幼儿教师教育网,为您提供优质的幼儿相关资讯

解方程五年级教案

发布时间:2023-04-06 解方程教案

解方程五年级教案通用。

俗话说,不打无准备之仗。作为人民教师,我们会认真负责对每一堂课做好准备,为了给孩子提供更高效的学习效率,教案是个不错的选择,有了教案,在上课时遇到各种教学问题都能够快速解决。幼儿园教案的内容要写些什么更好呢?考虑到你的需求,小编特意整理了“解方程五年级教案通用”,如果对这个话题感兴趣的话,请关注本站。

解方程五年级教案【篇1】

教学过程:

一、导入新课

上一节课,我们学习了什么?

复习天平保持平衡的规律及等式保持不变的规律。学习这些规律有什么用呢?从这节课开始我们就会逐渐发现到它的重要作用了。

二、新知学习。

1、解决问题。

出示P57的题目,从图上可以获取哪些数学信息?天平保持平衡说明什么?杯子与水的质量加起来共重250克。

能用一个方程来表示这一等量关系吗?得到:100+x=250,x是多少方程左右两边才相等呢?也就是求杯子中水究竟有多重。如何求到x等于多少呢?学生先自己思考,再在小组里讨论交流,并把各种方法记录下来。

全班交流。可能有以下四种思路:

(1)观察,根据数感直接找出一个x的值代入方程看看左边是否等于250。

(2)利用加减法的关系:250-100=150。

(3)把250分成100+50,再利用等式不变的规律从两边减去100,或者利用对应的关系,得到x的值。

(4)直接利用等式不变的规律从两边减去100。

对于这些不同的方法,分别予以肯定。从而得到x的值等于150,将150代入方程,左右两边相等。

2、认识、区别方程的解和解方程。

得出方程的解与解方程的含:

像这样,使方程左右两边相等的未知知数的值,叫做方程的解,刚才,x=150就是方程100+x=250的解。

而求方程的解的过程叫做解方程,刚才,我们用这几种方法来求100+x=250的解的过程就是解方程。

这两个概念说起来差不多,但它们的意义却大不相同,它们之间的区别是什么呢?

方程的解是一个具体的数值,而解方程是一个过程,方程的解是解方程的目的。

3、练习。(做一做)

齐读题目要求。

怎么判断X=3是不是方程的解?将x=5代入方程之中看左右两边是否相等,写作格式是:方程左边=5x

=53

=15

=方程右边

所以,x=3是方程的解。

用同样的方法检查x=2是不是方程5x=15的解。

二、作业。

独立完成练习十一第4题,强调书写格式。

三、小结。

通过这节课学到了什么?还有什么问题?

教学内容:数学书P57,及做一做,练习十一第4题。

教学目标:

1、结合具体的题目,让学生初步理解方程的解与解方程的含义。

2、会检验一个具体的值是不是方程的解,掌握检验的格式。

3、进一步提高学生比较、分析的能力。

教学重难点:比较方程的解和解方程这两个概念的含义。

解方程五年级教案【篇2】

师:解方程的第二步,方程两边同时进行计算,得出的值。左边+3-3,等于什么?

生:等于。

师:(板书:)右边9-3呢?

生:等于6。

师:(板书:=6)天平在变化的过程中,始终保持平衡,说明解方程时,得到的每一步都是等式,要求大家把所有的等号对整齐。为了把等号对整齐,一般要把解写到前面一点。

师:=6是不是这个方程的解?验算一下就知道了!把=6代入方程中,看方程的两边是否相等。我们一起来写验算过程。

师:先看方程左边,(板书:方程左边=+3)把=6代入方程中,+3就变成了几加3?

生:6+3

师:(板书:=6+3)6+3等于9。(板书:=9)方程左边等于9。再看看方程右边等于几?

生:等于9。

师:也是等于9。方程左边等于9,方程右边也等于9,说明了什么?

生:方程左边等于方程右边,=6是这个方程的解。

师:(板书:=方程右边)最后,下结论:所以,=6是方程的解。(板书:所以,=6是方程的解。)

师:验算的过程就写完了。现在,请同学们把课本打开,翻到58页,请小组的同学一边对照书中解方程的过程,一边讨论:解方程需要注意什么?(小组讨论)

师:现在,请同学们说一说:解方程需要注意什么?

生:......

师:还有没有要补充的?

生:......

师:把刚才几位同学说的,合起来就很完整了。会解方程了吗?

生:会了。

师:那就试一试!(解方程+7=10)

师:哪位同学愿意到黑板上来做?请你来吧!

(学生做题)

师:都做完了吗?一起来看看这位同学做的!你们觉得他做得好不好?

生:他全部都做对了。

生:我觉得有一点不好,他把等号没有对整齐!......

师:刚才这位同学给你提的意见能接受吗?

生:能!

师:有错就改就是好孩子!解方程不仅要注意方法,还要注意书写格式。做完后还要养成验算的好习惯。

师:老师还有一个问题想请教一下:为什么要在方程的两边同时减去7?

生:左边减去7是为了是方程左边只剩,右边减去7是为了使方程两边仍然相等!

师:说得很好!这道题你们都解对了吗?

生:解对了!

师:你们真聪明!一下子都学会了!老师还想考考大家,出一个和它们不一样的方程:-3=9

你们会做吗?

生:会!

师:这题也会呀!那好,试试看吧!请同学们先独立完成,然后在小组内进行交流。(点一名学生板演)

师:一起来看看黑板上的作业!他做得怎样?

生:做得很好,......

师:谁来说说:为什么要在方程的两边同时加上3?

生:是为了使方程左边只剩而有保持两边仍然相等!

师:你们同意他的说法吗?

生:同意!

师:看来,你们已经掌握解方程的方法了!

三、拓展应用

师:解方程还能帮助我们解决很多生活中的问题呢!

请看大屏幕:(课件出示)能解决吗?

师:能!

师:开始吧!(注意:可以不写出演算的过程,但是要进行口头验算。)

学生做题后汇报交流!

四、课堂小结

师:同学们真不了不起,不但学会了解方程,还学会了用解方程的方法解决问题!

今天的课就上到这里,下课!

解方程五年级教案【篇3】

解方程(第一课时)

大庄小学:薛兵珍

一、教学内容

(人教版)小学《数学(第九册)》第57、58页的内容.二、教学目标

1、初步理解“方程的解”、“解方程”的含义,能用等式的性质解简易方程.并掌握检验的方法。

2、关注由具体到一般的抽象概括过程,培养学生初步的代数思想.3、重视良好学习习惯的培养.三、教学重、难点

1、“方程的解”和“解方程”之间的联系和区别.2、利用天平平衡的道理理解比较简单的方程的解法.四、教学准备

多媒体课件

五、教学过程

1、复习铺垫

2.探究新知

(一)理解“方程的解”和“解方程”两个概念

(1)、看图写方程

(2)、求方程中的未知数

(3)、引出方程的解和解方程两个概念

(二)教学例1

强调解方程的格式和步骤,检验的方法。

3、提炼升华

解方程 X一2=15(课件显示)

4、巩固练习

5、课堂总结

六、布置作业。

解方程五年级教案【篇4】

五年级数学《解方程》教学教案

十东小学

授课教师:徐国

(一)教学内容

教材第57页内容。

(二)教学目标 知识与技能

⑴初步理解方程的解与解方程的含义。⑵会检验一个具体的值是不是方程的解。过程与方法

经历方程的解和解方程的认识过程,提高学生比较、分析的能力。情感态度与价值观

在学习活动中,激发学生的学习兴趣,体验知识之间的联系和区别,培养检验学习习惯。

(三)教学重点与难点

重点:“方程的解”和“解方程”的含义。突破方法:通过比较理解二者的区别。难点:会检验方程的解。

突破方法:小组讨论,练习体验。

(四)教法与学法

教法:设置设置问题,引导学生。

学法:观察理解,讨论交流,练习体验。

(五)教学过程

一、复习引入

⑴在上节课的学习活动中,我们探究了哪些规律。

在小组中组织相互交流,说一说:①什么是方程,②如何判断方程,③方程的性质是什么?

⑵学生回顾天平平衡的规律,结合天平的平衡规律对我们学习方程有什么作用?这节课我们开始学习如何解方程。

上一节课我加了一些水在天平里,添加了砝码,让天平平衡,同时得到方程100+X=250,但到现在我们都还不知道那些水的质量到底是多少?那我们今天就来解决这个问题,看看水到底是重。这就是我们今天将要学习的——解方程。

[板书课题:解方程。]

二、研究新知

⑴投影出示昨天所做的课题教材P57天平称一标水的画面。学生回忆昨天教学时的情景画面,交流。

师根据学生汇报板书:方程100+X=250。⑵教师:你知道方程100+X=250中的未知数X等于多少吗?你是怎么知道的?

组织学生讨论,交流,然后汇报。可能出现以下几种方法:

*根据数感经验得到X=150 *利用算式100+150=250,得到X=150。

*利用一个加数=和—另一个加数,得到X=150。

*利用天平平衡规律,两边同时减少100,得到X=150。

„„

师:同学们非常聪明,想到了这么多的方法求出了X=150,(同时,也可能没有学生能说出来,教师相机点拨,引出解方程所要运用的规律。)

⑶引导学生检验方程的解的方法,根据学生回答板书:

当X=150时,方程左边=100+150

=250

=方程右边

⑷认识、区别方程的解和解方程。教师:使方程左右两边相等的未知数的值,叫做方程的解。刚才,X=150就是方程的解100+X=250的解。而求方程的解的过程叫做解方程。刚才同学们想出办法求出X=150的过程就是解方程。

教师边讲解边板书:使方程左右两边相等的未知数的值,叫做方程的解。

求方程的解的过程就叫解方程。

②方程的解与解方程有什么不同呢?组织学生议一议,使学生明确:

方程的解是一个数值,而解方程是求方程解的过程。刚才我们把X=150代入方程中,得到方程左边=右边,说明X=150是方程100+X=250的解。(板书:所以,X=150是方程的解)

三、巩固练习

⑴教材P57页“做一做”。

教师:怎样判断X=3是不是方程的解呢?X=2呢?

组织学生将X=3代入方程中进行检验。教师指名一名学生板演。⑵教材P63练习十一第4题。

组织学生先独立完成,再在小组中相互交流。

四、课堂小结

教师:通过这节学习,你有什么收获?

什么叫方程的解,什么叫解方程。学会了检验一个未知数的值是不是方程的解。学生畅谈。

板书设计 100+X=250 X=150 当X=150时,使方程左右两边相等的未知数。

方程左边=100+150的值,叫做方程的解 =250 =方程右边 求方程的解的过程叫做解方程。所以,X=150是方程的解。课时作业: 一判断。

⑴含有未知数的式子叫方程。()⑵X=36是方程X3=12的解。()

二、X=15是方程42-X=28的解吗?X=14呢?

三、X=12是下列哪些方程的解?把这些方程标出来。

X+18=30 4X=50 X÷3=5 72÷X=6 64-X=5 2X-9=5

解方程五年级教案【篇5】

教学内容:教科书第6页第7-12题

教学目标:1、进一步理解并熟练应用等式的这一性质解简单的方程。

2、理解解方程过程的简化书写,并且解题时适当运用简化书写。

3、培养良好的作业习惯,自觉进行检验。

教学重点:理解并熟练应用等式的这一性质解简单的方程

教学难点:理解并熟练应用等式的这一性质解简单的方程

教学过程:

一、基础练习

1、说出下面的式子哪些是方程,哪些不是,为什么?

20+17=3712-Y=4a+12=35

21-b<14x=14+2316+a=27+b

2、解方程

X+125=370520+X=710X-4.9=6.4

120-X=257.8+X=2.5X+8.5=12

学生独立完成,指名学生板演。

选3题让学生说说想的过程。

集体订正,帮有错的同学分析错误原因,使其明白。

二、完成第6页的7~12题。

第7题:

(1)学生独立完成后指名回答,让学生说说是怎样想的。

(2)这里的方程与前面所学解方程的过程比较有什么不同?

省略了什么?

这样写有什么优点?

在解方程时,先在头脑中想好方程两边应同时加上或减去什么数,但书写时可以省略。同学们在解方程时可以照这种方法解。

使学生明白:根据等式的性质让含有未知数的一边只剩下未知数,就能很快知道

最后的结果。

第9题:

先由学生独立完成。

指名学生说:错在哪里,帮他分析一下,可能是什么原因造成的?怎样改正,我

们在做题时要注意一些什么?

第8题:

(1)学生独立完成,要按照上一题的方法适当省略,简化过程。

教师要特别关注前面解题还有错的学生,争取人人过关。

指名板演。

(2)集体订正,说说自己的解题思路。分析错误原因。

第10题:

(1)学生独立完成。

(2)在小组中交流,每人选择一题说思考方法。

(3)错误汇报。

说说错误的原因与正确方法。

第11题:

1、学生看图列式。

提问:什么是等式?什么是方程?

2、解出上述方程。

学生板演,并说明怎么解?

3、教学解方程的简化书写。

X10+10、X3.5+3.5结果是多少?

介绍解方程的简化书写,并板书。

学生试做,板演,讲评。

第12题:

学生读题后独立思考解决问题的方法。

小组内交流。

全班交流,只要学生说出的方法是有道理的,教师都要给于肯定。

也可以提示:两人用去的钱同样多什么意思?

你能用一种方法来表示题中的相等关系吗?

(1本练习本+3枝铅笔=7枝铅笔)

你看出了什么?(1本练习本相当于4枝铅笔)

三、课堂总结

通过本节课的练习,你有什么收获?

你认为解决数学问题时,方程用处大吗?

习题超市:

一、数学小诊所

1、2.8+X=9.5改正:

解:X=9.5+2.8

X=12.3()

2、X-43=156改正:

解:X=156+43

X=199()

二、当x=18时,是下面哪几个方程的解。

18+x=1818-x=0x+15=33

X-10=8x-18=18x+3=18+3

三、解方程并检验

X+350=600150+X=725X-60=950

7.8+X=12.30.8+X=7.6X-3.5=6.4

教材简析:

帮助学生逐渐掌握解方程的方法并形成相应的技能,是教材编写时认真思考的问题。用好教材设计的两道题,能培养学生这方面的能力。另一处是第6页第7题,简化解方程过程的书写,浓缩思路,是在基本掌握解方程的方法以后安排的。如解方程x-20=30,在方程的两边都加20这一步,省写了虚线框里的内容:

x-20+20=30+20,直接写出x=30+20。这样做能使解方程的思考流畅、书写简便,从而提升解方程的能力。教学时要让学生体会简化的过程,重点讨论圆圈里填什么符号、方框里填什么数以及为什么。

解方程五年级教案【篇6】

教学内容

解方程:教材P69例4、例5。

教学目标

1.巩固利用等式的性质解方程的知识,学会解ax±b=c与a(x±b)=c类型的方程。

2.进一步掌握解方程的书写格式和写法。

3.在学习过程中,进一步积累数学活动经验,感受方程的思想方法,发展初步的抽象思维能力。

教学重点

理解在解方程过程中,把一个式子看作一个整体。

教学难点

理解解方程的方法。

教学过程

一、导入新课

我们上节课学习了解方程,这节课我们来继续学习。

二、新课教学

1.教学例4。

师:(出示教材第69页例4情境图)你看到了什么?

生:有3盒铅笔和4只铅笔,一盒铅笔盒中有x支铅笔。

师:你能根据图列一个方程吗?

生:3x+4=40。

师:你是怎么想的?

生:一盒铅笔盒有x支铅笔,3盒铅笔盒就有3x支铅笔。据此,可列出方程。

师:说得好,你能解这个方程吗?

学生在尝试解方程时,可能会遇到困难,要让学生说一说自己的`困惑。学生可能会疑惑:方程的左边是个二级运算不知识如何解。也有学生可能会想到,把3个未知的铅笔盒看作一部分,先求出这部分有多少支,再求一盒多少支。(如果没有,教师可提示学生这样思考。)

师:假如知道一盒铅笔盒有几支,要求一共有多少支铅笔,你会怎么算?

生:先算出3个铅笔盒一共多少支,再加上外面的4支。

师:在这里,我们也是先把3个铅笔盒的支数看成了一个整体,先求这部分有多少支。解方程时,也就是先把谁看成一个整体?我们可以先把“3x”看成一个整体。

让学生尝试继续解答,教师根据学生的回答,板书解题过程。也可以让学生同桌之间再说一说解方程的过程。

2.教学例5。

师:(出示教材第69页例5)你能够解这个方程吗?

生1:我们可以参照例4的方法,先把x-16看作一个整体。

学生解方程得x=20。

生2:我们也可以用运算定律来解。

师:2x-32=8运用了什么运算定律?

生:运用了乘法分配律。然后把2x

看作一个整体。

学生解方程得x=20。

师:你的解法正确吗?你如何检验方程是否正确?

生:可以把方程的解代入方程中计算,看看方程左右两边是否相等。

三、巩固练习

教材第69页“做一做”第1、2题。

第1题的形式、内容都与例4基本相同。第2题的4个方程在两道例题的基础上略有变化,使学生学会举一反三。

这两道练习要让学生独立完成,教师可提醒学生解一题,代入检验一题,以促进检验习惯的养成。

四、课堂小结

1.在解较复杂的方程时,可以把一个式子看作一个整体来解。

2.在解方程时,可以运用运算定律来解。

五、布置作业

教材第71页“练习十五”第6、8、9.题。

解方程五年级教案【篇7】

1.某校六年级有两个班,上学期级数学平均成绩是85分。已知六(1)班40人,平均成绩为87.1分;六(2)班有42人,平均成绩是多少分?

2.一条公路长360m,甲乙两支施工队同时从公路两端向中间铺柏油。甲队的施工数度是乙队的1.25倍,4天后纸条公路全部铺完。甲乙两队分别铺白有多少米? 3.甲乙两车从相距272千米的两地同时相向而行,3小时后两车还相隔17千米。甲每小时行45千米,乙每小时行多少千米?

4.李师傅买来72米布,正好做20件大人衣服和16件儿童衣服。每件大人衣服用2.4米,每件儿童衣服用布多少米?

5.某班46名同学去划船,一共乘坐10只船,大船坐6人,小船坐4人,全部坐满。问大船和小船各几只?

6.两城相距480千米,甲乙两辆汽车同时从两城相对开出,3小时后两车相遇,已知甲车每小时行85千米,乙车每小时行多少千米?

7.新岭要修一条长3300米的公路,甲乙两个工程队同时施工,15天完成,甲队每天修125米,乙队每天修多少米?

8.甲乙两车同时从相距528千米的两地相向而行,6小时相遇,甲车每小时比乙车快6千米,求甲乙每小时各行多少千米?

9.甲乙两地相距350千米,甲乙两车同时从两地相对开出,经过3.5小时后两车相遇,甲车每小时行49千米,乙车每小时行多少千米?(用两种方法解答)

10.两个施工队开凿一条隧道,甲施工队每天开凿15米,乙施工队平均每天开凿12米,这条长270米的隧道需要多少天开凿?(用两种方法解答)

11.汽车站有480箱货物,一辆货车运了5次,还剩30箱,平均每次运多少箱?(列方程解答)12.有两组学生去采花,甲组采了123朵,乙组采了57朵,问从甲组拿多少朵到乙组会使乙组是甲组的4倍? 13.两人水池共储存税40吨,甲池注进水4吨,乙池放水8吨,甲池中水的吨数就与乙池中水的吨数相等。两个水池原来各有水多少吨?

14.甲油库存油112吨,乙油库存油80吨,每天从两个油库各运走8吨油,多少天后甲油库剩下的油是乙油库剩下油的2倍?

15.甲贮水池存水40吨,乙贮水池存水66吨,每分钟从乙池中抽出2吨水放入甲池,多少分钟后,两个贮水池存水同样多?

16.甲仓库粮是乙仓库的3倍,如果从甲仓库运出90吨,从乙仓运出10吨,则两仓库存粮相等,甲乙两仓库原各存粮多少吨? 17.有两袋大米,甲袋大米的重量是乙袋的1.2倍,如果从甲袋中取出10千克,两袋的重量就相等。甲、乙两袋大米原来各重多少千克?

18.两人水池共储存税40吨,甲池注进水4吨,乙池放水8吨,甲池中水的吨数就与乙池中水的吨数相等。两个水池原来各有水多少吨?

19.鸡兔同笼,共有35个头,94条腿,求鸡兔各有几只? 20.在植树活动中,六年级植树棵数比五年级的2倍少10棵,五年级比六年级少62棵。两个年级各植树多少棵

21.利民学校合唱团有100人,比舞蹈队人数的3倍少5人,舞蹈队有学生多少人?

22.用48分米铁丝,做一个长方形框架,要使长是宽的2倍,这个长方形框架的长和宽分别是多少?

23.甲乙两辆汽车分别从相距800千米的两城相向开出,8小时相遇,已知甲车每小时行驶45千米, 乙车每小时会驶多少千米? 24.A,B两城相距150千米,甲乙两人同时骑自行车从两地相对出发,甲每小时行16千米,4小时后,两人还相距30千米, 乙每小时行多少千米? 25.两辆汽车从相距400千米的两地同时相对开出,3小时后还相距10千米,已知一辆汽车每小时行驶55千米,求另一辆汽车速度?(26.AB两城相距720千米,一列客车从A城开往B城,行2小时后,另一辆货车从B城开往A城,4小时后与客车相遇,已知客车每小时行80千米,货车平均每小时行多少千米? 27.师徒两人共同加工一批零件,师傅每小时加工60个,徒弟每小时加工50个,两人共同加工275个零件要多少小时?

28.某车间计划四月份生产零件5480个。已生产了9天,再生产908个就能完成生产计 划,这9天中平均每天生产多少个?

29.新岭要修一条长3300米的公路,甲乙两个工程队同时施工,15天完成,甲队每天修125米,乙队每天修多少米?

30.小军有邮票的张数是小林的3倍,他们一共有邮票240张,求小军和小林各有邮票多少张?

