,提高解方程的能力。

4.渗透事物之间相互联系又相互转化的观点。培养学生认真计算,自觉检验的好习惯。教学重点及难点:

教学重点是解含有三步运算的方程的算理和算法;教学难点是如何对方程进行变形求解。教学设计:

一、激发兴趣 引出课题

1.下面括号中的x的值,哪个是方程的解?

3X+6=12(X=2,X=6)3.5-2X=2.1(X=2.8,X=0.7)0.7(X-2)=5.6(X=8,X=10)(X+0.4)÷2.5=1(X=2,X=2.1)2.解方程,并写出检验方程。10-1.4X=7.2(X-3)÷1.3=0.2 3.教师:今天我们继续学习简易方程。板书课题:解简易方程

二、探究新知

1.(出示例题):(23+X+18)÷2=30 1)分析:

师:请学生尝试解方程。然后进行交流核对。师:解这个方程,应该先算哪一步?

生:先求23+18的和等于多少,使方程变成41X÷2=30.师引导小结:这样的方程,能计算的先计算出来,再想含有未知数的一项是一个什么数,用学过的解方程的知识来求方程的解。

2.(出示例题)7X+9-3X=17.8 师:学生尝试在小组内说说解方程的步骤。

用心

爱心

专心 1 师:解这样的方程关键是什么?

生:能化简的部分先化简,把三步方程转化成两步方程,然后再用学过的方法进行求解。3.试一试:

(26+X-18)÷3=10 8X-4X+1=25 学生独立完成后,小组内集体核对,讲清解题算理。

引导学生小结:解这一类方程,要能化简的部分先化简,把三步方程转化成两步方程,再根据四则混合运算的顺序,把含有的X的项看成一个数,根据四则运算各部分之间的关系一步步求出解。

4.(出示例题)X+6=3X 1)师:思考:这个方程与前面的方程有什么不同?

生:方程的左右两边都有X。师:碰到这种情况怎么解决?

学生小组内讨论解决方法。

2)交流解方程的方法:

如果未知数出现在方程的两边,还是运用四则运算的关系进行化简,然后求出方程的解。试一试:解方程并检验。

9X-36=5X

三、巩固运用

1.直接写出得数。

9X+5X= B-0.4B= a+4a= 5x+4x-3x= 2.解方程并检验。

(7+2.3-X)÷2=3.1 9X+19+7X=51 3+2X=5X

四、全课总结:

今天学习的解方程与以前学的有什么不同? 怎样解决这样的问题?

用心

爱心

专心 2

解方程五年级教案【篇10】

教学内容:教科书第6页的7~12题。

教学目标:1、通过练习,使学生进一步体会方程的含义。

2、进一步理解等式的性质,能根据等式的性质正确地解方程。

教学重点与难点:能根据等式的性质正确地解方程。

教学流程:

一、基础练习

1、说出下面的式子哪些是方程,哪些不是,为什么?

20+17=3712-Y=4a+12=3521-b<14x=14+2

2、解方程

X+125=370520+X=710X-4.9=6.4

120-X=257.8+X=2.5X+8.5=12

学生独立完成,指名学生板演。

选3题让学生说说想的过程。

二、完成第6页的7~12题。

第7题学生独立完成后指名回答,让学生说说是怎样想的。

第9题指名学生说:错在哪里,帮他分析一下,可能是什么原因造成的?怎样改正,我们在做题时要注意一些什么?

第8题学生独立完成,指名板演。

第12题学生读题后独立思考解决问题的方法。

小组内交流。全班交流,只要学生说出的方法是有道理的,教师都要给于肯定。

三、课堂作业

第6页的第10、11题。

解方程五年级教案9篇


老师会对课本中的主要教学内容整理到教案课件中,所以老师写教案可不能随便对待。教案是评估学生学习效果的有效依据,好的教案课件是怎么写成的?我们听了一场关于“解方程五年级教案”的演讲让我们思考了很多,经过阅读本页你的认识会更加全面!

解方程五年级教案 篇1

作为一名专为他人授业解惑的人民教师,时常需要准备好教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。那么优秀的教学设计是什么样的呢?下面是小编为大家收集的五年级数学上册解方程教学设计,希望对大家有所帮助。

教学内容:义务教育课程标准实验教科书数学五年级上册55—57页内容。

教学目标:

1、通过演示操作理解天平平衡的原理。

2、初步理解方程的解和解方程的含义。

3、会检验一个具体的值是不是方程的解,掌握检验的格式。

4、、提高学生的比较、分析的能力;培养学生的合作交流的意识。

教学重点:理解方程的解和解方程的含义,会检验方程的解。

教学难点:利用天平平衡的原理来检验方程的解。

关键:天平与方程的联系。

教具 : 图片,课件

教学过程:

一、 回顾旧知,引出课题(出示课件)

1、实物演示:天平平衡的实验。

师:老师在天平的左边放了一杯水,杯重100克,水重X克,一杯水重多少?

生:(100+X)克

师:在天平的右边放了多少砝码,天平保持平衡呢?(教师边讲边操作100克、200克、250克)

师:请你根据图意列一个方程。

生:100+X=250(课件显示:100+X=250)

2、这个方程怎么解呢?就是我们今天要学习的内容——解方程。(板书课题:解方程)

二、探究新知

1.认识“方程的解”和“解方程”的两个概念

师:(出示课件)那你猜一猜这个方程X的值是多少?并说出理由。

生1:我有办法,可以用250-100=150,所以X=150.

生2:我有办法,因为100+150=250,所以X=150

生3: 老师我也有办法,我是这样想的,假如方程的两边同时减去100,就能得出X=150

师:XXX同学的想法太棒了!我们一起探索验证一下。请看屏幕,怎样操作才使天平左边只剩X克水,而天平保持平衡。

生:我在天平的左边拿走一个重100克空杯子,在天平的右边拿走100克的砝码,天平保持平衡。

师:你能根据操作过程说出等式吗?

生:100+X-100=250-100

师:这时天平表示未知数X的值是多少?

生:X=150

师:是的,XXX同学的想法是正确的,方程左右两边同时减100,就能得出X=150。我们表扬他。

师:根据刚才的实验,我们来认识两个新的概念———“方程的解”和“解方程”。

师:指着方程100+X=250说:“X=150是这个方程的解。(课件显示:方程的解)

师:

100+X=250

100+X-100=250-100

指着方框说:“这是求方程的解的过程,叫解方程。

师:在解方程的开头写上“解:”,表示解方程的全过程。

师:同时还要注意“=”对齐。

师:都认识了吗?请打开课本第57页将概念读一次,并标上重点字、词。

师:你们怎么理解这两个概念的?

(学生独立思考,再在小组内交流。)

师:谁来说说你想法?

生1:“解方程”是指演算过程

生2:“方程的解”是指未知数的值,这个值有一个前提条件必须使这个方程左右两边相等。

师:“方程的解”和“解方程”的两个解有什么不同?

生:“方程的解”的解,它是一个数值。“解方程”的解,它是一个演变过程。

[设计意图:通过自主学习、组内交流、合作,达到培养学生自主、互助的精神。]

2.教学例1。

师:要是老师出一个方程,你会求这个方程的解吗?

生:会。

师:请自学第58页的例1的有关内容。

[学生独立学习例1的有关内容,设计意图:给足够的时间让学生学习,让学生发现]

师:四人小组讨论方程左右两边为什么同时减3?

[学生独立思考,再在小组内交流。]

师:(出示例1)左边有X个,右边有3个,一共用9个。根据图意列一个方程。

生:X+3=9(板书:X+3=9)

师:X+3=9这个方程怎么解?我们可以利用天平保持平衡的道理帮助理解,请看屏幕。

师:球在天平不好摆,老师在天平上用方块来代替它。怎样操作才使天平的左边只剩X,而天平保持平衡。

生:天平左右两边同时拿走3个方块,使天平左边只剩X,天平保持平衡。师:根据操作过程说出等式?

生:X+3-3=9-3(板书:X+3-3=9-3)

师:这时天平表示X的值是多少?

生:X=6(板书:X=6)

师:方程左右两边为什么同时减3?

生1:使方程左右两边只剩X。

生2:方程左右两边同时减3,使方程左边只剩X,方程左右两边相等。

师:“方程左右两边同时减3,使方程左边只剩X,方程左右两边相等。”就是解这个方程的方法。

师:这个方程会解。我们怎么知道X=6一定是这个方程的解呢?

生:验算。

师:对了,验算方法是什么?

