幼儿教师教育网,为您提供优质的幼儿相关资讯

一元一次不等式课件

发布时间:2023-12-06 一元一次不等式课件 一元不等式课件 不等式课件

2023一元一次不等式课件(热门五篇)。

对于对“一元一次不等式课件”感兴趣的读者来说,本篇幼儿教师教育网编辑精选的文章绝对是必读之选。热情欢迎您光临本网站,希望您在这里度过愉快的时光。根据教学要求,老师在上课前需要准备好教案和课件,教案和课件的内容是老师自己去完善的。学生的反馈可以帮助教师及时评估自己的教学效果。

一元一次不等式课件 篇1

一、教学目标:

(一)知识与能力目标:(课件第2张)

1.体会解不等式的步骤,体会比较、转化的作用。

2.学生理解、巩固一元一次不等式的解法.

3.用数轴表示解集,加深对数形结合思想的进一步理解和掌握。

4.在解决实际问题中能够体会将文字语言转化成数学语言,学会用数学语言表示实际的数量关系。

(二)过程与方法目标:

1.介绍一元一次不等式的概念。

2.通过对一元一次方程的解法的复习和对不等式性质的利用,导入对解不等式的讨论。

3.学生体会通过综合利用不等式的概念和基本性质解不等式的方法。

4.学生将文字表达转化为数学语言,从而解决实际问题。

5.练习巩固,将本节和上节内容联系起来。

(三)情感、态度与价值目标:(课件第3张)

1.在教学过程()中,学生体会数学中的比较和转化思想。

2.通过类比一元一次方程的解法,从而更好的掌握一元一次不等式

的解法,树立辩证统一思想。

3.通过学生的讨论,学生进一步体会集体的作用,培养其集体合作的精神。

4.通过本节的学习,学生体会不等式解集的奇异的数学美。

二、教学重、难点:

1.掌握一元一次不等式的解法。

2.掌握解一元一次不等式的阶梯步骤,并能准确求出解集。

3.能将文字叙述转化为数学语言,从而完成对应用问题的解决。

三、教学突破:

教材中没有给出解法的一般步骤,所以在教学中要注意让学生经历将所给的不等式转化为简单不等式的过程,并通过学生的讨论交流使学生经历知识的形成和巩固过程。在解不等式的过程中,与上节课联系起来,重视将解集表示在数轴上,从而指导学生体会用数形结合的方法解决问题。在研究中,鼓励学生用多种方法求解,从而锻炼他们活跃的思维。

四、教具:计算机辅助教学.

五、教学流程:

(一)、复习:

教学环节

教师活动

学生活动

设计意图

导入新课

1.给出方程:(x+4)/3=(3x-1)/2,抽学生演算。(注意步骤)

2.学生回忆不等式的性质,并说出解不等式的关键在哪里。

3.让学生举一些不等式的例子。在学生归纳出一元一次不等式的概念后,据情况点评。

4.新课导入:通过上节课的学习,我们已经掌握了解简单不等式的方法。这节课我们来共同探讨解一元一次不等式的方法。

5.学生练习,并说出解一元一次方程的步骤。

6.认真思考,用自己的语言描述不等式的性质,说出解不等式的关键在于将不等式化为x≤a或x≥a的形式。(出示课件第2页)

7.举出不等式的例子,从中找出一元一次不等式的例子,归纳出一元一次不等式的概念。

8.明确本课目标,进入对新课的学习。

9.复习解一元一次方程的解法和步骤。

10.让学生回顾性质,以加强对性质的理解、掌握。

11.运用类比思维

12.自然过度,出示课件第3、4张

(二)、新授:

教学环节

教师活动

学生活动

设计意图

探究一元一次等式的解法

1、学生观察课本第61页例3,教师说明:解不等式就是利用不等式的三条基本性质对不等式进行变形的过程。提醒学生注意步骤。

2.分析学生的解答,提醒学生在解不等式中常见的错误:不等式两边同乘(除)同一个负数不等号方向要改变。

3.激励学生完成对(2)解答,并找学生上讲台演示。

4.强调在数轴上表示解集时的关键(出示课件第8页)

5.出示练习(出示课件第9页)

6.鼓励学生讨论课本第61页的例4。提示学生:首先将简单的文字表达转化成数学语言。(出示课件第10页)

7.指导学生归纳步骤。

8.补充适当的练习,以巩固学生所学。(出示课件第12页)

9.类比解一元一次方程,仔细观察,理解用不等式的性质(3)解不等式的原理,并掌握用数轴表示不等式的解的方法。

10.学生类比解一元一次方程的步骤

与解一元一次不等式的一般步骤,同时完成练习。(出示课件第6页)

11.完成例3(2):2(5x+3)≤x-3(1-2x)的解答。教师提示,组内讨论后,检查自己的解答过程,弥补不足,进一步体会解一元一次不等式的方法。

12.理解、体会在数轴上表示解集的方法和关键。

13.学生组内讨论完成。

14.认真完成对例题的解答,在教师的提示下找到不等量关系,列出不等式:(x+4)/3-(3x-1)/2>1,并求解。

15.组内讨论并归纳后,看教师所出示的课件。(出示课件第11页)

16.认真完成练习。

17.电脑逐步演示,让学生从演示过程中理解不等式的解法。(出示课件第5张)

18.巩固对一般解法的理解、掌握。

19.通过类比归纳,提高学生的自学能力。(出示课件第7页)以订正学生解答。

20.让学生明白不等式的解集是一个范围,而方程的解是一个值。

21.培养学生的扩展能力。

22.类比一元一次方程的解法以加深对一元一次不等式解法的理解。

23.通过动手、动脑使所学知识得到巩固。

24.巩固所学。

(三)、小结与巩固:

教学环节

教师活动

学生活动

设计意图

小结与巩固

1.引导学生对本课知识进行归纳。

2.学生完成后(出示课件第13、14页)。

3.练习与巩固。

1.学生组内讨论小结,组长帮助组员对知识巩固、提升。

2.学生加强理解。

3.完成练习:书63页第4题,第5(2、4)题。

1.培养学生总结、归纳的能力。

2.点拨学生对知识的理解与掌握。

3.巩固本课所学。

一元一次不等式课件 篇2

一元一次不等式组(一)

教学目标

1.使学生知道一元一次不等式组及其解集的含义,会利用数轴求一元一次不等式组的解集;

2.使学生逐步学会用数形结合的观点去分析问题、解决问题. 教学重点和难点

重点:掌握一元一次不等式组解集的含义. 难点:求不等式组中各不等式的解集的公共部分. 课堂教学过程设计

一、从学生原有的认知结构提出问题

1.什么叫不等式?不等式的解?不等式的解集?解不等式?

3.将第2题中的不等号改为等号所得的一元一次方程的解是什么?不等式的解集与方程的解有什么不同?

4.(投影)在数轴上表示下列不等式的解集:

(1)x>2;(2)x<-1;(3)x≥2;(4)x≤-2;(5)1<x<3;(6)-3≤x<0.

5.(投影)将下列各图中数轴上的点的集合用不等式来表示.(学生口答完成)

在学生解答完上述各题的基础上,教师指出,我们知道,物体A的重量x克大于2克,且小于3克,就是说,x的取值要使不等式x>2与x<3同时成立.

而将一元一次不等式x>2与x<3合在一起,就组成了一个一元一次不等式组,记作

本节课,我们就来学习一元一次不等式组及其解法.

二、讲授新课 1.利用数轴的直观性,师生共同得出一元一次不等式组解集的概念 首先,在数轴上表示不等式①,②的解集,如下图.

其次,可向学生提出如下问题:

(1)通过观察,要使不等式①,②同时成立,则x的取值范围是什么?(2)这个取值范围,是不等式①,②的解集的什么? 进一步追问,什么叫一元一次不等式组的解集?

最后,板书一元一次不等式组的解集的定义.

一般地,几个一元一次不等式的解集的公共部分,叫做由它们所组成的一元一次不等式组的解集.

求不等式组的解集的过程,叫解不等式组.

例1(1)在同一数轴上表示x<2,x>-3的解集.(2)在同一数轴上表示x>-4,x>-1的解集.(3)在同一数轴上表示x<2,x<-3的解集.(4)在同一数轴上表示x>2,x<-1的解集.

若上述各题中的解集有公共部分,用不等式表示出来.(此题可由学生板演来完成). 解:

此时,教师指出:由上例可以看出,由不等式x>-3或x<2合在

类似的,上例中

练习

解不等式组:

(本练习,应继续巩固学生利用数轴的直观性解不等式组的能力)2.启发学生总结解一元一次不等式组的方法及步骤 例2 解不等式组:

师生共同分析:我们知道,解不等式组就是求不等式组解集的过程.那么如何求不等式组的解集呢?(让学生想一想,然后请几名学生回答)应首先求出不等式①和②的解集,然后利用数轴找出这两个解集的公共部分,就是不等式组的解集.

解:解不等式①,得x>2,解不等式②,得x>3,在数轴上表示不等式①,②的解集.

所以这个不等式组的解集是x>3.

(首先让两名学生分别解出不等式①,②然后回答不等式组解集.教师板书解答过程,并用彩笔在数轴上把相应的部分描述出来,以使学生感到醒目,加深理解记忆)例3 解不等式组:

解:解不等式①,得x<3,在数轴上表示为

(本题让一名学生板演,其余学生在练习本上自己完成,教师巡视,并及时纠正学生在解题过程中出现的问题)结合上面两个例题,教师应让学生思考并回答,解一元一次不等式组的方法及步骤是什么?

解一元一次不等式组可以分为以下两个步骤:

(1)求出这个不等式组中各个不等式的解集;

(2)利用数轴求出这些不等式的解集的公共部分,即求出这个不等式组的解集.(若各个不等式的解集无公共部分,则此不等式无解)

三、课堂练习1.填表:(投影)

2.解下列不等式组:

四、师生共同小结

首先,让学生回答以下问题: 1.本节课我们学习了哪些内容?

2.什么叫一元一次不等式组的解集?什么叫解不等式组? 3.解一元一次不等式组的步骤是什么?

4.若一元一次不等式组中,不等式的个数多于两个时,解集的求法有无变化?结合学生的回答,教师指出,一元一次不等式组的解集是这个不等式组中各个不等式的解集的公共部分;当不等式个数多于两个时,求解方法没有变化.

五、作业

解不等式组:

课堂教学设计说明

在设计教学过程时,注意到了学生的年龄特点.遵循由浅入深、循序渐进的原则,并注意利用数轴的形象、直观来表示不等式组的解集.

一元一次不等式课件 篇3

学习目标:

1、了解一元一次不等式组的概念,理解一元一次不等式组的解集的意义。

2、会解由两个一元一次不等式组成的一元一次不等式组,能借助数轴正确的表示一元一次不等式组的解集。

3、通过探讨一元一次不等式组的解法以及解集的确定,渗透转化思想,进一步感受数形结合在解决问题中的作用。

4、体验不等式在实际问题中的作用,感受数学的应用价值。

学习重点:

一元一次不等式组的解法

学习难点:

一元一次不等式组解集的确定。

一、学前准备

【回顾】

1.解不等式 ,并把解集在数轴上表示出来。

【预习】

1、 认真阅读教材34-35页内容

2、__________叫做一元一次不等式组。

_________叫做一元一次不等式组的解集。

叫做解不等式组。

4、求下列两个不等式的解集,并在同一条数轴上表示出来

二、探究活动

【例题分析】

例1. (问题1)题中的买5筒钱不够,买4筒钱又多的含义是什么?

例2. (问题2)题中的相等关系是什么?不等关系又是什么?

例3. 解不等式组

【小结】

不等式组解集口诀

同大取大,同小取小,大小小大中间找,大大小小解不了

一元一次不等式组解集四种类型如下表:

不等式组(a)

(1)xb

xb 同大取大

(2)x

x

(3)xax

a

(4)xb

无解 大大小小解不了

【课堂检测】

1、不等式组 的解集是( )

A. B. C. D.无解

2、不等式组 的解集为( )

A.-1

3、不等式组 的解集在数轴上表示正确的是( )

A B C D

4、写出下列不等式组的解集:(教材P35练习1)

三、自我测试

1.填空

(1)不等式组x-1 的解集是___;

(2)不等式组x-2 的解集 ;

(3)不等式组x1 的解集是____;

(4)不等式组x-4 解集是____。

2、解下列不等式组,并在数轴上表示出来

四、应用与拓展

若不等式组 无解,则m的取值范围是 _____.

一元一次不等式课件 篇4

一元一次不等式组(2)

文星中学唐波

一、教学目标

(一)知识与技能目标

1、熟练掌握一元一次不等式组的解法,会用一元一次不等式组解决有关的实际问题。

2、理解一元一次不等式组应用题的一般解题步骤,逐步形成分析问题和解决问题的能力。

(二)过程与方法目标

通过利用列一元一次不等式组解答实际问题,初步学会从数学的角度提出问题、理解问题、并能综合运用所学的知识解决问题,发展应用意识。

(三)情感态度与价值观

通过解决实际问题,体验数学学习的乐趣,初步认识数学与人类生活的密切联系。

二、教学重难点

(一)重点:建立用不等式组解决实际问题的数学模型。

(二)难点:正确分析实际问题中的不等关系,根据具体信息列出不等式组。

三、学法引导

(一)教师教法:直观演示、引导探究相结合。

(二)学生学法:观察发现、交流探究、练习巩固相结合。

四、教具准备:多媒体演示

五、教学过程

(一)、设问激趣,引入新课

猜一猜:我属狗,请同学们根据我的实际情况来猜测我的年龄。(学生大胆猜想,利用不等关系分析得出答案。)

(二)、观察发现,竞赛闯关

1、比一比:填表找规律

(学生抢答,教师补充。)2利用发现的规律解不等式组 ?(学生解答,抽生演板。)你可以得到它的整数解吗?

(抽生回答:因为大于11小于14的整数有12和13,所以整数解为12和13。)3填空:三角形三边长分别为2、7、c,则 c的取值范围是__________。如果c是一个偶

数,则 c=__________。

(学生回答,教师补充更正。)

(三)、欣赏图片,探究新知

1、欣赏“五岳看山”。

2、利用欣赏引出例题(教科书P139例2仿编)

例:3名同学计划在10天内到嵩山拍照500张(每天拍照数量相同),按原来的计划,不能完成任务;如果每人每天比原计划多拍1张,就能提前完成任务,每个同学原计划每天............拍多少张?

生齐读,找出题中的已知条件和未知条件;再默读,找一找表示数量关系的句子。师引导分析,并提出问题:

(1)你是怎样理解“不能完成任务”的数量含义的?你是怎样理解“提前完成任务”的数量含义的?

(2)解决这个问题,你打算怎样设未知数?

(3)在本题中,可以找出几个不等关系,可以列出几个不等式?(学生交流讨论,教师指导。)

?7x?98

?7(x?3)?98

解答完成后,学生自学课本例2。

3、由例解题答过程,类比列二元一次方程组解应用题的步骤,总结列一元一次不等式组的解题步骤:

(1)、分析题意,设未知数; .(2)、利用不等关系,列不等式组; .(3)、解不等式组; .

(4)、检验,根据题意写出答案。.(学生总结,抽生回答,教师补充。)

(四)、闯关练习,巩固新知

1练一练:为纪念“5·12”大地震一周年,“五一”部分同学到青城山拍照留念,如果每人拍8张则多于如果每人拍9张则不够问共有多少个同学参加青城山旅游? ..150张;..180张。

教师引导:抓住重点词语,找到不等关系,列出不等式组。学生独立完成,抽生回答。

比较列二元一次方程组和列一元一次不等式组解应用题的区别:

(学生类比找区别,教师补充。)2练一练(教科书P140练习第2题):一本英语书共98页,张力读了一周(7天)还没读完,而李永不到一周就已读完。李永平均每天比张力多读3页,张力平均每天读多少页(答案取整数)?

学生分析列出不等式组,教师指导。(前面的练习已解出不等式组。)

(五)、畅所欲言,归纳小结 学生畅所欲言,谈收获体会 多媒体展示,本课内容小结:

1、解一元一次不等式组的秘笈:同大取大,同小取小,大小小大中间找,大大小小解不了。

2、具有多种不等关系的问题,可通过不等式组解决。

3、列一元一次不等式组解应用题的步骤是:(1)、分析题意,设未知数;(2)、利用不等关系,列不等式组;(3)、解不等式组;

(4)、检验,根据题意写出答案。

(六)、课后演练,终极挑战

必做题:教材习题第4、5、6题;

选做题:一个两位数,它的十位数字比个位数字大1,而且这个两位数大于30小于42,则这个两位数是多少?

六、板书设计

一元一次不等式组(2)

解:设每个同学原计划每天拍x张,得

① ?3?10x?500

?

?3?10(x?1)?500②

1、分析题意,设未知数;

解得x

3根据题意,x应为整数,所以x=16 答:每个同学原计划每天拍16张。

2??

2、找不等关系,列不等式组; ?

?