31.某植物园有松树和榕树120棵,已知松树是榕树棵数的2倍,问榕树,松树各有多少棵? 32.果园里有苹果树和梨树共3600棵,苹果树是梨树的3倍,苹果树和梨树各有多少棵? 33.小红和小军一共储蓄了235元,已知小红储蓄的是小军的1.5倍,小红和小军各储蓄多少元? 34.一根绳子长13.4米,第一次剪去3.2米,第二次剪去多少米才能使剩下的长度刚好是第一次剪去的2倍? 35.食堂买来大米和面粉共595千克,其中大米是面粉的2.5倍,买来大米、面粉各多少千克?

36.一套餐桌椅有一张桌子和6张椅子组成,桌子价格是椅子的8倍,总价是2100元,求桌子和椅子的单价是多少元?

37.3年前母亲岁数是女儿的6倍,今年母亲33岁,女儿今年几岁?

38.学校买来10箱粉笔,用去250盒后,还剩下550盒,平均每箱多少盒?

39.食堂运来150千克大米,比运来的面粉的3倍少30千克。食堂运来面粉多少千克? 40.果园里有52棵桃树,有6行梨树,梨树比桃树多20棵。平均每行梨树有多少棵? 41.某班有男生30人,比女生的2倍少10人,这个班有女生多少人?

42.小明和哥哥的年龄和是23岁,哥哥比小明大5岁,问小明和哥哥各多少岁?

43.一个图书馆有儿童读物2.5万册,其它读物是儿童读物的3倍少0.2万册,其它读物有多少册?

44.一张桌子125元,是一张凳子的5倍还多15元,一张方凳多少元?

45.饲养场有公鸡和母鸡480只,母鸡比公鸡的2倍还多30只,这个饲养场公鸡和母鸡各有多少只?

46.小青家今年养了50只鸡,比鹅的3倍还多5只,小青家今年养鹅多少只? 47.果园里有桃树和杏树一共1080棵,已知杏树比桃树的棵数多180棵,杏树和桃树各有多少棵? 48.同学们植树,一班比二班多植63棵,一班42人,平均每人植8棵,二班39人,平均每人植多少棵?(用方程解答)49.甲乙丙三数之和是183,甲数比乙数的2倍多7,丙数比乙数的3倍少4,求甲乙丙三数各是多少? 50.学校第一次买来200盒粉笔,第二次买来150盒,第一次比第二次多付100元,每盒粉笔多少元?

51.大车每次运1.3吨,小车每次运1.2吨,运多少次后,大车比小车多运2.4吨? 52.某机械厂今年每月生产机床150台,比去年每月产量的3倍少30台,去年每月生产机床多少台? 53.师徒合做180个零件。师傅每小时做18个,徒弟每小时做12个,几小时做完? 54.某地下管道由甲工程队单独铺设需要12天,由乙工程队单独修设需要18天。如果有由两个工程队从两端同时想象施工,要多少天可以铺好?

55.幼儿园小朋友分糖,每人分5块就多出13块,每人分6块就还少7块,请问有多少小朋友,有多少块糖?

56.四年级共有学生200人,课外活动时,80名女生都去跳绳。男生分成5组去踢足球,平均每组多少人?

57.小芳买了2本笔记本和5枝圆珠笔,共用去7.5元,每枝圆珠笔0.5元,每本笔记本多少元?

58.水果店运来4箱苹果和6箱梨,共用去244元,已知苹果每箱28元,梨每箱多少元 59.面粉每千克1.9元,大米每千克1.8元,买面粉和大米各10千克,付出50元,应找回多少元?(用两种方法解答)

60.香蕉每千克4.50元,梨每千克4元,小红的妈妈买了4千克香蕉,给了营业员30元,剩下的钱去买梨,能买梨多少千克? 61.买3张桌子和4把椅子一共用了308元,每把椅子32元,每张桌子多少元?(62.一枝钢笔的价钱是一枝圆珠笔的2.5倍,现各买2支,一共用了10.5元,每支钢笔和圆珠笔各是多少元? 63.小明买了1元一张和2元一张的邮票共33张,这些邮票的面值共48元,每种邮票各买了多少张?

64.一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米? 65.一块三角形地的面积是840平方米,底是140米,高是多少米? 66.一个平行四边形面积是125平方厘米,底是50厘米,高是多少厘米? 67.一个三角形高是18厘米,面积是180平方厘米,底是多少厘米? 68.一个梯形面积是126平方米,上底是13米,下底是17米,这个梯形的高是多少米? 69.一个三角形面积是24.8平方米,底是12.4米高是多少米? 70.一个长方形操场周长是348米,宽是69米,它的面积是多少平方米? 71.一个长方形周长和一个正方形周长相等,已知长方形长24厘米,宽16厘米,求正方形面积? 72.一块长方形地,长是宽的4倍,周长是120米。这个长方形的面积是多少平方米?

73.有三个数,它们的平均数是8.6,其中第一个数是9.1,第二个数比第三个数小0.1,求第三个数

74.三个连续自然数之和153,这三个自然数分别是多少?

75.三个数的平均数是120,甲数是乙数的2倍,丙数比甲数多5,甲, 乙,丙三个数各是多少? 76.甲数是x,乙数是甲数的3倍少0.2, 乙数是5.8,甲数是多少?(列方程解答)77.一辆时速是50千米的汽车,需要多少时间才能追上2小时前开出的一辆时速为40千米汽车?

78.甲乙两地相距300千米,一辆汽车由甲地开出5小时后,距离乙地还有74.5千米,这辆汽车平均每小时行多少千米?

79.龟兔赛跑,全程200米,龟每分钟跑2.5米,兔每分钟跑32米,兔自以为是,在途中睡了一觉,当龟到达终点时,兔子离终点还有40米,兔子在途中睡了几分钟? 80.运送29.5吨煤,先用一辆载重4吨的汽车运3次,剩下的用一辆载重为2.5吨的货车 运。还要运几次才能运完?

81.一堆煤重20吨,一辆货车运了4次,还剩一半没有运,这辆货车平均每次运多少吨?

解方程五年级教案【篇8】

西师大版五年级下册《解方程》数学教案

教学目标:

1、理解等式的基本性质一,并能较熟练地运用它解形如x+a=b的方程。

2、能较为熟练地运用形如x+a=b的方程解决简单的实际问题。

3、初步理解方程的解、解方程的含义,会检验给出的未知数的值是不是某方程的解。

4、培养学生规范书写和自觉检验的好习惯。

教学重点:

1、对等式的基本性质一的理解和运用。

2、掌握解形如x+a=b的方程的依据、步骤和书写格式。

3、能较为熟练地运用形如x+a=b的方程解决简单的实际问题。

教学难点:

1、掌握解形如x+a=b的方程的依据、步骤和书写格式。

2、较为熟练地运用形如x+a=b的方程解决简单的实际问题。

教学过程:

教学时由复习方程的意义入手,在出示情境图后提出问题,学生最先想到的是算术方法,此时引导:你能列方程解决这一问题吗?在列出方程600+x=860

后,怎样求x呢?在学生渴望解决这一问题的内在需求的驱使下,展开合作探索活动。

在教学等式的基本性质时,可利用实物演示,通过提问:怎样变换,能使天平仍然保持平衡呢?,以引导学生思考,启发学生把两组图的内容归纳成一句话。这样,及时引导学生超脱实例的具体性,实现必要的抽象概括。

这时就可以让学生自己思考、探索x的值的求法,然后在小组讨论后汇报。学生在陈述自己的想法时,不仅要说出自己是怎样推算的,还要请学生说出这样推算的理由。在这一过程中,要特别强调解方程的每一步得到的都是等式,而不是递等式。

教学中还要重视对学生书写的要求,初学时,可要求学生等号对齐。方程两边同时减去一个数的计算过程,开始练习时也要求学生写出来,待熟练之后再简写。无论是解方程还是检验,都要从一开始就强化书写规范,以发挥首次感知先入为主的强势效应,促进良好的书写习惯的形成。

最后引出方程的解和解方程的概念时,要强调:方程的解是一个数,而解方程是一个过程,帮助学生理解、区别这两个概念。

模式方法:观察――实验――讨论――交流――概括结论

作业设计:自主练习1-3题。

讨论要点

1、教学时,要充分利用天平,让学生通过观察、实验、讨论、交流,帮助学生理解等式的基本性质一。

2、教学时,要关注学生的算术思维向方程思维的转变。

3、在检验的问题上,要注重引导学生由算术法的验算向方程法的检验转变。

4、教学时,要加大引领力度,充分发挥教师的作用。一要做好学生解决问题的思维方式的引领,进一步拓宽学生解决问题的渠道,提高学生解决问题的能力。二是对解方程以及列方程解决问题的思路、步骤及格式的引领。

活动总结

本次教研活动,使老师们更加清楚地了解学生已有的知识基础,较为准确地把握教学的重点和难点。设计较为实际的教学环节,降低学生学习的难度,同时也为教师在教学中围绕重点、突破难点指明了方向。

解方程五年级教案【篇9】

解方程

教学目标:

1.在会解简单的两步方程的基础上,初步学会解三步的方程。2.掌握解三步方程的顺序和方法。

3.培养学生的分析、推理能力和思维的灵活性,提高解方程的能力。

4.渗透事物之间相互联系又相互转化的观点。培养学生认真计算,自觉检验的好习惯。教学重点及难点:yjs21.CoM

教学重点是解含有三步运算的方程的算理和算法;教学难点是如何对方程进行变形求解。教学设计:

一、激发兴趣 引出课题

1.下面括号中的x的值,哪个是方程的解?

3X+6=12(X=2,X=6)3.5-2X=2.1(X=2.8,X=0.7)0.7(X-2)=5.6(X=8,X=10)(X+0.4)÷2.5=1(X=2,X=2.1)2.解方程,并写出检验方程。10-1.4X=7.2(X-3)÷1.3=0.2 3.教师:今天我们继续学习简易方程。板书课题:解简易方程

二、探究新知

1.(出示例题):(23+X+18)÷2=30 1)分析:

师:请学生尝试解方程。然后进行交流核对。师:解这个方程,应该先算哪一步?

生:先求23+18的和等于多少,使方程变成41X÷2=30.师引导小结:这样的方程,能计算的先计算出来,再想含有未知数的一项是一个什么数,用学过的解方程的知识来求方程的解。

2.(出示例题)7X+9-3X=17.8 师:学生尝试在小组内说说解方程的步骤。

用心

爱心

专心 1 师:解这样的方程关键是什么?

生:能化简的部分先化简,把三步方程转化成两步方程,然后再用学过的方法进行求解。3.试一试:

(26+X-18)÷3=10 8X-4X+1=25 学生独立完成后,小组内集体核对,讲清解题算理。

引导学生小结:解这一类方程,要能化简的部分先化简,把三步方程转化成两步方程,再根据四则混合运算的顺序,把含有的X的项看成一个数,根据四则运算各部分之间的关系一步步求出解。

4.(出示例题)X+6=3X 1)师:思考:这个方程与前面的方程有什么不同?

生:方程的左右两边都有X。师:碰到这种情况怎么解决?

学生小组内讨论解决方法。

2)交流解方程的方法:

如果未知数出现在方程的两边,还是运用四则运算的关系进行化简,然后求出方程的解。试一试:解方程并检验。

9X-36=5X

三、巩固运用

1.直接写出得数。

9X+5X= B-0.4B= a+4a= 5x+4x-3x= 2.解方程并检验。

(7+2.3-X)÷2=3.1 9X+19+7X=51 3+2X=5X

四、全课总结:

今天学习的解方程与以前学的有什么不同? 怎样解决这样的问题?

用心

爱心

专心 2

解方程五年级教案【篇10】

教学内容:教科书第6页的7~12题。

教学目标:1、通过练习,使学生进一步体会方程的含义。

2、进一步理解等式的性质,能根据等式的性质正确地解方程。

教学重点与难点:能根据等式的性质正确地解方程。

教学流程:

一、基础练习

1、说出下面的式子哪些是方程,哪些不是,为什么?

20+17=3712-Y=4a+12=3521-b<14x=14+2

2、解方程

X+125=370520+X=710X-4.9=6.4

120-X=257.8+X=2.5X+8.5=12

学生独立完成,指名学生板演。

选3题让学生说说想的过程。

二、完成第6页的7~12题。

第7题学生独立完成后指名回答,让学生说说是怎样想的。

第9题指名学生说:错在哪里,帮他分析一下,可能是什么原因造成的?怎样改正,我们在做题时要注意一些什么?

第8题学生独立完成,指名板演。

第12题学生读题后独立思考解决问题的方法。

小组内交流。全班交流,只要学生说出的方法是有道理的,教师都要给于肯定。

三、课堂作业

第6页的第10、11题。

yjs21.cOm更多幼儿园教案编辑推荐

五年级解方程教案1500字


学生们享受着生动有趣的课堂,这离不开老师花费大量时间精心准备的教案。然而,制作教案课件并不是一件简单的事情。详细的教学教案不仅可以帮助教师理解课程知识的纵向发展,还能提高教学质量。那么,我们在制作教案课件的时候应该从哪些角度入手呢?下面是幼儿教师教育网小编为您精心准备的《五年级解方程教案》相关内容,希望能对您有所帮助!

五年级解方程教案 篇1

师:解方程的第二步,方程两边同时进行计算,得出的值。左边+3-3,等于什么?

生:等于。

师:(板书:)右边9-3呢?

生:等于6。

师:(板书:=6)天平在变化的过程中,始终保持平衡,说明解方程时,得到的每一步都是等式,要求大家把所有的等号对整齐。为了把等号对整齐,一般要把解写到前面一点。

师:=6是不是这个方程的解?验算一下就知道了!把=6代入方程中,看方程的两边是否相等。我们一起来写验算过程。

师:先看方程左边,(板书:方程左边=+3)把=6代入方程中,+3就变成了几加3?

生:6+3

师:(板书:=6+3)6+3等于9。(板书:=9)方程左边等于9。再看看方程右边等于几?

生:等于9。

师:也是等于9。方程左边等于9,方程右边也等于9,说明了什么?

生:方程左边等于方程右边,=6是这个方程的解。

师:(板书:=方程右边)最后,下结论:所以,=6是方程的解。(板书:所以,=6是方程的解。)

师:验算的过程就写完了。现在,请同学们把课本打开,翻到58页,请小组的同学一边对照书中解方程的过程,一边讨论:解方程需要注意什么?(小组讨论)

师:现在,请同学们说一说:解方程需要注意什么?

生:......

师:还有没有要补充的?

生:......

师:把刚才几位同学说的,合起来就很完整了。会解方程了吗?

生:会了。

师:那就试一试!(解方程+7=10)

师:哪位同学愿意到黑板上来做?请你来吧!

(学生做题)

师:都做完了吗?一起来看看这位同学做的!你们觉得他做得好不好?

生:他全部都做对了。

生:我觉得有一点不好,他把等号没有对整齐!......

师:刚才这位同学给你提的意见能接受吗?

生:能!

师:有错就改就是好孩子!解方程不仅要注意方法,还要注意书写格式。做完后还要养成验算的好习惯。

师:老师还有一个问题想请教一下:为什么要在方程的两边同时减去7?

生:左边减去7是为了是方程左边只剩,右边减去7是为了使方程两边仍然相等!

师:说得很好!这道题你们都解对了吗?

生:解对了!

师:你们真聪明!一下子都学会了!老师还想考考大家,出一个和它们不一样的方程:-3=9

你们会做吗?

生:会!

师:这题也会呀!那好,试试看吧!请同学们先独立完成,然后在小组内进行交流。(点一名学生板演)

师:一起来看看黑板上的作业!他做得怎样?

生:做得很好,......

师:谁来说说:为什么要在方程的两边同时加上3?

生:是为了使方程左边只剩而有保持两边仍然相等!

师:你们同意他的说法吗?

生:同意!

师:看来,你们已经掌握解方程的方法了!

三、拓展应用

师:解方程还能帮助我们解决很多生活中的问题呢!

请看大屏幕:(课件出示)能解决吗?

师:能!

师:开始吧!(注意:可以不写出演算的过程,但是要进行口头验算。)

学生做题后汇报交流!

四、课堂小结

师:同学们真不了不起,不但学会了解方程,还学会了用解方程的方法解决问题!

今天的课就上到这里,下课!

五年级解方程教案 篇2

教学过程:

一、导入新课

前面,我们学习了等式保持不变的规律,等式在哪些情况下变换仍然保持不变呢?等式这些规律在方程中同样适用吗?完全可以,因为方程就是等式,今天我们将学习如何利用等式保持不变的规律来解方程。板书:解方程。

二、新知学习

(一)教学例1

出示例1,从图中可以获取哪些信息?图中表示了什么样的等量关系?盒子中的皮球与外面的3皮个球加起来共有9个,方程怎么列?得到x+3=9

要求盒子中一共有多少个皮球,也就是求x等于什么,我们该怎么利用等式保持不变的规律来求出方程的解呢?

抽答。

方程两边同时减去一个3,左右两边仍然相等。板书:x+3-3=9-3

化简,即得:x=6

这就是方程的解,谁再来回顾一下我们是怎样解方程的?

左右两边同时减去的为什么是3,而不是其它数呢?因为,两边减去3以后,左边刚好剩下一个x,这样,右边就刚好是x的值。因此,解方程说得实际一点就是通过等式的变换,如何使方程的一边只剩下一个x即可。

追问:x=6带不带单位呢?让学生明白x在这里只代表一个数值,因此不带单位。

要检验x=6是不是正确的答案,还需要验算。怎么验算呢?可抽学生回答。

板书:方程左边=x+3

=6+3

=9

=方程右边

所以,x=6是方程的解。

小结:通过刚才解方程的过程,我们知道了在方程的左右两边同时减去一个相同的数,左右两边仍然相等。不过需要注意的是,在书写的过程中写的都是等式,而不是递等式。

(二)教学例2

利用等式不变的规律,我们再来解一个方程。

出示方程:3x=18,怎样才能求到1个x是多少呢?同桌的同学互相讨论,如有问题,可以出示书上的示意图帮助分析。

抽答,在方程两边同时除以3即可。为什么两边同时除以的是3,而不是其它数呢?刚好把左边变成1个x。让学生打开书59页,把例2中的解题过程补充完整。

展示、订正。

通过,刚才的学习,我们知道了在方程的两边同时减去一个相同的数或同时除以一个不为0的数,左右两边仍然相等。这是我们解方程常用的两种方法,想不想用它们来试一试呢?

(三)反馈练习

1、完成做一做的第1题,先找到等量关系,再列方程,解方程。集体评讲。

2、思考想一想:如果方程两边同时加上或乘上一个数,左右两边还相等吗?依据是什么?等式保持不变的规律。

试着解方程:x-2.4=6x9=0.7(强调验算)

(四)课堂作业:做一做第2题。

三、课堂小结。

这节课学习了什么?讨论:什么时候应该在方程的两边加,什么时候该减,什么时候该乘,什么时候该除呢?

四、作业:练习十一57题。

教学内容:数学书P58-P59及做一做,练习十一第5-7题。

教学目标:

1、结合具体图例,根据等式不变的规律会解方程。

2、掌握解方程的格式和写法。

3、进一步提高学生分析、迁移的能力。

教学重难点:掌握解方程的方法。

五年级解方程教案 篇3

教学目标

1、结合具体图例,根据等式不变的规律会解方程。

2、掌握解方程的格式和写法。

3、进一步提高学生分析、迁移的能力。

知识重点

掌握解方程的方法

教学过程

教学方法和手段

引入

前面,我们学习了等式保持不变的规律,等式在哪些情况下变换仍然保持不变呢?等式这些规律在方程中同样适用吗?完全可以,因为方程就是等式,今天我们将学习如何利用等式保持不变的规律来解方程。板书:解方程。

教学过程

新知学习

(一)教学例1

出示例1,从图中可以获取哪些信息?图中表示了什么样的等量关系?盒子中的皮球与外面的3皮个球加起来共有9个,方程怎么列?得到x+3=9

要求盒子中一共有多少个皮球,也就是求x等于什么,我们该怎么利用等式保持不变的规律来求出方程的解呢?

抽答。

方程两边同时减去一个3,左右两边仍然相等。板书:x+3-3=9-3

化简,得到x=6

这就是方程的解,谁再来回顾一下我们是怎样解方程的?

左右两边同时减去的为什么是3,而不是其它数呢?因为,两边减去3以后,左边刚好剩下一个x,这样,右边就刚好是x的值。因此,解方程说得实际一点就是通过等式的变换,如何使方程的一边只剩下一个x即可。

追问:x=6带不带单位呢?让学生明白x在这里只代表一个数值,因此不带单位。

要检验x=6是不是正确的答案,还需要验算。怎么验算呢?可抽学生回答。

板书:方程左边=x+3

=6+3

=9

=方程右边

所以,x=6是方程的解。

小结:通过刚才解方程的过程,我们知道了在方程的左右两边同时减去一个相同的数,左右两边仍然相等。不过需要注意的是,在书写的过程中写的都是等式,而不是递等式。

(二)教学例2

利用等式不变的规律,我们再来解一个方程。

出示方程:3x=18,怎样才能求到1个x是多少呢?同桌的同学互相讨论,如有问题,可以出示书上的示意图帮助分析。

抽答,在方程两边同时除以3即可。为什么两边同时除以的是3,而不是其它数呢?刚好把左边变成1个x。让学生打开书59页,把例2中的解题过程补充完整。

展示、订正。

通过,刚才的学习,我们知道了在方程的两边同时减去一个相同的数或同时除以一个不为0的数,左右两边仍然相等。这是我们解方程常用的两种方法,想不想用它们来试一试呢?

课堂练习

1、完成做一做的第1题,先找到等量关系,再列方程,解方程。集体评讲。

2、思考想一想:如果方程两边同时加上或乘上一个数,左右两边还相等吗?依据是什么?等式保持不变的规律。

试着解方程:x-2.4=6x9=0.7(强调验算)

小结与作业

课堂小结

这节课学习了什么?讨论:什么时候应该在方程的两边加,什么时候该减,什么时候该乘,什么时候该除呢?

