幼儿教师教育网,为您提供优质的幼儿相关资讯

一元二次不等式课件教案

发布时间:2023-06-08 一元不等式课件教案

一元二次不等式课件教案合集(9篇)。

教师会将课本中的主要教学内容整理到教案课件中,因此,教师需要精心计划每份教案课件的重点和难点。详实的教案能够帮助教师记录学生的学习进度。如果想要写一份教案课件,需要具备哪些步骤呢?栏目小编推荐阅读一元二次不等式课件教案,希望能对你有所帮助!

一元二次不等式课件教案 篇1

教学内容

3.2一元二次不等式及其解法

三维目标

一、知识与技能

1.巩固一元二次不等式的解法和解法与二次函数的关系、一元二次不等式解法的步骤、解法与二次函数的关系两者之间的区别与联系;

2.能熟练地将分式不等式转化为整式不等式(组),正确地求出分式不等式的解集;

3.会用列表法,进一步用数轴标根法求解分式及高次不等式;

4.会利用一元二次不等式,对给定的与一元二次不等式有关的问题,尝试用一元二次不等式解法与二次函数的有关知识解题.

二、过程与方法

1.采用探究法,按照思考、交流、实验、观察、分析得出结论的方法进行启发式教学;

2.发挥学生的主体作用,作好探究性教学;

3.理论联系实际,激发学生的学习积极性.

三、情感态度与价值观

1.进一步提高学生的运算能力和思维能力;

2.培养学生分析问题和解决问题的能力;

3.强化学生应用转化的数学思想和分类讨论的数学思想.

教学重点

1.从实际问题中抽象出一元二次不等式模型.

2.围绕一元二次不等式的解法展开,突出体现数形结合的思想.

教学难点

1.深入理解二次函数、一元二次方程与一元二次不等式的关系.

教学方法

启发、探究式教学

教学过程

复习引入

师:上一节课我们通过具体的问题情景,体会到现实世界存在大量的不等量关系,并且研究了用不等式或不等式组来表示实际问题中的不等关系。回顾下等比数列的性质。

生:略

师:某同学要把自己的计算机接入因特网,现有两种ISP公司可供选择,公司A每小时收费1.5元(不足1小时按1小时计算),公司B的收费原则是第1小时内(含恰好1小时,下同)收费1.7元,第2小时内收费1.6元以后每小时减少0.1元(若用户一次上网时间超过17小时,按17小时计算)那么,一次上网在多少时间以内能够保证选择公司A的上网费用小于等于选择公司B所需费用。

学生自己讨论

点题,板书课题

新课学习

1.一元二次不等式

只有一个未知数,并且未知数的最高次数是2的不等式。

2.三个“二次”之间的关系及一元二次不等式的解法

师在前面我们已经学习过一元二次不等的解法,发现一元二次方程及对应的二次函数有关系,那么同学们课本打开到p77填表格。

生略

师学生讨论归纳出解一元二次不等式的步骤

一看:看二次项系数的正负,并且变形为

二算:,判断正负,有根则求并画出对应的函数图象

三写:写出原不等式的解集

练习反馈

[例题剖析]

例1解下列不等式

(1)(2)

(3)(4)

(5)(6)

课本80页练习

例2已知不等式的解集为试解不等式

变式:

已知

课堂

小结

1.三个“二次的关系”

2.解二次不等式的步骤

作业布置

课本第80页习题3.2A组第1.2.4题B组1

练习调配

设计42页全做,43页例1例2随堂练习2.3,4,5测评1、3、4、5、6、7、8、

一元二次不等式课件教案 篇2

1.创设情景——引入新课。我们常说“兴趣是最好的老师”,长期以来,学生对学习数学缺乏兴趣,甚至失去信心,一个重要的原因,是老师在教学中不重视学生对学习的情感体验,教学应该充分考虑学生的情感和需要,想方设法让学生在学习中树立信心,感受学习的乐趣。根据教材内容的安排,我以学生熟悉的画一次函数图象、求一次方程和一次不等式的解为背景知识切入,设置一个练习题组,一方面让学生总结复习已有知识,为后面学习二次不等式的解法打下基础,做好铺垫,另一方面,使学生在自己熟悉的问题中首先获得解题成功的快乐体验,然后以20xx年江苏省的一道高考试题为引子,引入本节课的新授内容。对于本题,引导学生,利用上面解练习题组1的方法,画出二次函数图象来解答。二次函数是初中数学的重要内容,本题又给出了函数图象上许多点,相信学生画出图象应该不成问题,只要教师适当点拨,学生不难得到正确答案。以高考试题为背景引入新课,可以提高学生兴趣,抓住学生眼球,吸引学生注意力,还可以让学生实实在在感受到,高考题就在我们的课本中,就在我们平常的练习中。

2.探究交流——发现规律。从特殊到一般是我们发现问题、寻求规律、揭示问题本质最常用的方法之一。我把课本例题1、2编为练习题组(一),交由学生用上面解高考题的方法——图象法去解,学生由于熟知二次函数图象,求解应该不会有太大的问题。在这个过程中,教师要启发引导学生注意对比两题的异同,组织引导学生展开交流讨论,探讨第(2)题能不能先把二次项系数化正以后再构造函数画图求解。然后达成共识,如果二次项系数为负数时,先做等价转化,把二次项系数化为正数再解,课本19页例3、例4作为题组(二),继续让学生用上面的图象法,由学生自己求解,这时我及时提示学生注意这两题与题组(一)中两题的不同(例1、例2对应方程都有两个不等实根,例3对应方程有两相等实根,例4对应方程无实根)。两个题组的练习之后,可以寻求解二次不等式的一般规律。

3.启发引导——形成结论。前面两个题组的四个小题,基本涵盖了一般一元二次不等式解的各种情况,进一步启发引导学生将特殊、具体题目的结论做一般化总结,与学生一起就△>0,△<0,△=0的三种情况,总结二次不等式ax2+bx+c>0或ax2+bx+c<0(a>0)的解的情况应该水到渠成。至此,学生可以感受到,解二次不等式只须①将二次项系数化为正数,②求解二次方程ax2+bx+c=0的.根。③根据①后的二次不等式的符号写出解集即可,必要时也可以结合图象写解集。这样我们就得到了二次不等式的另外一种解法(可称为“三步曲”法)。

4.训练小结——巩固深化。为了巩固和加深二次不等式的两种解法,接下来及时组织学生进行课堂练习,完成课本21页练习1—4题。本环节请不同层次的学生在黑板上书写解题过程,之后师生共同纠正问题,规范解题过程的书写。

5.延伸拓宽——提高能力。课堂教学既要面向全体学生,又应关注学生的个体差异。体现分类推进,分层教学的原则。为此,我又设计了一个提高练习题组,共有三道备选题目,以供程度较好学有余力的学生能够更好的展示自己的解题能力,取得更进一步的提高。

一元二次不等式课件教案 篇3

各位评委、各位老师:

大家好!

我叫,来自。今天我说课的课题是《一元二次不等式的解法》(第一课时)。下面我将围绕本节课“教什么?”、“怎样教?”以及“为什么这样教?”三个问题,从教材内容分析、教法学法分析、教学过程分析和课堂意外预案等几个方面逐一加以分析和说明。

一、教材内容分析:

1、本节课内容在整个教材中的地位和作用。

概括地讲,本节课内容的地位体现在它的基础性,作用体现在它的工具性。一元二次不等式的解法是初中一元一次不等式或一元一次不等式组的延续和深化,对已学习过的集合知识的巩固和运用具有重要的作用,也与后面的函数、数列、三角函数、线形规划、直线与圆锥曲线以及导数等内容密切相关。许多问题的解决都会借助一元二次不等式的解法。因此,一元二次不等式的解法在整个高中数学教学中具有很强的基础性,体现出很大的工具作用。

2、教学目标定位。

根据教学大纲要求、高考考试大纲说明、新课程标准精神、高一学生已有的知识储备状况和学生心理认知特征,我确定了四个层面的教学目标。第一层面是面向全体学生的知识目标:熟练掌握一元二次不等式的两种解法,正确理解一元二次方程、一元二次不等式和二次函数三者的关系。第二层面是能力目标,培养学生运用数形结合与等价转化等数学思想方法解决问题的能力,提高运算和作图能力。第三层面是德育目标,通过对解不等式过程中等与不等对立统一关系的认识,向学生逐步渗透辨证唯物主义思想。第四层面是情感目标,在教师的启发引导下,学生自主探究,交流讨论,培养学生的合作意识和创新精神。

3、教学重点、难点确定。

本节课是在复习了一次不等式的解法之后,利用二次函数的图象研究一元二次不等式的解法。只要学生能够理解一元二次方程、一元二次不等式和二次函数三者的关系,并利用其关系解不等式即可。因此,我确定本节课的教学重点为一元二次不等式的解法,关键是一元二次方程、一元二次不等式和二次函数三者的关系。

二、教法学法分析:

数学是发展学生思维、培养学生良好意志品质和美好情感的重要学科,在教学中,我们不仅要使学生获得知识、提高解题能力,还要让学生在教师的启发引导下学会学习、乐于学习,感受数学学科的人文思想,使学生在学习中培养坚强的意志品质、形成良好的道德情感。为了更好地体现课堂教学中“教师为主导,学生为主体”的教学关系和“以人为本,以学定教”的教学理念,在本节课的教学过程中,我将紧紧围绕教师组织——启发引导,学生探究——交流发现,组织开展教学活动。我设计了①创设情景——引入新课,②交流探究——发现规律,③启发引导——形成结论,④练习小结——深化巩固,⑤思维拓展——提高能力,五个环环相扣、层层深入的教学环节,在教学中注意关注整个过程和全体学生,充分调动学生积极参与教学过程的每个环节。

一元二次不等式课件教案 篇4

新课程理念下的教学更多的关注学生自主探究、关注学生的个性发展,鼓励学生勇于提出问题,培养学生思维的批评性。在课堂上学生往往会提出让老师感到“意外”的问题,我在平时的教学中重视对“课堂意外预案”的探索和思考,备课时尽量设想课堂中可能会出现的各种情况,做到有备无患,以免在课堂中学生提出让自己出乎意料的问题,使自己陷入被动尴尬境地。结合以往经验,在本节课,我提出两个“意外预案”。

1、学生在做课本练习1(x+2)(x-3)>0时,可能会问到转化为不等式组{或{求解对不对。学生提出的问题,想法非常好,应给予肯定和鼓励,这与下节简单分式不等式和高次不等式的解法有关,是解不等式的另一种解法——等价转化法,不在本节课之列。

2、根据以往的经验,在解(x-1)(x+2)>1一类的不等式的时候,由于受方程(x+1)(x+2)=0可转化为x-1=0或x+2=0求解的影响,有可能会出现将不等式转化为不等式组{来求解的错误做法,教师要关注学生,及时发现问题并给予纠正,指出上面的转化不是等价转化。

以上是我对本节课的一些粗浅的认识和构想,如有不妥之处,恳请各位专家、各位同仁批评指正。谢谢大家!

一元二次不等式课件教案 篇5

教学目标:

(1)透彻理解、掌握一元二次方程、一元二次不等式与二次函数的内在联系,会解一元二次不等式;

(2)培养学生数学的数形结合思想和转化能力,学会主动探求问题和寻找解决问题的方法。

教学重点:一元二次不等式的解法(图象法)

教学难点:

(1)一元二次方程、一元二次不等式与二次函数的关系;

(2)数形结合思想的渗透

教学方法与教学手段:

尝试探索教学法、归纳概括。

教学过程:

一、复习引入

1.复习一元一次方程、一元一次不等式与一次函数的关系

[师]前面我们已经学习了绝对值不等式的解法,今天开始研究一元二次不等式的解法。(板书课题)记得在初中我们已学习了一元一次不等式的解法,还记得是用什么方法解的'吗?

学生可能回答是代数方法,也可能说是利用直线图象。

[师]初中学习了一次函数的图象,使得我们对一元一次不等式的解法有了更深入的了解。首先请同学们画出 y=2x-7

[师]请同学们画出图象,并回答问题。

一次函数y=2x-7的图象如下:

填表:

当x 时,y = 0,即 2x-7 0;

当x 时,y

当x 时,y > 0,即 2x-7 0;

注:(1)引导学生由图象得出结论(数形结合)

(2)由学生填空(一边演示y0部分图象)

从上例的特殊情形,你能得出什么结论?

注:教师引导下学生发现其结论,并由学生尝试叙述:一元一次方程ax+b=0的根实质上就是直线y=ax+b与x轴交点的横坐标;一元一次不等式ax+b>0(或ax+b

2.新课导入

[师]我们可以利用一次函数的图象快速准确地求出一元一次不等式的解集,那能否也可以借助二次函数的图象来解一元二次不等式呢?

二、讲解新课

1、一元二次不等式解法的探索

[师] 你知道二次函数的草图是怎样画出的吗?(用"特殊点法"而非课本上的"列表描点法")你能回答以下问题吗?二次函数 y=x2-4x+3的图象如下:

填表:方程x2-4x+3=0(即y=0)的解是

不等式x2-4x+3>0(即y>0)的解集是

不等式x2-4x+3

注:学生类比前面的知识,能根据二次函数的图象确定与x轴的交点,确定对应的一元二次方程的根,从而确定一元二次不等式的解集。(边说边画y>0,y

[师]现在如果我变动这条抛物线,请大家观察抛物线与x轴的交点有何变化?

注:引导学生发现一元二次方程的根有三种情况,其对应的二次函数图象与x轴的位置关系也有三种情况,是由 >0, =0,

2、讲解例题

[师]接下来请同学们再来分析几个具体例子

(板书)例:解下列各不等式

(1)2x2-3x-2>0;

(2) -3x2+6x>2;

(3)4x2-4x+1>0;

(4)-x2+2x-3>0.

注:跟学生共同详细分析(1),强调解题规范性,其余(2)(3)(4)由学生完成,并小组讨论。

解:(1)方程2x2-3x-2=0的两根为x1=- 或 x2=2,(画草图,结合图象)

所以原不等式的解集是{x| x2 }

四、课后作业:书P21/习题1.5/1.3.5.6

五、教学设计说明:

1、本节课教学设计力图体现以学生发展为本,遵循学生的认知规律,体现循序渐进的教学原则,通过对原有知识的复习,引导学生类比探索新的知识,激发学生的求知欲望,调动学生的积极性。

2、本节课采用在教师引导下启发学生探索发现,体会解题过程中形结合思想方法,使之获得内心感受。

3、本节课的重点是利用图象解一元二次不等式,让学生明确一元二次方程、一元二次不等式与二次函数之间的联系。在思维训练方面,注重从特殊到一般,从具体到抽象思维的培养。归纳总结可以训练学生的收敛思维,有助于完善学生的思维结构。

4、本节课的例题及课堂练习是课本上的习题,其目的在于落实基础,提高运算能力。

一元二次不等式课件教案 篇6

高中数学《一元二次不等式的解法(2)》教案

一、教学目标

【知识与技能】

掌握求解一元二次不等式的简单方法,能正确求解一元二次不等式的解集。

【过程与方法】

在探究一元二次不等式的解法的过程中,提升逻辑推理能力。

【情感、态度与价值观】

感受数学知识的前后联系,提升学习数学的热情。

二、教学重难点

【重点】一元二次不等式的解法。

【难点】一元二次不等式的解法的探究过程。

三、教学过程

(一)导入新课

回顾一元二次不等式的一般形式,组织学生举例一些简单的一元二次不等式。

提问:如何求解?引出课题。

(二)讲解新知

结合课前回顾的一元二次不等式的一般形式,对比之前所学内容,引导学生发现其与一元二次方程和二次函数的共同特点。

一元二次不等式课件教案 篇7

解一元二次不等式化为标准型。判断△的符号。若△<0,则不等式是在R上恒成立或恒不成立。

若△>0,则求出两根,在数轴上标出,每个根上画一条竖线,再从右到左相间标正负号,不等式大于0则取标正的范围,小于0则取标负的范围。

2.解简单一元高次不等式

a.化为标准型。

b.将不等式分解成若干个因式的积。

c.求出各个根,在数轴上标出,每个根上画一条竖线,再从右到左相间标正负号,不等式大于0则取标正的范围,小于0则取标负的范围。

3.解分式不等式的解

a.化为标准型。

b.可将分式化为整式,将整式分解成若干个因式的积。

c.求出各个根,在数轴上标出,每个根上画一条竖线,再从右到左相间标正负号,不等式大于0则取标正的范围,小于0则取标负的范围。(如果不等式是非严格不等式,则要注意分式分母不等于0。)

4.解含参数的一元二次不等式

a.对二次项系数a的讨论。

若二次项系数a中含有参数,则须对a的符号进行分类讨论。分为a>0,a=0,a<0。

b.对判别式△的讨论

若判别式△中含有参数,则须对△的符号进行分类讨论。分为△>0,△=0,△<0。

c.对根大小的讨论

若不等式对应的方程的根x1、x2中含有参数,则须对x1、x2的大小进行分类讨论。分为x1>x2,x1=x2,x1<x2。

5.一元二次方程的根的分布问题

a.将方程化为标准型。(a的符号)

b.画图观察,若有区间端点对应的函数值小于0,则只须讨论区间端点的函数值。

若没有区间端点对应的函数值小于0,则须讨论区间端点的函数值、△、轴。

6.一元二次不等式的应用

⑴在R上恒成立问题(恒不成立问题相反,在某区间恒成立可转化为实根分布问题)

a.对二次项系数a的符号进行讨论,分为a=0与a≠0。

b.a=0时,把a=0带入,检验不等式是否成立,判断a=0是否属于不等式解集。

a≠0时,则转化为二次函数图像全在x轴上方或下方。

若f(x)>0,则要求a>0,△<0。

若f(x)<0,则要求a<0,△<0。

⑵特殊题型:已知一不等式的解集(含有字母),求另一不等式的解集(与原不等式系数大小相同,位置不同)。a.写出原不等式对应的方程,由韦达定理得出解集字母与方程系数间的关系。

b.写出变换后不等式对应的方程,由由韦达定理得出解集字母与方程系数间的关系。

c.将a中得到的关系变化后带入b的关系中,得到变换后方程的两根。

d.判断两根的大小,变换后不等式二次项的系数,从而写出所求解集。

一元二次不等式课件教案 篇8

展过程一元二次不等式教学设计

一、教学内容分析:

1、教材地位和作用

本节课是数学(基础模块)上册第二章第三节《一元二次不等式》。从内容上看它是我们初中学过的一元一次不等式的延伸,同时它也与一元二次方程、二次函数之间联系紧密,涉及的知识面较多。从思想层面看,本节课突出本现了数形结合思想。同时一元二次不等式是解决函数定义域、值域等问题的重要工具,因此本节课在整个中学数学中具有较重要的地位和作用。

2、教学目标

知识目标:正确理解一元二次不等式、一元二次方程、二次函数的关系。熟练掌握一元二次不等式的解法。

能力目标:培养数形结合思想、抽象思维能力和形象思维能力。

思想目标:在教学中渗透由具体到抽象,由特殊到一般,类比猜想、等价转化的数学思想方法。

情感目标:通过具体情境,使学生体验数学与实践的紧密联系,感受数学魅力,激发学生求知欲望。

3、重难点

重点:一元二次不等式的解法。

难点:一元二次方程,一元二次不等式与二次函数的关系。

二、学生情况分析:

我们的学生是在学习了一元一次不等式,一元一次方程、一元一次函数,一元二次方程的基础上学习一元二次不等式。但大都数学生的基础都不是很好,解一元二次方程有一定的困难。

三、教学环境分析:教学环境应包括和谐的师生关系、多媒体的合理应用、良好的课堂组织、合理的问题情境。创设和谐的师生关系有利于提高学习效率,我们学校要建立和谐的师生关系是需要花很多心思的,特别是就业班的同学,且要有一个相当长的适应时间。我们学校的每位老师都有手提电脑,每间教室都有宽屏电子显示器,老师都能熟练掌握多媒体设备的运用。运用多媒体教学效果好、学生容易理解、学习的积极性高。上课时比较注意创设合适的问题情境,效果会不错,学生从生活实际出发,回答所提的问题,不知不觉学习了新的知识,他们不会感觉到学习疲劳,反而能积极主动地学习。

四、教学目标分析:

知识与技能:正确理解一元二次不等式、一元二次方程、二次函数的关系。熟练掌握一元二次不等式的解法。

过程与方法:通过看图象找解集,培养学生从从形到数的转化能力,从具体到抽象、从特殊到一般的归纳概括能力;通过对问题的思考、探究、交流,培养学生良好的数学交流能力,增强其数形结合的思维意识。在教学中渗透由具体到抽象,由特殊到一般,类比猜想、等价转化的数学思想方法。

情感态度与价值观:通过具体情境,使学生体验数学与实践的紧密联系,激发学生学习研究一元二次不等式的积极性和对数学的情感,使学生充分体验获取知识的成功感受;在探究、讨论、交流过程中培养学生的合作意识和团队精神,使其养成严谨的治学态度和良好的思维习惯。

一元二次不等式课件教案 篇9

《一元二次不等式解法》说课稿范文

一、 教材简析

1、地位和价值

一元二次不等式解法是高中数学新教材第一册(上)第一章第5节的内容。在此之前,学生在初中已学习了一元一次不等式,一元一次不等式组,一元二次方程,二次函数,绝对值不等式(高中),这为过渡到本节的学习起着铺垫作用。一元二次不等式解法是解不等式的基础和核心,它在高中代数中起着广泛应用的工具作用,蕴藏着“数与形结合”的重要思想方法,它已成为代数、三角、解析几何交汇综合的重要部分,是高考综合题的热点。

2、教材结构简介

教材首先以一个一次函数图象的应用解一元一次不等式,引出图象法,然后给出一个二次函数,通过具体画图象,提出问题。再一般地给出了二次函数图象解二次不等式的结论。课本精选了四个解不等式的例题,并配有相应的练习和习题。它的后一小节为解可转化为一元二次不等式的分式不等式。