生:将X=6代入原方程,看方程的左边是否等于方程的右边。

(板书:

验算:方程的左边=6+3=9

方程的右边=9

方程的左边=方程的右边

所以,X=6是方程的解。)

师:以后解方程时,要求检验的,要写出检验过程;没有要求检验的,要进行口头检验,要养成口头检验的习惯。力求计算准确。

[设计的意图:自学思考汇报交流既有利于每个学生的自主探索,保证个性发展,也有利于教师考察学生思维的合理性和灵活性,考察学生是否能用清晰的数学语言表达自己的观点。]

三、巩固练习

师:现在老师看看同学们对于解方程掌握得怎么样。(课件展示)。

四、课堂小结:解含有加法方程的步骤。(出示课件)

师:谁能说说解含有加法和减法的方程的步骤?(随着学生,显示全过程。)

生:解方程的步骤:

a)先写“解:”。

b)方程左右两边同时加或减一个相同的数,使方程左边只剩X,方程左右两边相等。

c)求出X的值。

d)验算。

解方程五年级教案 篇2

本节课我准备按以下几个环节进行教学:

(一)基础训练,激趣导入。

上节课的学习中,我们探究了哪些规律?

巩固方程及等式的性质,为下面的学习做好铺垫。

(二)认准目标,指导自学。

1、那我们学习解方程就要充分利用等式的两个基本性质。

板书课题:解方程(一)

2、学生自学教材67~68页例1、例2、例3内容,让学生初步掌握用等式的性质解方程的原理,学完后记录疑问。

(三)合作学习,引导发现。

1、出示课件例1,你了解了哪些信息?怎样列方程?

x+3=9

2、如何解这个方程呢?课件出示利用等式的性质分析的图示。

学生观察图画,同桌交流自己的观察结论,并通过讨论明确解方程的方法。

x+3=9

解:x+3-3=9-3

x=6

3、点名学生汇报,其他同学可以补充。

老师归纳:解方程实质就是把方程转化成x=a的形式,要注意解方程步骤的规范书写。

4、认识、区分方程的解和解方程并学会验算方程的解。

5、学生独立完成例2、例3的内容,并相互检验对方的结果。

老师再次强调要注意解方程和验证步骤的规范书写。

(四)变式训练,反馈调节。

课本67~68“做一做”。

强化重点,巩固新知,培养学生良好的学习习惯。

(五)分层测试,效果回授。

随堂练习册36页《解方程(一)》第一、二、四、五大题

(六)课堂小结

梳理知识形成完整知识体系

(七)布置作业

1、课本练习十五第1题。

2、课本练习十五第4题。

解方程五年级教案 篇3

1.某校六年级有两个班,上学期级数学平均成绩是85分。已知六(1)班40人,平均成绩为87.1分;六(2)班有42人,平均成绩是多少分?

2.一条公路长360m,甲乙两支施工队同时从公路两端向中间铺柏油。甲队的施工数度是乙队的1.25倍,4天后纸条公路全部铺完。甲乙两队分别铺白有多少米? 3.甲乙两车从相距272千米的两地同时相向而行,3小时后两车还相隔17千米。甲每小时行45千米,乙每小时行多少千米?

4.李师傅买来72米布,正好做20件大人衣服和16件儿童衣服。每件大人衣服用2.4米,每件儿童衣服用布多少米?

5.某班46名同学去划船,一共乘坐10只船,大船坐6人,小船坐4人,全部坐满。问大船和小船各几只?

6.两城相距480千米,甲乙两辆汽车同时从两城相对开出,3小时后两车相遇,已知甲车每小时行85千米,乙车每小时行多少千米?

7.新岭要修一条长3300米的公路,甲乙两个工程队同时施工,15天完成,甲队每天修125米,乙队每天修多少米?

8.甲乙两车同时从相距528千米的两地相向而行,6小时相遇,甲车每小时比乙车快6千米,求甲乙每小时各行多少千米?

9.甲乙两地相距350千米,甲乙两车同时从两地相对开出,经过3.5小时后两车相遇,甲车每小时行49千米,乙车每小时行多少千米?(用两种方法解答)

10.两个施工队开凿一条隧道,甲施工队每天开凿15米,乙施工队平均每天开凿12米,这条长270米的隧道需要多少天开凿?(用两种方法解答)

11.汽车站有480箱货物,一辆货车运了5次,还剩30箱,平均每次运多少箱?(列方程解答)12.有两组学生去采花,甲组采了123朵,乙组采了57朵,问从甲组拿多少朵到乙组会使乙组是甲组的4倍? 13.两人水池共储存税40吨,甲池注进水4吨,乙池放水8吨,甲池中水的吨数就与乙池中水的吨数相等。两个水池原来各有水多少吨?

14.甲油库存油112吨,乙油库存油80吨,每天从两个油库各运走8吨油,多少天后甲油库剩下的油是乙油库剩下油的2倍?

15.甲贮水池存水40吨,乙贮水池存水66吨,每分钟从乙池中抽出2吨水放入甲池,多少分钟后,两个贮水池存水同样多?

16.甲仓库粮是乙仓库的3倍,如果从甲仓库运出90吨,从乙仓运出10吨,则两仓库存粮相等,甲乙两仓库原各存粮多少吨? 17.有两袋大米,甲袋大米的重量是乙袋的1.2倍,如果从甲袋中取出10千克,两袋的重量就相等。甲、乙两袋大米原来各重多少千克?

18.两人水池共储存税40吨,甲池注进水4吨,乙池放水8吨,甲池中水的吨数就与乙池中水的吨数相等。两个水池原来各有水多少吨?

19.鸡兔同笼,共有35个头,94条腿,求鸡兔各有几只? 20.在植树活动中,六年级植树棵数比五年级的2倍少10棵,五年级比六年级少62棵。两个年级各植树多少棵

21.利民学校合唱团有100人,比舞蹈队人数的3倍少5人,舞蹈队有学生多少人?

22.用48分米铁丝,做一个长方形框架,要使长是宽的2倍,这个长方形框架的长和宽分别是多少?

23.甲乙两辆汽车分别从相距800千米的两城相向开出,8小时相遇,已知甲车每小时行驶45千米, 乙车每小时会驶多少千米? 24.A,B两城相距150千米,甲乙两人同时骑自行车从两地相对出发,甲每小时行16千米,4小时后,两人还相距30千米, 乙每小时行多少千米? 25.两辆汽车从相距400千米的两地同时相对开出,3小时后还相距10千米,已知一辆汽车每小时行驶55千米,求另一辆汽车速度?(26.AB两城相距720千米,一列客车从A城开往B城,行2小时后,另一辆货车从B城开往A城,4小时后与客车相遇,已知客车每小时行80千米,货车平均每小时行多少千米? 27.师徒两人共同加工一批零件,师傅每小时加工60个,徒弟每小时加工50个,两人共同加工275个零件要多少小时?

28.某车间计划四月份生产零件5480个。已生产了9天,再生产908个就能完成生产计 划,这9天中平均每天生产多少个?

29.新岭要修一条长3300米的公路,甲乙两个工程队同时施工,15天完成,甲队每天修125米,乙队每天修多少米?

30.小军有邮票的张数是小林的3倍,他们一共有邮票240张,求小军和小林各有邮票多少张?

31.某植物园有松树和榕树120棵,已知松树是榕树棵数的2倍,问榕树,松树各有多少棵? 32.果园里有苹果树和梨树共3600棵,苹果树是梨树的3倍,苹果树和梨树各有多少棵? 33.小红和小军一共储蓄了235元,已知小红储蓄的是小军的1.5倍,小红和小军各储蓄多少元? 34.一根绳子长13.4米,第一次剪去3.2米,第二次剪去多少米才能使剩下的长度刚好是第一次剪去的2倍? 35.食堂买来大米和面粉共595千克,其中大米是面粉的2.5倍,买来大米、面粉各多少千克?

36.一套餐桌椅有一张桌子和6张椅子组成,桌子价格是椅子的8倍,总价是2100元,求桌子和椅子的单价是多少元?

37.3年前母亲岁数是女儿的6倍,今年母亲33岁,女儿今年几岁?

38.学校买来10箱粉笔,用去250盒后,还剩下550盒,平均每箱多少盒?

39.食堂运来150千克大米,比运来的面粉的3倍少30千克。食堂运来面粉多少千克? 40.果园里有52棵桃树,有6行梨树,梨树比桃树多20棵。平均每行梨树有多少棵? 41.某班有男生30人,比女生的2倍少10人,这个班有女生多少人?

42.小明和哥哥的年龄和是23岁,哥哥比小明大5岁,问小明和哥哥各多少岁?

43.一个图书馆有儿童读物2.5万册,其它读物是儿童读物的3倍少0.2万册,其它读物有多少册?

44.一张桌子125元,是一张凳子的5倍还多15元,一张方凳多少元?

45.饲养场有公鸡和母鸡480只,母鸡比公鸡的2倍还多30只,这个饲养场公鸡和母鸡各有多少只?