课后追记

如果X前面是加号,方程两边就减去另外一个数,如果X前面是乘号,方程两边就除以乘号前面的数。

五年级解方程教案 篇4

西师大版五年级下册《解方程》数学教案

教学目标:

1、理解等式的基本性质一,并能较熟练地运用它解形如x+a=b的方程。

2、能较为熟练地运用形如x+a=b的方程解决简单的实际问题。

3、初步理解方程的解、解方程的含义,会检验给出的未知数的值是不是某方程的解。

4、培养学生规范书写和自觉检验的好习惯。

教学重点:

1、对等式的基本性质一的理解和运用。

2、掌握解形如x+a=b的方程的依据、步骤和书写格式。

3、能较为熟练地运用形如x+a=b的方程解决简单的实际问题。

教学难点:

1、掌握解形如x+a=b的方程的依据、步骤和书写格式。

2、较为熟练地运用形如x+a=b的方程解决简单的实际问题。

教学过程:

教学时由复习方程的意义入手,在出示情境图后提出问题,学生最先想到的是算术方法,此时引导:你能列方程解决这一问题吗?在列出方程600+x=860

后,怎样求x呢?在学生渴望解决这一问题的内在需求的驱使下,展开合作探索活动。

在教学等式的基本性质时,可利用实物演示,通过提问:怎样变换,能使天平仍然保持平衡呢?,以引导学生思考,启发学生把两组图的内容归纳成一句话。这样,及时引导学生超脱实例的具体性,实现必要的抽象概括。

这时就可以让学生自己思考、探索x的值的求法,然后在小组讨论后汇报。学生在陈述自己的想法时,不仅要说出自己是怎样推算的,还要请学生说出这样推算的理由。在这一过程中,要特别强调解方程的每一步得到的都是等式,而不是递等式。

教学中还要重视对学生书写的要求,初学时,可要求学生等号对齐。方程两边同时减去一个数的计算过程,开始练习时也要求学生写出来,待熟练之后再简写。无论是解方程还是检验,都要从一开始就强化书写规范,以发挥首次感知先入为主的强势效应,促进良好的书写习惯的形成。

最后引出方程的解和解方程的概念时,要强调:方程的解是一个数,而解方程是一个过程,帮助学生理解、区别这两个概念。

模式方法:观察――实验――讨论――交流――概括结论

作业设计:自主练习1-3题。

讨论要点

1、教学时,要充分利用天平,让学生通过观察、实验、讨论、交流,帮助学生理解等式的基本性质一。

2、教学时,要关注学生的算术思维向方程思维的转变。

3、在检验的问题上,要注重引导学生由算术法的验算向方程法的检验转变。

4、教学时,要加大引领力度,充分发挥教师的作用。一要做好学生解决问题的思维方式的引领,进一步拓宽学生解决问题的渠道,提高学生解决问题的能力。二是对解方程以及列方程解决问题的思路、步骤及格式的引领。

活动总结

本次教研活动,使老师们更加清楚地了解学生已有的知识基础,较为准确地把握教学的重点和难点。设计较为实际的教学环节,降低学生学习的难度,同时也为教师在教学中围绕重点、突破难点指明了方向。

五年级解方程教案 篇5

教学内容:教科书第6页第7-12题

教学目标:1、进一步理解并熟练应用等式的这一性质解简单的方程。

2、理解解方程过程的简化书写,并且解题时适当运用简化书写。

3、培养良好的作业习惯,自觉进行检验。

教学重点:理解并熟练应用等式的这一性质解简单的方程

教学难点:理解并熟练应用等式的这一性质解简单的方程

教学过程:

一、基础练习

1、说出下面的式子哪些是方程,哪些不是,为什么?

20+17=3712-Y=4a+12=35

21-b<14x=14+2316+a=27+b

2、解方程

X+125=370520+X=710X-4.9=6.4

120-X=257.8+X=2.5X+8.5=12

学生独立完成,指名学生板演。

选3题让学生说说想的过程。

集体订正,帮有错的同学分析错误原因,使其明白。

二、完成第6页的7~12题。

第7题:

(1)学生独立完成后指名回答,让学生说说是怎样想的。

(2)这里的方程与前面所学解方程的过程比较有什么不同?

省略了什么?

这样写有什么优点?

在解方程时,先在头脑中想好方程两边应同时加上或减去什么数,但书写时可以省略。同学们在解方程时可以照这种方法解。

使学生明白:根据等式的性质让含有未知数的一边只剩下未知数,就能很快知道

最后的结果。

第9题:

先由学生独立完成。

指名学生说:错在哪里,帮他分析一下,可能是什么原因造成的?怎样改正,我

们在做题时要注意一些什么?

第8题:

(1)学生独立完成,要按照上一题的方法适当省略,简化过程。

教师要特别关注前面解题还有错的学生,争取人人过关。

指名板演。

(2)集体订正,说说自己的解题思路。分析错误原因。

第10题:

(1)学生独立完成。

(2)在小组中交流,每人选择一题说思考方法。

(3)错误汇报。

说说错误的原因与正确方法。

第11题:

1、学生看图列式。

提问:什么是等式?什么是方程?

2、解出上述方程。

学生板演,并说明怎么解?

3、教学解方程的简化书写。

X10+10、X3.5+3.5结果是多少?

介绍解方程的简化书写,并板书。

学生试做,板演,讲评。

第12题:

学生读题后独立思考解决问题的方法。

小组内交流。

全班交流,只要学生说出的方法是有道理的,教师都要给于肯定。

也可以提示:两人用去的钱同样多什么意思?

你能用一种方法来表示题中的相等关系吗?

(1本练习本+3枝铅笔=7枝铅笔)

你看出了什么?(1本练习本相当于4枝铅笔)

三、课堂总结

通过本节课的练习,你有什么收获?

你认为解决数学问题时,方程用处大吗?

习题超市:

一、数学小诊所

1、2.8+X=9.5改正:

解:X=9.5+2.8

X=12.3()

2、X-43=156改正:

解:X=156+43

X=199()

二、当x=18时,是下面哪几个方程的解。

18+x=1818-x=0x+15=33

X-10=8x-18=18x+3=18+3

三、解方程并检验

X+350=600150+X=725X-60=950

7.8+X=12.30.8+X=7.6X-3.5=6.4

教材简析:

帮助学生逐渐掌握解方程的方法并形成相应的技能,是教材编写时认真思考的问题。用好教材设计的两道题,能培养学生这方面的能力。另一处是第6页第7题,简化解方程过程的书写,浓缩思路,是在基本掌握解方程的方法以后安排的。如解方程x-20=30,在方程的两边都加20这一步,省写了虚线框里的内容:

x-20+20=30+20,直接写出x=30+20。这样做能使解方程的思考流畅、书写简便,从而提升解方程的能力。教学时要让学生体会简化的过程,重点讨论圆圈里填什么符号、方框里填什么数以及为什么。

五年级下数学教案解方程


作为一名辛苦耕耘的教育工作者,就难以避免地要准备教学设计,教学设计把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。一份好的教学设计是什么样子的呢?以下是小编精心整理的五年级《解简易方程》教学设计,欢迎阅读与收藏。

五年级下数学教案解方程 篇1

教学目标:

1.经历解方程基本思路是把“复杂”转化为“简单”,把“新”转化为“旧”的过程.进一步理解并掌握如何去分母的解题方法.

2.通过解方程时去分母过程,体会转化思想.

3.进一步体会解方程方法的灵活多样.培养解决不同问题的能力.

4.培养学生自觉反思求解和自觉检验方程的解是否正确的良好习惯,团结合作的精神.教学重点:解方程时如何去分母.

教学难点:

解方程时如何去分母.

教学方法:

引导发现

教学设计:

一、用小黑板出示一组解方程的练习题.

解方程:

(1)8=7-2y;

(3)4x-3(20-x)=3;

1、自主完成解题.

2、同桌互批.

3、哪组同学全对人数多.

(根据学生做题情况,教师给予评价).

二、出示例题7,鼓励学生到黑板板演,教师给予评价.

一名同学板演,其余同学在练习本上做.

针对学生的实际,教师有目的引导学生如何去掉分母.去分母时要引导学生规范步骤,准确运算.

三、组织学生做教材159页“想一想”,鼓励并引导学生总结解一元一次方程有哪些步骤.分组讨论、合作交流得出结论:方程两边都乘以所有分母的最小公倍数去掉分母.

四、出示例题6,并鼓励学生灵活运用解一元一次方程的步骤解方程.

出示快速抢答题:有几处错误,请把它们—一找出来并改正.

①先自己总结.

②互相交流自己的结论,并用语言表述出来.

教师给予评价.

引导学生总结本节的学习内容及方法.

五、出示随堂练习题(根据学生情况做部分题或全部题).

①自主完成解方程

②互相交流自己的结论,并用语言表述出来.

③自觉检验方程的解是否正确.

(选代表到黑板板演).

①学生抢答.

②同组补充不完整的地方.

③交流总结方程变形时容易出现的错误.

①独立完成解方程.

②小组互评,评出做得好的同学.

六、小结

①做出本节课小结共交流.

(2)5x-2=7x+8;(4)-2(x-2)=12.

②说出自己的收获及最困惑的地方

八、板书设计

五年级下数学教案解方程 篇2

一、目的要求

使学生会用移项解方程,一元一次方程 利用等式的性质解方程。

二、内容分析

从本节课开始系统讲解一元一次方程的解法。解一元一次方程是一个有目的、有根据、有步骤的变形过程。其目的是将方程最终变为x=a的形式;其根据是等式的性质和移项法则,其一般步骤是去分母、去括号、移项、合并、系数化成1。

x=a的形式有如下特点:

(1)没有分母;

(2)没有括号;

(3)未知项在方程的一边,已知项在方程的另一边;

(4)没有同类项;

(5)未知数的系数是1。

在讲方程的解法时,要把所给方程与x=a的形式加以比较,针对它们的不同点,采取步骤加以变形。

根据方程的特点,以x=a的形式为目标对原方程进行变形,是解一元一次方程的基本思想。

解方程的第一节课告诉学生解方程就是根据等式的性质把原方程逐步变形为x=a的形式就可以了。重点在于引进移项这一变形并用它来解方程。

用等式性质1解方程与用移项解方程,效果是一样的。但移项用起来更方便一些。

如解方程 7x-2=6x-4

时,用移项可直接得到 7x-6x=4+2。

而用等式性质1,一般要用两次:

(1)两边都减去6x;

(2)两边都加上2。

因为一下子确定两边都加上(-6x+2)不太容易。因此要引进移项,用移项来解方程。移项实际上也是用等式的性质,在引进过程中,要结合教科书第192页及第193页的图强调移项要变号。移项解方程后的检验,可以验证移项解方程的正确性。

三、教学过程

复习提问:

(1)叙述等式的性质。

(2)什么叫做方程的解?什么叫做解方程?

新课讲解:

1.利用等式性质1可以解一些方程。例如,方程 x-7=5

的两边都加上7,就可以得到 x=5+7,

x=12。

又如方程 7x=6x-4

的两边都减去6x,就可以得到 7x-6x=-4,

x=-4。

然后问学生如何用等式性质1解下列方程 3x-2=2x+1。

2.当学生感觉利用等式性质1解方程3x-2=2x+1比较困难时,转而分析解方程x-7=5,7x=6z-4的过程。解这两个方程道首先把它们变形成未知项在方程的一边,已知项在方程的另一边的形式,要达到这个目的,可以在方程两边都加上(或减去)同一个数或整式。

五年级下数学教案解方程 篇3

教学目标:

1、学会利用等式性质1解方程;

2、理解移项的概念;

3、学会移项。

教学重点:

利用等式性质1解方程及移项法则;

教学难点:

利用等式性质1来解释方程的变形。

教学准备:

1、投影仪、投影片。

2、天平称、若干个质量相同的物体,与物体质量相同的若干个砝码。

教学过程:

(一)引入新课:

1、 上节课的想一想引入新课:等式和方程之间有什么区别和联系?

方程是等式,但必须含有未知数;

等式不一定含有未知数,它不一定是方程。

2、下面的一些式子是否为方程?这些方程又有何特点?

① 5x+6=9x

②3x+5

③7+5×3=22

④4x+3y=2

由学生小议后回答:①、④是方程。

分析这些方程得:

①等式两边都是一次式或等式一边是一次式,另一边是常数

②这些方程中有的含一个未知数,也有的含两个未知数。

我们先来研究最简单的(只含有一个未知数的)的一元一次方程。

3、一次方程:我们把等号两边是一次式、或等号一边是一次式另一边是常数的方程叫做一次方程。

注意:一次方程可以含有两个或两个以上的未知数:如上例的④。

4、一元一次方程:只含有一个未知数的一次方程叫做一元一次方程。

5、判断下列方程哪些是一次方程,哪些是一元一次方程?(口答)

① 2x+3=11②y2=16③x+y=2④3y-1=4y

6、什么叫方程的解?怎样解方程?

关键是把方程进行变形为x=?即求得方程的解。今天我们就来研究如何求一元一次方程的解(点出课题)利用等式性质1解一元一次方程

(二)、讲解新课:

1、 等式性质1:

出示天平称,在天平平衡的两边同时都添上或拿去质量相同的物体,天平仍保持平衡,指出:等式也有类似的情形。

强调关键词:"两边"、"都"、"同"、"等式"。

2、 利用等式性质1解方程:

x+2=5

分析:要把原方程变形成x=?只要把方程两边同时减去2即可。

注意: 解题格式。

例1 解方程5x=7+4x

分析:方程两边都有含x的项,要解这个方程就需要把含x的项集中到一边,即可把方程变形成x=?

(解略)

解完后提问:如何检验方程时的计算有没有错误?(由学生回答)

只要把求得的解代替原方程中的未知数,检查方程的左右两边是否相等,(由一学生口头检验)

观察前面两个方程的求解过程:

x+2=5 5x=7+4x

x=5-2 5x-4x=7

思考:⑴把+2从方程的一边移到另一边,发生了什么变化?

⑵把+4x从方程的一边移到另一边,又发生了什么变化?(符号改变)

3、 移项:

从变形前后的两个方程可以看到,这种变形相当于:把方程中的某一项改变符号后,从方程的一边移到另一边,我们把这种变形叫做移项。

注意:

①移项要变号;

②移项的实质:利用等式性质1对方程进行变形。

例2 解方程:3x+4=2x+7

解:移项,得3x-2x=7-4,

合并同类项,得x=3。

∴x=3是原方程的解。

归纳:

①格式:解方程时一般把含未知数的项移到方程的左边,把常数项移到方程的右边,以便合并同类项;

②解方程与计算不同:解方程不能写成连等式;计算可以写成连等式;

③一个方程只写一行,每个方程只有一个等号(理由:利用等式性质1对方程进行变形,前后两个方程之间没有相等关系)。

练习:书本105页 1(口答),2(板演),想一想。

(三)、课堂小结:

①什么是一次方程,一元一次方程?

②等式性质1(找关键词);

③移项法则;

④应用等式性质1的注意点(例2归纳的三条)。

(四)、布置作业:见作业本。

五年级下数学教案解方程 篇4

教学内容:

人教版第九册第102页练习二十五的习题。

教学目标:

1、通过练习,进一步理解和掌握ax±b=c这一类简易方程的解法,并能正确解简易方程。

2、养成自觉检验的良好习惯。

3、培养分析推理能力和思维的灵活性,提高解方程的能力。

教学重点:

进一步理解和掌握ax±b=c这一类简易方程的解法。

教学难点:

能正确解简易方程。

教学过程:

一、复习。

1、根据下面的情景列方程并求方程的解,结合情景说说怎样解方程,每一步算出什么。

黑笔的支数

红笔的支数

共买的支数

8×5+3x=70

2、把下列解方程和检验过程补充完整。

5x-3.7=8.5

解:5x=8.5()

()=12.2

x=()()

x=2.44

检验:把x=2.55代入原方程,

左边=5×()-3.7=()

右边=()

左边右边

所以x=2.55是原方程的解。

8x-4×14=0

解:8x-()=0

()=56

()=56÷8

x=()

检验:把x=()代入原方程,

左边=()×()-4×14=()

右边=0

左边右边

所以x=()是原方程的解。

3、解下列方程:

⑴6x=42

⑵6x+35=77

⑶6x+5×7=77

比较:这几道方程有什么相同和不同?解题后有什么体会?

(这几道题方程的解都是一样的,后几道方程都是由第一道方程演变过来的,每一道方程都比前一道要复杂,解题步骤也相应地增多。体会:再复杂的方程只要解题方法正确,都能化成一般简单的形式。)

二、巩固练习。

1、可以把5x看作减数的是方程()。

A.5x-6=20B.30+5x=75C.30-5x=5D.5x÷3=202、2x在下列方程中可以看作什么部分数?

①2x+2.5=32.5()②2x-30=60()③2x-3×5=45()

④2x×7=42()⑤30×2-2x=12()⑥2x÷12=35()

3、不解方程,你能判断下列方程的解是否正确吗?说说你的方法。

①7x+15=120的解是x=15。()

②5x-3×6=22的解是x=9。()

③6x÷5=12的解是x=15。()

④12×5-3x=30的解是x=10。()

4、解下列方程。(也可以选择第2题的方程其中3题)

4x-7.2=10

0.4(x-5)=16

1.2x+0.16÷0.2=3.2

5、列出方程并求方程的解。

8与5的积减去一个数的4倍,差是20,这个数是多少?

以上各题4人小组独立完成后,先交流订正,再集体订正。

第4、5题,要求做错的题目,订正在练习纸的右栏。

三、错题分析。

1、出示学生作业中的错题,学生分析指出错误,并说说理由。(需批改作业时收集)

2、出示常见的错题。

观察下列各题的解方程是否正确,不正确的指出错处。

7x-3.5=17.5

解:x-3.5=17.5÷7

x-3.5=2.5

x=2.5+3.5

x=6

7x-3.5=17.5

解:x=17.5+3.5

x=21

7x-3.5=17.5

解:x=17.5+3.5

7x=21

x=21÷7

x=3

2x+4×3=48

解:2x=4×3

2x=12

2x=48-12

2x=36

x=36÷2

x=18

四、拓展练习。

1、根据方程24×6-x=80创作情景(编题)或把下列情景补充完整。(视学生情况而定)

情景:学校食堂买来6袋大米,每袋()千克,用去了一些,还剩()千克,()多少千克大米?

2、解下列方程(可以只选择其中两道方程,快的同学可以全部做完)

①6x+5×7=70+7

②2×3x+5×7=70+7

③(3+2x)×2=30

3、如果2x+4=16,那么4x+8=()

4、⑴x等于什么数时,3x-9的值等于12?

⑵x等于什么数时,3x-9的值大于12?

五年级下数学教案解方程 篇5

教材分析

1、这节课是解简易方程的第一课时,是在学生学了四则运算及四则运算各部分之间的关系和学生已具有的初步的代数知识(如:用字母表示数,求未知数x)的基础上进行教学。

2、这节课为后面学习解方程应用题做了准备,为后面学习分数应用题、几何初步知识、比例等内容时要直接运用,这节课是教材中必不可少的内容,是本章节的重点内容之一。

学情分析

1、学生对本节课所学知识很感兴趣,这对开展有效的课堂教学奠定了良好的基础。

2、学生运用新知识解决实际问题的能力存在比较明显的差异,但不同的学生具有不同的潜力。

3、优秀学生与学习困难生对方程的理解在思维水平上有较大差异。

教学目标

1、结合具体图例,进一步理解等式不变的规律,会用等式不变的规律解方程。

2、掌握解方程的步骤和书写格式。

3、提高学生分析问题并用数学知识解决问题的能力。

4、培养学生进行数学探究的能力及合作意识。

教学重点和难点

1、本节课的重点是:根据等式的性质解方程。

2、本节课的难点是:理解等式的性质;掌握解方程的步骤和书写格式。

教学过程

一、复习导入:

1、什么叫方程?什么叫方程的解?什么叫解方程?

2、前面,我们学习了两个等式保持不变的规律,等式的不变规律是什么?

等式这些规律在方程中同样适用吗?

今天我们就学习如何利用等式保持不变的规律来解方程。

二、探究新知:

1、电脑出示课件例1。

2、从图中可以获取哪些信息?图中表示了什么样的等量关系?

要求盒子中有多少个皮球,也就是求x等于什么,该怎样列方程?我们怎样解这个方程?

3、探究怎样解方程。

利用天平让学生进行探究,怎样才能使天平左边只剩下x,而且保持天平平衡?

(让学生通过探究得出:从两边各拿走3个玻璃球,天平仍然平衡。)

4、知识迁移。

把刚才天平的做法用到方程上,也就是方程两边怎样做,方程左右两边仍然相等?

(方程两边同时减去一个3,左右两边仍然相等。)

板书+3—3=9—3

x=6

5、追问:左右两边同时减去的为什么是3,而不是其它数呢?

(因为方程两边减去3以后,左边刚好剩下一个x,这样,右边就刚好是x的值。因此,解方程就是通过等式的变化,如何使方程的一边只剩下一个x即可。)

6、x=6带不带单位呢?让学生明白x在这里只代表一个数值,因此不带单位。

7、x=6是不是正确的答案呢?怎么验算呢?同桌之间进行讨论并验算。(x=6是方程的解)

8、学生练习:解方程(X+21=32X+41=50)

9、学生讨论交流:解X+a=b这类方程的思路是什么?

10、如果方程的两边同同时加上同一个数,左右两边还相等吗?为什么?

11、学生尝试解方程:X—3=9

12、学生讨论交流:解X—a=b这类方程的思路是什么?

13、小结:解X+a=b这类方程的思路。(根据等式的性质1,在方程的左右两边同时加上或减去同一个数,左右两边仍然相等。实际上是加了什么就减去什么,减了什么就加上什么,两边同时进行。不过需要注意的是,在书写的过程中写的都是等式,而不是递等式。)

三、巩固练习:

1、填一填(出示课件)。

使学生进一步加深理解和运用等式不变规律1解决问题实际问题。

2、书上“做一做”第1题(1)题

3、巩固尝试:解方程(出示课件)。

让学生独立完成会用等式不变规律1解方程,强调验算。

四、课堂总结:

通过这节课的学习,你都有哪些收获?

