乘法运算律教案
发布时间:2023-09-28 乘法运算教案 乘法教案乘法运算律教案实用。
作为资深的小编我特别推荐这篇经典的“乘法运算律教案”,如果你有兴趣可以阅读本文希望你喜欢。教案课件也是老师工作中的一部分,就需要我们老师要认认真真对待。老师要按照教案课件来实施课堂教学。
乘法运算律教案【篇1】
乘法运算律及简便运算
第1课时
教学内容
义务教育课程标准实验教科书(西南师大版)四年级(下)第17~18页例1~2,练习四第1题。
教学目标
1经历在计算和解决问题的具体情景中探索发现乘法交换律、结合律的过程。
2理解并掌握乘法交换律和结合律,初步能用这两个运算律解释计算的理由。
3体验数学与日常生活密切相关,培养学生自主探索数学知识和应用数学知识解决简单实际问题的能力。
教学重点
在具体情景中探索发现乘法交换律、乘法结合律。
教学过程
一、创设情景,探索新知
1教学例1
出示例1图,学生独立列式解答,然后在小组中互相交流。
板书:94=36(个),49=36(个)。
学生观察板书,思考:这两个算式有什么特点?
板书:94=49。
教师:你还能写出几个有这样规律的算式吗?
板书学生举出的算式。
如:152=215
85=58
教师:观察这些算式,你发现了什么?
学生1:两个因数交换位置,积不变。
学生2:这就叫乘法交换律。
教师:你能用自己喜欢的方式表示乘法交换律吗?(学生独立思考后交流)
教师:如果用a、b表示两个数,这个规律可怎样表示呢?(ab=ba)
2教学例2
出示例2情景图,口述数学信息和解决的问题。
学生独立思考,列式解答。
然后在小组中交流解题思路和方法。
全班汇报,教师板书。
(824)68(246)=1926=8144=1152(户)=1152(户)
学生对这两种算法进行观察、比较,有什么相同点和不同点?
板书:(824)6=8(246)。
出示下面的算式,算一算,比一比。
1652=16(52)=35254=
35(254)=121258=12(1258)=
观察算式,有同样的特点吗?每排的两个算式的结果相等吗?学生独立计算,验证自己的猜想,全班交流。
板书:1652=16(52)35254=35(254)431258=43(1258)谁能说出这几组算式的规律?
学生1:每个算式只是改变了运算顺序。
学生2:每排左、右两个算式计算结果相等。
学生3:三个数相乘,先算前两个数的积或者先算后两个数的积,值不变。
教师:谁知道这个规律叫什么?
教师板书:乘法结合律。
教师:如果用a、b、c表示3个数,可以怎样表示这个规律?
教师板书:(ab)c=a(bc)。
教师:这个规律就叫乘法结合律。
小结:同学们,我们一起总结出了乘法交换律和乘法结合律,下面看同学们会不会用。
二、课堂活动
1练习四第1题:学生独立完成,全班交流,说出依据。
2连线。
(学生独立完成)
2315217(1254)17125439(258)3925823(152)
三、课堂小结
今天这节课你都有哪些收获?还有什么问题?
乘法运算律教案【篇2】
教学内容:教科书第9页下半页的内容,第10页的例7和做一做,练习三的第5~8题
教学目的:能应用乘法运算定律,根据已知数的特点,使小数乘法运算简便;培养学生思维的逻辑性;使学生养成善于观察、善于思考的好习惯。
教学重点、难点:灵活应用乘法运算定律,进行简便运算
教学过程:
一、复习引新
1、口算:0.10.20.52
0.4252.50.4
81.250.812.5
2、出示:254784
这道题怎样做比较简便?
说说每步应用了什么运算定律?
二、进行新课
1、把复习题变为例7,问:变成小数乘法后怎样算比较简便?
(1)0.254.784
问:第一步怎样做,应用哪条乘法运算定律?
第二步怎样做,应用哪条乘法运算定律?
根据提问板书(略)
(2)0.65201
在整数乘法计算中,这样的题怎样计算比较简便呢?
小组形式讨论
汇报交流时说说应用了哪条运算定律
板书:(略)
(3)指出:实际做题时,虚线方框里这一步可以省略(但这一步却是思考过程,解题依据)
2、练习
P10做一做用简便方法算下面各题
指名板演,集体订正,说说简便运算的依据
三、巩固练习
1、用简便方法算
0.72.540.26100.5
1.35+4.6+0.6512.53.4+1.254.6
指名板演,其余自练
集体订正,重点评讲第二、三题
指出:做题时要看清运算符号
2、P11第6题
独立练习,教师巡视辅导
重点评讲第5、6题
四、全课小结
今天我们学习了什么?
我们一定要牢固掌握这些定律内容,才能灵活应用这些定律进行简算。
五、布置作业
P11第5题
乘法运算律教案【篇3】
整数乘法运算定律推广到小数乘法教学设计一
教学用具:投影片若干张。
教学过程:
一、激发:
1、计算:
259542532448+64810256
2、在整数乘法中我们已学过哪些运算定律?请用字母表示出来。
根据学生的回答,板书:
乘法交换律ab=ba
乘法结合律a(bc)=(ab)c
乘法分配律a(b+c)=ab+ac
2、让学生举例说明怎样应用这些定律使计算简便。(注意学生举例时所用的数。)
3、出示教材P.9页的3组算式:下面每组算式左右两边的结果相等吗?
0.71.2○1.20.7
(0.80.5)0.4○0.8(0.50.4)
(2.4+3.6)0.5○2.40.5+3.60.5
让学生看每组算式是否相等。
●从而得出结论:整数乘法的交换律、结合律和分配律,对于小数乘法同样适用。
4、揭题并板书课题:整数乘法的运算定律推广到小数乘法。
二、尝试
1、出示例8第(1)题:0.254.784
2、引导学生进行思维迁移:你能仿照整数乘法中,类似的题目的简算方法来计算这道题吗?请你试着做一下,指名板演。
3、你能说一说每一步各应用了哪一条运算定律吗?根据学生的回答,板书:0.254.784
=0.2544.78乘法交换律
=14.78乘法结合律
=4.78
指出:用虚线框起来的部分可以省略。
4、尝试后练习:
500.130.21.250.70.80.32.50.4
生独立完成,师巡视辅导有困难的学生。指名板演,集体订正。
5、示范:例7第⑵题:0.65201
你认为此题的关键是什么?(把201变成200+1,用乘法分配律完成)
你会做吗?谁来讲讲这道题的解题思路?(指名上台讲解演示)0.65201
=0.65(200+1)
=0.65200+0.65
=130+0.65
=130.65
6、练习:
0.78100.51.51021.22.5+0.82.5
生独立完成,师巡视辅导有困难的学生。指名板演,集体订正。
三、运用
1、P.12页做一做:用简便方法算下面各题。
0.0340.50.61020.452、
右图是红光小学操场平面
图。图中长和宽的米数是按
照实际长、宽各缩小10000.025米
倍画出的。求这个操场的实
际面积。0.048米
在认真审题的基础上,让学生先说说打算怎样做以及自己的想法。对能应用简便方法解答的同学给予表扬,再让学生独立计算并集体订正。
四、体验:
今天,你有什么收获?
五、作业P13页4题。
教学内容:整数乘法运算定律推广到小数乘法(P.12页例8和做一做,练习二第2题。)
教学要求:使学生理解整数乘法的运算定律对于小数同样适用,并会运用乘法的运算定律进行一些小数的简便计算。
教学重点:乘法运算定律中数(包括整数和小数)的适用范围。
教学难点:运用乘法的运算定律进行小数乘法的的简便运算。
整数乘法运算定律推广到小数乘法教学设计二
教具准备:电脑投影、卡片
教学过程
一、谈话引入
师:同学们,在上节课我们通过学习,已经知道了整数混合运算顺序适用于小数,除此以外,还有哪些适用于小数呢,这节课我们一起来探讨整数乘法运算定律适不适用于小数(教师板书课题)。
二、探索新知
1、教学整数乘法的运算定律对于小数乘法同样适用。
师:谁来说说你们在整数乘法中学过了哪些运算定律、用定母表示。
生:乘法交换律:ab=ba,乘法结合律(ab)c=a(bc)乘法的分配律:(a+b)C=ac+bc。(板书)
0.71.2=1.20.7
(0.80.5)0.4=0.8(0.50.4)
(1.4+3.6)0.5=2.40.5+3.60.5
师:(手指算式)这些算式各说明了什么呢?
生1:第一行算式运用了整数乘法的交换律;
生2:第二行算式运用了整数乘法的结合律;
生3:第三行算式运用了整数乘法的分配律。
师:谁能用一句话来概括一下这些算式说明了什么?
生4:说明了整数乘法的运算定律对于小数乘法同样适用。
2、教学怎样运用乘法运算定律:
师:(板书)0.254.784
请同学们认真地观察,看看这道题能不能用简便方便计算,怎样算简便,请把你们的思路在小组里相互交流。
(学生观察,思考,再小组交流,教师巡视,参与其中,共同研讨)。让学生在班级汇报交流。
(教师随着学生的归纳板书:看、想、算)师:现在请同学们用刚才总结的方法来计算这道题,看怎样算简便。
师:(板书)0.65201
(学习小组讨论,交流各自的思路,教师参与,适时点拨、引导,然后学生计算,学生完成后,教师抽取代表性的作业,用电脑投影展示)。0.65201
=0.65(200+1)
=0.65200+0.651
=130+0.65
=130.65
师:(能把你的解题思路说给同学们听听吗?
生1:我先找特殊的数201,因为201可以写成200+1,再把200和1分别与0.65相乘,运用乘法分配律计算的。
(教师边说边板书,分解后再简算)
师:刚才,我们共同探讨了两种简算技巧,有的同学还有许多简算的技巧,同学们可以相互学习,请同学们再来看看下面两道题,怎样算合理简便(让学生独立做)
(电脑投影出示)321.25(4+2)0.9
三、拓展练习
师:老师这里有三个数4、0.8、1.25请你们根据乘法的运算定律编式题,并说一说如何运用运算定律使计算简便。
四、总结全课,反思体验
师:同学们,我们今天学习了什么内容?你有什么收获?
五、作业
请你运用正确合理的方法进行简便计算
1、必做题:
(1)1020.45(2)0.340.50.6(3)1.250.70.8
(4)1.22.5+0.82.5(5)(0.8+0.2)6.7
2、选做题
(1)991.45(2)991.45+1.45
(3)991.45+31.45-1.452(4)991.45+21.45-1.45
教学目标:
1、使学生知道整数乘法的运算定律对于小数乘法同样适用,能运用乘法的运算定律正确地、合理地、灵活地进行小数乘法的简便计算。
2、培养学生的观察能力,类推能力和灵活运用所学知识解决问题的能力。
3、让学生相互交流、合作、体验成功的喜悦。
教学重点:
1、理解整数乘法的运算定律在小数乘法中同样适用。
2、运用运算定律进行小数乘法的简便计算。
教学难点:
运用运算定律进行小数乘法的简便计算。
乘法运算律教案【篇4】
教学内容:
苏教版义务教育课程标准实验教科书P86页例4练习15第6~9题。
教材简析:
学生在四年级学习了整数加法以及整数乘法的一些运算律,体验到运用运算律,可以使一些计算变得简便,所以学生有运用运算律的意识和能力。但所有这些运算律都是在整数的范围之内通过不完全归纳得到的。这些运算律在小数范围内是否适用呢,还需要验证。在小数加减法这个单元的学习中,学生已经在解决实际问题的过程中发现整数加法的运算律对小数加法同样适用。那么,整数乘法的运算律对小数乘法是否适用呢?这就是这节课首先要学生研究解决的问题。
教材是让学生通过计算,比较三组式题的结果,发现整数乘法的运算律对小数乘法同样适用,从而把整数乘法的运算律很自然地推及到小数的乘法之中。随后的试一试让学生自主应用乘法运算律进行简便计算。
从学生的角度来看,学生经历了整数加法运算律推广到小数加法的过程,对整数乘法运算律推广到小数应该没有很大的疑义,关键是让他们经历一个验证的过程,感受数学结论的科学性和严密性。
教学目标:
1、使学生经历举例验证的数学活动过程,初步理解整数乘法的运算律对小数乘法同样适用,感受数学结论的科学性和严密性。
2、在运用有关的运算律进行小数的简便计算的过程中,培养学生主动运用运算律进行简便计算的意识,发展学生的数感。
3、使学生通过学习,进一步体会数学知识之间的内在联系,进一步增强探索数学知识和规律的能力,感受数学知识的方法和应用价值,激发学习数学的兴趣。
教学重点:使学生经历举例验证的数学活动过程,初步理解整数乘法的运算律对小数乘法同样适用,能主动运用有关的运算律进行小数的简便计算。
教学过程:
一:提出问题。
1、谈话导入:最近我们一直在学习有关小数的计算问题。下面进行几轮计算比赛。
第一轮:看谁算得对。
101.30.3210024+0.243.20.615-0.151.90.02
0.40.51.2582.540.2442000.160.60.1
第二轮:看谁算得巧。
2573432103768+276
让学生说说是怎么算的,运用了哪些运算律。
教师小结:在整数乘法中,我们运用乘法的一些运算律,可以使计算简便。
2、提出问题:整数乘法中的运算律,对小数乘法是否适用呢?
学生猜想。
(设计意图:小数乘法和加减法的口算,是进行小数简算的重要基础,所以基本技能的训练也是必不可少的。以竞赛的形式进行练习,可以激发学生的兴趣。看谁算得巧的活动可以帮助学生调动起原有的整数乘法运算律的知识经验,并大胆猜想整数乘法中的运算律,对小数乘法是否适用。)
二、观察验证。
1、教师提出验证要求:同学们的猜想是否成立呢,需要我们举例来验证。
出示几组算式,提出要求:先算一算,下面的○里能填上等号吗?
0.81.3○1.30.8
(0.90.4)0.5○0.9(0.50.4)
(3.2+2.8)0.6○3.20.6+2.80.6
(1)学生计算,汇报结果,发现每组的两个算式结果相等,可以用等号连接。
(2)观察每组的两个算式有什么关系?
学生发现:第一组两个算式中,两个小数相乘,交换两个因数的位置,结果相等,符合乘法交换律。
第二组的两个算式中都是三个小数相乘,左边先把前两个小数相乘,再乘第三个小数,右边先把后两个小数相乘,再和第一个小数相乘,结果相等,符合乘法结合律。
第三组左边是把两个数的和乘一个数,右边是把这两个数分别乘以这个数,再把两个积相加,结果也相等,符合乘法分配律。
(3)乘法的这些运算律是否在小数乘法中普遍适用呢,小组合作,再例举几组有这样关系的算式,通过计算来验证一下。
(4)交流发现:整数乘法的运算律,对小数乘法也同样适用。
(5)揭示课题:今天这节课我们就来研究乘法运算律的推广和运用。
(设计意图:让学生充分经历观察、举例、再观察、发现的验证的过程,不但使学生经历形成数学知识的过程,,还能使学生感受到数学结论的科学性和严密性,培养学生严谨的认知态度。)
三、实际运用
1、谈话:乘法的这些运算律在小数乘法中有什么用呢?
2、试一试:下面各题怎样计算比较简便?
0.250.7340.32403
(1)学生尝试计算
(2)交流计算方法,让学生说说运用了什么运算律。
0.250.7340.32403
=0.2540.73..乘法交换律结合律=0.32(400+3)
=10.73=0.32400+0.323.乘法分配律
=0.73=128+0.96
=128.96
(3)教师小结:看到算式,首先要观察数据特点,再根据数据和算式特点,合理运用乘法运算律,使计算简便。
3、练一练:用简便方法计算。
7.60.8+0.27.60.25360.85199
(1)学生尝试计算。
(2)交流计算方法。让学生说说是怎样运用运算律进行简算的。
3、运用乘法交换律,还可以对小数乘法进行验算。
完成练一练第2题。
4、独立完成第87页第9题,交流思考过程和计算过程,通过交流使学生体验到解决实际问题的过程中也可以运用运算律使计算简便。
(设计意图:因为学生已经有简便运算的经验,所以应用乘法运算律进行简便运算主要让学生尝试练习,再引导学生进行交流,在交流中体会运算律的运用,掌握正确的简算方法。)
四、全课小结
五、布置作业
完成第87页7、8、两题。
乘法运算律教案【篇5】
乘法运算律及简便运算
第2课时
教学内容
义务教育课程标准实验教科书(西南师大版)四年级(下)第19~21页例3,课堂活动第1~2题和练习四第2~6题和思考题。
教学目标
⒈进一步理解并掌握乘法交换律和结合律,并能运用这两个运算律进行简便计算。
⒉培养学生灵活运用所学知识解决实际问题的能力。
⒊让学生在老师的引导下,经历克服学习困难的过程,体验数学学习的成就感。
教学重、难点
灵活运用乘法交换律和乘法结合律进行简便计算。
教学过程
一、复习旧知,引入新课
1回忆上节课中所学的乘法交换律和乘法结合律并用自己的语言加以叙述。
2填空。
我们学习了乘法运算律,这节课我们一起运用乘法运算律进行计算。
二、探索新知
学习例3。
出示例3,算一算,议一议。
6125489125
教师:观察每个算式中的因数之间有什么特点?可以运用运算律进行简便计算吗?(学生观察思考,独立计算)
全班汇报,教师板书:
(1)
①61254
②61254
③=61100=15254=6100=6100
(2)
①89125
②89125
③=72125=91000=9000=9000
小组讨论:每题都有几种算法,你认为哪种算法最简便?为什么?运用乘法交换律和结合律进行简便计算时要注意什么?
全班交流汇报。
教师小结:运用乘法运算律进行简便计算,它的核心就是凑整。
往往可以把两个或几个数结合在一起乘起来得到整十、整百有时还可能需要把一个数分解成两个数,再与另外的数结合相乘得到整十数、整百数总之使计算变得简单。
三、课堂活动
1课堂活动第1题:先让学生说一说怎样计算简便,并说出依据,再完成在课本上。
2课堂活动第2题:先让学生独立思考后,再在小组中讨论该怎样进行简便计算,最后全班反馈。
要学生认识到同一个计算可以有不同的简便计算方法。
3练习四第2题:学生独立完成(连线)后反馈。
4练习四第7题:学生独立完成后反馈。
5练习四第8题。
学生观察图中信息,然后抽学生提出问题,教师板演在黑板上。
其余学生判断。
最后让学生独立解决在课堂作业本上,不得少于3个问题。
注意:随时提醒学生观察算式中数据的特点,并应用简便方法进行计算。
四、拓展练习
思考题:引导学生抓住突破点:一是1~9各数字在算式中只出现一次;二是算式中积的个位数字是2。
根据这两个信息可以想到两个因数个位上的数字只能分别是3和4,继续分析便可解决此题。
五、课堂作业
练习四第3~6题。
六、课堂小结
这节课主要学习了什么知识?你还有什么问题吗?
乘法运算律教案【篇6】
含有乘法和加、减法的混合运算
本课题教时数:1本教时为第1教时
教学目标
1、初步理解综合算式的含义,掌握含有乘法和加、减法混合运算的顺序;
2、能够通过运算顺序进行对混合运算进行运算,并解决一些简单的实际问题;
3、经历对比、推理总结混合运算的特点,培养学生交流合作意识,提高学习数学的兴趣并形成一定的学习技能;
教学重难点
教学重点:掌握含有乘法和加、减法混合运算的顺序,并进行正确的计算;
教学难点:通过技能的生成解决实际问题;
教学准备POWERPOINT课件一份
教学过程设计
一、问题提出、引入课题
师:同学们再过几天我们学校的读书月活动即将结束,为了鼓励在这次活动中涌现出的优秀同学老师现在正想为他们准备一些礼物。你们认为准备什么礼物好呀!
生:书、铅笔师:你们的提议真好,其实老师已经准备好了,请同学们们看【出示P30的插图】
师:现在呀老师买了3本笔记本和1个书包,一共用去多少钱?
请同学们帮老师算算,我该花多少钱呀?
把你的算出来的结果和方法记录下来并和同桌说说。
【集体交流,学生叙述各自的方法,教师相应把学生的运算方法板书在黑板上,并根据实际情况说明学生的做法,做适当点评】
师:那么同学们用分步做的方法很好,不过我们能不能列出一个算式就能解决这个问题呢?
二、探究新知,总结方法
1、让学生观察刚才的两个算式并说说各表示什么数量关系;
2、那解决这个问题的数量关系是什么?
【3本笔记本的钱+1个书包的钱=总共用去的钱】
3、根据数量关系式那我们能不能把刚才两个算式合并成一个算式呢?
【生讨论交流后总结最佳式子:53+20】
4、那么让学生说为什么要列成:53+20?
我们在算的时候该先算什么?为什么要样算?
【让学生联系现实问题的数量关系和解决过程,明确这样的问题应该先解决什么、再算什么。在这个过程中注意学生书写格式的指导。】
5、出示P30的第二个问题,让学生尝试用混合运算的方法列出综合算式。
然后交流并讨论运算的顺序,为什么要这样运算?
6、总结比较两个算式让学生说出算式中有乘除法和加、减法,应先算乘法的规律。三、巩固提高
1、出示P31的第1题,先让学生说说每题的运算顺序,再在课本上写出计算的过程。要提醒学生注意每一步的书写格式。最后交流结果,并指名学生说说为什么这样算。
2、让学生打开书本仔细观察P59第2题找出其中的错误,再进行订正。
最后指名学生说说每题错在什么地方,应该怎样改正。
3、出示P31的第3题先让学生分组比较每组中两道题的运算顺序有什么不同,再进行计算,最后集体交流。
4、出示P31的第3题先帮助学生弄清图中所提供的信息,再让学生列综合算式分别解决三个问题。
四、简单总结完成作业
P31第4题
课后感受通过教学使学生理解综合算式的含义,掌握含有乘法和加、减法混合运算的顺序,并能利用混合运算解决一些实际的问题,教学效果很好。
Yjs21.Com更多幼儿园教案扩展阅读
整数乘法运算教案(实用13篇)
作为一名为他人授业解惑的教育工作者,时常需要编写教案,教案是教学蓝图,可以有效提高教学效率。那要怎么写好教案呢?下面是小编整理的整数乘以分数的教案,供大家参考借鉴,希望可以帮助到有需要的朋友。
整数乘法运算教案 篇1
教学目标
(一)理解小数乘以整数的意义,掌握小数乘以整数的计算方法。
(二)理解“被乘数有几位小数,就从积的右边起数出几位,点上小数点”的计算方法的道理。
(三)培养抽象、概括的能力。
教学重点和难点
掌握小数乘以整数的计算方法,并理解“被乘数有几位小数,就从积的右边起数出几位,点上小数点”计算方法的道理。
教学过程设计
(一)复习准备
1.先说出下列算式的意义,再口算:
17×2 5×16 4×30 126×1
56×10 28×100 15×4 65×0
小结:
(1)整数乘法的意义是什么?
(2)整数乘法的计算方法是什么?
2.口算下列各题,并观察积的变化有什么规律?
观察思考:
(1)从左往右看,积有什么变化?为什么会发生这样的变化?积的变化有什么规律?
(2)从右往左看,积有什么变化?积的变化有什么规律?
小结:积的变化规律是怎样的?(在乘法里,一个因数不变,另一个因数扩大(或缩小)10倍、100倍、1000倍、……积也扩大(或缩小)10倍、100倍、1000倍、……)3.填空:
(1)1。5扩大10倍是( );
(2)2。25扩大( )倍是225;
(3)1。2扩大( )倍是12;
(4)38缩小10倍是( );
(5)85缩小( )倍是0。85;
(6)270缩小( )倍是27。
(二)学习新课
1.创设情境
同学们,你们经常为家里买东西吗?你会算帐吗?请举例。
一天,妈妈要小芳去买5米花布,小芳来到商店,选中了一种带有弯弯的月亮和星空的图案的花布。每米6。5元,买5米要用多少元?谁来帮小芳算算?(教师口述,同时板书例1。)
2.引导发现
(1)通过列式,理解小数乘以整数的意义。
学生根据题意列式:6。5+6。5+6。5+6。5+6。5。
这个加法算式有什么特点?(加数相同。)
根据这一特点,你还能用别的方法表示吗?