二、 教育教学观

1、 学生为主体,重学生参与学习活动。

2、 重过程。按照认知规律及学生认知特点,由浅入深,由表及里,设计一系列教学活动过程。体现由“实践……观察……归纳 ……猜想…… 结论…… 验证应用”的循环往复的认知过程。

3、 重能力与态度的培养,在活动中培养学生自主、交流合作、探究、发现的能力。重科学严谨的个性品质。重参与学习的兴趣和体验。

4、 重指导点拨。在学生自主探究、实践的基础上,相机启发,恰当点拨,促进学生知识由感性向理性提升,由具体到概括抽象,形成师生间的有效互动。

三、 教学目标

基于上述认识,及不等式的基本知识,同时学生在初中已学过二次函数,考虑到学生已有的认知结构心理特征,制订如下教学目标:

1、 知识目标:一元二次方程,一元二次不等式及二次函数间的联系,及利用二次函数的图象求解一元二次不等式。

2、 能力目标:数形结合的思想(应用二次函数图象解不等式)

3、 情感态度目标:通过问题解决,培养学生自主参与学习,以及严谨求实的.态度。

四、 教与学重点、难点

1、重点:用图象解一元二次不等式。

2、难点:围绕二次函数图象、性质这一主线,解决三个“二次”的联系和应用。

五、 教法与学法

1、学情分析及学法:函数与图象应用是初中生数学的薄弱之处,同时刚进入高中的学生,对高中学习还很不适应,需要加强主动学习的指导。基于此,在学生初中知识经验的基础上,以旧探新;以一系列问题,促进主体的学习活动(如画图象、读图等),建构知识;以问题情景激励学生参与,在恰当时机进行点拨启发,练、导结合,讲练结合;通过学生自己做数学,教师启发指导,以及学生领悟,实现学生对知识的再创造和主动建构;具体通过教材中的问题及设计的问题情景,给予学生活动的空间,通过这些问题(“脚手架”)的解决,使学生逐步攀升,达到知识与能力的目标。

2、教法:数学教学是数学教与学活动过程的教学,学生是在探究与发现中建构知识,发展能力的,因而确定以“问题解决”为教法。实现学生在教师指导下的发现探索。同时所学内容适宜用“计算机高中数学问题处理系统”辅助教学。

六、教学手段及工具:

多媒体教学手段,高中数学问题处理系统。

七、教学设计及教学过程

1、复习设问,引入新课

高中数学新教材第一册(上)《一元二次不等式解法》(第一课时)说课稿.rar

yJS21.com更多精选幼儿园教案阅读

一元二次不等式课件(必备9篇)


经过多次优化我们为您制作了这份精选的“一元二次不等式课件”,本篇文章希望能够为您的工作和生活提供帮助。每个老师需要在上课前弄好自己的教案课件,没有写的老师就需要抓紧完成了。设计教案需要关注课堂互动和学生参与度的提高。

一元二次不等式课件(篇1)

教学内容

3.2一元二次不等式及其解法

三维目标

一、知识与技能

1.巩固一元二次不等式的解法和解法与二次函数的关系、一元二次不等式解法的步骤、解法与二次函数的关系两者之间的区别与联系;

2.能熟练地将分式不等式转化为整式不等式(组),正确地求出分式不等式的解集;

3.会用列表法,进一步用数轴标根法求解分式及高次不等式;

4.会利用一元二次不等式,对给定的与一元二次不等式有关的问题,尝试用一元二次不等式解法与二次函数的有关知识解题.

二、过程与方法

1.采用探究法,按照思考、交流、实验、观察、分析得出结论的方法进行启发式教学;

2.发挥学生的主体作用,作好探究性教学;

3.理论联系实际,激发学生的学习积极性.

三、情感态度与价值观

1.进一步提高学生的运算能力和思维能力;

2.培养学生分析问题和解决问题的能力;

3.强化学生应用转化的数学思想和分类讨论的数学思想.

教学重点

1.从实际问题中抽象出一元二次不等式模型.

2.围绕一元二次不等式的解法展开,突出体现数形结合的思想.

教学难点

1.深入理解二次函数、一元二次方程与一元二次不等式的关系.

教学方法

启发、探究式教学

教学过程

复习引入

师:上一节课我们通过具体的问题情景,体会到现实世界存在大量的不等量关系,并且研究了用不等式或不等式组来表示实际问题中的不等关系。回顾下等比数列的性质。

生:略

师:某同学要把自己的计算机接入因特网,现有两种ISP公司可供选择,公司A每小时收费1.5元(不足1小时按1小时计算),公司B的收费原则是第1小时内(含恰好1小时,下同)收费1.7元,第2小时内收费1.6元以后每小时减少0.1元(若用户一次上网时间超过17小时,按17小时计算)那么,一次上网在多少时间以内能够保证选择公司A的上网费用小于等于选择公司B所需费用。

学生自己讨论

点题,板书课题

新课学习

1.一元二次不等式

只有一个未知数,并且未知数的最高次数是2的不等式。

2.三个“二次”之间的关系及一元二次不等式的解法

师在前面我们已经学习过一元二次不等的解法,发现一元二次方程及对应的二次函数有关系,那么同学们课本打开到p77填表格。

生略

师学生讨论归纳出解一元二次不等式的步骤

一看:看二次项系数的正负,并且变形为

二算:,判断正负,有根则求并画出对应的函数图象

三写:写出原不等式的解集

练习反馈

[例题剖析]

例1解下列不等式

(1)(2)

(3)(4)

(5)(6)

课本80页练习

例2已知不等式的解集为试解不等式

变式:

已知

课堂

小结

1.三个“二次的关系”

2.解二次不等式的步骤

作业布置

课本第80页习题3.2A组第1.2.4题B组1

练习调配

设计42页全做,43页例1例2随堂练习2.3,4,5测评1、3、4、5、6、7、8、

一元二次不等式课件(篇2)

解一元二次不等式化为标准型。判断△的符号。若△<0,则不等式是在R上恒成立或恒不成立。

若△>0,则求出两根,在数轴上标出,每个根上画一条竖线,再从右到左相间标正负号,不等式大于0则取标正的范围,小于0则取标负的范围。

2.解简单一元高次不等式

a.化为标准型。

b.将不等式分解成若干个因式的积。

c.求出各个根,在数轴上标出,每个根上画一条竖线,再从右到左相间标正负号,不等式大于0则取标正的范围,小于0则取标负的范围。

3.解分式不等式的解

a.化为标准型。

b.可将分式化为整式,将整式分解成若干个因式的积。

c.求出各个根,在数轴上标出,每个根上画一条竖线,再从右到左相间标正负号,不等式大于0则取标正的范围,小于0则取标负的范围。(如果不等式是非严格不等式,则要注意分式分母不等于0。)

4.解含参数的一元二次不等式

a.对二次项系数a的讨论。

若二次项系数a中含有参数,则须对a的符号进行分类讨论。分为a>0,a=0,a<0。

b.对判别式△的讨论

若判别式△中含有参数,则须对△的符号进行分类讨论。分为△>0,△=0,△<0。

c.对根大小的讨论

若不等式对应的方程的根x1、x2中含有参数,则须对x1、x2的大小进行分类讨论。分为x1>x2,x1=x2,x1<x2。

5.一元二次方程的根的分布问题

a.将方程化为标准型。(a的符号)

b.画图观察,若有区间端点对应的函数值小于0,则只须讨论区间端点的函数值。

若没有区间端点对应的函数值小于0,则须讨论区间端点的函数值、△、轴。

6.一元二次不等式的应用

⑴在R上恒成立问题(恒不成立问题相反,在某区间恒成立可转化为实根分布问题)

a.对二次项系数a的符号进行讨论,分为a=0与a≠0。

b.a=0时,把a=0带入,检验不等式是否成立,判断a=0是否属于不等式解集。

a≠0时,则转化为二次函数图像全在x轴上方或下方。

若f(x)>0,则要求a>0,△<0。

若f(x)<0,则要求a<0,△<0。

⑵特殊题型:已知一不等式的解集(含有字母),求另一不等式的解集(与原不等式系数大小相同,位置不同)。a.写出原不等式对应的方程,由韦达定理得出解集字母与方程系数间的关系。

b.写出变换后不等式对应的方程,由由韦达定理得出解集字母与方程系数间的关系。

c.将a中得到的关系变化后带入b的关系中,得到变换后方程的两根。

d.判断两根的大小,变换后不等式二次项的系数,从而写出所求解集。

一元二次不等式课件(篇3)

《一元二次不等式及其解法》

教 学 设 计 说 明

《一元二次不等式及其解法》教学设计说明

一.教学内容分析:

1.本节课内容在整个教材中的地位和作用.

必修五第三章不等式第二节一元二次不等式及其解法共有三个课时,本节课是第一课时,教学内容的地位体现在它的基础性,作用体现在它的工具性.一元二次不等式的解法是初中一元一次不等式或一元一次不等式组的延续和深化,对已学习过的集合知识的巩固和运用具有重要的作用.许多问题的解决都会借助一元二次不等式的解法.因此,一元二次不等式的解法在整个高中数学教学中具有很强的基础性,体现出很大的工具作用. 2.教学目标定位.

根据教学大纲要求、高考考试大纲说明、新课程标准精神、高一学生已有的知识储备状况和学生心理认知特征,我确定了四个层面的教学目标.第一层面是面向全体学生的知识目标:熟练掌握一元二次不等式的解法,正确理解一元二次方程、一元二次不等式和二次函数三者的关系.第二层面是能力目标,培养学生运用数形结合与分类讨论等数学思想方法解决问题的能力,提高运算和作图能力.第三层面是德育目标,通过对解不等式过程中等与不等对立统一关系的认识,向学生逐步渗透辨证唯物主义思想.第四层面是情感目标,在教师的启发引导下,学生自主探究,交流讨论,培养学生的合作意识和创新精神. 3.教学重点、难点确定.

本节课是在复习了一元二次方程和二次函数之后,利用二次函数的图象研究一元二次不等式的解法.只要学生能够理解一元二次方程、一元二次不等式和二次函数三者的关系,并利用其关系解不等式即可.因此,我确定本节课的教学重点为一元二次不等式的解法,关键是一元二次方程、一元二次不等式和二次函数三者的关系. 二.教法学法分析:

数学是发展学生思维、培养学生良好意志品质和美好情感的重要学科,在教学中,我们不仅要使学生获得知识、提高解题能力,还要让学生在教师的启发引导下学会学习、乐于学习,感受数学学科的人文思想,使学生在学习中培养坚强的意志品质、形成良好的道德情感.为了更好地体现课堂教学中“教师为主导,学生为主体”的教学关系和“以人为本,以学定教”的教学理念,在本节课的教学过程中,将紧紧围绕教师组织——启发引导,学生探究——交流发现,组织开展教学活动.我设计了①回忆旧知,服务新知,②创设情境,提出问题,③合作交流,探究新知,④数学运用,深化认知,⑤练习检测,反馈新知,⑥谈谈收获,强化思想,⑦布置作业,实践新知,环环相扣、层层深入的教学环节,在教学中注意关注整个过程和全体学生,充分调动学生积极参与教学过程的每个环节. 三.教学过程分析:

(一)联系旧知,构建新知

设置一系列的问题唤起学生对旧知识的回忆. 问题1:一元二次方程的解法有哪些呢?

(意图:让学生回顾一元二次方程的解法,为解一元二次不等式做准备.)

问题2:同学们还记得二次函数吗?二次函数的形式是怎样的?你记得二次函数的性质吗?

(意图:引导学生从图象的角度出发,并启发学生二次函数的图象是一条抛物线,其开口方向由二次项系数决定,为突出重点做准备)

(二)创设情景,提出问题

1、让学生动手画直角坐标系,然后沿x轴方向上下对折这张纸,观察它们的值有什么特点?

22、请在刚才的坐标系中画出y=x-7x+6的图像 问题1:

(1)x轴上方有无图像?若有请用红线描出。这部分图像对应的y值如何?(2)x轴下方有无图像?若有请用蓝线描出。这部分图像对应的y值如何?(3)红线与蓝线有无交点?若有请用绿色标出。

(4)你能找出上述各种情况的x的取值范围吗?请在图中写出。

问题2:你能说一说这两个不等式有何共同特点么?(1)含有一个未知数x;

(2)未知数的最高次数为2。通过两问题得出一元二次不等式的概念:一般地,只含有一个未知数,且未知数的最高次数为2的不等式,叫做一元二次不等式。

问题3:判断下列式子是不是一元二次不等式?

问题4:一元二次函数、一元二次方程之间有何联系呢?

一元二次方程的解即一元二次函数图象与x轴交点的横坐标,也就是说方程的解即对应函数的零点。

问题5:一元二次不等式如何求解呢?

(三)合作交流,探究新知

1. 探究一元二次不等式x2?x?2?0的解.

容易知道:一元二次方程x2?x?2?0的有两个实数根:x1??1或x2?2. 二次函数y?x2?x?2与x轴有两个交点:??1,0?和?2,0?. 思考1:观察图象一元二次方程的根与二次函数之间有什么关系? 思考2:观察图象,当x为何值时,y?0;

当x为何值时,y?0; 当x为何值时,y?0.

(设计意图 : ①体现学生的主体性;②有利于加强对图象的认识,从而加强数形结合的数学思想 ;③有利于加强学生理解一元二次不等式的解相关的三个因素;④为归纳解一元二次不等式做好准备.根据前面探讨的问题引导学生归纳一元二次不等式的解.)

2. 探究一元二次不等式ax2?bx?c?0或ax2?bx?c?0?a?0?的解法. 组织讨论:从上面的例子出发,综合学生的意见,可以归纳出确定一元二次不等式的解集,关键要考虑:

2抛物线y?ax?bx?c与x轴的相关位置的情况,也就是一元二次方程2ax2?bx?c=0的根的情况,而一元二次方程根的情况是由判别式??b?4ac三 3 种取值情况(??0,??0,??0)来确定.

(设计意图:这里我将运用多媒体图标的形式来展现出其解法思路,学生有一个完整的逻辑思维,让学生在探究中建立知识间的联系,体会数形结合,强调突出本节的难点.)

(四)数学运用,深化认知.

2例1.求不等式2x?3x?2?0的解集. 2变式为:求不等式2x?3x?2?0的解集.

2例2.解不等式?x?2x?3?0.

(设计意图:先让学生来解答例题,若教师巡视、指导,讲评学生完成情况,寻找学生中的闪光点,给予热情表扬.)总结:

解一元二次不等式的步骤:

一化:化二次项前的系数为正(a>0).二判:判断对应方程的根.三求:求对应方程的根.四画:画出对应函数的图象.五解集:根据图象写出不等式的解集.(五)练习检测,巩固收获

(设计意图:为了巩固和加深一元二次不等式的解法,让学生学以致用,接下来及时组织学生进行课堂练习.然后就学生在解题中出现的问题共同纠正.)

(六)归纳小结,强化思想

设计意图:梳理本节课的知识点,总结一元二次不等式解法的步骤:“一化,二判,三求根,四画图,五写解集”的口诀来帮助学生记忆和归纳,让学生掌握严谨的做题方法,知晓本节课的重难点.

(七)布置作业,拓展延伸

必做题:课本第80页习题A组 1,2.选做题:(1)若关于m的一元二次方程x

2?(m?1)x?m?0有两个不相 等的实数根,求m的取值范围.2(2)已知不等式x?ax?b?0的解集为x2?x?3?,求a,b的

?值.(设计意图:以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的反馈,选做题是对本节课知识的延伸,整体的设计意图是反馈教学,巩固提高.)四.教学总结

本节课的所有内容以习题的形式展现给学生,学生始终在解题中探究,在解题中发现,学生参与教学的全过程,成为课堂教学的主体和学习的主人,而老师只须时刻关注学生的活动过程,不时给予引导,及时纠正.

一元二次不等式课件(篇4)

《一元二次不等式及其解法(第1课时)》教学设计

Eric 一 内容分析

本节课内容的地位体现在它的基础性,作用体现在它的工具性。一元二次不等式的解法是初中一元一次不等式或一元一次不等式组的延续和深化,对已学习过的集合知识的巩固和运用具有重要的作用,也与后面的函数、数列、三角函数、线形规划、直线与圆锥曲线以及导数等内容密切相关。许多问题的解决都会借助一元二次不等式的解法。因此,一元二次不等式的解法在整个高中数学教学中具有很强的基础性,体现出很大的工具作用。

二 学情分析

学生已经掌握了高中所学的基本初等函数的图象及其性质, 能利用函数的图象及其性质解决一些问题。学生知道不等关系, 掌握了不等式的性质, 通过这部分内容的学习, 学生将学会利用二次函数的图象, 通过数形结合的思想, 掌握一元二次不等式的解法。

三 教学目标

1.知识与技能目标:(1)熟练应用二次函数图象解一元二次不等式的方法(2)了解一元二次不等式与相应函数, 方程的联系 2.过程与方法:(1)通过学生已学过的一元一次不等式为例引入一元二次不等式的有关概及解法(2)让学生观察二次函数,在此基础上, 找到一元二次不等式的解法并掌握此解法(3)在学生寻找一元二次不等式的过中程中培养学生数形结合的数学思想 3.情感与价值目标:(1)通过新旧知识的联系获取新知,使学生体会温故而知新的道理

(2)通过对解不等式过程中等与不等对立统一关系的认识,向学生逐步渗透辨证唯物主义思想。

(3)在教师的启发引导下,学生自主探究,交流讨论,培养学生的合作意识和创新精神。

四 教学重点、难点 1.重点

一元二次不等式的解法 2.难点

理解元二次方程与一元二次不等式解集的关系

五 教学方法

启发式教学法,讨论法,讲授法

六 教学过程

1.创设情景,提出问题(约10分钟)

师:在初中,我们解过一元一次不等式,如解不等式x – 1 > 0,现在请同学们先画出函数y = x – 1 的图象,并通过观察图象回答以下问题: 1)x 为何值时,y = 0;2)x 为何值时,y > 0;3)x 为何值时,y 0的解集能从函数y = x – 1上看出来吗?

学生画图,思考。先把问题交给学生自主探究,过一段时间,再小组交流,此间教师巡视并指导。提问学生代表。

通过对上述问题的探究,学生得出以下结论:

因为上述方程x – 1 = 0以及不等式x – 1 > 0的左边恰好是上述函数y = x3x – 2 > 0;2)4x23x – 2 = 0的解是x1 =-1/2, x2 = 2.所以2x24x + 1 = 0 的解是x1 = x2 = 1/2, 所以不等式4x22x + 3

练习:课本80页练习第1题(1)-(3)【灵活掌握】.师:今天我们这节课的内容有两个: 1)会一元二次不等式的解法 2)理解三个“二次”的关系

作业:课本第80页 习题 A

4.板书设计

§ 一元二次不等式及其解法

解不等式x2 – x – 6 > 0, 请先画出二次函数 y = x2 – x – 6的图像,并回答以下问题: 1)x 为何值时,y = 0;y > 0;y 0的解集呢?

七 教学反思

组1、2题 例,解不等式:

1)2x24x + 1 > 0;3)-x2 + 2x – 3

解:1)因为Δ =(-3)2 – 4×2×(-2)= 25 > 0, 方程的2x23x – 2 > 0的解集是{x| x1 2}.2)因为Δ = 0,方程4x24x + 1 > 0的解集是{x|x ≠ 1/2}.

一元二次不等式课件(篇5)

1、一元二次不等式解法的探索

[师] 你知道二次函数的草图是怎样画出的吗?(用"特殊点法"而非课本上的"列表描点法")你能回答以下问题吗?二次函数 y=x2-4x+3的图象如下:

填表:方程x2-4x+3=0(即y=0)的解是

不等式x2-4x+3>0(即y>0)的解集是

不等式x2-4x+3

注:学生类比前面的知识,能根据二次函数的图象确定与x轴的交点,确定对应的一元二次方程的根,从而确定一元二次不等式的解集。(边说边画y>0,y

[师]现在如果我变动这条抛物线,请大家观察抛物线与x轴的交点有何变化?

注:引导学生发现一元二次方程的根有三种情况,其对应的二次函数图象与x轴的位置关系也有三种情况,是由 >0, =0,

2、讲解例题

[师]接下来请同学们再来分析几个具体例子

(板书)例:解下列各不等式

(1)2x2-3x-2>0;

(2) -3x2+6x>2;

(3)4x2-4x+1>0;

(4)-x2+2x-3>0.

注:跟学生共同详细分析(1),强调解题规范性,其余(2)(3)(4)由学生完成,并小组讨论。

解:(1)方程2x2-3x-2=0的两根为x1=- 或 x2=2,(画草图,结合图象)

所以原不等式的解集是{x| x2 }

注:问题要顺利求解,应先考虑对应方程

的根的情况,然后画出草图,结合不等式写出解集。

(以下学生试着解决,并回答)

(2)分析一:结合开口向下的抛物线求解。

分析二:引导学生能否转化为熟知类型,与(1)中二次项系数作比较,只要不等式两边同乘以-1,并注意不等式要改变方向。

解:原不等式可变为 3x2-6x+2

方程3x2-6x+2=0的两根为 x1=1- , x2=1+

原不等式解集为: {x | 1-

(3)方程 4x2-4x+1=0有两等根 x1=x2=

所以原不等式的解集是{x |x }

变式训练:改成4x2-4x+1 0,请学生回答(使学生知道不等式的解也可能是一个值)。

(4)将原不等式变形为:x2-2x+3

方程x2-2x+3=0无实根

原不等式的解集是

变式训练: -x2+2x-3

[师]上述几例都有各自的特点,反映在哪两方面呢?注:引导学生总结:一是二次项系数,二是判别式 ,一般要先将二次项系数转化为正数。

一元二次不等式课件(篇6)

1.复习一元一次方程、一元一次不等式与一次函数的关系

[师]前面我们已经学习了绝对值不等式的解法,今天开始研究一元二次不等式的解法。(板书课题)记得在初中我们已学习了一元一次不等式的解法,还记得是用什么方法解的吗?