五、拓展活动:

利用课余时间小组内探究像32—X=10这类方程可以怎样解?

六、作业设计:

练习十一第5题一二行,第6题一行。

五年级下数学教案解方程 篇6

教学目标:

1、学会利用等式性质1解方程;

2、理解移项的概念;

3、学会移项.

教学重点:利用等式性质1解方程及移项法则;

教学难点:利用等式性质1来解释方程的变形.

教学方法:引导发现

教学过程:

一、引入新课:

1、上节课的想一想引入新课:等式和方程之间有什么区别和联系?

方程是等式,但必须含有未知数;

等式不一定含有未知数,它不一定是方程.

2、下面的一些式子是否为方程?这些方程又有何特点?

①5x+6=9x;②3x+5;③7+5×3=22;④4x+3y=2.

由学生小议后回答:①、④是方程.

分析这些方程得:①等式两边都是一次式或等式一边是一次式,另一边是常数,②这些方程中有的含一个未知数,也有的含两个未知数.

我们先来研究最简单的(只含有一个未知数的)的一元一次方程.

3、一次方程:我们把等号两边是一次式、或等号一边是一次式另一边是常数的方程叫做一次方程.

注意:一次方程可以含有两个或两个以上的未知数:如上例的④.

4、一元一次方程:只含有一个未知数的一次方程叫做一元一次方程.

5、判断下列方程哪些是一次方程,哪些是一元一次方程?(口答)

①2x+3=11;②y=16;③x+y=2;④3y-1=4y.

6、什么叫方程的解?怎样解方程?

关键是把方程进行变形为x=?即求得方程的解.今天我们就来研究如何求一元一次方程的解(点出课题)利用等式性质1解一元一次方程

二、讲解新课:

1、等式性质1:

出示天平称,在天平平衡的两边同时都添上或拿去质量相同的物体,天平仍保持平衡,指出:等式也有类似的情形.

强调关键词:“两边”、“都”、“同”、“等式”.

2、利用等式性质1解方程:x+2=5

分析:要把原方程变形成x=?只要把方程两边同时减去2即可.

注意:解题格式.

例1解方程5x=7+4x

分析:方程两边都有含x的项,要解这个方程就需要把含x的项集中到一边,即可把方程变形成x=?(一般是含x的项集中到方程的左边,使方程的右边不含有x的项),此题的关键是两边都减去4x.

(解略)

解完后提问:如何检验方程时的计算有没有错误?(由学生回答)

只要把求得的解代替原方程中的未知数,检查方程的左右两边是否相等,(由一学生口头检验)2

观察前面两个方程的求解过程:

x+2=5

x=5-25x=7+4x5x-4x=7

思考:(1)把+2从方程的一边移到另一边,发生了什么变化?

(2)把+4x从方程的一边移到另一边,又发生了什么变化?(符号改变)

3、移项:

从变形前后的两个方程可以看到,这种变形相当于:把方程中的某一项改变符号后,从方程的一边移到另一边,我们把这种变形叫做移项.

注意:①移项要变号;

②移项的实质:利用等式性质1对方程进行变形.

例2解方程:3x+4=2x+7

解:移项,得3x-2x=7-4,

合并同类项,得x=3.

∴x=3是原方程的解.

归纳:①格式:解方程时一般把含未知数的项移到方程的左边,把常数项移到方程的右边,以便合并同类项;

②解方程与计算不同:解方程不能写成连等式;计算可以写成连等式;

③一个方程只写一行,每个方程只有一个等号(理由:利用等式性质1对方程进行变形,前后两个方程之间没有相等关系).

四、课堂小结:

①什么是一次方程,一元一次方程?

②等式性质1(找关键词);

③移项法则;

④应用等式性质1的注意点(例2归纳的三条).

六、板书设计

七、教学后记

五年级下数学教案解方程 篇7

教学目标:

1、使学生初步理解“方程的解”、“解方程”的含义以及“方程的解”和“解方程”之间的联系和区别。

2、初步理解等式的基本性质,能用等式的性质解简易方程。

3、重视良好学习习惯的培养。

教学重点:

1、“方程的解”和“解方程”之间的联系和区别。

2、利用天平平衡的道理会解形如X±a=b的方程,并检验。

教学难点:理解形如X±a=b的方程原理,掌握正确的解方程格式及检验方法。

教学过程:

一、创设情境,回顾旧知

师:今天在上课前我们来玩一个游戏“我说你答”。以保持天平的平衡如“我在天平的右边增加一个橘子”;“我在天平的左边增加一个同样的橘子”;“天平的左边排球数量扩大到原数的2倍变成4个排球”,“天平的右边的皮球数量扩大到原数的2倍,变成8个皮球”…

师:同学们有这么多让天平平衡的方法,能概括一下让天平平衡的方法吗?

二、探究新知,引出课题

1.通过解方程,认识“方程的解”和“解方程”的两个概念。

师:老师在天平的左边放了一杯水,杯重100克,水重X克,一杯水重多少?

师:在天平的右边放了多少砝码,天平保持平衡呢?(教师边讲边操作100克、200克、250克)

师:请你根据图意列一个方程。

学生回答教师板书:100+X=250

师:这个方程怎么解呢?就是我们今天要学习的内容——解方程。(板书课题:解方程)

师:(指着方程)那你猜一猜这个方程X的值是多少?并说出理由

预设:生1:我有办法,可以用250-100=150,所以X=150.

生2:我有办法,因为100+150=250,所以X=150

师:谁能用天平平衡的道理来解呢?

生3:老师我也有办法,我是这样想的,假如方程的两边同时减去100,就能得出X=150

师:课件探索验证一下。请看天平,怎样操作才使天平左边只剩X克水,而天平保持平衡。

生:我在天平的左边拿走一个重100克空杯子,在天平的右边拿走100克的砝码,天平保持平衡。

师:你能根据操作过程说出等式吗?

师:是的,XXX同学的想法是正确的,方程左右两边同时减100,(这样方程左边就只剩X)就能得出X=150。

师:根据刚才的实验,我们来认识两个新的概念———“方程的解”和“解方程”。

师:指着方程100+X=250说:“X=150”是这个方程的解。(板书:方程的解)

100+X=250

100+X-100=250-100

师指着方框说:“刚才我们求方程的解的过程,叫解方程。

师:在解方程的开头写上“解:”,表示解方程的全过程。

师:同时在书写的时候还要注意“=”对齐。

师:你们怎么理解这两个概念的?(课件出示两个概念)

师:谁来说说你想法?

师:“方程的解”和“解方程”的两个解有什么不同?

小结:“方程的解”的解,它是一个数值。“解方程”的解,它是一个演算过程。

2.尝试解X-a=b形的方程。

师:出示X-3=9(板书)

学生尝试,请一人板演

汇报,评价

师:你是怎么想的?

师:是不是这样的,请看屏幕。(请一位学生说,教师用课件演示)

生:天平左右两边同时放上3个方块,使天平左边刚好是X,天平保持平衡。

师:这时天平表示X的值是多少?

师:讨论方程左右两边为什么同时加3?

生:方程左右两边同时加3,使方程左边只有X,方程左右两边相等。

小结:“方程左右两边同时加3,使方程左边只有X,方程左右两边相等。”就是解这个方程的方法。

师:这个方程会解。我们怎么知道X=12一定是这个方程的解呢?

师:对了,验算方法是什么?

自习课本第58页,模仿检验的书写过程

根据学生的回答板书:

验算方程左边=X-3

=12-3

=9

=方程的右边

所以,X=12是方程的解。

小结:以后解方程时,要求检验的,要写出检验过程;没有要求检验的,要进行口头检验,要养成口头检验的习惯。力求计算准确。

三、巩固练习

(1)判断题

A.X=3是方程5X=15的解。()

B.X=2是方程5X=15的解。()

你是怎么想的?

(2)考考你的眼力,能否帮他找到错误所在呢?

X+1.2=4X+2.4=4.6

X+1.2-1.2=4-1.2=4.6-2.4

X=2.8=2.2

小结:解方程首先要写“解”,X每步都不能离,所有的等号要对齐,检验的习惯要牢记。

(3)填空题

X+3.2=4.6X-3.2=4.6

解:X+3.2○()=4.6○()解:X-3.2○()=4.6○()

X=()X=()

(4)解下列方程,带★的要验算

★X+2.8=7.9X-5=28

(5)完成课本59页做一做的第1题的左边一小题写在书上。

追问:x=2.8带不带单位呢?让学生明白x在这里只代表一个数值,因此不带单位。

小结:解含有加法方程的步骤。

三、巩固延伸

师:谁能说说解含有加法和减法的方程的步骤?(随着学生,课件显示全过程。)

解方程的步骤:

a)先写“解:”。

b)方程左右两边同时加或减一个相同的数,使方程左边只剩X,方程左右两边相等。

c)求出X的值。

d)验算。

四、全课小结

通过今天的学习,同学们有哪些收获?

教后反思:

前一阶段的教学,我发现孩子们还是比较喜欢学习数学的,特别对方程都有一种与生俱来的好奇心。他们总觉得天平能启发着他们去解决这么神奇的方程,真是非常有趣,学得效果也不错。今天在整节课的教学中,引入有序,思路清晰,环节紧扣。可是学生学习十分被动,课堂可以说是死气沉沉,真的有点不习惯孩子们这样,据我对学生的理解利用天平这样的事物原型来揭示等式的性质,把抽象的解方程的过程用形象化的方式表现出来,学生应该比较感兴趣的,原因在哪儿呢?课后查找原因:

1、通过与学生的谈话发现学生过于紧张。

2、教师缺乏调节课堂气氛手段。今后尽量要注重这方面的调节,兴趣是最好的老师,没有兴趣哪来的教学效果。

从学生作业反馈来看,学生深刻认识到:利用等式的性质解方程,看似麻烦,实则简单,不须思考各部分之间的关系。虽然这样教学学生有兴趣,效果比较理想,不仅一节课内完成了预订的教学任务,而且学生作业质量较高,仅二人书写格式有误。但也存在局限性,如a-x=b和a÷x=b,虽然教材没有要求解这类方程,但试卷和相应的练习有出现,因此,有必要特别利用一些时间给学生补充讲解这类方程解法。

五年级下数学教案解方程 篇8

一、教学内容:

课本105页-106页的内容及相应练习。

二、教学目标:

教养目标:使学生通过实例,根据运算的意义,掌握两个相同字母相加减的运算;学会解带有两个相同字母的方程,为用方程解应用题打下基础。

教育目标:通过学习,从而拥有热爱科学,不畏困难、学好基础知识的精神。

发展目标:学会在讨论和交流中探究掌握知识,学会初步的集合、对应等数学思想。

三、教学重点、教学难点:

重点:借助插图,从直观上理解ax±bx=(a±b)x的计算方法及方程的解法。

难点:熟练计算ax±bx,尤其是当b=1时的计算方法。

四、教学准备:

多媒体课件

五、教学过程:

一、导入。

情景:2003年10月15,中国航天飞行第一人杨利伟带来了成功回归的信息,你的心情怎么样?你也想到太空去看看吗?今天我们就一起出发到太空遨游!

1、出示:一个工地用汽车运土,每辆车运5吨,一天上午运4车,下午运3车,这一天共运土多少吨?

分析题意,学生解答后出示两种解法:5×(4+3) 5×4+5×3

2、导入新课。

情景:飞船升空,布置任务1。

出示学习目标1:学习用含有两个相同的字母的式子表示的数量关系及解简易方程。板书课题。

二、探究新知:

1、教学例5。

出示例5改编题:本次任务需要用太空车运送外星泥土,每辆车运x吨,一天上午运4车,下午运3车,这一天共运土多少吨?

(1)小组合作交流:(出示讨论提纲)

A、每车运土x吨,怎样求上午运土多少吨?下午运土多少吨?

B、怎样求运土的总吨数?还可以怎样求?

课件出示:4x+3x (4+3)x

个别提问:为什么可以列出(4+3)x?先求4+3,求出什么?

(2)4x+3x和(4+3)x有什么关系?这实际应用了什么运算定律?4x表示几个x,3x表示几个x?(4+3)x实际就是几个x?所以这个式子的结果就是7x。

(3)想一想,如果把问题改成上午比下午多运多少吨?应怎样列式?

同位讨论:4x-3x的结果是多少,为什么?1x通常怎样表示?

(4)师小结:当碰到有两个相同字母的式子,我们可以根据乘法分配律把公因数提取,并把不是公因数的数字相加减,从而算出结果。

(5)完成105页做一做。

3、教学例6。

情景:出示任务2。出示例6。

(1) 小组讨论:这是个含有两个相同字母的方程。第一步你你该怎样解答?

(2) 你能把它转化为简单的方程吗?

(3) 学生发表意见后板书解题过程,提醒学生注意格式,全班口头检验。

(4) 完成106页做一做。

(5) 小结:解带有两个相同字母的方程,我们可以根据乘法分配律,将相同因数提取,不同因数相加减,从而转化成最简单的方程解答。

(6) 反馈练习:判断题:b+0.1b=0.1b吗?5x-x=5吗?

三、巩固练习。

情景:看到同伴被外星人抓去,你能闯三关把他们救出来吗?

练习1:书本第107页第3题。

练习2:书本第107页第4题。

读题,分析题意:

成人有多少人?(x人)儿童有多少个x个人?共80人是什么意思?

练习3:书本第108页第6题(2)

题目要求列方程解答,第一步要先怎样做?解设什么是x?

四、小组竞赛。

情景:你们所掌握的数学知识真让我佩服,欢迎地球的朋友们一起来探索宇宙的奥秘,宇宙中含有无数美丽的恒星,如果谁最快能帮助我解决下面的题目,我就把其中的一颗星星送给你们,努力呀!

1、小组合作完成书本108页第7题,先思考应怎样做?让最快想到方法的同学先讲讲解题方法。最快完成的同学切换成投影方式奖星星。

2、小组合作完成108页第10题。把答案贴到展示板上,如时间不够可下课时让同学自己评评哪一组的方程列得快、列得好。能答对的小组老师也每人送他一颗星星。

五、总结。

1、这节课你有什么收获?你还想利用方程来解决什么问题呢?

2、你为什么能看到这美好的太空画面,如果人类科技落后,能看到吗?你知道吗,数学中的方程是解决科学难题的基本工具,你想把这工具掌握在手里吗?希望同学们在五彩缤纷的未来中能亲眼看到真正的太空,到时候再给虞老师讲讲你的感受,可以吗?有信心吗?

五年级下数学教案解方程 篇9

教学内容:

解简易方程例4(课本第110页)练习二十七第5一9题

教学目的:

⒈进一步掌握转化的思路,正确解答二步计算的方程。

2.在掌握ax±b=c的方程解法的基础上,学会用列方程的方法解答二步计算的文字题。

3.养成分析的习惯,训练严谨的学习态度。

教学过程:

一、复习

⒈解下列各方程,并说明解题的思路与解法根据。

(1)3.8一x=2.9(2)5x=12.5(3)3.8一4x=2.9(4)3×7十5x=42.5

小结:(1)一⑵是最基础的简易方程。只要根据四则互逆关系,就可以求解;⑶一⑷比前二题稍复杂,只要把ax看作一个数,那么二步的问题就转成我们最熟悉的基本方程来解答。

2.用方程表示下列各题的数量关系,并填在横线上:

(1)x的2倍与3.5的和是7.3:

(2)从30里减去x的1.5倍,差是18:

(3)一个数的6倍减去35,差是13:

小结:这些题,如果列综合算式来解答,恐怕不是一件易事,但当我们用方程列式时,却没有那种难的感觉,在方程里,逆向问题变顺向;也就不难了。

二、新授

揭示新课内容;

转化的思路,给我们的解题带来了很大的方便,这节课我们沿着这样的思考方法,继续解简易方程:

板书课题:解简易方程

1.教学补充例:

解方程X一0.8+4=9

(1)分析题意;能不能说出这个方程所表达的相等关系是什么?

很显然方程表示X减去0.8的差加上4得9。

想一想怎么转化,使得这个方程解得更顺些?

让学生议一议,最后取得共识:是应当把X一0.8看作一个加数,问题就好办多了。

⑵议出了基本思路后,可由学生自己尝试解答。

师巡视,确定一生板演:

解:把X一0.8看作加数,那么

X-0.8=9-4

X-0.8=5

X=5十0.8

X=5.8

全班一块用口头检验一下:5.8一0.8+4=5十4=9(正确)

小结比较:前面各题,我们通常把aX看作一个数,而本题则是把(Xl一0.8)的差看作一个数,把题顺利拿下了,说明转化应根据题目的具体情况而定。

(3)完成做一做的1一2解方程X+15一21=6和4(X一0.8)=9

想一想:这两题方程表达的是什么意义,可以把谁看作一个什么数来转化?

师巡视后,作简要的讲评。

⒉例4的教学。

一个数的6倍减去35,差是13,求这个数。

分析:这个问题所提供的相等关系是什么,

根据课复习的第2个题组的训练,学生不难得到,这样可以放手让学生自己解答,只要在格式上注意强调设题即可。

尝试作业后,师可规范板出:

解:设这个数是X。

6X一35=13

把6X看作被减数

6X=13+35

6X=48

X=48÷6

X=8

(口头检验)

3,把例5改成“一个数的6倍减去7和5的积,差是13”该怎样解?(即“做一做”的题练)

学生一看就明白它比例5仅是把35用7和5的积转换而已。虽然,第一步只消先算出7X5的积得35,其余就是完全的例5。

人这个变式,也让学生充分看到多步方程的演变内幕,深化对方程变换的方法的理解。

三、巩固练习

第一层次:形成性练习

完成练习二十六的5的前两行和6(l一2)

其中第5题只要求写出转化的第一步方案,暂不解答。集体订正后,师做简要的讲评。

第二层次:巩固性练习

完成练习二十六第5题和第7题。

师讲评

四、全课总结

1.到本课止,我们对二步解答的方程的解法有什么进一步的认识?(可以把积看作一个数,还能把和、差同样处理)

2.应该养成自觉检验的好习惯,它是提高正确率的重要环节;检验应当回到原题上,才是彻底的真正意义上的检验。

作业设计

一、解下列各方程。(第1一2题要求写出检验)

1.5x+32=672.8×15一12x=0

3.0.85x一1.2=7.34.4.8×2.5+8x=20

二、列方程解答下列各题。

1.甲数的3.5倍与乙数的差是2.8,如果乙数是0.7,甲数是多少?

2.甲数的3.5倍与乙数的和是2.8,如果甲数是0.2,乙数是多少?

板书设计:

解简易方程

例4一个数的6倍减去35,差是13,求这个数?

教后感:

解方程的教案通用


以下是我们为大家整理的“解方程的教案 ”,相信您在阅读网页内容后有所收益。每个老师不可缺少的课件是教案课件,老师还没有写的话现在也来的及。 教案课件是教学计划的重要组成部分,必须梳理清晰。

解方程的教案 篇1

教学目标

1.使学生在解决实际问题的过程中,理解并掌握形如ax+b=c方程的解法,会列上述方程解决两步计算的实际问题。

2.使学生在观察、分析、抽象、概括和交流的过程中,经历将现实问题抽象为方程的过程,进一步体会方程的思想方法及价值。

3.使学生在积极参与数学活动的过程中,养成独立思考、主动与他人合作交流、自觉检验等习惯。

教学重点:理解并掌握形如ax+b=c方程的解法,会列方程解决两步计算的实际问题。

教学难点:如何指导学生在观察、分析、抽象、概括和交流的过程中,将现实问题抽象为方程。

教学过程

课前谈话导入:同学们,经调查,我们班大部分同学的年龄是12岁(虚岁),也可以通过推理推算出来,7岁入学,在学校学了五年,正好是12岁。老师今年是39岁,师在黑板上板书39和12。下面请同学比较一下老师和你的年龄,并用一句话把比较的结果说出来,注意启发引导学生说出:“老师的年龄比我年龄的3倍还多3岁”,“老师的年龄比我年龄的4倍少9岁”。两种说法都可以。接着问,明年呢?“老师的年龄比我年龄的3倍还多l岁”。

【设计意图】通过学生熟悉的年龄话题引入,并训练学生对两数大小比较,为新课分析数量关系作理解铺垫。把抽象的数量关系分析生活化,利于学生进入学习情境。

一、在现实问题情境中分析数量关系,列出方程,探索解方程的方法——教学例1

(一)在情境中分析数量关系.提出问题

1.师谈话进入情境:孙悟空跟随师父历尽千辛万苦从西天取来大量经书,藏在古城西安的大雁塔中。大雁塔和小雁塔是著名的古代建筑。(出示大雁塔和小雁塔的图片)这节课.我们先来研究一个与这两处建筑高度有关的数学问题。(出示例1的一部分“西安大雁塔的高度比小雁塔高度的2倍少22米”,暂不出示所求的问题)

2.师让生读出这段文字并提问:谁比谁少22米?让学生明白“大雁塔高度和小雁塔高度的2倍比,少22米,可以把小雁塔高度的2倍看做一个整体。”

师进一步启发:这句话清楚地说明了大雁塔和小雁塔高度之间的关系,请同学们用数量关系式表示出大雁塔和小雁塔高度之间的相等关系。

出示学生可能想到的等量关系式:①小雁塔的高度×2-22=大雁塔的高度;②小雁塔的高度×2=大雁塔的高度+22;③小雁塔的高度×2-大雁塔的高度=22。

3.引导学生观察第一个等量关系式。师:经测量小雁塔高度是43米,你能利用这个关系式口答出大雁塔的高度吗?学生口答,师板书:2×43-22=64(米)。

【设计意图】运用数量关系直接求出高度,体会顺向思维。既感受数量关系的价值,又为下面的逆向思维作出对比准备,更重要的是让学生在下面列方程时也要像这样顺向思维进行思考。

4.师:如果知道大雁塔的高度是64米,你能提出什么问题?