6。5×5。
6。5×5表示什么?(6。5×5表示5个6。5的和或6。5的5倍。)
你能说出下列算式表示什么?
2。7×5 5。8×4 3。54×2 1。63×11
小结:
小数乘以整数的意义是什么?(求几个相同加数的和的简便运算。)
小数乘以整数的意义与什么算式的意义相同?(小数乘以整数的意义与整数乘法的意义相同。)
说明整数乘法的意义也适用于小数乘以整数。
(2)计算:
思考、讨论:6。5×5应如何计算呢?
提示:能不能把6。5转化成整数呢?转化后积会发生什么变化?
学生试做。
用投影打出学生做的过程,并由学生讲解:
①6。5×5=6。5+6。5+6。5+6。5+6。5=32。5(元);
讨论以上几种算法,哪种对,哪种不对,为什么?(①结果正确,方法不简便;②不对,因为325是65×5的积,不是6。5×5的积;③对,把6。5扩大10倍是65,用65×5=325,积325也扩大了10倍;要使积不变,325必须要缩小10倍,才是6。5×5的积。)
学生重点讲解法③的道理,教师板书:
(先把6。5扩大10倍成65,再按照整数乘法的计算方法计算65×5=325,再把乘出来的积325缩小10倍是32。5。)
答:5米要用32。5元。
小结:
计算小数乘以整数的思路是什么?(把小数乘法转化成整数乘法计算。)
转化的.方法是怎样的?(先把小数扩大成整数,按照整数乘法去计算,因数扩大了多少倍,积就要缩小多少倍。)
(3)填空,并讲出道理。
(4)小结,引导学生得出计算方法。
①观察以上各题,你发现积的小数位数与什么有关?有什么关系?为什么?(积的小数位数与被乘数的小数位数有关,被乘数有几位小数,积就有几位小数。因为要把小数乘法转化成整数乘法,被乘数扩大了多少倍,乘数不变,积也随着扩大了多少倍。因此必须再把积缩小多少倍。)
②小数乘以整数的计算方法是什么?
计算小数乘以整数,先按照整数乘法的计算方法算出积,再看被乘数中有几位小数,就从积的右边起数出几位,点上小数点。
(三)巩固反馈
1.说出下面各算式中积应有几位小数:
25。4×36 2。37×125 0。15×3
1。032×24 3。506×1 0。017×21
2.在积的适当位置上添上小数点:
观察:积的小数位数是否与被乘数的小数位数相同?为什么?(积中小数部分末尾的零省略不写,被划去了,积的小数位数与被乘数的小数位数不同。)
3.看谁算得又对又快。
25×4= 18×5= 2。5×4= 1。8×5=
0。25×4= 0。18×5= 0。025×4= 0。018×5=
注意:计算的结果,小数部分末尾的零要去掉,把小数化简;小数部分位数不够时,要用“0”占位。
4.列出乘法算式,再算出来。
(1)14个9。76是多少?
(2)6个3。25是多少?
(3)5。24的5倍是多少?
(4)1。6的8倍是多少?
5.课后作业:P4:1,2,3,4。
课堂教学设计说明
小数乘以整数是在整数乘法的意义和法则的基础上进行教学的。为了使学生能够顺利地利用知识的迁移规律,掌握小数乘以整数的意义和计算方法,我们在复习中设计了整数乘法的意义和计算方法,小数点位置的移动引起小数大小的变化规律以及积与因数的变化规律。
在新课的引入上,注意联系学生的生活,使学生很自然地参与到新知识的探索之中。通过带有思考性的问题,引导学生思考,并大胆让学生尝试,讲解、讨论,把学生引导到算理的探究过程之中。在学生理解算理的基础上,通过观察比较总结出计算方法,提高学生的抽象、概括能力。
练习的设计由易到难,思维过程既有展开,又有压缩,突出重点和难点,有助于学生形成技能技巧,提高学生的计算能力。
板书设计
小数乘以整数
例1 花布每米6。5元,买5米要用多少元?
(1)6。5+6。5+6。5+6。5+6。5
=32。5(元)
(2)6。5×5=32。5(元)
答:买5米要用32。5元。
意义:求几个相同加数的和的简便运算。
计算方法:先按照整数乘法的法则算出积,再看被乘数有几位小数,就从积的右边起数出几位,点上小数点。
整数乘法运算教案 篇2
[教学目标]
1.理解小数乘以整数的意义,掌握它的计算方法。
2.通过运用迁移的方法学会新知识,培养类推的能力。
3.培养学生认真观察、善于思考的学习习惯。
[教学过程]
本节课分四个环节进行。
课前谈话:同学们已学习了小数加法和减法的意义及计算方法,这学期要在这个基础上,继续学习小数乘法和除法的意义及计算方法等知识。今天,我们先学习小数乘以整数的意义和计算方法。出示课题:小数乘以整数
(一)复习旧知,引入新知
1.指名板演。(用竖式计算)
65×5=976×14=
订正时,可让学生说说整数乘法的意义及计算方法。
2.口答。(出示投影片)
(1)填空。
5.6扩大()倍是56。
9.76扩大()倍是976。
(2)去掉下面各数的小数点后,分别扩大多少倍?
3.24.780.0370.06
(3)下面各数分别缩小10倍、100倍、1000倍后各是多少?
485853450
3.填表,并说一说你发现了什么规律。(出示投影片)
订正时要注意引导学生先从左向右观察:一个因数不变,另一个因数扩大10倍、100倍、1000倍,积也随着扩大10倍、100倍、1000倍。
再引导学生从右向左观察发现:一个因数不变,另一个因数缩小10倍、100倍、1000倍,积也随着缩小10倍、100倍、1000倍。
最后归纳出:一个因数不变,另一个因数扩大(或缩小)10倍、100倍、1000倍……,积也随着扩大(或缩小)10倍、100倍、1000倍……。
教师谈话:刚才我们复习了整数乘法的意义和计算方法,小数点位置的移动引起小数大小的变化规律,及因数的变化引起积的变化规律,这些知识都是为今天学习新知识做准备。下面我们运用这些知识一起研究小数乘以整数的意义和计算方法。
教学意图:让学生充分回忆旧知识,为学习新知识进行迁移做好准备。教师要注意让全体学生参与,动口、动手、动脑。
(二)运用迁移,学习新知
1.理解小数乘以整数的意义。
出示例1:花布每米6.5元,买5米要用多少元?
读题后,请学生列出加法算式并板书:
6.5+6.5+6.5+6.5+6.5
提问:这个加法算式中的加数有什么特点?这样的加法算式怎样计算比较简便?
(几个加数相同,都是小数。求n个相同加数的和可以用乘法计算比较简便。)
提问:你能列出乘法算式吗?想一想它的意义是什么呢?
(6.5×5,表示5个6.5相加是多少,或6.5的5倍是多少)
板书:6.5×5
教师:6.5×5是小数乘以整数,小数乘以整数的意义是什么呢?
出示思考题,并组织学生讨论。
(1)小数乘以整数的意义与整数乘法的意义相同吗?(相同)
(2)它们有什么不同?(小数乘以整数中的几个相同加数是小数,而整数乘法中的几个相同加数仅限于整数)
(3)小数乘以整数的意义是什么呢?
讨论后概括出:小数乘以整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
练一练,说出下列各题的意义。
0.9×463×68.4×15
(4个0.9相加的和是多少?6个63相加的和是多少?15个8.4相加的和是多少?)
2.理解法则。
教师:我们学习了小数乘以整数的意义,下面继续研究它的计算方法。同学们可联系前面复习的知识,认真思考,积极发言。
出示思考题,组织学生讨论,并试做。
(1)怎样把6.5×5转化为整数乘法进行计算?
(2)把6.5×5转化为整数乘法后,积发生了什么变化?
(3)要想使积不变,应该怎么办?
讨论后,教师指名回答,并板书学生的思考过程。
答:买5米要用32.5元。
教学意图:让学生初步理解小数乘以整数的意义和计算方法。采用的方法是让学生在旧有知识的基础上运用迁移的方法,通过讨论、尝试,自己探索新知。
(三)反馈调节,归纳方法
1.反馈调节。
(1)完成“做一做”。(指名板演,其他同学在练习本上完成)
14个9.76是多少?
练习时,要注意行间巡视;订正时,根据学生的问题及时调节。
(2)计算。
0.86×70.375×124(指名板演,其他同学在练习本上完成)
订正时,要让学生说一说计算时是怎样想的。
2.归纳方法。
观察并讨论:例题和练习题每题的积的小数位数与被乘数小数位数有什么关系?小数乘以整数的计算方法是什么?
(积的小数位数和被乘数小数位数相同)
总结计算方法:小数乘以整数,先按整数乘法法则算出积,再看被乘数有几位小数,就从积的.右边起数出几位,点上小数点。
总结后,组织看课本,让学生提问题。
教学意图:在练习的基础上,进一步理解算理,并通过学生观察、讨论,自己发现规律,总结计算方法。
(四)巩固练习,孕伏发展
1.说出下面各式的意义。
0.8×43.5×719.6×12
2.下面各题的积有几位小数?看谁说得又对又快。
4.3×80.72×63.726×80.54×7
3.根据282×12=3384,不用计算直接说出各式的积。
28.2×12=2.82×12=0.282×12=
4.列出乘法算式,并计算。(全班动笔)
(1)5个2.05是多少?(2)4.95的7倍是多少?
5.计算。
0.45×1081.056×25(可分组进行)
订正:0.45×108=48.6,1.056×25=26.4,这两题的积的末尾是0,应先数好积的小数位数,点上小数点,再消去“0”。
6.小明看到远处打闪以后,经过4秒钟听到雷声,已知雷声在空气中每秒传播0.33千米,打闪的地方离小明多远?(从打闪起到看到闪电的时间略去不算)
解题前,要向学生说明看见的闪电是光,光在空气中的速度是每秒传播30万千米,远远大于声音在空气中的速度。因此从打闪起到看到闪电的时间可略去不记。
订正:0.33×4=1.32(千米)
7.课堂小结。
小结前,可先让学生提出问题,解疑后,再总结。
8.孕伏发展。
计算6.5×0.56.5×0.82
教师:你们知道这两个算式的意义吗?应该怎样计算呢?这是下节课要研究的内容。同学们如有兴趣,课后可以想一想。
整数乘法运算教案 篇3
教学内容:
第1页例1、例2以及“做一做”,练习一的1—5题。
教学目的:
使学生掌握一位数乘两位数的口算乘方法。
教学重点:
掌握一位数乘两位数的口算乘方法的`算理。
教学难点:
能熟练地口算。
教学过程:
一、复习
10×514×2100×7130×2
20×334×2200×4210×3
问:“谁能说一说14×2是怎样口算的?”
二、新课
1、教学例1。
(1)教师板书14×3,问:14×2我们会算,14×3又该怎样计算呢?
(2)学生回答后,再根据口算过程用方块演示一下。
(3)“谁能说说你是怎样摆的?与口算结果一样吗?”
2、比较14×3和14×2。
教师引导学生对这两道题进行比较,使学生明确:这两道的口算过程是一样的,都是先用乘数去乘被乘数的十位数,再乘个位数,然后把两部分积加起来,只是14×3,个位满10,最后一步是整十数加两位数。
3、例1下“做一做”的练习。
先说说第1、2题的计算过程(指名说,同位说),其它独立完成。
4、教学例2。
讨论想法,汇报(鼓励多种想法)。
5、例2下“做一做”的练习。
先说想法,再填得数。
三、练习
1、练习一的第1题。
说图意,填数,讲想法。
2、练习一的第2题。
3、练习一的第3、4、5题。
板书:
口算乘法
14×3=42140×3=42
想:10×3=30想:14×3=42
4×3=12140×3=420
30+12=42
整数乘法运算教案 篇4
教学内容:
教师自己准备的针对本班学生的口算练习题,练习一7、8题。
教学目标:
1、 通过练习使每位学生都能熟练掌握一位数乘两位数的口算乘法。
2、 使学生能够应用学过的知识解决较为复杂的综合性题目。
教学重点:
提高计算的正确率和速度。
教学难点:
应用知识解决问题
教学过程:
教师的教学设计 学生的'活动 教学反思
一、复习。
1、 一位数乘整十整百数的口算练习。
2、 一位数乘两位数(不进位)
3、 一位数乘两位数(进位)
二、第7题
1、 出示题目,让学生观察。
2、 提出问题:他们交的钱数够吗?
3、 学生独立思考,然后完成。
4、 组织学生交流算法。
三、 第8题
1、 出示图片,创设情境
2、 提出问题:怎样租车划算?
3、 学生讨论:应该怎样做?
4、 教师可以适当提示:
先作成表格样式,看看需要多少大车多少小车?
5、 组织学生进行交流,可以先说说需要多少大车,多少小车,再比较那种方案划算。
四、 小结:
你觉得口算乘法掌握得怎样? 还需要在什么地方改进?
学生听算,集体订正,并与同伴交流计算的方法。
先认真观察图片及表格,从中获得信息,并明白其中的含义。
认真思考找出解题方法,并独立完成。
与同伴进行交流。
学生先看图,从中获取数学信息。
独立思考后与同伴交流怎样计算
先算出需要几辆大车几辆小车,然后再比较哪一种划算。
学生互相说一说,对有困难的学生进行帮助。
整数乘法运算教案 篇5
教学内容:
教材49页例1
目的要求:
使同学明确用7、8、9的乘法口诀求商的算理,初步会用7、8、9的乘法口诀求商,能算出除法算式的'得数。
教学重点:
掌握用乘法口诀求商的方法。
教学难点:
掌握用乘法口诀求商的方法。
教学过程:
一、复习
1、复习7、8、9的乘法口诀。
2、根据图意,列出一道乘法算式和两道除法算式。
说一说,你是怎样计算出结果的?
二、新授
(一)教学例1
1、根据主题图,引导同学安排教室,提出问题。
2、(1)有56面小旗,挂呈行,平均每行几面?可以怎样列式?
板书:56÷8=( )
讨论:怎样计算?
板书:七八五十六,商是7。
(2)假如挂成7行呢?平均每行几面?
板书:56÷7=( )应该想哪句口诀呢?
3、根据主题图上小朋友的活动,你还能提出哪些数学问题呢?你能列式计算吗?四人小组说一说,你是怎样计算的?
(二)完成“做一做”
1、出示7×4 口诀:
(1)启发同学想一想,写出两道动身算式。
(2)分组讨论,想一想商是几,用哪句口诀,怎样想的?
2、再出示余下的题目,由同学独立计算,再交流。
三、巩固练习
练习十一
第1~4题。
四、总结
板书设计
用7、8、9的乘法口诀求商
例1、 7× 8=56
56 ÷8=(7) 口诀:(七)八五十六
56 ÷7=(8) 口诀:七(八)五十六
整数乘法运算教案 篇6
教学目的:
使学生理解分数乘以整数的意义,在理解算理的基础上掌握分数乘以整数的计算法则,并能正确运用先约分再相乘的方法进行计算。
教学重点:
分数乘整数的意义
教学难点:
分数乘整数的计算法则:如何先约分再乘
教学过程:
一、复习。
1、5个12是多少?
用加法算:12+12+12+12+12
用乘法算:125
问:125算式的意义是什么?被乘数和乘数各表示什么?
2、计算:
问:有什么特点?应该怎样计算?
3、小结:
(1)整数乘法的`意义,就是求几个相同加数的和的简便运算。被乘数表示相同的加数,乘数表示相同的加数的个数。
(2)同分母分数加法计算法则是分子相加作分子,分母不变。
二、新授
教学例1。
出示例1:小新爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?
用加法算:(块)
用乘法算:(块)
问:这里为什么用乘法?乘数表示什么意思?
得出:分数乘以整数的意义与整数乘法的意义相同,
都是求几个相同的和的简便运算。学生齐读一遍。
练习:说一说下面式子各表示什么意思?(做一做第3题。)
问:那么分数乘以整数方法应该是怎样算?(通过观察例1,得出分数乘以整数的计算法则)
整数乘法运算教案 篇7
教学内容:课本的例1和“做一做”,练习一的第1~4题。
教学目的:
1.使学生理解小数乘以整数的意义,掌握小数乘以整数的计算法则。
2.培养学生的迁移类推能力。
教具准备:将课本的“复习”中的表格写在小黑板上。
教学过程:
一、复习。
1.复习整数乘法的意义。
问:整数乘法的意义是什么?(让两个学生说一说整数乘法的意义)
在乘法算式中各部分的名称分别叫什么?(被乘数、乘数、积)
还可以叫什么?(因数)
2.复习整数乘法中因数变化引起积变化的规律。
出示小黑板的复习题。一名学生在黑板上做,其他学生打开教科书,在书上自己独立做。教师巡视,集体订正。
订正后,教师引导学生观察、比较:
第2栏与第1栏比较,因数有什么变化?积有什么变化?
第3栏与第1栏比较,因数有什么变化?积有什么变化?
第4栏与第1栏比较,因数有什么变化?积有什么变化?
反过来比较:
第3栏与第4栏比较,因数有什么变化?积有什么变化?
第2、1栏与第4栏比较呢?
说明:这个规律非常重要,对我们以后的学习会有很大的帮助,同学们一定要好好地掌握。
二、新课。
1.教学小数乘以整数的意义(例1的前半部分)
教师出示例1。
想一想:这道题可以怎样解答,该怎样列算式?(多让几名学生回答,教师把学生的列式写在黑板上。)
6.5×5表示什么意思?(5个6.5。)用加法算是:6.5+6.5+6.5+6.5+6.5
还表示什么?(求6.5的5倍是多少。)
讲解:过去我们学习的是整数乘以整数,今天我们列的乘法算式是小数乘以整数。同学们想一想,小数乘以整数的意义同整数乘法的意义比较相同不相同?(相同)
让两名学生说一说小数乘以整数的意义。教师板书:小数乘以整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
2.教学小数乘以整数的计算法则(例1的后半部分)
问:我们已经知道了小数乘以整数的意义与整数乘法的意义相同,那么该怎样计算呢?想一想,能不能把这些小数乘法转化成整数乘法呢?
先复习一下小数点位置移动引起小数大小变化的规律,让两个学生说一说。
讲解算法:小数乘法可以依照整数乘法用竖式进行计算。
板书:
如果把这个式子变成整数乘法,就要去掉小数点,那么这个式子就变成了什么?(65×5)教师在小数乘法的竖式右边写出整数乘法的竖式。
引导学生讨论:
“6.5变成65相当于小数点怎样移动?因数扩大了多少倍?”(小数点向右移动一位,因数扩大了10倍。)板书:
“另一个因数变化了没有?(没有)
“一个因数扩大了10倍,另一个因数没有变化,那么新的积与原来的积比较发生了什么变化?(积比原来扩大了10倍。)
“那么要得到原来的积就要把新的积怎么样?(缩小10倍)。板书:
“要把325缩小10倍,就要把小数点怎样移动?”(小数点向左移动一位。)
板书:
“所以6.5×5的积应该是多少?(32.5)。
讲解:“买5米花布要用多少元?(32.5元)。在横式上写出得数,注明单位史称,板书答案。
引导学生回顾一下小数乘以整数的计算方法,使学生明确:先把被乘数看作整数,被乘数扩大10倍,这样乘出来的积也扩大10倍,要求原来的积,就要把乘出来的积再缩小10倍。
3.基本练习。
做教科书下的”做一做“。
学生独立计算,教师巡视了解全班学生掌握的情况,以及存在问题。
集体订正时,让两名学习好的学生说一说是怎样想。特别要让学生比较一下这道题与例题的异同。(这道题被乘数有两位小数,都是小数乘以整数。)使学生认识到积的小数位数与被乘数的.小数位数应该一样。
三、巩固练习。
1.做练习一的第1题。
指名学生说一说每个乘法算式的意义。可有意识地让中差生说,并按照下面的问题顺序回答:读算式;说出是什么数乘以什么数;算式的意义是什么。
2.做练习一的第2题。
让学生再说一说小数乘以整数的意义。
3.做练习一第3题的前两道小题。
学生独立计算,对学习有困难的学生进行个别辅导。集体订正时,可让计算有错误的学生说一说是怎样算,使他们知道自己错在哪里。
四、。
引导学生根据例题与练习中被乘数的小数位数的不同情况,小数乘以整数的计算方法;小数乘以整数,先按照整数乘法法则算出积,再看被乘数有几位小数,就从积的右边起数出几位点上小数点。
五、作业。
练习一的第3题的后四道小题,第4题。
整数乘法运算教案 篇8
教学内容:
教科书第8―9页的例1、例2,完成“做一做”及相应的练习。
教学目标:
1、利用类推法引导学生理解分数乘整数的意义与整数乘法的意义 相同;在此基础上通过自主探索、小组合作归纳并掌握分数乘整数的计算法则,且能正确地进行计算。
2、培养学生合作探究的意识及良好的逻辑思维能力。
3、让学生在课堂学习中交流学习数学的感受,获得学习成功的体验。
教学重点:
掌握分数乘整数的计算法则。
教学难点:
计算法则的推导
教学方法:
类推法、猜想验证法、归纳法、小组合作法
教学过程:
一、 复习引入
1、 师口述:
① 5个12是多少?怎样列式?(12×5)
② 6个0.5呢?(0.5×6)
③ 3个 是多少?你会列式吗?( ×3)
师:这是个新内容,大家也会列式,真了不起。知道我们刚才用的是什么数学方法吗?(类推法,类推法就是由原来的旧知根据它们之间的相似处类推出和它实质一样的新知识。这是我们学习数学时常用的一种方法)
2、 引入:这就是今天我们要一起研究的分数乘法中的第一个问题:分数乘整数(板书课题)
二、 合作探究、归纳法则
1、 师:看到这个课题,你都想知道关于它哪些方面的知识?
生1:分数乘整数该怎样计算?
生2:在计算时有什么要求或要注意的地方?
师:同学们的想法可真好。那就请带着这些问题进入我们今天的时空隧道吧。
2、 师:大家知道吗?出示:
人跑一步的距离相当于袋鼠跳一下的 ,人跑3步的距离是袋鼠跳一下的几分之几?
你们有办法解决这个问题吗?好,大家先独立思考,有想法后可以和周围的同学交流一下。
3、 师:谁愿意先来发表一下你的看法?
生1:我列的是加法算式: + +
同分母分数相加减,分母不变,只把分子相加减。
即: + + = =
生2:我列的是乘法算式: ×3
我想:要求人跑3步的距离是袋鼠跳一下的几分之几,就是求3个 是多少?3个 就是 。
即: ×3=
生3:老师,我列的也是乘法算式: ×3
但我是这样计算的:用分子“2”和整数“3”相乘得6,写在分子的位置上,分母不变。和他们结果一样,也得 。即: ×3= =
师:同学们的'做法和想法都不错,哪怕有的是猜想也很了不起!如果大家把乘法和加法联系起来思考,大家的思路会更明朗的。
×3,大家说就是求3个 是多少,我们就可以写成3个 相加的形式,即: ×3= + + = = = 。现在大家再来看 ×3的计算过程,清楚了吧。其实在今后计算时,可以把借助加法思考的这些过程省略,写成: ×3= =
4、 师:观察分数乘整数的计算过程,同桌说一说我们是怎样计算分数乘整数的?