学生可能回答是代数方法,也可能说是利用直线图象。

[师]初中学习了一次函数的图象,使得我们对一元一次不等式的解法有了更深入的了解。首先请同学们画出 y=2x-7

[师]请同学们画出图象,并回答问题。

一次函数y=2x-7的图象如下:

填表:

当x 时,y = 0,即 2x-7 0;

当x 时,y

当x 时,y > 0,即 2x-7 0;

注:(1)引导学生由图象得出结论(数形结合)

(2)由学生填空(一边演示y0部分图象)

从上例的特殊情形,你能得出什么结论?

注:教师引导下学生发现其结论,并由学生尝试叙述:一元一次方程ax+b=0的根实质上就是直线y=ax+b与x轴交点的横坐标;一元一次不等式ax+b>0(或ax+b

2.新课导入

[师]我们可以利用一次函数的图象快速准确地求出一元一次不等式的解集,那能否也可以借助二次函数的图象来解一元二次不等式呢?

一元二次不等式课件(篇7)

1.创设情景——引入新课。我们常说“兴趣是最好的老师”,长期以来,学生对学习数学缺乏兴趣,甚至失去信心,一个重要的原因,是老师在教学中不重视学生对学习的情感体验,教学应该充分考虑学生的情感和需要,想方设法让学生在学习中树立信心,感受学习的乐趣。根据教材内容的安排,我以学生熟悉的画一次函数图象、求一次方程和一次不等式的解为背景知识切入,设置一个练习题组,一方面让学生总结复习已有知识,为后面学习二次不等式的解法打下基础,做好铺垫,另一方面,使学生在自己熟悉的问题中首先获得解题成功的快乐体验,然后以20xx年江苏省的一道高考试题为引子,引入本节课的新授内容。对于本题,引导学生,利用上面解练习题组1的方法,画出二次函数图象来解答。二次函数是初中数学的重要内容,本题又给出了函数图象上许多点,相信学生画出图象应该不成问题,只要教师适当点拨,学生不难得到正确答案。以高考试题为背景引入新课,可以提高学生兴趣,抓住学生眼球,吸引学生注意力,还可以让学生实实在在感受到,高考题就在我们的课本中,就在我们平常的练习中。

2.探究交流——发现规律。从特殊到一般是我们发现问题、寻求规律、揭示问题本质最常用的方法之一。我把课本例题1、2编为练习题组(一),交由学生用上面解高考题的方法——图象法去解,学生由于熟知二次函数图象,求解应该不会有太大的问题。在这个过程中,教师要启发引导学生注意对比两题的异同,组织引导学生展开交流讨论,探讨第(2)题能不能先把二次项系数化正以后再构造函数画图求解。然后达成共识,如果二次项系数为负数时,先做等价转化,把二次项系数化为正数再解,课本19页例3、例4作为题组(二),继续让学生用上面的图象法,由学生自己求解,这时我及时提示学生注意这两题与题组(一)中两题的不同(例1、例2对应方程都有两个不等实根,例3对应方程有两相等实根,例4对应方程无实根)。两个题组的练习之后,可以寻求解二次不等式的一般规律。

3.启发引导——形成结论。前面两个题组的四个小题,基本涵盖了一般一元二次不等式解的各种情况,进一步启发引导学生将特殊、具体题目的结论做一般化总结,与学生一起就△>0,△<0,△=0的三种情况,总结二次不等式ax2+bx+c>0或ax2+bx+c<0(a>0)的解的情况应该水到渠成。至此,学生可以感受到,解二次不等式只须①将二次项系数化为正数,②求解二次方程ax2+bx+c=0的.根。③根据①后的二次不等式的符号写出解集即可,必要时也可以结合图象写解集。这样我们就得到了二次不等式的另外一种解法(可称为“三步曲”法)。

4.训练小结——巩固深化。为了巩固和加深二次不等式的两种解法,接下来及时组织学生进行课堂练习,完成课本21页练习1—4题。本环节请不同层次的学生在黑板上书写解题过程,之后师生共同纠正问题,规范解题过程的书写。

5.延伸拓宽——提高能力。课堂教学既要面向全体学生,又应关注学生的个体差异。体现分类推进,分层教学的原则。为此,我又设计了一个提高练习题组,共有三道备选题目,以供程度较好学有余力的学生能够更好的展示自己的解题能力,取得更进一步的提高。

一元二次不等式课件(篇8)

教学目标:

(1)透彻理解、掌握一元二次方程、一元二次不等式与二次函数的内在联系,会解一元二次不等式;

(2)培养学生数学的数形结合思想和转化能力,学会主动探求问题和寻找解决问题的方法。

教学重点:一元二次不等式的解法(图象法)

教学难点:

(1)一元二次方程、一元二次不等式与二次函数的关系;

(2)数形结合思想的渗透

教学方法与教学手段:

尝试探索教学法、归纳概括。

教学过程:

一、复习引入

1.复习一元一次方程、一元一次不等式与一次函数的关系

[师]前面我们已经学习了绝对值不等式的解法,今天开始研究一元二次不等式的解法。(板书课题)记得在初中我们已学习了一元一次不等式的解法,还记得是用什么方法解的'吗?

学生可能回答是代数方法,也可能说是利用直线图象。

[师]初中学习了一次函数的图象,使得我们对一元一次不等式的解法有了更深入的了解。首先请同学们画出 y=2x-7

[师]请同学们画出图象,并回答问题。

一次函数y=2x-7的图象如下:

填表:

当x 时,y = 0,即 2x-7 0;

当x 时,y

当x 时,y > 0,即 2x-7 0;

注:(1)引导学生由图象得出结论(数形结合)

(2)由学生填空(一边演示y0部分图象)

从上例的特殊情形,你能得出什么结论?

注:教师引导下学生发现其结论,并由学生尝试叙述:一元一次方程ax+b=0的根实质上就是直线y=ax+b与x轴交点的横坐标;一元一次不等式ax+b>0(或ax+b

2.新课导入

[师]我们可以利用一次函数的图象快速准确地求出一元一次不等式的解集,那能否也可以借助二次函数的图象来解一元二次不等式呢?

二、讲解新课

1、一元二次不等式解法的探索

[师] 你知道二次函数的草图是怎样画出的吗?(用"特殊点法"而非课本上的"列表描点法")你能回答以下问题吗?二次函数 y=x2-4x+3的图象如下:

填表:方程x2-4x+3=0(即y=0)的解是

不等式x2-4x+3>0(即y>0)的解集是

不等式x2-4x+3

注:学生类比前面的知识,能根据二次函数的图象确定与x轴的交点,确定对应的一元二次方程的根,从而确定一元二次不等式的解集。(边说边画y>0,y

[师]现在如果我变动这条抛物线,请大家观察抛物线与x轴的交点有何变化?

注:引导学生发现一元二次方程的根有三种情况,其对应的二次函数图象与x轴的位置关系也有三种情况,是由 >0, =0,

2、讲解例题

[师]接下来请同学们再来分析几个具体例子

(板书)例:解下列各不等式

(1)2x2-3x-2>0;

(2) -3x2+6x>2;

(3)4x2-4x+1>0;

(4)-x2+2x-3>0.

注:跟学生共同详细分析(1),强调解题规范性,其余(2)(3)(4)由学生完成,并小组讨论。

解:(1)方程2x2-3x-2=0的两根为x1=- 或 x2=2,(画草图,结合图象)

所以原不等式的解集是{x| x2 }

四、课后作业:书P21/习题1.5/1.3.5.6

五、教学设计说明:

1、本节课教学设计力图体现以学生发展为本,遵循学生的认知规律,体现循序渐进的教学原则,通过对原有知识的复习,引导学生类比探索新的知识,激发学生的求知欲望,调动学生的积极性。

2、本节课采用在教师引导下启发学生探索发现,体会解题过程中形结合思想方法,使之获得内心感受。

3、本节课的重点是利用图象解一元二次不等式,让学生明确一元二次方程、一元二次不等式与二次函数之间的联系。在思维训练方面,注重从特殊到一般,从具体到抽象思维的培养。归纳总结可以训练学生的收敛思维,有助于完善学生的思维结构。

4、本节课的例题及课堂练习是课本上的习题,其目的在于落实基础,提高运算能力。

一元二次不等式课件(篇9)

一、教材分析

(一)教材的地位和作用

“一元二次不等式解法”既是初中一元一次不等式解法在知识上的延伸和发展,又是本章集合知识的运用与巩固,也为下一章函数的定义域和值域教学作铺垫,起着链条的作用。同时,这部分内容较好地反映了方程、不等式、函数知识的内在联系和相互转化,蕴含着归纳、转化、数形结合等丰富的数学思想方法,能较好地培养学生的观察能力、概括能力、探究能力及创新意识。

(二)教学内容

本节内容分2课时学习。本课时通过二次函数的图象探索一元二次不等式的解集。通过复习“三个一次”的关系,即一次函数与一元一次方程、一元一次不等式的关系;以旧带新寻找“三个二次”的关系,即二次函数与一元二次方程、一元二次不等式的关系;采用“画、看、说、用”的思维模式,得出一元二次不等式的解集,品味数学中的和谐美,体验成功的乐趣。

二、教学目标分析

根据教学大纲的要求、本节教材的特点和高一学生的认知规律,本节课的教学目标确定为:

知识目标——理解“三个二次”的关系;掌握看图象找解集的方法,熟悉一元二次不等式的解法。

能力目标——通过看图象找解集,培养学生“从形到数”的转化能力,“从具体到抽象”、“从特殊到一般”的归纳概括能力。

情感目标——创设问题情景,激发学生观察、分析、探求的学习激情、强化学生参与意识及主体作用。

三、重难点分析

一元二次不等式是高中数学中最基本的不等式之一,是解决许多数学问题的重要工具。本节课的重点确定为:一元二次不等式的解法。

要把握这个重点。关键在于理解并掌握利用二次函数的图象确定一元二次不等式解集的方法——图象法,其本质就是要能利用数形结合的思想方法认识方程的解,不等式的解集与函数图象上对应点的横坐标的内在联系。由于初中没有专门研究过这类问题,高一学生比较陌生,要真正掌握有一定的难度。因此,本节课的难点确定为:“三个二次”的关系。要突破这个难点,让学生归纳“三个一次”的关系作铺垫。

四、教法与学法分析

(一)学法指导

教学矛盾的主要方面是学生的学。学是中心,会学是目的。因此在教学中要不断指导学生学会学习。本节课主要是教给学生“动手画、动眼看、动脑想、动口说、善提炼、勤钻研”的研讨式学习方法,这样做增加了学生自主参与,合作交流的机会,教给了学生获取知识的途径、思考问题的方法,使学生真正成了教学的主体;只有这样做,才能使学生“学”有新“思”,“思”有新“得”,“练”有新“获”,学生也才会逐步感受到数学的美,会产生一种成功感,从而提高学生学习数学的兴趣;也只有这样做,课堂教学才富有时代特色,才能适应素质教育下培养“创新型”人才的需要。

(二)教法分析

本节课设计的指导思想是:现代认知心理学——建构主义学习理论。

建构主义学习理论认为:应把学习看成是学生主动的建构活动,学生应与一定的知识背景即情景相联系,在实际情景下进行学习,可以使学生利用已有知识与经验同化和索引出当前要学习的新知识,这样获取的知识,不但便于保持,而且易于迁移到陌生的问题情景中。

本节课采用“诱思引探教学法”。把问题作为出发点,指导学生“画、看、说、用”。较好地探求一元二次不等式的解法。

五、课堂设计

本节课的教学设计充分体现以学生发展为本,培养学生的观察、概括和探究能力,遵循学生的认知规律,体现理论联系实际、循序渐进和因材施教的教学原则,通过问题情境的创设,激发兴趣,使学生在问题解决的探索过程中,由学会走向会学,由被动答题走向主动探究。

(一)创设情景,引出“三个一次”的关系

本节课开始,先让学生解一元二次方程x2—x—6=0,如果我把“=”改成“>”则变成一元二次不等式x2—x—6>0让学生解,学生肯定感到很突然。但是“思维往往是从惊奇和疑问开始”,这样直奔主题,目的在于构造悬念,激活学生的思维兴趣。

为此,我设计了以下几个问题:

1、请同学们解以下方程和不等式:

①2x—7=0;②2x—7>0;③2x—7

二元一次方程课件教案(合集12篇)


前辈告诉我们,做事之前提前下功夫是成功的一部分。身为一位人民教师,我们都希望孩子们能学到知识,为了将学生的效率提上来,老师会准备一份教案,教案有助于让同学们很好的吸收课堂上所讲的知识点。你知道如何去写好一份优秀的幼儿园教案呢?小编特别从网络上整理了二元一次方程课件教案(合集12篇),相信会对你有所帮助!

二元一次方程课件教案 篇1

知识要点

1、二元一次方程:含有两个未知数,并且所含未知数的项的次数都是一次的整式方程叫做~

2、二元一次方程的解:适合二元一次方程的一组未知数的值叫做这个二元一次方程的一个解;

3、二元一次方程组:由几个一次方程组成并含有两个未知数的方程组叫做二元一次方程组

4、二元一次方程组的解:适合二元一次方程组里各个方程的一对未知数的值,叫做这个方程组里各个方程的公共解,也叫做这个方程组的解(注意:①书写方程组的解时,必需用“”把各个未知数的值连在一起,即写成的形式;②一元方程的解也叫做方程的根,但是方程组的解只能叫解,不能叫根)

5、解方程组:求出方程组的解或确定方程组没有解的过程叫做解方程组

6、解二元一次方程组的基本方法是代入消元法和加减消元法(简称代入法和加减法)

(1)代入法解题步骤:把方程组里的一个方程变形,用含有一个未知数的代数式表示另一个未知数;把这个代数式代替另一个方程中相应的未知数,得到一个一元一次方程,可先求出一个未知数的值;把求得的这个未知数的值代入第一步所得的式子中,可求得另一个未知数的值,这样就得到了方程的解

(2)加减法解题步骤:把方程组里一个(或两个)方程的两边都乘以适当的数,使两个方程里的某一个未知数的系数的绝对值相等;把所得到的两个方程的两边分别相加(或相减),消去一个未知数,得到含另一个未知数的一元一次方程(以下步骤与代入法相同)

一、例题精讲

分别用代入法和加减法解方程组

解:代入法:由方程②得:③

将方程③代入方程①得:

解得x=2

将x=2代入方程②得:4-3y=1

解得y=1

所以方程组的解为

加减法:

例2.从少先队夏令营到学校,先下山再走平路,一少先队员骑自行车以每小时12公里的速度下山,以每小时9公里的速度通过平路,到学校共用了55分钟,回来时,通过平路速度不变,但以每小时6公里的速度上山,回到营地共花去了1小时10分钟,问夏令营到学校有多少公里?

分析:路程分为两段,平路和坡路,来回路程不变,只是上山和下山的转变导致时间的不同,所以设平路长为x公里,坡路长为y公里,表示时间,利用两个不同的过程列两个方程,组成方程组

解:设平路长为x公里,坡路长为y公里

依题意列方程组得:

解这个方程组得:

经检验,符合题意

x+y=9

答:夏令营到学校有9公里二、课堂小结:

回顾本章内容,总结二元一次方程组的解法和应用。

三、作业布置:

P25A组习题

二元一次方程课件教案 篇2

教学目标:

1.会用加减消元法解二元一次方程组.

2.能根据方程组的特点,适当选用代入消元法和加减消元法解二元一次方程组.

3.了解解二元一次方程组的消元方法,经历从“二元”到“一元”的转化过程,体会解二元一次方程组中化“未知”为“已知”的“转化”的思想方法.

教学重点:

加减消元法的理解与掌握

教学难点:

加减消元法的灵活运用

教学方法:

引导探索法,学生讨论交流

教学过程:

一、情境创设

买3瓶苹果汁和2瓶橙汁共需要23元,买5瓶苹果汁和2瓶橙汁共需33元,每瓶苹果汁和每瓶橙汁售价各是多少?

设苹果汁、橙汁单价为x元,y元。

我们可以列出方程3x+2y=23

5x+2y=33

问:如何解这个方程组?

二、探索活动

活动一:1、上面“情境创设”中的方程,除了用代入消元法解以外,还有其他方法求解吗?

2、这些方法与代入消元法有何异同?

3、这个方程组有何特点?

解法一:3x+2y=23①

5x+2y=33②

由①式得③

把③式代入②式

33

解这个方程得:y=4

把y=4代入③式

所以原方程组的解是x=5

y=4

解法二:3x+2y=23①

5x+2y=33②

由①—②式:

3x+2y-(5x+2y)=23-33

3x-5x=-10

解这个方程得:x=5

把x=5代入①式,

3×5+2y=23

解这个方程得y=4

所以原方程组的解是x=5

y=4

把方程组的两个方程(或先作适当变形)相加或相减,消去其中一个未知数,把解二元一次方程组转化为解一元一次方程,这种解方程组的方法叫做加减消元法,简称加减法.

三、例题教学:

例1.解方程组x+2y=1①

3x-2y=5②

解:①+②得,4x=6

将代入①,得

解这个方程得:

所以原方程组的解是

巩固练习(一):练一练1.(1)

例2.解方程组5x-2y=4①

2x-3y=-5②

解:①×3,得

15x-6y=12③

②×3,得

4x-6y=-10④

③—④,得:

11x=22

解这个方程得x=2

将x=2代入①,得

5×2-2y=4

解这个方程得:y=3

所以原方程组的解是x=2

y=3

巩固练习(二):练一练1.(2)(3)(4)2

四、思维拓展:

解方程组:

五、小结:

1、掌握加减消元法解二元一次方程组

2、灵活选用代入消元法和加减消元法解二元一次方程组

六、作业

习题10.31.(3)(4)2

二元一次方程课件教案 篇3

各位评委、老师:

大家好!

我说课的题目是《二元一次方程组的解法——代入消元法》,内容选自人教版九年义务教育七年级数学下册第八章第二节第一课时。

一、说教材

(一)地位和作用

本节主要内容是在上节已认识二元一次方程(组)和二元一次方程(组)的解等概念的基础上,来学习解方程组的第一种方法——代入消元法。并初步体会解二元一次方程组的基本思想“消元”。二元一次方程组的求解,不但用到了前面学过的一元一次方程的解法,是对过去所学知识的一个回顾和提高,同时,也为后面的利用方程组来解决实际问题打下了基础。初中阶段要掌握的二元一次方程组的解法有代入消元法和加减消元两种,教材都是按先求解后应用的顺序安排,这样安排既可以在前一小节中有针对性的学习解法,又可在后一小节的应用中巩固前面的知识,但教材相对应的练习安排很少,不过这样也给了我们一较大的发挥空间。

(二)课程目标

1、知识与技能目标

(1)会用代入法解二元一次方程组

(2)初步体会解二元一次方程组的基本思想“消元”。

(3)通过对方程组中的未知数特点的观察和分析,明确解二元一次方程组的主要思路是“消元”,从而促成由未知向已知转化,培养学生观察能力和体会化归思想:

(4)通过用代入消元法解二元一次方程组的训练,及选用合理、简捷的方法解方程组,培养学生的运算能力。

2、情感目标:

通过研究探讨解决问题的方法,培养学生会作交流意识与探究精神。

(三)教学重点、难点

重点:用代入消元法解二元一次方程组。

难点:探索如何用代入消元法将“二元”转化为“一元”的过程。

二、说教法

针对本节特点,在教学过程中采用自主、探究、合作交流的教学方法,由教师提出明确问题,学生积极参与讨论探究、合作交流,进行总结,使学生从中获取知识。鉴于本节所学知识的特点,抽象教学、学生生搬硬套的学习方式将难取得理想效果,因此教师在引入课题时要利用好远程教育设施及资源创设情境,让学生去经历由具体问题抽象出方程组的过程。并让学生通过独立观察、合作交流来探讨怎样才能变“二元”为“一元”。然后利用单个二元一次方程的变形及时强化“代入”的本质。

三、说学法

本节学生在独立思考、自主探究中学习并对老师的问题展开讨论与交流。如何用代入消元法将“二元”转化为“一元”学生较难掌握,在提出消元思想后,应对具体的消元解法的过程进行归纳,让学生得到对代入法的基本步骤的概括,通过“把一个方程(必要时先做适当变形)代入另一个方程”实现消元。应注意引导学生认识到为什么要实施这样的步骤。把具体做法与消元结合,使学生明解其目的性。明确这样做的依据是等量代换。七年级的学生已经初步具备合作交流的能力。可以通过探究和合作来实现课程目标;此外,教学中,范例的讲解和随堂练习始终是学以对用的有效方法。随堂练习时应引导学生通过自我反省、小组评价来克服解题时的错误,必要时给与规范矫正。

四、说教学程序

本节课我将“自主、探究、合作、交流”运用到教学中,教学过程可以划分为以下几个环节:

1、引入新知:利用多媒体教学手段,创设情境,通过篮球比赛问题引入教学,情境活泼、自然。

2、探究新知:在篮球比赛问题中,首先可以用一元一次方程来解决实际问题,接着提出问题:能否设出两个未知数,列出两个方程组成方程组呢?(学生独立思考后分组探究讨论)。在学生得出正确的方程组之后提出问题:怎样解这个方程组呢?(学生分组讨论,教师加以适当的引导),各组派代表得出自己的结论,教师适时引导“消元”思想,对消元解法的过程予以归纳。

⑴变形:将其中一个方程的某个未知数用含有另一个未知数的式子表示。

⑵代入:将变形后的方程代入另一个方程中,消去一个未知数,化二元一次方程组为一元一次方程。

⑶求解:求出一元一次方程的解。

⑷回代:将其代入到变形后的方程中,求出另一个未知数的解。

⑸结论:写出方程组的解。

3、运用新知:在得出“代入消元”解二元一次方程组后,应用“代入消元法”解决实际问题,在学生解题过程中着重强调、矫正、理清思路和步骤。然后师生一起“解后思”:在解题时应注意什么?在随堂练习时教师关键是反馈矫正、积极评价。

4、教学小结,知识回顾:让学生畅所欲言谈本节课的得失,感到困惑和疑难的地方、解题的关键和步骤等。教师在学生发言的基础上再进行提炼:①解二元一次方程组的主要思路是“消元”;②解二元一次方程组的一般步骤是:一变形、二代入、三求解。

5、课外作业。为进一步巩固知识,布置适当的、具有代表性的作业。

二元一次方程课件教案 篇4

教学建议

一、重点、难点分析

本节的教学重点是使学生学会用代入法.教学难点在于灵活运用代入法,这要通过一定数量的练习来解决;另一个难点在于用代入法求出一个未知数的值后,不知道应把它代入哪一个方程求另一个未知数的值比较简便.