3、解不等式组; ?步骤

??

?

4、检验并根据题意写出答案。?

一元一次不等式课件 篇5

一、素质教育目标

(一)知识教学点

1.理解一元一次不等式组解集的概念,会利用数轴较简单的一元一次不等式组。

2.掌握一元一次不等式组解集的几种情况。

(二)能力训练点

通过利用数轴解不等式组,培养学生的观察能力、分析能力、归纳总结能力。

(三)德育渗透点

通过不等式组解集的求法,培养学生的观察与分析能力,渗透辩证唯物主义的观点。

(四)美育渗透点

用数轴求不等式组的解集,渗透用数学图形解题的直观性、简捷性的数学美。

二、学法引导

1.教学方法:引导发现法、观察法、归纳总结法。

2.学生学法:学会利用数轴将两个不等式的解集表示出来,并观察出其公共部分,再小结出不等式组的解集。

三、重点·难点·疑点及解决办法

(一)重点

理解一元一次不等式组解集的概念,会用数轴表示一元一次不等式组解集的几种情况。

(二)难点

正确理解一元一次不等式组解集的含义。

(三)疑点

弄清一元一次不等式解集和不等式组的解集的关系,以及对四种不等式组解集的一般形式的理解。

(四)解决办法

加强对不等式组解集含义的理解,并熟练掌握用数轴表示不等式解集,利用观察法、归纳法即可掌握求不等式组解集的办法。

四、课时安排

一课时.

五、教具学具准备

直尺、铅笔、投影仪或电脑、自制胶片。

六、师生互动活动设计

1.教师设计提问有关一元一次不等式的定义及其解集的概念,并复习用数轴表示一元一次不等式的解集的方法。

2.教示范一元一次不等式组解集的四种常规图形的表示方法,并引导学生理解记忆它们。

3.通过反复的师生共练,从实践中归纳小结出不等式组解集的规律。

七、教学步骤

(一)明确目标

本节课重点学习用数轴表示不等式组解集的方法,并能熟练地加以应用。

(二)整体感知

要正确表示出不等式组的解集的关键在于学会用数轴表示。若有解,必为其公共部分;若无公共部分,则为无解.并要正确地理解一元一次不等式组解集的规律。

(三)教学过程

1.创设情境,复习引入

(1)什么是一元一次不等式,不等式的解,不等式的解集,解不等式?

(2)已知一个数比2大但比4小,请在数轴上表示数。

学生活动:口答(1)题.板演(2)题,如下图所示:

教师分析:一个数比2大但比4小,说明取值使不等式与都成立,把一元一次不等式与合在一起,就组成了一个一元一次不等式组,记作在数轴上表示不等式①②的解集

可以看出,使不等式,都成立的值,是所有大于2并且小于4的数(记作),它们是不等式①、②的解集的公共部分,在数轴上表示成:

不等式①、②的解集的公共部分,叫做由不等式①、②组成的一元一次不等式组的解集。

【教法说明】通过学生板演,教师分析,使学生形成对不等式组解集的初步认识,激发了他们应用旧知识探索新知识的热情。

2.探索新知,讲授新课

(1)不等式组的解集:一般地,几个一元一次不等式的解集的公共部分叫做由它们组成的不等式组的解集。

说明:求不等式组解集的关键是找不等式解集的“公共部分”。若有公共部分,公共部分即为解集;若无公共部分,则不等式组无解。

(2)解不等式组:求不等式组解集的过程叫解不等式组。

请同学们根据自己的理解,解答下列各题。

例1利用数轴判断下列不等式组有无解集?若有解集,请求出。

① ② ③ ④

学生活动:学生在练习本上完成,同时指定四个学生板演.板演完成后,由学生判断是否正确。

解:① ②

不等式组解集为不等式组解集为

③ ④

不等式组解集为不等式组无解

【教法说明】教学时,可用彩笔在数轴上描出折线的公共部分,这样可以使学生直观、形象地理解不等式组解集的含义,并掌握解集的表示方法。

3.尝试反馈,巩固知识

利用数轴判断下列不等式组有无解集?如有,请表示出来。

教学活动:独立完成,同桌互阅,投影出示正确答案。

教师活动:抽查部分学生,纠正错误。

一元一次不等式组中,不等式个数多于两个,解集求法有无变化呢?同学们通过解答下列各题,仔细体会。

利用数轴解下列不等式组:

学生活动:分析讨论,尝试得出答案;指名回答,与投影出示的正确解题过程对比.

答案:(1)(2)(3)(4)无解

4.变式训练,培养能力

单项选择:

(1)不等式组的整数解是()

A.0,1 B.0 C.1 D.

(2)不等式组的负整数解是()

A.-2,0,-1 B.-2 C.-2,-1 D.不能确定

(3)不等式组的解集在数轴上表示正确的是()

(4)不等式组的解集在数轴上表示正确的为()

(5)根据图中所示可知不等式组的解集为()

A.B.C.D.

学生活动:前后桌结组讨论完成,各组以抢答方式说出答案.

参考答案:C,C,D,A,C

【教法说明】设置上述题组旨在训练学生的思维能力;以抢答形式完成则是为了激发学生探索知识的热情.

(四)总结、扩展

不等式组

1.图示

2.折线特点

3.解集

4.解集与公共部分关系

折线的公共部分

即为不等式组的解集

无解若,不等式组的解集是什么?有规律可寻吗?

【教法说明】学生通过实践尝试得到规律,以此揭示规律存在的一般性、必然性,既训练了学生的归纳总结能力,也充分发挥了主体作用.

注意问题:教学时,每组不等式不要超过三个,关键是使学生理解和掌握解不等式的方法,不宜过于难、过于多,避免重复的机械计算.

八、布置作业

(一)必做题:P78 1;P79 A组1.

(二)选择题:

填空题:

1.不等式组的非负整数解是_______________.

2.若同时满足与,则的取值范围是______________.

3.一元一次不等式组()的解集为,则与的大小关系为____________.

【教法说明】补充题旨在训练学生的思维能力、应变能力和解题灵活性.

参考答案

略.

九、板书设计

Yjs21.coM更多幼师资料延伸读

一元一次不等式课件


每位老师不可或缺的课件是教案课件,因此教案课件可能就需要每天都去写。教案是课程开展的向导。今天小编为大家带来了一篇关于“一元一次不等式课件”的相关文章,如果你希望长期关注我的分享请不要忘记将它收藏起来!

一元一次不等式课件 篇1

【知识与技能】

1、了解一元一次不等式组的概念。

2、理解一元一次不等式组的解集,能求一元一次不等式组的解集。

3、会解一元一次不等式组。

【过程与方法】

通过具体问题得到一元一次不等式组,从而了解一元一次不等式组的概念,解出每个不等式,利用数轴求出各不等式解集的公共部分,从而得到不等式组的解集,通过解几个有代表性的一元一次不等式组,总结出求不等式组解集的法则。

【情感态度】

运用数轴确定不等式组的解集是行之有效的方法。这种“数形结合”的方法今后经常用到,锻炼同学们数形结合的能力,提高学习兴趣。

【教学重点】

一元一次不等式组的解法。

【教学难点】

确定一元一次不等式组的解集。

一、情境导入,初步认识

问题1 现有两根木条a和b,a长10cm,b长3cm,如果要再找一根木条c,用这三根木条钉成一个三角形木框,那么木条c的长度有什么要求?

解:由于三角形中两边之____大于第三边,两边之____小于第三边,设c的长为xcm,则x<____,①x>____,②

合起来,组成一个__________。

由①解得_____________,由②解得_____________。

在数轴上表示就是________________。

容易看出:x的取值范围是____________________。

这就是说,当木条c比____cm长并且比____cm短时,它能与木条a和b一起钉成三角形木框。

问题2 由上面的解不等式组的过程用自己的语言归纳出一元一次不等式组的解法。

【教学说明】全班同学可独立作业,也可分组自由讨论,10分钟后交流成果,逐步得出结论。

二、思考探究,获取新知

思考什么叫一元一次不等式组,什么叫一元一次不等式组的解集,什么叫解不等式组?

【归纳结论】

1、定义:

(1)一元一次不等式组:几个含有相同未知数的一元一次不等式合起来组成一个一元一次不等式组。

(2)一元一次不等式组的解集:几个不等式的解集的公共部分,叫做由它们所组成的不等式的解集。

(3)解不等式组:求一元一次不等式组的解集的过程叫解一元一次不等式组。

2、一元一次不等式组的解法:

(1)求出每个一元一次不等式的解集。

(2)求出这些解集的公共部分,便得到一元一次不等式组的解集。

一元一次不等式课件 篇2

一元一次不等式教案

教学目标

1、能够根据实际问题中的数量关系,列一元一次不等式(组)解决实际问题.

2、通过例题教学,学生能够学会从数学的角度认识问题,理解问题,提出问题,?? 学会从实际问题中抽象出数学模型.

3、能够认识数学与人类生活的密切联系,培养学生应用所学数学知识解决实际问题的意识.

教学重点? 能够根据实际问题中的数量关系,列出一元一次不等式(组)解决 实际问题

教学难点? 审题,根据实际问题列出不等式.

例题? 甲、乙两商场以同样的。价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费。顾客到哪家商场购物花费少??

解:设累计购物x元,根据题意得

(1)当0 < x≤50时,到甲、乙两商场购物花费一样;

(2)当50< x≤100时,到乙商场购物 m. 花费少;

(3)当x > 100时,到甲商场的花费为100+0.9(x-100) , 到乙商场的花费为50+0.95(x-50)则

50+0.95(x-50) > 100+0.9(x-100),解之得x >150

50+0.95(x-50) < 100+0.9(x-100),解之得x < 150

50+0.95(x-50) = 100+0.9(x-100),?? 解之得x = 150

答:当0 < x≤50时,到甲、乙两商场购物花费一样;

当50< x≤100时,到乙商场购物花费少;当x>150时,到甲商场购物花费少;当100 < x <150时,到乙商场购物花费少;当x=150时,到甲、乙两商场购物花费一样。

变式练习? 学校为解决部分学生的午餐问题,联系了两家快餐公司,两家公司的报价、质量和服务承诺都相同,且都表示对学生优惠:甲公司表示每份按报价的90%收费,乙公司表示购买100份以上的部分按报价的80%收费。问:选择哪家公司较好?

解:设购买午餐x份,每份报价为“1”,根据题意得

0.9x > 100+0.8(x-100),解之得x >200

0.9x < 100+0.8(x-100),解之得x < 200

0.9x = 100+0.8(x-100),解之得x = 200

答:当x>200时,选乙公司较好;当0 < x <200时,选甲公司较好;当x=200时,两公司实际收费相同。

作业

1、某商店5月1号举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠。已知小敏5月1日前不是该商店的会员。请帮小敏算一算,采用哪种方案更合算?

2、某单位计划10月份组织员工到杭州旅游,人数估计在10~25之间。甲乙两旅行社的服务质量相同,且组织到杭州旅游的价格都是每人200元。该单位联系时,甲旅行社表示可以给予每位旅客七五折优惠;乙旅行社表示可先免去一带队领导的旅游费用,其余游客八折优惠。问该单位怎样选择,可使其支付的旅游总费用较少?

以上就是一米范文范文为大家带来的6篇《人教版初中数学一元一次不等式教案范文》,希望对您的写作有所帮助,更多范文样本、模板格式尽在一米范文范文。

一元一次不等式课件 篇3

尊敬的各位老师:

大家好,今天,我说课的内容是一元一次不等式。

对于本节课,我将从教什么、怎么教、为什么这么教来阐述本次说课。

新课标指出:数学课程要面向全体学生,适应学生个性发展的需要,使得人人都能获得良好的数学教育,不同的人在数学上都能得到不同的发展。今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。

教材是连接教师和学生的纽带,在整个教学过程中起着至关重要的作用,所以,先谈谈我对教材的理解。

本节课主要讲述的是一元一次不等式的概念及其解法。

在本节课之前学生已经掌握了一元一次方程的相关知识和不等式的性质,所以,本节课类比一元一次方程的解法,利用不等式的性质解一元一次不等式。另外,本节课为后续学习解一元一次不等式组奠定基础。

不等式在日常生产生活中的应用很广泛,它与数、式、方程、函数甚至几何图形有着密切的联系,它几乎渗透到初中数学的每一部分。所以,本节课在数学领域中起着非常重要的地位。

合理把握学情是上好一堂课的基础,本次课所面对的学生群体具有以下特点。

本学段的学生逐渐掌握抽象概念和复杂的概念系统,能作科学定义,抽象逻辑思维逐步占优势。

本阶段的学生类比推理能力都有了一定的发展,并且在生活中已经遇到过很多关于一元一次方程的具体的事例,所以在生活上面有了很多的经验基础。为本节课的顺利开展做好了充分准备。

根据以上对教材的.分析以及对学情的把握,我制定了如下三维目标:

通过对比解一元一次方程的步骤,学生自己总结归纳一元一次不等式步骤的过程,提高归纳能力,并学会类比的学习方法。

通过数学建模,提高对数学的学习兴趣。

本着新课程标准,吃透教材,了解学生特点的基础上我确定了以下重难点:

掌握一元一次不等式的概念,会解一元一次不等式并能够在数轴上表示出来。

一元一次不等式课件 篇4

人教版七年级数学下册《一次函数与一元一次不等式》教学反思

例1:请画出函数y=-3x+12的图像,你能利用图像解决下列问题吗?

(1)方程-3x+12=0的解(2)不等式-3x+12>0的解集.

(3)如果y的值在-6≤y≤6的范围内,那么相应的x的值在什么范围内?

问题一提出,就有学生不假思索,答案脱口而出,前两问也太简单了吧?我提醒学生注意题目要求,这时有学生开始画函数图像。让学生自己动手,画出一次函数y=-3x+12的图像,目的是让学生从画图的过程中感受从左至右,直线是呈“下降”趋势的。即y随x的增大而减小。对于前两问,学生还比较好理解,但到第3问,有些学生就找不到答案了。这时就要引导学生从第2问,开始延伸,当解-3x+12>0,即函数值为正数时,对应的函数的图像在x轴的上方,y>0时,坐标系中表示的`是一个平面区域,在这个区域中找出对应的自变量x的取值范围即为不等式的解。让学生对第3问,再次进行探究,由图像找出函数值在-6--6之间的部分,对应地可以找出自变量x的取值范围。要求学生能在函数图像上找到这个区域,老师再用多媒体进行动态演示。进一步激发学生思考,你能用其他方法解决这个问题吗?学生能联想到第3问也可以利用解不等式组的方法求出x的取值范围。通过本题的解决,让学生初步感受不等式与方程、函数的内在联系

一元一次不等式课件 篇5

一元一次不等式的应用教案

一元一次不等式的应用教案 孙云云 一、前置作业 请自学课本12、13页,相信你会有很大的收获!带着的你的例子借助一元一次不等式来解决实际问题。 二、教学过程 一)导入 在现实中的许多问题,可以借助于一元一次不等式来解决。本节课我们来研究用元一次不等式解决实际 问题。 二、检查前置作业,交流组内存在问题 怎样借助一元一次不等式解决实际问题 三、班级汇报展示 带着你的`例子借助一元一次不等式来解决实际问题。 四、总结提升 你学会了什么? 五、布置作业 教学反思:开始课堂沉闷,学生有些紧张,后来在教师的调解下,气氛活跃了。樊广文出的题中缺少一个条件,马悦出的三道题所提出的问题都有不正确,尽管学生在编的实际问题中出现了失误,但学生真的动起来了,在思想的相互碰撞中,每个问题都得到了解决。但也有不足,如小组的时效性较小,虽然经历了小组交流,但问题并未深入的解决,马悦的三道题是代表小组的,但小组只停留在马悦出题了,也没有交流她出题的正确性。导致三道题都出现同一个问题。在今后的教学中教师更应该关注小组的时效性。

一元一次不等式组课件优选13篇


幼儿教师教育网今天为大家介绍的是一篇有关“一元一次不等式组课件”的文章。对于新入职的老师而言,教案课件还是很重要的,因此教案课件不是随便写写就可以的。只有高质量的教案才能带来好的教学效果。希望本文能够为您提供一些实用建议!

一元一次不等式组课件【篇1】

教学目标

1.能够根据具体问题中数量关系,列出一元一次不等式组,解决简单问题。

2.渗透“数学建模”思想。最优化理论。

3.提高分析问题解决问题能力。

教学重点

分析实际问题列不等式组。

教学难点

1.找实际问题中的不等关系列不等式组。

2.有条理的表达思考过程。

教学过程

一、创设问题情境。

本节课我们一起学习用一元一次不等式组解决一些简单的实际问题。

出示问题:

某公园售出一次性使用门票,每张10元。为吸引更多游客,新近推出购买“个人年票”的售票方法。年票分A、B两类。A类年票每张100元,持票者每次进入公园无需再购买门票。B类年票每张50元,持票者进入公园时需再购买每次2元的门票。你能知道某游客一年中进入该公园至少超过多少次,购买A类年票最合算吗?