46.小青家今年养了50只鸡,比鹅的3倍还多5只,小青家今年养鹅多少只? 47.果园里有桃树和杏树一共1080棵,已知杏树比桃树的棵数多180棵,杏树和桃树各有多少棵? 48.同学们植树,一班比二班多植63棵,一班42人,平均每人植8棵,二班39人,平均每人植多少棵?(用方程解答)49.甲乙丙三数之和是183,甲数比乙数的2倍多7,丙数比乙数的3倍少4,求甲乙丙三数各是多少? 50.学校第一次买来200盒粉笔,第二次买来150盒,第一次比第二次多付100元,每盒粉笔多少元?

51.大车每次运1.3吨,小车每次运1.2吨,运多少次后,大车比小车多运2.4吨? 52.某机械厂今年每月生产机床150台,比去年每月产量的3倍少30台,去年每月生产机床多少台? 53.师徒合做180个零件。师傅每小时做18个,徒弟每小时做12个,几小时做完? 54.某地下管道由甲工程队单独铺设需要12天,由乙工程队单独修设需要18天。如果有由两个工程队从两端同时想象施工,要多少天可以铺好?

55.幼儿园小朋友分糖,每人分5块就多出13块,每人分6块就还少7块,请问有多少小朋友,有多少块糖?

56.四年级共有学生200人,课外活动时,80名女生都去跳绳。男生分成5组去踢足球,平均每组多少人?

57.小芳买了2本笔记本和5枝圆珠笔,共用去7.5元,每枝圆珠笔0.5元,每本笔记本多少元?

58.水果店运来4箱苹果和6箱梨,共用去244元,已知苹果每箱28元,梨每箱多少元 59.面粉每千克1.9元,大米每千克1.8元,买面粉和大米各10千克,付出50元,应找回多少元?(用两种方法解答)

60.香蕉每千克4.50元,梨每千克4元,小红的妈妈买了4千克香蕉,给了营业员30元,剩下的钱去买梨,能买梨多少千克? 61.买3张桌子和4把椅子一共用了308元,每把椅子32元,每张桌子多少元?(62.一枝钢笔的价钱是一枝圆珠笔的2.5倍,现各买2支,一共用了10.5元,每支钢笔和圆珠笔各是多少元? 63.小明买了1元一张和2元一张的邮票共33张,这些邮票的面值共48元,每种邮票各买了多少张?

64.一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米? 65.一块三角形地的面积是840平方米,底是140米,高是多少米? 66.一个平行四边形面积是125平方厘米,底是50厘米,高是多少厘米? 67.一个三角形高是18厘米,面积是180平方厘米,底是多少厘米? 68.一个梯形面积是126平方米,上底是13米,下底是17米,这个梯形的高是多少米? 69.一个三角形面积是24.8平方米,底是12.4米高是多少米? 70.一个长方形操场周长是348米,宽是69米,它的面积是多少平方米? 71.一个长方形周长和一个正方形周长相等,已知长方形长24厘米,宽16厘米,求正方形面积? 72.一块长方形地,长是宽的4倍,周长是120米。这个长方形的面积是多少平方米?

73.有三个数,它们的平均数是8.6,其中第一个数是9.1,第二个数比第三个数小0.1,求第三个数

74.三个连续自然数之和153,这三个自然数分别是多少?

75.三个数的平均数是120,甲数是乙数的2倍,丙数比甲数多5,甲, 乙,丙三个数各是多少? 76.甲数是x,乙数是甲数的3倍少0.2, 乙数是5.8,甲数是多少?(列方程解答)77.一辆时速是50千米的汽车,需要多少时间才能追上2小时前开出的一辆时速为40千米汽车?

78.甲乙两地相距300千米,一辆汽车由甲地开出5小时后,距离乙地还有74.5千米,这辆汽车平均每小时行多少千米?

79.龟兔赛跑,全程200米,龟每分钟跑2.5米,兔每分钟跑32米,兔自以为是,在途中睡了一觉,当龟到达终点时,兔子离终点还有40米,兔子在途中睡了几分钟? 80.运送29.5吨煤,先用一辆载重4吨的汽车运3次,剩下的用一辆载重为2.5吨的货车 运。还要运几次才能运完?

81.一堆煤重20吨,一辆货车运了4次,还剩一半没有运,这辆货车平均每次运多少吨?

解方程五年级教案 篇4

1、华山小学三年级栽树56棵,四年级栽树是三年级的2倍,五年级栽的比三、四年级栽的总数少10棵。五年级栽树多少棵?

2、机床厂原计划每天制造机床40台,实际每天制造50台,结果16天就完成了任务。机床厂实际比原计划提前几天完成任务?

3、小胖骑车郊游,前2小时共行驶了17千米,后3小时平均每小时行驶了10千米,小胖平均每小时骑多少千米?

4、小学五年级数学家庭练习作业:小亚的'体重乘3,再减去19千克,就和爸爸的体重一样,爸爸的体重是78.5千克。小亚的体重是多少千克?

5、一间课室,长7.5米,长是宽的1.25倍,里面坐48个学生,平均每个学生占地多少平方米?(得数保留两位小数)

6、学校购买每张单价是140元的课桌,买了30张还多480元。如果用这笔钱买椅子,可以买40把。每把椅子的单价是多少元?

解方程五年级教案 篇5

解方程试讲稿

一、教材:人教版小学五年级上册解方程

二、试讲稿

导入:

师:上课,同学们好,请坐

师:大家看一下我手里的盒子,猜一猜里面有几个小球。学生踊跃发言。

师:大家说什么的都有,那我们现在就借助天平来测量一下吧。师:同学们现在看一下讲桌上的这个天平,大家可以得到什么信息呢? 生(众):两边平衡了,右边有9个小球,左边是盒子和3个小球 师:很好,我们已经学习了方程,大家可以就此列一个等式吗? 生:x+3=9 师:非常棒,那x是多少呢?带着这个问题,我们今天来学习解方程。(板书—解方程)新授

师:x是多少呢?大家四人小组讨论一下

师:我见大家讨论的差不多了,来靠窗的那组同学来回答一下 学生:x=6 师:说一下理由

学生:6+3=9,所以x肯定是6.师:非常好,请坐,其实我们还可以用等式的性质来解决这个问题。大家再回忆一下等式的性质

学生(众):等式的两边同时加上或减去同一个数,等式左右仍然相等。

师:好,大家上节课学的都很扎实。现在看讲台上的天平,我把左边去掉三个球,根据等式的性质,那右边应该去掉几个 学生:3个

师:大家试着将刚才的过程用式子写出来。我们请两个学生在黑板上写。X+3-3=9-3 师:大家和这个同学写的一样吗?很好,大家完成的都非常好,师:大家现在观察天平,可以发现了什么? 生:盒子里有6个球

师:对,盒子里有6个球,也就是x等于(教师停顿,学生回答)6,大家把它写在本上。师:通过这样的过程,我们就求出了x=3。老师,现在有个问题,刚才我们两边同时减去了3,减去3有什么好,大家思考一下,来穿白色上衣的那位同学回答一下

生:根据等式的性质,可以知道减去3和减去2等式都成立,但是减去3后,就可以直接得到x的值了。

师:请坐,回答的非常好,我们要记得我们的目的是要求未知数x的值。师:我们把x=3叫做这个方程的解,而刚才求方程的解x=3的过程叫做解方程。师:大家看一下课本上对方程的解和解方程的概念,好,现在来一块说一下 生:使方程两边相等的未知数的值叫做方程的解

求方程解的过程叫做解方程。

师:结合刚才我们学的题目,同桌之间讨论一下方程的解和解方程 师:好,现在我们一块来答一下。非常好,方程的解为x=3 师:那解方程呢,嗯嗯,非常好,整个求解的过程的就叫做解方程

师:那老师有一个问题方程的解和解方程都有一个解字,他们之间有什么区别呢,同桌讨论一下

师:好,你来回答一下

生:方程的解,是一个值,解方程的解代表的是一个过程。师:回答的很利索,很好,请坐。

师:那大家观察一下大屏幕上这3个解方程的过程,看一下他们的格式有什么共同点 生:所有的等号都对齐了。

师:大家观察的很细致,这也是我们书写时需要注意的。

师:按x=3是不是这个方程的解呢?这个需要大家检验一下,同桌之间讨论一下,如何检验呢

学生:可以把x=3带入,看看等号左边和右边是否相等。师:很好,思路很清晰,大家是这检验一下,这个解正确吗? 生:正确

师:好,同学们看一下大屏幕上的书写过程,看看和你的一样吗?非常好,接下来,我们做一下做一做的三道题,老师请3个同学来黑板上做,好,就靠墙的这三位同学吧,其它的同学在下面做。巩固练习

师:大家和它们做的一样吗?来,你来说 生:第二个同学没有检验 小结

师:对,我们得到方程的解后要检验一下,我们这节课就快接近尾声了,那大家说一下这节课你们有哪些收获呢?