解二元一次方程组的关键在于消元,即将“二元”转化为“一元”.我们是通过等量代换的方法,消去一个未知数,从而求得原方程组的解.

二、知识结构

三、教法建议

1.关于检验方程组的解的问题.教材指出:“检验时,需将所求得的一对未知数的值分别代入原方程组里的每一个方程中,看看方程的左、右两边是不是相等.”教学时要强调“原方程组”和“每一个”这两点.检验的作用,一是使学生进一步明确代入法是求方程组的解的一种基本方法,通过代入消元的确可以求得方程组的解二是进一步巩固二元一次方程组的解的概念,强调

这一对数值才是原方程组的解,并且它们必须使两个方程左、右两边的值都相等;三是因为我们没有用方程组的同解原理而是用代换(等式的传递)来解方程组的,所以有必要检验求出来的这一对数值是不是原方程组的解;四是为了杜绝变形和计算时发生的错误.检验可以口算或在草稿纸上演算,教科书中没有写出.

2.教学时,应结合具体的例子指出这里解二元一次方程组的关键在于消元,即把“二元”转化为“一元”.我们是通过等量代换的方法,消去一个未知数,从而求得原方程组的解.早一些指出消元思想和把“二元”转化为“一元”的方法,这样,学生就能有较强的目的性.

3.教师讲解例题时要注意由简到繁,由易到难,逐步加深.随着例题由简到繁,由易到难,要特别强调解方程组时应努力使变形后的方程比较简单和代入后化简比较容易.这样不仅可以求解迅速,而且可以减少错误.

一、素质教育目标

(一)知识教学点

1.掌握用代入法解二元一次方程组的步骤.

2.熟练运用代入法解简单的二元一次方程组.

(二)能力训练点

1.培养学生的分析能力,能迅速在所给的二元一次方程组中,选择一个系数较简单的方程进行变形.

2.训练学生的运算技巧,养成检验的习惯.

(三)德育渗透点

消元,化未知为已知的数学思想.

(四)美育渗透点

通过本节课的学习,渗透化归的数学美,以及方程组的解所体现出来的奇异的数学美.

二、学法引导

1.教学方法:引导发现法、练习法,尝试指导法.

2.学生学法:在前面已经学过一元一次方程的解法,求二元一次方程组的解关键是化二元方程为一元方程,故在求解过程当中始终应抓住消元的思想方法.

三、重点、难点、疑点及解决办法

(-)重点

使学生会用代入法解二元一次方程组.

(二)难点

灵活运用代入法的技巧.

(三)疑点

如何“消元”,把“二元”转化为“一元”.

(四)解决办法

一方面复习用一个未知量表示另一个未知量的方法,另一方面学会选择用一个系数较简单的方程进行变形:

四、课时安排

一课时.

五、教具学具准备

电脑或投影仪、自制胶片.

六、师生互动活动设计

1.教师设问怎样用一个未知量表示另一个未知量,并比较哪种表示形式更简单,如 等.

2.通过课本中香蕉、苹果的应用问题,引导学生列出一元一次方程或二元一次方程组,并通过比较、尝试,探索出化二元为一元的解方程组的方法.

3.再通过比较、尝试,探索出选一个系数较简单的方程变形,通过代入法求方程组解的办法更简便,并寻找出求解的规律.

七、教学步骤

(-)明确目标

本节课我们将学习用代入法求二元一次方程组的解.

(二)整体感知

从复习用一个未知量表达另一个未知量的方法,从而导入运用代入法化二元为一元方程的求解过程,即利用代入消元法求二元一次方程组的解的办法.

(三)教学步骤

1.创设情境,复习导入

(1)已知方程 ,先用含 的代数式表示 ,再用含 的代数式表示 .并比较哪一种形式比较简单.

(2)选择题:

二元一次方程组 的解是

A. B. C. D.

第(1)题为用代入法解二元一次方程组打下基础;第(2)题既复习了上节课的重点,又成为导入新课的材料.

通过上节课的学习,我们会检验一对数值是否为某个二元一次方程组的解.那么,已知一个二元一次方程组,应该怎样求出它的解呢?这节课我们就来学习.

这样导入,可以激发学生的求知欲.

2.探索新知,讲授新课

香蕉的售价为5元/千克,苹果的售价为3元/千克,小华共买了香蕉和苹果9千克,付款33元,香蕉和苹果各买了多少千克?

学生活动:分别列出一元一次方程和二元一次方程组,两个学生板演.

设买了香蕉 千克,那么苹果买了 千克,根据题意,得

设买了香蕉 千克,买了苹果 千克,得

上面的一元一次方程我们会解,能否把二元一次方程组转化为一元一次方程呢,由方程①可以得到 ③,把方程②中的 转换成 ,也就是把方程③代入方程②,就可以得到 .这样,我们就把二元一次方程组转化成了一元一次方程,由这个方程就可以求出 了.

解:由①得: ③

把③代入②,得:

把 代入③,得:

解二元一次方程组与解一元一次方程相比较,向学生展示了知识的发生过程,这对于学生知识的形成十分重要.

上面解二元一次方程组的方法,就是代入消元法.你能简单说说用代入法解二元一次方程组的基本思路吗?

学生活动:小组讨论,选代表发言,教师进行指导.纠正后归纳:设法消去一个未知数,把二元一次方程组转化为一元一次方程.

例1 解方程组

(1)观察上面的方程组,应该如何消元?(把①代入②)

(2)把①代入②后可消掉 ,得到关于 的一元一次方程,求出 .

(3)求出 后代入哪个方程中求 比较简单?(①)

学生活动:依次回答问题后,教师板书

解:把①代入②,得

把 代入①,得

如何检验得到的结果是否正确?

学生活动:口答检验.

教师:要把所得结果分别代入原方程组的每一个方程中.

给出例1后提出的三个问题,恰好是学生的思维过程,明确了解题思路;教师板演例1,规范了解二元一次方程组的解题格式;通过检验,可使学生养成严谨认真的学习习惯.

例2 解方程组

要把某个方程化成如例1中方程①的形式后,代入另一个方程中才能消元.方程②中 的系数是1,比较简单.因此,可以先将方程②变形,用含 的代数式表示 ,再代入方程①求解.

学生活动:尝试完成例2.

教师巡视指导,发现并纠正学生的问题,把书写过程规范化.

解:由②,得 ③

把③代入①,得

把 代入③,得

检验后,师生共同讨论:

(1)由②得到③后,再代入②可以吗?(不可以)为什么?(得到的是恒等式,不能求解)

(2)把 代入①或②可以求出 吗?(可以)代入③有什么好处?(运算简便)

学生活动:根据例1、例2的解题过程,尝试总结用代入法解二元一次方程组的一般步骤,讨论后选代表发言.之后,看课本第12页,用几个字概括每个步骤.

教师板书:

(1)变形( )

(2)代入消元( )

(3)解一元一次方程得( )

(4)把 代入 求解

练习:P13 1.(1)(2);P14 2.(1)(2).

3.变式训练,培养能力

①由 可以得到用 表示 .

②在 中,当 时, ;当 时, ,则 ; .

③选择:若 是方程组 的解,则( )

A. B. C. D.

(四)总结、扩展

1.解二元一次方程组的思想:

2.用代入法解二元一次方程组的步骤.

3.用代入法解二元一次方程组的技巧:①变形的技巧②代入的技巧.

通过这节课的学习,我们要熟练运用代入法解二元一次方程组,并能检验结果是否正确.

八、布置作业

(一)必做题:P15 1.(2)(4),2.(1)(2)(3)(4).

(二)选做题:P15 B组1.

二元一次方程课件教案 篇5

教学目标

1.会列二元一次方程组解简单的应用题并能检验结果的合理性。

2.提高分析问题、解决问题的能力。

3.体会数学的应用价值。

教学重点

根据实际问题列二元一次方程组。

教学难点

1.找实际问题中的相等关系。

2.彻底理解题意。

教学过程

一、引入。

本节课我们继续学习用二元一次方程组解决简单实际问题。

二、新课。

例1. 小琴去县城,要经过外祖母家,头一天下午从她家走到个祖母家里,第二天上午,从外外祖母家出发匀速前进,走了2小时、5小时后,离她自己家分别为13千米、25千米。你能算出她的速度吗?还能算出她家与外祖母家相距多远吗?

探究: 1. 你能画线段表示本题的数量关系吗?

2.填空:(用含S、V的代数式表示)

设小琴速度是V千米/时,她家与外祖母家相距S千米,第二天她走2小时趟的路程是______千米。此时她离家距离是______千米;她走5小时走的路程是______千米,此时她离家的距离是________千米20xx年-20xx学年七年级数学下册全册教案(人教版)教案。

3.列方程组。

4.解方程组。

5.检验写出答案。

讨论:本题是否还有其它解法?

三、练习。

1.建立方程模型。

(1)两在相距280千米,一般顺流航行需14小时,逆流航行需20小时,求船在静水中速度,水流的速度

(2)420个零件由甲、乙两人制造。甲先做2天后,乙加入合作再做2天完成,乙先做2天,甲加入合作,还需3天完成。问:甲、乙每天各做多少个零件?

2.P38练习第2题。

3.小组合作编应用题:两个写一方程组,另两人根据方程组编应用题。

四、小结。

本节课你有何收获?

二元一次方程课件教案 篇6

教学目标:

1、会用代入法解二元一次方程组

2、会阐述用代入法解二元一次方程组的基本思路——通过“代入”达到“消元”的目的,从而把解二元一次方程组转化为解一元一次方程。

此外,在用代入法解二元一次方程组的知识发生过程中,让学生从中体会“化未知为已知”的重要的数学思想方法。

引导性材料:

本节课,我们以上节课讨论的求甲、乙骑自行车速度的问题为例,探求二元一次方程组的解法。前面我们根据问题“甲、乙骑自行车从相距60千米的两地相向而行,经过两小时相遇。已知乙的速度是甲的速度的2倍,求甲、乙两人的速度。”设甲的速度为X千米/小时,由题意可得一元一次方程2(X+2X)=60;设甲的速度为X千米/小时,乙的速度为Y千米/小时,由题意可得二元一次方程组 2(X+Y)=60

Y=2X 观察

2(X+2X)=60与 2(X+Y)=60 ①

Y=2X ② 有没有内在联系?有什么内在联系?

(通过较短时间的观察,学生通常都能说出上面的二元一次方程组与一元一次方程的内在联系——把方程①中的“Y”用“2X”去替换就可得到一元一次方程。)

知识产生和发展过程的教学设计

问题1:从上面的二元一次方程组与一元一次方程的内在联系的研究中,我们可以得到什么启发?把方程①中的“Y”用“2X”去替换,就是把方程②代入方程①,于是我们就把一个新问题(解二元一次方程组)转化为熟悉的问题(解一元一次方程)。

解方程组 2(X+Y)=60 ①

Y=2X ②

解:把②代入①得:

2(X+2X)=60,

6X=60,

X=10

把X=10代入②,得

Y=20

因此: X=10

Y=20

问题2:你认为解方程组 2(X+Y)=60 ①

Y=2X ② 的关键是什么?那么解方程组

X=2Y+1

2X—3Y=4 的关键是什么?求出这个方程组的解。

上面两个二元一次方程组求解的基本思路是:通过“代入”,达到消去一个未知数(即消元)的目的,从而把解二元一次方程组转化为解一元一次方程,这种解二元一次方程组的方法叫“代入消元法”,简称“代入法”。

问题3:对于方程组 2X+5Y=-21 ①

X+3Y=8 ② 能否像上述两个二元一次方程组一样,把方程组中的一个方程直接代入另一个方程从而消去一个未知数呢?

(说明:从学生熟悉的列一元一次方程求解两个未知数的问题入手来研究二元一次方程组的解法,有利于学生建立新旧知识的联系和培养良好的学习习惯,使学生逐步学会把一个还不会解决的问题转化为一个已经会解决的问题的思想方法,对后续的解三无一次方程组、一元二次方程、分式方程等,学生就有了求解的策略。)

例题解析

例:用代入法将下列解二元一次方程组转化为解一元一次方程:

(1)X=1-Y ①

3X+2Y=5 ②

将①代入②(消去X)得:

3(1-Y)+2Y=5

(2)5X+2Y-25.2=0 ①

3X-5=Y ②

将②代入①(消去Y)得:

5X+2(3X-5)-25.2=0

(3)2X+Y=5 ①

3X+4Y=2 ②

由①得Y=5-2X,将Y=5-2X代入②消去Y得:

3X+4(5-2X)=2

(4)2S-T=3 ①

3S+2T=8 ②

由①得T=2S-3,将T=2S-3代入②消去T得:

3S+2(2S-3)=8

课内练习:

解下列方程组。

(1)2X+5Y=-21 (2)3X-Y=2

X+3Y=8 3X=11-2Y

小结:

1、用代入法解二元一次方程组的关键是“消元”,把新问题(解二元一次方程组)转化为旧知识(解一元一次方程)来解决。

2、用代入法解二元一次方程组,常常选用系数较简单的方程变形,这用利于正确、简捷的消元。

3、用代入法解二元一次方程组,实质是数学中常用的重要的“换元”,比如在求解例(1)中,把①代入②,就是把方程②中的元“X”用“1-Y”去替换,使方程②中只含有一个未知数Y。

课后作业:

教科书第14页练习题2(1)、(2)题,第15页习题5.2A组2(1)、(2)、(4)题。

二元一次方程课件教案 篇7

【教学目标】

【知识目标】

了解二元一次方程、二元一次方程组及其解等有关概念,并会判断一组数是不是某个二元一次方程组的解。

【能力目标】

通过讨论和练习,进一步培养学生的观察、比较、分析的能力。

【情感目标】

通过对实际问题的分析,使学生进一步体会方程是刻画现实世界的有效数学模型,培养学生良好的数学应用意识。

【重点】

二元一次方程组的含义

【难点】

判断一组数是不是某个二元一次方程组的解,培养学生良好的数学应用意识。

【教学过程】

一、引入、实物投影

1、师:在一望无际呼伦贝尔大草原上,一头老牛和一匹小马驮着包裹吃力地行走着,老牛喘着气吃力地说:“累死我了”,小马说:“你还累,这么大的个,才比我多驮2个”老牛气不过地说:“哼,我从你背上拿来一个,我的包裹就是你的2倍!”,小马天真而不信地说:“真的?!”同学们,你们能否用数学知识帮助小马解决问题呢?

2、请每个学习小组讨论(讨论2分钟,然后发言)

这个问题由于涉及到老牛和小马的驮包裹的两个未知数,我们设老牛驮x个包裹,小马驮y个包裹,老牛的包裹数比小马多2个,由此得方程x-y=2,若老牛从小马背上拿来1个包裹,这时老牛的包裹是小马的2倍,得方程:x+1=2(y-1)

师:同学们能用方程的方法来发现、解决问题这很好,上面所列方程有几个未知数?含未知数的项的次数是多少?(含有两个未知数,并且所含未知数项的次数是1)

师:含有两个未知数,并且含未知数项的次数都是1的方程叫做二元一次方程

注意:这个定义有两个地方要注意①、含有两个未知数,②、含未知数的次数是一次

练习(投影)

下列方程有哪些是二元一次方程

+2y=1xy+x=13x-=5x2-2=3x

xy=12x(y+1)=c2x-y=1x+y=0

二、议一议、

师:上面的方程中x-y=2,x+1=2(y-1)的x含义相同吗?y呢?

师:由于x、y的含义分别相同,因而必同时满足x-y=2和x+1=2(y-1),我们把这两个方程用大括号联立起来,写成

x-y=2

x+1=2(y-1)

像这样含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。

如:2x+3y=35x+3y=8

x-3y=0x+y=8

三、做一做、

1、x=6,y=2适合方程x+y=8吗?x=5,y=3呢?x=4,y=4呢?你还能找到其他x,y值适合x+y=8方程吗?

2、X=5,y=3适合方程5x+3y=34吗?x=2,y=8呢?

你能找到一组值x,y同时适合方程x+y=8和5x+3y=34吗?

x=6,y=2是方程x+y=8的一个解,记作x=6同样,x=5

y=2y=3

也是方程x+y=8的一个解,同时x=5又是方程5x+3y=34的一个解,

y=3

四、随堂练习(P103)

五、小结:

1、含有两未知数,并且含有未知数的项的次数是一次的整式方程叫做二元一次方程。

2、二元一次方程的解是一个互相关联的两个数值,它有无数个解。

3、含有两个未知数的两个二元一次方程组成的一组方程,叫做二元一次方程组,它的解是两个方程的公共解,是一组确定的值。

二元一次方程课件教案 篇8

一、复习引入

1.已知方程x2-ax-3a=0的一个根是6,则求a及另一个根的值.

2.由上题可知一元二次方程的系数与根有着密切的关系.其实我们已学过的求根公式也反映了根与系数的关系,这种关系比较复杂,是否有更简洁的关系?

3.由求根公式可知,一元二次方程ax2+bx+c=0(a≠0)的两根为x1=-b+b2-4ac2a,x2=-b-b2-4ac2a.观察两式右边,分母相同,分子是-b+b2-4ac与-b-b2-4ac.两根之间通过什么计算才能得到更简洁的关系?

二、探索新知

解下列方程,并填写表格:

方程 x1 x2 x1+x2 x1?x2

x2-2x=0

x2+3x-4=0

x2-5x+6=0

观察上面的表格,你能得到什么结论?

(1)关于x的方程x2+px+q=0(p,q为常数,p2-4q≥0)的两根x1,x2与系数p,q之间有什么关系?

(2)关于x的方程ax2+bx+c=0(a≠0)的两根x1,x2与系数a,b,c之间又有何关系呢?你能证明你的猜想吗?

解下列方程,并填写表格:

方程 x1 x2 x1+x2 x1?x2

2x2-7x-4=0

3x2+2x-5=0

5x2-17x+6=0

小结:根与系数关系:

(1)关于x的方程x2+px+q=0(p,q为常数,p2-4q≥0)的两根x1,x2与系数p,q的关系是:x1+x2=-p,x1?x2=q(注意:根与系数关系的前提条件是根的判别式必须大于或等于零.)

(2)形如ax2+bx+c=0(a≠0)的方程,可以先将二次项系数化为1,再利用上面的结论.

即:对于方程 ax2+bx+c=0(a≠0)

∵a≠0,∴x2+bax+ca=0

∴x1+x2=-ba,x1?x2=ca

(可以利用求根公式给出证明)

例1 不解方程,写出下列方程的两根和与两根积:

(1)x2-3x-1=0 (2)2x2+3x-5=0

(3)13x2-2x=0 (4)2x2+6x=3

(5)x2-1=0 (6)x2-2x+1=0

例2 不解方程,检验下列方程的解是否正确?

(1)x2-22x+1=0 (x1=2+1,x2=2-1)

(2)2x2-3x-8=0 (x1=7+734,x2=5-734)

例3 已知一元二次方程的两个根是-1和2,请你写出一个符合条件的方程.(你有几种方法?)

例4 已知方程2x2+kx-9=0的一个根是-3,求另一根及k的值.

变式一:已知方程x2-2kx-9=0的两根互为相反数,求k;

变式二:已知方程2x2-5x+k=0的两根互为倒数,求k.

三、课堂小结

1.根与系数的关系.

2.根与系数关系使用的前提是:(1)是一元二次方程;(2)判别式大于等于零.

四、作业布置

1.不解方程,写出下列方程的两根和与两根积.

(1)x2-5x-3=0 (2)9x+2=x2 (3)6x2-3x+2=0

(4)3x2+x+1=0

2.已知方程x2-3x+m=0的一个根为1,求另一根及m的值.

3.已知方程x2+bx+6=0的一个根为-2,求另一根及b的值

二元一次方程课件教案 篇9

教学目标:

1、使学生会借助二元一次方程组解决简单的实际问题,让学生再次体会二元一次方程组与现实生活的联系和作用2、通过应用题教学使学生进一步使用代数中的方程去反映现实世界中等量关系,体会代数方法的优越性。

重点:能根据题意列二元一次方程组;根据题意找出等量关系;

难点:正确发找出问题中的两个等量关系

教学过程:

一、复习

列方程解应用题的步骤是什么?

审题、设未知数、列方程、解方程、检验并答

新课:

看一看课本99页探究1

问题:

1题中有哪些已知量?哪些未知量?

2题中等量关系有哪些?

3如何解这个应用题?

本题的等量关系是(1)30只母牛和15只小牛一天需用饲料为675kg

(2)(30+12只母牛和(15+5)只小牛一天需用饲料为940

练一练:

1、某所中学现在有学生4200人,计划一年后初中在样生增加8%,高中在校生增加11%,这样全校学生将增加10%,这所学校现在的初中在校生和高中在校生人数各是多少人?

2、有大小两辆货车,两辆大车与3辆小车一次可以支货15。50吨,5辆大车与6辆小车一次可以支货35吨,求3辆大车与5辆小车一次可以运货多少吨?

3、某工厂第一车间比第二车间人数的少30人,如果从第二车间调出10人到第一车间,则第一车间的人数是第二车间的,问这两车间原有多少人?

4、某运输队送一批货物,计划20天完成,实际每天多运送5吨,结果不但提前2天完成任务并多运了10吨,求这批货物有多少吨?原计划每天运输多少吨?