二、建立模形。

1.分析题意回答:

①游客购买门票,有几种选取择方式?

②设某游客选取择了某种门票,一年进入该公园x次,门票支出是多少?

③买A类年票最合算,应满足什么关系?

2.讨论交流,列出不等式组。

3.解不等式组,说出问题的答案。

三、应用。

学生讨论、交流。

1.什么情况下,购买每次10元的门票最合算。

2.什么情况下,购买B类年票最合算?

学生清晰、有条理地表达自己的思考过程,且考虑问题要全面。

四、练习。

某校安排寄宿时,如果每项间宿舍住7人,那么有1间虽有人住,但没住满。如果每间宿舍住4人,那么有100名学生住不下。问该校有多少寄宿生?有多少间宿舍?

(提示学生找到本题中的两个不等关系。学生人数,宿舍间数都为整数。解本题时,先独立思考,再小组交流)

五、小结

列一元一次不等式组,解决实际问题的基本步骤是什么?(讨论、交流,指名回答)

六、作业。

习题1.3A组第1题。

后记:

一元一次不等式组课件【篇2】

[学习目标]

1.进一步巩固一元一次不等式组的解法

2.会用一元一次不等式组解决有关的实际问题

3.理解一元一次不等式组应用题的一般解题步骤

[学习重点]一元一次不等式组的应用

[学习难点]在实际问题中寻找不等关系,列出不等式组

[学习过程]

一、春耕(创设情境,导入新课)

在上课之前,老师请大家来帮一个忙,帮老师来解决一道难题:老师有一个熟人姓王,他有一个哥哥和一个弟弟,哥哥的年龄是20岁,小王的年龄的2倍加上他弟弟年龄的5倍等于97.现在小王要老师猜猜他和他弟弟的年龄各是多少?俗话说三个臭皮匠,可抵一个诸葛亮,现在我们全班同学可抵得上很多诸葛亮,所以老师相信大家一定有办法的.

二、夏耘(师生互动,课堂探究)

(一)提出问题,引发讨论

当一个未知数同时满足几个不等关系时,我们就按这些关系分别列几个不等式,这样就得到不等式组,用不等式组解决实际问题时,其公共解是否一定为实际问题的解呢?请举例说明.

例:甲以5km/时的速度进行跑步锻炼,2小时后,乙骑自行车从同地出发沿同一条路追赶甲.但他们两人约定,乙最快不早于1小时追上甲,最慢不晚于1小时15分追上甲.你能确定乙骑车的速度应当控制在什么范围吗?

(二)导入知识,解释疑难

1.教材内容讲解

如课本例2(P145)(请同学自己阅读,动手列不等式组进行求解,再将自己答案与课本答案进行比较)不等式组的解集为15

又如:将若干只鸡放入若干个笼,若每个笼里放4只,则有1只鸡无笼可放;若每个笼里放5只,则有1笼无鸡可放,那么至少有多少只鸡,多少个笼?

2.探究活动

把16根火柴首尾相接,围成一个长方形(不包括正方形),怎样找到围出不同形状的长方形个数最多的办法呢?最多个数又是多少呢?

三.秋收(归纳总结,知识回顾)

1. 应用不等式组解决实际问题的步骤:1.审清题意;2.设未知数,根据所设未知数列出不等式组;3.解不等式组;4.由不等式组的解确立实际问题的解;5.作答.(与列方程组解应用题进行比较)

2.双基练习

1.已知方程组 有正整数解,则k的取值范围是_________.

2.若不等式组 无解,求a的取值范围.

3.当2(m-3)x-m的解集.

4.某学校为学生安排宿舍,现有住房若干间,若每间5人还有14人安排不下,若每间7人,则有一间还余一些床位,问学校有几间房可以安排学生住宿?可以安排住宿的学生多少人?

四.冬藏(创新提升)

某商场为了促销,开展对顾客赠送礼品活动,准备了若干件礼品送给顾客,在一次活动中,如果每人送5件,则还余8件,如果每人送7件,则最后一人还不足3件.设该商场准备了m件礼品,有x名顾客获赠,请回答下列问题:

(1)用含x的代数式表示m.

(2)求出该次活动中获赠顾客人数及所准备的礼品数

一元一次不等式组课件【篇3】

教学目标:

了解一元一次不等式的概念,掌握一元一次不等式的解法。

教学重点:

是掌握解一元一次不等式的步骤

教学难点:

是必须切实注意遇到要在不等式两边都乘以(或除以)同一负数时,必须改变不等号的方向。

教学过程:

一、问题导入

复习:

1、不等式的基本性质有哪些?什么是一元一次方程?并举出两个例子。

2、观察不等式x+3<5与x<2,说明解x<2是x+3<5依据什么变形得到的?

3、解一元一次方程:6x+5=7-2x,目的是为了与下面所学的解一元一次不等式进行类比,找到它们的联系与区别。

二、指导自学,小组合作交流

请同学们根据以下提问进行自学,先个人思考,后小组合作学习。

1、观察下列不等式,说一说这些不等式有哪些共同特点?

(1)2x+5≥8(2)x+1≤—4(3)x<2(4)6—3x>43(x+1)≤0

观察上面不等式有哪些共同特点,让学生通过交流,再总结一元一次不等式的概念。老师板书定义。

2、让学生举出2或3个一元一次不等式的例子,小组交流。

3、让学生通过比较解一元一次方程:6x+5=7-2x的解法试解一元一次不等式:6x+5<7-2x,并将解集在数轴上表示出来。

4、思考:一元一次不等式与一元一次方程的解法有哪些类似之处?有什么不同?

5、解下列不等式,并把它们的解集在数轴上表示出来。

(1)3-x<2x+9(2)2-4(x-1)>3(x+2)-x

(3)(x-1)/3≥(2-x)/2+1

总结:解一元一次不等式的依据和解一元一次不等式的步骤。

三、互动交流,教师点拨

(一)、学生易出错的问题和注意的事项:

1、确定一个不等式是不是一元一次不等式,要抓住三个要点:左右两边都是整式,只有一个未知数,未知数的次数是1。

2、对于(1),让学生说明不等式3-x<2x+9的每一步变形的依据是什么,特别注意的是:解不等式的移项和解方程的移项一样。即移项要变号(培养学生运用类比的数学思想)。

3、不等式两边同时除以(-3)时,不等号的方向改变。

2、重点点拨(2)和(3),先让学生到黑板上板演。老师再讲评。

(2)易出错的地方是:去括号时漏乘,括号前是负号,去掉括号后括号里的项没变号,还有移项没有变号;(3)易出错的地方是:去分母时漏乘无分母的项。

3、归纳解一元一次不等式的步骤(与解一元一次方程的步骤类比):去分母,去括号,移项,合并同类项,系数化为1。(在系数化为1这一步要特别提醒学生注意当系数为负数时,要记住改变不等号的方向。)

四、巩固练习

1、判断下列不等式是不是一元一次不等式,为什么?

(1)2/x—3

(2)5x+3x–1

(4)x(2x+1)

(5)X+2≥x

2、解下列不等式,并把它们的解集在数轴上表示出来

(1)3x–8

(2)2(x–1)≥x+3

(3)x/5≥1+(x–3)/2

3、[思考]当x取何值时,代数式(x–2)/2的值比(3x+1)/3的值大?

小结:

(1)不等式两边同时除以负数时,不等号的方向要改变。

(2)注意去括号时不要漏乘,括号前是负号,去掉括号后括号里的项要变号,还有移项一定要变号

(3)去分母时不要漏乘无分母的项。

一元一次不等式组课件【篇4】

教学建议

一、知识结构

本书首先结合实例引入一元一次不等式组的解集的概念,然后通过三个例题说明利用数轴解一元一次不等式组的方法,最后对一元一次不等式组的解法步骤进行了总结.

二、重点、难点分析

本节教学的重点是掌握一元一次不等式组的解法步骤并准确地求出解集.难点是正确应用不等式的基本性质对不等式进行变形、求不等式组中各个不等式解集的公共部分.不等式在中学代数中是研究问题的重要工具,例如求函数的定义域、值域、研究函数的单调性,求最大值、最小值,一元二次方程根的讨论等,都要用到不等式的知识.不等式也是进一步学习其他数学内容的基础.学习和掌握不等式的求解和不等式的证明方法,对培养学生逻辑思维能力也有极其重要的作用.在处理解不等式的问题中,一元一次不等式组的解法,具有特别重要的意义.这是因为,解各类不等式的问题都可以归结为解一些由简单不等式所组成的不等式组.

1、在构成不等式组的几个不等式中

①这几个一元一次不等式必须含有同一个未知数;

②这里的“几个”并未确定不等式的个数,只要不是一个,两个,三个,四个……都行.

2、当几个不等式的解集没有公共部分时,我们就说这个不等式组无解.

3、由两个一元一次不等式组成的不等式的解集,共归结为下面四种基本情况:

【注意】①其中第(4)个不等式组,实质上是矛盾不等式组,任何数都不能使两个不等式同时成立。所以说这个不等式组无解或说其解集为空集。②从上面列出的表中,我们可以概括出来不等式组公共解的一规律:同大取大,同小取小,一大一小中间找。

三、教法建议

1.解本节的引例及例1、例2、例3时,注意把解不等式组的思路讲清楚,即先分别解每一个不等式,求出解集,再求这些解集的公共部分.求公共部分的过程一定要结合数轴来讲。

2.这节课的讲解自始至终要突出解不等式组的基本思想以及解一元一次不等式组的步骤这两个重点.准确熟练地解一元一次不等式以及用数轴上的点表示不等式的解集是这节课的基础,因此讲新课之前要复习提问这些内容。

3.求公共解集是这节课的新授内容,教师要充分利用数轴表示不等式解集具有形象、直观、易于说明问题这些优点.解集的公共部分教师可用彩笔在数轴的相应部分描画出来,使学生感到醒目,便于理解记忆。

4.每组不等式不要超过三个,关键是使学生理解和掌握解不等式组的基本思想和两个步骤,不宜做过于难、过于多、重复的机械计算。

一元一次不等式组课件【篇5】

〖教学目标〗

1、理解一元一次不等式组的概念.

2、理解不等式组的解的概念.

3、会解由两个一元一次不等式组成的不等式组,并会用数轴确定解.

4、培养学生类比推理能力.

〖教学重点与难点〗

教学重点:一元一次不等式组的解法.

教学难点:例2较为复杂,几乎包括了解一元一次不等式的全部步骤,是本节教学的难点,用数轴表示一元一次不等式组的解也是难点。

〖教学过程〗

一.引入

1.想一想:某单位从超市购买了墨水笔和圆珠笔共15桶,所付金额超过570元,但不到580元。已知这两种笔每桶的单价为圆珠笔34.90元/支,墨水笔44.90元/支。设购买圆珠笔X桶,你能列出几个不等式?

2.学生活动:找出已知条件,列出所有不等关系式,互相讨论,类推概念,鼓励学生通过观察,分析,补充解决问题。

3.最后教师总结两个不等式。

如设购买圆珠笔的桶数为X,则:

二.新课

1.一元一次不等式组:一般地,由几个同一个未知数的一元一次不等式所组成的一组不等式,叫做一元一次不等式组。像上面就是一元一次不等式组,再

例如:

都是一元一次不等式组.

2.不等式组解的概念:组成不等式组的各个不等式的解的公共部分就是不等式组的解.当它们没有公共部分时.我们称这个不等式组无解.

3.做一做:

例1.解一元一次不等式组

解:解不等式①,

得:

X>-1

解不等式②,

得:

X≤6

②两个不等式的解表示在数轴上,如下图:

-1

6

所以原不等式组的解是-14.应用拓展:解由两个一元一次不等式组成的不等式组,在取各个不等式的解公共部分时,有几种不同情况吗?若a用数轴试一试.(设a一般由两个一元一次不等式组成的不等式组由四种基本类型确定,它们的解集、数轴表示如下表一元一次不等式组解集图示口诀x>ax>bx>b大大取大xxx小小取小x>axa比小大,比大小,中间找xx>b无解比小小,比大大,解不了(无解)5.尝试反馈:试一试,利用数轴分别求出满足下列各组不等式组的x值的公共部分:6.探索较复杂的不等式组的解法:例2.解一元一次不等式组解:由不等式①,去扩号得3-5X>X-4X+2移项,整理得-2X>-1所以X解不等式②,去分母得3X-2>10-2X移项,整理得5X>12所以X>把①,②两个不等式的解表示在数轴上.12所以原不等式组无解.7.通过范例,帮助学生总结解一元一次不等式组的步骤:(1)依次解各个一元一次不等式.(2)把各个一元一次不等式的解分别表示在同一数轴上.(3)根据解在数轴上的表示确定不等式组的解.三.巩固(学生活动,与同伴交流自己的问题和解决问题的过程)1.解下列一元一次不等式组:2.分别求出本节开头问题中购买墨水笔和圆珠笔的桶数四.归纳1.学生谈本节课的收获:优等生谈学到什么知识,上进生谈体会;2.教师小结:这节课主要学习了一元一次不等式组及不等式组的解的有关概念,要求会解有两个一元一次不等式组成的一元一次不等式组,并会用数轴确定解集;也可以利用口诀“大大取大,小小取小,比小大比大小取中间,比大大比小小无解”来求不等式组的解。五.布置作业

一元一次不等式组课件【篇6】

一元一次不等式组

教学目标:1.学生通过生活实例,了解一元一次不等式组的意义和一元一次不等式组的解集的概念。

2.学生能利用数轴熟练的确定一元一次不等式组的解集,培养学生的观察能力,分析能力。

3.掌握由两个一元一次不等式所组成的不等式组的解集的四种情况。

4.学生通过对一元一次不等式组的学习,认识到事物间的相依关系。

教学重点:根据一元一次不等式组的四种情况,说出一元一次不等式组的解集。教学难点:利用数轴确定一元一次不等式组的解集。教学过程: 一.创设情境:

1.你能列出解决这个问题的式子吗?

(小黑板)某学校初一()班准备一次秋季外出考察活动,该班级共有学生40人。学校根据预算要求该班这次活动的总经费不能超过2400元;旅游公司按成本计算这次活动总经费不能低于2000元。如果考虑双方的要求,学生所付的经费应该在哪一范围之内?

学生列式:设每人所付的经费为x元 40x≤2400 40x≥2000

?40x?2400 同时满足两个条件,列成不等式组 ?

?40x?2000给出定义:由几个含有同一个未知数的一次不等式组成的不等式组叫做一元一次不等式组。

2.(小黑板)判别下列不等式组中哪些是一元一次不等式组,并说明为什么?

?x?0?x??3?x?2(1)?(2)?(3)? x?3?0y?3x?4????2x?3?54x?1?0???3x?1?4?(4)?(5)?2(6)?3x?2?1

??x?3?0?x?y?1?x?9?0?二.尝试探究:

1.问题:怎样确定不等式组的解集呢? ?40x?2400?x?60 比如:?的解集怎样确定呢??这个式子就是不?40x?2000?x?50等式组的解集吗?

2.利用数轴来确定不等式组的解集

?x?3?x?3?x?3?x?3 例:(1)?(2)?(3)?(4)?

?x??1?x??1?x?-1?x??1 本题教师和学生共同完成

巩固练习:(书四题,学生练习,学生板演,小组互相检查,教师巡视指导)

小组讨论:当a>b时,如何确定下列不等式组的解集?

?x?a?x?a?x?a?x?a(!)?(2)?(3)?(4)?