师:嗯,学会了解方程,对,解方程就是求未知数x的值,还有吗?嗯,需要检验......。作业

师:同学们下去以后给自己写一个方程,并求出这个方程的解,下节课咱们讨论,好,同学们下课。

解方程五年级教案 篇6

人教五年级音乐上册教案

五年级音乐教学计划

一、本学期教学目标与任务:

结合音乐作品的欣赏,了解一些旋律的初步知识(如旋律进行的方式、特点和一般的表现意义),以进一步加强情感体验的能力,加深对音乐形象的感受,进入比较深入的欣赏。

这个阶段我会注重作好以前和今后知识的衔接工作。我会采取多种方式策略,帮助学生自己熟练的应用所学过的知识。并要注意避免学生厌烦枯燥的乐理知识的学习,采取游戏的方式让学生边玩边学。

二、教学分析:

1、唱歌是学习一些适合小学生延演唱的中外优秀歌曲。注重学生用力度、速度的变化手段表现歌曲情感,能够独立、自信地唱歌。

2、欣赏教学是培养学生音乐感受、欣赏和审美能力的有效途径。中外优秀音乐作品对于开阔学生视野,提高文化素养,丰富情感具有重要意义。

3、识谱教学是学生学习音乐的必要环节。教学要符合学生的认知规律,把知识融入音乐实践中去学习。避免单纯而枯燥的讲授,要从感性入手,深入浅出,逐步提高。

4、综合训练为本课本的重要特色之一,旨在通过某一种形式(如歌唱发声、节奏、律动、乐器演奏、音高听辨、节奏与旋律的排列和音乐创作等)的练习、达到多种技能训练或知识运用的要求,依照各课教学目的、既抓住训练重点,又要有所兼顾,充分发挥每一条练习中所包含的训练作用。

三、提高教学质量措施:

1、认真备课,做好前备、复备工作,为能使学生上好课做好充分的准备工作,备课时注意与新课标结合,并注意备学生。

2、因材施教,对不同的学生要注意采用不同的教学手法,使学生能够充分发展。

3、设计好每堂课的导入,提高学生的学习兴趣。

4、课堂形式设计多样,充满知识性、趣味性、探索性、挑战性以及表演性。最大限度的调动学生的积极性。并使他们最大限度地学到知识,掌握技能。并注意在课堂上采取一定的形式,培养学生的团结协作能力及创新能力。

5、积极和其他学科沟通,积极研究学科整合。响应新课标要求。

6、多看多听其他学校的课程,在本校多实施,使学生开阔眼界。教师从中总结经验。

一、西部风情

第一、二课时(拉萨谣)教学目标:

1、通过学习歌曲《拉萨谣》体验西藏民族风情。

2、通过歌曲练习表现质朴自然、高远深邃的感情。

3、注意歌唱的发声和吐字。课时:共两课时。

教学过程:

1、导入新课

(1)复习演唱前面学习过的歌曲。注意引导表达歌曲的情绪,力求做到有感情地歌唱。

(2)通过与以前学习过的歌曲情绪的联系或对比引入本课将要学习的歌曲。(3)听歌曲范唱录音(合唱)。在聆听之前,提示学生注意歌曲演唱形式和情绪。听后引导学生简单讨论。

2、学习新歌

(1)进一步体验歌曲的情感和了解歌曲的背景。

A、学生朗诵歌词。教师纠正、解释歌词中的个别字词。

B、请学生谈这首歌曲的时代背景和对歌曲情感的理解。C、再听歌曲的范唱演唱(最好是教师范唱,也可听独唱录音)。

D、调查了解学生对这首歌曲的熟悉程度(可用举手统计方法,也在可课前进行)。

(2)随琴视唱歌曲歌词(为了体验歌曲的情感,也为了实际检验一下学生对歌曲的熟悉程度)。

A、指导学生分析歌曲的节奏特点。

B、学生读节奏(可用“哒”或其他读法)。提示读节奏时要注意节奏的乐句。

C、在教师弹奏歌曲曲调的“伴奏”下,再读一遍节奏。

(3)学习歌曲的曲调。

A、学生随着教师的琴声试着视唱曲谱(只唱一遍,以便确定下面的练习方式)。

B、请学生分析一下歌曲的“旋律线”(可用手势来表示,注意一个乐句用一个动作)。然后一边作“用手势表现旋律线”的动作,一边进行视唱曲谱练习。(4)学习歌曲的歌词。

A、联系前面分析过的歌词和情绪唱歌词。

B、在练习中提示要注意运用气息的控制唱好连音。(5)用乐器演奏整首歌曲的曲调或其中的几个乐句。

3、小结

(1)再听一遍歌曲录音,请学生对比一下,自己的演唱还有哪些不足。(2)了解一下用乐器演奏这首歌曲的情况。(3)指出下一节课的任务或课下的乐器练习任务。

第三课时(欣赏 北京喜讯到边寨)

一、教学内容:

1、欣赏《北京喜讯到边寨》

2、复习唱好《拉萨谣》

3、聆听《东北秧歌》

4、练习东北秧歌的基本动作

二、教学目标 :

1、让学生感情丰富唱好《拉萨谣》

2、通过聆听《北京喜讯到边寨》感受民族管弦乐,体会苗族、彝族音乐风格

3、学跳秧歌的基本舞步,培养学生热爱生活、热爱祖国的情感

三、教材分析:

这是一首以苗族、彝族音调改编的管弦乐曲,曲调欢快、热烈。

四、教学过程 :

(一)导入

1、师:“上节课我们学习了一首藏族歌曲《拉萨谣》,今天我们一起复习复习,要唱得更好一点。”

2、学生齐唱。

(二)开始上课

1、跟录音演唱。

2、难点指导,跟伴奏带让学生有表情、有感情演唱。

3、过渡聆听《北京喜讯到边寨》。师:“演唱完畲族歌曲,接下来我们来欣赏一首以苗族、彝族音调改编的曲子《北京喜讯到边寨》。”

4、让孩子看着简谱聆听,感受三部分七个主题的音乐旋律。

5、让学生谈谈听后感,教师总结。

6、完成听听想想问题。

7、聆听《东北秧歌》,让学生猜猜此音乐的舞种。

8、引出“秧歌舞”。

9、教师示范跳“秧歌舞”,学生喊口令。

10、动作分解教学……

11、结束。

第四、五课时(三峡的孩子爱三峡)教学目的:、让学生初步了解和感受中国音乐的品种及其基本风格。

2、能够用圆润而有弹性的声音、轻快活泼的情绪演唱《三峡的孩子爱三峡》。

3、教育学生应热爱祖国大家庭,努力学习,将来把我们祖国建设的更美丽。课时:共两课时。教学过程: 一、导入:

首先我们来做一 个游戏:播放一 段“少数民族服饰展”片断,请同学们抢答他们分别属

哪个少数民族?将学生说的各种答案总结归纳,并对积极举手发言的同学以充分地肯定、鼓励 表扬。

二、引入新课:

1、由学生的回答引入:

师:我们的祖国是一 个历史悠久、文化灿烂、幅员辽阔、民族众多的国家,那么谁知道三峡在哪儿呢?

2、学生发言引入教学。

三、激情参与(视唱):

1、播放歌曲。

2、接下来就请同学们轻声哼唱: 注意:(1)强调正确坐姿。

(2)可先放慢速度练习,较熟练后将速度还原。

(3)老师将其有休止符的地方用连音来弹奏,请学生感受效果有何不同?因此,演唱时应把握好连音与休止符的细致要求。

(4)唱“啦”,演唱时注意声音的弹性及气息的支持。

四、学唱歌曲:、师:除了我们以前了解过的汉族歌舞音乐之外,还有许许多多的少数民族歌舞音乐等待着我们去了解,那么首先我们就来完整欣赏一 首歌曲《三峡的孩子爱三峡》,想不想听老师为大家演唱一 遍啊?

(1)歌曲的演唱形式:领唱、齐唱(2)歌曲的风格特点:少数民族音调、师:请同学们试着跟琴轻声哼唱一 遍(或者二到三遍),可分为三部分哼唱,注意:a、休止符b、装饰音。、引导学生发现前面的发声练习就在歌曲之中,由此分析此首歌曲的结构。4、教唱《三峡的孩子爱三峡》一 歌(1)完整视唱旋律。

(2)根据感觉分析的歌曲结构特点,分段学习此歌,特别注意B段衬词的演唱。(3)全体学生完整演唱此歌,(4)完全熟练以后,三段作对比,进行力度、表情、速度变化。让学生感觉力度、表情、速度变化。对音乐表现的影响。

(6)通过学习《三峡的孩子爱三峡》对学生进行爱国主义教育。

第二单元 古诗新唱

第一、二课时 梅花 教学目标:

1、用气息支持唱歌,学习浮点音符的唱法。

2、有感情地背唱歌曲。教学过程:

一、发声练习: 1=D2/4

222 55┃66 5┃02 56┃6?2 ┃5 —┃5—║

二、学唱新歌

1、听录音

2、问:内容情绪是什么?此歌适合在何重情况下唱?