二元一次方程课件教案 篇10

教学目标

1.会列出二元一次方程组解简单应用题,并能检验结果的合理性。

2.知道二元一次方程组是反映现实世界量之间相等关系的一种有效的数学模型20xx年-20xx学年七年级数学下册全册教案(人教版)20xx年-20xx学年七年级数学下册全册教案(人教版)。

3.引导学生关注身边的数学,渗透将来未知转达化为已知的辩证思想。

教学重点

1.列二元一次方程组解简单问题。

2.彻底理解题意

教学难点

找等量关系列二元一次方程组。

教学过程

一、情境引入。

小刚与小玲一起在水果店买水果,小刚买了3千克苹果,2千克梨,共花了18.8元。小玲买了2千克苹果,3千克梨,共花了18.2元。回家路上,他们遇上了好朋友小军,小军问苹果、梨各多少钱1千克?他们不讲,只讲各自买的几千克水果和总共的钱,要小军猜。聪明的同学们,小军能猜出来吗?

二、建立模型。

1.怎样设未知数?

2.找本题等量关系?从哪句话中找到的?

3.列方程组。

4.解方程组。

5.检验写答案。

思考:怎样用一元一次方程求解?

比较用一元一次方程求解,用二元一次方程组求解谁更容易?

三、练习。

1.根据问题建立二元一次方程组。

(1)甲、乙两数和是40差是6,求这两数。

(2)80班共有64名学生,其中男生比女生多8人,求这个班男生人数,女生人数。

(3)已知关于求x、y的方程,

是二元一次方程。求a、b的值。

2.P38练习第1题。

四、小结。

小组讨论:列二元一次方程组解应用题有哪些基本步骤?

五、作业。

P42。习题2.3A组第1题。

后记:

2.3二元一次方程组的应用(2)

二元一次方程课件教案 篇11

各位评委、老师大家好:

我说课的题目是《二元一次方程组的解法----代入消元法》,内容选自人教版九年义务教育七年级数学下册第八章第二节第一课时。

一、说教材

(一)地位和作用

本节主要内容是在上节已认识二元一次方程(组)和二元一次方程(组)的解等概念的基础上,来学习解方程组的第一种方法——代入消元法。并初步体会解二元一次方程组的基本思想“消元”。二元一次方程组的求解,不但用到了前面学过的一元一次方程的解法,是对过去所学知识的一个回顾和提高,同时,也为后面的利用方程组来解决实际问题打下了基础。初中阶段要掌握的二元一次方程组的解法有代入消元法和加减消元两种,教材都是按先求解后应用的顺序安排,这样安排既可以在前一小节中有针对性的学习解法,又可在后一小节的应用中巩固前面的知识,但教材相对应的练习安排很少,不过这样也给了我们一较大的发挥空间。

(二)课程目标

1、知识目标

(1)、了解解二元一次方程组的“消元”思想,体会学习数学中的“化未知为已知”,“化复杂为简单”的化归思想。

(2)、了解代入法的概念,掌握代入法的基本步骤。

(3)、会用代入法求二元一次方程组的解。

2、能力目标

培养学生动手操作、探索、观察、分析、划归获得数学思想的能力;培养学生转化独立获取知识的方法并解决问题的能力。

3、情感目标

(1)、在学生了解二元一次方程组的“消元”思想,从初步理解化“未知”为“已知和化复杂问题为简单问题的划归思想中,享受学习数学的兴趣、提高学习数学的信心。

(三)教学重点、难点

重点:用代入消元法解二元一次方程组。

难点:探索如何用代入消元法将“二元”转化为“一元”的过程。

二、说教法

针对本节特点,在教学过程中采用自主、探究、合作交流的教学方法,由教师提出明确问题,学生积极参与讨论探究、合作交流,进行总结,使学生从中获取知识。鉴于本节所学知识的特点,抽象教学、学生生搬硬套的学习方式将难取得理想效果,因此教师在引入课题时要合理创设问题情境,让学生去经历由具体问题抽象出方程组的过程。并让学生通过独立观察、合作交流来探讨怎样才能变“二元”为“一元”。然后利用单个二元一次方程的变形及时强化“代入”的本质。

三、说学法

本节学生在独立思考、自主探究中学习并对老师的问题展开讨论与交流。如何用代入消元法将“二元”转化为“一元”学生较难掌握,在提出消元思想后,应对具体的消元解法的过程进行归纳,让学生得到对代入法的基本步骤的概括,通过“把一个方程(必要时先做适当变形)代入另一个方程”实现消元。应注意引导学生认识到为什么要实施这样的步骤。把具体做法与消元结合,使学生明解其目的性。明确这样做的依据是等量代换。七年级的学生已经初步具备合作交流的能力。可以通过探究和合作来实现课程目标;此外,教学中,范例的讲解和随堂练习始终是学以对用的有效方法。随堂练习时应引导学生通过自我反省、小组评价来克服解题时的错误,必要时给与规范矫正。

四、说教学程序

本节课我将“自主、探究、合作、交流”运用到教学中,教学过程可以划分为以下几个环节:

1、引入新知:利用多媒体教学手段,创设情境,通过篮球比赛问题引入教学,情境活泼、自然。

2、探究新知:在篮球比赛问题中,首先可以用一元一次方程来解决实际问题,接着提出问题:能否设出两个未知数,列出两个方程组成方程组呢?(学生独立思考后分组探究讨论)。在学生得出正确的方程组之后提出问题:怎样解这个方程组呢?(学生分组讨论,教师加以适当的引导),各组派代表得出自己的结论,教师适时引导“消元”思想,对消元解法的过程予以归纳。

3、运用新知:在得出“代入消元”解二元一次方程组后,应用“代入消元法”解决实际问题,在学生解题过程中着重强调、矫正、理清思路和步骤。然后师生一起“解后思”:在解题时应注意什么?在随堂练习时教师关键是反馈矫正、积极评价。

4、教学小结,知识回顾:让学生畅所欲言谈本节课的得失,感到困惑和疑难的地方、解题的关键和步骤等。教师在学生发言的基础上再进行提炼:解二元一次方程组的主要思路是“消元”;解二元一次方程组的一般步骤是:“一变、二代、三求、四代、五定”。

5、课外作业。为进一步巩固知识,布置适当的、具有代表性的作业。

五、说应用

《数学课程标准》指出:“数学来源于生活”“数学服务于生活”“数学问题要生活化”,“让数学走进生活”已是一种全新的教育理念,它有利于实现“不同人在数学上得到不同的发展。”为此,在数学课堂教学中,教师要善于创设教学情境,为学生创造一个轻松、愉悦的学习氛围,集中学生的注意力,把学生思绪带进特定的学习情境中去,激发他们浓厚的学习兴趣和强烈的求知欲望。同时,教师设计教学活动时,要充分利用现代远程教育资源结合本班的实际和知识水平,精心为学生创设贴进生活的学习情境,让学生有身临其境的感觉,从而激发学生的学习兴趣和求知欲。

总之,在数学教学中合理运用多媒体教学平台,能极大地方便教学,减轻教师的负担,更好地优化课堂结构,促进教学质量的提高。学生的学习方式不再单一,学习兴趣明显提高,能自主地学习,真正成为学习的主体。

二元一次方程课件教案 篇12

一、说教材

首先谈谈我对教材的理解,《二元一次方程组》是人教版初中数学七年级下册第八章第一节的内容,本节课的内容是二元一次方程组的概念以及二元一次方程组的解。在此之前学习了一元一次方程和解方程的步骤,为本节课打下了良好的基础。学了本节课为后面的解二元一次方程的方法做下铺垫。因此本节课有着承上启下的作用。

二、说学情

接下来谈谈学生的实际情况。新课标指出学生是教学的主体,所以要成为符合新课标要求的教师,深入了解所面对的学生可以说是必修课。本阶段的学生已经具备了一定的分析能力,与类比学习能力。而且在生活中也为本节课积累了很多经验。所以,学生对于二元一次方程组概念理解较为容易,找出方程组的解,相对来说有难度,需要教师多引导。

三、说教学目标

根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:

(一)知识与技能

掌握二元一次方程与二元一次方程组的概念,并了解它们的解,能正确地找出二元一次方程组的解。

(二)过程与方法

通过类比学习、自主探究、合作交流的过程,提升类比学习的能力、培养探究的意识。

(三)情感态度价值观

感受数学与生活的密切联系,培养学习数学的兴趣。

四、说教学重难点

我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点是:二元一次方程与二元一次方程组的概念以及方程与方程组的解。教学难点是:二元一次方程组解的探究。

五、说教法和学法

现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用讲授法、练习法、小组合作等教学方法。

六、说教学过程

下面我将重点谈谈我对教学过程的设计。

(一)新课导入

首先是导入环节,我采用情境导入:展示篮球联赛图片,给出评分标准。并提出问题:这个队伍胜负场数分别是多少?

根据学生回答追问:用列方程解决问题,题中有几个未知数呢?从而引出本节课的课题《二元一次方程组》

这样设计的好处是:利用篮球联赛的图片导入,并讲清楚评分规则,不仅可以吸引学生探索的兴趣,还可以培养学生的数学应用意识。

(二)新知探索

接下来是教学中最重要的新知探索环节,主要通过三个活动展开学习。

活动一:学生尝试列方程解决问题,看看在列方程过程中遇到了什么困难?同桌之间互相交流。

学生分析题意,发现有未知数,可以使用列方程的方法解决问题。当让学生自己动手练习时,他们会发现,胜负的场数都是未知的。

此时教师可以引导学生发现和思考:要求的是两个未知数,能不能根据题意直接设两个未知数,使列方程变得容易呢?学生在这样的提示下会有一定的想法,但对于列出二元一次方程组来说还是比较困难的。

教师板书表格示意图,引导学生通过题意,发现题干中包含的必须同时满足的条件,得到两组关系式并设出未知数完成表格。

活动二:学生观察两个方程特点,与一元一次方程有什么不同?并试着下定义。

在这里学生通过类比学习,能够归纳出二元一次方程的概念:每个方程都含有两个未知数,并且含有未知数的项的次数都是1。了解了二元一次方程后,对于二元一次方程组的概念就可以很好的展开了,对于本题列了两个二元一次方程解决问题,像这样的方程组叫做二元一次方程组。

师生共同总结出二元一次方程与二元一次方程组的定义。

列出了二元一次方程组,要解决篮球联赛的问题,就要求出方程组的解,接下来进行第三个活动。

活动三:完成表格,以二元一次方程组中的一个方程为例。小组合作,找出几组整数解,并观察哪一组解也符合另一个方程。

在这里解二元一次方程组,可以先将问题简单化,先研究一个方程的解,找到几组解后,再看哪一组解也符合第二个方程。也就是两个方程的公共解。教师给出表格,小组在进行合作时,教师应引导学生思考结合题意,两个未知数应取正整数。填完表格后,师生共同总结出二元一次方程解的定义。

教师继续追问,哪一组的值也满足第二个方程。师生共同总结出什么叫做二元一次方程组的解。

得到方程组的解,回归情景得出实际问题的答案。

设计意图:通过三个活动展开本节课,不仅符合新课改的理念:学生是学习的主体,教师是教学活动中的组织者、引导者、合作者,还能通过小组活动、类比学习等活动丰富课堂。

(三)课堂练习

接下来是巩固提高环节。

练习:对下面的问题,列出二元一次方程组,并根据问题的实际意义,找出问题的解。

加工某种产品需经两道工序,第一道工序每人每天可完成900件,第二道工序每人每天可完成1200件。现有7位工人参加这两道工序,应怎样安排人力,才能使每天第一、第二道工序所完成的件数相等?

设计这道题可以让学生感受数学与生活的密切联系,学以致用。教师可以及时掌握学生本节课的学习情况,给予补充纠正。

(四)小结作业

在课程的最后我会提问:今天有什么收获?

引导学生回顾:二元一次方程组的定义与二元一次方程组的解。

本节课的课后作业我设计为:

思考除了用列表找二元一次方程组的解,还有什么方法能找出解,能不能将它变成我们熟悉的一元一次方程求解。

设计意图:本节课学生通过列表观察得到了方程组的解,作业设计为让学生思考解二元一次方程组的方法,并提示能不能把它变成熟悉的一元一次方程求解,为下节课的学习做下铺垫。

基本不等式课件


古人云,工欲善其事,必先利其器。在每学期开学之前,幼儿园的老师们都要为自己之后的教学做准备。为了防止学生抓不住重点,教案就显得非常重要,有了教案上课才能够为同学讲更多的,更全面的知识。所以你在写幼儿园教案时要注意些什么呢?以下内容是小编特地整理的“基本不等式课件”,在此提醒你收藏本页,以方便阅读!

基本不等式课件 篇1

【学习目标】

1.知识与技能:学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等;

2.过程与方法:通过实例探究抽象基本不等式;

3.情态与价值:通过本节的学习,体会数学来源于生活,提高学习数学的兴趣

【能力培养】

培养学生严谨、规范的学习能力,分析问题、解决问题的能力。

【教学重点】

应用数形结合的思想理解不等式,并从不同角度探索不等式 的证明过程;及其在求最值时初步应用

【教学难点】

基本不等式 等号成立条件

【教学过程】

一、课题导入

基本不等式 的几何背景:如图是在北京召开的第24界国际数学家大会的会标,教师引导学生从面积的关系去找不等关系。

二、讲授新课

1.问题探究——探究图形中的不等关系。

将图中的“风车”抽象成如图,在正方形abcd中右个全等的直角三角形。设直角三角形的两条直角边长为a,b那么正方形的边长为 。这样,4个直角三角形的面积的和是2ab,正方形的面积为 。由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式: 。

当直角三角形变为等腰直角三角形,即a=b时,正方形efgh缩为一个点,这时有 。

2.总结结论:一般的,如果

(结论的得出尽量发挥学生自主能动性,让学生总结,教师适时点拨引导)

3.思考证明:(让学生尝试给出它的证明)

4.特别的,如果a>0,b>0,我们用 分别代替a、b ,可得,

通常我们把上式写作:

①从不等式的性质推导基本不等式

用分析法证明:(略)

②理解基本不等式 的几何意义

探究:对课本第98页的“探究”( 几何证明)

注:在数学中,我们称 为a、b的算术平均数,称 为a、b的几何平均数。本节定理还可叙述为:两个正数的算术平均数不小于它们的几何平均数。

5、例:当时,取什么值,的值最小?最小值是多少?

6、课时小结

本节课,我们学习了重要不等式a2+b2≥2ab;两正数a、b的算术平均数( ),几何平均数( )及它们的关系( ≥ )。它们成立的条件不同,前者只要求a、b都是实数,而后者要求a、b都是正数。它们既是不等式变形的基本工具,又是求函数最值的重要工具(下一节我们将进一步学习它们的应用)。

7、作业:

课本第100页习题[a]组的第1、2题

板书 设 计

课题: 3.4基本不等式

一、两个不等式

二、例题及练习

基本不等式课件 篇2

基本不等式是初中数学中重要的一个知识点。通过学习基本不等式,可以帮助学生更深入地理解不等式的性质,掌握不等式的解法和应用技巧,以及提高数学分析和推理能力。下面就从不等式的定义、基本不等式的证明、基本不等式的应用等方面来详细介绍基本不等式。

一、不等式的定义

不等式是数学中的一种基本概念,用来表示两个数之间的大小关系。比如,如果a>b,则可以表示为a-b>0;如果a≥b,则可以表示为a-b≥0。在不等式中,我们常用符号“>”、“≥”、“

二、基本不等式的证明

基本不等式是指若a、b为正实数,那么(a+b)²/4≥ab。这个不等式在解决很多数学问题时都有非常重要的作用,因此我们需要掌握基本不等式的证明方法。

证明方法1:

(a+b)²/4=(a²+2ab+b²)/4= [(a+b)²-2ab]/4

由于a、b为正实数,所以(a+b)²和2ab一定是正实数。

因此,(a+b)²-2ab≥0,即(a+b)²/4≥ab。

证毕。

证明方法2:

由于a、b为正实数,所以(a-b)²≥0。根据这个不等式,我们可以推导出:

a²+b²≥2ab

(a²+b²)/2≥ab

(a²+2ab+b²)/4≥ab

(a+b)²/4≥ab

证毕。

证明方法3:

设Δ=a²-2ab+b²=(a-b)²≥0

那么,a²-2ab+b²≥0,即a²+b²≥2ab

(a²+b²)/2≥ab,即(a+b)²/4≥ab

证毕。

通过上述三种证明方法,我们可以看到,基本不等式的证明方法可以有多种,但本质上是一样的。

三、基本不等式的应用

1.求解最优解

在某些问题中,需要求解若干变量的最大值或最小值,例如某个产品的利润最大化问题、最短路径问题等,这时我们可以将问题转化为一个不等式问题,然后运用基本不等式来简化求解过程。

2.推导其他不等式

基本不等式可以作为其他不等式的推导依据。例如,在求证某个不等式时,我们可以使用基本不等式将其转化为更简单的形式,从而更容易得到证明。

3.证明集合的包含关系

当我们需要证明两个集合的包含关系时,可以通过基本不等式来构造出一些包含于其中一个集合但不包含于另一个集合的数列,这样就容易得出它们之间的包含关系。

总之,基本不等式在数学中有着非常重要的作用,深入了解和掌握基本不等式,不仅可以提高数学思维能力,也可以帮助我们更好地理解和应用各种数学知识。

基本不等式课件 篇3

基本不等式是中学数学中的重要内容,它们可以作用于多种数学领域,包括代数、几何、概率等等。这种不等式是一个基本性质,它提供了一种有效地组织和比较数字和数学表达式的方式。本文将探讨基本不等式,并解释其重要性和应用范围。

基本不等式是指一个简单的数学规律,即对于任何正实数a和b,有如下关系式:

(a + b)² ≥ 4ab

当a和b相等时等式被取得,此时有a = b = (a + b) / 2。

这个不等式看上去非常简单,但它有它的特殊地位和应用。它是所有不等式中最基本也是最重要的,它可以应用到各种自然科学和社会科学领域中。例如,基本不等式可以用于优化无线网络传输速度和缩短计算机作业响应时间,还可以在物理和金融领域中被用来研究变化率和波动性等特征。

作为一个系统的理论工具,基本不等式的价值和应用远不止于此。尤其是它的推广版Sylvester不等式,将基本不等式引向了更复杂多样的领域。Sylvester不等式是基本不等式在矩阵学科中的一个推广。它是一个矩阵不等式,描述了不同形式的矩阵之间的比较规律。从线性代数、概率、统计以及其他领域中的应用可以看出,矩阵不等式在各种学科中都有越来越广泛的应用。

基本不等式是解决一些数学难题的一个强大工具,在应用中经常运用到。因此,学生无论是在数学课堂中还是考试中,都应该掌握这个基本数学概念,并了解它的应用。通过培养学生使用基本不等式和它的推广Sylvester不等式的能力,可以帮助他们更好地掌握高等数学中更复杂的概念和算法。

因此,掌握和理解基本不等式以及它的推广Sylvester不等式对数学学习者来说非常重要。通过对基本不等式的学习和掌握,可以帮助学生完成更复杂的数学问题,进一步培养他们在数学领域的创造性和解决问题的能力。

基本不等式课件 篇4

基本不等式是初中数学中的一个重要内容,也被称为柯西-施瓦茨不等式。它的意义不仅限于初中数学,在高中数学、大学数学等领域都有广泛的应用。基本不等式是数学中非常基础的概念,我们可以通过以下的主题范文来深入了解。

主题一:基本不等式的概念及其应用

基本不等式是初中数学中的基础概念,它是数学不等式中的重要内容。它起源于柯西-施瓦茨不等式,可以用于证明不等式以及优化问题。基本不等式的本质是数学中的向量内积,具有非常广泛的应用,比如在概率论、统计学、矩阵论、函数论、微积分等方面都有应用。

主题二:基本不等式的证明方法

基本不等式的证明方法主要有两种。一种是基于二次函数的方法,另一种是基于向量内积的方法。无论采用哪种方法,都需要通过简单的代数变化、平方等方法,将式子变形成为已知的不等式形式。利用这种方法,我们就可以推出基本不等式,从而应用到不等式证明等问题中。

主题三:基本不等式在函数极值问题中的应用

基本不等式在函数极值问题中也有广泛的应用。函数的极值可以通过求导数和函数值来求解,而基本不等式可以在求解函数极值过程中起到优化作用。通过基本不等式,可以很好地规避一些数学中的陷阱,从而获得更精确的结果。因此,基本不等式在函数极值问题中的应用是非常重要的。

主题四:基本不等式在概率论和统计学中的应用

基本不等式在概率论和统计学中也有广泛的应用。概率论中的卡方分布、t分布等都是基于基本不等式的优化结果。在统计学的研究中,基本不等式可以用于特征值的计算、回归分析等方面。因此,基本不等式在概率论和统计学中的应用也是非常重要的。

主题五:用基本不等式解决数学中的“热点”问题

基本不等式是数学中的热点问题之一,因为它在解决很多复杂的数学问题中都起到了重要作用。比如,在组合数学中,基本不等式用于计算多重组合数。在三角函数中,基本不等式用于计算三角函数的幂的和。在数值分析中,基本不等式用于优化函数逼近等方面。因此,我们可以用基本不等式解决数学中的一些“热点”问题,从而获得更深入的数学技巧。

总的来说,基本不等式是数学中一个非常重要的内容,它可以用于解决不等式证明、函数极值、概率论和统计学等领域的问题。同时,基本不等式也是数学中的“热点”问题之一,它为我们提供了更深入的数学技巧和思维方式。掌握基本不等式不仅可以提高数学水平,而且可以在其他领域带来更多的收获。

基本不等式课件 篇5

一、基本不等式的简介

基本不等式是初中数学中的一项重要内容,是不等式的基础。它可以帮助我们在学习不等式的过程中更加轻松的理解和掌握其他不等式的相关知识。它的基本形式是:

对于任意实数a1, a2, …, an,有

(a1^2 + a2^2 + … + an^2)×n ≥ (a1 + a2+ … + an)^2

二、基本不等式的证明

基本不等式的证明有多种方法,下面将以几何证明法和数学归纳法为例进行讲解。

几何证明法:

首先,我们根据勾股定理和三角形面积公式有:

a1^2=(a1 cos B1)^2+(a1 sin B1)^2

a2^2=(a2 cos B2)^2+(a2 sin B2)^2

……

an^2=(an cos Bn)^2+(an sin Bn)^2

因为正余弦函数在第一象限内单调递增,所以有:

sinB1

sinB2

……

sinBn

把以上不等式累加起来并乘以n,则有:

n(a1^2+a2^2+…+an^2)>=〖(a1cosB1+a2cosB2+…+an cosBn)〗^2+n(a1^2sin^2 B1+…..+an^2sin^2 Bn)

显然,n(a1^2sin^2B1+….+an^2sin^2Bn)=n(a1sinB1+…+ansinBn)^2

因此,原不等式即证。

数学归纳法:

当n = 2时,有

a^2 + b^2 >= 2ab

(a - b)^2 >= 0

显然成立。

假设n = k - 1时原不等式成立,即

(a1^2 + a2^2 + … + ak-1^2) × (k - 1) >= (a1 + a2 + … + ak-1)^2

当n = k时,原不等式变为:

(a1^2 + a2^2 + … + ak-1^2 + ak^2) × k >= (a1 + a2 + … + ak-1 + ak)^2

因为(a1^2 + a2^2 + … + ak-1^2) × (k - 1) >= (a1 + a2 + … + ak-1)^2

又因为(a1^2 + a2^2 + … + ak^2) × 1 >= ak^2

因此有:

(a1^2 + a2^2 + … + ak-1^2) × (k - 1) + (a1^2 + a2^2 + … + ak^2) × 1 >= (a1 + a2 + … + ak-1)^2 + ak^2

(a1^2 + a2^2 + … + ak^2) × k >= (a1 + a2 + … + ak)^2

因此,当n = k时,原不等式也成立。

综合上述两种证明方法,我们可知,基本不等式是正确的。

三、应用基本不等式需要注意的问题

1. 基本不等式只适用于a1, a2, …, an均为实数的情形,不适用于其中有虚数的情形。

2. 如果不等式两侧都除以n的话,可以得到一个均值不等式:

(a1 + a2 + … + an) / n >= √(a1^2 + a2^2 + … + an^2)

这就是均值不等式的形式。

3. 基本不等式是一个有力的数学工具,它可以用于解决许多数学问题。 但在应用时,我们需要注意题目的条件,判断是否可以应用,以免掉进错误的陷阱。

四、结语

综上所述,基本不等式在初中数学中是一项基础性的内容,它的正确性是数学归纳法和几何证明法所证明的。应用时需要注意题目的条件,判断是否可以应用。相信通过学习和掌握基本不等式,我们可以更加轻松的掌握其他不等式的相关知识。

基本不等式课件 篇6

教学目的

掌握不等式的基本性质,会用不等式的基本性质进行不等式的变形。

教学过程

师:我们已学过等式,不等式,现在我们来看两组式子(教师出示小黑板中的两组式子),请同学们观察,哪些是等式?哪些是不等式?