生:小雁塔的高度是多少米?(出示“大雁塔高度是64米”和“小雁塔高度是多少米?”把例1补充完整。)

【设计意图】在清楚数量关系的基础上,学生已经把问题迁移到需要用逆向思维考虑解决的问题上。让学生自己提出问题,突出解决问题是学生自己的学习需求,也为他们探索解答作出心理准备。

(二)根据等量关系布列方程,同时唤起有关方程的旧知

1.生观察第一个等量关系式,师提问:在这个等量关系式中,这时哪个数量是已知的?哪个数量是我们去求的?

追问:让你求小雁塔的高度怎么办呢?我们可以用什么方法来解决这个问题?

生:可以列方程解答。如果学生列出正确的算式进行解答,师给予肯定,再引导学生用方程的方法解决问题。

师明确方法,并提示课题:这样的问题可以列方程来解答。今天我们继续学习列方程解决实际问题。(板书课题:列方程解决实际问题)

2.师谈话:我们在五年级已经学过列方程解决简单的实际问题,结合今天我们学习的内容,谁来说一说列方程解决实际问题一般要经过哪几个步骤?

生能大概说出“写设句、列方程、解方程和检验等即可。

3.让学生先自主尝试设未知数,并根据第一个等量关系式列出方程。

解:设小雁塔高x米。

2x-22=64

【设计意图】经历由现实问题抽象为方程的过程。在建构数学模型的过程中,先由情境抽象成数量关系式,再根据数量关系式列出方程,实现了学生在逐步抽象的过程中学习数学的方法,体现了数学的简洁性和学习数学的必要性。

(三) 自主探索解方程的方法,体会转化的思想

提问:这样的方程,你以前解过没有?运用以前学过的知识,你能解出这个方程吗?

交流中明确:首先要应用等式的性质将方程两边同时加上22,使方程变形为2x=?,即把用两步计算的方程转化为一步计算,变新知为旧知,再用以前学过的方法继续求解。

要求学生接着例题呈现的第一步继续解出这个方程。学生完成后,组织交流解方程的完整过程,核对求出的解,并提示学生进行检验,最后让学生写出答句。

【设计意图】让学生在自主探索方程解法的过程中,体会运用转化策略,把两步转化成一步、复杂转化成简单、新知转化成旧知。

(四)思考其他方法,感受解法的多样化

1.提问:还可以怎样列方程?

学生列出方程后,要求他们在小组内交流各自列出的方程,并说说列方程的根据,以及可以怎样解列出的方程。如果学生不能列出其他方程,师不能作硬性要求。

2.引导小结:刚才我们通过列方程解决了一个实际问题。你能说说列方程解决问题的大致步骤吗?其中哪些环节很重要?

引导学生关注:(1)要根据题目中的信息寻找等量关系,而且一般要找出最容易发现的等量关系;(2)分清等量关系中的已知量和未知量,用字母表示未知量并列方程;(3)解出方程后要及时进行检验。(师板书:找等量关系;用字母表示未知数并列方程;解方程,检验。)

【设计意图】通过解法的多样化,使学生明白可以根据自己学习实际和思维习惯分析数量关系,列方程解决问题,同时训练学生思维,拓展学生解决问题的思路。

二、自主尝试列方程解决实际问题,注意比较例题,进一步形成解决问题模式——自主合作学习“练一练”

“杭州湾大桥是目前世界上最长的跨海大桥,全长大约36千米,比香港青马大桥的16倍还长0.8千米。香港青马大桥全长大约多少千米?”

谈话:我们已经初步掌握列方程解决稍复杂的实际问题的方法和步骤,下面就请同学们试着解决一个实际问题。做“练一练”。

1.先让学生读题,并设想解决这一问题的方法和步骤,然后让学生独立完成。

2.小组合作交流。交流前要出示交流顺序提示:(1)说说找出了怎样的等量关系;(2)根据等量关系列出了怎样的方程;(3)是怎样解列出的方程的;(4)对求出的解有没有检验。

3.最后让学生核对自己的答案,检查自己的解题过程。

针对学生不同的思路和方法(包括用算术方法),教师在提出主导意见的基础上要予以肯定。

4.启发思考:这个问题与例1有什么相同的地方?有什么不同的地方?提炼出列方程解决稍复杂的实际问题的基本思路和解形如ax±b=c方程的一般方法。

【设计意图】让学生在独自解决问题的过程中学会解决问题,在探究中学会合作。

三、运用方程策略独立解决实际问题,牢固形成解决问题模式(建构牢固的数学模型)——做“练习一”的第1~5题

谈话:在列方程解决问题的过程中,有两个方面要引起我们重视,一个是寻找等量关系,能用含有字母的式子表示具体数量;另一个就是解方程。下面我们就对这两个方面进行进一步的学习和训练。

1.做“练习一”第1题

“解方程。4x+20=56 1.8+7x=3.9 5x-8.3=10.7”

先让学生说说解这些方程时,第一步要怎样做.依据是什么,然后让学生独立完成。交流反馈时,要在关注结果是否正确的同时,了解学生是否进行了检验。(三个同学到黑板上板演,其他同学选做一题。)

2.做“练习一”第2题

在括号里填上含有字母的式子。(1)张村果园有桃树x棵,梨树比桃树的3倍多15棵。梨树有( )棵。

(2)王叔叔在鱼池里放养鲫鱼x尾,放养的鳊鱼比鲫鱼的4倍少80尾。放养鳊鱼( )尾。

学生独立完成后,再要求学生说说写出的每个含有字母的式子分别表示哪个数量,是怎样想到写这样的式子的?(把题目中的多、少改成少、多让学生再表示)

3.做“练习一”第3题

“猎豹是世界上跑得最快的动物,时速能达到110千米,比猫最快时速的2倍还多20千米。猫的最快时速是多少千米?”

谈话:同学们,我们既能准确地找到等量关系,又能正确解方程,那么我们就具备了解决实际问题的能力了。就请同学们独立解决一个问题。

学生独立完成后,指名说说自己的思考过程,进一步突出要根据题中数量之间的相等关系列方程。

4.课堂作业:做“练习一”的第4题和第5题。

“北京故宫占地大约72公顷,比天安门广场的2倍少8公顷。天安门广场大约占地多少公顷?”

“世界上最小的鸟是蜂鸟,最大的鸟是鸵鸟。一个鸵鸟蛋长17.8厘米,比一只蜂鸟体长的3倍还多1厘米。这只蜂鸟体长多少厘米?”

【设计意图】在巩固训练和应用策略阶段采用先部分后整体的练习步骤,进一步深化认识,并在体验中达到知识和技能的内化。

四、总结列方程解决问题的思路、方法,体会方程的思想和价值——学生拓展设计

1.学生拓展设计

师:请同学们回到课前,我们师生关于年龄的对话中,看39岁和12岁,你能设计一个用今天所学的策略和方法解答的实际问题吗?

师要多听学生的发言.考虑学生所说数量之间的关系以及提出问题的贴切性并作出评价和概括。

2.今天这节课我们学习了什么内容?你有哪些收获?还有没有疑惑的地方?教师同时总结,方程是我们解决问题很重要的一个策略,正确地运用方程,能帮助我们解决很多实际问题,尤其是用算术方法不容易解决的一些问题。我相信同学们经过今天的学习,对方程会有更深的认识,并在以后的学习和运用中进一步学好和用好方程。

【设计意图】在照应课前学习和学生拓展运用的基础上,充分体会方程的思想和价值,把学生的认识进一步提升,对方程有较为全面的理解和掌握。

解方程的教案 篇2

解方程

(一)教学目标:

1、通过动手操作天平,发现等式两边都加上(或减去)同一个数,等式仍然成立。

2、能利用等式的性质来解简单的方程。教学重点:利用等式的性质来解简单的方程。

教学难点:动手操作,得出: 等式两边都加上(或减去)同一个数,等式仍然成立。教学过程:

一、复习旧知

1、课件出示以下问题:(1)说一说什么是方程?(2)从下面的算式中找出方程。

24+m=100 33×3-n=20 80-y 130a+50=180 x-9×2>10 67-b=0.24

2、如果在方程24+m=100左右两边同时加上100,方程会发生怎样的变化?这节课我们就一起来研究这个问题。【板书课题:解方程

(一)】

3、仔细观察、思考。(1)举手发言。(2)独立解答,全班汇报。

4、尝试说一说。

二、动手操作

探究新知

一、等式性质

1、活动一

(1)引导学生观察天平,两边同时放5克的砝码,指针在中间,这说明什么?用一个数学算式怎么表示天平两边的情况?(2)在左侧再放一个2克的砝码,你发现了什么?如何能让天平平衡?

(3)(课件出示图)左侧有一个重x克的砝码,右侧有一个重10克的砝码,这时天平是平衡的,你能写出一个等式吗?(4)结合上面的操作活动,请认真观察这几道算式,把你的发现与同伴分享一下。

总结:A、天平的两侧都加上相同的质量,天平仍平衡。

B、等式两边都加上同一个数,等式仍然成立。

2、活动二

(1)引导学生思考,并动手操作:如果天平两边都减去相同的质量,天平会怎样?

(2)结论:等式两边都减去同一个数,等式仍然成立。

三、规律运用

1、解方程

一、做好活动准备(1)思考,回答。5=5(2)天平倾斜,在另一侧也加上一个2克的砝码。

5+2=5+2(3)5+x=5+10(4)合作交流,全班交流。

2、(1)动手操作,发现规律:两边同时减去相同的质量,天平仍然平衡。

(2)小结:等式两边都减去同一个数,等式仍然成立。

四、学会运用。

1、解方程

课件出示例题:x+2=10,引导:你能运用发现的规律解这个方程吗?

2、检验方程的解。

怎样可以知道我们求出的x的值是否正确呢?让学生自由交流,再引导学生选出最快捷的方法。

3、解释“解方程”和“方程的解”。

把方程中的未知数求出来的过程就是解方程;求出的最后得数叫做方程的解。学生选择喜欢的方法解方程。

X+2-2=10-2

X=8

4、自由交流。选择最快捷的方法:把算出的结果放在原方程中算一算,看等式是否成立。

5、强化记忆。

五、巩固运用

1、课件出示第68页题目:

解方程:y-7=12 23+x=45 2完成教材第69页“练一练”第5题。(1)指导学生读题,理解题意。

(2)独立完成解方程,全班交流订正,并说一说是怎么相的。

解方程:y-7=12,根据等式的性质,在方程左右两边都加a、上7,得出y=19 b、解方程:23+x=45,根据等式的性质,在方程左右两边都减去23,得出x=22

3、完成练习。

(1)读题,理解题意。根据线段图提供的数学信息,完成练习。(2)独立思考,小组交流,全班交流。

(200-x)米表示的是线段a的长度。(200+y)表示的是整条线段的长度。列方程:200-x=150 200+y=500 小结: 这节课我们通过动手操作天平,发现了在等式两边都加上(或减去)同一个数,等式仍然成立,并学会了运用等式 的性质 来解方程。作业布置:

1、完成“练一练”1—4题。

2、解方程:x+2.1=4.8 m-3=7 13+y=17.5 板书设计:

解方程

(一)5=5 x=10 12=12 x+5=15 5+2=5+2 x+5=10+5 12-2=12-2 x+5-5=15-5

等式两边都加上(或减去)同一个数,等式仍然成立

解方程的教案 篇3

   解方程例2、3教学设计

课题: 第五单元:简易方程—解方程(1) 教学内容:教材P68例2、例3及练习十五第2、7题。 教学目标:

知识与技能:

1、使学生会利用等式的性质解形如ax=b和a±x=b的方程。养成及时检验的学习习惯

2、学习过程中,是学生感受到转化思想在数学中的应用,培养学生积累知识的学习习惯。

教学重点:会解形如ax=b和a±x=b的方程。

教学难点:理解形如a±x =b的方程原理,掌握正确的解方程格式及检验方法。

教学方法:引导法、观察法、猜想验证法。

教学准备:多媒体课件。

教学过程

一、回顾导入

出示:解方程 3+x=18 x+15=34 x-24=42

你是如何进行求解的(应用等式的性质),如何知道你所求出的解一定是正确的'呢(检验)?

二、探究新知

1.出示教材第68页例2情境图。

让学生观察图,理解图意并用等式表示出来:3x =18

引导学生:通过刚才解方程的经验尝试解决这个题。

学生自主尝试解决,教师巡视指导。

汇报解题过程:等式的两边同时除以3,解得x =6。

根据学生的回答,师板书:3x =18

3x ÷3=18÷3

x =6

质疑:你是根据什么来解答的?

引导小结:根据等式的性质:等式两边同时乘或除以一个不为O的数,左右两边仍然相等。

让学生尝试检验计算结果是否正确。

2.出示教材第68页例3,并让学生尝试解答。

由于此题是“a-x ”类型,有些学生在做题时可能会出现困难,不知道怎么做。有些学生可能会在等号两边同时加上“x ”,但x 在

等号的右边,不会继续做了。

教师可以引导学生思考,根据等式的性质,只要等式的两边同时加或减相等的数或式子,左右两边仍然相等,那么我们可以同时加上“x ”。

通过计算让学生发现,等号左边只剩下“20”,而右边是“9+x ”。 继续引导学生思考:20和9+x 相等,可以把它们的位置交换,继续解题。学生继续完成答题,汇报。根据汇报板书:

20-x =9请学生自主尝试检验:方程左边=20-x 20-x+x=9+x =20-11

20=9+x =9

9+x =20 =方程右边 9+x -9=20-9

x =ll

3.讨论:解方程需要注意什么?让学生自主说一说,再汇报。 小结:根据等式的性质来解方程,解方程时要先写“解”,等号要对齐,解出结果后要检验。

三、巩固拓展

1.完成教材第68页“做一做”第1题。

2.完成教材第68页“做一做”第2题。学生自主计算解答,并集体订正答案。

四、课堂小结。师:这节课你学会了什么知识?有哪些收获? 引导总结:解方程时是根据等式的性质来解。求出解后要检验。 作业:教材第70~71页练习十五第2、7题。

板书设计: 解方程(1)

例2:例3:

3x =1820 - x =9

3x ÷3=18÷320- x + x =9+x

x=6 20=9+x

9+x =20

9+x -9=20-9

x =11

解方程的教案 篇4

教学目标

1、结合具体的题目,让学生初步理解方程的解与解方程的含义。

2、会检验一个具体的值是不是方程的解,掌握检验的格式。

3、进一步提高学生比较、分析的能力。

知识重点解方程的规范步骤

教学难点比较方程的解和解方程这两个概念的含义

教学过程教学方法和手段

引入

(1)上一节课,我们学习了什么?

复习天平保持平衡的规律及等式保持不变的规律。

(2)学习这些规律有什么用呢?(用于解方程)从这节课开始我们就会逐渐发现到它的重要作用了。

教学过程一、解决问题。

出示P57的题目,从图上可以获取哪些数学信息?天平保持平衡说明什么?杯子与水的质量加起来共重250克。

能用一个方程来表示这一等量关系吗?得到:100+x=250,x是多少方程左右两边才相等呢?也就是求杯子中水究竟有多重。如何求到x等于多少呢?学生先自己思考,再在小组里讨论交流,并把各种方法记录下来。

全班交流。可能有以下四种思路:

(1)观察,根据数感直接找出一个x的值代入方程看看左边是否等于250。

(2)利用加减法的关系:250-100=150。

(3)把250分成100+50,再利用等式不变的规律从两边减去100,或者利用对应的关系,得到x的值。

(4)直接利用等式不变的规律从两边减去100。

对于这些不同的方法,分别予以肯定。从而得到x的值等于150,将150代入方程,左右两边相等。

二、认识、区别方程的解和解方程。

得出方程的解与解方程的含:

像这样,使方程左右两边相等的未知知数的值,叫做方程的解,刚才,x=150就是方程100+x=250的解。

而求方程的解的过程叫做解方程,刚才,我们用这几种方法来求100+x=250的解的过程就是解方程。

这两个概念说起来差不多,但它们的意义却大不相同,它们之间的区别是什么呢?

方程的解是一个具体的数值,而解方程是一个过程,方程的解是解方程的目的。

三、方程的检验

P58例1P59例2。

怎么判断X=6是不是方程的解?将x=6代入方程之中看左右两边是否相等,写作格式是:方程左边=x+3

=6+3

=9

=方程右边

所以,x=6是方程的解。

课堂练习独立完成练习十一第4题,强调书写格式。

小结与作业

课堂小结这节课你学到了什么?(1)解方程和方程的解有什么区别(2)解方程要按照什么样的格式来写?(3)如何检验呢?格式又是怎么样的?

课后追记

本课应用方程平衡原理来解方程,要注意的是检验方程的时候,最后一句话,所以××是方程的解(这里的××学生容易写成方程右边的值)

解方程的教案 篇5

教学目标:

1.通过分析具体问题中的数量关系,了解到解方程作为运用方程解决实际问题的需要.正确理解和使用乘法分配律和去括号法则解方程.

2.领悟到解方程作为运用方程解决实际问题的组成部分.

3.进一步体会同一方程有多种解决方法及渗透整体化一的数学思想.

4.培养学生热爱数学,独立思考,与合作交流的能力,领悟数学来于实践,服务于实践. 教学重点:正确去括号解方程

教学难点:去括号法则和分配律的正确使用.

教学方法:引导发现

教学设计:

一、引入:

(读教材156页引例)

引导学生根据画面内容探讨解决问题的方法.针对学生情况,如有困难教师直接讲解.

学生观看画面:两名同学到商店买饮料的情景.

如果设1听果奶x元,那么可列出方程4(x十0.5)+x=20-3

教师组织学生讨论.

教材“想一想”中的内容:首先鼓励学生通过独立思考,抓住其中的等量关系:买果奶的钱+买可乐的钱=20-3,然后鼓励学生运用自己的方法列方程并解释其中的道理.

①学生研讨并交流各自解决问题的过程.

②学生独立完成“想一想”中的问题(2).

二、出示例题3并引导学生探讨问题的解决方法.

引导学生对自己所列方程的解的实际意义进行解释.

出示随堂练习题,鼓励学生大胆互评.

①独立完成随堂练习.

③四名同学板演.

③纠正板演中的错误并总结注意事项.

1、自主完成例题

2、小组内交流各自解方程的方法.

3、总结数学思想.

三、出示例题4,教师首先鼓励学生独立探索解法,并互相交流.然后引导学生总结,此方程既可以先去括号求解,也可以视作关于(x-1)的一元一次方程进行求解.(后一种解法不要求所有学生都必须掌握.)

1、自主完成例题

2、小组内交流各自解方程的方法.

3、总结数学思想.

四、出示随堂练习题.

①独立完成练习题.

②同桌互相检查.

出示自编练习题:下面方程的解法对不对?如果不对应怎样改正?

①解方程:2(x+3)-5(1-x)=3(x-1)

②解方程:6(x+8)一6=0

①小组间比赛找错误.

②讨论交流各自看法.

③选代表说出错误的原因,并总结解本节所学方程的注意事项.

五、小结

1、做出本节课小结并交流.

2、说出自己的收获.

给予评价:

引导学生做出本节课小结.

七、板书设计

八、教学后记

解方程的教案 篇6

教学内容:教材P69例4、例5及练习十五第6、8、9、13题。

教学目标:

知识与技能:巩固利用等式的性质解方程的知识,学会解ax ±b=c与a(x ±b)=c类型的方程。

情感、态度与价值观:在学习过程中,进一步积累数学活动经验,感受方程的思想方法,发展初步的抽象思维能力。

教学重点:理解在解方程过程中,把一个式子看作一个整体。

学生自主解答练习,并说一说是怎么做的。并在订正的过程中,规范书写。

1.出示教材第69页例4情境图。

引导学生观察,并说一说图意。再让学生根据图列一个方程。

学生列出方程3x +4=40后,让学生说一说怎么想的。

在学生说自己的想法时,引导学生说出把3个未知的铅笔盒看作一部分,4支铅笔看作一部分。

2.让学生试着求出方程的解。

学生在尝试解方程时,可能会遇到困难,要让学生说一说自己的困惑。

也有学生可能会想到,把3个未知的铅笔盒看作一部分,先求出这部分有多少支,再求一盒多少支。(如果没有,教师可提示学生这样思考。)

提问:假如知道一盒铅笔盒有几支,要求一共有多少支铅笔,你会怎么算?

学生会说:先算出3个铅笔盒一共多少支,再加上外面的4支。

师小结:在这里,我们也是先把3个铅笔盒的支数看成了一个整体,先求这部分有多少支。解方程时,也就是先把谁看成一个整体?(3x )

让学生尝试继续解答,订正。

让学生同桌之间再说一说解方程的过程。

让学生尝试解方程,再在小组内交流自己的做法,然后集体订正,学生可能会有两种做法:

(1)利用例4的方法来解。

让学生说一说自己的思考,重点说一说把什么看作一个整体?

(先把x -16看作一个整体。)板书计算过程:

(2)用运算定律来解。

引导学生观察方程,有些学生会看出这个方程是乘法分配律的逆运算。可以运用乘法分配律把它转化成我们学过的方程来解。

4.让学生检验方程的解是否正确。先说一说如何检验,再自主检验。

1.完成教材第69页“做一做”第1题。

先让学生分析图意,再列方程解答。解答时,让学生说一说自己的想法,把谁看作一个整体。(可以把5个练习本的总价5x 看作一个整体。)

2.完成教材第69页“做一做”第2题。

先让学生自主解方程,再集体订正。

3.完成教材第71页“练习十五”第8题。

先让学生说一说图意,再列方程解答。特别是第一幅图,要提醒学生天平两边的砝码不一样重,审题要细心。第二幅图,学生可能会列出方程30×2+2x =158,再引导学生观察有两个30和两个x ,可以运用乘法分配律。

这节课你学会了什么知识?有哪些收获?