3、找出曲中的浮点音符节奏,并作上记号,哪个同学来试唱一下,(注意X?X中附点四分音符的时值。)

4、第二次听录音,要求学生轻声哼唱。

1、“开火车”,听一句旋律,唱一句歌词,唱的好的同学予以表扬。2、放慢速度跟琴唱第一段 3、请个别视唱第二段 4、分组唱 5、练习齐唱。

第三课时 静夜思 教学目标:

1、学会歌曲《静夜思》,能有气息支持、有感情地唱歌。2、能唱好歌曲中的圆滑音。

3、学习4/4拍节奏特点,学会4/4拍指挥式,能变作指挥式边唱歌。教学过程:

一、发声练习: 1=C-F 2/4 ▼▼▼▼ ▼▼▼▼ ╭——╮ 5555┃6531┃3 2┃1 —║ lalalala lalalala la

二、学唱新歌

1、听录音

2、问:内容情绪是什么?此歌适合在何重情况下唱?

3、学唱曲谱

4、看谱,并听琴音

5、找出旋律特点。

6、听琴音,学唱歌曲。

7、“开小火车”将全曲分为11个乐句,每个学生唱一句,先听后唱,不妥之处其余同学补充。

8、分段唱:第一乐段——男生。第二乐段——女生,副歌——男女生齐唱

9、练习齐唱歌曲。

10、学习了解4/4拍节奏特点,“强、弱、次强、弱”。

11、学习4/4拍指挥式。

12、练习边做指挥式,边唱歌曲。

13、小结。

第四课时 古诗朗诵演唱会 教学目标

1、欣赏歌曲《读唐诗》。

2、通过朗诵演唱古诗,激发学生对古诗的兴趣,知道诗与歌的联系。教学设计:

一、发声练习: 1=C-F 2/4

▼▼▼▼ ▼▼▼▼ ╭——╮ 5555┃6531┃3 2┃1 —║ lalalala lalalala la

二、学唱新歌

1、听录音欣赏歌曲《读唐诗》。

2、再次欣赏找一找歌曲的特点。

3、根据标题,用自己的话来描绘场景。

4、第三次欣赏,要求跟谱轻哼,以加深印象。

5、组织学生进行古诗朗诵演唱活动。

6、小结。

第三单元 美丽的草原

第一课时 欣赏 《天堂》、《牧民的一天》 教学目的:

1、欣赏音乐,学习用点、线和色彩画感受,培养学生想象力和创造力。

2、通过听音乐,画感受,提高学生审美能力。教学过程:

一、听音乐进教室

二、师生问好

三、听记:(简单的旋律)1=F2/4

1 12┃(32 3)┃5653┃2 —┃(2532)┃(12 3)┃2161┃5 -║

方法:A、师奏F大调音阶(上引、下行)生仔细聆听,并分析拍号。

B、师旋律奏一遍,生随音乐用手指划拍(学生应规定速度)

C、师重复弹,生记下各音

D、师再次弹奏,生同时默唱、校正、纠错

E、将听记内容唱一唱

四、念念拍拍:

导入:刚才老师测查了同学们的听音导入:刚才老师测查了同学们的听音考考大家。

(出示小黑板)

(1)X XX┃XXX┃XXX XX┃X -║(2)X?X XX┃XX X┃XXXX XX┃X -║ A、分析拍号后,生自行准备,1-4组第一条,其余的第二条。

B、请个别生念念拍拍,(注意:XXX,XXX XXXX较难),后集体评议

C、要求匀速进行节奏练习,整体的可由慢到快。

对照下面三组节奏,按老师所拍的先后次序,把序号填写在括号里:()XXX XX┃X -║()X XX┃X X X║

()XXXX XX┃X

-║

方法:A、请个别学生上面拍打,其余评议是否正确。

B、生自由练习

C、听老师打节奏,将序号填在相应的小括号中。

D、按序号连起来练习

五、欣赏歌曲《天堂》。

1、播放歌曲。

2、讨论:这首歌曲表达了怎样的情感?你从歌曲中感受到了什么?

3、第二次播放歌曲,讨论:A、歌曲具有哪个民族特色?

B、歌曲曲调由两部分第一部分优美、深情表现了对家乡的赞美,第二部分高亢、充满激情,表现了对家乡的无比热爱,这种变化是怎么表现出来的?

4、第三次播放音乐,让学生边听边用曲线画,感受音乐的起伏变化。

5、完成17页填空练习,并练习唱一唱。

六、欣赏歌曲《牧民的一天》。方法同上。

七、小结。

第二课时 美丽的夏牧场 教学目标:

1、通过学唱《美丽的夏牧场》培养学生富有表情地演唱歌曲、学会采用不同的形式表现歌曲的美。

2、了解哈萨克相关的音乐文化。

教学过程:

一、了解新疆哈萨克族风情

1、播放歌曲《美丽的夏牧场》

2、第二遍听赏,同时出示歌词师:我们一起看看这首歌曲的歌词,唱到了什么山,什么河,哪些景色,你觉得这是哪个地方?

3、结合这些景致,你觉得是哪个民族?

4、介绍新疆哈萨克族师:哈萨克族生活在天山脚下,以游牧为生,是个能歌善舞的民族,民族乐器主要有冬不拉、手鼓(出示图片)

5、边听音乐边打节奏 聆听音乐,说说这是哪个民族的歌曲。听赏并说说歌曲中唱到的景致。学生欣赏画面学生拍打铃鼓(随意的)跟随老师的节奏打一打铃鼓。4/4 0 x 0 x 0 xx x x | 通过学生听一听、看一看,直切本课主题。多媒体课件的播放视听结合,使学生产生好奇。结合民族音乐文化(手鼓等演奏),让学生走进哈萨克族的神奇土地,使学生在了解歌曲的同时培养了审美情趣。激发学生学习兴趣。

二、新歌教学

1、师:我们今天就来学习歌曲《美丽的夏牧场》,请同学们一起来哼唱旋律,同时观察旋律中哪个音出现的最多。

2、师:是的,在歌曲中,以“6”音为主的旋律都给我们感觉比较优美,再加上中速的演唱速度,让歌曲更加抒情了。

3、我们一起来唱第一段歌词,找出你认为最难唱的地方。

4、师:请大家跟着老师的琴声再把第一段歌词完整地唱一遍,你能找出你觉得最抒情的一句吗?为什么?讲述音乐知识“⌒”

6、单独哼唱“啊”(第三乐句)指导声音。

7、师:同学们,这段歌词中出现了“阿肯”一词,你知道是什么意思吗?

8、解释“阿肯”、相关音乐文化。

三、分析处理歌曲

1、总结旋律结构特点,出示图谱。(1)师:我们完整的把歌曲演唱一遍,找出歌曲中旋律相同的乐句,你能用自己的图谱来表示吗?(2)老师出示图谱 ○ ○

2、采用不同的形式表现歌曲。

3、二度范唱师:我们的这首歌也可以用这种形式来演唱,请听。

4、师:如果加快速度,又会带给我们怎样的感受呢?

5、放歌曲《玛依拉》(课件)师:我们再来欣赏一首哈萨克民歌《玛依拉》,与《美丽的夏牧场》作一下比较。

四、总结。

第四单元 欢快的舞步

第一课时

欣赏 大河之舞 教学目标

1、欣赏乐曲《大河之舞》,感受爱尔兰民族的热情奔放。

2、结合相关资料,了解爱尔兰民族特色和踢踏舞。教学过程

1、播放歌曲。

2、讨论:这首歌曲表达了怎样的情感?你从歌曲中感受到了什么?