生:分数和整数相乘,用分子和整数相乘的积作分子,分母不变。
师:谁来再说一说?(多找几个学生说说,加深理解和记忆)
三、 运用新知、巩固练习
师:现在你会计算分数乘整数了吗?我们先闯第一关:
⑴计算: ×6(学生独立计算)
⑵成果展示:生1: ×6= =
生2: ×6= = =
生3: ×6= =
师:还有不同的做法吗?好,谁愿意来评价一下这几位同学的做法?
生1:这几位同学的计算方法掌握得都不错,但是第一位同学到最后也没有约分,我觉得这是不对的。
生2:我最欣赏第三位同学的做法,因为他在计算过程中进行了约分,这样计算起来比较简便。
整数乘法运算教案 篇9
教学目标
使学生理解分数乘整数的意义,掌握分数乘整数的计算法则.
教学重点
使学生理解分数乘整数的意义,掌握分数乘整数的计算法则.
教学难点
引导学生总结分数乘整数的计算法则.
教学过程
一、设疑激趣
(一)下面各题怎样列式?你是怎样想的?
5个12是多少?10个23是多少?25个70是多少?
(概括:整数乘法表示求几个相同加数的和的简便运算)
(二)计算下面各题,说说怎样算?
+ + = + + =
说一说,这两道题目有什么区别和联系?第二小题还有什么更简便的方法吗?请你自己试一试。
同学之间交流想法: + + = = 3 3=
3这个算式表示什么?为什么可以这样计算?
教师板书: + + = 3=
二、自主探索(一)出示例1 小新、爸爸、妈妈一起吃一块蛋糕,每人吃 块,3人一共吃多少块?
1.读题,说说 块是什么意思?
2.根据已有的知识经验,自己列式计算
三、交流、质疑
(一)学生汇报,并说一说你是怎样想的?
方法1: + + = = = (块)
方法2: 3= + + = = = = (块)
(二)比较这两种方法,有什么联系和区别?
联系:两种方法的结果是一样的.
区别:一种方法是加法,另一种方法是乘法.
教师板书: + + = 3
(三)为什么可以用乘法计算?
加法表示3个 相加,因为加数相同,写成乘法更简便.
(四) 3表示什么?怎样计算?
表示3个 的和是多少?
+ + = = = = ,用分子2乘3的积做分子,分母不变.
(五)提示:为计算方便,能约分的要先约分,然后再乘.
四、归纳、概括:
(一)结合 = 3= 和 + + = 3= ,说一说一个分数乘整数表示什么?
求几个相同加数的和的简便运算.
(二)分数乘整数怎样计算?
用分子和分母相乘的积做分子,分母不变
五、巩固、发展
(一)巩固意义
1.改写算式
+ + + =( )( )
+ + + + + + + =( )( )
2.只列式不计算:3个 是多少? 5个 是多少?
(二)巩固法则
1.计算(说一说怎样算)
4 6 21 4 8
思考:为什么先约分再相乘比较简便?
2.应用题
(1)一个正方体的礼品盒,底面积是 平方米,要想将这个礼品盒包装起来,至少需要多少包装纸?
(2)美术馆要进行美术展览,有5张画是边长 米的正方形的,如果为这几幅画配上镜框,需要木条多少米?
(三)对比练习
1.一条路,每天修 千米,4天修多少千米?
2.一条路,每天修全路的 ,4天修全路的几分之几?
六、课后作业
(一) 的3倍是多少? 的`10倍是多少?
(二)一个正方形的边长是 米,它的周长是多少米?
(三)一种大豆每千克约含油 千克,100千克大豆约含油多少千克?1吨大豆呢?
七、板书设计
分数乘整数
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
例1.小新、爸爸、妈妈一起吃一块蛋糕,每人吃 块,3人一共吃多少块?
用加法算: + + = = = (块)
用乘法算: 3= + + = = = = (块)
答:3人一共吃了 块.
分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
整数乘法运算教案 篇10
教学内容:数学课本90-93页,红点、绿点及相关练习。
教学目标:
1、掌握小数乘整数的计算方法,会用竖式正确计算小数乘整数。
2、培养学生的迁移类推能力:整数乘法-小数乘法,在教学中渗秀转化的学习思想。
3、了解小数乘整数的意义与整数乘法的意义相同,都是求几个相同加数的和的简便运算。
教学重难点:
1、探索小数乘整数的计算方法。
2、确定小数乘整数的积的小数位数的方法。
教学过程:
课前铺垫:1分钟口算。
1、同学们,期中考试之后,每天晚上我们都会进行40道口算练习,现在对自己的口算能力有信心吗?好,那咱们来一次1分钟的口算竟赛,看谁算得又对又快。拿出口算练习纸,准备,开始。
2、同桌交换订正。大家做得非常好,看来口算练习对大家的计算很有帮助。其实复习是一种很有效的学习方法。
一、创境创设,探究新知。
1、出示学习资料
师简单介绍长江三峡水利枢纽工程后,出示课本第90页的信息。(请同学们看黑板)老师这里有一则关于三峡电厂的信息,谁愿意给大家读一下?这则信息中,你了解到什么数学信息?谁能根据这些数学信息,提一个数学问题?
2、学生提出问题
生:6台发电机组每小时发电多少万千瓦时?
10台发电机组每小时发电多少万千瓦时?
26台电机组每小时发电多少万千瓦时?
师根据学生提问,将问题板书在黑板上。
3、解决第一个问题
(1)列式。
师:刚才大家提出的问题很有研究价值,我们先来看第一个问题。
谁来列式?为什么选择乘法来解决这个问题?(求6个58.6用乘法)同意他的做法吗?
师:小数乘整数的意义与整数乘法的意义相同,都是求几个相同加数的和的简便运算。求几个几的和,用乘法计算。
(2)探究计算方法
师:同学们,算式已经列好了,看一下这个算式,和我们以前学的有什么不同?(小数乘整数)
师:对啊,以前我们计算的是整数乘法,现在换成小数乘整数,能不能想办法试着做一做?动脑筋想想?
师:老师看很多同学都有想法了,下面就请大家前后四人为一小组合作解决这个问题。注意:第一,把你的想法在小组中说一说,第二,小组长在练习纸上记录下你们小组的计算方法;第三,推举一名代表一会在班内进行交流。好,开始。
(3)学生独立计算,教师巡视指导,挑选具有代表性的做法为大家展示。
(4)展示计算方法(请几位同学把方法写在黑板上)
师:老师刚才在同学们那里搜集到这几种做法,我们一起来看一下:
A用6个58.6相加,加法算式求得结果。
师:这是哪个小组的方法?来,给大家说一说你们的想法,其他同学认真听,有疑问可以提出来。
师:大家觉得他们的方法怎么样?可以计算出结果吗?师:把小数乘整转化成小数连加来计算,把不会的转化成会的,这个想法不错
B把58.6万千瓦时化成586000千瓦时来做,结果再化成用万做单位的数。
师:他们的想法你们听明白了吗?他们也把小数乘法转化了,转化成了什么?(整数乘法)
师:这个小组先把58.6万改写成586000,再进行计算,最后不忘再改写成用万做单位的数,很有想法。
C先乘法,后除法
师:我们再来看一下这种做法。
生:58.6先乘10,变成586,让586乘6得3516,再把积除以10,就能得到58.6乘6的积。
师:谁有问题要问他?老师有点不明白,为什么要先乘10,再除以10?(这样先扩大10倍,再缩小10倍,结果不变。)教师根据学生回答板书(板书时注意对齐,空行)
58.6扩大10倍数586
351.6缩小到积的1/103516
师:分析得非常有深度。
D列出乘法竖式计算。
师:老师这里还有一种方法,哪个小组的,给大家解释一下?
(展示时请学生说一说自己自己是怎么想的,在做的过程中,先做什么,再做什么?
师:对于他的这种做法,大家有没有什么问题想问他?3516是谁的结果?要得到58.6乘6的结果还要怎么样?以前我们在计算小数加减法时要求数位对齐,那现在怎么不用了?(整数乘法,末端对齐就可以了)
师:同学们,刚才大家的分析真让老师大开眼界,你们把新知识转化成以前学过的知识来解决,这种思想方法在数学当中称为转化,这种方法在我们数学学习中大有作用。
(5)刚才大家总结出这么多的方法计算小数乘整数,如果再遇到这种题,你打算选哪种方法计算,为什么?(列竖式,简便利索)
(6)老师这里还有一道题,13.2*4=你能用列竖式的方法计算出结果吗?
让学生独立完成,找一名同学讲讲计算过程,然后同桌互相检查。
4、解决二位小数乘整数的.计算题。教学课本第91页绿点的问题。
同学们,刚才我们解决的两个问题都是一位小数乘整数的计算题,如果有一道题是两位小数乘整数,你还会做吗?请同学们看黑板:出示91页绿点问题
在练习本上试做。请同学板演。订正时说明计算思路,想法。其他同学有没有什么问题要问他?(点明为什么这次积的小数位数是两位)
5、归纳计算法则:
(1)师:如果现在有一个三位小数来乘整数,大家猜猜积会是几位小数?为什么?如果是一个四位小数呢?积又是几位小数?
师:哦,看来大家好象发现了什么规律,谁来说一下?
(2)归纳计算法则。
如果再遇到小数乘整数这种题,你会不会算?那谁能用自己的话来说一说,遇到小数乘整数的计算题,可以怎样计算?
师:小数乘整数,把小数看成整数,先按照整数乘法的法则算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
二、巩固练习
对于小数乘整数这类计算题,还有问题吗?咱们做几组题,试一下。
1、下面有一位小伙伴要请我们同学帮忙了。
王红同学在使用计算器算数的时侯,发现计算器的显示屏上显示不出小数点,你能帮它算出下列算式的结果吗?
已知:148×23=3404,那么:14.8×23=
148×0.23=
148×2.3=
1.48×23=
练习后交流因数的小数位数和积的小数位数有何关系?(因数有几位小数,积就有几位小数)大家可以利用这一点,对我们的计算结果进行简单的检验。
2、完成课本自主练习91页自主练习第1题。(强调列竖式时因为先看成整数计算出积,所以不用数位对齐,只需要末端对齐就可以了。)
三、小结
这节课我们学习了什么?怎样计算小数乘整数?计算时要注意什么?
四、布置作业
完成学生提的问题2和问题3。
完成课本自主练习91页第2题,及第5题。
《小数乘整数》教学反思
本学期家长开放日,我执教的是第六单元“三峡工程(一)”小数乘法的第一个信息窗:小数乘整数。在研究教材及教参的基础上,我进行了如下的分析:
一本节课主要目标就是掌握小数乘整数的计算方法,会用竖式正确计算小数乘整数。
二了解小数乘整数的意义与整数乘法的意义相同,都是求几个相同加数的和的简便运算。
三对学生进行解决问题策略的渗透:从整数乘法到小数乘法,在教学中渗秀转化的学习策略。
四学习本节课学生所需要准备的知识有整数乘法的计算法则、积的变化规律及小数点位置的移动引起小数大小变化的规律。
五在探究小数乘整数的计算方法的时侯要关注学生的思想,允许学生算法的多样化,从多种算法中优化竖式计算的方法,总结小数乘整数的计算方法。
六重视学生的思维训练。在教学竖式计算时,不仅让学生明白点一位,还要明白为什么从右往左数一位点上小数点。
基于以上考虑,我的教学设计主要分为四大部分。
第一部分课前进行1分钟口算练习,目的有两,一是为小数乘整数的计算做铺垫,二是集中学生的注意力。
第二部分为创设情境,探索新知的过程,本部分使学生经历提出问题――分析问题――概括归纳结论――运用知识解决问题的过程。对于学生探究出来的各种计算方法给予肯定,并渗透转化的策略教学,然后对用竖式计算这种方法重点讲解。
第三部分运用列竖式的方法解决问题
第四部分课堂总结。
从整节课来看,我认为比较可取的地方是:
一学生在探究方法的过程中,有足够的思考时间,并能将自己认为好的方法表达出来,我大体总结一下:两个班级共产生4种方法(1)连加(2)文字叙述(3)列竖式(4)文字竖式并用,分层次表达。针对学生研究出现的这些方法进行了整合,第(1)种方法,四四班谭霄在介绍时说“笨方法”,两个班级合起来共有2人使用,从这里可以看出学生对于乘法是加法的简便运算理解非常好;剩下三种方法其实不谋而合都运用了积的规律来解决问题。
二在学生交流的过程中,对转化这种策略的点拨比较好。
三观察学生反应,大家对于课堂上的这种研究问题的氛围都比较喜欢,学得都很带劲儿!学生的思维训练在教学中得到很好的提升。
不足之处:
本节课我在设计时最大的不足就是对教材的研究仍不够透彻。信息窗1中对小数乘整数的计算方法的提升应用是在一位小数乘整数及二位小数乘整数之后,但是我在设计时忽视了绿点的内容,在解决红点内容后继续解决的是“26台发电机组每小时发现多少万千瓦时?”这个问题其实仍是一位小数乘整数,并没有起到知识的延伸的作用,因此学生对于“因数中有几位小数,积就有几位小数”体会不够深刻。课后我对教学设计进行了调整,将学生提出的问题2问题3留做课后作业,让学生运用本节课的知识解决,而在课堂上继红点内容后,继续研究绿点,然后再进一步提升,引导学生思考“如果是三位小数乘整数,四位小数乘整数,这时侯积又是几位小数呢?你是怎么想的?”在此基础上再总结小数乘整数的计算方法。
其次就是对于教学各个环节时间的把握不够合理,探究时间过长导致归纳总结时间及练习时间太短,最后草草收场,感觉头重脚轻。
通过本次教学活动,我再次深刻地体会到钻研教材的重要性,教材中呈现的是什么?为什么要呈现这个知识?值得我好好分析体会。“终身学习”这四个字我体会越来越深,以往总是教五年级教材是有够熟,第一次教四年级我仍要从头学起!回想这节课,我虽然遗憾颇多,但是我一直认为问题愈多,进步愈大!以后我教学中我将吸取教训,不断完善自己,用精彩的课堂吸引学生,用高质量的教学回报家长!
整数乘法运算教案 篇11
教材简析:
本节课是在学生掌握整数乘法,理解分数的意义和基本性质,能正确计算分数加减法的基础上进行教学的,所学内容属于分数中的基本知识和技能,这些知识不仅可以解决有关的实际问题,而且也为学生进一步学习分数除法、分数四则混合运算奠定基础。
教学目标:
1.使学生通过自主探索,了解分数乘整数的意义,知道“求几个几分之几相加的和”可以用乘法计算,初步理解并掌握分数乘整数的计算方法。
2.使学生在探索分数乘整数计算方法的过程中,运用已有知识和经验主动进行探索性思考,并进行分析和归纳。
3.在探索计算方法的过程中,体验探索学习的乐趣,获得成功的体验。
教学重、难点:
掌握分数乘整数的算理和计算方法,能正确地进行计算。
教学过程:
1.创设情境,揭示课题。
(1)出示情境图。
师:阳春三月,同学们打算举行一次风筝制作展示活动。请看,这是小明同学制作的风筝。仔细看图,你了解到哪些信息?根据这些信息,你能提出什么数学问题?
(2)探索分数乘整数的意义,揭示课题。
师:求制作这个风筝尾巴用多少布条,你会列式吗?
+++++。生2:×6。
21生3:6×。
2生l:师:①和②与我们以前学过的算式有什么不同?生:都是分数乘整数。
师:分数乘整数的意义与整数乘法的意义是相同的,都是求几个相同加数的和的简便运算。6个写成1可以2111×6,也可以写成6×。这就是我们今天要学习的分数与整数相乘。(板书课题:分数与整数相乘)2221/4
【评析】分数乘整数比较抽象,小学生学习起来容易感到枯燥。创设现实情境可以激发学生的学习兴趣。同时,鼓励学生提出问题,培养了学生发掘信息、发现问题的数学素养。
2.算法交流,分析比较。
(1)学生尝试独立计算。师:尝试计1×6,做完后小组内交流,交流时要把道理说清楚。
(2)交流算法。
1×6=×6=3(米)②×6=+++++==3(米)?66③×6===3(米)④×6=(米)212①师:你认为④正确吗?为什么?
16是3,而不是。2121师:你能联系已有知识说明×6的积为什么是3吗?
生1:因为+++++=3,所以×6=3。
生2:是1个,6个是,就是3。
2222生:6个师:在方法③中,为什么分母2不变,单单只把分子1和6相乘呢?(课件演示方法③的计算道理。)
【评析:给学生创设足够的探究时空,放手让学生运用已有的知识和经验自主探究计算方法,每一点知识都是通过学生的主观努力获得的。在此基础上引导学生生生交流、师生交流,教师仅在学生的疑惑处或计算的关键处给以提示或强调。这样设计极大程度地发挥了学生的主体性,学生中产生了许多富有个性的算法,有效地落实了算法多样化这一理念。】
3.沟通优化,促进发展。
(1)算法的初步优化。(出示:5×12)3(学生尝试独立计算后全班汇报交流。)①×12=+++++++++++=202/4
②5×12=203师:请同学们评价一下这两种方法。生:用相加的计算方法太麻烦,师:为什么不用转化成小数的方法计算?生:因为5不能化成有限小数,所以转化成小数的方法不可取。3师:这两种方法在计算中都存在很大的局限性,看来直接相乘的方法简便,易于计算。
(2)升华计算方法。
师:能不能在原有方法的基础上,想办法使计算再变得简单一些?(课件出示简便算法:先约分再计算。)
(3)总结计算方法。
师:观察刚才的计算过程,根据讨论,你认为分数与整数相乘,可以怎样计算?在小组里交流。师(小结):分数与整数相乘,要用分数的分子与整数相乘,分母不变,计算时,能约分的要先约分再计算。
【评析:在计算课中如何让学生既能知算理,又能晓算法,这是计算课教学的关键所在。在学生探究得出几种不同的.计算方法后,让学生亲历5×12的计算过程,这样算法优化便是在学生计算、观察、比较3的基础上自然生成的,从而真正把学生推向主动活泼的探究舞台。】
(4)巩固。独立计算10×,×36,×21。
联系实际,灵活运用。
(1)学生独立完成“自主练习”第1题。
①学生审题,并按要求填空。
②集体订正,并要求学生说出从加法算式到乘法算式的根据。
(2)学生完成“自主练习”第2题。
订正时让学生说说题意并列算式,说乘法算式的意义并口算出结果。
【评析:通过基本练习,既巩固和加深了对知识的理解,学会了运用,同时也发展了学生的思维,把课堂的知识和生活紧密结合,达到了巩固知识、培养技能、激发兴趣、发展思维的目的。】
5.课堂总结,交流收获。
师:时间过得真快,一节课就要结束了,大家有什么收获?
【评析:有意识地培养学生的抽象概括能力,把思维的空间留给学生,把说的机会让给学生,让学生学会自我反思。】
整数乘法运算教案 篇12
知识与技能:
1、通过具体情境和实际操作,初步了解小数乘法的意义。
2、结合小数乘法的意义,掌握小数与整数相乘的计算方法。
3、通过探究小数乘整数的计算方法,培养学生的类推、迁移、转化等数学思想方法。
过程与方法:
使学生通过具体情境和实际操作,了解小数乘法的意义。
情感态度与价值观
让学生体验数学活动充满着探索与创造。
教学重点:理解小数乘法的意义,掌握简单的小数乘整数的计算方法。
教学难点;探索小数乘法中积的变化规律。
教具准备:多媒体课件、实物投影仪、正方形纸片。
教学流程:
一、自学反馈:
关于小数学乘法你已经知道了哪些方面的知识?你是怎么知道的?关于小数乘法你还想知道哪些知识?
二、提示课题:
师:真是好样的,通过自学,不但知道自己懂什么,还知道自己不懂什么,想懂什么?而且还提了许多很有研究价值的问题。老师在你们这个年龄可没这么厉害。虽然多数同学对小数乘法的意义和计算方法都有了初步了解,但有些同学还不是很明白,有些问题还需要我们深入的探讨,这节就让老师跟你们一起到小数乘法的王国里去乐上一乐,同时把所有想解决的问题都解决掉怎么样?
三、设境激趣:
1、出示情境图:
师:一年一度的'六一儿童节就要到了,小刺猬的红领巾文具店开张啦,老师准备买一些文具奖励给平时工作出色,学习优秀,敢于提问,善于思考的孩子,每种文具的数量不超过10件,请同学们帮着出出主意,看买些什么文具,买多少合适。
2、学生出谋划策。
买4块橡皮、买9枝铅笔、买2把直尺、买5个书包。
光顾着出主意,还得帮老师算钱呢?请你们根据图中的信息,和刚才说的数量,提出问题。
3、提出问题:
生1:一块橡皮0、2元,买4块橡皮多少元?
生2:一枝铅笔记本。0、3元,买9枝铅笔多少元?
4、探究意义与算法:
师:第一位同学提出的问题可以怎样列式计算?为什么这样列式?你是怎么想的?0、2×4表示什么意思?怎样计算?
四、自主构建:
1、学生先独立计算,然后在小组内交流,教师巡视指导。
2、学生汇报:为什么这样列式呢?(可能有多种算法。)
3、根据学生出现的各种不同方法进行点评。
4、优化算法:你们喜欢哪种算法?为什么?
师:看到同学们想出了这么多的方法,小淘气也不服气,他也想出了一个与你们不一样的算法。请看屏幕(出示图形表征算法。)
师:看懂了图所表示的意思了吗?
师:现在谁能说说小数乘法的意义是什么?
学生相互补充,尝试着说出小数乘法的意义。教师板书:
小数乘法的意义――就是求几个相同加数和的简便计算。
五、运用模型,深化拓展
1、基本练习:分组完成同学们看情境图提出的几个问题。
2、提高练习:做书上“练一练”,完成后与同桌的交流。
汇报“练一练”第1题:怎样计算4×0、3?说说你的想法。
3、探索规律:完成练一练”的第2题并展示结果。
说说0、01×10、0、01×50、0、01×100、0、01×1000表示什么意思?引导学生结合图示观察,看看这组算式有什么规律?