第一组:1+2=3; a+b=b+a; S =ab; 4+x =7。

第二组:-7 1+4; 2x ≤6, a+2 ≥0; 3≠4。

生:第一组都是等式,第二组都是不等式。

师:那么,什么叫做等式?什么叫做不等式?

生:表示相等关系的式子叫做等式;表示不等式的式子叫做不等式。

师:在数学炽,我们用等号“=”来表示相等关系,用不等式号“〈”、“〉”或“≠”表示不等关系,其中“>”和“<”表示大小关系。表示大小关系的不等式是我们中学教学所要研究的。

前面我们学过了等式,同学们还记得等式的性质吗?

生:等式有这样的性质:等式两边都加上,或都减去,或都乘以,或都除以( 除数不为零)同一个数,所得到的仍是等式。

师:很好!当我们开始研究不等式的时候,自然会联想到,是否有与等式相类似的性质,也就是说,如果在不等式的两边都加上,或都减去,或都乘以,或都除经(除数不为零)同一个数,结果将会如何呢?让我们先做一些试验练习。

练习1 (回答)用小于号“”填空。

(1)7 ___ 4;

(2)- 2____6;

(3)- 3_____ -2;

(4)- 4_____-6

练习2(口答)分别从练习1中四个不等式出发,进行下面的运算。

(1)两边都加上(或都减去)5,结果怎样?不等号的方向改变了吗?

(2)两边都乘以(或都除以)5,结果怎样?不等号的方向改变了吗?

(3)两边都乘以(或都除以)(-5),结果怎样?不等号的方向改变了吗?

生:我们发现:在练习2中,第(1)、(2)题的结果是不等号的方向不变;在第(3)题中,结果是不等号的方向改变了!

师:同学们观察得很认真,大家再进一步探讨一下,在什么情况下不等号的方向就会发生改变呢?

生甲:在原不等式的两边都乘以(或除以)一个负数的情况下,不等号的方向要改变。

师:有没有不同的意见?大家都同意他的看法吗?可能还有同学不放心,让我们再做一些试验。

练习3(口答)分别在下面四个不等式的两边都以乘以(可除以)-2,看看不等号的方向是否改变:

7>4;-2<6;-3<-2;-4>-6。

师:现在我们可以归纳出不等式的基本性质,一般地说,不等式的基本性质有三条:

性质1:不等式的两边都加上(或都减去)同一个数,不等号的方向 。

(让同学回答。)

性质2:不等式的两边都乘以(或都除以)同一个正数,不等号的方向 。(让同学回答。)

性质3:不等式的两边都乘以(或都除以)同一个负数,不等号的方向 。(让同学回答。)

现在请大家翻开课本,一起朗读用黑体字写的三条基本性质。

不等式的这三条基本性质,都可以用数学语言表达出来,先请一位同学说一说第一条基本性质。

生:如果a<b。那么a+c<b+c(或a-c<b-c;如果a>b,那么a+c>b+c(或a-c>b-c)。

师:对a和b有什么要求吗?对c有什么要求?

生:没有什么要求。

师:哪位同学来回答第二、三条性质?

生甲:如果a0, 那么acb,且c>0,那么ac>bc(或

生乙:如果abc(或 );如果a>b,且cb,且c>0,那么ac>bd;(2)如果a>b,那么ac2>bc2;(3)如果ac2>bc2,那么a>b;(4)如果a>b,那么a-b>0;(5)如果ax>b,且a≠0,那么xa;生甲:(1)不对,当c=d≤0时,ac>bd不成立。生乙:(2)也不对,因为c2是一个非负数,当c=0时,ac2>bc2不成立。生丙:(3)对,因为ac2>bc2成立,则c2一定大于零,根据不等式基本性质2,得a>b出。(4)对,根据不等式基本性质,由a>b,两边减去b得a-b>0。(5)不对,当a<0时,根据不等式基本性质3,得。(6)不对,因为当b<0时,根据不等式基本性质1,得a+b<a;而当b=0时,则有a+b=a。师:同学们回答得很好。今天我们学习了不等式的基本性质,我们不仅要理解这三条性质,还要能灵活运用。课外做以下作业:略。教案说明(1) 不等式的基本性质的教学,是分成两个阶段进行的。在初中阶段,对不等式的基本性质,并不作证明,只引导学生用试验的方法,归纳出三条基本性质。通过试验,由特殊到一般,由具体到抽象,这是一种认识事物规律的重要方法。科学上的许多发现,大多离不开试验和观察。大数学家欧拉说过:“数学这门科学,需要观察,也需要试验。”通过教学培养学生掌握由试验发现规律的方法,具有重要的意义。当然通过几个特殊的试验,就得出一般的结论,是不严密的。但对初中学生来说,初次接触不等式,是不能要求那么严密的。(2) 不等式的基本性质的教学,还应采用对比的方法。学生已学过等式和等式的性质,为了便于和加深对不等式基本性质的理解,在教学过程中,应将不等式的性质与等式的性质加以比较:强调等式的两边都加上或减去,都乘以或除以(除数不能为零)同一个数,所得到的仍是等式,这个数可以是正数、负数或零;而在不等式的两边都加上或减去,都乘以或除以(除数不能为零)同一个数,当这个数是正数、负数或零时,对不等式的方向,有什么不同的影响。通过这样的对比,不但可以复习已学过的等式有关知识,便于引入新课,而且也有利于掌握不等式的基本性质。对比的方法,也是学习数学的一种重要方法。(3) 在应用不等式的基本性质对不等式进行变形时,学生对不等式两边是具体数,判定大小关系比较容易。因为这实际上是有理数大小的比较。对于不等式两边是含字母的代数式时,根据题给的条件,运用不等式基本性质判别大小关系或不等号方向,就比较困难。因为它比较抽象,特别是在运用不等式的基本性质2和性质3时,学生必须考虑不等式两边同乘(或同除)的这个用字母表示的数的符号是什么,或者还要对这个用字母表示的数,按正数、负数或零三种情况加以讨论。在教学过程中,对于这类题目,采用讨论法是比较好的。因为在讨论时,学生可以充分发表各种见解。对于正确的见解,教师可以让学生说出解题的依据;对于错误的见解,教师可以进行启发引导,发动学生自己找出错误的原因,自己修正见解。这样,有利于发现问题,有的放矢地解决问题,有利于深化对不等式基本性质的认识。

基本不等式课件 篇7

基本不等式教学设计

数学与应用数学 钟林

课题:人教A版必修5第3章4节,基本不等式

【教学目标】

1.通过两个探究实例,引导学生从几何图形中获得两个基本不等式,了解基本不等式的几何背景,体会数形结合的思想。

2.进一步提炼、完善基本不等式,并从代数角度给出不等式的证明,组织学生分析证明方法,加深对基本不等式的认识,提高逻辑推理论证能力。 3.结合课本的探究图形,引导学生进一步探究基本不等式的几何解释,强化数形结合的思想。

4.借助例1尝试用基本不等式解决简单的最值问题,通过例2及其变式引导学生

ab领会运用基本不等式ab的三个限制条件(一正二定三相等)在解决最

2值中的作用,提升解决问题的能力,体会方法与策略。

【重点难点】

重点:应用数形结合的思想理解基本不等式,并从不同角度探索不等式abab的证明过程。

2难点:在几何背景下抽象出基本不等式,并理解基本不等式。

【教学设计】

(一)问题导入

欣赏2002年国际数学家大会会徽,会徽是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。你能发现它是什么图形构成的吗?请根据会徽探索一些常见相等或不等关系。

探究一:在这张“弦图”中能找出一些相等关系和不等关系吗? 在正方形ABCD中有4个全等的直角三角形.设直角三角形两条直角边长为,a,b。

22ab那么正方形的边长为。

于是,4个直角三角形的面积之和S12ab。 正方形的面积S2a2b2。 由图可知S2S1,即a2b22ab。

当直角三角形变为等腰直角三角形,即时,正方形EFGH缩为一个点,这时 a2b22ab

所以a2b22ab。

探究二:如下图所示的梯形中,EF是梯形ABCD的中位线,梯形ABGH相似于梯 形GHDC。

梯形ABCD的上底是a,下底是b。让同学们自主研究GH和EF的大小关系。

ab因为EF是中位线,所以EF,

2由相似,可以得出GHab, 同样因为相似,有

AGABa, GDGHb又因为ab,所以AGGD,即AGAE,

ab。 2显然,当AB逐渐趋近CD的时候,GH也逐渐向EF靠近, 当AB=CD的时候,即ABCD是矩形的时候,GH与EF重合。

ab即,当且仅当ab时,ab。

2ab所以,ab,当且仅当ab时,等号成立。

2所以GHEF,即ab

(二)概念深入

根据上述两个几何背景,初步形成不等式结论:

若a,bR,则a2b22ab。(当且仅当a=b时,等号成立)

ab。(当且仅当a=b时,等号成立) 2请同学们运用代数法证明: 作法一(作差法): 若a,bR,则aba2b22ab(ab)20ab2ab22

当且仅当a=b时,等号成立。且发现这里且a和b可以是全体实数、单项式、多项式。

作法二(分析法):

要证明abab, 2只需证明ab2ab, 即证ab-2ab0, 即为a-b20,该式显然成立,所以,当ab时取等号。

于是有这样的结论:

称ab为a,b的几何平均数;称基本不等式abab为a,b的算术平均数, 2ab又可叙述为: 2两个正数的几何平均数不大于它们的算术平均数

作法三(几何法):

如图,AB是圆O的直径,点C是AB上一点,AC=a,BC=b.过点C作 垂直于AB的弦DE,连接AD,BD。 从而有CDab,ODab。 2ab。 2ab当且仅当C点与圆心O点重合时,即a=b时,ab

2故再次证明:

aba0,b0,ab,当且仅当a=b时,等号成立。

2ab也说明了ab的几何意义:半径不小于半弦。

2由于直角三角形COD中,直角边CD

(三)例题讲解

例1.(1)用篱笆围一个面积为100平方米的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短,最短的篱笆是多少?

(2)一段长为36米的篱笆围成一个矩形菜园,问这个矩形的长、宽为多少时,菜园的面积最大,最大面积是多少?

(通过例1的讲解,总结归纳利用基本不等式求最值问题的特征,实现积与和的转化)

对于x,yR,

(1)若xyp(定值),则当且仅当xy时,xy有最小值2p;

s2(2)若xys(定值),则当且仅当xy时,xy有最大值。

4(鼓励学生自己探索推导,不但可使他们加深基本不等式的理解,还锻炼了他们的思维,培养了勇于探索的精神。)

1例2.求yx(x0)的值域。

x1变式1.若x2,求x的最小值.

x21在运用基本不等式解题的基础上,利用几何画板展示yx(x0)的函数

x图象,使学生再次感受数形结合的数学思想。

ab并通过例2及其变式引导学生领会运用基本不等式ab的三个限制

2条件(一正二定三相等)在解决最值问题中的作用,提升解决问题的能力,体会方法与策略。

(四)归纳小结&课后作业 基本不等式:

若a,bR,则a2b22ab。(当且仅当a=b时,等号成立)

ab。(当且仅当a=b时,等号成立) 2(1)基本不等式的几何解释(数形结合思想); (2)运用基本不等式解决简单最值问题的基本方法。

作业:A组第4题,B组第1题,第2题

若a,bR,则ab

基本不等式课件 篇8

基本不等式课件

基本不等式是初中数学中的重要知识点之一,在学习这个知识点之前,我们先来了解下基本不等式的定义和公式:

定义:若a1,a2,...,an是n个非负实数,则有

(a1+a2+...+an)/n≥(a1×a2×...×an)的n次方根。

公式:(a1+a2+...+an)/n≥(a1×a2×...×an)的n次方根。

这个公式的意义是,当n个数的平均值不小于这n个数的相乘积的n次方根时,我们就称这个不等式为基本不等式。

基本不等式的意义很重要,它是一种实用的数学工具,能够结合实际问题进行运用。在统计学中,我们经常需要对数据进行分析,计算某一组数的平均值。基本不等式告诉我们,对于一组非负实数,它们的平均值一定不小于它们的几何平均数。

下面我们来看一个简单的实例:

假设有两组数,分别为2,3,4和1,2,8,现在我们需要比较这两组数哪一组平均值较大。

我们可用基本不等式进行求解:

对于2,3,4,有(2+3+4)/3=3,(2×3×4)的1/3次方≈2.83,所以有3≥2.83。

对于1,2,8,有(1+2+8)/3=3.67,(1×2×8)的1/3次方≈2.19,所以有3.67≥2.19。

通过比较,我们可以发现,第一组数的平均值是小于第二组数的平均值的。

基本不等式虽然简单,但是在实际应用中有着广泛的应用。例如在金融学、经济学、医学等领域中,我们需要对数据进行分析,计算平均值。基本不等式能够帮助我们进行更加精确的计算,从而提高研究的准确性和可靠性。

在数学竞赛中,基本不等式也是一道基础题,掌握好它的原理和应用方法,就能够轻松应对数学竞赛中的各种不等式题,提升自己的数学能力。

综上所述,基本不等式是一项非常实用的数学工具,它能够帮助我们进行数据分析和计算,提高研究的准确性和可靠性。在数学的应用和研究中,掌握好基本不等式的原理和应用方法非常重要。

基本不等式课件 篇9

课题:3.4.3 基本不等式 的应用(二) 科目:数学 教学对象:高二(290)学生 课时:1课时 提供者:刘和安 单位: 姚安一中 一、教学内容分析 本节课的研究是起到了对学生以前所学知识与方法的复习、应用,进而构建他们更完善的知识网络。数学建模能力的培养与锻炼是数学教学的一项长期而艰苦的任务,这一点,在本节课是真正得到了体现和落实。?

根据本节课的教学内容,应用观察、阅读、归纳、逻辑分析、思考、合作交流、探究,对基本不等式展开实际应用,进行启发、探究式教学并使用投影仪辅助。? 二、教学目标 (一)知识目标:构建基本不等式解决函数的值域、最值问题;

(二)能力目标:让学生探究用基本不等式解决实际问题

(三)情感、态度和价值观目标:

通过具体问题的解决,让学生去感受、体验现实世界和日常生活中存在着大量的不等量关系并需要从理性的角度去思考,鼓励学生用数学观点进行类比、归纳、抽象,使学生感受数 学、走进数学、培养学生严谨的数学学习习惯和良好的思维习惯;? 三、学习者特征分析 在本节课的教学过程中,仍应强调不等式的现实背景和实际应用,真正地把不等式作为刻画现实世界中不等关系的工具。通过实际问题的分析解决,让学生去体会基本不等式所具有的广泛的实用价值,同时,也让学生去感受数学的应用价值,从而激发学生去热爱数学、研究数学。而不是觉得数学只是一门枯燥无味的推理学科。在解决实际问题的过程中,既要求学生能用数学的眼光、观点去看待现实生活中的许多问题,又会涉及与函数、方程、三角等许多数学本身的知识与方法的处理 四、教学策略选择与设计 1.采用探究法,按照观察、阅读、归纳、思考、交流、逻辑分析、抽象应用的方法进行启发式教学;?

2.教师提供问题、素材,并及时点拨,发挥老师的主导作用和学生的主体作用;?

3.设计较典型的具有挑战性的问题,激发学生去积极思考,从而培养他们的数学学习兴趣。?? 五、教学重点及难点 教学重点:1.构建基本不等式解决函数的值域、最值问题。?

2.让学生探究用基本不等式解决实际问题;?

教学难点:1.让学生探究用基本不等式解决实际问题;?

2.基本不等式应用时等号成立条件的考查;?

六、教学过程 教师活动 学生活动 设计意图 (一)导入新课

(二)推进新课

已知 ,若ab为常数k,那么a+b的值如何变化?

若a+b为常数s,那么ab的值如何变化?

老师用投影仪给出本节课的第一组问题

(1)求函数y=2x2+ (x>0)的最小值。?

(2)求函数y=x2+ (x>0)的最小值。?

(3)求函数y=3x2-2x3(0

(4)求函数y=x(1-x2)(0

(5)设a>0,b>0,且a2+ =1,求 的最大值。?

(三)合作探究 我们来考虑运用正数的算术平均数与几何平均数之间的关系来解答这些问题。根据函数最值的含义,我们不难发现若平均值不等式的某一端为常数,则当等号能够取到时,这个常数即为另一端的一个最值。 ?

(四)例题精析?

【例】某工厂要建造一个长方体形无盖贮水池,其容积为4 800 m3,深为 3 m.如果池底每平方米的造价为150元,池壁每平方米的造价为120元,怎样设计水池能使总造价最低?最低总造价是多少?

当且仅当a=b时,a+b就有最小值为2k.?

当且仅当a=b时,ab就有最大值 (或ab有 最大值 ).?

学生完成

留五分钟的时间让学生思考,合作交流

(根据学生完成的典型情况,找五位学生到黑板板演,然后老师根据学生到黑板板演的完成情况再一次作点评)?

学生思考、回答,

不等式与不等式组教案锦集


我们听了一场关于“不等式与不等式组教案”的演讲让我们思考了很多。老师会对课本中的主要教学内容整理到教案课件中,所以老师写教案可不能随便对待。教案是评估学生学习效果的有效依据。经过阅读本页你的认识会更加全面!