引导总结:1.在解较复杂的方程时,可以把一个式子看作一个整体来解。

2.在解方程时,可以运用运算定律来解。

作业:教材第71~72页练习十五第6、9、13题。

x -16=4 x -32+32=8+32 (把2x 看作一个整体)

解方程的教案 篇7

学习目标:

1、通过操作、演示,进一步理解等式的性式,并能用等式的性质解简单的方程,在解方程的过程中,初步理解方程的解与解方程。

2、通过创设情境,经历从具体抽象为代数问题的过程,渗透代数化思想,并通过验算,促进良好学习习惯的养成。

3、在观察、猜想、验证等数学活动中,发展学生的数学素养。

1、研究例1:

猜球游戏:出示一个乒乓球盒,猜里面有几个球?引导学生用字母来表示球数?

x

导语:要想精确知道多少个球?再给大家一些信息(课件出示:天平左边盒子和二个球,右边有七个球)

设问:你们知道x等于多少吗?那这个答案4你们是怎么想出来的吗?说说你们的想法?

预设:a、7-4=2;b、4+2=7,所以x=4,c、左右二边都拿掉二个乒乓球,右边还剩下4个,所以x=4

追问:你怎么想到是拿到二个乒乓球,而不是拿到一个或者三个呢?

尝试验算:板书:左边=4+2=6=右边,所以我们就说x=4是方程的解,板书方程的解,尝试说说方程的解;刚才我们求方程的解的过程叫做解方程。(可以自学书本)

小结:刚才我们用了好多方法来解方程,重点研究了第三种解方程的方法,这种方法我们用到了什么知识?课件再次演示后,得出方程的两边同时去掉相同的数,左右两边仍相等。

想一想:如果要用天平的乒乓球,如何来表示出这个方程?

用小棒操作后交流后想法:方程的左右二同时除以一个相同的数(零除外),左右二边仍旧相等。

展示,课件演示后小结:方程的左右二边可以同时除以相同的数(零除外),左右二边仍旧相等,追问得到还可以同时乘以一个相同的数

总结:解方程时,我们都是想使方程的一边只剩下一个x,而且在这个过程中还要使方程保持平衡,我们可以采用……

2、后面括号中哪个是x的值是方程的解?

四、总结:

五、机动:研究练习2中的第二题,怎么用今天的方法来解方程。

《解简易方程》是数与代数领域中的一个重要内容,是“代数”教学的起始单元,对于渗透与发展学生的代数化思想有着极其重要的作用。本节课教材在编写上为了实现中小学的衔接,改变了以往利用“加减法逆运算和乘除法逆运算”而是利用天平原理即等式的性质来解方程,由于学生在前面已经积累了大量的感性经验(逆运算)来解方程,对于今天运用天平的原理来解方程,造成了极大的干扰,所以在本节课中我力图直观,让学生在直观的操作与演示中自主建构。同时借助观察、操作、猜想与验证,一方面来促使学生进一步理解等式的性质,能利用等式的性质来解方程,同时也让学生抽象方程,解释算理中来经历代数的过程,发展学生的数感及数学素养。

解方程的教案 篇8

解方程练习

教学内容:青岛版五年级上册73-74页。教学目标:

1.通过练习,进一步理解和掌握简易方程的解法,解方程的依据(等式的性质)。并能正确解简易方程。养成自觉检验的良好习惯。

2.在练习时要重视培养学生先找等量关系,再列方程的意识。强化用代数思维列方程。

3.培养分析推理能力和思维的灵活性,提高解方程的能力。4.培养学生梳理知识的能力与习惯,能将所学知识系统化。教学重点:进一步理解和掌握简易方程的解法。

教学难点:培养分析推理能力和思维的灵活性,提高解方程解决问题的能力。

教学准备:

学生:整理简易方程的相关知识和题型 教师:有关练习的课件。教学过程:

一、汇报展示学生对本单元知识的梳理情况

教师:这一单元我们在了解珍稀动物的同时学习了简易方程的相关知识,课下同学们对这一单元的知识进行了整理,哪个小组的同学愿意到前面来汇报展示一下你们的整理情况?

学生汇报展示。

预设:学生可能采用知识树或统计表或手抄报的形式。在汇报质疑互答的互动教学中完整梳理本单元的知识:方程的意义、列方程的关键——找等量关系式、等式的性质、各类方程的解法„„

二、基础练习1.解方程练习(第3列验算)

2x+3=15 x-2=30 4y+7y=33 0.5x=12 3.8x-x=11.2 4y+7=33 以比赛的形式进行,订正时重点说说各类方程的算理解法,并区别第三列两个方程的解法。学生体会做题时仔细观察和验算的重要性。

2、列方程解答(课本73页第7题)

课件逐个出示题目,练习时让学生讨论设哪个未知量为x方便,明确后再找等量关系,列方程解答。

三、综合应用练习1.(课本73页第5题)

这道题是复习前面知识的,练习时放手让学生独立完成。完成后互相交流解决问题的思路。

2.(课本73页第6题)

注意引导学生根据实际情况灵活选择解决问题的方法。第(1)题简单,列方程和算术法都可以。第(2)题也是顺向表述,预设同学们可能有的用方程有的用算术法,可以通过比较来体会这道题用用算术法比较简单。

3.比较5、6两题体会在什么情况下用算术法解决问题简便,在什么情况下用方程解决问题简便。

4.结合学生现实生活解决问题(课本73页第8题)

练习时让学生自主选择合适的方法来解答。如果用算术法解答,需要逆向思维,很容易出现845+38-24这样的错误。如果用方程解决很容易找到“上学期人数+转入的人数-转出的人数=这学期人数”的等量关系式,设上学期有x人,列出方程x+38-24=845。引导学生通过比较体验用方程解决问题的优越性。

5.解决较复杂的问题,进一步体会方程的优越性(课本74页第9题)

这是一道求相遇时间的问题。在学习本单元前同步练习上就出现了这类练习,当时我们结合线段图,演示等很不容易推出了相遇时间=路程÷速度和的关系式才解决的。当时我就埋下了伏笔,说我们学完下一单元时还有更简便的做法。现在你会列方程来解答吗?引导学生找出等量关系式。预设有两种:王刚走的路程+李红走的路程=总路程或(王刚的速度+李红的速度)×时间=总路程,然后设相遇时间为x分,独立列方程解答。

三、开放性练习

2004年中国派出了历史上人数最多的代表团参加雅典奥运会。参赛的407名运动员中,有84名曾经代表国家参加过奥运会比赛。(1)女运动员有269名,男运动员有多少名?(2)年龄最大的运动员44岁,比最小的运动员年龄的3倍还 大2岁,最小的运动员有多少岁?(3)你还能提出什么问题

通过解决这一问题达到全面巩固知识和反馈本单元所学情况的目的。

四、总结评价

通过以上整理与复习你有什么收获,对自己这单元的学习进行评价与反思。预设:通过本单元的学习我知道了什么是等式,什么是方程,学会了利用等式的性质来解方程。列方程解决问题的关键是找等量关系式。解决问题时除了以前学的算术法还可以列方程解答。根据具体问题判断哪种方法简便,就用哪种方法。我在学习中还要学会更积极的思考„„

教师:同学们总结得很好,看到你们这么积极热情地投入到数学学习中老师非常高兴,希望大家掌握了列方程解决问题的法宝,能够联系生活实际解决更多以前不能解决的问题。让这个法宝服务于你的学习与生活。今后我们还会继续深入研究这个法宝。使用说明:

1、课后反思:我认为这节课的亮点是:

(1)布置学生课前自主梳理本单元知识,课上进行汇报展示。每个单元结束都整理,培养了学生梳理知识的能力,养成梳理知识的习惯,将所学知识系统化和内化。在汇报交流中也锻炼了口头表达能力,在质疑互答中提高参与的积极性和课堂的互动性。

(2)习题设计有梯度,提高课堂教学效益。设计不同层次的练习,学生学得轻松愉快,激发了学生学习的兴趣,调动了学生学习的积极性和主动性。

(3)在解决问题时重视培养学生先找等量关系,再列方程的意识。强化用代数思维列方程。给予学生充分的时间,注重学生自主探究、交流、讨论,注重了学生思维能力的培养。

2、使用建议。本教案是按照:整理相关知识—基础练习—综合应用—开放性练习—总结评价的思路环节进行设计的。教学时可以根据学生的具体情况对练习题加以更换或调整。

3、需破解的问题。能否再设计一个统领本课的情境串,使复习教学更有趣和高效。

解方程的教案 篇9

教学目标:

1、使学生初步理解“方程的解”、“解方程”的含义以及“方程的解”和“解方程”之间的联系和区别。

2、初步理解等式的基本性质,能用等式的性质解简易方程。

3、重视良好学习习惯的培养。

教学重点:

1、“方程的解”和“解方程”之间的联系和区别。

2、利用天平平衡的道理会解形如X±a=b的方程,并检验。

教学难点:理解形如X±a=b的方程原理,掌握正确的解方程格式及检验方法。

师:今天在上课前我们来玩一个游戏“我说你答”。以保持天平的平衡如“我在天平的右边增加一个橘子”;“我在天平的左边增加一个同样的橘子”;“天平的左边排球数量扩大到原数的2倍变成4个排球”,“天平的右边的皮球数量扩大到原数的2倍,变成8个皮球”…

师:同学们有这么多让天平平衡的方法,能概括一下让天平平衡的方法吗?

1.通过解方程,认识“方程的解”和“解方程”的两个概念。

师:老师在天平的左边放了一杯水,杯重100克,水重X克,一杯水重多少?

师:在天平的右边放了多少砝码,天平保持平衡呢?(教师边讲边操作100克、200克、250克)

师:这个方程怎么解呢?就是我们今天要学习的内容——解方程。(板书课题:解方程)

预设:生1:我有办法,可以用250-100=150,所以X=150.

生3: 老师我也有办法,我是这样想的,假如方程的两边同时减去100,就能得出X=150

师:课件探索验证一下。请看天平,怎样操作才使天平左边只剩X克水,而天平保持平衡。

生:我在天平的左边拿走一个重100克空杯子,在天平的右边拿走100克的砝码,天平保持平衡。

师:是的,XXX同学的想法是正确的,方程左右两边同时减100,(这样方程左边就只剩X)就能得出X=150。

师:根据刚才的实验,我们来认识两个新的概念———“方程的解”和“解方程”。

师:指着方程100+X=250说:“X=150”是这个方程的解。(板书:方程的解)

师:“方程的解”和“解方程”的两个解有什么不同?

小结:“方程的解”的解,它是一个数值。“解方程”的解,它是一个演算过程。

2.尝试解X-a=b形的方程。

生:天平左右两边同时放上3个方块,使天平左边刚好是X,天平保持平衡。

生:方程左右两边同时加3,使方程左边只有X,方程左右两边相等。

小结:“方程左右两边同时加3,使方程左边只有X,方程左右两边相等。”就是解这个方程的方法。

师:这个方程会解。我们怎么知道X=12一定是这个方程的解呢?

所以,X=12是方程的解。

小结:以后解方程时,要求检验的,要写出检验过程;没有要求检验的,要进行口头检验,要养成口头检验的习惯。力求计算准确。

你是怎么想的?

(2)考考你的眼力,能否帮他找到错误所在呢?

小结:解方程首先要写“解”, X每步都不能离,所有的等号要对齐,检验的习惯要牢记。

(5)完成课本59页做一做的第1题的`左边一小题写在书上。

追问:x=2.8带不带单位呢?让学生明白x在这里只代表一个数值,因此不带单位。

师:谁能说说解含有加法和减法的方程的步骤?(随着学生,课件显示全过程。)

b)方程左右两边同时加或减一个相同的数,使方程左边只剩X,方程左右两边相等。

c)求出X的值。

通过今天的学习,同学们有哪些收获?

教后反思:

前一阶段的教学,我发现孩子们还是比较喜欢学习数学的,特别对方程都有一种与生俱来的好奇心。他们总觉得天平能启发着他们去解决这么神奇的方程,真是非常有趣,学得效果也不错。今天在整节课的教学中,引入有序,思路清晰,环节紧扣。可是学生学习十分被动,课堂可以说是死气沉沉,真的有点不习惯孩子们这样,据我对学生的理解利用天平这样的事物原型来揭示等式的性质,把抽象的解方程的过程用形象化的方式表现出来,学生应该比较感兴趣的,原因在哪儿呢?课后查找原因:1、通过与学生的谈话发现学生过于紧张。2、教师缺乏调节课堂气氛手段。今后尽量要注重这方面的调节,兴趣是最好的老师,没有兴趣哪来的教学效果。

从学生作业反馈来看,学生深刻认识到:利用等式的性质解方程,看似麻烦,实则简单,不须思考各部分之间的关系。虽然这样教学学生有兴趣,效果比较理想,不仅一节课内完成了预订的教学任务,而且学生作业质量较高,仅二人书写格式有误。但也存在局限性,如a-x=b和a÷x=b,虽然教材没有要求解这类方程,但试卷和相应的练习有出现,因此,有必要特别利用一些时间给学生补充讲解这类方程解法。

解方程的教案 篇10

课题课时:5.2解方程

(二)课型:新授

授课教师:崇仁一中

陈永华

一、教学目标

1.进一步熟悉利用等式的基本性质解一元一次方程的基本技能.

2.在解方程的过程中分析、归纳出移项法则,并能运用这一法则解方程.

3.体会学习移项法则解一元一次方程必要性,使学生在动手、独立思考的过程中,进一步体会方程模型的作用,体会学习数学的实用性.二、教学过程

本节课设计了六个教学环节:第一环节:复习引入;第二环节:达标训练;第三环节:合作学习;第四环节:巩固提高;第五环节:课堂小结;第六环节:布置作业.

环节一:复习引入

内容:复习上节课用等式基本性质一解方程的过程,观察、分析、概括出移项法则.要求:解下列一元一次方程,学生先自主完成,然后以小组形式交流各种解法,要说明这样解的依据.(1)5x28 ;

2282. 解:方程两同时加上2,得5x

也就是

5x=8+2.方程两边同除以5,得

x=2.此题学生可能会用差+减数=被减数的方法(2)5x28x .

解:方程两都加上28x,得5x228x8x28x

也就是

5x-8x=2.化简,得

-3x=2.方程两边同除以-3,得

x=23.此题学生可能会用:被减数—差=减数;目的是把含有未知项放一边,已知数放一边. 设问1:在变形过程中,比较画横线的方程与原方程,可以发现什么?

设问2:上述变形过程中,方程中哪些项改变了原来的位置?怎样变的?

设问3:为什么方程两边都要加上2呢?第2小题在解的过程中两边加上28x的目的是什么?

归纳:像这样把原方程中的某一项改变 后,从 一边移到,这种变形叫做移项

思考:(1)移项的依据是什么?移项的目的是什么?

(等式的基本性质;移项使含有未知数的项集中于方程的一边,常数项集中于方程的另一边)

目的:1.让学生在复习上课时内容、归纳出移项法则的过程中,体会用等式的基本性质一解方程与用加减互为逆运算解方程的区别;同时让学生经历将算术问题“代数化”的过程,此过程也是一个抽象的过程,提炼、归纳上升到一个规律变化的过程.实际效果:

学生通过利用等式的性质,加减逆运算关系,合并未知数系数等方法化为x=a的形式.

学生在归纳“移项法则”的过程中,教师在不断的通过问题引发学生思考,学生表现出的观察、归纳、总结的能力很强,由此过程中表现出来的用“移项法则”解方程的思维强于用小学逆运算关系解方程,基本能做到:移动的项变号,不移动的项不变号,对“移项”的实质理解也比较到位,“要移就要变,左右移,变符号”.存在问题:方程两边需要移动的项多于两项时,移项过程中有的同学出现“移项”与“项的换序”混淆.如:解方程: 1 3232x3x5252;

1.——————(1)x3x

方程(1)中的清楚造成的.52没有移项,只是“换序”不应该变号.这就是对于移项的实质没有理解环节二:达标训练 【达标训练1】

1.把下列方程进行移项变形(未知数的项集中于方程的左边,常数项集中于方程的右边)(1)4x(3)3x35移项,得 ;(2)5x27x8移项,得 ;

移项,得 ;(4)132x3x52204x25移项,得 ;

2.下列变形符合移项法则的是()

A.由53x2,得3x25

B.由10x5=2x,得10x2x5 C.由7x94x1,得7x4x19 D.由5x29,得5x92

目的:通过及时的训练落实移项变形,并由学生总结出移项的注意事项并归纳出移项法则. 总结:移动的项要

;移项通常是将,已知项 ;(移项法则)例1 解方程:(1)2x61;

解: 移项,得 2x16.

化简,得

2x5.

方程两边同时除以2,得x(2)3x32x7.

解: 移项,得 3x2x73.

合并同类项,得

x4.

【达标训练2】(1)4x39;

(2)4y23y;(3)3x204x25.

目的:通过例题分析,规范学生的书写步骤格式,并训练落实.(根据时间选做)环节三:合作学习

内容:1.例2.解方程解: 移项,得 14x14x1212x3.x3.

合并同类项,得

方程两边同时除以343443x3.

(或同乘以),得x4

学生独立完成例2,学生互评(有哪些方法)

2.以小组为单位,每人出一个解方程的题,题型局限于本课时的题型,组内交换解答,组长负责检查,组员负责看解答结果如何.目的:1.学生自己出题的过程本身就是对本课时题型的一种掌握.2.学生互解对方题目的过程,也是一个互相学习、取长补短的过程.3.合作学习的过程也是让学生学会协作、交流的过程,从而达到巩固所学知识的目的.实际效果:

1.我们看到学生在考虑解方程的问题时,也把有理数中各种数字的运算问题也做了迁移,有的学生还考虑到生活中会遇到的百分数问题.2.一元一次方程的解法达到了巩固的目的.环节四:巩固提高

内容:本节课后,随堂练习4个小题.目的:巩固本课时的内容.实际效果:

使用课堂检测的方式,限时完成.好的方面:80%的学生能够顺利完成;

问题方面:解类似下面的方程:-3x+1=x+1 时出现一些问题.

环节五:课堂小结

1.本节课学习了哪些内容?哪些思想方法?

2.移项的目的是什么?为什么学习了等式的性质还要学习移项法则呢?

内容:引导学生结合本课时的内容,归纳总结解一元一次方程的“移项法则”及此过程中的注意事项.目的:让学生及时归纳那总结所学知识,及时反思,因为反思是进步的关键因素.实际效果:

学生不仅会对课上的知识点进行梳理总结,而且还会对课上感悟到的数学思想-----“转化的思想方法”准确地应用到以后的数学学习中.学生在合作学习中感受到伙伴优于自己的学习热情,学习策略,他们会互相借鉴,取长补短,共同进步的.环节六:达标检测

习题5.3第1题

解方程的教案 篇11

解方程

(一)教学设计

一、教学内容:北师大版小学数学四年级下册第五单元68-69页

二、教材分析:

本节课是在学习了用字母表示数和认识方程的基础上进行教学的。学生已经通过天平初步掌握了有关等式、方程的意义。基于上述情况,设计给予学生充分的时间观察天平的变化,在观察中再次感受天平平衡的条件,从而找出一些等式,再通过合作探究、讨论寻找这些等式变化的特点,进而发现等式的性质。这样的设计切实关注了学生的学习过程,让学生在观察中发现、在合作探究和讨论中总结,提高了学生学习知识的能力。

三、学情分析:

这一内容是学生第一次接触解方程,对于学生来说有一定的难度。天平称物,学生曾在科学课和低年级认识质量单位时了解过。但把天平称物的变化现象与数学的等量关系相结合,以前从没有了解过。但学生有观察、分析、迁移的学习能力,有着对等量关系,数学式子的知识基础。所以本课教学就恰好地利用学生这些能力来理解等式的性质,从而解决解方程的问题。

四、教学目标:

1.知识技能:学生通过天平的变化,探索等式两边都加上(或减去)同一个数,等式仍然成立的性质,利用等式的性质解简单的方程。

2.教学思考:学生通过观察天平变化,经历了从生活情境到方程模型的建构过程。

3.问题解决:在观察、合作探究、讨论等活动中,发现等式的性质,发展了抽象能力,并从中体会数学的建模思想。

4.情感态度价值观:学生通过探究等式的性质进一步感受数学与生活之间的密切联系,激发学习数学的兴趣。

五、教学重点:运用等式性质解简单的方程,如X±a=b。

六、教学难点:

理解等式的性质

七、教学准备:课件、题单

八、教学过程:

(一)复习旧知,导入新课

1、复习:判断下面哪些式子是方程。• 4+x=7 • 8y • 4+2.5=6.5 • 9+x>13 • y+3=5 • x+283=642

2、提问:你想知道方程中的未知数是多少吗?

3、导入新课:这节课我们就来一起学习一种方法,能够又快又准求出未知数是多少。

【设计意图:从学生的经验出发,通过学习,使学生的兴趣和思维进入到课堂学习中。】

(二)情境观察,探究规律

活动一:天平两侧加相同的质量

1、PPT演示:此时天平怎样?说出等式(5=5)

2、PPT演示:再看这个天平两边发生了什么变化?结果怎么样?还

能再说出一个等式吗?(5+2=5+2)

3、PPT演示:再看这个天平,天平怎样?说出等式。(X=10)

4、PPT演示:天平两侧发生了什么变化?结果怎样?再说出一个等式。

(X+5=10+5)

5、提问:想象一下,如果两边都加上10g的砝码,天平会怎样?15g、20g呢?

6、合作探究:根据这两组天平的变化,你有什么发现?小组合作。

7、生汇报。

8、教师小结并板贴。板贴:天平两侧都加上相同的质量,天平仍平衡。(追问:都是指什么?相同是指什么?)

活动二:天平两侧减相同的质量

1、猜测:如果天平两侧同时减去相同的质量,天平还会平衡吗?

2、验证: ①先请同学们看一下学习提示。②生独立完成3、检测:学生板书。①对照大屏幕看等式是否正确

②学生汇报发现。

4、教师小结并板贴。板贴:天平两侧都减去相同的质量,天平仍平衡。

5、合作探究:现在我们抛开天平不看,只看这四组等式,你有什么发现?把你的发现跟小组同学说说。

6、学生汇报。

7、教师小结并板贴等式的性质。板贴:等式两边都加上(或减去)同一个数,等式仍成立。⑴齐读 ⑵提读 ⑶把等式的性质说给同桌听听。

8、小练习:出示三道判断题。

⑴ 由等式X+6=23到等式X+6-6=23-3仍然成立。⑵ 等式两边加上(或减去)一个数,等式仍然成立。

⑶ 由等式X+13=20到等式X+13-13=20+13仍然成立。

9、提问:看来同学们都理解了等式的性质,那你们会运用吗?