六、全课总结:
解决自学反馈中学生提出的问题,部分遗留下的问题让学生课后继续独立学习,下节课再来研究。
整数乘法运算教案 篇13
一、教学目标
1.知识与技能目标:掌握分数乘整数的两种意义及分数乘整数的运算法则。
2.过程与方法目标:理解一个数乘分数的意义,知道求一个数的几分之几可以用乘法计算。
3.情感态度价值观目标:培养学生理解知识的能力和计算能力:培养学生逻辑推理能力,渗透择优思想。
二、教学重难点
重点:理解分数乘整数的两种意义,以及分数乘整数的运算法则。
难点:掌握分数乘整数法则的推导过程。
三、教学过程
尊敬的各位老师大家好,我是小学数学组2号考生,今天我试讲的题目是分数乘整数,下面我将正式开始我的试讲。
上课,同学们好,请坐。
【导入】
同学们,你们都喜欢过生日嘛,前几天也是小心的生日,妈妈给买了一个大蛋糕,我们一起来看一看,仔细观察这张图片,你能发现哪些数学信息?请你来说观察得非常细致,他们每人吃了2/9个蛋糕,那你们能根据这个信息提出一个数学问题吗?请你来说,你提的这个问题可真有价值,三个人一共吃了多少个蛋糕?那我们列范式就是,啊对,三个2/9是多少?所以用2/9x3。
我们一起来观察这个算式,它有哪些特点呢?请你来说,观察的非常仔细,请坐。这个算式是分数乘整数,那像这类的算式同学们会计算吗?看同学们既疑惑又好奇的表情,这节课就让我们一起走进数学王国,去探究分数乘整数的奥秘。
【新授】
活动一:
这个算式我们到底该如何结算?同学们先独立思考,再小组合作,遇到困难可以借助我们学具袋中的小圆片进行摆一摆,分一分,老子相信小杜的力量是强大的。讨论完成,以端正的坐姿来示意老师。看那个小组的方法,又好又快。开始。老师看同学们都已经坐端正了,哪位同学愿意向大家分享一下你们小组的讨论成果,老师看一组的同学手举的像小树林一样,那就1组的三号同学请你来说。你们小组的动手能力可真强,请多是运用小圆片来计算的,先把小圆片平均分成九份,每人吃了两份,一共涂了这样的三个两份,六份一共涂上了颜色。就是这个圆形卡片的6/9,所以他们一共吃了6/9个蛋糕。其他小组还有不同的方法吗?三段二号同学请你来说,你这会用联系的眼光看待问题,请坐,是运用连加的方法,2/9x3就是,啊三个2/9香加2/9+2/9袋加2/9等于6/9,也就是约分等于2/3个。谁还有不同的想法,你6组一号同学请你来说,你这方法可真有创意。赶紧上来为大家展示一下你的计算过程。
活动二:
同学们都看明白了吗?那这每一步又代表着怎样的含义呢?我们一起来探究一下。
2/9x3表示的是三个2/9相加,所以等于2/9+2/9+2/9。然后呢?对呀,我们就可以运用同分母分数加法来计算了,分母不变,分子相加变成了2/9+2,再加二。接下来我们该如何计算,谁来说一说你的想法,请你来说。小脑袋可真灵活,分子上的三个二相加,表示三个二是多少所以用乘法算式2x3。2x3等于六,所以结果等于6/9,9分之六,能够约分,我们在约分成最简分数2/3个。同学们,你们都想到这个方法了吗?赶紧带在练习本上写一写,和同桌之间说一说。
活动三:
老师看同学们都已经完成了,那我们再来仔细观察一下这个方法的阶段过程,这个六是怎么得到的呢?谁来说一说?请你来说。对呀,是2x3的积。那为什么是2x3呢?是的,以为把一个蛋糕平均分成九份,每人吃两份,三个人也就是3个2份,就是2x3。我们仔细观察,这个分数和整数叫二和三是从哪里来的?对呀,这二正好是2/9的分子,三是这个整数,看来分数乘整数,用分数中的分子去乘这个整数,分母不变。
其他同学还有更简便的方法吗?请你来说,你的小脑袋可真灵活,这样我们能约分的可以先约分,再计算,结果是一样的,像2/9x3,就等于九分加2x3,因为这九和三可以约分,我们通过约分直接就是2/3x1,,这样就更简便,而且不影响结果。同学们赶紧的'用这种方法在练习本上写一写,和同桌之间互相交流一下。其实这个过程是我们思考的过程,我们在书写的时候一般都会省略不写。
结合我们刚刚探索过程,谁能来试着总结一下分数乘整数的计算方法呢?请你来说跟我解答及经验又准确,请坐。分数乘整数,用分数中的分子与这个整数相乘,得到的积作为分子,分母不变,能约分的先约分再计算。
观察一下黑板上这些内容,以上就是本节课所要学习的体积和体积单位。
【巩固练习】
接下来老师就来考一考大家,同学们敢不敢接受老师的挑战?这么自信,请看大屏幕计算一下这两道题,看哪位同学计算得又快有准确。
老师看同学们都已经完成了看来,谁来说一说第一题的答案?请你来说5/ 12,同学们都同意他的答案吗?看来这么简单的问题已经难不倒大家了,我们一起来看第二题,我们一起说出他的答案。看来同学们对这节课的知识掌握的非常扎实了请看大屏幕。
【课堂小结】
不知不解本节课已经接近了尾声哪位同学来说一说本节课都有那些收获呢?班长你手举得最高你来说,他说啊通过本节课学习到了分数运算当中一种新的运算法则,分数乘整数,用分数中的分子与这个整数相乘,得到的积作为分子,分母不变,能约分的先约分再计算。看来啊本节课上特听讲非常认真,请坐!
【作业布置】
那接下来老师老师给大家布置一个小任务,课下去利用今天所学习知识思考一下,我们全班40人每人吃蛋糕的三分之一需要吃掉多少蛋糕呢?下节课一起来交流讨论一下。
本节课就先上到这,下课,同学们再见!
尊敬的各位考官,我的试讲到此结束,感谢各位考官的耐心聆听!
乘法运算律教案收藏十三篇
幼儿教师教育网编辑整理了以下有关“乘法运算律教案”的内容供您参考。教案课件也是老师工作中的一部分,就需要我们老师要认认真真对待。教案是教学过程中发现和解决问题的重要工具。建议你将这个链接分享到社交媒体帮助更多的人获得帮助!
乘法运算律教案 篇1
一、导入课题
同学们,这节课我们来复习第一单元知识,回顾一下,在这一单元里,你都学到了哪些知识?(学生自由发言,交流本单元主要知识点。)
这节课,我们将继续走进黄河掠影,看看你对这部分知识掌握得怎么样。
二、创设情境,激发兴趣
1、多媒体播放《黄河简介》并配以多幅图片资料,让学生了解有关的黄河史。
2、启情:炎黄子孙为了纪念我们的母亲黄河,将其编著成册,题为《黄河掠影》。
三、情境引路,复习要点:
情境一:多媒体出示《黄河掠影》图书,注明:每本n元
1、引导:你能提出什么问题?(学生主动提问题并自主选择同学回答)
学生可能提:买5本多少元?(5n元)
买x本多少元?(xn元)
2、点拨导入:如果每本15元,你能得到什么信息?(学生自由发言,练习求含有字母式子的值。)
情境二:多媒体出示《黄河大桥》图
1、简介:大桥全长s米,汽车以每小时v米的速度行了t小时。
2、提问:你能根据以上信息表示出已知其中两个量求另一个量的字母关系式吗?(学生自由发言,互相补充)
3、引导:你还学过哪些数量关系式,能用字母表示出来吗?(学生独立完成书上第108页第一栏填空,然后交流发言。)
四、概括复习:用字母表示公式及运算定律
1、导入:用字母不仅可以表示数、数量关系,还可以表示什么?(生回答:用字母可表示公式及运算定律)
2、启发:通常怎样用字母表示长、正方形的周长及面积公式?(生说师板书,学生完成书第108页第二栏。)
3、我们学过的运算定律有哪些?(学生回答,互相补充。)
你能用字母表示这些运算定律吗?(学生独立完成书第108页第三栏,并交流发言,师完成表格板书。)
4、引入:学了这些运算定律有什么好处呢?(一可以进行验算,二可以使计算简便。)
练习:1)435+724+565+10762)401325
3)451024)75199+75
(指生板演,讨论订正。)
5、减法有什么性质呢?你能用a、b、c表示减法的性质吗?[生说师板书:a-b-c=a-(b+c)]]
五、巩固应用
多媒体出示练习题
1、填一填
(1)每千克苹果a元,7千克苹果()元。
(2)小明家到学校465米,每分钟走b米,4分钟后离学校还有()米。
(3)一个菠萝重x千克,一个西瓜比这个菠萝的3倍重0.4千克,西瓜重()千克。已知菠萝重2千克,西瓜重()千克。
(4)正方形的面积公式用字母表示是(),周长公式是()。
(5)四(1)班有学生42人,四(2)班的学生比四(1)少x人,四(3)班的学生比四(2)班多9人。
①42x表示()
②42x﹢9表示()
(6)a减去m的差的2倍是()
(7)一个工厂原有煤x吨,烧了7天,每天烧a吨,还剩()吨。
(8)明明现有20元零花钱,如果平均每周积攒2元,照这样计算,7周后,他一共能积攒()多少元。
(指生口答,互相修正。)
2、火眼金睛辨对错。(观察后口答)
(1)(a+b)。c=a+(b.c)()
(2)78101=78100+78()
(3)a元可以买20个篮球,篮球的单价是20a。()
(4)正方形的边长是a,面积是4a。()
(5)整数加法交换律、结合律对小数同样适应。()
(6)21.32(6.32+8.3)=21.32-6.32+8.3()
3、观察并回答(芝麻出油情况如下表)
(1)你有什么发现?
(2)如果出油x千克,需要芝麻多少千克?(学生观察后交流发言)
4、开放题:
联系生活实际,概括1006x,编一道解决实际问题的题目。
六、课堂小结
通过本节课的学习,你对字母的功用有什么新的认识?(自由发言,畅所欲言。)
七、布置实践作业
到生活中进一步去发现字母,了解字母还有哪些用处,和同学交流。
板书设计:
用字母表示数及加、乘法运算律
课后反思:
乘法运算律教案 篇2
大班数学公开课教案《乘法运算》
幼儿园数学教案:乘法运算
活动名称:学习乘法运算
目标:
1、使幼儿知道乘法的含义,认识到“求几个相同加数的和”用乘法计算比较简便.
2、认识乘号,会读、写乘法算式。
3、培养幼儿观察比较的能力.
重点:知道乘法的含义,了解到“求几个相同加数的和”,用乘法计算比较简便。
难点:乘法算式所表示的意思。
教具:课件、字条、题卡、插板、电脑、铅笔、纸张作业。
过程:
一、开始部分
1、复习准备
口算两组题(要求读出算式,说出得数).
第一组第二组
7+83+3
6+4+3 5+5+5
7+2+6+1 4+4+4+4
1+3+4+5+2 2+2+2+2+2
幼儿按要求口答后,教师引导幼儿观察:
2、提问:
1.这两组题都是加法,但是它们有什么不同的地方?
(第一组每道题的加数不相同,第二组的每道题的加数都相同)
2.像第二组这样,加数都相同的加法,我们叫它“求相同加数的和”,也叫做“同数组成”。(出示字条)
3、(出示题卡)第1题3+3,相同加数是几,有几个3相加,这就是2个3.2个3是6,6里面有2个3。
第2题5+5+5,相同加数是几,有几个5相加,这就是3个5.3个5是15,15里面有()个5
第3题4+4+4+4,相同加数是几,有几个4相加,由幼儿说出4个4.4个4是(),16里面有()个4。
第4题2+2+2+2+2,相同加数是几,有几个2相加,由幼儿说出5个2.5个2是(),10里面有()个2
二、基本部分:
1.启发性谈话
像上面这样求几个相同加数的和,除了用加法计算外,还可以用一种简便方法,这种简便方法是什么呢?(引出乘法)
2.展示课件《乘法运算》
教师边展示边讲解边提问:
乘法和我们以前学过的加法、减法一样,也有一个运算符号叫乘号,乘号的写法是左斜右斜“×”.想一想说一说,乘号像什么(像汉语拼音中的×).
(1)这个符号叫什么?
怎样写乘法算式呢?先看一看相同加数是几,相同加数是2,就写在乘号的前面,再数一数是几个2连加,把相同加数的个数5写在乘号的后面,2×5表示5个2连加,因此算式是2×5=10,读作2乘以5等于10.乘法口诀念做:二五一十。
(2)图片中先出现了几只鞋子,又出现了几只一共有多少只鞋子?盘子有几个?里面分别有多少萝卜?用加法算式怎么列?乘法怎么列算式?相同加数是几?有几个?这个乘法算式表示什么?几个几连加?用乘法口诀怎么念?
3、教师启发提问,图中共有几行?每行是几个?(引导幼儿观察图片的内容)根据课件图片插棋子列算式
4、拍手游戏.老师每次拍4下,拍3次.(由幼儿说出加法算式和乘法算式)
5、教师出应用题幼儿插棋子列算式
教师提出要求:
(1)每行摆3个棋子,摆5行,这是几个几?(5个3)
(2)怎样用加法算式表示,怎样列乘法算式,这个乘法算式表示什么意思?
(33333=153×5=15表示5个3连加)
(3)大二班小朋友去栽树,一行栽4棵树,问5行一共栽几棵树?(4×5=20表示:5个4连加)
(4)图书馆书柜一层放6本书,问3层一共放多少本书?
(6×3=18表示:3个6连加)
(5)小朋友架椅子一组架4把,问4组一共架多少把椅子?
(4×4=16表示:4个4连加)
6、教师出示课件图片:《快乐的游乐场》引导幼儿了解生活中到处都有数字,都可以进行计算。幼儿看图在插板上列乘法算式。
三、结束部分:
幼儿人手一份纸张作业,进行巩固练习。
乘法运算律教案 篇3
教学内容:复习加法和乘法的运算定律及其应用--教材第74页5题及练习十七7-11题与12*-13*。
教学目的:使学生进一步掌握加法和乘法的运算定律,会应用这些定律进行一些简便运算;能够比较熟练地计算三步式题和解答一些比较容易的三步计算的文字题。
教学过程:
一、口算
做练习十七的第7题。
(2分钟口算竞赛,直接在教材上写出得数)
二、复习加法、乘法的运算定律和简便算法(第74页第5题相关内容)
1.加法的运算定律。
教师:加法有哪些运算定律?用字母怎样表示?
让学生说,教师板书用字母表示的形式:
加法交换律:a+b=b+a
加法结合律:(a+b)+c=a+(b+c)
2.乘法的运算定律。
教师:除了加法有运算定律外,还有什么运算有运算定律?有哪些运算定律?让学生先用语言表述,再说出用字母怎样表示,教师板书:
乘法交换律:ab=ba
乘法结合律:(ab)c=a(bc)
乘法分配律:(a+b)c=ac+bc
然后引导学生比较加法和乘法的交换律、结合律有什么联系和区别。使学生进一步认识到它们的表达式类似,只是运算的方法不同。
3.做练习十七的第8题。
巩固加法和乘法的运算定律,看谁能够根据运算定律填写适当的数或符号。
4.加法和乘法的一些简便算法。
做练习十七的第9题。
让学生在练习本上做,看谁算得又对又快。让先做完的学生说一说自己是怎样算的(不用说出应用了什么运算定律),再了解全班有多少学生没用简便算法计算。然后让没有用简便算法计算的学生说一说,算得快的学生是怎样应用运算定律进行计算的。如果还有一些学生说不清楚,教师要结合运算定律进行讲解,使他们学会用简便算法。
三、作业
1.做练习十七的第10-11题。
2.提前做完的学生可以做练习十七中的第12*题和第13*题。
乘法运算律教案 篇4
教学内容:教科书练习六的第6-13题。
教学目的:通过综合练习使学生进一步熟悉学过的运算定律,能够运用学过的运算定律进行简便计算。
教具准备:将下面复习中的题目写在黑板上。
教学过程:
一、复习
把下面相等的式子用线连起来,并说明符合什么运算定律。
a+ba(bc)
(a+b+c)b+a
(ab)ca+(b+c)
abacc+bc
(a+b)cba
让学生一个一个地在黑板上连线,并说明符合哪个运算定律。
教师:应用这些运算定律可以使一些计算简便。
二、做练习六的第6题
先让学生独立做,做完后集体核对。
1、核对第6题时,学生说出一种算法后,再提问:还有别的算法吗?教师把学生所说的算式都写在黑板上。
提问:哪一种算法比较简便?请几个学生发言。
3、提前做完的学生可以做练习六的第11题和第13题。
(1)第11题,做题时要让学生特别明确口里填的是同一个数后,提问:
等号左面的式子还能等于什么?根据是什么?教师板书:3口十2口=(3+2)口。
想一想,5乘以什么数的积仍是这个数呢?
(2)第13题,是两个数的差同乘以一个数的规律。开始先让学生自己依照乘法分配律类推,再提问:
等号左面的算式表示什么意思?(一个数与两个数的差相乘。)
等号右面的算式表示什么意思?(被减数和减数分别与这个数相乘,再把两个乘积相减。)
教师:两个算式中间用等号连起来,就表示一个数与两个数的差相乘等于被减数和减数分别与这个数相乘,再把两个乘积相减,结果不变。
你能不能再用两个其它的例子说明一下这个规律?
四、作业
练习六的第9、10题。
乘法运算律教案 篇5
教学内容:教科书第90页例4、练一练,练习十六6~9题。乘法运算律的推广。
教学目标:
1、初步理解整数乘法的运算律对小数乘法同样适用,能运用有关的运算律进行小数的简便计算。
2、使学生通过学习,进一步体会数学知识之间的内在联系,进一步增强探索数学知识和规律的能力。
教学过程:
一、复习引入
1、在()里填入合适的数。
8□=13□945=9(□□)
(32+28)6=□6+□6
你是根据什么填的?
我们学过那些整数乘法运算律呢?
2、引入。
我们一进学习了整数乘法运算律并能运用这些规律使我们的计算简便,那么整数乘法运算律在小数中能不能用呢?这就是今天我们要学习的内容。
二、自主探索。
1、出示例4。
2、能不能填上等号,要看什么?
独立完成,进行验证。
汇报结果。
3、每组中两个算式有什么关系?
你能发现什么规律?
在小组中互相说说自己的发现,并汇报。
4、整数乘法的运算律,对小数乘法同样适用。
板书课题:整数乘法运算律的推广。
5、试一试。
(1)出示试一试。
(2)先在小组中说说你的方法,再计算。
(3)展示学生作业,集体评讲。
你运用了什么规律。
6、小结。
在小数乘法计算中,运用整数乘法运算律可以使计算简便。在计算中,要先观察算式的特点,再合理选择,灵活运用。
7、完成练一练第1题。
独立完成计算,再说说自己是怎样想,怎样算的?
注意学生不同方法的指导。
8、完成练一练第2题。
学生独立完成计算,集体评讲。
三、巩固练习
1、完成练习十六第7、8题。
独立完成,展示学生作业。
说说自己运用了什么运算律?怎样想到运用这个运算律的?
2、完成练习十六第9题。
要求80根钢轨的千克数,首先要求出什么?
怎样列式?
独立完成计算,汇报解题方法。
哪一种方法计算简便?合多少吨?怎样算呢?(除以1000)
四、课堂小结
通过今天的学习,你有什么收获?在计算中有什么要提醒其他同学注意的?
板书设计:
整数乘法运算律推广到小数
0.250.7340.1543
=0.2540.73=0.15(40+3)
=10.73=0.1540+0.153
=0.73=6+0.45
=6.45
乘法运算律教案 篇6
教学目标
1.引导学生探索和理解乘法交换律、结合律和分配律,能运用运算定律进行一些简便计算。
2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。
3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。
教学重点:乘法交换律、结合律和分配律的学习。
教学难点:乘法交换律、结合律和分配律在计算中的应用。 教学过程
第一课时
一、引入新课
环境保护对于人类是非常重要的,我们总是要力所能及的保护地球,保护环境。植树就是一项非常有意义的事,大家都参加过植树活动吗?看看小明的同学们,正在植树呢。我们一起去看看吧。
二、新课学习
看他们热火朝天的植树真辛苦啊。你能提出什么数学问题吗?
学生交流、汇报,教师选择记录。
乘法交换律
首先我们就来解决这个问题,负责挖坑、种树的一共有多少人? 一共有25组,每组有4个人负责抬水、浇树。那么可以怎样列式呢?
25×4○4×25
观察这两个算式,你发现了什么?
也就是说25×4和4×25的结果是一样的,都是100.那也就是说这两个算式可以用等号连接。
25×4=4×25
你还能写出类似的算式吗?
例如:86×4=4×86,100×33=33×100
观察这些算式,你能用一句话说一说这个规律吗?
让学生用自己的语言说一说,主要是说的清楚,理解规律,不要求一字不差。教师总结:交换两个因数的位置,积不变。
这个规律是不是听起来很耳熟,你能给它起个名字吗?
这就是乘法交换律。你能用字母表示吗?
a×b=b×a
三、巩固练习
(1)26×8=( )×( )
(2)56×( )=35×( )
四、课堂总结
说一说今天你有什么收获?
第二课时
一、引入新课
接下来我们来解决另外一个问题:一共要浇多少桶水?
二、新课学习
一共有25组,每组要植树5棵,每棵树要浇水2桶。那么可以怎样列式呢?
25×5×2
请你算一算,看看谁的方法比较巧妙。
观察这两个算式,你发现了什么?
也就是说无论先计算那两个数的积,最后的结果是一样的,那也就是说这两个算式可以用等号连接。
(25×5)×2=25×(5×2)
但是在不改变运算结果的前提下,有时候改变运算顺序会让我们的计算变得简便。
你还能写出类似的算式吗?
例如:
观察这些算式,你能用一句话说一说这个规律吗?
让学生用自己的语言说一说,主要是说的清楚,理解规律,不要求一字不差。教师总结:先乘前两个数,或者先乘后两个数,积不变。
你能给这个规律起个名字吗?
这就是乘法结合律。也就是说把能够让计算变得简便的两个数先结合起来相乘,再乘第三个数,这样就能算的又对又快。
你能用字母表示吗?
(a×b)×c=a×(b×c)
三、巩固练习
怎样简便怎样算
17×25×4 125×29×8
四、课堂总结
这节课你学到了什么?有什么收获?和大家交流一下。
第三课时
一、引入新课
还记得们知道了乘法的那些运算律吗?谁来说一说。
乘法交换律:a×b=b×a
乘法结合律:(a×b)×c=a×(b×c)
今天我们来继续探究乘法的运算律,看看是不是还有什么新的规律。
二、新课学习
还是来解决植树时的一个问题:一共有多少名同学参加了这次植树活动?
一共有25组,每组里4个人挖坑种树,2个人抬水浇水。那么可以怎样列式呢?请你算一算,看看谁的方法比较巧妙。
教师巡视,然后挑出做法比较典型的学生汇报。全班讨论(4+2)×25和4×25+2×25的相同于不同之处。
观察上面的算式,你发现了什么?
(4+2)×25=4×25+2×25
但是在不改变运算结果的前提下,有时候改变运算顺序会让我们的计算变得简便。
让学生用自己的语言说一说,主要是说的清楚,理解规律,不要求一字不差。教师总结:也就是说两个数的和一个数相乘,可以先把它们与这个数分别相乘,再相加。
你能给这个规律起个名字吗?
这就是乘法分配律。
你能用字母表示吗?
(a+b)×c=a×c+a×c
或者:a×(b+c)=a×b+a×c
三、巩固练习
播放课件:乘法的分配律和结合律——由北京国之源软件技术有限公司提供
四、课堂总结
我们学习了乘法的交换律、结合律还有分配律,合理应用这些规律会让计算变得简便。
乘法运算律教案 篇7
教学目标
3、使学生掌握分数乘法和加、减法混合运算的运算顺序,并能正确地进行计算,提高计算能力。
4、使学生能运用乘法的运算定律使一些分数乘法和加、减法混合运算的计算简便,能合理、灵活地进行一些混合运算,提高计算能力。
教学重难点
乘法和加、减法混合运算的运算顺序,正确地进行计算。
教学准备
教学过程设计
教学内容
师生活动
备注
一、复习
二、教学新课
三、巩固练习
四、小结
五、作业
1、P24复习题
说说每道题的运算顺序。
2、问:在没有括号的算式里,如果有乘法又有加、减法,按怎样的顺序运算?在有括号的算式里,要按怎样的顺序运算?
1、引入新课
2、教学例2
说说这道题要先算哪一步再算哪一步?为什么要按照怎样的顺序运算?
学生板演。
3、教学例2
(1)说明:同样的,整数乘法的交换律、结合律对于分数乘法同样适用。
(2)出示例2
说说这道题例的数据有什么特点?这样算简便吗?为什么这样可以简便?应用了什么运算定律?
按简便算法计算结果。
3、练一练
想先那些题可以用简便算法?
指名板演。
2、练习五2
做书上。第三题为什么可以用简便算法。
3、练习五3后两题
为什么这样算?
练习五1、3、5
课后感受
由于内容比较简单,放手让学生自己学习,学习气氛好。注意强调运算顺序。
乘法运算律教案 篇8
1.理解整数乘法的运算定律对于小数同样适用,并会运用乘法的运算定律进行一些小数的简便计算。
2、在教学中渗透环保教育。
二、教学重点、难点。
三、预计教学时间:2节。
四、教学活动。
(一)基础训练。
【口算】。
8.5+2.5=6.5×3=6.25×7=3200÷8=8.46×100=。
(二)新知学习。
【典型例题】。
1.观察下面每一组的两个算式,他们有什么关系?