不等式与不等式组教案 篇1

第一章

三角形的证明

1.等腰三角形

(一)一、学生知识状况分析

在八年级上册第七章《平行线的证明》,学生已经感受了证明的必要性,并通过平行线有关命题的证明过程,习得了一些基本的证明方法和基本规范,积累了一定的证明经验;在七年级下,学生也已经探索得到了有关三角形全等和等腰三角形的有关命题,这些都为证明本节有关命题做了很好的铺垫。

二、教学任务分析

本节将进一步回顾和证明全等三角形的有关定理,并进一步利用这些定理、公理证明等腰三角形的有关定理,由于具备了上面所说的活动经验和认知基础,为此,本节可以让学生在回顾的基础上,自主地寻求命题的证明,为此,确定本节课的教学目标如下:

1.知识目标:

理解作为证明基础的几条公理的内容,应用这些公理证明等腰三角形的性质定理; 在证明过程中,进一步感受证明过程,掌握推理证明的基本要求,明确条件和结论,能够借助数学符号语言利用综合法证明等腰三角形的性质定理和判定定理;

熟悉证明的基本步骤和书写格式。2.能力目标:

经历“探索-发现-猜想-证明”的过程,让学生进一步体会证明是探索活动的自然延续和必要发展,发展学生的初步的演绎逻辑推理的能力;

鼓励学生在交流探索中发现证明方法的多样性,提高逻辑思维水平; 3.情感与价值目标

启发引导学生体会探索结论和证明结论,及合情推理与演绎的相互依赖和相互补充的辩证关系;

培养学生合作交流的能力,以及独立思考的良好学习习惯.4.教学重、难点

重点:探索证明等腰三角形性质定理的思路与方法,掌握证明的基本要求和方法;

难点:明确推理证明的基本要求如明确条件和结论,能否用数学语言正确表达等。

三、教学过程分析

学生课前准备:一张等腰三角形纸片(供上课折叠实验用); 教师课前准备:制作好的几何画板课件.第一环节:回顾旧知

导出公理

活动内容:提请学生回忆并整理已经学过的8条基本事实中的5条: 1.两直线被第三条直线所截,如果同位角相等,那么这两条直线平行; 2.两条平行线被第三条直线所截,同位角相等; 3.两边夹角对应相等的两个三角形全等(SAS); 4.两角及其夹边对应相等的两个三角形全等(ASA); 5.三边对应相等的两个三角形全等(SSS);

在此基础上回忆全等三角形的另一判别条件:1.(推论)两角及其中一角的对边对应相等的两个三角形全等(AAS),并要求学生利用前面所提到的公理进行证明;2.回忆全等三角形的性质。

活动目的:经过一个暑假,学生难免有所遗忘,因此,在第一课时,回顾有关内容,既是对前面学习内容的一个简单梳理,也为后续有关证明做了知识准备;证明这个推论,可以让学生熟悉证明的基本要求和步骤,为后面的其他证明做好准备。

活动效果与注意事项:由于有了前面的铺垫,学生一般都能得到该推论的证明思路,但由于有了一个暑假的遗忘,可能部分学生的表述未必严谨、规范,教学中注意提请学生分析条件和结论,画出简图,写出已知和求证,并规范地写出证明过程。具体证明如下:

已知:如图,∠A=∠D,∠B=∠E,BC=EF.求证:△ABC≌△DEF.证明:∵∠A=∠D,∠B=∠E(已知),又∠A+∠B+∠C=180°,∠D+∠E+∠F=180°(三角形内角和等于180°),∴∠C=180°-(∠A+∠B),∠F=180°-(∠D+∠E),∴∠C=∠F(等量代换)。又BC=EF(已知),∴△ABC≌△DEF(ASA)。

BCEFAD第二环节:折纸活动 探索新知

活动内容:在提问:“等腰三角形有哪些性质?以前是如何探索这些性质的,你能再次通过折纸活动验证这些性质吗?并根据折纸过程,得到这些性质的证明吗?”的基础上,让学生经历这些定理的活动验证和证明过程。具体操作中,可以让学生先独自折纸观察、探索并写出等腰三角形的性质,然后再以六人为小组进行交流,互相弥补不足。

AAA

BDC→

BCD→

B(C)D活动目的:通过折纸活动过程,获得有关命题的证明思路,并通过进一步的整理,再次感受证明是探索的自然延伸和发展,熟悉证明的基本步骤和书写格式。

活动效果与注意事项:由于有了教师引导下学生的活动,以及具体的折纸操作,学生一般都能得到有关等腰三角形的性质定理,当然,可能部分学生得到的定理并不全面,在学生小组的交流中,通过同伴的互相补充,一般都可以得到所有性质定理。当然,在教学过程中,教师应注意小组的巡视,提醒学生思考多种证明思路,思考不同的辅助线之间的关系从而得到“三线合一”。

第三环节:明晰结论和证明过程

活动内容:在学生小组合作的基础上,教师通过分析、提问,和学生一起完成以上两个个性质定理的证明,注意最好让两至三个学生板演证明,其余学生挑选其一证明.其后,教师通过课件汇总各小组的结果以及具体证明方法,给学生明晰证明过程。

(1)等腰三角形的两个底角相等;

(2)等腰三角形顶角的平分线、底边中线、底边上高三条线重合

活动目的:和学生一起完成性质定理的证明,可以让学生自主经历命题的证明过程;明晰证明过程,意图给学生明晰一定的规范,起到一种引领作用;活动2,则是前面命题的直接推论,力图让学生形成拓广命题的意识,同时也是一个很好的巩固练习。

第四环节:随堂练习

巩固新知

活动内容:学生自主完成P4第2题:如图(图略),在△ABD中, AC⊥BD,垂足为C,AC=BC=CD,(1)求证:△ABD是等腰三角形;(2)求∠BAD的度数。

活动目的:巩固全等三角形判定公理的应用,复习等腰三角形“等边对等角”的用法。

第五环节:课堂小结

活动内容:让学生畅谈收获,包括具体结论以及其中的思想方法等。活动目的:形成及时总结语反思的意识与习惯,提高学生能力。

活动效果与注意事项:教师注意对学生的感想进行适当的引导,并在学生交流的基础上,明晰部分收获供学生共享,如:

1、具体有关性质定理;

2、通过折纸活动对获得的定理给予了严格的证明,为今后解决有关等腰三角形的问题提供了丰富的理论依据.

3、体会了证明一个命题的严格的要求,体会了证明的必要性.

第六环节:布置作业

P4习题

1-6.四、教学反思

本节关注学生已有活动经验的回顾过程,关注了 “探索-发现-猜想-证明”的活动过程,关注了学生自主探究过程,学生学习的主体性发挥较好,应该说取得了较好的教学效果。当然,在具体活动中,如何在学生活动与规范表达之间形成一个恰当的平衡,具体各部分时间比例的分配可能还需要根据班级学生具体状况进行适度的调整。

不等式与不等式组教案 篇2

1.了解不等式及一元一次不等式概念。

2.理解不等式的解、解集,能正确表示不等式的解集。

通过类比等式的对应知识,探索不等式的概念和解,体会不等式与等式的异同,初步掌握类比的思想方法。

1.经历把实际问题抽象为不等式的过程,能够列出不等关系式。

2.初步体会不等式(组)是刻画现实世界中不等关系的一种有效数学模型,培养学生的建模意识。

通过对不等式概念及其解集等有关概念的探索,培养学生的知识迁移能力和建模意识,加强同学之间的使用与交流。

活动一:

感知不等关系,了解不等式的概念。

通过实例,让学生认识到不等关系在生活中的存在,通过问题的解答,让学生了解不等式的概念,体会不等式是解决实际问题的有效工具。

活动二:

通过类比方程,继续探索出不等式的解、解集及其表示方法。

通过解决上个环节的问题,得出不等式的解,再引导学生观察解的特点,探索出解集的两种表示方法(符号表示、数轴表示),并且培养学生用估算方法求解集的技能。

活动三:

继续探索,归纳出一元一次不等式的意义。

针对所学的不等式,让学生归纳出特点,得到一元一次不等式的概念,并对概念进行辨析。

运用本节所学的知识,解决实际问题,使学生经历将实际问题转化为数学问题,再加以解决的过程,实现对所学知识的巩固和深化。

让学生通过自我反思和互相质疑提问,归纳总结本节课的主要内容,交流在概念、解及解集学习中的心得和体会,不断积累数学活动经验,教师应主动参与学生小结中,作好引导工作,布置好作业,并作及时反馈。

小强准备随父母乘车去武当山春游。

⑴在车上看到儿童买票所需的测身高标识线。

①x满足______时,他可免票。

②x满足______时,他该买全票。

⑵已知襄樊与武当山的距离为150千米,他们上午10点钟从襄樊出发,汽车匀速行驶。

①若该车计划中午12点准时到达武当山,车速应满足什么条件?

②若该车实际上在中午12点之前已到达武当山,车速应满足什么条件?

用不等式表示:

⑴a是正数;⑵a是负数;⑶a与5的和小于7;⑷a与2的差大于-1;

⑸a的4倍大于8;

⑹a的一半小于3。

学生回答①这两个由实际生活情境设置的问题,应非常容易.问题②相对①难度加大了,难在题意中的条件不象上面那样直接明了,并且可从距离和时间两个角度来分析、解决问题,而七年级学生恰恰缺乏阅读分析题意、多维度思考解决问题的能力,所以采用小组讨论交流的形式解决问题②

学生讨论角度估计大都集中在距离这一角度,教师可深入小组讨论中,认真听听同学们的思路,应鼓励学生多发表意见,并适当点拨,直到得出两种不等式。

此次活动中,教师应重点关注:讨论要有足够的时间和空间,学生在小组讨论交流时,是否敢于发表自己的想法。

再给出不等式概念:

像前面式子一样用“>”或“

教师可要求学生举出一些表示大小的式子,学生举出的不等式中,可能会有一些不含未知数的,如5>3等。教师此时应总结:不等式中可含有未知数,也可不含未知数。

教师根据学生举例给出表示不等关系的第三种符号“≠”,并强调:像前面式子一样用“≠”表示不等关系的式子也是不等式。

巩固练习是让学生用不等式来刻画题中6个简单的不等关系。学生得出答案并不难,所以该环节让学生独立完成、互相评价,教师可深入到学生的解题过程中,观察指导学生的解题思路,倾听学生的评价。

问题1在课本中起导入新课作用,考虑学生实际情况(分析应用题能力尚欠缺)和题目难度,所以设置问题串,降低难度。这样编排教材我认为更能体现知识呈现的序列性,从易到难,让学生“列不等式”能力实现螺旋上升。

问题3作用仅仅起巩固上面所学的知识,所以采用书中的一组习题,让学生独立完成,进一步培养学生列不等式能力。

采用学生熟悉的生活情境作为导入内容,然后层层推进,步步设问,环环相扣,直至推出不等式的概念及概念理解中应注意的地方。这样实现了:让学生从已有的数学经验出发,从生活中建构数学模型,为后面利用“不等式”这一模型解决生活中实际问题作好铺垫,体现了数学生活化、生活

不等式与不等式组教案 篇3

【学习目标】

1.知识与技能:学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等;

2.过程与方法:通过实例探究抽象基本不等式;

3.情态与价值:通过本节的学习,体会数学来源于生活,提高学习数学的兴趣

【能力培养】

培养学生严谨、规范的学习能力,分析问题、解决问题的能力。

【教学重点】

应用数形结合的思想理解不等式,并从不同角度探索不等式 的证明过程;及其在求最值时初步应用

【教学难点】

基本不等式 等号成立条件

【教学过程】

一、课题导入

基本不等式 的几何背景:如图是在北京召开的第24界国际数学家大会的会标,教师引导学生从面积的关系去找不等关系。

二、讲授新课

1.问题探究——探究图形中的不等关系。

将图中的“风车”抽象成如图,在正方形abcd中右个全等的直角三角形。设直角三角形的两条直角边长为a,b那么正方形的边长为 。这样,4个直角三角形的面积的和是2ab,正方形的面积为 。由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式: 。

当直角三角形变为等腰直角三角形,即a=b时,正方形efgh缩为一个点,这时有 。

2.总结结论:一般的,如果

(结论的得出尽量发挥学生自主能动性,让学生总结,教师适时点拨引导)

3.思考证明:(让学生尝试给出它的证明)

4.特别的,如果a>0,b>0,我们用 分别代替a、b ,可得,

通常我们把上式写作:

①从不等式的性质推导基本不等式

用分析法证明:(略)

②理解基本不等式 的几何意义

探究:对课本第98页的“探究”( 几何证明)

注:在数学中,我们称 为a、b的算术平均数,称 为a、b的几何平均数。本节定理还可叙述为:两个正数的算术平均数不小于它们的几何平均数。

5、例:当时,取什么值,的值最小?最小值是多少?

6、课时小结

本节课,我们学习了重要不等式a2+b2≥2ab;两正数a、b的算术平均数( ),几何平均数( )及它们的关系( ≥ )。它们成立的条件不同,前者只要求a、b都是实数,而后者要求a、b都是正数。它们既是不等式变形的基本工具,又是求函数最值的重要工具(下一节我们将进一步学习它们的应用)。

7、作业:

课本第100页习题[a]组的第1、2题

板书 设 计

课题: 3.4基本不等式

一、两个不等式

二、例题及练习

不等式与不等式组教案 篇4

尊敬的各位老师:

大家好,今天,我说课的内容是一元一次不等式。

对于本节课,我将从教什么、怎么教、为什么这么教来阐述本次说课。

新课标指出:数学课程要面向全体学生,适应学生个性发展的需要,使得人人都能获得良好的数学教育,不同的人在数学上都能得到不同的发展。今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。

一、说教材

教材是连接教师和学生的纽带,在整个教学过程中起着至关重要的作用,所以,先谈谈我对教材的理解。

本节课主要讲述的是一元一次不等式的概念及其解法。

在本节课之前学生已经掌握了一元一次方程的相关知识和不等式的性质,所以,本节课类比一元一次方程的解法,利用不等式的性质解一元一次不等式。另外,本节课为后续学习解一元一次不等式组奠定基础。

不等式在日常生产生活中的应用很广泛,它与数、式、方程、函数甚至几何图形有着密切的联系,它几乎渗透到初中数学的每一部分。所以,本节课在数学领域中起着非常重要的地位。

二、说学情

合理把握学情是上好一堂课的基础,本次课所面对的学生群体具有以下特点。

本学段的学生逐渐掌握抽象概念和复杂的概念系统,能作科学定义,抽象逻辑思维逐步占优势。

本阶段的学生类比推理能力都有了一定的发展,并且在生活中已经遇到过很多关于一元一次方程的具体的事例,所以在生活上面有了很多的经验基础。为本节课的顺利开展做好了充分准备。

三、说教学目标

根据以上对教材的.分析以及对学情的把握,我制定了如下三维目标:

(一)知识与技能

认识一元一次不等式,会解简单的一元一次不等式,类比一元一次方程的步骤,总结归纳解一元一次不等式的基本步骤。

(二)过程与方法

通过对比解一元一次方程的步骤,学生自己总结归纳一元一次不等式步骤的过程,提高归纳能力,并学会类比的学习方法。

(三)情感态度价值观

通过数学建模,提高对数学的学习兴趣。

四、说教学重难点

本着新课程标准,吃透教材,了解学生特点的基础上我确定了以下重难点:

(一)教学重点

掌握一元一次不等式的概念,会解一元一次不等式并能够在数轴上表示出来。

(二)教学难点

不等式与不等式组教案 篇5

教学目标

1、能够根据实际问题中的数量关系,列一元一次不等式(组)解决实际问题.

2、通过例题教学,学生能够学会从数学的角度认识问题,理解问题,提出问题,?? 学会从实际问题中抽象出数学模型.

3、能够认识数学与人类生活的密切联系,培养学生应用所学数学知识解决实际问题的意识.

教学重点?? 能够根据实际问题中的数量关系,列出一元一次不等式(组)解决 实际问题

教学难点?? 审题,根据实际问题列出不等式.

例题?? 甲、乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费。顾客到哪家商场购物花费少??

解:设累计购物x元,根据题意得

(1)当0 < x≤50时,到甲、乙两商场购物花费一样;

(2)当50< x≤100时,到乙商场购物花费少;

(3)当x > 100时,到甲商场的花费为100+0.9(x-100) , 到乙商场的花费为50+0.95(x-50)则

50+0.95(x-50) > 100+0.9(x-100),解之得x >150

50+0.95(x-50) < 100+0.9(x-100),解之得x < 150

50+0.95(x-50) = 100+0.9(x-100),?? 解之得x = 150

答:当0 < x≤50时,到甲、乙两商场购物花费一样;

当50< x≤100时,到乙商场购物花费少;当x>150时,到甲商场购物花费少;当100 < x <150时,到乙商场购物花费少;当x=150时,到甲、乙两商场购物花费一样。

变式练习? 学校为解决部分学生的午餐问题,联系了两家快餐公司,两家公司的报价、质量和服务承诺都相同,且都表示对学生优惠:甲公司表示每份按报价的90%收费,乙公司表示购买100份以上的部分按报价的80%收费。问:选择哪家公司较好?

解:设购买午餐x份,每份报价为“1”,根据题意得

0.9x > 100+0.8(x-100),解之得x >

0.9x < 100+0.8(x-100),解之得x <

0.9x = 100+0.8(x-100),解之得x =

答:当x>时,选乙公司较好;当0 < x <时,选甲公司较好;当x=时,两公司实际收费相同。

作业

1、某商店5月1号举行促销优惠活动,当天到该商店购买商品有两种,一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠。已知小敏5月1日前不是该商店的会员。请帮小敏算一算,采用哪种更合算?

2、某单位计划10月份组织员工到杭州旅游,人数估计在10~25之间。甲乙两旅行社的服务质量相同,且组织到杭州旅游的价格都是每人元。该单位联系时,甲旅行社表示可以给予每位旅客七五折优惠;乙旅行社表示可先免去一带队的旅游费用,其余游客八折优惠。问该单位怎样选择,可使其支付的旅游总费用较少?

不等式与不等式组教案 篇6

一、教学目标:

(一)知识与技能

1.掌握不等式的三条基本性质。

2.运用不等式的基本性质对不等式进行变形。

(二)过程与方法

1.通过等式的性质,探索不等式的性质,初步体会“类比”的数学思想。

2.通过观察、猜想、验证、归纳等数学活动,经历从特殊到一般、由具体到抽象的认知过程,感受数学思考过程的条理性,发展思维能力和语言表达能力。

(三)情感态度与价值观

通过探究不等式基本性质的活动,培养学生合作交流的意识和大胆猜想,乐于探究的良好思维品质。

二、教学重难点

教学重点: 探索不等式的三条基本性质并能正确运用它们将不等式变形。

教学难点: 不等式基本性质3的探索与运用。

三、教学方法:自主探究——合作交流

四、教学过程:

情景引入:1.举例说明什么是不等式?

2.判断下列各式是否成立?并说明理由。

( 1 ) 若x-6=10, 则x=16( )

( 2 ) 若3x=15, 则 x=5 ( )

( 3 ) 若x-6>10 则 x>16( )

( 4 ) 若3x>15 则 x>5 ( )

【设计意图】(1)、(2)小题唤起对旧知识等式的基本性质的回忆,(3)、(4)小题引导学生大胆说出自己的想法。

温故知新

问题1.由等式性质1你能猜想一下不等式具有什么样的性质吗?

等式性质1:等式两边都加上或减去同一个数(或同一个整式),所得结果仍是不等式。

估计学生会猜:不等式两边都加上或减去同一个数(或同一个整式),所得结果仍是不等式。教师引导:“=”没有方向性,所以可以说所得结果仍是等式,而不等号:“>,<,≥,≤”具有方向性,我们应该重点研究它在方向上的变化。

问题2.你能通过实验、猜想,得出进一步的结论吗?

同学通过实例验证得出结论,师生共同总结不等式性质1。

问题3.你能由等式性质2进一步猜想不等式还具有什么性质吗?

等式性质2:等式两边都乘或除以同一个数(除数不能是0),等式依然成立。

估计学生会猜:不等式两边都乘或除以同一个数(除数不能是0),不等号的方向不变。

你能和小伙伴一起来验证你们的猜想吗?

学生在小组内合作交流,发现了在不等式两边都乘或除以同一个数时,不等号的方向会出现两种情况。教师进一步引导学生通过分析、比较探索规律,从而形成共识,归纳概括出不等式性质2和3。

问题4.在不等式两边都乘0会出现什么情况?

问题5.如果a、b、c表示任意数,且a<b,你能用a、b、c把不等式的基本性质表示出来码?

【想一想】不等式的基本性质与等式的基本性质有什么相同之处,有什么不同之处?

学生思考,独立总结异同点。

【设计意图】引导学生把二者进行比较,有助于加深对不等式基本性质的理解,促成知识的“正迁移”。

综合训练:你能运用不等式的基本性质解决问题吗?

1、课本62页例3

教师引导学生观察每个问题是由a>b经过怎样的变形得到的,应该应用不等式的哪条基本性质。由学生思考后口答。

2、你认为在运用不等式的基本性质时哪一条性质最容易出错,应该怎样记住?

3.火眼金睛

①a>1, 则2a___a

②a>3a,则 a ___ 0

【设计意图】通过变式训练,加深学生对新知的理解,培养学生分析、探究问题的能力。

课堂小结:

这节课你有哪些收获?你认为自己的表现如何?教师引导学生回顾、思考、交流。

【设计意图】回顾、总结、提高。学生自觉形成本节的课的知识网络。

思考题

咱们班的盛芳同学准备在五、一期间和他的爸爸、妈妈外出旅游。青年旅行社的标准为:大人全价,小孩半价;方正旅行社的标准为:大人、小孩一律八折。若两家旅行社的基本价一样,你能帮盛芳同学考虑一下选择哪家旅行社更合算吗?

【设计意图】利用所学的数学知识,解决生活中的问题,加强数学与生活的联系,体验数学是描述现实世界的重要手段。

不等式与不等式组教案 篇7

一元一次不等式(第二课时)

教学设计

一、学习目标

会用一元一次不等式解决实际问题。

体会抽象思想,从实际问题到数学问题,找出数量关系,建立一元一次不等式的数学模型。

积累利用一元一次不等式解决实际问题的经验,巩固一元一次不等式的有关知识。

重点:由实际问题中的不等关系列出不等式。难点:列一元一次不等式描述实际问题中的不等关系。

二、学习过程 ①情境导入

老师想要举办以“速算”为主题的计算比赛,但是老师在筹划的过程中遇到了几个问题,请同学们利用不等式帮助老师解决遇到的几个问题。

老师遇到的第一个问题:行走上的时间问题 老师遇到的第二个问题:商场购买商品问题 老师遇到的第三个问题:比赛分数计算问题

②想一想(由学生在练习纸上进行默写,组间串换检查)我们学过的那些知识可以用到解决这些实际问题上呢?