【设计意图:利用自主学习,小组合作学习方式,放手让学生自己发现、归纳、总结,突显了学生自主学习能力。】

(三)运用规律,解方程

1、PPT出示:X+2=10 提问:X+2=10中X是多少?

强调:这是利用我们以前学习一个加数等于和减另一个加数。

追问:能不能运用这节课所学的等式的性质来求出x呢?自己试着解一解,在解的时候也可以参考左边的示意图。

2、学生板书①同学们你们有没有什么问题想问他的?

②如果没有,老师可有问题你是根据什么求出x呢?为什么两边都减2呢?为什么不减3?为什么不减5? ③你学会了吗?与同位说一说。

3、解方程不仅要注意方法,还要注意书写。

板演强调: ①解字 ②等号 ③口头检验

4、这才是解方程完整步骤 这就是我们这节课学习的内容

板书:解方程

(一)5、会解方程了吗?请同学们运用等式性质解下面两道方程。

Y-7=12 23+X=45

6、学生板书并汇报。

7、练习:用嘴快速说出解方程的过程。

8、探讨:在解的过程中,什么时候在等式两边加相同的数?什么时候在等式的两边减相同的数?

9、学生汇报。

10、同学们观察真仔细,总结的很到位。

【设计意图:师生共同探究,并在老师引导下使学生领会解方程的方法,并学会解方程的书写格式,验证方法。】

(四)课堂小结

1、通过本课的学习,你学到了什么?

(首先我们根据天平的变化,理解了等式的性质。

能够根据等式的性质解方程。)

2、总结:解方程分哪几部呢?边总结边出示顺口溜 • 首先要把解字写 • 等号两边同运算 • 过程要把等号齐 • 结果代入方程验

【设计意图:使学生对本课的知识点进行较系统的回顾。】

(五)课堂小测验

这节课真是收获满满,最后老师想考考你们,请看题单的反面,请同学们自己看图列方程并求出方程的解。

【设计意图:检验学生对知识点的掌握情况。】

九﹑板书:

解方程

(一)天平两侧都加上相同的质量,天平仍平衡。x+2=10 天平两侧都减去相同的质量,天平仍平衡。解:x+2-2=10-2 等式的性质:等式的两边都加上(或减去)x=8 的数,等式仍成立。

十、教学反思:

2025解方程的教案


幼儿教师教育网的编辑精选的“解方程的教案”一定能够给您带来极大的惊喜。教案课件是老师需要精心准备的东西,大家可以开始写自己课堂教案课件了。教案是教学目标实现的关键。我们将为您提供更多实用的信息希望您能够继续关注我们的网站!

解方程的教案(篇1)

《解方程》中的典型错例分析

最近一段时间我们认识了方程,学习理解了等式的性质,能根据等式的性质解简易方程。

【现象】

在教学完学生利用等式性质解简易方程后,发现学生出现的问题有一、格式上的:1.会忘写“解”字;

2.上下等号没有对齐;

二、典型错误:1.未知数在减数位置的时候,如18-2x=16;

解:18-2x+18=16+18

2x=34

2x÷2=34÷2

x=17

2.未知数在除数位置的时候,如28÷x=7。

解:28÷x×28=7×28

x=216

【分析】

格式书写问题原因:解方程是学生刚接触的新鲜知识,学生在知识经验的储备上明显不足,它的书写格式也是新的,和原先的等式计算完全不同,所以学生会受原先已有知识的负迁移而写错,因此,需要一个强调的过程。

典型错误分析:由于利用等式性质解方程时,其他题型(如,未知数在加数位置、未知数在因数位置、未知数在被减数位置)的时候,我们都先是把方程左边的数去掉。如x+12=36,我们就先在方程两边同时减去12,x+12-12=36-12,得x=24;9x=72就现在方程两边同除以9,9x÷9=72÷9,得x=8;x-19=8就现在方程两边同时加上19,x-19+19=8+19,得x=27这也比较符合孩子的思维过程。因此学生在解决未知数在除数和减数位置时,受这样的负迁移也想把左边不含未知数的数去掉,且这两类题在利用等式性质解时是要先把左边的未知数消去,如18-2x=16是先要现在方程左右两边同时加上2x,18-2x+2x =16+2x,得18=16+2x再去解,这样的逆思维学生不太容易接受,因此这两类题错误很多。

【解决策略】

基于以上原因分析,我调整了教学,在教学例3时。先让学生尝试用多种方法来解决,并说明这样解方程的依据是什么。结果孩子们出现了这3种较典型的解法。

① 20-x=9            ② 20-x=9                     ③ 20-x=9

解20-x+x=9+x             解x=20-9                    解20=9+x

20=9+x               x=11                     20-9=9+x-9

x=11

20-9=9+x-9

x=11

利用等式性质求解    根据“差=被减数-减数”求解

解释1:移项

解释2:根据“被减数=差+减数”解

再让学生说说你认为那种方法最简便?这时几乎所有同学都认为第二种解法是最简洁方便的,t:既然大家都这么认为我们再来看看这种方法是怎样解的。教师再请学生分析讲解一遍,同桌再说一说。

最后,出示相同类型题请学生尝试用这种方法解决。

未知数在除数位置的时候教学方法同上。

我发现这样教学过后,孩子们再遇到这样的方程时都会选择用关系式去解决,正确率也很高。

解方程的教案(篇2)

第五章 一元一次方程

2.求解一元一次方程

(一)太原市第三实验中学 柳翔熙

一、学生起点分析

学生在上一节已经学习了等式的基本性质,并且会用等式的基本性质解较简单的一元一次方程.本节课要通过用等式的基本性质解一元一次方程,观察、归纳得出移项法则.但学生刚学时不习惯用移项法则,而仍然借助等式的基本性质解方程,这是正常的,需要通过大量练习后才能体会到移项法则的便利.

二、学习任务分析

本节内容分三个课时完成,每课时所完成的具体任务不同.本课时主要内容是在学生进一步熟悉运用等式性质一解方程的基础上,分析、观察、归纳得到移项法则,并能运用这一法则求方程的解.三、教学目标

1.进一步熟悉利用等式的基本性质解一元一次方程的基本技能. 2.在解方程的过程中分析、归纳出移项法则,并能运用这一法则解方程.

3.体会学习移项法则解一元一次方程必要性,使学生在动手、独立思考的过程中,进一步体会方程模型的作用,体会学习数学的实用性.四、教学过程

本节课设计了六个教学环节:第一环节:复习引入;第二环节:达标训练;第三环节:合作学习;第四环节:巩固提高;第五环节:课堂小结;第六环节:布置作业.

环节一:复习引入

内容:复习上节课用等式基本性质一解方程的过程,观察、分析、概括出移项法则.要求:解下列一元一次方程,学生先自主完成,然后以小组形式交流各种解法,要说明这样解的依据.

(1)5x28 ;

解:方程两同时加上2,得5x2282.

也就是

5x=8+2.方程两边同除以5,得

x=2.此题学生可能会用差+减数=被减数的方法(2)5x28x .

解:方程两都加上28x,得5x228x8x28x

也就是

5x-8x=2.化简,得

-3x=2.2方程两边同除以-3,得

x=.3此题学生可能会用:被减数—差=减数;目的是把含有未知项放一边,已知数放一边. 设问1:在变形过程中,比较画横线的方程与原方程,可以发现什么? 设问2:上述变形过程中,方程中哪些项改变了原来的位置?怎样变的?

设问3:为什么方程两边都要加上2呢?第2小题在解的过程中两边加上28x的目的是什么? 归纳:像这样把原方程中的某一项改变 后,从 一边移到,这种变形叫做移项 思考:(1)移项的依据是什么?移项的目的是什么?

(等式的基本性质;移项使含有未知数的项集中于方程的一边,常数项集中于方程的另一边)

目的:1.让学生在复习上课时内容、归纳出移项法则的过程中,体会用等式的基本性质一解方程与用加减互为逆运算解方程的区别;同时让学生经历将算术问题“代数化”的过程,此过程也是一个抽象的过程,提炼、归纳上升到一个规律变化的过程.实际效果:

学生通过利用等式的性质,加减逆运算关系,合并未知数系数等方法化为x=a的形式.

学生在归纳“移项法则”的过程中,教师在不断的通过问题引发学生思考,学生表现出的观察、归纳、总结的能力很强,由此过程中表现出来的用“移项法则”解方程的思维强于用小学逆运算关系解方程,基本能做到:移动的项变号,不移动的项不变号,对“移项”的实质理解也比较到位,“要移就要变,左右移,变符号”.存在问题:方程两边需要移动的项多于两项时,移项过程中有的同学出现“移项”与“项的换序”混淆.如:解方程:

35x3x; 2235 x3x1.——————(1)22 1

方程(1)中的清楚造成的.5没有移项,只是“换序”不应该变号.这就是对于移项的实质没有理解2环节二:达标训练 【达标训练1】

1.把下列方程进行移项变形(未知数的项集中于方程的左边,常数项集中于方程的右边)(1)4x35移项,得 ;(2)5x27x8移项,得 ;

(3)3x204x25移项,得 ;(4)13x3x5移项,得 ;

222.下列变形符合移项法则的是()

A.由53x2,得3x25 B.由10x5=2x,得10x2x5 C.由7x94x1,得7x4x19 D.由5x29,得5x92

目的:通过及时的训练落实移项变形,并由学生总结出移项的注意事项并归纳出移项法则. 总结:移动的项要

;移项通常是将,已知项 ;(移项法则)例1 解方程:(1)2x61;

解: 移项,得 2x16.

化简,得 2x5.

方程两边同时除以2,得x(2)3x32x7.

解: 移项,得 3x2x73.

合并同类项,得

x4.

【达标训练2】

(1)4x39;

(2)4y23y;(3)3x204x25. 目的:通过例题分析,规范学生的书写步骤格式,并训练落实.(根据时间选做)2环节三:合作学习

内容:1.例2.解方程11xx3.4211xx3. 42 解: 移项,得

3x3. 4

方程两边同时除以(或同乘以),得x4

43合并同类项,得

学生独立完成例2,学生互评(有哪些方法)

2.以小组为单位,每人出一个解方程的题,题型局限于本课时的题型,组内交换解答,组长负责检查,组员负责看解答结果如何.目的:1.学生自己出题的过程本身就是对本课时题型的一种掌握.2.学生互解对方题目的过程,也是一个互相学习、取长补短的过程.3.合作学习的过程也是让学生学会协作、交流的过程,从而达到巩固所学知识的目的.实际效果:

1.我们看到学生在考虑解方程的问题时,也把有理数中各种数字的运算问题也做了迁移,有的学生还考虑到生活中会遇到的百分数问题.2.一元一次方程的解法达到了巩固的目的.环节四:巩固提高

内容:本节课后,随堂练习4个小题.目的:巩固本课时的内容.实际效果:

使用课堂检测的方式,限时完成.好的方面:80%的学生能够顺利完成;

问题方面:解类似下面的方程:-3x+1=x+1 时出现一些问题.

环节五:课堂小结

1.本节课学习了哪些内容?哪些思想方法?

2.移项的目的是什么?为什么学习了等式的性质还要学习移项法则呢?

内容:引导学生结合本课时的内容,归纳总结解一元一次方程的“移项法则”及此过程中的注意事项.目的:让学生及时归纳那总结所学知识,及时反思,因为反思是进步的关键因素.实际效果:

学生不仅会对课上的知识点进行梳理总结,而且还会对课上感悟到的数学思想-----“转化的思想方法”准确地应用到以后的数学学习中.学生在合作学习中感受到伙伴优于自己的学习热情,学习策略,他们会互相借鉴,取

长补短,共同进步的.环节六:布置作业.

习题5.3第1题

五、教学反思

教学中要注重“铺垫”与“打伏笔”,给后续教学留好生长点;本课时教学较为成功与上课时用等式基本性质一解一元一次方程学习到位有很大关系.本课引导学生体会新知识的引入与事物的发展变化总是由易到难,而解决新问题的方法往往是化“新”为“旧”,这样一个研究数学的方法,会对以后的数学学习在思维方式、解决问题的策略等方面给予启发和帮助.学生体会到了学习移项法则的必要性,就像学习了乘法分配律还学习去括号法则类似,引导学生勤于思考,善于总结.特别是通过问题的设计引发学生思考,如让学生明白移项的目的是什么?为什么学习了等式的性质还要学习移项呢?这样的问题可促进优等生的思考.

解方程的教案(篇3)

师:大家的猜想对不对呢?我们来验证一下。

1、(课件演示,学生操作)天平左侧的砝码重x克,右侧放5克的砝码,这时天平的指针指向正中央,说明了什么?你知道左侧的砝码重多少克吗?怎样用等式表示?(说明天平平衡,左侧的砝码重5克,x=5)

2、如果左侧再加上2个x克的砝码,右侧再加上2个5克的砝码,这时天平的指针指向正中央,说明了什么?你能写出一个等式吗?(说明天平平衡,3x=3×5)

3、如果左侧有2个x克的砝码,右侧有2个10克的砝码,这时天平的指针指向正中央,说明了什么?你能写出一个等式吗?(说明天平平衡,2x=20)

4、如果左侧拿走一个x克的砝码,右侧拿走一个10克的砝码,这时天平的指针指向正中央,说明了什么?你能写出一个等式吗?(说明天平平衡,2x÷2=20÷2)

5、通过上面的游戏,你发现了什么?

小结:等式两边都乘同一个数(或除以同一个不为0的数),等式仍然成立。

设计意图:利用课件的演示和动手操作,让学生体会天平两侧的变化情况,加深学生对等式的理解,体会等式的变化规律。

解方程的教案(篇4)

列方程解应用题最关键是前两步:设未知数和列方程。有的同学说解方程的部分不是篇幅很长么,为什么不是关键部分呢?其实,只要仔细观察一下,就会发现,虽然篇幅很长,但只要注意到符号变化、分配律等基本运算技巧,解的过程是较容易掌握的。相反,前两步篇幅虽然短,但列方程解应用题的精华和难点却大部分集中在这里,需要用以体会。

一般地,设什么量为未知数,最简单明了的想法是设所求为x(复杂的题目有时要采取迂回战术,间接地设未知数),当所求的数较多时,把这些所求的数量用一个或尽量少的未知数表达出来,也是很重要的。

设完未知数,就要找等量关系,来帮助列出方程。这时需要认真读题,因为许多等量关系是隐藏在字里行间的。中文有很多字、词、句表达相等的意思,如相等、是、比多、比少、是的几倍、的总和是、与的差是等等,根据这些字句的含义,再加上其中的量用未知数表达出来,就能列出方程。

解方程的教案(篇5)

教学目标:

1、初步理解“方程的解”、“解方程”的含义以及“方程的解”和“解方程”之间的联系和区别。

2、初步理解等式的基本性质,能用等式的性质解简易方程及检验的方法。

3、培养的分析能力应用所学知识解决实际问题的能力。

4、初步学会检验某个数是否是方程的解,培养学生检验的习惯,提高计算能力。帮助养成自觉检验的良好习惯。在教学中渗透环保教育。

教学重点:理解并掌握解方程的方法。

教学难点:理解并掌握解方程的方法。

教学准备:教学课件。

教学流程:

一、复习铺垫:

1、教师:前面我们学了方程的意义,你还记得什么叫方程吗?(含有未知数的等式叫方程。)怎样判断一个式子是不是方程?

2、判断下面哪些是方程吗?

(1)a+24=73(2)4x<36+17(3)234÷a>12

(4)72=x+16(5)x+85(6)25÷y=0.6

3、教师:上节课我们还通过玩天平游戏认识了等式的基本性质,还记得等式的基本性质吗?

4、新课引入:这节课,我们就来应用等式的基本性质去解简易方程。(板书课题:解简易方程)在学习解简易方程前,我们先来认识两个概念----方程的解和解方程。

二、探究新知:

认识方程的解和解方程:

1、看图写方程。

出示上节课用天平称一杯水的情景图。(100+X=250)

2、求方程中的未知数

教师:那么方程中的x等于多少呢?请同学们同桌交流,说说你是怎么想的?

学生交流后汇报:

方法一:根据加减法之间的关系250-100=150,所以X=150

方法二:根据数的组成100+150=250,所以X=150

方法三:100+X=250=100+150,所以X=150

方法四:假如在方程左右两边同时减去100,那么也可得出X=150

3、引出方程的解和解方程的概念。

教师:使方程左右两边相等的未知知数的值,叫做方程的解。像上面,x=150就是方程100+x=250的解。而求方程的解的过程叫做解方程。

4、辨析方程的解和解方程两个概念。

教师:方程的解和解方程这两个概念有什么区别?

5、完成课本57页做一做:X=3是方程5X=15的解吗?X=2呢?

探究例1:

1、出示例1图,让学生说图意后列出方程。

2、课件出示天平图,引导学生利用天平保持平衡的道理理解解方程的方法。

3、学生独立完成解方程,并板示,着重强调解方程的步骤和书写格式。

x+3=9

解:x+3-3=9-3

x=6

4、引导学生检验方程的解。

探究例2:

1、引入和出示例2:前面我们利用天平保持平衡的道理求出了方程x+3=9的解,下面我们再利用天平保持平衡的道理来求出方程3X=18的解,同学们有信心吗?

2、课件出示天平图,引导学生利用天平保持平衡的道理理解解方程的方法。

3、学生独立完成解方程。

3x=18

解:3x÷3=18÷3

x=6

方法总结:

1、交流讨论:如果方程两边同时加上或乘以一个数,左右两边会相等吗?

2、总结:利用天平保持平衡的道理(也就是等式的基本性质)等式两边都加上或减去(乘或除以相同的数),可以求出方程的解。

三、应用巩固:

1、完成课本59页“做一做”的第1题,先找到等量关系,再列出方程并解方程。

2、解方程。

x+3.2=4.6x-1.8=4x-2=15

1.6x=6.4x÷7=0.3x÷3=2.1

3、我会选

(1)32+χ=76的解是()

A、χ=42B、χ=144C、χ=44

(2)χ-12=4的解是()

A、χ=8B、χ=16C、χ=23

(3)5χ=60的解是()

A、χ=65B、χ=55C、χ=12

(4)χ÷20=5的解是()

A、χ=15B、χ=100C、χ=4

4、解决问题。

教师:请同学们认真观察图,你能根据题意列出方程并解方程吗?

四、全课小结、课外延伸:

教师:这节课你有什么收获?请同学们思考生活中哪些问题可以运用解方程和知识帮我们解决问题,把你想到的和同伴一起分享。

解方程的教案(篇6)

教学内容:义务教育课程标准实验教科书数学五年级上册55—57页内容。

教学目标:

1、通过演示操作理解天平平衡的原理。

2、初步理解方程的解和解方程的含义。

3、会检验一个具体的值是不是方程的解,掌握检验的格式。

4、、提高学生的比较、分析的能力;培养学生的合作交流的意识。

教学重点:理解方程的解和解方程的含义,会检验方程的解。

师:老师在天平的左边放了一杯水,杯重100克,水重X克,一杯水重多少?

师:在天平的右边放了多少砝码,天平保持平衡呢?(教师边讲边操作100克、200克、250克)

2、这个方程怎么解呢?就是我们今天要学习的内容——解方程。(板书课题:解方程)

师:(出示课件)那你猜一猜这个方程X的值是多少?并说出理由。

生1:我有办法,可以用250-100=150,所以X=150.

生3: 老师我也有办法,我是这样想的,假如方程的两边同时减去100,就能得出X=150

师:XXX同学的想法太棒了!我们一起探索验证一下。请看屏幕,怎样操作才使天平左边只剩X克水,而天平保持平衡。

生:我在天平的左边拿走一个重100克空杯子,在天平的右边拿走100克的砝码,天平保持平衡。

师:是的,XXX同学的想法是正确的,方程左右两边同时减100,就能得出X=150。我们表扬他。

师:根据刚才的实验,我们来认识两个新的概念———“方程的解”和“解方程”。

师:指着方程100+X=250说:“X=150是这个方程的解。(课件显示:方程的解)

师:都认识了吗?请打开课本第57页将概念读一次,并标上重点字、词。

生2:“方程的解”是指未知数的值,这个值有一个前提条件必须使这个方程左右两边相等。

师:“方程的解”和“解方程”的两个解有什么不同?

生:“方程的解”的解,它是一个数值。“解方程”的解,它是一个演变过程。

[设计意图:通过自主学习、组内交流、合作,达到培养学生自主、互助的精神。]

2.教学例1。

师:要是老师出一个方程,你会求这个方程的解吗?

[学生独立思考,再在小组内交流。]

师:(出示例1)左边有X个,右边有3个,一共用9个。根据图意列一个方程。

师:X+3=9这个方程怎么解?我们可以利用天平保持平衡的道理帮助理解,请看屏幕。

师:球在天平不好摆,老师在天平上用方块来代替它。怎样操作才使天平的左边只剩X,而天平保持平衡。

生:天平左右两边同时拿走3个方块,使天平左边只剩X,天平保持平衡。师:根据操作过程说出等式?

生2:方程左右两边同时减3,使方程左边只剩X,方程左右两边相等。

师:“方程左右两边同时减3,使方程左边只剩X,方程左右两边相等。”就是解这个方程的方法。

师:这个方程会解。我们怎么知道X=6一定是这个方程的解呢?