?x?b?x?b?x?b?x?b 课后思考:当a

三.归纳小结:

1.本节课我们认识了什么是一元一次不等式组及其解集,并学会了利用数轴来确定不等式组的解集。(利用例题中四个不等式组解集情况说明不等式组解集取法)

2.一元一次不等式组和二元一次方程组类似,也有不同的地方。两者都是由两个或几个一次式组成,但不等式组是同一个字母,方程组中有两个字母。3.具体求不等式组解集的方法,下节课我们接着学习。

四.布置作业:

练习册B册习题

同步练习

一元一次不等式组课件【篇7】

1、由“弹簧挂物问题”导入

把教学内容转化为具有潜在意义的`问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想”,继而紧张地沉思,期待寻找理由和证明过程。

在实际情况下进行学习,可以使学生利用已有知识与经验,同化和索引出当前学习的新知识,这样获取的知识,不但易于保持,而且易于迁移到陌生的问题情境中。在本问题中使学生感受到一元一次不等式、一元一次方程、一次函数的内在联系

2、导疑:得出本课新的知识点是:一元一次不等式、一元一次方程、一次函数的内在联系

3、导研:讲解例题。……我们在讲解例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于发展学生的思维能力。在题中:引导学生围挠一元一次不等式、一元一次方程、一次函数的内在联系展开从多个角度进行思考。

4、导练:课后练习使学生能巩固羡慕自觉运用所学知识与解题思想方法。

5、导评:总结结论,强化认识。知识性内容的小结,可把课堂教学传授的知识尽快化为学生的素质;数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质目标。

6、变式延伸,进行重构。重视课本例题,适当对题目进行引申,使例题的作用更加突出,有利于学生对知识的串联、累积、加工,从而达到举一反三的效果。

7、板书。

8、布置作业。针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有佘力的学生有所提高,从而达到拔尖和“减负”的目的。

(教学程序:

(一):课堂结构:导入、导疑、导研、导评、导练、布置作业等几部分。

(二):教学简要过程:

1:复习提问:(理由是:);2:导入讲授新课:;3:课堂练习:4:新课巩固:5:作业布置;)

五:作业布置:略

一元一次不等式组课件【篇8】

【知识与技能】

1、了解一元一次不等式组的概念。

2、理解一元一次不等式组的解集,能求一元一次不等式组的解集。

3、会解一元一次不等式组。

【过程与方法】

通过具体问题得到一元一次不等式组,从而了解一元一次不等式组的概念,解出每个不等式,利用数轴求出各不等式解集的公共部分,从而得到不等式组的解集,通过解几个有代表性的一元一次不等式组,总结出求不等式组解集的法则。

【情感态度】

运用数轴确定不等式组的解集是行之有效的方法。这种“数形结合”的方法今后经常用到,锻炼同学们数形结合的能力,提高学习兴趣。

【教学重点】

一元一次不等式组的解法。

【教学难点】

确定一元一次不等式组的解集。

一、情境导入,初步认识

问题1 现有两根木条a和b,a长10cm,b长3cm,如果要再找一根木条c,用这三根木条钉成一个三角形木框,那么木条c的长度有什么要求?

解:由于三角形中两边之____大于第三边,两边之____小于第三边,设c的长为xcm,则x<____,①x>____,②

合起来,组成一个__________。

由①解得_____________,由②解得_____________。

在数轴上表示就是________________。

容易看出:x的取值范围是____________________。

这就是说,当木条c比____cm长并且比____cm短时,它能与木条a和b一起钉成三角形木框。

问题2 由上面的解不等式组的过程用自己的语言归纳出一元一次不等式组的解法。

【教学说明】全班同学可独立作业,也可分组自由讨论,10分钟后交流成果,逐步得出结论。

二、思考探究,获取新知

思考什么叫一元一次不等式组,什么叫一元一次不等式组的解集,什么叫解不等式组?

【归纳结论】

1、定义:

(1)一元一次不等式组:几个含有相同未知数的一元一次不等式合起来组成一个一元一次不等式组。

(2)一元一次不等式组的解集:几个不等式的解集的公共部分,叫做由它们所组成的不等式的解集。

(3)解不等式组:求一元一次不等式组的解集的过程叫解一元一次不等式组。

2、一元一次不等式组的解法:

(1)求出每个一元一次不等式的解集。

(2)求出这些解集的公共部分,便得到一元一次不等式组的解集。

一元一次不等式组课件【篇9】

1.会解一元一次不等式.

2.会用不等式来表示实际问题中的不等关系.

掌握解一元一次不等式的步骤;会用一元一次不等式解决简单的实际问题.

寻找实际问题中的不等关系,建立数学模型.

1. 不等式的基本性质有哪些?

(1)3x3.

.二、夏耘:

例 甲、乙两商店以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲店累计购买100元商品后,再购买的商品按原价的90%收费;在乙店累计购买50元商品后,再购买的商品按原价的95%收费.顾客怎样选择商店购物能获得更大优惠?

这个问题较复杂,从何处入后考虑它呢?

甲商店优惠方案的起点为购物款达___元后;

乙商店优惠方案的起点为购物款过___元后.

我们是否应分情况考虑?可以怎样分情况呢?

(1)如果累计购物不超过50元,则在两店购物花费有区别吗?

(2)如果累计购物超过50元而不超过100元,则在哪家商店购物花费小?为什么?

(3)如果累计购物超过100元,那么在甲店购物花费小吗?

三、秋收:

1.某校校长暑假将带领该校市级优秀学生乘旅行社的车去a市参加科技夏令营,甲旅行社说:“如果校长买全票一张,则其余学生可享受半价优惠”.乙旅行社说:“包括校长在内全部按全票的6折优惠”,若全票价为240元.

(1)设学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙.分别计算两家旅行社的收费(建立表达式);

(2)当学生数是多少时,两家旅行社的收费一样?

(3) 就学生数x讨论哪家旅行社更优惠.

2.某商店出售茶壶和茶杯,茶壶每只20元,茶杯每只5元,该商店有两种优惠办法:

(1) 买一只茶壶送一只茶杯;

(2) 按总价的92%付款.现有一顾客需购买4只茶壶,茶杯若干只(不少于4只).

请问:顾客买同样多的茶杯时,用哪一种优惠办法购买省钱?

3.某人的移动电话(手机)可选择两种收费办法中的一种,甲种收费办法是,先交月租费50元,每通一次电话再收费0.40元;乙种收费办法是,不交月租费,每通一次电话收费0.60元.问每月通话次数在什么范围内选择甲种收费办法合适?在什么范围内时选择乙种收费办法合适?

四、冬藏(补充练习):

1.有一批货物,如月初售出,可获利1000元,并可将本利之和再去投资,到月末获1.5%的利息;如月末售出这批货,可获利1200元,但要付50元保管费.问这批货在月初还是月末售出好.

2.某市自来水公司为限制单位用水,每月只给某单位计划内用水3000吨,计划内用水每吨收费0.5元,超计划用水超出部分每吨收费0.8元.如果单位自建水泵房抽水,每月需交500元管理费,另外每月一吨水再交0.28元,已知每抽一吨水需成本0.07元.问该单位是用自来水公司的水合算,还是自建水泵房抽水合算.

一元一次不等式组课件【篇10】

科学合理的教学方法能使教学效果事半功倍,达到教与学的和谐完美统一。

基于此,我准备采用的教法讲授法、讨论法。德国教育学家第斯多慧:差的教师只会奉送真理,好的教师则交给学生如何发现真理,老师的教是为了不教,这才是教学的最高境界,所以我采用的学法是练习法、自主合作法。

在这节课的教学过程中,我注重突出重点,条理清晰,紧凑合理。各项活动的安排也注重互动、交流,最大限度的调动学生参与课堂的积极性、主动性。

首先是导入环节,我采用复习旧知的导入方法。我会让学生回忆不等式的概念以及一元一次方程的概念,明确指出今天学习的内容是《一元一次不等式》。

这样的设计既可以考查学生对之前知识的掌握情况,还能够为今天学习一元一次方程的概念打下基础。而且开门见山的导入方式能够快速地进入主题。

接下来是新知探索环节,首先我请学生类比不等式以及一元一次方程的概念,给一元一次不等式下定义。

能够总结出:含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式。

接下来让学生回忆上节课学习的不等式x-7>26如何解决的,通过学生回忆总结可以得到:通过“不等式的两边都加7,不等号的方向不变”而得到的。

接下来提问学生有没有更加简便的方法解不等式?让学生类比解一元一次方程的步骤进行解题。可以得到相当于可以用“移项”,来解决。

在这个过程中,强调每一个步骤,在第二题最后一步,强调当不等式的两边同时乘以(或除以)同一个负数时,不等号的方向改变。

解完不等式,先让学生回忆解一元一次方程的步骤是什么?并类比解一元一次方程的步骤,总结一下解一元一次不等式的步骤是什么?

从而我们归纳:解一元一次方程,要根据等式的性质,将方程逐步化为x=a的形式;而解一元一次不等式,则要根据不等式的性质,将不等式逐步化为xa的形式。

《数学课程标准》指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者”。根据这一教学理念,在本环节中,我组织学生进行了自主探究活动,让学生在保持高度学习热情和探究欲望的活动过程中,始终以愉悦的心情,亲身经历和体验知识的形成过程。培养学生的探究能力、分析思维能力,激发他们的创新意识、参与意识。

第三个环节是课堂练习环节,出示问题,解不等式,并在数轴上表示数集:5x+15>4x-1

之所以这样设计是因为练习是掌握知识、形成技能、发展思维的重要手段,针对本课的教学重点和难点,上述练习,目的是让学生进一步巩固对新知的理解。可以深化教学内容,培养思维的灵活性。

最后一个环节为小结作业环节,关于课堂小结,我打算让学生自己来总结今天的收获。

这样既发挥了学生的主体性,又可以提高学生的总结概括能力,让我在第一时间得到学习反馈,及时加以疏导。

通过这样的方式能够为本节课学习的知识进行进一步的巩固。

我的板书设计遵循简洁明了突出重点的意图,这是我的板书设计:

一元一次不等式组课件【篇11】

(一)复习提问:

三角形的三边关系?

(二)列一元一次不等式组

问题:现有两根木条a和b,a长10cm,b长3cm.如果要再找一根木条c,用这三根木条钉成一个三角形木框,那么对木条c的长度有什么要求?

注:这个问题是本节的'引入问题,三角形木框的形状不唯一确定,只要能成为三角形即可.

探究:用三根长度分别为14cm,9cm,6cm的木条c1,c2,c3分别试试,其中哪根木条能与木条a和b一起钉成三角形木框?

可以发现,当木条a和b的长度确定后,木条c太长或太短,都不能与a和b一起钉成三角形.

由于“三角形中两边之和大于第三边,两边之差小于第三边”,设木条c长xcm,则x必须同时满足不等式x10+3①和x10-3②

注:木条c必须同时满足两个条件,即ca+b,ca-b.

类似于方程组,把这两个不等式合起来,组成一个一元一次不等式组记作注:这里并未正式给一元一次不等式组下定义,只是说这两个不等式合起来,组成一个一元一次不等式组.实际上,两个或更多的一元一次不等式组合起来,都组成一个一元一次不等式组.

(三)一元一次不等式组的解集

类比方程组的解,怎样确定不等式组中x的可取值的范围呢?

不等式组中的各不等式解集的公共部分,就是不等式组中x可以取值的范围.

注:这里还未正式出现不等式组的解集的概念,但已点出各不等式的解集的公共部分即不等式组中未知数的可取值范围.

由不等式①解得x13.

由不等式②解得x7.

从图9.3—2容易看出,x可以取值的范围为713.

注:利用数轴可以直观形象地认识公共部分.这个公共部分是两端有界的开区间.

这就是说,当木条c比7cm长并且比13cm短时,它能与木条a和b一起钉成三角形木框.

一般地,几个不等式的解集的公共部分,叫做由它们所组成的不等式组的解集.解不等式组就是求它的解集.

注:这里正式给出不等式组的解集以及解不等式组的定义13.注:利用数轴可以直观形象地认识公共部分.这个公共部分是两端有界的开区间.这就是说,当木条c比7cm长并且比13cm短时,它能与木条a和b一起钉成三角形木框.一般地,几个不等式的解集的公共部分,叫做由它们所组成的不等式组的解集.解不等式组就是求它的解集.注:这里正式给出不等式组的解集以及解不等式组的定义。

一元一次不等式组课件【篇12】

一、教材分析

《一元一次不等式组》是华东师大版义务教育课程标准实验教科书数学七年级下册第八章第三节,我把本节内容分为两个课时,第一课时是一元一次不等式组的概念及解法,第二课时是不等式组的实践与探索。今天,我说课的内容是第一课时。

《数学课程标准》对本节的要求是:充分感受生活中存在着大量的不等关系,了解不等式组的意义;会解简单的一元一次不等式组,并会用数轴确定解集。

《一元一次不等式》的主要内容是一元一次不等式(不等式组)的解法及其简单应用。是在学习了有理数的大小比较、等式及其性质、一元一次方程的基础上,开始学习简单的数量之间的不等关系,进一步探究现实世界数量关系的重要内容,是继一元一次方程和二元一次方程组之后,又一次数学建模思想的学习,也是后继学习一元二次方程、函数及进一步学习不等式的重要基础,具有承前启后的重要作用。

《一元一次不等式组》是本章的最后一节,是一元一次不等式知识的综合运用和拓展延伸,是进一步刻画现实世界数量关系的数学模型,是下一节利用一元一次不等式组解决实际问题的关键。因此,我把本节课的教学重点确定为一元一次不等式组的解法。

数学课程应当从学生熟悉的现实生活开始,沿着数学发现过程中人类的活动轨迹,从生活中的问题到数学问题,从具体问题到抽象概念,从特殊关系到一般规则,逐步通过学生自己的发现去学习数学、获取知识。得到抽象化的数学知识之后,再及时地把它们应用到新的现实问题上去。按照这样的途径发展,数学教育才能较好地沟通生活中的数学与课堂上的数学的联系,才能有益于学生理解数学,热爱数学和使数学成为生活中有用的本领。

本节课,既有概念教学又有解题教学,而概念教学,应该从生活、生产实例或学生熟悉的已有知识引入,引导学生通过观察、比较、分析、综合,抽取共性,得到概念的本质属性。在此基础上归纳概括出概念的定义,并引导学生弄清定义中每一个字、词的确切含义。华师版的'教科书中,只设计了一个问题情境,我感觉还不够,不能从一个问题抽象出概念的本质。因此,在这里我又增加了一个问题情境,以增加对不等式组概念的理解,加强数学应用意识的培养。

二、学情分析

从学生学习的心理基础和认知特点来说,学生已经学习了一元一次不等式,并能较熟练地解一元一次不等式,能将简单的实际问题抽象为数学模型,有一定的数学化能力。但学生将两个一元一次不等式的解集在同一数轴上表示会产生一定的困惑。这个年龄段的学生,以感性认识为主,并向理性认知过渡,所以,我对本节课的设计是通过两个学生所熟悉的问题情境,让学生独立思考,合作交流,从而引导其自主学习。

基于对学情的分析,我确定了本节课的教学难点是:正确理解不等式组的解集。

三、教学目标

在教材分析和学情分析的基础上,结合预设的教学方法,确定了本节课的教学目标如下:

1、通过实例体会一元一次不等式组是研究量与量之间关系的重要模型之一。

2、了解一元一次不等式组及解集的概念。

3、会利用数轴解较简单的一元一次不等式组。

4、培养学生分析、解决实际问题的能力。

5、通过实际问题的解决,体会数学知识在生活中的应用,激发学生的学习兴趣。能在解决问题过程中勤于思考、乐于探究,体验解决问题策略的多样性,体验数学的价值。

四、教学手段

本节课采用多媒体教学,利用多媒体教学信息容量大、操作简单、形象生动、反馈及时等优点,直观地展示教学内容,这样不但可以提高学习效率和质量,而且容易激发学生学习的兴趣,调动积极性。

五、教学过程

本节课的教学流程如下:实际问题——一元一次不等式组——解集——解法——应用。

活动一、实际问题,创设情境

问题1。

小宝和爸爸,妈妈三人在操场上玩跷跷板,爸爸体重为72千克,体重只有妈妈一半的小宝和妈妈一同坐在跷跷板的另一端,这时爸爸的一端仍然着地。后来,小宝借来一副质量为6千克的哑铃,加在他和妈妈坐的一端,结果爸爸被跷起离地。猜猜小宝的体重约是多少?在这个问题中,如果设小宝的体重为x千克。

(1)从跷跷板的状况你可以找出怎样的不等关系?

(2)你认为怎样求x的范围,可以尽可能地接近小宝的体重?

我提出问题(1),学生独立思考,回答问题。

考察学生对应用一元一次不等式解决实际问题的能力,并引出新知。

教师提出问题(2),学生小组合作、探索交流,回答问题。

我预计学生对于这个问题会产生两种不同的看法:一种方法是利用估算的方法将特殊值代入来求出适合不等式组的特殊解;另一种方法是求出两个不等式的解集,并分别将这两个解集在数轴上表示。因此教师应引导学生进一步理解本题的实际意义,能将两个不等式的解集综合分析。

这里是通过对数量关系的分析、抽象,突出数学建模思想的教学,注重对学生进行引导,让学生充分发表意见,并鼓励学生提出不同的解法。

问题2。

现有两根木条,一根长为10厘米,另一根长为30厘米,如果再找一根木条,用这三根木条钉一个三角形木框,那么第三根木条的长度有什么要求?