小结:
2.教学例题8。
(1)学生可能会有以下几种算法:
方法一:0.25×4.78×4方法二:0.25×4.78×4。
=0.25×4×4.78=4.78×(0.25×4)。
=1×4.78=4.78×1。
=4.78=4.78。
(2)尝试练习0.65×201。
【小结】。
(三)巩固练习。
【基础练习】。
1.课本第12页做一做。
2.课本第13页第4题。
3.课本第14页第7题。
【提高练习】。
4.课本第15页第11题。
5.课本第15页第12题。
【拓展练习】。
6.课本第15页第13题。
7.课本第15页第14题。
(四)全课总结。
找到适合于我们自己的解题方法以及简便方法,最后,运用恰当的算法进行计算,做到怎样简便就怎样算。
(五)教学效果评价(小测题)。
1.怎样计算简便就怎样计算。
0.3×2.5×0.40.78×1011.2×2.5。
乘法运算律教案 篇9
一、引入
回忆加法交换律和加法结合律。
生:a+b=b+a (a+b)+c=a+(b+c)
二、新知
1、猜测:乘法中有什么运算定律呢?
2、先填空,再想想运用了什么运算律。
32+12=()+21
51+13+17=51+(( )+17)
12*7=7*( )
11*14*5=11*(14*())
生填空,并说说用了什么运算律。
我们来研究研究后面两个算式(板书这两个算式)
3、看12*7=7*12
对照加法交换律,什么改变了,什么没有改变?
这样的算式你们能不能举个例子?17*5=5*17
引导得出:两个数相乘,交换两个因数的位置,积不变。这就叫做乘法交换律。
如果用字母表示,你们会吗?
生:a*b=b*a
A和B可以是哪些数?
4、小巩固
我是小法官:
54*72=72*54( )
890*120=120*980 ( )
160*38=38+160( )
5、下面我们看第二个式子11*14*5=11*(14*5)
同桌讨论一下你发现什么?
反馈:运算顺序变了,积不变。
就像刚才那个同学所说的第一个先算11*14,第二个先算14*5
那个方便一些?
这两个算式可以填什么符号
(15*4)*10○15*(4*10)
(125*8)*5○125*(8*5)
引导得出:先乘前两个数或先乘后两个数积不变。
生:a*b*c=a*(b*c)
6、回到刚才的算式里这两条条用了什么定律?
再加上一条
6*13*5=13*(5*6)怎么填?用了什么定律?
7、19*B*8=19*(()*8)
填什么?这个B可以代表什么数?
三、巩固练习
1、你能用简便方法计算吗?
23*15*2 5*37*2
指名学生上台板演
课件讲解
2、你能很快算出每组气球上三个数的积吗?
4、34、5 5、12、11 10、25、2
3、仔细思考,你能很快算出它的积吗?
25*9*125*4*8
乘法运算律教案 篇10
【教学内容】苏教版四年级(上册)第30-31页,想想做做1~5
【教材简析】这部分内容以小朋友购买文具用品为素材,在现实情境中分别提出问题让学生解决,在解决问题的过程中学习混合运算的运算顺序。在此之前,学生已经初步理解整数四则运算的意义,掌握了整数四则运算的方法,会列分步式解答两步计算实际问题;在前几册教科书中,学生也已经学过含同一级运算的两步式题,也学过一些含有两级运算两步式题,这些式题由于乘法在前,所以运算顺序都是从左往右的。因此学生开始学习本单元时易受思维定势的影响,为了分散难点,便于学生正确掌握运算顺序和递等式的书写格式,教材一方面采取分步教学,另一方面,在“想想做做”中编制一些改错题,帮助学生通过改错来进一步掌握混合运顺序和正确的书写格式。教材在安排这部分内容时,主要有四个特点:一是创设学生熟悉的生活情境,引导学生结合现实素材理解和掌握混合运算顺序;二是遵循学生的认知发展规律,引导学生逐渐掌握混合运算的顺序,不断提高理解水平;三是把混合运算的学习与运算的实际问题相结合;四是在比较中加深对混合运算顺序的理解,提高运算技能。
【教学目标】
知识与技能:
1、结合购物情境理解、掌握既有乘法,又有加、减法的混合运算顺序,能正确计算。
2、能用递等式表示脱式过程,掌握规范的书写格式。
过程与方法:
使学生通过创设的购物情境,主动理解混合运算顺序;通过仿练、交流,掌握规范的脱式书写格式。
情感、态度与价值观:
学生在自主探索中培养学生参与学习过程的积极情感,在计算和规范表达的过程中,培养学生严谨踏实的学习习惯。
【教学重点】1、用递等式表达脱式过程的书写格式。2、理解、掌握运算顺序。
【教学难点】1、用递等式表达脱式过程的书写格式。2、结合题意帮助学生理解先算乘法的理由。
【教学过程】
一、 创设购物情境,自主解决问题。
1、口答:5+8-7= 7+7+7= 3+3+3+3+3+2=
12÷4×4= 3×7= 3×4+2=
3×5-1=
提问:仔细观察,有什么想说?
【设计意图:第一组从旧知入手,归纳同一级运算按从左往右依次运算;第二组得出:结果相同,相同的数连加用乘法计算简便;第三组得出:前4个3连加可用乘法计算简便再加2,也可5个3连加用乘法计算简便再减1,从潜移默化中让学生体会到乘加与乘减可使一些计算简便。】
2、老师:(课件出示P30主题图)星期天,小军和小晴一起来到商店,想买一些学习用品。你们仔细观察,商店里都有哪些学习用品?它们的单价各是多少
【设计意图:呈现学生熟悉的购物情境,提出数学问题,使学生体会到数学与生活的联系,激发学习新知识的兴趣。】
二、结合购物情境,探讨有乘法、加法的混合运算顺序
1.老师:(课件出示:富有情境地说)小军说:“买3本笔记本和一个书包,你们能帮我计算出一共用去多少钱吗?”
2.学生独立解答,教师巡视。
先让分步列式的同学汇报,教师相应板书:
先算3本笔记本多少钱? 5×3=15(元)
再算一共多少钱? 15+20=35(元)
3.提问:要求“一共用去多少钱”,要先算出什么?(指名回答)
提问:你们能不能把刚才这两个算式合并成一个算式并计算呢?
学生:尝试列出综合算式,允许讨论和交流,
然后板书:5×3+20 5+5+5+20 20+5×3
4.(教师手指5×3+20)像这样的算式,它是由两个一步计算的算式合在一起的一道两步算式,我们叫它综合算式。在这个综合算式里,5×3的积表示什么?20又表示什么?在计算时要先算哪一步?得数是多少?这个得数表示什么意思?
指出:在计算综合算式时,为了看清楚运算的过程,一般要写出每次计算的结果,用递等式表示。第一步可以这样写:在第二行先写上等号(为便于第二行的算式与第一行的算式对齐,第二行的等号要写在算式稍左的位置),再写上第一步计算的结果,还没有参加计算的数目(连同运算符号)要照抄(板书:照抄)下来,而且要写在相应的位置。板书如下(边板书,边说明书写位置):
5×3+20
=15+20
提问:接下来算什么?得数是多少?该怎么写?
指出:第二步要再写等号,等号与上面的等号对齐,然后在等号后面写出第二步计算的结果。(根据学生回答,完成板书。)
5×3+20
= 15+20
=35(元)
5.提问: 20+5×3,可以吗?
(1)让学生明确:要求一共用去多少钱,就是把一个书包和3本笔记本的总价合起来,所以符合题意,是可以的。
(2)提问:在这个综合算式里,要先算哪一步?得数是多少?为什么也要先算5×3?
让学生自己仿照上面的书写格式进行脱式计算,教师巡视,捕捉错误资源。
可能出现的脱式计算有:(小黑板出示)
① 20+5×3 ②20+5×3
=25×3 =20+15
=75(元) =35(元)
6.出示学生作业,并逐一讲评。
引导学生思考:通过这道综合算式的计算,你认为在脱式计算时要注意什么?(板书:脱式)(1、上下等于号要对齐,2、没有计算的数目连同运算符号要照抄下来,而且都要写在相应的位置。)
教师指出:逐步把计算的过程写下来,可以看清楚运算的步骤和每次计算的结果,便于自我检查,提高计算的正确率。
7.提问:5+5+5+20这样列式可以吗?
引导发现:5+5+5+20就是5×3+20 ,几个加数相加,可以先把相同加数用乘法简算再加另一个加数
7.比较5×3+20和20+5×3
=15+20 =20+15
=35(元) =35(元)
你有什么发现?学生讨论交流。
小结:在一道既有乘法又有加法的算式里,无论乘法在前还是乘法在后,都要先算乘法,再算加法。像这样含有两种或两种以上的运算,通常叫混合运算。这节课我们就来研究怎样进行混合运算。(板书课题:混合运算既有乘法,又有加法,先算乘法,再算加法)
【设计意图:本环节设计中给学生创设较为宽松的氛围,充分利用学生的已知,提供给学生合作交流的机会,鼓励学生大胆表达自己的想法,从而把旧知纳入已知,建构新的.知识结构。】
三、结合购物情境,探讨有乘法、减法的混合运算顺序
1.谈话:同学们帮小军解决了问题。
老师:(同时课件出示:小晴说:我也想请你们帮忙,我买2盒水彩笔,付了50元,谁能帮我计算出“应找回多少元”呢?)你们能列综合算式解决吗?
2.学生独立列出综合算式。
全班交流:你们的综合算式是怎样列的?为什么?
学生尝试计算,教师巡视指导,捕捉错误资源。
可能出现的脱式计算有:(小黑板出示)
①50-18×2 ②50-18×2 ③50-18×2=14(元)
= 36-50 =32×2 = 50-36
=14(元) =64(元) = 14(元)
根据学生的计算情况,相应进行讨论评价。
3.提问性小结:在一道既有乘法又有减法的混合运算中,我们在脱式计算时要注意些什么?要按什么顺序进行计算?
【设计意图:本教学环节中,重点从学生的作业中找出错误资源,引起学生注意与重视,然后结合题意,让学生在充分比较、反思、碰撞中,理解算理,总结出运算顺序,对书写格式形成统一的意见,这样也可以让学生对运算顺序和书写格式的理解更加深刻。】
四、应用巩固,提高能力
第—层次:说出下面计算的第一步。
1.15+3×2 2.100-25×3 3.54-44+16 4. 40÷4×2
3×2+15 25×5-100 54+16-44 40×4÷2
汇报交流。
教师指出:我们以前还学习了只有加、减法,只有乘、除法的,都是从左往右的顺序计算。(形成完整的板书:
有乘法,又有加法、减法,要先算乘法,后算加、减法
只有加、减法或者只有乘、除法,要从左往右依次计算)
【设计意图:扩充所学知识的内涵,与以往所学知识构建清楚的块状知识结构,使学生的认识更加清晰】
第二层次:计算下面各题。
2+3×2 20-2×8 7×3+2 10×4÷2
2+3- 2 20÷2×8 7+3×2 10- 4×2
2000-180-180-180-180-180-180-180-180-180-180
20000-180×10
教师提问:这些题目有什么相同点和不同点?做完这些题目给你什么启发?
【设计意图:设计数目较小的计算题,主要目的是让学生进一步掌握运算顺序,计算后再通过比一比,启发学生计算前要仔细观察,弄清运算后再细心计算,提高计算的正确率。最一组】
第三层次:完成“想想做做”第3题。课堂作业
【设计意图:既是复习巩固,又是检测,便于老师了解学生掌握情况,调整老师的教学】
五、课堂小结:
1. 今天这节课你学会了什么?有什么要提醒大家注意的?
2. 其实在我们的数学学习中,还存在着许许多多的混合运算,希望同学们继续去学习和探索,相信你们会有更多的收获。
【板书】: 混合运算
(1) 只有加、减法或者只有乘、除法,要从左往右依次计算。递等式
(2) 既有乘法,又有加、减法,要先算乘法,后算加、减法。脱式
5×3=15(元) 综合式 5×3+20 20+5×3 50-18×2
15+20=35(元) =15+20 =20+15 = 50-36
=35(元) =35(元) = 14(元)
答:一共要35元。 答:应该找回14元。
乘法运算律教案 篇11
教材分析:
主题图以植树为背景,展示了植树过程中同学们挖坑、种树、抬水、浇树等活动的情境。例1是在主题图的基础上提出问题“负责挖坑种树的一共有多少人?”解答这个问题所需要的条件都在主题图中。例2仍然是利用主题提出问题“一共要浇多少桶水?”从解决这个问题的两种算法中,可以得到乘法结合律的一个实例。在此基础上,引导学生观察、比较、概括得出乘法结合律。
教学目标:
知识与能力:使学生理解和掌握乘法交换律和乘法结合律,并会运用乘法运算律进行简便计算。
过程与方法:使学生在合作交流中对运算定律的认识由感性认识逐步发展到理性认识,合理构建知识。
情感态度与价值观:培养学生分析、推理能力,培养学生探索规律的欲望和学习数学的兴趣。
教学重点、难点:
重点:引导学生概括出乘法运算律,并运用乘法运算律进行简算。
难点:乘法运算律的推导过程。
教学策略:
1、情景创设策略:以《数学新课程标准》的理论知识与跨越式教学理念为指导,通过情景创设,在解决实际问题的过程中充分调用已有的知识经验,进行知识迁移,为学生提供学习支架,自主探究、归纳乘法运算定律。
2、信息技术与学科教学整合策略:把信息技术作为学生探索新知、验证猜想、运用知识的工具,为学生之间、师生之间的交流提供了广阔的空间,增强了课堂学习的互动。
3、感受成功策略:鼓励学生进行大胆猜想,通过科学的验证确定猜想的成立,感受成功的喜悦,为学习注入动力。
4、激趣策略:课件的使用比普通课堂更能吸引学生的注意,使学生积极动口、动手、动脑课堂学习更具趣味性。
教法和学法:
1、充分发挥学生的主体作用,在教学中注意让学生自主探索、发现规律、理解规律,通过猜测—验证,引导启发学生发现规律。引导学生积极、主动地参与到知识的形成过程中去。
2、自始至终注意培养学生观察、比较、抽象概括能力,教给学生观察、比较、抽象概括的方法。在教学中不仅引导学生有序地观察比较,还充分运用小组合作讨论的手段,进行小组合作讨论,各抒己见,取长补短,在观察到的感性材料的基础上加以抽象概括,形成结论。
教学资源:
1、人民教育出版社义务教育课程标准实验教科书四年级下册课本。
2、多媒体演示课件:利用图片、文字,创设情景,进行练习环节。
说教学过程:
(一)、课前谈话
调节气氛、调动学生的学习热情、舒缓紧张环境。
(二)、在新课时有意识地设计了“问题创设,引发思考——自主探究、获得规律——巩固应用、解决问题”三个教学环节,使学生经历探究过程,并在此过程中注意渗透“探索与发现”的一般方法,让学生学得积极、主动。
这也符合学生认知的特点和新课程的理念。说教模型,解决问题。这是在(三)、在发现学习了结合律的规律后,安排了一个及时巩固的环节,主要是通过这样的环节,让所学的规律得到进一步的检验和巩固。
让学生明白数学知识与生活紧密联系,并能很好的解决我们生活中的问题。(数学实用性、有用性的渗入)
(四)、在探索完乘法结合的规律后,直接引出两组算式,并由此让学生推导、验证出乘法的交换律。
这种简约的设计主要是基于在乘法结合的理解基础上,并且乘法交换律相对简单易理解。
(五)、最后是运用模型,解决问题。
这是在学习完这两种规律后,在学生心中建立了一个数学模型后,运用它解决实际问题。这样主要是根据认知的特点,通过练习加以巩固,同时也是感受数学学习带来的快乐与方便。第二篇:乘法运算定律说课稿
环节
3、巩固练习:
为了构建学生完善的认知结构,我设置了几道从简单到复杂,层层深入的习题,从而达到巩固的目的,它们包括35面的做一做1、2,和32面的第2题。
环节
4、课堂总结
首先,我让学生自我陈述今天学习到了什么知识,有什么收获?在这个过程中一方面可以帮主我诊断学生今天的学习情况,从而改进教学方法,另一方面可以培养学生总结归纳能力。
最后,说一说我的板书设计,我的板书力求简单明了,并且重难点突出,这样有利于学生加深对本节课知识要点的理解和掌握。
我的说课完毕,谢谢各位评委老师!你们辛苦了。板书设计:
乘法运算定律
①25x4=100
②4x25=100
①(25×5)×2
②25×(5×2))
25x4=4x25 =125x2 =25x10 a×b=b×a =250(桶)=250(桶)
(25×5)×2=25×(5×2))
(a×b)×c=a×(b×c)
乘法运算律教案 篇12
教学过程:
一、知识点的复习
回忆《乘法的运算定律》这一小节的学习内容。
教师引导回忆,并相应板书。
二、联系实际复习
1.学生汇报课前收集的有关乘法的运算定律的相应知识。
2.学生汇报课前自己根据乘法运算定律自编的题目或搜集的题目。
教师把符合要求的题目贴上黑板。
学生根据前面的知识点的复习,进行题目的独立解答。
要求:选择自己喜欢的方法解答。
教师巡视,加以必要的指导。
有必要的题目可以让学生练习画线段图。
小组内交流。
全班汇报。
三、小结
学生谈收获
课后小结:
教学内容:
乘法运算定律的复习
教学目的:
1.引导学生能运用乘法运算定律进行一些简便运算。
2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。
3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。
乘法运算律教案 篇13
教学目标:
1、经历乘法运算定律的猜想、验证过程。理解和掌握乘法交换律、乘法结合律(含用字母表示);
2、能灵活应用乘法交换律和结合律进行简便计算,解决实际问题;
3、猜想、验证、应用的过程中,培养学生自主学习的能力,发展学生学以致用的意识。使学生受到科学方法的启蒙教育。
教学过程:
一、比赛激趣,引发猜想
1、谈话:在数学课堂中,大家都非常欣赏思维敏捷,反应快的同学,下面就给大家一个机会,我们进行一次计算比赛,看哪位同学最先博得大家的欣赏!
2、教师报题,学生起立抢答。
3、大家的速度都很快,很难分出高下,下面换一种比赛形式。
(课件演示:一次性计算两道题,看谁算得既对又快。)
4、启发猜想:这几天我们在学什么计算题,(笔算乘法)感觉怎样?联系刚才我们做的两题加法,你想到了什么?
5、引导猜想:a、乘法中可能也有交换律和结合律;
b、猜想怎么用字母来表示它们。
{板书猜想结果:乘法交换律乘法结合律
二、合作探究,举例验证
1、引导验证方法:老师为什么要在等号上加“?”!谁有办法把问号去掉?
请学生当即举一个乘法交换律的例子。(板书:学生所举例子,注:举例证明)
质疑:举一个例子能证明这个运算定律的正确性吗?(可能是巧合)
那怎么办?需要凝聚大家的力量一起举例!
2、小组合作验证
3、归纳两条乘法运算定律的文字叙述内容,揭示课题。
三、学以致用,加强巩固
四、课堂小结,拓展延伸
本课的设计体现了以下几个特点:
1、创造性地运用教材,落实“三维”教学目标。
按照教参中的教学进程安排,乘法交换律和结合律需要分两课时完成。笔者认为将两课时合并为一课时,可以达到事半功倍的效果。首先,加法的交换律和结合律与乘法的交换律和结合律比较相似,由两条加法定律猜想到两条乘法定律,难度不大,十分自然。其次,两条乘法定律一起学,一方面有利于比较区分;另一方面,更利于实际应用,事实上在计算应用中,这两条定律通常是结合在一起应用的。
2、经历过程,强化体验,落实“三维”教学目标。
从猜想→验证→应用的整个教学过程中,教师只是适当的启发、引导、参与。更多的是学生自发的学习,是学生感觉学习知识的需要而展开学习。如:由加法的简算快捷而受启发联想到乘法要是也有运算定律进行简算该多好!从而激起探索新知的渴望。再如:当体会到举一个例子无法验证说明问题,需要举更多的例子时,让学生考虑怎么办?从而讨论解决方法:大家一起举例。再如:得出结论后,当然想到拿学习成果应用于实际。这比由老师步步安排好学习步骤要好得多,不仅培养了学生的自主学习意识,而且学生的参与积极性也会高涨。
3、科学思想和方法的渗透,落实“三维”教学目标。
在数学知识领域内,“猜想→验证→结论”是十分有效的思考研究方法。有利于学生思维的发展和今后的学习。同时,在验证环节中涉及到常见的证明方法——举例证明。同时渗透了偶然和必然之间的辨证关系。总体上说:这节课的设计很好地体现了学生的自主性,给学生较大的自主探索空间,体现了数学逻辑思维的严谨美,训练了学生的思维。
笔算乘法教案通用
老师职责的一部分是要弄自己的教案课件,不过教案课件里知识点要设计好。教案是教师自我提高与发展的敲门砖,写教案课件包括哪几个部分?幼儿教师教育网在翻阅中发现了一篇十分实用的“笔算乘法教案”,如果您觉得本文有用请把它加入收藏夹中!
笔算乘法教案【篇1】
1、出示主题图和例1
(1)分析:让学生观察图和例题说出题目中的已知条件和问题分别是什么?要求妈妈一共要付多少钱?该怎样列式?板书:24×12
提问:为什么用乘法计算?(因为它求12个24是多少,所以用乘法计算)
师说明:24乘2我们已会算,24乘12我们还没有学过,这是两位数的乘法,这就是我们今天要学的内容。
提问:谁能把24乘以12转化成我们这过的知识呢?4人为一小组讨论。
(2)汇报:一种可以把12本分成10本和2本,我们可求出10本书多少钱,再求出2本书多少钱,然后把这两部分的钱加起来就是妈妈要付的钱。
板书:口算
口算:12=2+10
24×2=48元
24×10=240元
48+240=288元
另一种笔算
教师:刚才我们我们求妈妈买12本书用288元,计算时一共用了3个竖式,大家想一想,我们能不能把这三个竖式给合并起来写成一个竖式呢?