3、第二次播放歌曲,介绍爱尔兰民族音乐舞蹈传统特色。

4、播放《大河之舞》音像资料,进一步感受爱尔兰音乐、舞蹈的热情奔放。

5、跟着电视学跳踢踏舞。

6、再听音乐,感受乐曲节奏的变化。并让学生用踢踏的形式表现出来。

7、小结。

第二课时

活动:稍息 立正 站好 教学目标:

1、在听赏中感受歌曲的热烈,激发学生表现音乐的兴趣。

2、能根据音乐的节奏,自编韵律操,表现音乐。教学过程:

1、复习上节课相关内容。

2、听赏范晓萱翻唱的歌曲《稍息 立正 站好》。初步感受乐曲的热烈和强烈的节感。

3、说一说歌曲的特点。

4、跟着录音学唱歌曲第二段。

5、学生根据歌曲内容、节奏分组自编动作。

6、各组表演。

7、在教师指导下,学生编排动作。

8、跟着音乐表演韵律操。

9、小结。

第三课时

大家一起来 教学目标:

1、在听赏中感受歌曲的热烈,激发学生表现音乐的兴趣。

2、能根据音乐的节奏,自编韵律操,表现音乐。教学过程:

1、复习上节课相关内容。

2、听赏孙悦演唱的歌曲《大家一起来》。初步感受乐曲的热烈和强烈的节感。

3、说一说歌曲的特点。

4、跟着录音学唱歌曲。

5、学生根据歌曲内容、节奏分组自编动作。

6、各组表演。

7、在教师指导下,学生编排动作。

8、跟着音乐表演韵律操。

9、小结。

第五单元 绿色的畅想

第一、二课时 教学内容:学唱歌曲《手拉手,地球村》。教学目标:

1、初步理解“地球村”的含义,关注世界和平事业和绿色事业,理解歌曲所表达的思想情感,教育学生热爱世界和平保护绿色环境。

2、学会《手拉手,地球村》。教学过程:

一、导入新课

1、同学们谁知道“地球村”是什么意思?

2、复习演唱前面学习过的歌曲。注意引导表达歌曲的情绪,力求做到有感情地歌唱。

3、通过与以前学习过的歌曲情绪的联系或对比引入本课将要学习的歌曲。

4、听歌曲教唱录音(合唱)。听后引导学生简单讨论。

二、学习新歌《手拉手,地球村》。

1、进一步体验歌曲的情感和了解歌曲的背景。

2、随琴视唱歌曲歌词。

3、学习歌曲的曲调。

三、小结

第三课时 教学内容:歌曲《绿色的歌谣》。教学目标:

1、学会歌曲《绿色的歌谣》,能有气息支持、有感情地唱歌。能唱好歌曲中的圆滑音。

2、学习拍节奏特点,学会打拍指挥式,能变作指挥式边唱歌。教学过程:

一、教师谈话导入。

二、学唱新歌《绿色的歌谣》

1、听录音

2、问:内容情绪是什么?此歌适合在何重情况下唱?

3、学唱曲谱,找出旋律特点。

4、听琴音,学唱歌曲。

5、分段唱:第一乐段——男生。第二乐段——女生,副歌——男女生齐唱

6、练习齐唱歌曲。

三、展示

第四课时 教学内容:欣赏小乐队合奏《森林狂想曲》。教学目标:

1、、初步熟悉《森林狂想曲》的音乐,能用竖笛或口风琴吹奏A段主题。

2、通过听《森林狂想曲》感受民族管弦乐,体会藏族、音乐风格。

3、初步进行合奏《森林狂想曲》提高演唱的质量,培养学生热爱生活、热爱祖国大好河山的思想情感。教学过程:

一、教师谈话引入:

二、初步欣赏《森林狂想曲》。

1、初听音乐。(教师简介)

2、让学生熟悉A、B、C各段的旋律。

3、教师分别用电子琴或竖笛演奏A、B、C各段的旋律。使学生听到音乐就能知道是A段还是B段或C段。

4、复听完成课本上的第一个练习。

5、这首乐曲有许多地方运用了“音效”即实地录制的声音,加强了真实感,使人身临其境。(分小组共同探讨、创造、分工)。

三、选择两或三个小组与教师合作,共同演绎《森林狂想曲》。

四、在口风琴或竖笛上学习吹奏“mi”,“fa”,“sol”三个音。

五、随教师用较慢的速度学习吹奏《森林狂想曲》A段的旋律。

第五课时

教学内容:复习唱好《绿色的歌谣》;演绎《森林狂想曲》 教学目标 :

1、让学生感情丰富唱好《绿色的歌谣》 教学过程:

一、谈话导入:

二、复习歌曲《绿色的歌谣》

1、跟录音演唱。

2、难点指导,跟伴奏带让学生有表情、有感情演唱。

3、过渡聆听《绿色的歌谣》。”

三、复习歌曲《手拉手,地球村》

四、合奏练习《森林狂想曲》。

五、教师放录音,共同欣赏,评价。

第六单元 欢乐的鼓声

第一课时 教学内容:欣赏乐曲《龙腾虎跃》。教学目标:

1、了解鼓的作用,激发学生对鼓文化的兴趣。

2、欣赏鼓乐《龙腾虎跃》。体验、感受作品的情感,增强民族自尊心、自信心、自豪感。教学过程:

一、模拟激越的鼓声,为音乐伴奏。

二、教师谈话:出示实物(儿童玩具拨浪鼓、铃鼓、小军鼓、大鼓)指导学生认识乐器的名称及作用。

三、欣赏引子部分。

1、教师播放音乐的引子。

2、学生交流听到的乐曲

四、欣赏第一部分。

1、体会音乐的情绪是怎样的?(学生回答)

2、教师引导学生学唱主题。

3、学习鼓的节奏为主题伴奏(拍手、拍腿、用铃鼓或小军鼓)

五、欣赏第二、三部分。

六、完整欣赏全曲。

七、简要介绍曲作者——鼓乐大师李民雄。

八、补充欣赏《丰收锣鼓》(民乐合奏)。

第二、三课时 教学内容:学唱歌曲《木鼓歌》。教学目标:

1、学会歌曲《木鼓歌》,能有气息支持、有感情地唱歌。能唱好歌曲中的休止音。

2、学习拍节奏特点,学会打拍指挥式,能变作指挥式边唱歌。

3、熟练地演唱歌曲。教学过程:

一、教师谈话导入课题。

1、教师播放《木鼓歌》的录音。

2、简介歌曲表现的内容。

二、学习歌曲《木鼓歌》

1、初听歌曲,感受歌曲欢快活泼的情绪。

练习节奏:XX、XX┃X 0║XX、XX┃X 0┃

XX、XX┃XX X║XX、XX┃X 0┃

2、学习歌曲第1—4小节的旋律:注意歌曲中的休止符(第2、4、8、小节)用听唱法慢速练习。

3、学习歌曲第9—12小节旋律。

三、熟练地演唱歌曲的第一段歌词。

四、分组练习。

五、小组汇报展示。

第四课时

教学内容:继续学唱歌曲《木鼓歌》;欣赏小乐队合奏《森林狂想曲》。教学目标:

1、继续学唱歌曲《木鼓歌》能理解歌曲的意思。

2、进一步熟悉《木鼓歌》的音乐,熟练地演唱歌曲第二段歌词。

3、以快乐、活泼的情绪、饱满而富有弹性的歌声,表现佤族人民对美好生活的热爱之情。教学目标:

一、教师谈话:

二、学习歌曲《木鼓歌》

1、学习第13—18小节的旋律:注意节奏的变化:出现了后十六分节奏、弱拍上出现的八分符点音符、前十六分音符。其中有重复的地方。

2、反复练习9—18小节的旋律。

3、学习第19—21小节的旋律,注意两个重复出现的乐节。

4、第23—28小节总是出现四度的音程跳跃6—

2、2—

5、下滑音记号的唱法。

6、完整地演唱歌曲《木鼓歌》的第二段歌词

三、欣赏歌曲《木鼓歌》。

1、教师播放歌曲木鼓歌》。

2、学生欣赏音乐,加深印象。

3、分组练习展示。

第五课时 教学内容:音乐活动“鼓声传情” 教学目标:

1、进一步了解不同民族的鼓文化,激发学生对祖国民族音乐的热爱之情。

2、小组竞赛活动:哪个小组知道的带“鼓”的词语多。采用合作学习的方式,制作简易的鼓并创编“鼓的对话 教学过程:

一、导入部分。

二、了解不同民族的鼓文化。

1、看录像,内容反映了不同民族的鼓文化。

2、教师播放录像(汉族秧歌舞、维吾尔族的手鼓舞、朝鲜族的长鼓舞、傣族的象脚鼓舞)

3、学生分成小组活动。把商量的结果告诉大家。

4、学生进行合作学习,教师到各组指导

三、展示活动。

四、教师进行小结

第七单元 音乐中的故事

第一、二课时 教学内容:欣赏交响童话《彼得与狼》。教学目标:

1、鼓励学生积极参与,体验各项音乐活动。

2、通过实践活动——欣赏、摸唱、摸奏、再创造等方式,牢固地运用已学过的乐器知识。

3、通过此活动培养学生大胆的想象力和勇敢的表演力。教学过程:

一、谈话导入:

1、西洋乐器可以分为哪几大类?每一分类各举两种乐器。弓弦乐器:大提琴、中提琴、小提琴。木管乐器:长笛、双簧管、大管、单簧管。铜管乐器:小号、长号、圆号 打击乐:定音鼓、大鼓、小军鼓

2、揭示课题。

3、故事梗概。问:有谁知道这个故事的内容?