教师提出问题,学生独立思考,回答问题。

教学效果预估与对策:预计学生对三角形三边关系可能有所遗忘,教师应给予提示。

设计意图:这是一个与三角形相关的问题,要求学生能综合运用已有的知识,独立思考、自主探索、尝试解决,促使学生在探索和解决问题的过程中获得体验、得到发展,学会新的东西,发展自己的思维能力。

活动二、总结归纳,得出概念

1、一元一次不等式组

通过上面两个实际问题的探究,归纳概括出一元一次不等式组的概念和一元一次不等式组解集的概念。

即:把两个(或两个以上)一元一次不等式合在一起,就得到了一个一元一次不等式组(linearinequalitiesofoneunknown)。

2、一元一次不等式组的解集

同时满足不等式(1)、(2)的未知数x应是这两个不等式解集的公共部分。在同一数轴上表示出这两个解集,找到公共部分,就是所列不等式组的解集。

不等式组中几个不等式的解集的公共部分,叫做这个不等式组的解集。

师生活动:在活动一的基础上,将学生得出的结论进行归纳总结。教师要注意倾听学生叙述问题的准确性和全面性。

教学效果预估与对策:估计多数学生在经历了上述的探索过程后,能够对这个结论有所认识。

一元一次不等式组课件【篇13】

学习目标:

1、了解一元一次不等式组的概念,理解一元一次不等式组的解集的意义。

2、会解由两个一元一次不等式组成的一元一次不等式组,能借助数轴正确的表示一元一次不等式组的解集。

3、通过探讨一元一次不等式组的解法以及解集的确定,渗透转化思想,进一步感受数形结合在解决问题中的作用。

4、体验不等式在实际问题中的作用,感受数学的应用价值。

学习重点:

一元一次不等式组的解法

学习难点:

一元一次不等式组解集的确定。

一、学前准备

【回顾】

1.解不等式 ,并把解集在数轴上表示出来。

【预习】

1、 认真阅读教材34-35页内容

2、__________叫做一元一次不等式组。

_________叫做一元一次不等式组的解集。

叫做解不等式组。

4、求下列两个不等式的解集,并在同一条数轴上表示出来

二、探究活动

【例题分析】

例1. (问题1)题中的买5筒钱不够,买4筒钱又多的含义是什么?

例2. (问题2)题中的相等关系是什么?不等关系又是什么?

例3. 解不等式组

【小结】

不等式组解集口诀

同大取大,同小取小,大小小大中间找,大大小小解不了

一元一次不等式组解集四种类型如下表:

不等式组(a)

(1)xb

xb 同大取大

(2)x

x

(3)xax

a

(4)xb

无解 大大小小解不了

【课堂检测】

1、不等式组 的解集是( )

A. B. C. D.无解

2、不等式组 的解集为( )

A.-1

3、不等式组 的解集在数轴上表示正确的是( )

A B C D

4、写出下列不等式组的解集:(教材P35练习1)

三、自我测试

1.填空

(1)不等式组x-1 的解集是___;

(2)不等式组x-2 的解集 ;

(3)不等式组x1 的解集是____;

(4)不等式组x-4 解集是____。

2、解下列不等式组,并在数轴上表示出来

四、应用与拓展

若不等式组 无解,则m的取值范围是 _____.

2023不等式课件14篇


经验时常告诉我们,做事要提前做好准备。在平日里的学习中,幼儿园教师时常会提前准备好有用的资料。资料可以指人事物的相关多类信息、情报。有了资料才能更好地安排接下来的学习工作!你是否收藏了一些有用的幼师资料内容呢?以下是由小编为大家整理的“2023不等式课件14篇”,仅供参考,欢迎大家阅读。

不等式课件 篇1

七年级数学不等式课件

教学目标:

通过对具体实例的学习,使学生能够了解生活中的不等量关系,理解不等式的概念,知道什么是不等式的解,为以后学习不等式的解法奠定基础.

知识与能力:

1.通过对具体事例的分析和探索,得到生活中不等量的关系.

2.通过理解得到不等式的概念,从而使学生经历实际问题中数量的分析、抽象过程,体会现实中有各种各样错综复杂的数量关系.

3.了解不等式的意义,知道不等式是用来刻画生活中的数量关系的.

4.知道什么是不等式的解.

过程与方法:

1.引导学生分析具体事例,从对具体事例的分析中得到不等量关系.

2.引导并帮助学生列出不等式,分析不等式的成立条件.

3.通过分析、抽象得到不等式的概念和不等式的解的概念.

4.通过习题巩固和加深对概念的理解.

情感、态度与价值观:

1.通过学生的分析和抽象过程使他们体会现实中错综复杂的数量关系,然后从而培养其抽象思维能力.

2.通过分组讨论学习,体会在解决具体问题的过程中与他人合作的重要性,培养学生的团体协作精神,使学生获得合作交流的学习方式.

3.通过联系与发展、对立与统一的思考方法对学生进行辩证唯物主义教育.

4.通过创设问题串,让学生仔细观察、对比、归纳、整理,尝试对有理数进行分类,然后体验教学活动充满着探索性和创造性.

教学重、难点及教学突破

重点:不等式的概念和不等式的解的概念.

难点:对文字表述的数量关系能列出不等式.

教学突破:由于学生在以前已经对数量的大小关系和含数字的不等式有所了解,但还没有接触过含未知数的不等式,在学生分析问题的时候注意引入现实中大量存在的数量间的不等关系,研究它们的变化规律,使学生知道用不等式解决实际问题的方便之处.在本节的教学中能够在组织学生讨论的过程中适当地渗透变量的知识,让学生感受其中的函数思想,并引导学生发现不等式的解与方程的解之间的区别.在处理本节难点时指导学生练习有理数和代数式的知识,准确“译出”不等式.

教学过程:

一.研究问题:

世纪公园的票价是:每人5元,一次购票满30张可少收1元.某班有27名少先队员去世公园进行活动.当领队王小华准备好了零钱到售票处买了27张票时,爱动脑的李敏同纪学喊住了王小华,提议买30张票.但有的同学不明白.明明只有27个人,买30张票,岂不浪费吗?

那么,究竟李敏的提议对不对呢?是不是真的浪费呢

二.新课探究:

分析上面的问题:设有x人要进世纪公园,①若x≥30,应该如何买票?②若x

结论:至少要有多少人进公园时,买30张票才合算?

概括:1、不等式的定义:表示不等关系的式子,叫做不等式.不等式用符号>,

2、不等式的解:能使不等式成立的未知数的值,叫做不等式的解.

3、不等式的分类:⑴恒不等式:-71+4,a+2>a+1.

⑵条件不等式:x+3>6,a+2>3,y-3>-5.

三、基础训练.

例1、用不等式表示:⑴a是正数;⑵b不是负数;⑶c是非负数;⑷x的平方是非负数;⑸x的一半小于-1;⑹y与4的和不小于3.

注:⑴不等式表示代数式之间的不相等关系,与方程表示相等关系相对应;

⑵研究不等关系列不等式的重点是抓关键词,弄清不等关系.

例2、用不等式表示:⑴a与1的和是正数;⑵x的2倍与y的3倍的差是非负数;⑶x的2倍与1的和大于—1;⑷a的一半与4的差的绝对值不小于a.

例3、当x=2时,不等式x-1

注:⑴检验字母的值能否使不等式成立,只要代入不等式的左右两边,如果符合不等号所表示的关系,就成立,否则就不成立.⑵代入法是检验不等式的解的重要方法.

学生练习:课本P42练习1、2、3.

四、能力拓展

学校组织学生观看电影,某电影院票价每张12元,50人以上(含50人)的团体票可享受8折优惠,现有45名学生一起到电影院看电影,为享受8折优惠,必须按50人购团体票.

⑴请问他们购买团体票是否比不打折而按45人购票便宜;

⑵若学生到该电影院人数不足50人,应至少有多少人买团体票比不打折而按实际人数购票便宜.

解:⑴按实际45人购票需付钱_________ 元,然后如果按50人购买团体票则需付钱50×12×80%=480元,所以购买团体票便宜.

⑵设有x人到电影院观看电影,当x_____时,按实际人数买票______张,需付款_______元,而按团体票购票需付款________元,如果买团体票合算,那么应有不等式________________,

由①得,当x=45时,上式成立,让我们再取一些数据试一试,将结果填入下表:

x12x比较480与12x的大小48

由上表可见,至少要__________人时进电影院,购团体票才合算.

五、小结:

⑴不等式的定义,不等式的'解.

⑵对实际问题中探索得到的不等式的解,然后不仅要满足数学式子,而且要注意实际意义.

六、作业课本P42习题8.1第1、2、3题.

补充题:

1.用不等式表示:

(1)与1的和是正数;(2)的与的的差是非负数;

(3)的2倍与1的和大于3;(4)的一半与4的差的绝对值不小于.

(5)的2倍减去1不小于与3的和;(6)与的平方和是非负数;

(7)的2倍加上3的和大于-2且小于4;(8)减去5的差的绝对值不大于

2.小李和小张决定把省下的零用钱存起来.这个月小李存了168元,然后小张存了85元.下个月开始小李每月存16元,小张每月存25元.问几个月后小张的存款数能超过小李?(试根据题意列出不等式,并参照教科书中问题1的探索,找出所列不等式的解)

3.某公司在甲、乙两座仓库分别有农用车12辆和6辆,现需要调往A县10辆,调往B县8辆,已知从甲仓库调运一辆农用车到A县和B县的运费分别为40元和80元,然后从乙仓库调运一辆农用车到A县和B县的运费分别为30元和50元,(1)设从乙仓库调往A县农用车辆,用含的代数式表示总运费W元;(2)请你用尝试的方法,探求总运费不超过900元,共有几种调运方案?你能否求出总运费最低的调运方案.

不等式课件 篇2

(1)本节内容,是在学习了用方程思想解决实际问题和一元一次不等式的性质及其解法等知识的基础上,把实际问题和一元一次不等式结合在一起,既是对已学知识的运用和深化,又为今后用不等式组解决实际问题以及更广泛的应用数学建模的思想方法奠定基础,具有在代数学中承上启下的作用;

(2)通过本节的学习,学生将继续经历把生活中的数和数量关系转化为数学符号的体验过程,体会不等式和方程一样都是刻画现实世界数量关系的重要模型。

(3)在列不等式解决实际问题的探索过程中,引导学生注意估算意识,体会算式结果所对应的实际意义,渗透建立数学模型,分类讨论等数学思想,对提升学生应用数学意识思考和解决问题的能力起到积极的作用。

对于用不等式解决实际问题,学生容易出现的认知困难主要有两个方面:①哪类的实际问题需要用一元一次不等式来解决;②如何将实际问题转化为一元一次不等式并加以解决。

根据以上的分析和《数学课程标准》对本课内容的教学要求,本节课的教学重点是:一元一次不等式在决策类实际问题中的应用;难点是:如何将实际问题中的数量关系符号化,并根据解集和结合实际情况分类讨论得出合理结论。

根据本课教材的特点、《数学课程标准》对本节课的教学要求以及学生的认知水平,我从三个方面确定了以下教学目标:

1、能进一步熟练的解一元一次不等式,能从实际问题中抽象出不等关系的数学模型,并结合解集解决简单的实际问题。

2、通过观察、实践、讨论等活动,积累利用一元一次不等式解决实际问题的经验,提高分类考虑、讨论问题的能力,感知方程与不等式的内在联系,体会不等式和方程同样都是刻画现实世界数量关系的重要模型。

3、在积极参与数学学习活动的过程中,体会实事求是的态度和从数学的角度思考问题的习惯;学会在解决困难时,与其他同学交流,相互启发,培养合作精神。

根据教学内容、教学目标和学生的认知水平,我主要采取教师启发引导,学生自主探究的教学方法.教学过程中,创设适当的教学情境,引导学生独立思考、共同探究,使学生经历将生活中的数和数量关系转化为数学符号的具体建模过程,体会不等式作为刻画现实世界数量关系的重要模型的价值。

教学中使用多媒体投影、计算机辅助教学,目的是充分发挥其快捷、生动、形象的特点,为学生提供直观感性的材料,有助于学生对问题的关注和理解,激发学生的学习兴趣.

为了达到本节课的教学目标,突出重点,突破难点,我把教学过程通过两个实际问题逐步深入;最后归纳小结,布置作业.具体过程如下:

1、课题引入:

我们以前已经学过了一元一次方程以及二元一次方程组的解法,并在解决许多实际问题的过程中感受到:将相等关系用数学符号抽象后所得到的“方程”确实是一种有效数学工具,它能让我们的思维过程更加准确和简明!

但是,生活中除了相等的数量关系以外,还存在着大量的不等关系,通过前几节课的学习,我们也已经基本了解了不等式的性质和简单不等式的解法。今天,就让我们通过一些带有选择“决策”意义的实际问题来共同探讨一下一元一次不等式这种数学模型是如何解决生活中的实际问题的。

实际情景1:在为我校初一年级学生选定营养餐的过程中选中了有两家公司.

这两家公司某种适合初一学生的营养餐的报价均是是6.5元/份,营养含量和服务承诺也均相同,且都表示对学生优惠:甲公司表示每份按报价的90%收费,乙公司表示购买100份以上的部分按报价的80%收费.

结 合新课标对本小节的要求:会用一元一次不等式解决简单的实际问题,我选择的是从数量关系上与教材例题类似的收费问题,并且真实数值与所在年级事情相一致,比书上的例题更能贴近学生的实际生活,引发学生探求的`兴趣。特别的,通常此类题目是不给出具体单价的,因为并不影响最后结论,考虑到学生现阶段的数学抽象 仍以识别数量的具体含义为主,所以我在此处添加了单价,并增设了问题一,用以降低抽象思维的梯度,为后续的设未知数的“代数化抽象”作适当的铺垫。

问题(1)请你判断,我们年级580人用餐,应该选择哪家公司能让每位学生的餐费平均算来更低呢?

预案 一:教师应关注学生能否在讨论中认清“每位学生的餐费平均算来更低”所对应的数量意义,将之转化为“付给公司的总金额少”。在此处不排除学生因生活经历的缺乏,而对题目中所隐含的数量关系抽象能力弱。应关注每一位同学的感受,让同学们充分理解交流,扩大参与思考的广度,获得基本抽象思维的生长点。

预案二:在进行甲乙公司所需费用的计算时,会有分部计算和综合计算两种计算形式,对于那些列综合算式的同学,教师应多给予展示机会,从而帮助其他同学整理思路,理解算式的实际含义;为后续的字母抽象做好铺垫。具体计算学生可以合理使用计算器提高课堂速度。

预案三:学生还有可能不通过计算,直接猜测甲公司合算或者乙公司合算,对于这种有可能产生的声音,教师应从估算的角度加以引导。引导学生体会在580人的前提下,超过100人部分(480人)的甲公司是九折乙公司是八折, 10%的差距,;100人以内(少于100人)甲公司九折,乙公司不打折10%的差距,480的10%明显大于100的10%,所以选乙合算,并引导学生用计算的方法验证估算的准确性。

结论:580人时选择乙公司能让每位学生的餐费平均算来更低。

问题(2)你能否用以前学过的知识,在不知道具体人数的前提下制定一套方案,当其他学校的初一年级也想在这两家公司之间进行选择时,不用重复第一题的计算过程,只要知道人数就马上能根据你方案的结论作出决策呢?

结合以前的训练,学生很容易想到要通过设未知数的方法进行符号表达,将非常关键而题目中并未给出的学生人数设为未知数。由于本题的具体分析过程仍然是由学生分析讨论完成,可能出现的情况是:

预案一:一部分综合能力较强的同学会根据实际意义直接列出综合算式:或

此处教师应该引导学生观察,在化简不等式的过程中单价并未影响结果(利用不等式性质二将其作为公倍数约去),即:题目中没有具体的单价也不会影响本题的决策。

还可以结合小学单位一的思想化简不等式,引导学生体会并不是题目中出现的所有数量都会影响不等关系,有可能引发学生的关于数量关系的深层次思考。

预案 二:还有一部分学生会因为生活经验少的关系,综合思考能力弱,无法快速的理清数量关系,列出综合算式,思考受阻,教师应引导学生体会在第一题的算式意义的提示下,如何分别列出表达甲乙公司所需总费用的过程量代数式。然后在通过将之用不等号连接的方式,来表达两笔费用的大小,降低因综合性所引起的思维梯度, 在过程中让学生体会“分步建模”的思维的条理性。

问题(1)如果你是该企业的高级管理人员,请你设计该企业在购买设备时两种型号有几种不同的组合方案;

问题(2)若按固定产量预算企业每月产生的污水量约为20xx吨,为了节约资金,应选择哪种购买方案?