(3)讲解24乘12竖式
刚才笔算时,我们是先算什么?怎样算?(笔算时,把相同数位对齐,先用第二个因数个位上的2去乘24得48,再用第二个因数十位数上的1去乘24得24,第二步积的末位4要和十位对齐,因为1个十乘4得4个十,个位上的0可以省略不写,然后把两次乘得的积加起来)
(4)在总结过程中提问:
①两位数乘两位数一种是口算方法,一种是笔算方法,你认为那种方法好。
②笔算中乘了几步,为什么?乘得的结果怎样?(乘了两步,因为第二个因数是两位数,2和24乘完后,1和24还要乘,把两步乘得的结果加起来)。
③十位上的1和24乘完后4为什么和十位对齐?(因为十位上的1和4相乘乘得的结果是4个十,所以要和十位对齐,个位上的0可以省略不写)。
总结,今天我们学习的是两位数乘两位数的笔算乘法,而且不需要进位的,那么通过今天的学习,我们总结出两位数乘两位数不进位的笔算方法是:相同数位对齐,先用第二个因数个位上的数去乘第一个因数得出一个数,再用第二个因数十位上的数去乘第一个因数得出一个数,第二步要积的末位要和第一个因数的十位对齐个位数上的0省略不写,然后把两次乘得的积加起来。
笔算乘法教案【篇2】
《多位数乘一位数(不进位)的笔算乘法》说课稿
太和镇希望小学:柯红英
一、说教材:
一。教材的地位、作用及前后知识点的关系
《多位数乘一位数(不进位)的笔算乘法》是人教版三年级上册第六单元的教学内容。这部分内容是本单元教学的重点,是多位乘法的基础,在日常生活中得到了广泛的应用。这部分学习的内容,是在整个学习中
十、整百数乘一位数的口算基础上学习的,例1通过学习两位数乘一位数的不进位乘法,引出笔算竖式,帮助学生理解笔算的算理,使学生逐步理解和掌握多位数乘一位数的乘法计算方法。本课程的教学安排不仅是巩固和实践先前的知识,而且是为学生进一步学习多位数乘法的进位乘法奠定基础。
2、教学目标及目标确立的依据
学生已经学过整十数与一位数相乘,一位数与一位数相乘,对100以内数的加减也已经很熟了,在教之前学生已经会口算不进位的乘法了,因此,初步学会用竖式进行笔算乘法,并能运用多位数乘一位数解决实际问题,并能运用两位数乘一位数解决实际问题,是本节课的知识技能目标。
学生是课堂的主人,在数学学习过程中,独立思考、自主**、小组合作学习是数学学习的主要方式,因此,本节课过程与方法目标是:通过独立思考和小组交流,使学生亲身经历**两位数乘一位数算理和算法的数学学习过程。在协作和通信过程中,要了解多位数乘一位数的计算原理,掌握多位数乘一位数的算法,体会算法的多样性。
数学课,不仅要让学生学会数学基本知识,基本技能,更要让学生会用数学思想方法进行学习,本节课,教师通过创设情境,引导学生将笔算加法和口算乘法转化为笔算乘法,培养学生的知识迁移能力,让学生懂得算理,真正意义上学会计算的方法。同时,我把提高计算能力的方法:学习习惯、学习态度、加强口算、掌握算法,理解算理等方法融入整个教学中,使学生不仅巩固了所学知识,也培养和提高学生的计算能力,增强计算速度,提高计算的准确率。
因此,本节课情感、态度、价值观目标是:渗透转化的数学思想方法,培养学生的知识迁移能力,培养良好的学习习惯。
3、说教学重、难点:
根据对教材和学习情况的分析,我认为
教学重点:掌握多位数乘一位数(不进位)的方法。
教学难点:理解多位数乘一位数(非进位)的计算。
二、说教法选择:
从素质教育着眼点来看,要贯彻传授知识与培养能力相结合的原则,不仅要使学生学会知识,更要使学生会学、乐学、主动去学。小学生年幼好动,有强烈的好奇心,注意力分散,因此,我采用形象生动、形式多样的教学方法,激发学生的学习兴趣,培养学生的能力。
同时,根据教学目标的要求和学生实际,我采用以小组合作观察**为主,多**为辅的教学方式来培养学生自主学习的能力、观察**的能力以及分析解决问题的能力。为了充分发挥学生的主体地位,使他们能够自主学习,提高课堂教学效率。在教学方法上,我们采用对话、回忆与交流、讨论与归纳、强化实践等教学方法进行指导。
三、说学法指导:
我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中要特别重视学法的指导。叶圣陶先生说过:
“教是为了不教。”我们不仅要教给学生知识,更要教会学生如何去学。因此,在学法中,让学生通过“感知交流→观察比较→得出概念→分析概念”的**过程去发现新知,让学生在闯关、练习、合作中自主学习,巩固和拓展所学知识。
从而达到发展思维、提高能力的目的。
四、说教学过程:
“将课堂还给学生,让课堂焕发生命的活力”“努力营造学生在教学活动中自主学习的时间和空间”从这种设计理念出发,为了更好的达到教学目标,突出重点,增强教学效果,使学生计算能力得到真正发展,我对本节课设计如下几个环节:
第一环节:谈话导入,复习铺垫。
[本环节的设计意图是:通过谈话导入,引入学生喜欢的动画片素材,激发学生的学习兴趣和求知欲,同时,通过一组口算,复习旧知,唤醒学生已有的知识经验为新知识的学习打好基础。]
第二个环节:创设情景,引入新知识。
[本环节的设计意图是:数学问题情境是学生掌握知识重要源泉,是沟通现实生活与数学学习,具体问题与抽象概念之间的桥梁。“问题是数学的心脏,有了问题,思维才有方向;有了问题,思维才有了动力;有了问题,思维才有创新。
”因此,创设生活中的情境,不仅能让学生体会数学与生活之间的联系,而且能增强学生发现问题和提出问题的能力、分析问题和解决问题的能力。]
第三步:观察**并形成模型。
这部分是教学的重点。我使用以下步骤突出显示此焦点
[感知交流]请一两个人在黑板上演示不同的算法,并告诉我们如何计算它们。
【观察比较】引导学生通过进一步的观察和比较,说说不同算法的异同,培养学生的观察能力和语言表达能力,充分体现自主、合作、**的新课程理念。
【得出方法】通过引导学生主动发现笔算乘法竖式的特点,并用自己的语言充分地表达,从而得出笔算乘法竖式的写法(相同数位对齐)和算法(从个位算起),培养学生归纳概括能力。
【分析算理】这部分是教学的难点,为突破这个难点,在结合具体情境的基础上,我及时组织学生讨论“笔算加法和笔算乘法有什么联系”,帮助学生感受笔算加法和笔算乘法的联系与区别,体会笔算乘法的算理,这样做有助于培养学生的知识迁移能力培养学生的知识迁移能力。
第四部分:知识应用与技能形成。
[本环节的设计意图是:通过各种形式的练习,进一步提高学生学习兴趣,使学生的认知结构更加完善同时强化本课的教学重点,突破教学难点。]
第五部分:质疑与总结、反思与评价。
本课的总结采用学生总结的模式,就是让学生学会把学到的知识整理出来,然后我来总结学生总结。在这一部分中,我用课件展示了以下问题:⑴你今天学了什么?
⑵你有什么收获?⑶你有什么感想?⑷你要提醒大家注意什么?
⑸你还有什么疑惑?⑹你感觉自己今天表现如何?你感觉你组内的其他同学表现如何?
让学生以小组为单位,每个学生充分发言,交流学习收入。在评价方面:先让学生自评,接着让学生互评,最后教师表扬全班学生,以增强学生的自信心和荣誉感,使他们更加热爱数学。
[本环节的设计意图是:通过交流学习所得,增强学生学习数学知识的信心,培养学生敢于质疑、勇于创新的精神。]
五、说板书设计:
(指黑板)这是我们班的黑板作文。这样的板书设计一目了然,简洁明了;同时也突出了课程的教学重点,有助于学生的学习。
六、说课后反思:
“多位数乘一位数的笔算乘法”是学生在掌握了表内乘法口诀的基础上进行的,让学生理解和掌握多位数乘一位数的笔算方法,进一步培养学生的计算能力、迁移类推的能力和归纳概括的能力,使学生经历多位数乘一位数的笔算方法的形成过程,体验计算方法多样性,感受数学与生活的密切联系,进一步激发学生的学习兴趣及对数学知识的亲切感。
在本课中,我首先请学生找出数学信息,提出数学问题并列出乘法公式-12×3 =?
在新课程的教学中,我充分让学生先独立思考,然后在小组中交流自己的算法。通过交流和展示,学生们发现了不同的算法。如:
有的用“12+12+12=36”;有的用口算的方法,即“10×3=30 2×3=6 30+6=36”;还有的学生由于得到家长提前的指导,知道笔算乘法的书写,所以用竖式计算。这一教学过程使学生充分感受到计算方法的多样性。
对于班上提出用竖式计算的同学,我立刻请他上台讲一讲计算的过程,但他却说不清楚,很明显他只知道该如何计算,还是不理解算理。所以我的教学重点是先帮助学生理解算法,然后在理解算法的基础上总结算法。结合学生口语计算的过程,使学生快速了解书面计算的计算原理,了解如何得到最终的产品。
由于本节课是一节计算课,再加上我又较重视学生叙述算理,所以课堂的气氛不是很活跃,这也是值得教师思考和有待改进的地方。
以上是我对《多位数乘一位数(不进位)的笔算乘法》这节课的教学设计与分析。由于时间短,有很多不合适的地方。希望各位评委和老师多多批评指正。我的演讲结束了。谢谢大家!
笔算乘法教案【篇3】
教材分析:
本单元是在学生能够比较熟练地口算整十、整百数乘一位数,两位数乘一位数(每位乘积不满十),并且掌握了多位数乘一位数的计算方法的基础上进行教学的。本单元主要内容有:口算乘法、笔算乘法。
本单元的口算乘法主要包括两项内容,第一项内容是整十、整百数乘整十数。它是在口算整十、整百数乘一位数的基础上进行教学的。第二项内容是估算,即两位数乘两位数的估算。它是在学生学过两、三位数乘一位数的估算和掌握了乘法的基本口算方法的基础上教学的。口算是笔算的基础,也是估算的基础。教材先安排口算,在扩大学生的口算范围的同时,为学生学习新的估算和两位数乘两位数笔算方法做好必要的准备。并且,在估算和笔算教学活动中,又可以进一步巩固口算。这样,有利于培养、提高学生的计算能力。
本单元的笔算乘法的内容是两位数乘两位数,是在学习了笔算多位数乘一位数的基础上进行教学的。本单元的笔算乘法分两个层次编排。先出现不进位的,突出乘的顺序及部分积的书写位置,帮助学生理解笔算的算理。接着,编排进位的,让学生经历两位数乘两位数需要进位的笔算过程,帮助学生掌握笔算乘法的方法。
两位数乘两位数的笔算是本单元的教学重点。因为,学生掌握了两位数乘两位数的计算方法,不仅可以解决与之有关的实际问题,还为学习多位数四则混合运算打下基础。而且,为学生解决生活中遇到的因数是更多位数的乘法问题,奠定了基础。
本单元加强了“解决问题”的教学。首先,把计算内容都置于实际生活的背景之下,如送报纸(送信)、估座位、购书等。让学生在现实问题情境中理解计算的意义和作用,探讨计算方法。然后,为学生提供生动有趣、有意义的、联系生活的情境材料,让学生运用所学的计算方法解决实际问题。计算教学与解决问题教学有机地结合在一起,有利于学生体会计算的作用,感受数学与现实生活的密切联系。并且,对于培养学生用数学解决问题的能力和良好的数感是十分有利的。
教学目标:
1、使学生会口算整十、整百数乘整十数,会口算两位数乘整十、整百数(每位乘积不满十)。
2、使学生经历两位数乘两位数的计算过程,掌握两位数乘两位数的计算方法。
3、使学生能结合具体情境进行乘法估算,并解释估算的过程。
4、使学生能够运用所学的知识解决生活中的简单问题,感受数学在日常生活中的作用。
重点难点:
两位数乘两位数笔算
第四课时
笔算乘法(不进位)
教学内容:
教材第63~64页例1及做一做,练习十五第1题。
教学目标:
1、使学生在笔算两位数乘一位数和口算两位数乘整十数的基础上,初步理解和掌握两位数乘两位数的笔算乘法的计算方法。
2、能正确地进行计算,培养学生的分析,归纳能力。
3、在实践操作活动中学会思考,学会解决问题,培养学生良好的学习习惯。
重点难点:
初步理解和掌握两位数乘两位数的笔算乘法的计算方法,能正确地进行计算。
教具准备:
课件
教学过程:
一、复习引入
1、计算
提问:用一位数乘多位数,我们该怎样计算?
小结:在计算一位数乘多位数时,用这个一位数依次去乘第一个因数的哪一位几十就向前一位进几。
2、口算
27×20
82×40
52×60
12×90
18×30
24×50
19×70
53×20
提问:两位数乘整十数你是怎样口算的。
二、快乐尝试,探索新知
1、课件出示教科书第62页的例题1。
(1)课件出示主体图,根据画面内容,口头编一道题例题1:妈妈到书店买了一套书,共12本,每本24元妈妈一共要付多少钱?
(2)分析:题目的已知条件和问题分别是什么?要求妈妈一共要付多少钱?该怎样列式?
4×12(为什么用乘法计算?)
教师:24乘2,我们已经回算,23乘12我们还没学过,这是用两位数乘的乘法,这就是我们今天要学的内容。
提问:谁能把24乘12转化成我们已学过的知识呢?以4人为一小组讨论。
(3)汇报:一种可以把12本书分成10本和2本两部分,我们可求出10本书多少钱,再求出2本书多少钱,然后把这两部分的钱加起来的就是妈妈要付的钱。 教师:刚才我们求妈妈买12本书用288元,计算时一共用了3个竖式,大家想一想,我们能不能把这3个竖式给并起来写成一个竖式呢?
(4)讲解24乘12竖式
刚才的一不我们是先算什么?怎样算?教师讲评时用纸把第二个因数十位上的“1”盖住。那计算2乘24先算什么?再算什么?先算2乘4表示8个一,再算2乘2表示4个十,合起来是48,在48的旁边注明24×2的积。此时,教师揭去盖在第二个因数十位“1”的纸,并问
第二步要再算什么?怎样算?(第二步算的是10本书一共多少钱,用10乘24,得240,在240的旁边注明24×10的积)
教师对着竖式说明:十位上的1表示10,所以用十位的1乘24就是用10乘24,先用10乘4得40,4要写在十位上,个位写0,再用10去乘2,得20,但这个2表示2个十,10乘2得到的20应该表示20个十,20个十就是200,所以这个2必须写在百位上,因此,要在240的旁边主抿4×10的积。
第三步算的是什么?(把10本书的钱和2本书的钱加起来,也就是把48和240加起来,得288。) 说明:在把两个乘积加起来的时候,个位上是计算8加0,0只起占位作用,为了简便,这个零可以省略不写,边说边把0擦掉。
请一个同学复述一遍竖式计算的过程。
(5)提问:这个竖式同前面的三个竖式有没有联系?哪种方法更简便?
2、议一议:怎样笔算两位数乘两位数?
3、引导小结,归纳笔算方法。
三、巩固运用
完成教科书第63页的做一做。
1、先看23×12,提问,两个因数分别是多少?
69是用哪位数与第一个因数相撤的积,下一步应该用哪位数去乘第一个因数?乘出的积是多少? 23乘13得多少?
2、其余的题目独立完成,要求列竖式,最后教师讲评。
四、课堂总结
本节课我们学习了什么?你有哪些收获?
五、课堂作业
练习十五第1题。
笔算乘法教案【篇4】
教学内容:
教材63页的例1及做一做题和练习十五的第1题。
教学目标:
1、让学生经历发现两位数乘两位数的笔算计算方法的全过程,体验计算方法的多样化和优化策略。
2、在自主探究与合作交流的学习活动中,使学生掌握两位数乘两位数不进位乘法的笔算方法,理解其算理。
教学的重点:
使学生掌握两位数乘两位数的笔算方法,理解第二个因数十位上的数乘第二个因数得多少个“十”,并能正确计算两位数乘两位数。
教学的难点:
解决乘的顺序和第二部分积的书写位置问题。
教学过程:
一、复习铺垫:
1、口算。
师:在前面我们已经学习了一位数、两位数乘多位数的口算,现在我们一起来复习一下。
12×3=42×2=15×4=
12×30=42×20=15×40=
2、笔算:(指名板演全班齐练)
师:上学期我们也学习了一位数乘两位数笔算的方法,下面的题请大家拿出草稿纸做一做吧!23×756×4
师:你是怎么计算的?
二、自主探索,研究算法:
1、创设情境。
师:前两天老师在新华书店看中一套12册的连环画,每册24元,一共要付多少钱?怎样列式?接着问“你能估一估大约要付多少钱吗?”培养学生初步的估算能力。
师:刚才同学们估了,那老师付240元够吗?
生:不够,少了,付的钱数应比200元和240元都要多。
2、自主探索,尝试解决:
(1)师:采用设疑,“是这样吗?”接着,引导学生“你能试着算一算吗?”
(2)先让学生独立思考
(3)小组交流与讨论。
(4)汇报交流内容。
①连加法:24+24+…+24=288(元)(12个24相加)
②生2:先算出10本书的价钱240元,再算出2本书的价钱48元,最后将240元和48元加起来就是12本书的价钱了。算式是:24×10=240(元)、24×2=48(元)、240+48=288(元)
③我先按一本20元算,再算加一本4元,最后加起来就是12本价钱算式是12×20=240(元)、12×4=48(元)、240+48=288(元)
④我把12分成9和3,先算24×9=216(元),再算24×3=72(元),最后216+72=288(元)
⑤竖式计算
师:“这么多的算法,你最喜欢哪一种算法?为什么?”
3、教师精讲点拨
(1)同们真聪明,用我们以前学过的知识解决了新问题!今天我们来学习用笔算方法计算24×12。(板书课题:两位数乘两位数(笔算))
(2)让学生根据竖式结合24×2=48、24×10=240、240+48=288说出竖式计算的原理,在这里是这样引导的:这个48怎么来的?这个1×24相当于什么相乘,所以这个乘出来的积末位4要写在什么位上?为什么把这个0和“+”空着,可以写吗?(让多个学生对着竖式说说)
(3)师:请同学们将计算结果与估算结果对照一下,你发现了什么?
生:结果是比240要多,说明计算很正确。
师:是啊,估算也是一种检验计算结果的方法,在今后的计算过程中你就可以运用它来检验计算结果了。
三、巩固练习
1、完成做一做题
(逐题列竖式计算,最后指名板算,共同订正。)
23×1333×3143×1211×25
41×2132×1222×1421×34
2、完成练习十五的第1题的第一组(指名板算,共同订正。)
四、全课总结,交流收获
通过本节课的学习,你有什么收获?笔算乘法时要注意什么问题.?
五、布置作业
练习十五的第1题的第2、3、4组。
六、板书设计:
两位数乘两位数笔算乘法(不进位)
24×12=288(元)
24
×12
48……24×2的积
24……24×10的积
288
答:一共要付288元。
笔算乘法教案【篇5】
教学目标:
1、使学生经历多位数乘一位数(不进位)的计算过程,初步学会乘法竖式的书写格式,了解竖式每一步计算的含义。
2、培养学生独立思考和合作交流的学习方法,体验计算方法的多样化。
3、培养学生初步的逻辑思维能力。
教学重点:掌握两、三位数乘一位数的笔算方法。
教学难点:理解两、三位数乘一位数的笔算算理。
教具准备:课件或挂图、小棒、口算看片。
教学过程:
一、创设情境,激趣导入
出示口算卡片。
6×24×220×340×2
300×220×450+76+40
看谁做得又对又快。
二、探究体验,经历过程。
1、出示教学例1
师:观察图片,请同学们说出图意,并且提出一个用乘法解决的数学问题,(课件出示第60页例1情境图)
生:图中小红、小丽和小明在一起画画儿,他们三人用的是同样的彩笔,已知每盒装12支彩笔,求3盒一共有多少支。
师:怎样列式呢?为什么要这样列式呢?
生:12×3,也就是求3个12是多少。
请同学们先估计一下3盒大约共有多少支?
生:把12看成10,用10×3=30,3盒大约共30支。
师:要计算出精确的结果该怎样算呢?先在小组里交流。
组织学生以小组为单位讨论,可以摆小棒,也可以画图等。
独立思考后与小组内同学交流,教师巡视了解情况。
师:现在我们一起来听听同学的解题策略,说说你的想法吧。
学生可能会说:
方法一:摆小棒,因为一个因数是12。所以一行摆1捆零2根,因为另一个因数是3,所以摆3行,一共摆了3捆零6根,
也就是得36。
方法二:画图
3个长条共30个方格,再加上单个的6个共36个。
方法三:连加。12+12+12=36。
方法四:分解组合,先算10×3=30,再算2×3=6,然后算30+6=36。
方法五:拆数。①9×3=27,3×3=9,27+9=36
②8×3=24,4×3=12,24+12=36
③7×3=21,5×3=15,21+15=36
④6×3=18,6×3=18,18+18=36
师:组织学生讨论这几种方法的适用范围。
方法一和方法二都好理解,但我们学了数学以后就应使用计算的.方法来算,方法三如果因数的个数多了,算起来就比较麻烦。方法四不管因数是几都能算。方法五虽然因数不管是几都能算,但是把一个因数拆成几个一位数,再相乘,乘后再加,比较麻烦。
师:引导学生用竖式计算。
从刚才讨论的结果来看,用数的分解组合来算比较简便,那么我们就可以将这三个算式组合起来写成一个竖式。
教师板书并讲解:
第二个因数要与第一个因数的个位对齐,从个位乘起,先用3乘2得6,表示6个一,写在个位上;再用3去乘十位上的1得3,表示3个十,把3写在十位上(用虚线在个位上写一个0),再把两次乘得的积加起来就得36。
进一步说明:因为积的十位上的3表示3个10,所以这个0可以省略不写,可以把3直接写在积的十位上。
教师再次板书:
12……因数
×3……因数
36……积
可以请学生再说一说乘的过程。
三、总结提升
师:在今天的学习中,你有什么收获?
学生自由交流今天的收获。
四、课堂作业
把一根长10米的木料锯成2米一段的短木料。每锯一段需要3分钟,全部锯完需要多少分钟?
笔算乘法教案【篇6】
笔算乘法(不进位)
课题
不进位乘法
课型
新授课
设计说明
本节课学生将初次接触乘法的笔算,学习一种新的计算本领,如何开个好头,为以后的学习打下坚实的基础,是这节课需要解决的问题。针对上述情况,本节课的教学主要从以下两个方面出发:
1.自主探究,体验笔算乘法的必要性。
通过学生自己尝试、探究多位数乘一位数(不进位)的计算方法,体现算法的多样化,教师适时地进行必要的指导,让学生自己想一想、试一试、做一做、比一比,在探究中自主建构新知,极大地调动了学生的学习热情,为下面的学习打造了一个良好的开端。
2.仔细观察,掌握笔算乘法的格式和算理。
在学习乘法竖式时,教师先不讲解,而是让学生通过观看课件演示了解乘法竖式的写法,体会乘法竖式的算理,极大地发挥学生的学习自主性,并通过一些有针对性的练习及时巩固强化学生学到的知识,锻炼学生解决问题的能力,充分体现了以学生为主体的理念。
学习目标
1.使学生经历多位数乘一位数(不进位)的计算过程,初步学会乘法竖式的书写格式,了解竖式每一步计算的含义。
2.培养学生独立思考和合作交流的学习方法,体验计算方法的多样化。
3.培养学生初步的逻辑思维能力。
学习重点
掌握两、三位数乘一位数的笔算方法。
学习准备
教具准备:PPT课件。
学具准备:信息卡片。
课
1课时
时安排
教学环节
导案
学案
达标检测
一、创设情景,引入新课。(6分钟)
1.计算。
2×20
3×30
2.观察下面的算式,与上面的算式有什么区别?
12×3
1.在练习本上完成习题,小组之间交流答案。
2.找出两组算式的区别,小组之间讨论。
1.算一算。
8×10=
4×20=
8×7=
6×5=
8×9=
6×4=
3×30=
7×20=
答案:80
140
2.填一填。
①24是由()个十和()个一组成的。
②143是由1个()、4个()和3个()组成的。
③4个3是(),5个10是()。
④6个100是()。
答案:2
百
十
一
600
3.改一改。
改正
:
改正
:
答案:
4.把一根长10米的木料锯成2米一段的短木料。每锯一段需要3分钟,全部锯完需要多少分钟?
答案:4×3=12(分钟)
二、探究学习新知(25分钟)
1.探究12×3的计算方法。
(1)想一想,该怎么计算?
(2)全班交流、反馈、总结算法。摆学具;口算;用连加法计算;利用数的组成计算。
比较一下,你们喜欢哪种算法?说一说理由。
2.探究不进位乘法的笔算计算方法。
尝试把12×3写成竖式计算。
师生互动交流算法。因为积的十位上的3表示3个10,所以这个0可以省略不写,可以把3直接写在积的十位上。教师板书:
1.动手操作,动脑思考,交流算法:
(1)因为三个12相加即12+12+12=36,所以
12×3=36;
(2)2×3=6,3×10=30,6+30=36;
2.学生尝试在练习本上做并在全班交流。
总结:
两位数乘一位数,相同数位对齐,从个位乘起,乘到哪一位积的个位就写到哪一位的下面。
3.引导学生推想:322×3得多少?