4、人物介绍。

二、分段欣赏。作品中每个人物和动物的主题是用什么乐器演奏的?

1、片段一,彼得出场。

5、老爷爷出场

2、片段二,小鸟出场

6、狼出场

3、片段三,鸭子出场

7、动物们的反映

4、片段四,猫出场

8、智斗

9、放绳

10、捉狼、11、猎人出场

三、总结人物的个性与音乐的关系 彼得—弦乐四重奏——勇敢坚定 小鸟——长笛——灵巧活泼 鸭子——双簧管——笨拙 猫——单簧管——狡猾的 狼——、圆号——穷凶极恶的 老爷爷——大管——絮叨 猎人——定音鼓和大鼓——枪声、四、分角色进行表演

五、根据每个小组的表演情况进行评奖。

第八单元 美好的祝福

第一、二课时 教学内容: 学习歌曲《平安夜》。教学目标:

1、用优美、和谐的声音演唱歌曲,感受宁静,祥和的气氛,了解歌曲的创作经历。

2、欣赏不同形式的《平安夜》。教学过程:

一、导入。

1、播放歌曲《铃儿响叮当》设问:什么节日能听到这首歌?

2、与圣诞节有关的音乐你们还知道哪些?

二、学习歌曲。

1、教师带领学生有感情地朗读歌词。

2、学习高声部旋律,学习用口琴吹奏歌曲《平安夜》

3、学习低声部的旋律,学习用口琴吹奏歌曲《平安夜》。

4、练习合奏

三、分组用各种形式演唱歌曲

四、各组汇报展示

五、欣赏吉他演奏《平安夜》和电子琴演奏《平安夜》。

第三课时 教学内容:欣赏民乐合奏《花好月圆》。教学目标:

1、从音色、速度、力度、节奏、旋律、情绪等方面感受、体验音乐,加深对民族音乐的喜爱之情。

2、根据乐曲的情绪分段。

3、设计节奏型用打击乐为音乐伴奏。教学过程:

一、谈话导入:

1、教师出示民族乐器的课件,介绍乐曲主奏乐器的音色(笛子、二胡、扬琴)揭示课题。

二、欣赏乐曲

1、欣赏引子部分:这段音乐使人联想到了什么?伴奏乐器中出现了什么声音?

2、欣赏第一主题。

3、欣赏第二段音乐

(1)教师指导学生唱第二段主题。(2)指导学生体会第一乐段的不同。

4、欣赏最后一部分音乐。

5、完整欣赏乐曲。

三、指导学生分组设计节奏型为音乐伴奏

四、教师播放影音资料,学生再次欣赏音乐看画面。

五、各组汇报展示。

第四、五课时 教学内容:学习歌曲《难忘今宵》。教学目标:

1、用满怀深情的歌声表达祝福祖国的心愿,激发学生对美好幸福生活的热爱之情。

2、了解歌曲创作的背景,激励学生加强学习,提高文化底蕴。教学过程:

一、导入部分;

1、教师播放李谷一演唱的歌曲片段。

二、学习歌曲旋律。

1、指导学生朗诵歌词。学生分组朗读歌词。

2、教师给学生介绍歌曲创作的故事,激发学生平时不断的学习

3、学生听音乐朗诵歌词。

4、指导学生轻声哼唱旋律

三、分组学习歌词。

1、指导学生有感情地演唱歌曲。

2、学生用不同的形式演唱(女声、男声、领唱、齐唱)

四、汇报展示

第六课时 教学内容:音乐活动“新年音乐会” 教学目标:

1、用满怀深情的歌声表达祝福祖国的心愿,激发学生对美好幸福生活的热爱之情。

2、进一步了解不同民族的音乐文化,激发学生对祖国民族音乐的热爱之情。

3、以班级召开一次“迎新年音乐联欢会”表达同学们对未来的美好祝福。教学过程:

一、导入:新年快要到了大家想用怎样的方式迎接“新年”的到来呢?

二、分小组进行准备。

1、看音乐录像,内容反映了不同民族的音乐文化。

2、教师检查学生准备的节目及资料。

3、学生分成小组活动,把自己准备的节目表演给大家,让小组同学进行审议,评定。

4、学生进行合作排练,教师到各组指导

三、展示活动。

1、请各组同学把自己最好的节目与大家进行交流。

2、用不同的方式进行“迎新年音乐联欢会”。

四、教师进行小结

五、根据音乐会顺利进行的情况,评选“最佳组织奖”让学生很有自信的展示自己创作,编导的节目。

解方程五年级教案 篇7

这节课你都学会什么?什么是方程的解?什么是解方程?解方程时要注意些什么?

课后反思:

在进行了一次试讲后,我上了《解方程》这节课。因为试讲过一次,对学生容易出现的问题已有所了解,所以再次上这节课时,就知道了侧重点在哪,这也是我没有教过五年级教材的一个弊端吧,总是对学生的情况不了解,把握不好学生容易在哪出问题,总是等学生出现了问题后才知道侧重点。通过上同一节课,通过老师评课和课后反思,对这节课的教学思路清晰了。

这节课与我试讲时相比,我觉得其中一个环节在教学中有所突破。就是让学生认识什么是“方程的解”,在试讲时,这部分教的不扎实,对学生来说印象不深刻。再次讲这节课时,我是这样处理的:通过100+X=250,让学生找出当X的值是∏时,方程的左右两边才相等,当学生用各种不同的方法算出X=150时,方程左右两边相等,这时我指出,X=150就是这个方程的解,然后问,X=100是这个方程的解吗?为什么?什么才是方程的解?通过这样的反复强调,学生很清晰地明白了,使方程左右两边相等的未知数的值才是方程的解。这样处理,我觉得学生对这个概念理解的比较清楚,印象也比较深刻。如果再将“解方程”和“方程的解”进行区分,效果可能会更好些。

但是这节课还有很多不足的地方,如利用天平平衡的算理来解方程时,有些知识点处理的不够主次分明,如,在结合一道题来讲时,重点根据天平平衡的道理来讲,学生明白了其中的道理后,在接下来的进一步练习巩固中,只要结合等式的性质让学生明白只要在方程两边同时加几或者同时减几即可,不需要再讲算理了。也就是说,教学层次不是很分明,应该是有主有次,多放些空间给学生。

解方程五年级教案 篇8

解方程

【学习内容】人教版小学数学五年级上册第五四单元67——68页例

1、例2 【课程标准描述】

能用等式的性质解简单的方程。【学习目标】

1.通过演示操作,能借助等式的性质解简单的方程(形如X± a=b、aX=b、X ÷a=b),能按照检验的格式,学会检判断一个具体的值是不是方程的解,逐步养成自觉检验的习惯。2.能结合解方程的过程,正确表达“方程的解”和“ 解方程”的含义,知道解方程是求方程的解的一个过程,而方程的解是一个数。【学习重、难点】

通过演示操作,能借助等式的性质解简单的方程(形如X± a=b、aX=b、X ÷a=b),能按照检验的格式,学会检判断一个具体的值是不是方程的解,逐步养成自觉检验的习惯。【评价活动方案】

1.通过练习十五第1题,关注学生是否能正确判断括号中哪个X的值是方程的解,以评价目标1。

2.通过做一做P68第1题(前两栏)和练习十五第3题,关注学生是否能正确求出方程的解,能否自觉检验,以评价目标2。【学习活动方案】

一、通过演示操作,根据等式的性质解方程(X±a=b)(评价目标1)1.出示一个不透明盒子,学生猜测里面小球的数量。

引导:能准确说出小球个数吗?我们可以用什么来表示?(引导学生用字母X表示)

(课件出示例1)根据图中信息,列出方程。

2.通过演示操作,理解天平平衡的原理。独立思考:盒子里有几个球?X的值是多少? 小组内交流:你是怎样想的?

全班汇报:X的值是多少?你是怎样想的? 预设一:利用加减法的关系计算:9-3=6。预设二:想6+3=9,所以x=6。

预设三:把9分成6和3,想x+3=6+3,所以x=6。

预设四:在方程两边同时减去3,就得到x=6。

思考:前三种都是利用的加减法的关系得到的答案,第四种有什么不同?明确第四种 是根据等式的性质。

引导:他的想法正确吗?我们来验证一下。同时拿走3个球,天平会怎么样?

一名学生借助天平(左边是一个不透明盒和3个球,右边是一个透明盒里9个球,天平平衡)演示操作,两边同时拿走3个球,天平平衡。学生看到左边盒子里确实和右边盒子一样也有6个球。学生复述刚才的操作过程,教师用课件演示。

思考:天平的两边为什么要同时拿走3个球呢?难道同时拿走1个、2个不平衡吗? 明确:只有同时拿走3个,才能让天平的左边只剩下X,这样右边刚好就是X的值。3.规范解方程的书写格式。

学生尝试用算式表示刚才的操作过程。

教师边示范边强调:⑴第二行要写个“解“字;⑵为了清晰美观,每一步的等号都要对齐。

4.思考:在以前计算加减乘除的算式后,我们都要验算。那方程该怎样检验算地对不对呢?