实际情景2的选择除涉及“角色扮演”和“环保”等人文因素的考虑以外,在在结合本节的教学目标上还有如下考虑,

1、 本题取材于真实的实际生活问题,情景中的符号和数量关系较多,不等关系在文字语言的叙述中显得比第一题更加隐蔽,需要学生更深化的思考才能列出算式,是在第一个情景的基础上的扩展和深化。

2、 在学生的讨论过程中,教师应注重引导学生体会,用图表表示的数字信息比文字表达更便于观察和有序思考,感受“有序表达”在实际中的价值。

3、 结合本题每一个的具体问题的分析和解决,学生必须要从表格中分析筛选相关的有用数据,(例如:在第一问设计方案时未用到“处理污水量”和“年消耗费”,在第二问中未用到“价格”和“年消耗费”)这种分析和筛选的思考经历将有助于加强学生对数据关系的理解和运用能力。

结合以前的训练,在思考问题(1)学生很容易想到要通过设A型或B型设备的

例如:(1)设购买污水处理设备A型 台,则B型(10 – )台,由题意知:

在此处,将“限额为105万元”转化为“≤105”是学生要突破的第一关,教师应在次处多展示同学的对“限额为105万元”语言解释,尽可能多的在具有不同经历基础的同学心中将这个抽象过程生活化、自然化。

因为在实际情景中往往要根据未知数所代表的具体含义为未知数的加一个取值范围的限定,而这个隐含的限制条件往往是学生中所不容易考虑到的,教师应注意引导学生注意这一问题,

例如:本题中的 是设备的台数,应用非负整数的限制,所以 可取0、1、2,因此有三种购买方案:

①购A型0台,B型10台;

②购A型1台,B型9台;

③购A型2台,B型8台。

此处细节性的思考经历,有助于提高学生在建模过程中更全面的考虑数值的实际意义,促进抽象符号与具体意义在头脑中的融合。

特别的,此处的“0”是学生最容易忽视和丢掉的,教师在此处应重点引导学生思考当“ ”时,往往是企业最可能选的方案,因为不同的设备涉及到不同的维护问题,单一品种的设备往往更便于管理,这种思考有助于发散学生的思维,促进其结合实际作更全面的思考。

问题(2)的思维梯度较前几个问题进一步加大,学生必须理解“节约资金”这个目的的达成 一定是在“完成任务”的前提下的,要先通过对(1)中所得的三套方案是否能完成任务加以讨论和验证,然后再涉及计算哪个方案费用更低的问题

在验证三套方案的可行性时,收思维方式的局限,学生往往会选择逐一列举计算的讨论方式,并且由于数量少,很容易得出答案,教师可引导学生思考,如果满足(1)的方案不是三种,而是三十种呢?三百种呢?除了逐一讨论以外还有没有什么更好的方式能帮助我们迅速缩小范围呢?引导学生将所买设备能否完成任务量转化为如下不等关系:

(2)同(1)所设购买污水处理设备A型 台,则B型(10 – )台,

240 +200(10 – )≥20xx;

因此为了节约资金,应选购A型1台,B型9台。

此处的分析和引导有助于学生体会不等式在有效缩小讨论范围时的实际价值。

通过以上问题的解决,学生对不等式和方程一样都是刻画现实世界数量关系的重要模型有了进一部的认识,并感受到不等式确实是从实际问题中提出,又为解决实际问题提供明确的帮助有效数学工具。

本阶段通过学习小结进行课堂教学的反馈,组织和指导学生归纳知识、技能、方法,深化对数学思想方法的认识,为后续学习打好基础。

不等式课件 篇3

(1)本节内容,是在学习了用方程思想解决实际问题和一元一次不等式的性质及其解法等知识的基础上,把实际问题和一元一次不等式结合在一起,既是对已学知识的运用和深化,又为今后用不等式组解决实际问题以及更广泛的应用数学建模的思想方法奠定基础,具有在代数学中承上启下的作用;

(2)通过本节的学习,学生将继续经历把生活中的数和数量关系转化为数学符号的体验过程,体会不等式和方程一样都是刻画现实世界数量关系的重要模型。

(3)在列不等式解决实际问题的探索过程中,引导学生注意估算意识,体会算式结果所对应的实际意义,渗透建立数学模型,分类讨论等数学思想,对提升学生应用数学意识思考和解决问题的能力起到积极的作用。

对于用不等式解决实际问题,学生容易出现的认知困难主要有两个方面:①哪类的实际问题需要用一元一次不等式来解决;②如何将实际问题转化为一元一次不等式并加以解决。

根据以上的分析和《数学课程标准》对本课内容的教学要求,本节课的教学重点是:一元一次不等式在决策类实际问题中的应用;难点是:如何将实际问题中的数量关系符号化,并根据解集和结合实际情况分类讨论得出合理结论。

根据本课教材的特点、《数学课程标准》对本节课的教学要求以及学生的认知水平,我从三个方面确定了以下教学目标:

1.能进一步熟练的解一元一次不等式,能从实际问题中抽象出不等关系的数学模型,并结合解集解决简单的实际问题。

2.通过观察、实践、讨论等活动,积累利用一元一次不等式解决实际问题的经验,提高分类考虑、讨论问题的能力,感知方程与不等式的内在联系,体会不等式和方程同样都是刻画现实世界数量关系的重要模型。

3.在积极参与数学学习活动的过程中,体会实事求是的态度和从数学的角度思考问题的习惯;学会在解决困难时,与其他同学交流,相互启发,培养合作精神。

三、教学方法的选择

根据教学内容、教学目标和学生的认知水平,我主要采取教师启发引导,学生自主探究的教学方法.教学过程中,创设适当的教学情境,引导学生独立思考、共同探究,使学生经历将生活中的数和数量关系转化为数学符号的具体建模过程,体会不等式作为刻画现实世界数量关系的重要模型的价值,

教学中使用多媒体投影、计算机辅助教学,目的是充分发挥其快捷、生动、形象的特点,为学生提供直观感性的材料,有助于学生对问题的.关注和理解,激发学生的学习兴趣.

为了达到本节课的教学目标,突出重点,突破难点,我把教学过程通过两个实际问题逐步深入;最后归纳小结,布置作业.具体过程如下:

1、课题引入:

我们以前已经学过了一元一次方程以及二元一次方程组的解法,并在解决许多实际问题的过程中感受到:将相等关系用数学符号抽象后所得到的“方程”确实是一种有效数学工具,它能让我们的思维过程更加准确和简明!

但是,生活中除了相等的数量关系以外,还存在着大量的不等关系,通过前几节课的学习,我们也已经基本了解了不等式的性质和简单不等式的解法。今天,就让我们通过一些带有选择“决策”意义的实际问题来共同探讨一下一元一次不等式这种数学模型是如何解决生活中的实际问题的。

实际情景1:在为我校初一年级学生选定营养餐的过程中选中了有两家公司.

这两家公司某种适合初一学生的营养餐的报价均是是6.5元/份,营养含量和服务承诺也均相同,且都表示对学生优惠:甲公司表示每份按报价的90%收费,乙公司表示购买100份以上的部分按报价的80%收费.

结 合新课标对本小节的要求:会用一元一次不等式解决简单的实际问题,我选择的是从数量关系上与教材例题类似的收费问题,并且真实数值与所在年级事情相一致,比书上的例题更能贴近学生的实际生活,引发学生探求的兴趣。特别的,通常此类题目是不给出具体单价的,因为并不影响最后结论,考虑到学生现阶段的数学抽象 仍以识别数量的具体含义为主,所以我在此处添加了单价,并增设了问题一,用以降低抽象思维的梯度,为后续的设未知数的“代数化抽象”作适当的铺垫。

问题(1)请你判断,我们年级580人用餐,应该选择哪家公司能让每位学生的餐费平均算来更低呢?

预案 一:教师应关注学生能否在讨论中认清“每位学生的餐费平均算来更低”所对应的数量意义,将之转化为“付给公司的总金额少”。在此处不排除学生因生活经历的缺乏,而对题目中所隐含的数量关系抽象能力弱。应关注每一位同学的感受,让同学们充分理解交流,扩大参与思考的广度,获得基本抽象思维的生长点。

预案二:在进行甲乙公司所需费用的计算时,会有分部计算和综合计算两种计算形式,对于那些列综合算式的同学,教师应多给予展示机会,从而帮助其他同学整理思路,理解算式的实际含义;为后续的字母抽象做好铺垫。具体计算学生可以合理使用计算器提高课堂速度。

预案三:学生还有可能不通过计算,直接猜测甲公司合算或者乙公司合算,对于这种有可能产生的声音,教师应从估算的角度加以引导。引导学生体会在 580人的前提下,超过100人部分(480人)的甲公司是九折乙公司是八折, 10%的差距,;100人以内(少于100人)甲公司九折,乙公司不打折10%的差距,480的10%明显大于100的10%,所以选乙合算,并引导学生用计算的方法验证估算的准确性。

不等式课件 篇4

教学建议

一、知识结构

本书首先结合实例引入一元一次不等式组的解集的概念,然后通过三个例题说明利用数轴解一元一次不等式组的方法,最后对一元一次不等式组的解法步骤进行了总结.

二、重点、难点分析

本节教学的重点是掌握一元一次不等式组的解法步骤并准确地求出解集.难点是正确应用不等式的基本性质对不等式进行变形、求不等式组中各个不等式解集的公共部分.不等式在中学代数中是研究问题的重要工具,例如求函数的定义域、值域、研究函数的单调性,求最大值、最小值,一元二次方程根的讨论等,都要用到不等式的知识.不等式也是进一步学习其他数学内容的基础.学习和掌握不等式的求解和不等式的证明方法,对培养学生逻辑思维能力也有极其重要的作用.在处理解不等式的问题中,一元一次不等式组的解法,具有特别重要的意义.这是因为,解各类不等式的问题都可以归结为解一些由简单不等式所组成的不等式组.

1、在构成不等式组的几个不等式中

①这几个一元一次不等式必须含有同一个未知数;

②这里的“几个”并未确定不等式的个数,只要不是一个,两个,三个,四个……都行.

2、当几个不等式的解集没有公共部分时,我们就说这个不等式组无解.

3、由两个一元一次不等式组成的不等式的解集,共归结为下面四种基本情况:

【注意】①其中第(4)个不等式组,实质上是矛盾不等式组,任何数都不能使两个不等式同时成立。所以说这个不等式组无解或说其解集为空集。②从上面列出的表中,我们可以概括出来不等式组公共解的一规律:同大取大,同小取小,一大一小中间找。

三、教法建议

1.解本节的引例及例1、例2、例3时,注意把解不等式组的思路讲清楚,即先分别解每一个不等式,求出解集,再求这些解集的公共部分.求公共部分的过程一定要结合数轴来讲。

2.这节课的讲解自始至终要突出解不等式组的基本思想以及解一元一次不等式组的步骤这两个重点.准确熟练地解一元一次不等式以及用数轴上的点表示不等式的解集是这节课的基础,因此讲新课之前要复习提问这些内容。

3.求公共解集是这节课的新授内容,教师要充分利用数轴表示不等式解集具有形象、直观、易于说明问题这些优点.解集的公共部分教师可用彩笔在数轴的相应部分描画出来,使学生感到醒目,便于理解记忆。

4.每组不等式不要超过三个,关键是使学生理解和掌握解不等式组的基本思想和两个步骤,不宜做过于难、过于多、重复的机械计算。

不等式课件 篇5

(一)复习提问:

三角形的三边关系?

(二)列一元一次不等式组

问题:现有两根木条a和b,a长10cm,b长3cm.如果要再找一根木条c,用这三根木条钉成一个三角形木框,那么对木条c的长度有什么要求?

注:这个问题是本节的'引入问题,三角形木框的形状不唯一确定,只要能成为三角形即可.

探究:用三根长度分别为14cm,9cm,6cm的木条c1,c2,c3分别试试,其中哪根木条能与木条a和b一起钉成三角形木框?

可以发现,当木条a和b的长度确定后,木条c太长或太短,都不能与a和b一起钉成三角形.

由于“三角形中两边之和大于第三边,两边之差小于第三边”,设木条c长xcm,则x必须同时满足不等式x10+3①和x10-3②

注:木条c必须同时满足两个条件,即ca+b,ca-b.

类似于方程组,把这两个不等式合起来,组成一个一元一次不等式组记作注:这里并未正式给一元一次不等式组下定义,只是说这两个不等式合起来,组成一个一元一次不等式组.实际上,两个或更多的一元一次不等式组合起来,都组成一个一元一次不等式组.

(三)一元一次不等式组的解集

类比方程组的解,怎样确定不等式组中x的可取值的范围呢?

不等式组中的各不等式解集的公共部分,就是不等式组中x可以取值的范围.

注:这里还未正式出现不等式组的解集的概念,但已点出各不等式的解集的公共部分即不等式组中未知数的可取值范围.

由不等式①解得x13.

由不等式②解得x7.

从图9.3—2容易看出,x可以取值的范围为713.

注:利用数轴可以直观形象地认识公共部分.这个公共部分是两端有界的开区间.

这就是说,当木条c比7cm长并且比13cm短时,它能与木条a和b一起钉成三角形木框.

一般地,几个不等式的解集的公共部分,叫做由它们所组成的不等式组的解集.解不等式组就是求它的解集.

注:这里正式给出不等式组的解集以及解不等式组的定义13.注:利用数轴可以直观形象地认识公共部分.这个公共部分是两端有界的开区间.这就是说,当木条c比7cm长并且比13cm短时,它能与木条a和b一起钉成三角形木框.一般地,几个不等式的解集的公共部分,叫做由它们所组成的不等式组的解集.解不等式组就是求它的解集.注:这里正式给出不等式组的解集以及解不等式组的定义。

不等式课件 篇6

一元一次不等式组(2)

文星中学唐波

一、教学目标

(一)知识与技能目标

1、熟练掌握一元一次不等式组的解法,会用一元一次不等式组解决有关的实际问题。

2、理解一元一次不等式组应用题的一般解题步骤,逐步形成分析问题和解决问题的能力。

(二)过程与方法目标

通过利用列一元一次不等式组解答实际问题,初步学会从数学的角度提出问题、理解问题、并能综合运用所学的知识解决问题,发展应用意识。

(三)情感态度与价值观

通过解决实际问题,体验数学学习的乐趣,初步认识数学与人类生活的密切联系。

二、教学重难点

(一)重点:建立用不等式组解决实际问题的数学模型。

(二)难点:正确分析实际问题中的不等关系,根据具体信息列出不等式组。

三、学法引导

(一)教师教法:直观演示、引导探究相结合。

(二)学生学法:观察发现、交流探究、练习巩固相结合。

四、教具准备:多媒体演示

五、教学过程

(一)、设问激趣,引入新课

猜一猜:我属狗,请同学们根据我的实际情况来猜测我的年龄。(学生大胆猜想,利用不等关系分析得出答案。)

(二)、观察发现,竞赛闯关

1、比一比:填表找规律

(学生抢答,教师补充。)2利用发现的规律解不等式组 ?(学生解答,抽生演板。)你可以得到它的整数解吗?

(抽生回答:因为大于11小于14的整数有12和13,所以整数解为12和13。)3填空:三角形三边长分别为2、7、c,则 c的取值范围是__________。如果c是一个偶

数,则 c=__________。

(学生回答,教师补充更正。)

(三)、欣赏图片,探究新知

1、欣赏“五岳看山”。

2、利用欣赏引出例题(教科书P139例2仿编)

例:3名同学计划在10天内到嵩山拍照500张(每天拍照数量相同),按原来的计划,不能完成任务;如果每人每天比原计划多拍1张,就能提前完成任务,每个同学原计划每天............拍多少张?

生齐读,找出题中的已知条件和未知条件;再默读,找一找表示数量关系的句子。师引导分析,并提出问题:

(1)你是怎样理解“不能完成任务”的数量含义的?你是怎样理解“提前完成任务”的数量含义的?

(2)解决这个问题,你打算怎样设未知数?

(3)在本题中,可以找出几个不等关系,可以列出几个不等式?(学生交流讨论,教师指导。)

?7x?98

?7(x?3)?98

解答完成后,学生自学课本例2。

3、由例解题答过程,类比列二元一次方程组解应用题的步骤,总结列一元一次不等式组的解题步骤:

(1)、分析题意,设未知数; .(2)、利用不等关系,列不等式组; .(3)、解不等式组; .

(4)、检验,根据题意写出答案。.(学生总结,抽生回答,教师补充。)

(四)、闯关练习,巩固新知

1练一练:为纪念“5·12”大地震一周年,“五一”部分同学到青城山拍照留念,如果每人拍8张则多于如果每人拍9张则不够问共有多少个同学参加青城山旅游? ..150张;..180张。

教师引导:抓住重点词语,找到不等关系,列出不等式组。学生独立完成,抽生回答。

比较列二元一次方程组和列一元一次不等式组解应用题的区别:

(学生类比找区别,教师补充。)2练一练(教科书P140练习第2题):一本英语书共98页,张力读了一周(7天)还没读完,而李永不到一周就已读完。李永平均每天比张力多读3页,张力平均每天读多少页(答案取整数)?

学生分析列出不等式组,教师指导。(前面的练习已解出不等式组。)

(五)、畅所欲言,归纳小结 学生畅所欲言,谈收获体会 多媒体展示,本课内容小结:

1、解一元一次不等式组的秘笈:同大取大,同小取小,大小小大中间找,大大小小解不了。

2、具有多种不等关系的问题,可通过不等式组解决。

3、列一元一次不等式组解应用题的步骤是:(1)、分析题意,设未知数;(2)、利用不等关系,列不等式组;(3)、解不等式组;

(4)、检验,根据题意写出答案。

(六)、课后演练,终极挑战

必做题:教材习题第4、5、6题;

选做题:一个两位数,它的十位数字比个位数字大1,而且这个两位数大于30小于42,则这个两位数是多少?

六、板书设计

一元一次不等式组(2)

解:设每个同学原计划每天拍x张,得

① ?3?10x?500

?

?3?10(x?1)?500②

1、分析题意,设未知数;

解得x

3根据题意,x应为整数,所以x=16 答:每个同学原计划每天拍16张。

2??