1、不等式:用“”表示大小关系的式子,叫做不等式。

“≠”

表示不等关系的式子,叫做不等式。

用“≥”“≤”表示大小关系的式子,叫做不等式。

2、不等式的性质:>b

a±c>b±c

>b(c>0)ac>bc(a/c>b/c)

>b(c

不等式与不等式组教案 篇8

在前两节课的研究当中,学生已掌握了一些简单的不等式及其应用,并能用不等式及不等式组抽象出实际问题中的不等量关系,掌握了不等式的一些简单性质与证明,研究了一元二次不等式及其解法,学习了二元一次不等式(组)与简单的线性规划问题。本节课的研究是前三大节学习的延续和拓展。另外,为基本不等式的应用垫定了坚实的基础,所以说,本节课是起到了承上启下的作用。本节课是通过让学生观察第24届国际数学家大会的会标图案中隐含的相等关系与不等关系而引入的通过分析得出基本不等式,然后从三种角度对基本不等式展开证明及对基本不等式展开一些简单的应用,进而更深一层次地从理性角度建立不等观念。教师应作好点拨,利用几何背景,数形结合做好归纳总结、逻辑分析,并鼓励学生从理性角度去分析探索过程,进而更深层次理解基本不等式,鼓励学生对数学知识和方法获得过程的探索,同时也能激发学生的学习兴趣,根据本节课的教学内容,应用观察、类比、归纳、逻辑分析、思考、合作交流、探究,得出基本不等式,进行启发、探究式教学并使用投影仪辅助。

教学重点

1、创设代数与几何背景,用数形结合的思想理解基本不等式;

2、从不同角度探索基本不等式的证明过程;

3、从基本不等式的证明过程进一步体会不等式证明的常用思路。

教学难点

1、对基本不等式从不同角度的探索证明;

2、通过基本不等式的证明过程体会分析法的证明思路。

教具准备 多媒体及课件

三维目标

一、知识与技能

1、创设用代数与几何两方面背景,用数形结合的思想理解基本不等式;

2、尝试让学生从不同角度探索基本不等式的证明过程;

3、从基本不等式的证明过程进一步体会不等式证明的常用思路,即由条件到结论,或由结论到条件。

二、过程与方法

1、采用探究法,按照联想、思考、合作交流、逻辑分析、抽象应用的方法进行启发式教学;

2、教师提供问题、素材,并及时点拨,发挥老师的主导作用和学生的主体作用;

3、将探索过程设计为较典型的具有挑战性的问题,激发学生去积极思考,从而培养他们的数学学习兴趣。

三、情感态度与价值观

1、通过具体问题的解决,让学生去感受、体验现实世界和日常生活中存在着大量的不等量关系并需要从理性的角度去思考,鼓励学生用数学观点进行归纳、抽象,使学生感受数学、走进数学,培养学生严谨的数学学习习惯和良好的思维习惯;

2、学习过程中,通过对问题的探究思考,广泛参与,培养学生严谨的思维习惯,主动、积极的学习品质,从而提高学习质量;

3、通过对富有挑战性问题的解决,激发学生顽强的探究精神和严肃认真的科学态度,同时去感受数学的应用性,体会数学的奥秘、数学的简洁美、数学推理的严谨美,从而激发学生的学习兴趣。

教学过程

导入新课

探究:上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客,你能在这个图中找出一些相等关系或不等关系吗?

(教师用投影仪给出第24届国际数学家大会的会标,并介绍此会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客。通过直观情景导入有利于吸引学生的注意力,激发学生的学习热情,并增强学生的爱国主义热情)

推进新课

师 同学们能在这个图中找出一些相等关系或不等关系吗?如何找?

(沉静片刻)

生 应该先从此图案中抽象出几何图形。

师 此图案中隐含什么样的几何图形呢?哪位同学能在黑板上画出这个几何图形?

(请两位同学在黑板上画。教师根据两位同学的板演作点评)

(其中四个直角三角形没有画全等,不形象、直观。此时教师用投影片给出隐含的规范的几何图形)

师 同学们观察得很细致,抽象出的几何图形比较准确。这说明,我们只要在现有的基础上进一步刻苦努力,发奋图强,也能作出和数学家赵爽一样的成绩。

(此时,每一位同学看上去都精神饱满,信心百倍,全神贯注地投入到本节课的学习中来)

[过程引导]

师 设直角三角形的两直角边的长分别为a、b,那么,四个直角三角形的面积之和与正方形的面积有什么关系呢?

生 显然正方形的面积大于四个直角三角形的面积之和。

师 一定吗?

(大家齐声:不一定,有可能相等)

师 同学们能否用数学符号去进行严格的推理证明,从而说明我们刚才直觉思维的合理性?

生 每个直角三角形的面积为,四个直角三角形的面积之和为2ab。正方形的边长为,所以正方形的面积为a2+b2,则a2+b2≥2ab。

师 这位同学回答得很好,表达很全面、准确,但请大家思考一下,他对a2+b2≥2ab证明了吗?

生 没有,他仍是由我们刚才的直观所得,只是用字母表达一下而已。

师 回答得很好。

(有的同学感到迷惑不解)

师 这样的叙述不能代替证明。这是同学们在解题时经常会犯的错误。实质上,对文字性语言叙述证明题来说,他只是写出了已知、求证,并未给出证明。

(有的同学窃窃私语,确实是这样,并没有给出证明)

师 请同学们继续思考,该如何证明此不等式,即a2+b2≥2ab。

生 采用作差的方法,由a2+b2-2ab=(a-b)2,∵(a-b)2是一个完全平方数,它是非负数,即(a-b)2≥0,所以可得a2+b2≥2ab。

师 同学们思考一下,这位同学的证明是否正确?

生 正确。

[教师精讲]

师 这位同学的证明思路很好。今后,我们把这种证明不等式的思想方法形象地称之为“比较法”,它和根据实数的基本性质比较两个代数式的大小是否一样。

生 实质一样,只是设问的形式不同而已。一个是比较大小,一个是让我们去证明。

师 这位同学回答得很好,思维很深刻。此处的比较法是用差和0作比较。在我们的数学研究当中,还有另一种“比较法”。

(教师此处的设问是针对学生已有的知识结构而言)

生 作商,用商和“1”比较大小。

师 对。那么我们在遇到这类问题时,何时采用作差,何时采用作商呢?这个问题让同学们课后去思考,在解决问题中自然会遇到。

(此处设置疑问,意在激发学生课后去自主探究问题,把探究的思维空间切实留给学生)

[合作探究]

师 请同学们再仔细观察一下,等号何时取到。

生 当四个直角三角形的直角顶点重合时,即面积相等时取等号。

(学生的思维仍建立在感性思维基础之上,教师应及时点拨)

师 从不等式a2+b2≥2ab的证明过程能否去说明。

生 当且仅当(a-b)2=0,即a=b时,取等号。

师 这位同学回答得很好。请同学们看一下,刚才两位同学分别从几何图形与不等式两个角度分析等号成立的条件是否一致。

(大家齐声)一致。

(此处意在强化学生的直觉思维与理性思维要合并使用。就此问题来讲,意在强化学生数形结合思想方法的应用)

板书:

一般地,对于任意实数a、b,我们有a2+b2≥2ab,当且仅当a=b时,等号成立。

[过程引导]

师 这是一个很重要的不等式。对数学中重要的结论,我们应仔细观察、思考,才能挖掘出它的内涵与外延。只有这样,我们用它来解决问题时才能得心应手,也不会出错。

(同学们的思维再一次高度集中,似乎能从不等式a2+b2≥2ab中得出什么。此时,教师应及时点拨、指引)

师 当a>0,b>0时,请同学们思考一下,是否可以用a、b代替此不等式中的a、b。

生 完全可以。

师 为什么?

生 因为不等式中的a、b∈R。

师 很好,我们来看一下代替后的结果。

板书:

即 (a>0,b>0)。

师 这个不等式就是我们这节课要推导的基本不等式。它很重要,在数学的研究中有很多应用,我们常把叫做正数a、b的算术平均数,把ab叫做正数a、b的几何平均数,即两个正数的算术平均数不小于它们的几何平均数。

(此处意在引起学生的重视,从不同的角度去理解)

师 请同学们尝试一下,能否利用不等式及实数的基本性质来推导出这个不等式呢?

(此时,同学们信心十足,都说能。教师利用投影片展示推导过程的填空形式)

要证:,①

只要证a+b≥2,②

要证②,只要证:a+b-2≥0,③

要证③,只要证:④

显然④是成立的,当且仅当a=b时,④中的等号成立,这样就又一次得到了基本不等式。

(此处以填空的形式,突出体现了分析法证明的关键步骤,意在把思维的时空切实留给学生,让学生在探究的基础上去体会分析法的证明思路,加大了证明基本不等式的探究力度)

[合作探究]

老师用投影仪给出下列问题。

如图,AB是圆的直径,点C是AB上一点,AC=a,BC=b。过点C作垂直于AB的弦DD′,连结AD、BD。你能利用这个图形得出基本不等式的几何解释吗?

(本节课开展到这里,学生从基本不等式的证明过程中已体会到证明不等式的常用方法,对基本不等式也已经很熟悉,这就具备了探究这个问题的知识与情感基础)

[合作探究]

师 同学们能找出图中与a、b有关的线段吗?

生 可证△ACD ∽△BCD,所以可得。

生 由射影定理也可得。

师 这两位同学回答得都很好,那ab与分别又有什么几何意义呢?

生表示半弦长,表示半径长。

师 半径和半弦又有什么关系呢?

生 由半径大于半弦可得。

师 这位同学回答得是否很严密?

生 当且仅当点C与圆心重合,即当a=b时可取等号,所以也可得出基本不等式 (a>0,b>0)。

课堂小结

师 本节课我们研究了哪些问题?有什么收获?

生 我们通过观察分析第24届国际数学家大会的会标得出了不等式a2+b2≥2ab。

生 由a2+b2≥2ab,当a>0,b>0时,以、分别代替a、b,得到了基本不等式 (a>0,b>0)。进而用不等式的性质,由结论到条件,证明了基本不等式。

生 在圆这个几何图形中我们也能得到基本不等式。

(此处,创造让学生进行课堂小结的机会,目的是培养学生语言表达能力,也有利于课外学生归纳、总结等学习方法、能力的提高)

师 大家刚才总结得都很好,本节课我们从实际情景中抽象出基本不等式。并采用数形结合的思想,赋予基本不等式几何直观,让大家进一步领悟到基本不等式成立的条件是a>0,b>0,及当且仅当a=b时等号成立。在对不等式的证明过程中,体会到一些证明不等式常用的思路、方法。以后,同学们要注意数形结合的思想在解题中的灵活运用。

布置作业

活动与探究:已知a、b都是正数,试探索, ,,的大小关系,并证明你的结论。

分析:(方法一)由特殊到一般,用特殊值代入,先得到表达式的大小关系,再由不等式及实数的性质证明。

(方法二)创设几何直观情景。设AC=a,BC=b,用a、b表示线段CE、OE、CD、DF的长度,由CE>OE>CD>DF可得。

板书设计

基本不等式的证明

一、实际情景引入得到重要不等式

a2+b2≥2ab

二、定理

若a>0,b>0

课后作业:

证明过程探索:

不等式与不等式组教案 篇9

各位评委老师,上午好,我选择的课题是必修5第三章第四节《基本不等式》第一课时。关于本课的设计,我将从以下五个方面向各位评委老师汇报。

一、教材分析

◆本节教材的地位和作用

◆教学目标

◆教学重点、难点

1、本节教材的地位和作用

"基本不等式" 是必修5的重点内容,在课本封面上就体现出来了(展示课本和参考书封面)。它是在学完"不等式的性质"、"不等式的解法"及"线性规划"的基础上对不等式的进一步研究。在不等式的证明和求最值过程中有着广泛的应用。求最值又是高考的热点。同时本节知识又渗透了数形结合、化归等重要数学思想,有利于培养学生良好的思维品质。

2、 教学目标

(1)知识目标:探索基本不等式的证明过程;会用基本不等式解决最值问题。

(2)能力目标:培养学生观察、试验、归纳、判断、猜想等思维能力。

(3)情感目标:培养学生严谨求实的科学态度,体会数与形的和谐统一,领略数学的应用价值,激发学生的学习兴趣和勇于探索的精神。

3、教学重点、难点

根据课程标准制定如下的教学重点、难点

重点: 应用数形结合的思想理解不等式,并从不同角度探索基本不等式。

难点:基本不等式的内涵及几何意义的挖掘,用基本不等式求最值。

二、教法说明

本节课借助几何画板,使用多媒体辅助进行直观演示。采用启发式教学法创设问题情景,激发学生开始尝试活动。运用生活中的实际例子,让学生享受解决实际问题的乐趣。 课堂上主要采取对比分析;让学生边议、边评;组织学生学、思、练。通过师生和谐对话,使情感共鸣,让学生的潜能、创造性最大限度发挥,使认知效益最大。让学生爱学、乐学、会学、学会。

三、学法指导

为更好的贯彻课改精神,合理的对学生进行素质教育,在教学中,始终以学生主体,教师为主导。因此我在教学中让学生从不同角度去观察、分析,指导学生解决问题,感受知识的形成过程,培养学生数形结合的意识和能力,让学生学会学习。

四、教学设计

◆运用2002年国际数学家大会会标引入

◆运用分析法证明基本不等式

◆不等式的几何解释

◆基本不等式的应用

1、运用2002年国际数学家大会会标引入

如图,这是在北京召开的第24届国际数学家大会会标。会标根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。(展示风车)

正方形ABCD中,AE⊥BE,BF⊥CF,CG⊥DG,DH⊥AH,设AE=a,BE=b,则正方形的面积为S=__,Rt△ABE,Rt△BCF,Rt△CDG,Rt△ADH是全等三角形,它们的面积之和是S’=_

从图形中易得,s≥s’,即

问题1:它们有相等的情况吗?何时相等?

问题2:当 a,b为任意实数时,上式还成立吗?(学生积极思考,通过几何画板帮助学生理解)

一般地,对于任意实数a、b,我们有

当且仅当(重点强调)a=b时,等号成立(合情推理)

问题3:你能给出它的证明吗?(让学生独立证明)

设计意图

(1)运用2002年国际数学家大会会标引入,能让学生进一步体会中国数学的历史悠久,感受数学与生活的联系。

(2)运用此图标能较容易的观察出面积之间的关系,引入基本不等式很直观。

(3)三个思考题为学生创造情景,逐层深入,强化理解。

2、运用分析法证明基本不等式

如果 a>0,b>0 ,

用 和 分别代替a,b.可以得到

也可写成

(强调基本不等式成立的前提条件"正")(演绎推理)

问题4:你能用不等式的性质直接推导吗?

要证 ①

只要证 ②

要证② ,只要证 ③

要证③ ,只要证 ④

显然, ④是成立的。当且仅当a=b时, 不等式中的等号成立。

(强调基本不等式取等的条件"等")

设计意图

(1)证明过程课本上是以填空形式出现的,学生能够独立完成,这也能进一步培养学生的自学能力,符合课改精神;

(2)证明过程印证了不等式的正确性,并能加深学生对基本不等式的理解;

(3)此种证明方法是"分析法",在选修教材的《推理与证明》一章中会重点讲解,此处有必要让学生初步了解。

3、不等式的几何解释

如图,AB是圆的直径,C是AB上任一点,AC=a,CB=b,过点C作垂直于AB的弦DE,连AD,BD,则CD= ,半径为

问题5: 你能用这个图得出基本不等式的几何解释吗? (学生积极思考,通过几何画板帮助学生理解)

设计意图

几何直观能启迪思路,帮助理解,因此,借助几何直观学习和理解数学,是数学学习中的重要方面。只有做到了直观上的理解,才是真正的理解。

4、基本不等式的应用

例1.证明

(学生自己证明)

设计意图

(1)这道例题很简单,多数学生都会仿照课本上的分析思路重新证明,能够练习"分析法"证明不等式的过程;

(2)学生能够加深对基本不等式的理解,a和b不仅仅是一个字母,而是一个符号,它们可以是a、b,也可以是x、y,也可以是一个多项式;

(3)此例不是课本例题,比课本例题简单,这样,循序渐进, 有利于学生理解不等式的内涵。

例2:(1)把36写成两个正数的积,当两个正数取什么值时,它们的和最小?

(2)把18写成两个正数的和,当两个正数取什么值时,它们的积最大?

(让学生分组合作、探究完成)

设计意图

(1)此题目利用基本不等式求最值,包含正用,逆用,体现了基本不等式的应用价值;

(2)强调利用不等式求最值的关键点:"正""定""等";

(3)有利于培养学生团结合作的精神。

练习 :(1)若a,b同号,则

(2)P113 练习1.2

设计意图

巩固基本不等式,让学生熟悉公式,并学会应用。

小结:(让学生畅所欲言)

设计意图

有利于发挥学生的主观能动性,突出学生的主体地位。

作业: 必做题:P 113 A组3、4

选做题:

设计意图

(1)必做题是让学生巩固所学知识,熟练公式应用,强化学生基础知识、基本技能的形成;

(2)选做题达到分层教学的目的,根据学生的实际情况,对他们进行素质教育。

时间安排:引入约5分钟

证明基本不等式约10分钟

几何意义约10分钟

知识应用约15分钟

小结约5分钟

五、板书设计

分析法证明

几何解释

例题讲解

小结

作业

例2

以上是我对这节课的教学设计,恳请各位评委老师指导,谢谢!

不等式与不等式组教案 篇10

一、创设情境

问题画出函数y=的图象,根据图象,指出:

(1)x取什么值时,函数值y等于零?

(2)x取什么值时,函数值y始终大于零?

二、探究归纳

问一元一次方程=0的解与函数y=的图象有什么关系?

答一元一次方程=0的解就是函数y=的图象上当y=0时的x的值.

问一元一次方程=0的解,不等式>0的解集与函数y=的图象有什么关系?

答不等式>0的解集就是直线y=在x轴上方部分的x的取值范围.

三、实践应用

例1画出函数y=-x-2的图象,根据图象,指出:

(1)x取什么值时,函数值y等于零?

(2)x取什么值时,函数值y始终大于零?

解过(-2,0),(0,-2)作直线,如图.

(1)当x=-2时,y=0;

(2)当x<-2时,y>0.

例2利用图象解不等式(1)2x-5>-x+1,(2)2x-5<-x+1.

解设y1=2x-5,y2=-x+1,

在直角坐标系中画出这两条直线,如下图所示.

两条直线的交点坐标是(2,-1),由图可知:

(1)2x-5>-x+1的解集是y1>y2时x的取值范围,为x>-2;

(2)2x-5<-x+1的解集是y1<y2时x的取值范围,为x<-2.

四、交流反思

运用函数的图象来解释一元一次方程、一元一次不等式的解集,并能通过函数图象来回答一元一次方程、一元一次不等式的解集.

五、检测反馈

1.已知函数y=4x-3.当x取何值时,函数的图象在第四象限?

2.画出函数y=3x-6的图象,根据图象,指出:

(1)x取什么值时,函数值y等于零?

(2)x取什么值时,函数值y大于零?

(3)x取什么值时,函数值y小于零?

3.画出函数y=-0.5x-1的图象,根据图象?

相关推荐

  • 一元二次不等式课件(必备9篇) 经过多次优化我们为您制作了这份精选的“一元二次不等式课件”,本篇文章希望能够为您的工作和生活提供帮助。每个老师需要在上课前弄好自己的教案课件,没有写的老师就需要抓紧完成了。设计教案需要关注课堂互动和学生参与度的提高。...
    2024-07-30 阅读全文
  • 2023一元二次不等式课件 今天笔者为大家带来了一篇关于一元二次不等式课件的精彩文章,欢迎保存本网站,并时刻关注我们的最新动态。每位教师都应该在授课前准备充分的教案课件,只要在课前认真编写好教案,便可以有效地促进学校的不断发展。教案是推进教育教学创新的有力工具。...
    2023-06-02 阅读全文
  • 一元一次不等式课件 每位老师不可或缺的课件是教案课件,因此教案课件可能就需要每天都去写。教案是课程开展的向导。今天小编为大家带来了一篇关于“一元一次不等式课件”的相关文章,如果你希望长期关注我的分享请不要忘记将它收藏起来!...
    2024-04-06 阅读全文
  • 一元一次不等式组课件优选13篇 幼儿教师教育网今天为大家介绍的是一篇有关“一元一次不等式组课件”的文章。对于新入职的老师而言,教案课件还是很重要的,因此教案课件不是随便写写就可以的。只有高质量的教案才能带来好的教学效果。希望本文能够为您提供一些实用建议!...
    2024-06-14 阅读全文
  • 2023一元一次不等式课件(热门五篇) 对于对“一元一次不等式课件”感兴趣的读者来说,本篇幼儿教师教育网编辑精选的文章绝对是必读之选。热情欢迎您光临本网站,希望您在这里度过愉快的时光。根据教学要求,老师在上课前需要准备好教案和课件,教案和课件的内容是老师自己去完善的。学生的反馈可以帮助教师及时评估自己的教学效果。...
    2023-12-06 阅读全文

经过多次优化我们为您制作了这份精选的“一元二次不等式课件”,本篇文章希望能够为您的工作和生活提供帮助。每个老师需要在上课前弄好自己的教案课件,没有写的老师就需要抓紧完成了。设计教案需要关注课堂互动和学生参与度的提高。...

2024-07-30 阅读全文

今天笔者为大家带来了一篇关于一元二次不等式课件的精彩文章,欢迎保存本网站,并时刻关注我们的最新动态。每位教师都应该在授课前准备充分的教案课件,只要在课前认真编写好教案,便可以有效地促进学校的不断发展。教案是推进教育教学创新的有力工具。...

2023-06-02 阅读全文

每位老师不可或缺的课件是教案课件,因此教案课件可能就需要每天都去写。教案是课程开展的向导。今天小编为大家带来了一篇关于“一元一次不等式课件”的相关文章,如果你希望长期关注我的分享请不要忘记将它收藏起来!...

2024-04-06 阅读全文

幼儿教师教育网今天为大家介绍的是一篇有关“一元一次不等式组课件”的文章。对于新入职的老师而言,教案课件还是很重要的,因此教案课件不是随便写写就可以的。只有高质量的教案才能带来好的教学效果。希望本文能够为您提供一些实用建议!...

2024-06-14 阅读全文

对于对“一元一次不等式课件”感兴趣的读者来说,本篇幼儿教师教育网编辑精选的文章绝对是必读之选。热情欢迎您光临本网站,希望您在这里度过愉快的时光。根据教学要求,老师在上课前需要准备好教案和课件,教案和课件的内容是老师自己去完善的。学生的反馈可以帮助教师及时评估自己的教学效果。...

2023-12-06 阅读全文
Baidu
map