学生交流后汇报,教师根据学生的回答板书检验过程。

二、结合解方程的过程,理解“方程的解”和“解方程”的含义(评价目标2)结合例1明确:像上面x=6这样使方程左右两边相等的未知数的值,叫做方程的解。而求方程的解的过程叫做解方程。(括起解方程的过程,板书:解方程)

(课件出示“方程的解”和“解方程”的定义)说一说这两个概念有什么不同。

小结:方程的解是使方程左右两边相等的未知数的值,是一个数;而解方程是求方程的解过程,是一个计算过程。

三、根据例1的方法,使用等式的性质解方程(形如aX=b、X ÷a=b)(评价目标1)出示例2(3X=18),学生尝试解方程。

一名学生板演到黑板上讲解,并与其他同学进行交流。交流的内容是:

解这个方程的依据是什么? 两边为什么要同时除以3?

(课件演示例2的操作过程,帮助理解为什么要同时除以3)全班口述检验过程。

四、通过练习,进一步巩固解方程的方法(评价目标1、2)1.练习十五第1题。独立判断括号中哪个X的值是方程的解。

2.做一做P68第1题(前两竖栏)。独立解方程,并书面检验第二竖栏。3.练习十五第3题。独立列方程并解答。

五、回顾总结

今天是利用什么知识来解方程的? 解方程大体有几个步骤?应该注意什么? 步骤:1.写“解“;

2..等式的性质求方程的解; 3.检验。

注意:1.“=”要对齐;2.X表示一个数值,后面不写单位名称。

解方程五年级教案 篇9

为了更好地引发学生的思考,提高学生解决问题的能力,我做了如下的设计:

(一)引“典”激趣,诱发思考。

引用“曹冲称象”的故事,提出解决问题的策略,寻找相等关系,同时激发学生学习的兴趣。

(二)探究新知,建立概念。

1、借助天平,启发思考。

我将教材情境动态化,通过FLANSH课件,让学生充分感知当天平两端都没放物品的时候天平左右两边是平衡的。当我们往天平的一端放上物品而另一端不放的时候,或者两端放的物品质量不等的时候,天平的两臂不平衡,表示两边物体的质量不相等。这时候左边大于右边,或右边大于左边。当我们经过调整,天平两臂再次平衡时,表示两边的物体质量相等,即左边=右边。让学生在天平平衡的直观情境中体会等式,符合学生的认知特点。同时,对情境中数据也进行了分批给出的处理。先给出了左边鱼食和小砝码的重量,让学生用一个数学表达式来表示天平左边的质量,再给出天平右边的质量,让学生列出等式。这样就较好地避免了学生习惯性的使用算术的思维方式,同时也顺利地进行了用数字表示向用符号表示的转化。在这一情境的教学中,借助天平这一载体,启发学生理解了平衡,认识了等式。

第二个主题图是本节课教学的核心内容。首先,我引导学生在情境中找出文字信息“4块月饼的质量一共是380克”。然后引导学生结合情境图,把这一信息转化为等量关系。4块月饼的质量是如何表示的呢?用数量关系“每块月饼的质量×4”来表示,“每块月饼的质量×4”表示的是4块月饼的质量,380克也表示4块月饼的质量,所以他们相等。从而完成数量关系向等量关系的转化,算术思想向代数思想的转化,改变学生的长达4年的惯性思维方式。

3、变换角度,深入思考。

第三幅情境图隐含着多样的等量关系,也正是引发学生数学思考的最佳情境。根据学生认识的深入程度,可适当让学生体会到等式的“值等”和“意等”,并放手让学生探究,根据不同的认识找到不同的等量关系,列出等量关系不同的同解方程。在教学中,先引导孩子发现情境中的基本相等关系:2瓶水的水量+一杯水的水量=一壶水的水量,并且列出等式2z+200=2000,在此基础上,再引导孩子发现其他的等量关系。在这一过程中,充分激发孩子探求知识的欲望,调动孩子思考的主动性和灵活性,从而找到多样化的等量关系,并进一步提高孩子解决数学问题的能力。

4、建立概念,判断巩固。

在前面教学的基础上总结、抽象出方程的含义。通过三道例题的简洁数学式子表达,让小组合作寻找他们的共同特点,从而建立方程的概念。“含有未知数”与“等式”是方程概念的两点最重要的内涵。并通过“练一练”让学生直接找出方程。

(三)生活应用,提高能力。

数学应该服务于生活,紧接着我让同学们根据直观图象列方程。这些题目都来自于生活实际,并且分别以现实情境图、线段、文字叙述、综合拓展为顺序,层层递进。学生在用方程表示直观情境里的相等关系后,他们在写方程时会更加关注方程的本质属性,从而巩固方程的概念。练习强调学生在按照“数量关系—等量关系—方程”这样一个过程,通过想一想,找一找,说一说,写一写等不同的形式学会用方程来表示生活中的实际问题,并体会到方程的作用,为以后运用方程解决实际问题打下坚实基础。

相关推荐

  • 解方程的教案通用 以下是我们为大家整理的“解方程的教案 ”,相信您在阅读网页内容后有所收益。每个老师不可缺少的课件是教案课件,老师还没有写的话现在也来的及。 教案课件是教学计划的重要组成部分,必须梳理清晰。...
    2023-04-13 阅读全文
  • 解方程设计教案 欢迎阅读我为您准备的“解方程设计教案”相关内容。教案课件是老师不可缺少的课件,所以在写的时候老师们就要花点时间咯。写好教案,才能营造完整课堂教学。我们骄傲地欢迎您来到我们网站上阅读我们的内容!...
    2024-04-17 阅读全文
  • 2025解一元二次方程课件 通常老师在上课之前会带上教案课件,通常老师都会认真负责去设计好。教案是实现复合型人才培养目标的有效实践。编辑从各个方面搜集和整合资料使这篇“解一元二次方程课件”更加全面,阅读本文您会得到足够的收获和启发!...
    2024-06-17 阅读全文
  • 解方程五年级教案通用 俗话说,不打无准备之仗。作为人民教师,我们会认真负责对每一堂课做好准备,为了给孩子提供更高效的学习效率,教案是个不错的选择,有了教案,在上课时遇到各种教学问题都能够快速解决。幼儿园教案的内容要写些什么更好呢?考虑到你的需求,小编特意整理了“解方程五年级教案通用”,如果对这个话题感兴趣的话,请关注本站...
    2023-04-06 阅读全文
  • 解方程五年级教案9篇 老师会对课本中的主要教学内容整理到教案课件中,所以老师写教案可不能随便对待。教案是评估学生学习效果的有效依据,好的教案课件是怎么写成的?我们听了一场关于“解方程五年级教案”的演讲让我们思考了很多,经过阅读本页你的认识会更加全面!...
    2024-10-11 阅读全文

以下是我们为大家整理的“解方程的教案 ”,相信您在阅读网页内容后有所收益。每个老师不可缺少的课件是教案课件,老师还没有写的话现在也来的及。 教案课件是教学计划的重要组成部分,必须梳理清晰。...

2023-04-13 阅读全文

欢迎阅读我为您准备的“解方程设计教案”相关内容。教案课件是老师不可缺少的课件,所以在写的时候老师们就要花点时间咯。写好教案,才能营造完整课堂教学。我们骄傲地欢迎您来到我们网站上阅读我们的内容!...

2024-04-17 阅读全文

通常老师在上课之前会带上教案课件,通常老师都会认真负责去设计好。教案是实现复合型人才培养目标的有效实践。编辑从各个方面搜集和整合资料使这篇“解一元二次方程课件”更加全面,阅读本文您会得到足够的收获和启发!...

2024-06-17 阅读全文

俗话说,不打无准备之仗。作为人民教师,我们会认真负责对每一堂课做好准备,为了给孩子提供更高效的学习效率,教案是个不错的选择,有了教案,在上课时遇到各种教学问题都能够快速解决。幼儿园教案的内容要写些什么更好呢?考虑到你的需求,小编特意整理了“解方程五年级教案通用”,如果对这个话题感兴趣的话,请关注本站...

2023-04-06 阅读全文

老师会对课本中的主要教学内容整理到教案课件中,所以老师写教案可不能随便对待。教案是评估学生学习效果的有效依据,好的教案课件是怎么写成的?我们听了一场关于“解方程五年级教案”的演讲让我们思考了很多,经过阅读本页你的认识会更加全面!...

2024-10-11 阅读全文
Baidu
map