2、找不等关系,列不等式组; ?

?

3、解不等式组; ?步骤

??

?

4、检验并根据题意写出答案。?

不等式课件 篇7

科学合理的教学方法能使教学效果事半功倍,达到教与学的和谐完美统一。

基于此,我准备采用的教法讲授法、讨论法。德国教育学家第斯多慧:差的教师只会奉送真理,好的教师则交给学生如何发现真理,老师的教是为了不教,这才是教学的最高境界,所以我采用的学法是练习法、自主合作法。

在这节课的教学过程中,我注重突出重点,条理清晰,紧凑合理。各项活动的安排也注重互动、交流,最大限度的调动学生参与课堂的积极性、主动性。

首先是导入环节,我采用复习旧知的导入方法。我会让学生回忆不等式的概念以及一元一次方程的概念,明确指出今天学习的内容是《一元一次不等式》。

这样的设计既可以考查学生对之前知识的掌握情况,还能够为今天学习一元一次方程的概念打下基础。而且开门见山的导入方式能够快速地进入主题。

接下来是新知探索环节,首先我请学生类比不等式以及一元一次方程的概念,给一元一次不等式下定义。

能够总结出:含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式。

接下来让学生回忆上节课学习的不等式x-7>26如何解决的,通过学生回忆总结可以得到:通过“不等式的两边都加7,不等号的方向不变”而得到的。

接下来提问学生有没有更加简便的方法解不等式?让学生类比解一元一次方程的步骤进行解题。可以得到相当于可以用“移项”,来解决。

在这个过程中,强调每一个步骤,在第二题最后一步,强调当不等式的两边同时乘以(或除以)同一个负数时,不等号的方向改变。

解完不等式,先让学生回忆解一元一次方程的步骤是什么?并类比解一元一次方程的步骤,总结一下解一元一次不等式的步骤是什么?

从而我们归纳:解一元一次方程,要根据等式的性质,将方程逐步化为x=a的形式;而解一元一次不等式,则要根据不等式的性质,将不等式逐步化为xa的形式。

《数学课程标准》指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者”。根据这一教学理念,在本环节中,我组织学生进行了自主探究活动,让学生在保持高度学习热情和探究欲望的活动过程中,始终以愉悦的心情,亲身经历和体验知识的形成过程。培养学生的探究能力、分析思维能力,激发他们的创新意识、参与意识。

第三个环节是课堂练习环节,出示问题,解不等式,并在数轴上表示数集:5x+15>4x-1

之所以这样设计是因为练习是掌握知识、形成技能、发展思维的重要手段,针对本课的教学重点和难点,上述练习,目的是让学生进一步巩固对新知的理解。可以深化教学内容,培养思维的灵活性。

最后一个环节为小结作业环节,关于课堂小结,我打算让学生自己来总结今天的收获。

这样既发挥了学生的主体性,又可以提高学生的总结概括能力,让我在第一时间得到学习反馈,及时加以疏导。

通过这样的方式能够为本节课学习的知识进行进一步的巩固。

我的板书设计遵循简洁明了突出重点的意图,这是我的板书设计:

不等式课件 篇8

1、了解一元一次不等式组的概念。

2、理解一元一次不等式组的解集,能求一元一次不等式组的解集。

3、会解一元一次不等式组。

通过具体问题得到一元一次不等式组,从而了解一元一次不等式组的概念,解出每个不等式,利用数轴求出各不等式解集的公共部分,从而得到不等式组的解集,通过解几个有代表性的一元一次不等式组,总结出求不等式组解集的法则。

运用数轴确定不等式组的解集是行之有效的方法。这种“数形结合”的方法今后经常用到,锻炼同学们数形结合的能力,提高学习兴趣。

一元一次不等式组的解法。

确定一元一次不等式组的解集。

一、情境导入,初步认识

问题1现有两根木条a和b,a长10cm,b长3cm,如果要再找一根木条c,用这三根木条钉成一个三角形木框,那么木条c的长度有什么要求?

解:由于三角形中两边之____大于第三边,两边之____小于第三边,设c的长为xcm,则x<____,①x>____,②合起来,组成一个__________。

由①解得_____________,由②解得_____________。

在数轴上表示就是________________。

容易看出:x的取值范围是____________________。

这就是说,当木条c比____cm长并且比____cm短时,它能与木条a和b一起钉成三角形木框。

问题2由上面的解不等式组的过程用自己的语言归纳出一元一次不等式组的.解法。

全班同学可独立作业,也可分组自由讨论,10分钟后交流成果,逐步得出结论。

二、思考探究,获取新知

思考什么叫一元一次不等式组,什么叫一元一次不等式组的解集,什么叫解不等式组?

1、定义:

(1)一元一次不等式组:几个含有相同未知数的一元一次不等式合起来组成一个一元一次不等式组。

(2)一元一次不等式组的解集:几个不等式的解集的公共部分,叫做由它们所组成的不等式的解集。

(3)解不等式组:求一元一次不等式组的解集的过程叫解一元一次不等式组。

2、一元一次不等式组的解法:

(1)求出每个一元一次不等式的解集。

(2)求出这些解集的公共部分,便得到一元一次不等式组的解集。

不等式课件 篇9

本节教学的重点是不等式的解集的概念及在数轴上表示不等式的解集的方法.难点为不等式的解集的概念.

相同点:定义方式相同(使方程成立的未知数的值,叫做方程的解);解的表示方法也相同.

不同点:解的个数不同,一般地,一个不等式有无数多个解,而一个方程只有一个或几个解,例如, 能使不等式 成立,那么 是不等式的一个解,类似地 等也能使不等式 成立,它们都是不等式 的解,事实上,当 取大于 的数时,不等式 都成立,所以不等式 有无数多个解.

不等式的解与不等式的解集是两个不同的概念,不等式的解是指满足这个不等式的未知数的某个值,而不等式的解集,是指满足这个不等式的未知数的所有的值,不等式的所有解组成了解集,解集中包括了每一个解.

注意:不等式的解集必须满足两个条件:第一,解集中的任何一个数值,都能使不等式成立;第二,解集外的任何一个数值,都不能使不等式成立.

一般地,一个含未知数的不等式有无数多个解,其解集是某个范围,这个范围可用一个最简单的不等式表示出来,例如,不等式 的解集是 .

如不等式 的解集 ,可以用数轴上表示4的点的左边部分表示,因为 包含 ,所以在表示4的点上画实心圆.

如不等式 的解集 ,可以用数轴上表示4的点的左边部分表示,因为 包含 ,所以在表示4的点上画实心圈.

注意:在数轴上,右边的点表示的数总比左边的点表示的数大,所以在数轴上表示不等式的解集时应牢记:大于向右画,小于向左画;有等号的画实心圆点,无等号的画空心圆圈.

1.使学生了解不等式的解集、解不等式的概念,会在数轴上表示出不等式的解集.

2.知道不等式的“解集”与方程“解”的不同点.

通过教学,使学生能够正确地在数轴上表示出不等式的解集,并且能把数轴上的某部分数集用相应的不等式表示.

通过讲解不等式的“解集”与方程“解”的关系,向学生渗透对立统一的辩证观点.

通过本节课的学习,让学生了解不等式的解集可利用图形来表达,渗透数形结合的数学美.

2.学生学法:明确不等式的解与解集的区别和联系,并能熟练地用数轴表示不等式的解集,在数轴上表示不等式的解集时,要特别注意:大于向右画,小于向左画;有等号的画实心圆点,无等号的画空心圆圈.

不等式课件 篇10

1.了解不等式及一元一次不等式概念。

2.理解不等式的解、解集,能正确表示不等式的解集。

通过类比等式的对应知识,探索不等式的概念和解,体会不等式与等式的异同,初步掌握类比的思想方法。

1.经历把实际问题抽象为不等式的过程,能够列出不等关系式。

2.初步体会不等式(组)是刻画现实世界中不等关系的一种有效数学模型,培养学生的建模意识。

通过对不等式概念及其解集等有关概念的探索,培养学生的知识迁移能力和建模意识,加强同学之间的使用与交流。

活动一:

感知不等关系,了解不等式的概念。

通过实例,让学生认识到不等关系在生活中的存在,通过问题的解答,让学生了解不等式的概念,体会不等式是解决实际问题的有效工具。

活动二:

通过类比方程,继续探索出不等式的解、解集及其表示方法。

通过解决上个环节的问题,得出不等式的解,再引导学生观察解的特点,探索出解集的两种表示方法(符号表示、数轴表示),并且培养学生用估算方法求解集的技能。

活动三:

继续探索,归纳出一元一次不等式的意义。

针对所学的不等式,让学生归纳出特点,得到一元一次不等式的概念,并对概念进行辨析。

运用本节所学的知识,解决实际问题,使学生经历将实际问题转化为数学问题,再加以解决的过程,实现对所学知识的巩固和深化。

让学生通过自我反思和互相质疑提问,归纳总结本节课的主要内容,交流在概念、解及解集学习中的心得和体会,不断积累数学活动经验,教师应主动参与学生小结中,作好引导工作,布置好作业,并作及时反馈。

小强准备随父母乘车去武当山春游。

⑴在车上看到儿童买票所需的测身高标识线。

①x满足______时,他可免票。

②x满足______时,他该买全票。

⑵已知襄樊与武当山的距离为150千米,他们上午10点钟从襄樊出发,汽车匀速行驶。

①若该车计划中午12点准时到达武当山,车速应满足什么条件?

②若该车实际上在中午12点之前已到达武当山,车速应满足什么条件?

用不等式表示:

⑴a是正数;⑵a是负数;⑶a与5的和小于7;⑷a与2的差大于-1;

⑸a的4倍大于8;

⑹a的一半小于3。

学生回答①这两个由实际生活情境设置的问题,应非常容易.问题②相对①难度加大了,难在题意中的条件不象上面那样直接明了,并且可从距离和时间两个角度来分析、解决问题,而七年级学生恰恰缺乏阅读分析题意、多维度思考解决问题的能力,所以采用小组讨论交流的形式解决问题②

学生讨论角度估计大都集中在距离这一角度,教师可深入小组讨论中,认真听听同学们的思路,应鼓励学生多发表意见,并适当点拨,直到得出两种不等式。

此次活动中,教师应重点关注:讨论要有足够的时间和空间,学生在小组讨论交流时,是否敢于发表自己的想法。

再给出不等式概念:

像前面式子一样用“>”或“

教师可要求学生举出一些表示大小的式子,学生举出的不等式中,可能会有一些不含未知数的,如5>3等。教师此时应总结:不等式中可含有未知数,也可不含未知数。

教师根据学生举例给出表示不等关系的第三种符号“≠”,并强调:像前面式子一样用“≠”表示不等关系的式子也是不等式。

巩固练习是让学生用不等式来刻画题中6个简单的不等关系。学生得出答案并不难,所以该环节让学生独立完成、互相评价,教师可深入到学生的解题过程中,观察指导学生的解题思路,倾听学生的评价。

问题1在课本中起导入新课作用,考虑学生实际情况(分析应用题能力尚欠缺)和题目难度,所以设置问题串,降低难度。这样编排教材我认为更能体现知识呈现的序列性,从易到难,让学生“列不等式”能力实现螺旋上升。

问题3作用仅仅起巩固上面所学的知识,所以采用书中的一组习题,让学生独立完成,进一步培养学生列不等式能力。

采用学生熟悉的生活情境作为导入内容,然后层层推进,步步设问,环环相扣,直至推出不等式的概念及概念理解中应注意的地方。这样实现了:让学生从已有的数学经验出发,从生活中建构数学模型,为后面利用“不等式”这一模型解决生活中实际问题作好铺垫,体现了数学生活化、生活

不等式课件 篇11

1、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。

2、解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x项的系数化为1

1、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。

2、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。

3、求不等式组的解集的过程,叫做解不等式组。

4、当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。

3、代数式1-m的值大于-1,又不大于3,则m的取值范围是( )

A.x≥1 B.x≥-1/2 C.x>1 D.x>-1/2

A.5+4>8 B.2x-1 C.2x-5≤1 D.1/x-3x≥0

A. a>0¬ B.a≥0¬ C.a

11、若关于x的不等式组 的解集是x>2a,则a的取值范围是

A. a>4 B. a>2 C. a=2 D.a≥2

12、若方程组 中,若未知数x、y满足x+y>0,则m的取值范围是

13、不等式2(1) x>-3的解集是 。

14、用代数式表示,比x的5倍大1的数不小于x的 与4的差 。

15、若(m-3)x-1,则m .

18、某次个人象棋赛规定:赢一局得2分,平一局得0分,负一局得反扣1分。在12局比赛中,积分超过15分就可以晋升下一轮比赛,小王进入了下一轮比赛,而且在全部12轮比赛中,没有出现平局,问小王最多输 局比赛

1、定义:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点。

2、心对称的两条基本性质:

(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分。

(2)关于中心对称的两个图形是全等图形。

把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。

每上第一次课,我所讲的课程内容都和学生的错题有关。我通常把试卷中的错题摘抄出几个典型题,作为课堂的例题再讲一遍。而学生的反应,或是像没有见过,或是对题目非常熟悉,但没有思路。

这些现象的发生,都是学生没有及时总结的原因。所以第一次课后我都建议我的学生做一个错题本,像写日记一样,记录下自己的错题和感想。

成也审题败也审题。如何审题呢?

(1)这个题目有哪些个已知条件?我能不能把已知条件分开?

(2)求解的目标是什么?对求解有什么要求?

(3)能不能画一个图帮助思考?好多问题是没有看清楚题意致错。审题不清,你做得越多,可能错的就越多。

(4)所给出的已知条件相互之间有什么关系?能不能从中发现隐含条件?

(5)已知条件与求解目标有什么联系?能不能从中获得解题的思路?找到进门的门槛?

不等式课件 篇12

1.使学生感受到生活中存在着大量的不等关系,了解不等式和一元一次不等式的意义;

2.让学生自发地寻找不等式的解,会在数轴上正确地表示出不等式的解集;

3.能够根据题意准确迅速地列出相应的不等式。

1.通过汽车行驶过a地这一实例的研究,使学生体会到数学来源于生活,又服务于生活,培养学生“学数学、用数学”的意识;

2.经历由具体实例建立不等模型的过程,探究不等式的解与解集的不同意义的过程,渗透数形结合的思想。

㈢情感、态度、价值观:

1.通过对不等式、不等式的解与解集的探究,引导学生在独立思考的基础上积极参与对数学问题的讨论,培养他们的合作交流意识;

2.让学生充分体会到生活中处处有数学,并能将它们应用到生活的各个领域中去。

3.培养学生类比的思想方法、数形结合的思想。

1.教学重点:不等式、一元一次不等式、不等式解与解集的意义;在数轴上正确地表示出不等式的解集;

2.教学难点:不等式解集的意义,根据题意列出相应的不等式。

计算机、自制cai课件、实物投影仪、三角板等。

教师创设情境引入,学生交流探讨;师生共同归纳;教师示范画图,课件交互式练习。

〖创设情境——从生活走向数学〗

[多媒体展示]“五·一黄金周”快要到了,芜湖市某两个商场为了促销商品,推行以下促销方案:①甲商场:购物不超过50元者,不优惠;超过50元的,超过部分折优惠。②乙商场:购物不超过100元者,不优惠;超过100元的,超过部分九折优惠。亲爱的同学,如果五·一期间,你去购物,选择到哪个商场,才比较合算呢?

(以上教学内容是向学生设疑,激发学生探索问题、研究问题的积极性,可以让学生讨论一会儿)

教师:要想正确地解决这个问题,我们大家就要学习第九章《不等式和不等式组》,学完本章的内容后,我相信,聪明的你们一定都会作出正确的选择,真正地做到既经济又实惠。

首先,我们来共同学习本章的第一节课——9.1.1节《不等式及其解集》

〖新课学习〗

学习目标:

1.能感受到生活中存在着大量的不等关系,了解不等式和一元一次不等式和意义;

2.会寻找不等式的解,会在数轴上正确地表示出不等式的解集;

3.能够根据题意准确迅速地列出相应的不等式。

[多媒体展示一段动画]:引例:一辆匀速行驶的汽车在11:20距离a地50千米,要在12:00之前驶过a地,车速应满足什么条件?

设车速是x千米/小时,

(1)从时间上看,汽车要在12:00之前驶过a地,则以这个速度行驶50千米所用的时间不到 小时,即

(2)从路程上看,汽车要在12:00之前驶过a地,则以这个速度行驶 小时的路程要超过50千米,即

请同学们观察上面的两个式子,式子左右两边的大小关系是怎样的? 左右两边相等吗?