4.引导学生总结多位数乘一位数的(不进位)的笔算方法。
老师总结:多位数乘一位数(不进位)的笔算乘法
:
把一位数写在多位数的下面,与多位数的个位对齐;从个位乘起,用一位数依次去乘多位数的每一个数,乘到哪一位积就写在哪一位下。
3.学生交流讨论。
4.学生试算并交流算法。
三、巩固练习。(5分钟)
1.巩固竖式的计算方法。
教材第60页“做一做”第1题。
2.教材第60页“做一做”第2题。
1.独立完成,集体纠正。
2.独立完成,并说说计算顺序。
教学过程中老师的疑问:
四、课堂小结,拓展延伸。(4分钟)
1.通过今天的学习,你有什么收获?
2.布置作业。
1.交流自己本节课的收获。
2.独立完成作业。
五、教学板书
六、教学反思
在这节课中,我以学生为主体,让学生真正成为课堂的主人,根据学生已有的知识水平和好奇心,让学生自己独立思考,探究不进位乘法的笔算计算方法。
首先探究12×3的计算方法。全班交流学生通过动手操作、动脑思考,得出摆学具;口算;用连加法计算;利用数的组成计算。比较一下,你们喜欢哪种算法?引导学生学会笔算的方法计算。从而推导出多位数乘一位数的笔算的计算方法。突显学生的主体地位,用不同的方法解决多位数乘一位数的笔算乘法,充分利用知识的迁移,积极地向学生渗透推理、类比的思想方法,体现了新课标的理念。
教师点评和总结:
笔算乘法教案【篇7】
教材分析
1、要求学生能掌握三位数乘两位数的计算方法,并能正确的进行计算。
2、本节内容是在三年级所学的两位数乘两位数的基础上教学;本节内容在课本的第三单元第二节安排的,是在两位数乘两位数的口算之后教学。为后面的因数中间有零和因数末尾有零教学做好铺垫。
3、重视培养学生应用数学的意识。
学情分析
1.学生对计算题学习兴趣不浓,部分学生计算时很粗心,没有验算的习惯。
2.学生认知发展分析:是以两位数乘两位数的`笔算为基础,两位数乘两位数的算理和方法都将直接迁移到三位数乘两位数中来。
3.学生认知障碍点:进位时口算错误;书写不规范,影响相加时的结果。
教学目标
知识与技能:使学生掌握三位数乘两位数的笔算方法。
过程与方法:使学生经历笔算乘法计算的全过程,掌握算理和计算方法。
情感、态度和价值观:培养学生认真计算的良好学习习惯。
教学重点和难点
教学重点:师学生掌握三位数乘两位数的笔算方法。
教学难点:积的书写。
教学过程
一、 创设情境,激发兴趣
1、课件出示情境图,让学生独立列式解答。
2、指名说出计算方法。(两位数乘两位数的计算方法)
3、改动情境图,引入新课。
二、自主探究,获取新知:
1、让学生尝试计算245×12。
2、交流算法,让学生自己说说自己的想法和思考过程。
3、教师设疑,让学生答疑。(引出算理,并同时强调该注意的地方。)
4、初步检验学生对新知的掌握情况。(让学生同桌合作完成情境图中剩下的两个问题)
三、巩固强化,内化新知
1、改错题。(强调难点)
2、看谁是我班的神算手。
四、归纳总结,拓展延伸
引导学生谈收获并进行总结。
笔算乘法教案【篇8】
教学内容:
教材第24、25页练习五第4--7题。
教学目标:
1、使学生进一步掌握笔算乘法的规则,能正确地、比较熟练地笔算一个数乘一位数的乘法中需要连续进位的计算。
2、使学生结合连续进位的笔算乘法的计算,进一步熟悉连续两问应用题的数量关系,能正确解答有关的连续两问应用题。
教学准备:
口算卡片
教学过程:
一、口算
1、表内乘法练习
4×5=
3×8=
6×7=
9×9=
6×5=
4×8=
9×3=
5×5=
8×3=
指名一人板演,其余做在书上。
学生计算后,集体订正。
二、笔算练习
1、笔算下面两题
436×67×185
(1)指名2人板演,其余学生分两组练习。
(2)集体订正时,让学生口述计算过程。
(3)笔算乘法的时候,要注意些什么?
2、改错题
出示一些学生的错题。
学生仔细观察,找一找错在哪里?并分析错误原因。
学生独立改正。
3、笔算比赛
小组进行笔算比赛:
比赛规则:每个小组的同学,每人做一题,从第一个同学开始做,依次往后传,速度最快并且全对的小组获胜。
三、应用题练习
1、出示练习五第7题。
(1)读题。理解题意。
(2)要求上午一共去了多少人?你准备怎样列式计算?要求一天一共去了多少人呢?
(3)学生独立计算。
(4)集体订正。
2、小结:解答连续两问的应用题,要注意些什么?
四、课堂作业
练习五第6题。
笔算乘法教案【篇9】
教学目标:
1、复习巩固连续进位的笔算乘法的计算方法,能运用所学知识解决生活中的一些实际问题。
2、进一步提高学生的计算、分析、解决问题的`能力。
3、经历多次进位乘法的计算过程,体验数学知识的广泛应用性,培养热爱数学的情感及严谨认真的学习习惯。
教学重点:
多位数乘一位数的笔算方法。
教学难点:
多次进位
教学过程:
一、问题导入
1、口算
4×2+9= 7×5+5= 5×3+7=
5×5+6= 6×9+8= 9×4+5=
2、笔算
58×7= 156×4= 253×5=
二、自主探究
1、完成第8题:让学生列竖式计算,教师巡视,发现问题及时纠正。
2、完成第9题:改错题,先检查,判断,然后把错题改正过来。
3、完成第10题:先读题分析,然后列式解答。
三、巩固拓展
1、第11题:读题,讨论
怎样求第4辆车要坐多少个同学?你能想出多少种方法?然后让学生分步解答。
2、第12题:读题分析题意
要求合唱队有多少人,必须知道哪两个条件?怎样求乐队人数?
3、第13题:指导学生观察各题的因数与积有什么特点,找出其中的规律。
四、梳理整合
1、这节课你学会了什么?有什么收获?
2、完成练习册第57页
乘法结合律教案
前辈告诉我们,做事之前提前下功夫是成功的一部分。作为一幼儿园的老师,我们需要让小朋友们学到知识,为了提升学生的学习效率,准备教案是一个很好的选择,提前准备好教案可以有效的提高课堂的教学效率。所以你在写幼儿园教案时要注意些什么呢?以下由小编收集整理的《乘法结合律教案》,但愿对你的学习工作带来帮助。
乘法结合律教案(篇1)
教学内容:教科书第23页的例3、第24页的例4和例5,完成练习五的第3-6题。
教学目的:使学生理解并掌握乘法结合律,能够应用乘法交换律和结合律进行简便计算,培养学生逻辑思维能力。
教学重点:能够应用乘法交换律和结合律进行简便计算。
教学难点:培养学生逻辑思维能力。
教具、学具准备:教师把复习中的应用题和填空题写在小黑板上。
教学过程:
一、复习旧知,引起迁移:
1、教师出示应用题一个养蜂组养了105箱蜜蜂,平均每箱蜜蜂每年可以产蜂蜜76千克。这个养蜂组一年生产蜂蜜大约多少千克?
让学生先默读题目,然后在自己的练习本上解答。
学生做完以后,自愿结组讨论下列问题。
(1)你是怎样做的?
(2)你为什么用乘法计算,而不用加法计算呢?
教师肯定学生的回答,再明确指出:这道题实际求的是105个76千克是多少,很明显,如果我们用加法计算是非常麻烦的,而求几个相同加数的和用乘法计算非常简便。
2.根据运算定律在下面的()里填上适当的数。
(1)136947=947()(2)3581002=1002()
(3)68+321+79=68+(+)
先让学生独立做,订正时让学生说一说是根据什么运算定律填数的。
二、学习新知
教师:上面复习题中的第2题的第(3)小题,应用了加法结合律,使原来的计算变得容易了。我们今天要学习的内容是乘法结合律。教师板书:乘法结合律。
1.学习例3。
教师出示例3
小组讨论;(1)这两种计算方法的结果怎样?为什么?
(154)10()15(410)
(1258)5()125(85)
教师:再仔细观察一下,这两个算式相等说明了什么?
(充分发挥学生的想象力)
(2)比较上面两个算式。
教师,上面我们看了两个等式,仔细分析一下这两个等式,并回答下面的问题。
这两个等式中,等号的两边都是几个数相乘?
每个等式中,等号两边的三个数相同吗?
这两个等式中,等号左边的两个算式有什么共同点?(乘的顺序相同,都是先把前两个数相乘,再同第三个数相乘。)
这两个等式中,等号右边的两个算式有什么共同点?(乘的顺序也相同,都是先把后两个数相乘,再同第一个数相乘。)
每个等式左右两边乘的顺序不同,但是它们的结果呢?
谁能把我们刚才说的概括一下?多让几个学生发言。
教师:把刚才几个同学的发言凑起来就很完全了。让学生打开教科书看例3后面的结语,先请一个同学读一遍,再让全体学生齐读。
接着,教师指出这就叫做乘法结合律,并板书:乘法结合律。
(4)用字母表示乘法结合律。
教师提问:加法结合律怎样用字母表示?
乘法结合律也可以用字母表示,如果分别用a、b、c表示三个数,怎样用这三个数表示乘法结合律呢?学生回答后,教师板书:(ab)c=a(bc)
等号的左边表示什么?(先把前两个数相乘,再同第三个数相乘。)
等号的右边表示什么?(先把后两个数相乘,再同第一个数相乘。)
左边的算式和右边的算式中间用等号连接着,说明什么?(两个算式是相等的。)
(5)做第24页前半页做一做中的题目。
让学生把数填在自己的书上。订正时让学生说一说是根据什么运算定律填写妁。
2、学习例4。
出示例4,43254。
分组讨论:(1)如果按照运算顺序计算,应该先算什么?
(2)算可以使计算比较简便?根据是什么?
小组派代表汇报
教师板书:43254
=43(254)
=43100
=4300
教师:以后我们在计算这样的题目时,43(254)这一步可以省略。
3.自学例5。
让学生自己试算。然后集体核对。
4、小组学习:比较例4和例5。
在计算例4和例5时,在应用运算定律方面有哪些不同?让学生讨论。
三、巩固练习
1.做第24页最后做一做中的题目。
先让学生自己思考怎样做才能使计算简便,然后再逐题讨论。
第一小题,怎样做才能使计算简便?应用了什么运算定律?(先算4乘以5,再同27相乘,应用了乘法结合律。)
第二小题,怎样做才能使计算简便?应用了什么运算定律?(先把8和7交换位置,再算8和25相乘,然后再和7相乘,应用了乘法交换律和乘法结合律。)
第三小题呢?(因为25和4相乘得100,所以先把12改写成3乘以4,再算25和4相乘,然后再把100和3相乘,应用了乘法结合律。)
2.做练习五的第3-4题。
(1)做第3题。先让学生独立做,然后集体核对。核对时,要让学生说一说是怎样做的,应用了什么运算定律。
(2)做4题。做的时候要让学生说一说怎样计算简便,应用了什么运算定律。
四、作业
练习五的第5题。
板书设计:乘法结合律和简便算法
例4:43254例5:25434
=43(254)=43(254)
=43100=43100
=4300=4300
教学设想:本课大量采用了自学的学习的方法,尤其是简便方法的应用,这样有助与学生形成比较科学的数学学习方法。通过实践――总结――再实践课型,能把学到的知识应用于实践,并在实践中得到验证。
课后附记:
乘法结合律教案(篇2)
教学目标:
1.引导学生探究和理解乘法交换律、结合律,能运用运算定律进行一些简便运算。
2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。
3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。
教学过程:
一、主题图引入
观察主题图,根据条件提出问题。
(1)负责挖坑、种树的一共有多少人?
(2)一共要浇多少桶水?
学生在练习本上独立解决问题。
引导学生观察主题图。
根据学生提出的问题,适当板书。
二、新授
引导学生对解决的问题进行汇报。
(1)425=100(人)
254=100(人)
两个算式有什么特点?
你还能举出其他这样的例子吗?
教师根据学生的举例进行板书。
你们能给乘法的这种规律起个名字吗?
板书:交换两个因数的位置,积不变。这叫做乘法交换律。
能试着用字母表示吗?
学生汇报字母表示:ab=ba
我们在原来的学习中用过乘法交换律吗?在验算乘法时,可以用交换因数的位置,再算一遍的方法进行验算,就是用了乘法交换律。
根据前面的加法结合律的方法,你们能试着自己学习乘法中的另一个规律吗?
教师巡视,适时指导。
(2)(255)225(52)
=1252=1025
=250(桶)=250(桶)
小组合作学习。
①这组算式发现了什么?
②举出几个这样的例子。
③用语言表述规律,并起名字。④字母表示。
小组汇报。
教师根据学生的汇报,进行板书整理。
三、巩固练习
P35/做一做1、2
四、小结
学生小结本节课的学习内容。
教师引导学生回忆整节课的学习要点。
完善板书。
五、作业:P37/2-4
板书设计:
乘法结合律教案(篇3)
本课题教时数:25本教时为第16教时备课日期11月7日
教学目标
1.使学生初步理解和掌握乘法交换律和结合律,并能用字母表示。
2.培养学生观察、比较、分析、综合和归纳、概括等思维能力。
教学重难点
使学生初步理解和掌握乘法交换律和结合律,并能用字母表示。
教学准备
投影片
教学过程设计
教学内容
师生活动
备注
一、揭示课题
二、学习新课
三、巩固练习
四、课堂小结
五、课堂作业
1.我们已经学过加法的运算定律,请大家回忆一下,是怎样的?
2.加法交换律用字母公式如何表示?加法结合律呢?(板书)
3.请大家大胆地猜测一下:乘法有
怎样的运算定律?(学生猜测)
4.大家猜的非常好,的确乘法也有
交换律和结合律?这节课我们一起来研究一下乘法的交换律和结合律。(板书课题)
1.学习例1
(1)出示例1
(2)小组合作,想一想:怎样求出邮票的总张数?
(3)组织交流:①43=12(张)②34=12(张)
(4)思考:这两种算法都是求什么的?结果怎样?从中你体会到了什么?(板书:43=34)
(5)这两个算式有什么相同和不同的地方?
2.其他的算式是不是也有着这样的特点呢?出示第81页上的有关题目。学生先计算再比较。
3.从这些算式中,你体会到了什么?谁能来归纳一下。你能用字母公式来表示吗?(根据学生所讲,板书ab=ba)。
4.学习乘法交换律的应用。
乘法交换律我们以前有没有碰到过?你能举个例子吗?
完成练一练的第1题。指名一人板演,其余学生做在练习本上。
5.学习乘法结合律。
(1)出示计算题。①(1412)5②14(125)
(2)学生按运算顺序计算,指名两人板演。
(3)比较两个算式的结果,你可以得出怎样的结论。
(4)板书:(1412)5=14(125)。比较这两个算式有什么相同的地方和不同的地方?
6.其他的算式是不是也有着这样的特点呢?出示第83页上的有关题目。学生先计算再进行比较。
7.从中你发现了什么?谁能来归纳一下?你能用字母公式来表示吗?[板书:(ab)c=a(bc)]
8.谁能根据字母公式,来说一说乘法有着怎样的运算定律?
1.在□里填上合适的数,并说说这样填的理由。
(1)9635=35□4827=□48
(1615)4=16(□□)
25(218)=(25□)□
(3)判断:哪些等式应用了乘法运算定律?应用了什么定律?
153=315
2124=4212
7(86)=7(68)
(32)1=3+(2+1)
(434)15=43(415)
今天这节课我们一起学习了什么内容?你有什么收获?
练习十七第1题、第4题
课后感受
学生由于已经有了加法运算定律的积累,所以今天的课上的很顺,学生大多能正确地进行迁移、应用。少数同学会在回答概念时,把乘法口误成加法。
乘法结合律教案(篇4)
1、通过探索乘法分配律中的活动,使学生进一步体验探索规律的过程。
2、使学生在探索的过程中,能自主发现乘法分配律,并能用字母表示。
5×2=25×2=
5×4=25×4=
15×2=16×5=
15×4=45×2=
师:同学们的观察真仔细,像这样2个数相乘结果是整十整百整千的数,都是好朋友,这些好朋友今后都会帮助我们来运算,我们都应记住。这里特别的请大家记住三对好朋友:5×2、25×4、125×8。
师:上节课,我们进行了有趣的探索活动,发现了很多奇妙的规律,在我们的数学运算中,还有很多规律,我们这节课就继续探索和乘法有关的知识,相信大家一定会有新的发现。(板书:探索与发现)
学生回答自己用积木搭过的物体。
师:老师也用小正方体积木搭了一个立体图形。大家一起来看看。(课件出示书上的情境图)
师:真好,你们观察得真仔细!那么这个长方体是由多少个小正方体组成的呢?你们是怎样计算得到这个答案的呢?请同学们每个人动笔算一算。
师:由于同学们观察角度的不同,所以列出的算式也不相同,现在请同学们比较一下,上面的第一和第二这2个算式有什么相同点和不同点?
生:相同点都是3、4、5三个数字相同,不同点是数字的位置不同。
师:数字位置不同运算顺序就不同,那么大家想想,如果三个数字的位置不变,你有什么办法还按照刚才同学的运算顺序进行运算吗?(不亦动3、4、5的位置,能不能先算5×4)
师:请同学们计算一下这2个算式的结果。(学生计算发现结果都是60)
师:我们以往将三个数连乘都是先把前两个数相乘,再乘第三个数,而现在我们也可以把后两个数先相乘,再和第一个数相乘,它们的结果相同。这是一种巧合呢?还是一个规律呢?谁能举出类似这样的三个数连乘的例子?(找2-3个学生举例子,例子板书在黑板上)
师:同学们,你能举例了吗?现在请每个人在练习本上举一个例子,然后在小组内汇报你举的例子。(提示:如果找到比较大的数,可以借助计算器)
师:从刚才大家的举例来看,每一组的结果都是相同的。同学们,你能用自己的语言说说这些等式的共同点吗?
师:同学们概括的真好,这就是乘法结合律。如果用a,b,c表示三个数,你能总结出发现的规律吗?(如果同学们概括不出来,可以用字母的方法表示,并提示学生以后用字母这种表示方法表示其他的规律,更加便捷)
师:现在请同桌2人对照这字母的表达方式说一说什么是乘法结合律。
师:同学们真聪明!请回想一下,我们是怎样发现乘法结合律的?
在计算搭长方体所需要的小正方体个数过程中发现了三个数连成,顺序不同,结果却相同这一问题(板书:发现问题)于是我们从中猜想是不是有什么规律(板书:提出假设)经过举例验证(板书:举例验证)我们总结出乘法的结合律(板书:概括规律)
以后,我们可以用这样的方法去发现更多的规律。
(28×2)×5=
师:这里面出现了我们一上课提到的三对好朋友,大家发现了吗?(再次提醒学生注意5×2、25×4、125×8这三组数)
(带领学生做第一道练习题,在黑板上板书过程,指导学生观察数字以及板书格式,体会简便的必要性。然后再让学生在练习本上做第二道习题。)
乘法结合律教案(篇5)
设计比赛情境,引出问题(教学导入)
师:下面我们进行计算比赛,你们有信心吗?
生:有。
师:请同学们看下面两道题。
课件出示:(15×25)×415×(25×4)
要求:男同学计算第一道题,女同学计算第二道题,比一比,看谁算得又对又快。
师:谁来说一说你的计算过程?
生1:我先算15×25=375,再算375×4=1500。
生2:我先算括号里面的25×4=100,再算括号外面的15×100=1500。
师:现在请同学们观察这两道算式,它们有什么相同和不同的地方?
生1:乘数一样。
生2:符号一样。
生3:结果一样。
生4:计算顺序不一样。
师:你能举出像这样的其他的例子吗?
生1:(18×125)×8和18×(125×8)。
生2:(21×5)×20和21×(5×20)。
师:你们能验证一下自己的算式是否成立吗?
生1:通过计算,我发现(18×125)×8=18×(125×8)。
生2:通过计算,我发现(21×5)×20=21×(5×20)。
师:像这样的乘法算式中也存在着一定的规律,是不是像女同学那样,运用这个规律就会使计算简便呢?这节课我们一起来探索一下。
赏析:此片段通过设计计算比赛的环节,激发学生的学习兴趣,接着引导学生观察算式的特点,并在此基础上让学生举例,初步感知乘法结合律的基本形式,为新知的学习做好铺垫。
探索乘法结合律(教学难点)
[课件出示算式:(2×4)×3和2×(4×3)]
师:现在请同学们一起来观察这两个算式,看一看它们有什么异同。
生1:两个算式的积相同。
生2:两个算式中的三个乘数相同。
生3:算式中括号的位置不同。
生4:它们的运算顺序不同。
师:谁来具体说说它们各自的运算顺序?
生1:(2×4)×3先算括号里的2×4,再用所得的积乘3。
生2:2×(4×3)先算括号里的4×3,再用所得的积乘2。
师:通过同学们的观察,我们发现这两个算式的运算顺序虽然不同,但它们的计算结果却相同,你能仿照上面的算式举几个这样的例子吗?
(学生举例,并集体计算,看一看结果是否相等)
师:通过刚才我们的举例与计算,你发现了什么?
乘法结合律教案(篇6)
教学目标:
1、理解、掌握乘法结合律(用字母表示)
2、学会运用乘法结合律和交换律进行简便计算。
教学过程:
(一)定律教学
1、感知乘法结合律。
出示:求3、25和4的积。
学生审题后口答算式,并互相补充,得到左边部分。
32543(254)
34253(425)
254325(43)
253425(34)
42534(253)
43254(325)
接着问:这几题都是从左往右计算,那么可以先算后面的乘,再与第一个数相乘吗?结果会相等吗?第一题示范列出,余下的题目由学生独立完成,然后四人小组分工计算验证,看结果是否相等。
最后总结:你发现了什么?(三个数相乘,可以从左往右计算,也可以把后两个数相乘,再与第一数相乘。)
2、验证与巩固
(1)验证
教学例2,学生读题后根据题意列式计算。完成后校对思路、式子与答案,把结果连成等式:(310)2=3(102)
(2)总结。自学课本第12页(2),先计算,再看每组的两个算式有什么关系?
完成后请学生用自己的话总结,然后给书本中的定律填空,齐读后再给出a、b、c三个字母,要求学生概括出定律,
(3)巩固。
练一练第1题,应用乘法交换律和结合律,在横线上填
入适当的数。
请学生填空,并口头说出依据,校对时第(3)(4)小题重点讨论:第(3)题比较5(780)、7(580)哪重填法简便?第(4)题(8125)(1416)与其它填法进行比较,说一说哪一种简便,简便在哪里?
(二)简便计算
1、教学例3:25134
自学书本例3,思考并回答旁注,然后补充完成。
2、课本试一试用简便方法计算。
学生独立完成,然后校对。
(三)巩固练习
1、巩固定律。
练一练第2题,判断各题是否正确,把错误的改过来。
由学生独立判断,然后四人小组讨论,快的组可以订正。
最后指名学生做出判断,对的说明理由,错的指出错误,并订正。
总结提问:运用乘法交换律和乘法结合律进行简便计算时,什么变了,什么没有变?