生:将X=6代入原方程,看方程的左边是否等于方程的右边。

师:以后解方程时,要求检验的,要写出检验过程;没有要求检验的,要进行口头检验,要养成口头检验的习惯。力求计算准确。

[设计的意图:自学思考汇报交流既有利于每个学生的自主探索,保证个性发展,也有利于教师考察学生思维的合理性和灵活性,考察学生是否能用清晰的数学语言表达自己的观点。]

师:现在老师看看同学们对于解方程掌握得怎么样。(课件展示)。

师:谁能说说解含有加法和减法的方程的步骤?(随着学生,显示全过程。)

b)方程左右两边同时加或减一个相同的数,使方程左边只剩X,方程左右两边相等。

c)求出X的值。

1、理解解方程的意义。

2、会用等式的性质解形如:ax=b的方程,并能用方程的解对方程进行验算。

1、填空:

(1)小明有30元钱。买钢笔用了m元,买本子用了10元,刚好用完。

(2)小红家买了50千克的大米,吃了n千克,还剩42千克。

(3)全班a个同学,平均分成个7小组,每个小组8人。

(4)钢笔每支4元,买X支用了24元。

师:刚才我们列出的这些方程,你能求它的解吗?(师板书:4X=24)

(1)自主探究求方程的解。

(2)汇报,抽生板演。

(3)师指导学生看书101页的内容,学习正确的书写格式,动笔勾画出你认为比较重要的地方.

(4)师规范解方程的格式。

比较两种方法的优点和缺点,请将刚才的解题过程再按正确的书写格式做一遍。

揭示解方程的含义;区分解方程和方程的解。

2、方程的检验。

刚才的几个方程,请任选一道用你喜欢的方式求方程的解,并口头检验。

师:大家认为在解方程的.时候应该注意些什么?在哪些方面需要提醒同学主义的呢?

四、全课小结。通过这节课的学习,你有什么收获?你还有哪些疑问?或者是不明白的地方吗?

2、做书上104页1、2、3题。

七、教学反思:

通过本节课的学习,学生已经基本上掌握了方程的解题的依据以及书写格式,但是很多同学在做a÷x=b这种形式的方程时还是容易搞混淆。需要加强练习和多做相关的题型,特别是在前节内容据题意列方程还得多找相关等量的关系,达到复习以前的知识和巩固现在的新知识的目的。

解方程的教案(篇7)

教学内容:教材P67例

1、教学目标:

(1)知识与技能:使学生初步理解“方程的解”与“解方程”的含义以及“方程的解”和“解方程”之间的联系和区别。(2)过程与方法:利用等式的性质解简易方程。

(3)情感、态度与价值观:关注由具体到一般的抽象概括过程,培养学生的代数思想。

教学重点:理解“方程的解”和“解方程”之间的联系和区别。教学难点:理解形如a±x =b的方程原理,掌握正确的解方程格式及检验方法。

教学方法:创设情境;观察、猜想、验证.教学准备:多媒体。教学过程 : 一.复习导入:

提问:(1)什么叫做方程?

(2)方程和等式之间的关系是什么?

(3)等式的性质有哪些。

(3)判断下面的是不是方程? 1.4x=9.8

+y<30

21÷7=3

(3x-8y=14 二.新课讲授:并出示教材第67页例1情境图。

问:从图上你知道了哪些信息? 引导学生看图回答:盒子里的球和外面的3个球,一共是9个。

(学生能快速并正确的列出方程,但是今天我们要学习的不仅是列出方程,而是如何求出x的值。同学们自己讨论,交流,最后请同学们来说一说,通过说了以后,让同学把我们刚才的文字语言转换成我们的数学符号和数字。

1.汇报:x +3-3=9-3

x =6 质疑:为什么两边都要减3呢?你是根据什么来求的?(根据等式的性质:等式的两边减去同一个数,左右两边仍然相等。)你们的想法对吗?出示第3个天平图,证实学生的想法是对的。

4.师小结:刚才我们计算出的x =6,就是使方程左右两边相等的未知数的值,叫做方程的解。也就是说,x =6就是方程x +3=9的解。求方程解的过程叫做解方程。(板书:方程的解 解方程)4.引导:谁来说一说,方程的解和解方程有什么区别?学生自主看课本学习,可能会初步知道,求出的x 的值是方程的解;求解的过程就是解方程。师引导学生小结:“方程的解”中的“解”的意思,是指能使方程左右两边相等的未知数的值,它是一个数值;而“解方程”中的“解”的意思,是指求方程的解的过程,是一个计算过程。

验算:x =6是不是正确答案呢?我们怎么来检验一下? 引导学生自主思考,并在小组内交流自己的想法。通过学生的回答小结:可以把x =6的值代入方程的左边算一算,看看是不是等于方程的右边。方程的左边:=x+3

=6+3

=9

=方程的右边

所以,X=6方程的解 让学生尝试验算,并注意指导书写。

5.我们除了用等式的性质来解方程,我们是否还可以用别的方法来解,请同学们思考并回答,还可以根据加数+加数=和。一个加数=和-另一个加数,我们就可以得到

x +3=9

解:

x=9-3 X=6

让学生对比两种解法,对比两种解法那种更好理解,更方便,三:巩固练习

(1)解方程,(用你喜欢的方法解并检验)

3.5+x=10.77 250-x=100(2)小明的妈妈以前买了100千克的大米,现在已经吃了y 千克,还剩下32千克。已经吃了的大米是多少千克?

四.总结这堂课学习了什么? 五.板书设计:

方法一:x +3=9

解:

x +3-3=9-3

x =6

检验:方程的左边 =x+3

=6+3

=9

=方程的右边

所以,X=6方程的解。

方法二:

x +3=9

解:

x=9-3 X=6

使方程左右两边相等的未知数的值,叫做方程的解。求方程的解得过程叫做解方程。

解方程的教案(篇8)

(1)知道用字母表示数和用方程表示数量关系的优越性,会用 字母和含未知数的式子表示数和常见的数量关系。

(2)认识等式和方程,理解等式的性质和方程的解法。初步学会根据字母的取值求含有字母的式子的值,比较熟练地解答含有一个或两个未知数的方程。

(3)研究简单的情景关系和数形联系,明确含字母的式子、等量及等量关系的意义。建构含字母的式子、等式和方程的数学模型,探究等式的特性和方程的特点。

(4)感受用字母表示数和构建方程在生活中的应用价值,强化应用意识,培养分析能力和归纳概括能力。

(5)学会按时间发生的基本顺序进行数量关系的提取和思维模型的加工,将生活事理关系与数学逻辑思维有机地结合。

(6)用方程的基本思想解决简单的实际问题。

(7)体会方程在数学史和人类发展史上的意义,进一步增强热爱数学的热情。

方程在小学阶段的学习,由于小学生的认识范围有限,传统的教科书都采用的是用四则运算的基本关系和几种常见应用题的数量关系作为解题的基础和列方程的基础。这种处理方法,学生能够很好地掌握和运用。但是,把它放在整个数学领域,就有一些问题。主要是传统小学教科书中的方程从解答依据到列方程的思路,都与中学的教科书内容不一致,学生到初中还要重新学习解方程和列方程的知识和技能。本教科书采用新的理念,突破传统观念,既遵循四则计算的意义列、解方程,以便适应小学生的认知基础,又用方程核心思想——等量关系来构建数学模型,先学习等量与等式,讨论出等式的性质,再学习方程与方程的解法,为第三学段的方程学习打好基础。

方程思想在现实中是普遍的,但却难以直接与学生的生活联系起来,因为人们习惯于运用已知条件构建数学模型。而方程思想不是从局部入手思考问题的,而是从宏观角度把整个事件的存在因素综合考虑的,找出各因素之间存在的等量关系,构建数学模型。

本教科书,首先从生活素材排演云南佤族的《木鼓舞》的直观现象引入等量与关系,再从已购回的若干物品问某一个物品重量的方式引入方程。同时,在后续的学习和练习的设计中,也是尽量采用现实生活素材,让学生真正把数学与生活联系起来,感受数学的价值。

方程的核心思想就是构建等量关系的数学模型。这种数学模型的组合要素就是生成事件的基本要素。比如:第91页,小学生排演舞蹈,男生、女生与演员总数的关系是一个学生熟悉的而且又很好理解的等量关系模型。其基本思考的思路是:A=A1+A2。教科书在其它类似的问题和问题解决部分的题目呈现时,尽量突出这种思想。

本教科书通过生活实例引入方程,让学生从情景到数学模型更加体会到数学的应用价值。特别是文艺演出、西气东输、唐卡艺术、商品买卖、植树育林、退耕还草和野生动物保护等多层面、多角度、多行业的实例呈现,显示出方程运用的巨大空间,为学生学习方程起到明显的激励作用。

教科书中每节内容的编写结构大多数是:正文、课堂活动、练习。正文呈现教学内容,体现具体目标要求,课堂活动是师生互动,建立教与学的双边活动的有效途径。通过活动使学生完成对知识的自主建构和理解。练习是为学生巩固和应用知识而设立的。

具体内容:

本单元的教学内容分为6个部分:① 用字母表示数 ②等式 ③方程 ④解方程 ⑤解决问题整理和复习⑥整理和复习

逻辑线索:

用字母表示数是本单元的起始课,通过学习,使学生体会用字母表示数的优越性,为下一节学习方程做好准备。接着学习了等式,用方程核的思想——等量关系来构建数学模式,再学习方程与方程的解法,为以后学习方程打好基础。解决问题是紧接着这些内容编排的,培养学生解决问题的能力。最后是整理复习,提高学生对本单元的掌握水平,教科书按照知识的逻辑顺序来编排,既有利于教师的教,有利于学生的学。

本单元是在学生对小学阶段整数、小数、分数的认识、四则运算,已全部学完,学生的数与代数的知识和经验已经积累到相当的程度,需要对更高一级的数学知识和数学思想进行学习的基础上进行教学的。

本单元因为其数学思想和解决问题的思维方式不同,它把学生习惯的由条件到问题建立数量关系的解决问题思路淡化,取而代之的是按事物发生发展的自然顺序构建数量关系,其核心思想是构建等量关系。方程作为数学领域的重要知识和重要思想,在解决数学问题方面占有重要作用,也是学生在中学学习数、理化和解决问题的重要思想和方法。

1. 学情分析:

(1)学生已有知识基础:已经掌握了小学阶段整数、小数、分数的认识、四则运算

(2)学生已有知识经验与新知识的结合点:

学生对数与代数的知识和经验已经积累到相当的程度,需要对高一级的数学知识和数学思想进行学习。

(3)方程作为数学领域的重要知识和重要思想,也是学生在中学学习数理化的重要思想和方法。作为数学上具有特殊意义的方程,对小学生来说基本上是陌生的。

数学是一门比较抽象的学科,要根据五年级学生的特点,在课堂上创设情景,调动学生的学习积极性,充分激发学生的求知欲,创设出一种轻松愉快的教学氛围。

本单元学生主要是通过生活事件构建等量关系,因此课堂上教学素材的呈现十分重要。比如:学习用字母表示数时,校园失物招领的生活原型的呈现,能够唤起学生对用字母表示数的理解。在这个情境中,他们深切地感到,生活中有时需要用到比数学更有用的符号-字母。在学习等式的意义时,出示学生排演云南佤族舞蹈《木鼓舞》时,舞蹈演员组成的舞蹈队是一个关键的认知背景。一个队的人数是他们首先关注的,这是多个元素的组合。教师依据教科书的信息提问后,学生才会去关注男演员、女演员人数以及与总数的关系。这样,在教师大力渲染霞,集合中部分元素与总数的关系被突显出来,使学生把生活问题提升为数学问题。“舞蹈队总人数”表示的因素有两个:“55”和“40+15”。这两个因素意义相同,大小相等。同理,表示“男演员人数”的两个因素是:“40”“55-15”,表示“女演员人数”的两个因素是“15”和“55-40”其它背景材料、教育因素和渲染程度要弱化,这样才是数学学习。

学生的学习过程中,既有方法和技能的习得,还有学习情感的体验和学习习惯的养成。比如:等式性质的探讨,必须由学生亲自动手探究。由于天平实验要求精度稿,教师先要在课前组织学生熟悉天平的构造,没有天平的学习一定准备好替代品,其次是要规划好实验措施和步骤。学生的操作是在教师指导下完成的。要告诉学生如何分组,先做什么再做什么?操作过程中观察什么现象?谁来做记录……第三,必须交代实验的任务和观察中思考什么问题,避免盲目性。第四,要求学生把观察的结果互动交流,以得到统一的认识和互相的启发。

教师要非常重视每一个学生对所学习的数学模型知识的认识,在学生讨论交流的叙述形成以后,教师要视其情况给予归纳和小结,强调其关键意思和关键文辞。在学习用字母表示数时,要让学生时时叙述使用该字母的缘由和表示的意义,同时让学生清楚含字母的式子不仅表示几个数之间运算关系,也表示几个数的运算结果。在等式和等式性质的认识里,要加强等式的口头交流和书面活动。学生对方程一节的学习可能有些困难,特别是一两个例题和几个作业,对他们的理解和巩固达不到量上的需要,教师可以根据需要适当补充。问题解决,与过去的列方程解应用题相比,从量上和形式上做了大量的删减,只是程序了方程解决问题的.基本要素-构建等量,列出等式(方程)。对于类型方面是无法一一顾及的,只要方法上能够运用就行了。训练中突出抓等量,列方程。

方程的学习与其它知识的学习一样,一定会遇到两极分化或发展不平衡的现象。特别是在探究等式的性质时,教师要非常细心地观察各组学生的表现和他们获得的结论,只要他们基本获得需要的数学思想和结论,只要他们基本获得需要数学思想和结论,就应该给予充分的肯定。在问题解决的过程中,学生一定会提出不同的方案,包括错误的方案。教师应本着求同存异的思想,允许不同的想法存在,同时鼓励学生对多重方法进行比较,寻求大家都能理解的方法和自己独特的方法。在解决问题时既能用自己的方法,也能用别人都理解的方法,就达到融会贯通了。

在教学用字母表示数时,首先创设一个学生喜欢的猜谜语小游戏,在此基础上导入新课,揭示课题。到学生的生活中寻找素材,为学生学习数学创设生活情境。小学数学不是枯燥的帐本,而要来源于生活,应用于生活。学生每接触一个数学知识就必须知道这些数学知识是从哪里来的。“用字母表示数”相对于小学生来说,较抽象深奥,通过创设情境,从学生的生活实践中提出问题,让学生惊奇地发现:“用字母表示数”原来就在我们身边,小小字母的作用还真大:可以表示人名、地名,还可以表示数字。这就使得“用字母表示数”具体而现实,从而调动学生学习的积极性,帮助部分学生消除学习中的畏难情绪。

方程是从学生看得见、摸得着的天平到抽象的,是学生认识上的一大飞越,要让学生达到由具体到抽象的真正理解,就要在教学过程中把传授知识变为渗透思想,教给学生学习知识的方法。要把天平与方程中“相等”联系起来,让学生在不断调整天平平衡的过程中,对方程的意义有了较好的理解。数学学习需要学生有一个主动探索的心态,有一个敢干质疑的精神。在教学时要为学生创设了一个相互交流、相互学习、相互帮助解决的和谐的课堂学习环境,同时又让学生在相互交流中深化了新知,在交流中提高了准确表达能力,这样不仅使课堂有了活气,学生放得开,学得活,而且从思想上给了学生一个思维的台阶,使得教学难点得以分解.

以前,我们是根据四则运算的互逆关系来解方程,属于算术领域的思考方法;而用等式的基本性质解方程属于代数领域的思考方法,两者有联系,但后者是前者的发展与提高,运用等式性质解方程具有更广泛的适用性。在现阶段,解简单的方程也许无法清楚明了地显现出“等式的基本性质”的优越性,但随着数学知识的深化,一些较复杂的问题(例如:把一些图书分给某班学生阅读,如果每人分3本,则剩20本;如果每人分4本,还缺25本,这个班有多少学生?解答此题时,学生容易根据等量关系列出如下方程:3X+20=4X-25)用算术思维解方程,解法如下:3X+20=4X-25,4X=3X+20+25,4X=3X+45,4X-3X=45,X=45会显繁难、费力,学生也较难理解与接受;而用等式的基本性质解答:3X+20=4X-25,3X+20-3X=4X-25-3X,X-25+25=20+25,X=45,就能明显地显示出简洁、方便的优越性。可见,运用代数的思考方法解决问题,使学生的思维水平得到了有效提高。

教师的教学效果和学生的学习情况大都是通过学生的练习反馈出来的,因此做好练习环节的反馈设计是每一节教学课教学设计的一个重点。我注重从以下几方面做起:

1、反馈形式要多样。最常用的反馈方法有同桌交换,小组轮换,实物投影展示作业,面批面改等,可以根据自己的需要来安排调整。

2、反馈要有针对性。比如一节课的重点是让学生掌握利用公式解决问题,在练习当中如果仅仅是计算错,可不必放大,提醒学生下次细心一点。如果学生在关键步骤上有了错误----不会列式解决问题,那么教师应引起重视。

3、反馈要有一定的层次性。通过层次反馈将错误类型相同的集中起来一起纠错,既节省了教学时间又提高有效性。

对于所学知识的反馈情况重在落实,每一节课抽出10分钟时间进行检测,老师很快批阅结束,发现问题,有针对性的辅导,直到弄懂会为止。

解方程的教案(篇9)

教学目标

1、会正确找出一元一次方程中存在的相等关系

2、通过列方程解应用题,提高学生分析问题与解决问题的能力

重点、难点、关键点

重点:找出应用题中存在的相等关系

难点:正确分析应用题中的条件

关键:理解题意,并能正确找出应用题中的量与量之间的关系

教 学 过 程

时间分配

1、列一元一次方程解应用题题的步骤

2、例题探究

师:列一元一次方程解应用题的步骤有哪些?

师:出示例题

已知某电视机厂生产 三种不同型号的电视 机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元,应用题,初中数学教案《应用题》。某商场根据市场调查花9万元从该厂购进两种不同型号的。电视机50台。请你分析一下是哪两种型号的电视机?

(教师引导,由学生自己解题过程)

生:思考议论回答

找等量关系

设未知数

列一元一次方程

解方程

写出答案

生:讨论

该问题需要分类讨论,有三种可能的情况

可能购买的是甲、乙两种型号的电视机,也可 能是乙丙或甲丙。

8分

20分

A组:

16个蓝球队进行循环比赛,每个队赢一场得2分,输一场得1分,比赛弃权得0分。某队参加了循环赛中的15场比赛,共得26分。这个队赢几场?输几场?

B组:

一列火车长250米,速度为60千米/时,一越野车其车速为90千米/时,当火车行驶时,越野车与火车同向而行,由列国车车尾追至车头,需要多长时间 ?

教后札记

相关推荐

  • 五年级解方程教案1500字 学生们享受着生动有趣的课堂,这离不开老师花费大量时间精心准备的教案。然而,制作教案课件并不是一件简单的事情。详细的教学教案不仅可以帮助教师理解课程知识的纵向发展,还能提高教学质量。那么,我们在制作教案课件的时候应该从哪些角度入手呢?下面是幼儿教师教育网小编为您精心准备的《五年级解方程教案》相关内容,...
    2023-06-30 阅读全文
  • 五年级下数学教案解方程 作为一名辛苦耕耘的教育工作者,就难以避免地要准备教学设计,教学设计把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。一份好的教学设计是什么样子的呢?以下是小编精心整理的五年级《解简易方程》教学设计,欢迎阅读与收藏。五年级下数学教案解方程 篇1教学目标:1...
    2024-09-15 阅读全文
  • 解方程的教案通用 以下是我们为大家整理的“解方程的教案 ”,相信您在阅读网页内容后有所收益。每个老师不可缺少的课件是教案课件,老师还没有写的话现在也来的及。 教案课件是教学计划的重要组成部分,必须梳理清晰。...
    2023-04-13 阅读全文
  • 五年级解方程课件 探索“五年级解方程课件”的文化内涵和背后的故事接下来请阅读。老师每一堂上一般都需要一份教案课件,写好教案课件是每位老师必须具备的基本功。教案是开展探究性学习的有效工具。有幸能够为大家提供帮助希望我的文章对你有所裨益!...
    2024-06-15 阅读全文
  • 五年级解方程说课稿10篇 提前做好准备绝对是一个好习惯,教师提前预备好教案,是职业内容之中所规定的。教案是老师的教学指南和备注,教师写教案时要根据实际需要而定,是否在寻找好的教案模板呢?以下是幼儿教师教育网的编辑为您准备的内容“五年级解方程说课稿”,希望能帮助到你,请收藏!...
    2023-04-01 阅读全文

学生们享受着生动有趣的课堂,这离不开老师花费大量时间精心准备的教案。然而,制作教案课件并不是一件简单的事情。详细的教学教案不仅可以帮助教师理解课程知识的纵向发展,还能提高教学质量。那么,我们在制作教案课件的时候应该从哪些角度入手呢?下面是幼儿教师教育网小编为您精心准备的《五年级解方程教案》相关内容,...

2023-06-30 阅读全文

作为一名辛苦耕耘的教育工作者,就难以避免地要准备教学设计,教学设计把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。一份好的教学设计是什么样子的呢?以下是小编精心整理的五年级《解简易方程》教学设计,欢迎阅读与收藏。五年级下数学教案解方程 篇1教学目标:1...

2024-09-15 阅读全文

以下是我们为大家整理的“解方程的教案 ”,相信您在阅读网页内容后有所收益。每个老师不可缺少的课件是教案课件,老师还没有写的话现在也来的及。 教案课件是教学计划的重要组成部分,必须梳理清晰。...

2023-04-13 阅读全文

探索“五年级解方程课件”的文化内涵和背后的故事接下来请阅读。老师每一堂上一般都需要一份教案课件,写好教案课件是每位老师必须具备的基本功。教案是开展探究性学习的有效工具。有幸能够为大家提供帮助希望我的文章对你有所裨益!...

2024-06-15 阅读全文

提前做好准备绝对是一个好习惯,教师提前预备好教案,是职业内容之中所规定的。教案是老师的教学指南和备注,教师写教案时要根据实际需要而定,是否在寻找好的教案模板呢?以下是幼儿教师教育网的编辑为您准备的内容“五年级解方程说课稿”,希望能帮助到你,请收藏!...

2023-04-01 阅读全文
Baidu
map