2、简便计算练习。
练一练第3题,用简便方法计算。独立完成后校对讲
评。
(四)总结
今天这节课学了什么内容?学生回答后教师总结。
(五)作业
《作业本》[10]
乘法结合律教案(篇7)
教学内容:例1、例2、做一做、练习六1、2[P33、P34、P35、P37]
教材分析及重难点:
教材以学生参加植树活动的情境为载体设置主题图,由图引出例1、例2和例3,为概括和分配律提供具体的事例。这样编排,能使学生在解决问题的同时,发现、感悟、描述规律。
本课时是教学例1乘法交换律和例2乘法结合律。教材首先出示以植树为背景,展示了植树过程中同学们挖坑、种树、抬水、浇树等活动的情境图。教学时可以先让学生看主题图,说说图中给了我们哪些信息,学生可以按自己看到的说,也可以把图中的两段说明文字复述一遍。再根据这些信息引导学生发现可解决的一些问题。学生可能会提出多个问题,其中有些问题,如每组有几人?可直接解决。学生们提出的问题都可展示,为后面的例题教学做准备。
例1是在主题图的基础上提出问题负责挖坑、种树的一共有多少人?教学时可以让学生自己解答,学生一般都能说出425和254两个算式。学生在以前的学习中,对乘法交换律已有初步的认识,这里通过具体例子,采用不完全归纳的方法,使学生发现任意两个数相乘都有同样的性质。而且相信学生能很快得出乘法交换律的定律名称。在此基础上教师可让学生再举出几个这样的例子。然后,启发学生用自己喜欢的方式表示乘法交换律,看看谁的表示方法既简单又清楚?得出ab=ba之后,应让学生说一说:这里的a、b可以是哪些数?从而促使学生体会用字母表示数,能把运算规律非常简单明了地表示出来。
例2仍然是利用主题图提出问题一共要浇多少桶水?从解决这个问题的两种算法中,可以得到乘法结合律的一个实例。在此基础上,引导学生观察、比较、概括得出乘法结合律,得出abC=a(bC)。其教学的安排与例1大致相同。
教学目标
1.通过学生的自我探究推导得出乘法交换律和乘法结合律的概念;
2.通过学生独立尝试解决生活实际问题,体会生活与数学的相通;
3.通过学生的自我总结,培养学生的观察能力、概括能力和语言表达能力。
教学重难点
教学重点:在观察、比较中发现并推导加法交换律、加法结合律,并会应用。
教学难点:引导学生自己探究推导得出乘法交换律和乘法结合律的定义。
教学建议:
1.学生的独立探究在于教师的引导
本节课对于学生来说,他的起步不是一穷二白。因为在本单元第一章节加法交换律与加法结合律中有了一定的模版教学,也有了一定的思维经验。所以,这里只需要教师适当地引导点拨。主题图明确表示乘法运算定律。所以教师只需轻轻启问:加法有加法的运算定律,今天我们的乘法运算定律又会是什么呢?然后出示例1负责挖坑、种树的一共有多少人?学生很快就会得出两个算式,因为这是对以前旧知的复习。只是今天赋予:425=254一个理性化的名称而已。乘法结合律虽说是新知,但有了加法结合律的引路它的教学也如此。教学时可以让学生先根据问题试着从主题图中找到所需的条件,然后放手让学生自己列出算式并计算。通常,根据不同的解题思路会有学生列出(255)2与25(52)两种算式,可以让学生说说是怎么想的。引导学生比较两种算法的异同:计算顺序不同,但解决的是同一个问题,计算结果也相同,所以能用等号把这两个算式连起来。这里,还可让学生通过比较,初步体会到两个算式虽然结果相同,但后一个算式计算起来更简便。接着,可以让学生再自己编出几个类似例2这样的算式,以积累更丰富的感性认识。然后引导学生进行概括:先把前两个数相乘,与先把后两个数相乘,结果相等,再让学生用字母表示。这一教学过程,也可以通过让学生完成第35页上填空的方式进行。而后的教学与例1基本相似,但可以比教学例1时更放手些。
2.知识的融合在于学生的思考与比较
当本节课的乘法交换律与乘法结合律的推导过程与结论基本敲定之时,教师要注重对所学知识的融合比较。小结时,让学生进一步思考小精灵提出的问题:比较加法交换律和乘法交换律、加法结合律和乘法结合律,你发现了什么?要引导学生通过观察、比较明确:交换律是两数相加、相乘的规律,即交换加(因)数的位置,和(积)不变;结合律是三数相加、相乘的规律,即可以从左往右依次计算,也可以先把后两个数先相加(乘),和(积)不变。在这一活动中,应允许学生用自己的话,叙述自己的发现。这样一来,对于我们今天所学的乘法交换律和乘法结合律有了一个相通的磨合,知识的提升与得出就显得顺理成章。
3.练习的展开需要惯性的思维与操作
这一节,虽然没有专设例题讲解运用乘法运算定律进行简便计算,但在得出乘法运算定律的例题中已有所孕伏,在练习中也有所体现,使学生初步体验乘法运算定律的运用。到下一节,再集中学习运算定律在解决实际问题和计算中的应用。例题后的做一做和练习六的习题基本上是针对乘法运算定律的理解、巩固和应用设计的。练习中,我们可以把练习六的第1与第2题先引领其思维。
有了第1与第2题思维的引领,书上例1、2后的做一做相信学生应该能按照自己的惯性思维进行操作。
乘法结合律教案(篇8)
教学目标:
1、通过探索活动,使学生进一步体会探索过程和方法。
2、通过探索活动,使学生发现乘法结合律,并能用字母表示。
3、使学生会对一些乘法算式进行简便计算。
1、23×3= 70×5= 13×100= 25×4= 125×8=
2、谈话导入。
师:同学们玩过玩具积木吗?你会用积木搭些什么?老师也用小正方体积木搭了一个立体图形。想看看吗?
师:你们观察得真仔细,这可是一个好习惯。今天这节课,让我们一起仔细观察,进行“探索与发现”。(出示课题)
3、师:请同学们先自己在草稿本上列式计算一下,然后在小组内交流方法。
生汇报算法。课件演示配合学生的方法。
可能出现的算法有:
4×5×3 4×(5×3) 3×5×4 3×(5×4) 3×4×5
师将学生的多种算法板书在黑板上。并形成3×5×4=3×(5×4)。
生可能说到:所有因数都是3、5、4;积相等;都用乘法计算;但运算顺序不同。
师:谁能把刚才几位同学发现的相同点和不同点总结起来说一说?
4、师:任意三个数连乘,改变运算顺序,积都不会变吗?我们来找出三个数,算算看。
先独立举例子,再在小组内交流,说说想法。为了节省时间,遇到较大的数可以借用计算器。
生汇报列举的等式。先展示,再板书。
5、师:刚才大家列举了那么多的`算式,三个数相乘虽然运算顺序变了,但结果怎样?
师:同学们来观察这些算式,你能用自己的语言说说这些等式的共同点吗?
生回答。
师:其实刚才大家说的共同点总结起来,就是数学中的乘法结合律。
师:如果用a、b、c三个字母分别表示这三个数,你能写出乘法结合律吗?
学生口头用字母表示出乘法结合律。
6、师:同学们真聪明!请回想一下,我们是怎样发现乘法结合律的?
师:老师把你们说的表示出来就是“发现问题——举例验证——概括规律”。以后,我们可以用这样的方法去发现更多的规律。
二、运用。
1、下面让我们轻松一下。
35×2×5=35×(2× ) (50×125)×8=50×( ×8)[(60×25)×4
2、师:说得很好。运用乘法结合律,能使有些算式计算起来更加简便。想自己来试试吗?
师引导到38和4的位置交换了,但积没有变。
师:在以前的学习中,我们常常遇到这样的情况,你能举几个这样的例子吗?
师:其实这也是数学中的一个重要运算定律。你猜它会叫什么名字呢?
你能用字母表示出乘法交换律吗?
生先填空再说说是怎样想的。
4、师:有些乘法算式同时用上乘法结合律和乘法交换律能使计算简便。想试一试吗?
课件出示:25×17×4 (25×125)×(8×4) 38×125×8×3
学生独立完成,再板演,说说想法。
三、解决问题。
我校参加区运动会。在广播操表演中,学校所在的表演组的同学排成了25列纵队, 每列纵队有12人 。你能用最快的方法计算出学校所在的表演组一共有多少名学生吗?
学校的观众席在北一二区,每排有125个座位,一共有16排,北一二区一共能容纳多少观众?
乘法结合律教案(篇9)
老师通过乘法结合律教学设计让学生经历乘法结合侓的探索过程,能用字母表示乘法结合律,进一步培养发现问题和扯出问题的能力,积累数学活动经验。这就表明达到了教学目标。以下是乘法结合律教学设计,以供参考!
教学目标:
1、使学生理解和掌握乘法结合律,初步体验乘法结合律的应用。
2、通过乘法结合律公式的推导教学,培养学生思维能力,及科学的学习方法。
3、培养学生的分析、比较、综合能力以及初步的抽象概括能力。
4、通过学生的自主学习,激发学生学习数学的兴趣。
5、结合教学中具体的教学事例对学生进行学习习惯、道德品质方面的教育。
教学重点:
引导学生概括出乘法结合律,初步体验乘法结合律的应用。
教学难点:
乘法结合律的推导过程是学习的难点。
教学过程:
一、复习准备,引入问题情境
请同学们做口算题。
2×550×225×48×12540×25
通过刚才的口算题,你们很快算出结果,你们知道在乘法运算中有三对好朋友,它们分别是谁?
根据同学的回答总结出:5和2是一对好朋友,它们相乘等于十;25和4是好朋友,它们相乘等于一百;125和8是好朋友,它们相乘等于一千。
教师板书:5×225×4125×8
请同学们要牢记这三对好朋友,一会儿它要给我们很大的帮助。
二、学习新课
1、出示主题图。
师:同学们,要保护我们的家园,就要植树造林,绿化环境。
2、引导学生观察:图上的同学们在干什么?上节课我们根据这副图的信息提出四个问题,已经解决了两个问题,今天我们一起解决第三个问题。
板书:一共要浇多少桶水?
师:要解决这个问题,要知道哪几个信息?
3、小组合作,列出综合式。
学生做完后说出自己是怎么想的。(一种思路是先求一共种多少棵树,再求一共浇多少桶水;另一种思路是先求一组浇多少桶水,再求25组一共浇多少桶水。)
板书:25×5×225×(5×2)
=125×2=25×10
=250(桶)=250(桶)
答:一共要浇250桶水。
4、讨论、比较。
提问:
(1)这两个算式都有道理,而且它们的结果是相同的,说明这两个算式之间有什么关系?(是相等关系。)
板书:25×5×2=25×(5×2)
(2)等号左边和右边的算式有什么相同的地方?
议论后得出:等式两边算式中的3个因数一样,都是25,5和2;它们的运算符号是一样的,都是乘号。
(3)那它们有什么不相同的地方?
它们的运算顺序不一样,左边算式要把前2个数相乘,右边算式因为有小括号,所以要先算后边小括号里面的。
(4)哪个算式计算起来更简便呢?
师概括并启发提问:
这两个算式因数相同,运算顺序不一样,但结果都是相同的,这种现象是不是偶然的呢?
5、你能再举出几个这样的例子吗?如:
3×6×5=3×(6×5)
7×4×20=7×(20×4)
25×8×4=25×(8×4)
启发提问:
(1)这三个等式中,每组等式的因数一样吗?(一样的)
(2)它们的运算顺序一样吗?(不一样的)
(3)三个等式左边的算式的运算顺序是怎样的?
议论后明确:三个等式左边的算式运算顺序是一样的,都是把前两个数先乘,再与第三个数相乘。
(4)三个等式右边的算式运算顺序是怎样的?
议论后得出:三个等式右边算式的运算顺序是一样的,都是先把后两个数相乘,再同第一个数相乘。
(5)它们每个等式左右两边运算顺序不一样,但它们的积呢?(积是一样的)
师概括:通过刚才的计算、讨论,看来咱们发现的现象不是偶然的,是有规律性的。
6、引导学生总结规律。
咱们再观察一下,在乘法中,三个数相乘,可以怎么算?还可以怎么算?
学生议论。在充分发表意见的基础上,概括并板书:三个数相乘,先乘前两个数,或者先乘后两个数,积不变。这叫做乘法结合律。
板书课题:乘法结合律
7、用字母公式表示定律。
启发学生如果用a,b,c分别表示三个因数,乘法结合律的字母公式是什么?
板书:(a×b)×c=a×(b×c)
师概括:我们学习了乘法交换律,可以改变乘法中的两个因数的位置,今天我们学习乘法结合律可以改变乘法运算当中的运算顺序,它们的积都是不变的。
8、看教科书,讨论小精灵提出的问题。
9、乘法结合律的应用。
计算43×25×425×43×4
先让同学独立计算,然后讨论,明确应用了什么运算定律。
10、练一练
完成35页下面的“做一做”的第二题,请生板演,做完后集体订正。
三、巩固练习
1、练习六第2题。
2、用简便方法计算。
42×125×825×17×4(25×125)×(8×4)
乘法结合律教案(篇10)
【教学目标】
1、通过探索乘法分配律中的活动,使学生进一步体验探索规律的过程。
2、使学生在探索的过程中,能自主发现乘法分配律,并能用字母表示。
3、会用乘法分配律进行一些简便计算。
【教学重点】
自主发现乘法分配律,并能用字母表示。
【教学难点】
发现并让学生自己归纳乘法分配律
【课前准备】
口算练习题,幻灯片
【教学过程】
一、新知导入
师:请同学们进行口算练习(指名回答)
5×2=25×2=
5×4=25×4=
15×2=16×5=
15×4=45×2=
75×4=125×8=
师:请同学们观察这一组口算练习有什么特点。
生:他们的结果都是整十整百整千的数。
师:同学们的观察真仔细,像这样2个数相乘结果是整十整百整千的数,都是好朋友,这些好朋友今后都会帮助我们来运算,我们都应记住。这里特别的请大家记住三对好朋友:5×2、25×4、125×8。
师:上节课,我们进行了有趣的探索活动,发现了很多奇妙的规律,在我们的数学运算中,还有很多规律,我们这节课就继续探索和乘法有关的知识,相信大家一定会有新的发现。(板书:探索与发现)
二、新知探索
师:同学们玩过玩具积木吗?
生:玩过。
师:你会用积木搭些什么呢?
学生回答自己用积木搭过的物体。
师:老师也用小正方体积木搭了一个立体图形。大家一起来看看。(课件出示书上的情境图)
师:你能看出老师搭的是什么形状吗?
生1:正方体。
生2:不对,是长方体。
师:真好,你们观察得真仔细!那么这个长方体是由多少个小正方体组成的呢?你们是怎样计算得到这个答案的呢?请同学们每个人动笔算一算。
(师将学生的多种算法板书在黑板上,板书:从上面看:3×5×4
从前面看:5×4×3
从侧面看:3×4×5)
师:由于同学们观察角度的不同,所以列出的算式也不相同,现在请同学们比较一下,上面的第一和第二这2个算式有什么相同点和不同点?
生:相同点都是3、4、5三个数字相同,不同点是数字的位置不同。
师:数字位置不同运算顺序就不同,那么大家想想,如果三个数字的位置不变,你有什么办法还按照刚才同学的运算顺序进行运算吗?(不亦动3、4、5的位置,能不能先算5×4)
生:用小括号把5×4括起来。
(板书:(5×4)×3=3×(5×4))
师:请同学们计算一下这2个算式的结果。(学生计算发现结果都是60)
师:我们以往将三个数连乘都是先把前两个数相乘,再乘第三个数,而现在我们也可以把后两个数先相乘,再和第一个数相乘,它们的结果相同。这是一种巧合呢?还是一个规律呢?谁能举出类似这样的三个数连乘的例子?(找2-3个学生举例子,例子板书在黑板上)
师:同学们,你能举例了吗?现在请每个人在练习本上举一个例子,然后在小组内汇报你举的例子。(提示:如果找到比较大的数,可以借助计算器)
(学生汇报之后教师板书学生的举例,3、4个即可)
师:从刚才大家的举例来看,每一组的结果都是相同的。同学们,你能用自己的语言说说这些等式的共同点吗?
师:同学们概括的真好,这就是乘法结合律。如果用a,b,c表示三个数,你能总结出发现的规律吗?(如果同学们概括不出来,可以用字母的方法表示,并提示学生以后用字母这种表示方法表示其他的规律,更加便捷)
师:现在请同桌2人对照这字母的表达方式说一说什么是乘法结合律。
师:同学们真聪明!请回想一下,我们是怎样发现乘法结合律的?
在计算搭长方体所需要的小正方体个数过程中发现了三个数连成,顺序不同,结果却相同这一问题(板书:发现问题)于是我们从中猜想是不是有什么规律(板书:提出假设)经过举例验证(板书:举例验证)我们总结出乘法的结合律(板书:概括规律)
以后,我们可以用这样的方法去发现更多的规律。
三、新知应用
(1)练习
(42×4)×5=42×(4×□)
(35×2)×5=35×(□×5)
(28×2)×5=
(47×25)×4=47×(□×□)
师:这里面出现了我们一上课提到的三对好朋友,大家发现了吗?(再次提醒学生注意5×2、25×4、125×8这三组数)
(2)课件出示:
38×25×4
49×125×8
(带领学生做第一道练习题,在黑板上板书过程,指导学生观察数字以及板书格式,体会简便的必要性。然后再让学生在练习本上做第二道习题。)
(3)让学生观察一开始板书的三组式子:3×5×4
5×4×3
3×5×4
师:观察第一组和第三组式子,有什么发现?
生:5×4和5×4位置改变了。
师:没错,那么这2个式子的结果相同吗?
生:相同
师;你能再举几个类似的例子吗(学生举例)
师:其实这也是数学中的一个重要运算定律
乘法结合律教案(篇11)
一、教学内容:
北师大版四年级上册数学第二单元p45-p46
二、教学目标:
1、经历探索过程,发现乘法结合律和交换律,并用字母表示。
2、在理解乘法结合律和交换律的基础上,会对一结算式进行简便计算。
3、感受数学探索的乐趣,培养自主探索问题的能力。
三、教学重、难点
1、重点:探索、发现、理解和应用乘法结合律和交换律。
2、难点:乘法结合律和交换律的探索过程。
四、教学过程
(一)口算比赛,激发学习兴趣
1、出示口算题
5×225×425×8125×8
2、师:以后在计算乘法时,一般看到“5”想到2,看到“25”想到4,看到“125”想到8;因为这样的两个数相乘能整到十、整百、整千数,这样可以快速计算。
3、谈话引入:我们在前面已学过乘法的计算,在教学运算中,有许多有趣的规律,这节课请同学们和老师一起去探索,看看你能发现什么?
(二)创设情境,发现问题
1、多媒体出示情境图
2、估一估
师:请大家认真观察,估一估这个长方体是由多少个小正方体搭成的?
3、算一算
师:谁估计的准确呢?请同学们在本子上算一算,比一比看谁做的又对又快。
4、交流算法。
师:谁愿意把你的办法介绍给大家?学生汇报,汇报时说一说自己是怎样想的。
师板书:(3×5)×4=60(个)
3×(5×4)=60(个)
(三)比较算式的特点,发现规律
1、刚才两位同学不同的方法解决了这个问题,现在请同学们一起观察这两个算式,看看你能发现什么?
2、学生汇报:略
3、小结:(3×50)×4=3×(5×4)
(四)提出假设,举例验证
1、师:用别的三个数这样计算会不会结果也相同呢?请在本子上举例计算。
2、学生举例
同桌之间互相交流?
3、集体交流
谁愿意介绍一下你们小组举例的情况?
(五)概括规律
1、从刚才大家所举的例子看,每一组的结果都是相同的。这样的例子多不多?能举的完吗?
2、如果用字母a、b、c分别表示乘法算式中的三个数字,你能写出所发现的规律吗?
板书(a×b)×c=a×(b×c)
板题:乘法结合律
(六)运用规律,解决问题
1、比较(3×5)×4=603×(5×4)=60两个算式,哪个更简便?
2、看来运用乘法结合律可以使一些计算简便。
3、练习:p46“试一试”的题目
学生独立完成,集体订正。
(七)探索乘法交换律
1、出示两组数据
4×5=5×412×10=10×12
2、师:认真观察,看看你有什么新发现?
3、学生汇报。
4、学生举例验证。
师:你能举出像这样的例子吗?
5、师:如果用字母a、b表示两个数,你能写出发现的规律吗?
6、板书:a×b=b×a
板题:乘法交换律
三、巩固练习
1、(完成课本第46页练一练第1题)
学生口答,集体订正。
2、应用乘法结合律和交换律,快速计算下面各题。
25×17×413×8×128(25×125)×(8×4)
(1)学生独立完成,个别板演。
(2)订正时让学生说说运用什么运算定律。
四、总结:这节课你有什么收获?
五、学生读课本第45、46页,质疑。
六、作业:课本第46页第2题。
乘法结合律 乘法交换律
乘法结合律教案(篇12)
教学内容:练习五的第6-9题。
教学目的:使学生进一步掌握乘法交换律和乘法结合律,会应用运算定律进行简便运算。
教学重点:应用运算定律进行简便运算。
教学难点:培养能力。
教具准备:把下面复习运算定律用的复习题写在黑板上。
教学过程:
一、复习所学过的运算定律
教师出示复习题:根据运算定律在下面的横线上填出适当的数。
1.26305=305()
2.(2468)125=246(8)
3.214+678=678+()
4.225+(75+437)=(225+75)十()
先让学生看清题目,再提问:
第一小题,横线上应该填什么数?根据什么运算定律?
乘法交换律说,两个数相乘,交换两个因数的位置,什么不变?
第二小题呢?乘法结合律说,三个数相乘,先把前两个数相乘,再同第三个数相乘,还可以怎样乘,它们的积不变?
第三小题,横线上应该填什么数?根据什么运算定律?
第四小题呢?
乘法和加法都有交换律,它们有什么相同的地方?有什么不同的地方?学生讨论以后,教师指出:乘法交换律和加法交换律都是交换了要计算的两个数的位置,交换前和交换后计算的结果都不变,只是加法交换律交换的是两个加数,交换前与交换后两个数的和相等;乘法交换律交换的是两个因数,交换前与交换后两个数的积相等。
乘法交换律:ab=ba
乘法和加法都有结合律,它们有什么相同的地方?有什么不同的地方?学生讨论后,让学生独立说出:乘法结合律和加法结合律都是说的三个数的运算规律,乘法结合律是先把第一个数、第二个数相乘,再同第三个数相乘;或者先把第二个数、第三个数相乘,再同第一个数相乘,它们的积不变;加法结合律是先把第一-个数、第二个数相加再同第三个数相加,或者先把第二个数、第三个数相加,再同第一个数相加,它们的和不变。
加法结合律:(a+b)+c=a+(b+c)
乘法结合律:(ab)c=a(bc)
二、做练习五的第6一8题
1.第6题、先让学生自己看题,独立思考,再集体讨论...
2.第7题,先让学生独立完成,然后再集体核对。核对时可以多让几个学生说一说是怎样做的,比较一下怎样做更简便。
3.第8题,先让一名学生读题,再提问:
这道题有什么要求?学生回答后,教师再明确指出:这道题在填表时,都要把每组的数和第一组的数比较一下,再看一看因数有什么变化,积有什么变化。然后让学生做在自己的书上。
三、学有余力的学生可以做选作题和思考题
第10题,学生有困难时,可以让学生想:小丽所在的一行有多少人?因为从前面数小丽是第9,从后面数小丽是第11,所以小丽所在的一行有9+11-1=19(人),因为4行的人数同样多,所以一共有194=76(人)。
第11题,这道题可以有不同的解法,当学生用一种方法做出后,还可以让学生再想一想还有没有别的算法。这道题可以这样做:
(24+24+8)85
.2485+(24+8)85
第3l页上的思考题.
四、作业
练习五的第9题。