在学生充分发表自己意见的基础上,师生共同归纳得出:

用“>”或“<”号表示大小关系的式子叫做不等式;

用“≠”表示不等关系的式子也是不等式。

判断下列式子中哪些是不等式,是不等式的请在题后的括号内划“√”,不是的请划“×”

(1)3> 2      (     ) (2)2a+1> 0   (     )   (3)a+b=b+a  (     )

(4)x< 2x+1   (     )     (5)x=2x-5    (     ) (6)2x+4x< 3x+1 (     )          (7)15≠7+9  (     )

上面的不等式中,有些不含未知数,有些含有未知数,大家把(2)、(4)、(6)式与(5)式类比,(5)式是一个一元一次方程,能不能给(2)、(4)、(6)式也起个名字呢?

含有一个未知数, 未知数的次数是1的不等式,叫做一元一次不等式.

问题2:车速可以是78千米/小时吗?75千米/小时呢? 72千米/小时呢?

问题3:我们曾经学过“使方程两边相等的未知数的值就是方程的解”,那么我们可以把使不等式成立的未知数的值叫做什么呢?

(师生共同归纳)使不等式成立的未知数的值叫做不等式的解。

2.课堂练习二——动一动脑,动一动手,你一定能算得对。

76, 73, 79, 80, 74.9, 75.1, 90, 60

(学生做完后,师问):你还能找出这个不等式的其他的解吗?这个不等式有多少个解?你从中发现了什么规律?

(学生讨论后,师生共同总结):当x>75时,不等式 x>50总成立;而当x<75或x=75时,不等式 x>50不成立,这就是说,任何一个大于75的数都是不等式 x>50的解,这样的解有无数个。因此,x>75表示了能使不等式 x>50成立的x的取值范围,叫做不等式 x>50的解的集合,简称解集。

我们再回到前面的问题,经过刚才的分析,可以知道,要使汽车在12:00之前驶过a地,车速必须大于75千米/小时。

一个含有未知数的不等式的所有的解,组成了这个不等式的解集。

4.在数轴上表示不等式的解集;

注意:在表示75的点上画空心圆圈,表示不包括这一点.

5.课堂练习三——动一动脑,动一动手,你一定能算得对。

判断下列数中哪些是不等式x+3>6的解? 哪些不是?

-4, -2.5,  0,  1,  2.5,  3,  3.2,  4.8,  8,  12

求不等式的解集的过程叫做解不等式。

7.课堂练习四——看谁算得最快最准。

直接想出不等式的解集,并在数轴上表示出不等式的解集:

(1) x+3>6;        (2)2x<8;    (3)x-2>0

解:(1)x>3;         (2)x<4;    (3)x>2。

1.例用不等式表示:

(1)x与1的和是正数;      (2)的与的的差是负数;

(3)的2倍与1的和大于3;(4)的一半与4的差小于的3倍.

解:(1)x+1>0;         (2)+b<0;

(3)2+1>3;      (4)-4<3;

2.课堂练习五——看谁最列得又快又准。

用不等式表示:

(1)是正数;          (2)是负数;

(3)与5的和小于7;  (4)与2的差大于-1;

(5)的4倍大于8;      (6)的一半小于3.

答案;(1)>0;        (2)<0;   (3)+5>0;

学生小结,师生共同完善:

2.会寻找不等式的解,会在数轴上正确地表示出不等式的解集;

3.能够根据题意准确迅速地列出相应的不等式。

不等式课件 篇13

教学重点:掌握不等式的三条基本性质,尤其是不等式的基本性质3.

教学难点:正确应用不等式的三条基本性质进行不等式变形.

通过观察、分析、讨论,引导学生归纳总结出不等式的三条基本性质,从具体上升到理论,再由理论指导具体的练习,从而强化学生对知识的理解与掌握.

(设计说明:设置以下习题是为了温故而知新,为学习本节内容提供必要的知识准备.)

2、什么是不等式?

3、用“>”或“<”填空.

(教学说明: 复习等式的基本性质后学生自然会联想到,不等式是否有与等式相类似的性质,从而引起学生的探究欲望.接着问题3为学生探究不等式的性质提供了载体,通过观察,寻找规律,得出不等式的性质.)

先让学生独立思考,后合作交流,通过充分讨论,类比等式性质得出不等式的性质.

观察时,引导学生注意不等号的方向,通过(1)题学生容易得出不等式性质1:

不等式基本性质1 不等式两边加(或减)同一个数(或式子),不等号的方向不变.

比较(2)、(3)题,注意观察不等号方向,并思考不等号方向的改变与什么有关?由学生概括总结,教师补充完善得出:

不等式基本性质2 不等式两边乘(或除以)同一个不为零的正数,不等号的方向不变.

不等式基本性质3 不等式两边乘(或除以)同一个不为零的负数,不等号的方向改变.

通过PPT用图形演示不等式的基本性质,让学生更加清楚地认识不等式的基本性质。

不等式有传递性吗?

【学生通过讨论能够比较容易得出结论:不等式有对称性,但要注意其不等号方向的`变化;不等式也有传递性,但要注意的是同向传递性。】

三、巩固训练,熟练技能:

1、(1) a - 3____b - 3;

(3) 0.1a____0.1b;

(5) 2a+3____2b+3;

【本题目采用提问的方式,因为内容相对简单,所以可以迅速得到结论。要让提问者说清楚答案,并说明利用不等式的性质几来进行判定的。】

(1)因为7.5>5.7,所以-7.5<-5.7;

(2)因为a+8>4,所以a>-4;

(3)因为4a>4b,所以a>b;

(4)因为-1>-2,所以-a-1>-a-2;

(5)因为3>2,所以3a>2a.

【学生口答,并说明为什么。本题重点是第5小题,要引导学生总结出a的取值会影响到答案。当a>0时,3a>2a.(不等式基本性质2)

当 a=0时,3a=2a.当a<0时,3a<2a.(不等式基本性质3) 】

学生自己完成以下题目,之后进行集体讲解。

(1)如果x-5>-1,那么______________________,得:x>4

(2)如果-2x>3,那么那么______________________,得X=______

师生共同小结本节课所学重点,不等式的基本性质的具体内容。

不等式课件 篇14

基本不等式是数学中重要的一个概念,它与不等式的证明和应用有着密切的关系。基本不等式的解法和思维方法不仅能让我们更好地掌握不等式的性质和应用,同时也能让我们更好地解决数学中的其他问题。下面,让我们就基本不等式这一主题展开更加深入的探讨。

一、基本不等式的定义、证明和性质

基本不等式定义:对于任意实数$x$,$y$,有$(x^2+y^2)\geq 2xy$,等号成立当且仅当$x=y$时成立。

基本不等式的证明:我们可以通过平方展开和配方进行证明,即:

$(x-y)^2\geq 0$

$x^2-2xy+y^2\geq 0$

$x^2+y^2\geq 2xy$

证毕。

基本不等式的性质:基本不等式可以用于求证其他不等式和解决实际问题,例如可以用基本不等式证明算术平均数$\ge$几何平均数,可以用基本不等式求证要想最小化一个多项式,需要使其中的各项等于彼此等于基本不等式中的相等值等。

二、基本不等式的应用及相关例题

基本不等式的应用广泛,其中最常见的应用就是在证明和求解不等式问题中。下面,我们就通过例题来展示基本不等式的具体应用。

例题一:

已知$a,b,c$均为正实数,求出$abc$与$\frac{(a+b+c)^3}{27}$的大小关系。

解:由于$a,b,c$均为正实数,故可运用基本不等式进行求解,即

$\begin{aligned}

\frac{(a+b+c)}{3}\geq\sqrt[3]{abc}\

(a+b+c)^3\geq 27abc

\end{aligned}$

因此,

$\frac{(a+b+c)^3}{27}\geq abc$

即$\frac{(a+b+c)^3}{27}\geq abc$

得证。

例题二:

已知$a+b=3$,$a^2+b^2=5$,求出$a,b$的大小关系。

解:由已知条件可得$(a+b)^2=a^2+b^2+2ab$,即

=5+2ab$

$ab=\frac{4}{3}$

由基本不等式知得

ab=\frac{8}{3}\leq a^2+b^2=5$

即$a^2+b^2>2ab$,因此$a^2>b^2$,

又因为$a+b=3$,所以$b=3-a$,

所以$(3-a)^2

+a^2-6a

$a>\frac{3}{2}$

因此,

$a>b>\frac{3}{2}-a$

即id="article-content1">

一元一次不等式课件

发布时间:2023-12-06 一元一次不等式课件 一元不等式课件 不等式课件

2023一元一次不等式课件(热门五篇)。

对于对“一元一次不等式课件”感兴趣的读者来说,本篇幼儿教师教育网编辑精选的文章绝对是必读之选。热情欢迎您光临本网站,希望您在这里度过愉快的时光。根据教学要求,老师在上课前需要准备好教案和课件,教案和课件的内容是老师自己去完善的。学生的反馈可以帮助教师及时评估自己的教学效果。

一元一次不等式课件 篇1

一、教学目标:

(一)知识与能力目标:(课件第2张)

1.体会解不等式的步骤,体会比较、转化的作用。

2.学生理解、巩固一元一次不等式的解法.

3.用数轴表示解集,加深对数形结合思想的进一步理解和掌握。

4.在解决实际问题中能够体会将文字语言转化成数学语言,学会用数学语言表示实际的数量关系。

(二)过程与方法目标:

1.介绍一元一次不等式的概念。

2.通过对一元一次方程的解法的复习和对不等式性质的利用,导入对解不等式的讨论。

3.学生体会通过综合利用不等式的概念和基本性质解不等式的方法。

4.学生将文字表达转化为数学语言,从而解决实际问题。

5.练习巩固,将本节和上节内容联系起来。

(三)情感、态度与价值目标:(课件第3张)

1.在教学过程()中,学生体会数学中的比较和转化思想。

2.通过类比一元一次方程的解法,从而更好的掌握一元一次不等式

的解法,树立辩证统一思想。

3.通过学生的讨论,学生进一步体会集体的作用,培养其集体合作的精神。

4.通过本节的学习,学生体会不等式解集的奇异的数学美。

二、教学重、难点:

1.掌握一元一次不等式的解法。

2.掌握解一元一次不等式的阶梯步骤,并能准确求出解集。

3.能将文字叙述转化为数学语言,从而完成对应用问题的解决。

三、教学突破:

教材中没有给出解法的一般步骤,所以在教学中要注意让学生经历将所给的不等式转化为简单不等式的过程,并通过学生的讨论交流使学生经历知识的形成和巩固过程。在解不等式的过程中,与上节课联系起来,重视将解集表示在数轴上,从而指导学生体会用数形结合的方法解决问题。在研究中,鼓励学生用多种方法求解,从而锻炼他们活跃的思维。

四、教具:计算机辅助教学.

五、教学流程:

(一)、复习:

教学环节

教师活动

学生活动

设计意图

导入新课

1.给出方程:(x+4)/3=(3x-1)/2,抽学生演算。(注意步骤)

2.学生回忆不等式的性质,并说出解不等式的关键在哪里。

3.让学生举一些不等式的例子。在学生归纳出一元一次不等式的概念后,据情况点评。

4.新课导入:通过上节课的学习,我们已经掌握了解简单不等式的方法。这节课我们来共同探讨解一元一次不等式的方法。

5.学生练习,并说出解一元一次方程的步骤。

6.认真思考,用自己的语言描述不等式的性质,说出解不等式的关键在于将不等式化为x≤a或x≥a的形式。(出示课件第2页)

7.举出不等式的例子,从中找出一元一次不等式的例子,归纳出一元一次不等式的概念。

8.明确本课目标,进入对新课的学习。

9.复习解一元一次方程的解法和步骤。

10.让学生回顾性质,以加强对性质的理解、掌握。

11.运用类比思维

12.自然过度,出示课件第3、4张

(二)、新授:

教学环节

教师活动

学生活动

设计意图

探究一元一次等式的解法

1、学生观察课本第61页例3,教师说明:解不等式就是利用不等式的三条基本性质对不等式进行变形的过程。提醒学生注意步骤。

2.分析学生的解答,提醒学生在解不等式中常见的错误:不等式两边同乘(除)同一个负数不等号方向要改变。

3.激励学生完成对(2)解答,并找学生上讲台演示。

4.强调在数轴上表示解集时的关键(出示课件第8页)

5.出示练习(出示课件第9页)

6.鼓励学生讨论课本第61页的例4。提示学生:首先将简单的文字表达转化成数学语言。(出示课件第10页)

7.指导学生归纳步骤。

8.补充适当的练习,以巩固学生所学。(出示课件第12页)

9.类比解一元一次方程,仔细观察,理解用不等式的性质(3)解不等式的原理,并掌握用数轴表示不等式的解的方法。

10.学生类比解一元一次方程的步骤

与解一元一次不等式的一般步骤,同时完成练习。(出示课件第6页)

11.完成例3(2):2(5x+3)≤x-3(1-2x)的解答。教师提示,组内讨论后,检查自己的解答过程,弥补不足,进一步体会解一元一次不等式的方法。

12.理解、体会在数轴上表示解集的方法和关键。

13.学生组内讨论完成。

14.认真完成对例题的解答,在教师的提示下找到不等量关系,列出不等式:(x+4)/3-(3x-1)/2>1,并求解。

15.组内讨论并归纳后,看教师所出示的课件。(出示课件第11页)

16.认真完成练习。

17.电脑逐步演示,让学生从演示过程中理解不等式的解法。(出示课件第5张)

18.巩固对一般解法的理解、掌握。

19.通过类比归纳,提高学生的自学能力。(出示课件第7页)以订正学生解答。

20.让学生明白不等式的解集是一个范围,而方程的解是一个值。

21.培养学生的扩展能力。

22.类比一元一次方程的解法以加深对一元一次不等式解法的理解。

23.通过动手、动脑使所学知识得到巩固。

24.巩固所学。

(三)、小结与巩固:

教学环节

教师活动

学生活动

设计意图

小结与巩固

1.引导学生对本课知识进行归纳。

2.学生完成后(出示课件第13、14页)。

3.练习与巩固。

1.学生组内讨论小结,组长帮助组员对知识巩固、提升。

2.学生加强理解。

3.完成练习:书63页第4题,第5(2、4)题。

1.培养学生总结、归纳的能力。

2.点拨学生对知识的理解与掌握。

3.巩固本课所学。

一元一次不等式课件 篇2

一元一次不等式组(一)

教学目标

1.使学生知道一元一次不等式组及其解集的含义,会利用数轴求一元一次不等式组的解集;

2.使学生逐步学会用数形结合的观点去分析问题、解决问题. 教学重点和难点

重点:掌握一元一次不等式组解集的含义. 难点:求不等式组中各不等式的解集的公共部分. 课堂教学过程设计

一、从学生原有的认知结构提出问题

1.什么叫不等式?不等式的解?不等式的解集?解不等式?

3.将第2题中的不等号改为等号所得的一元一次方程的解是什么?不等式的解集与方程的解有什么不同?

4.(投影)在数轴上表示下列不等式的解集:

(1)x>2;(2)x<-1;(3)x≥2;(4)x≤-2;(5)1<x<3;(6)-3≤x<0.

5.(投影)将下列各图中数轴上的点的集合用不等式来表示.(学生口答完成)

在学生解答完上述各题的基础上,教师指出,我们知道,物体A的重量x克大于2克,且小于3克,就是说,x的取值要使不等式x>2与x<3同时成立.

而将一元一次不等式x>2与x<3合在一起,就组成了一个一元一次不等式组,记作

本节课,我们就来学习一元一次不等式组及其解法.

二、讲授新课 1.利用数轴的直观性,师生共同得出一元一次不等式组解集的概念 首先,在数轴上表示不等式①,②的解集,如下图.

其次,可向学生提出如下问题:

(1)通过观察,要使不等式①,②同时成立,则x的取值范围是什么?(2)这个取值范围,是不等式①,②的解集的什么? 进一步追问,什么叫一元一次不等式组的解集?

最后,板书一元一次不等式组的解集的定义.

一般地,几个一元一次不等式的解集的公共部分,叫做由它们所组成的一元一次不等式组的解集.

求不等式组的解集的过程,叫解不等式组.

例1(1)在同一数轴上表示x<2,x>-3的解集.(2)在同一数轴上表示x>-4,x>-1的解集.(3)在同一数轴上表示x<2,x<-3的解集.(4)在同一数轴上表示x>2,x<-1的解集.

若上述各题中的解集有公共部分,用不等式表示出来.(此题可由学生板演来完成). 解:

此时,教师指出:由上例可以看出,由不等式x>-3或x<2合在

类似的,上例中

练习

解不等式组:

(本练习,应继续巩固学生利用数轴的直观性解不等式组的能力)2.启发学生总结解一元一次不等式组的方法及步骤 例2 解不等式组:

师生共同分析:我们知道,解不等式组就是求不等式组解集的过程.那么如何求不等式组的解集呢?(让学生想一想,然后请几名学生回答)应首先求出不等式①和②的解集,然后利用数轴找出这两个解集的公共部分,就是不等式组的解集.

解:解不等式①,得x>2,解不等式②,得x>3,在数轴上表示不等式①,②的解集.

所以这个不等式组的解集是x>3.

(首先让两名学生分别解出不等式①,②然后回答不等式组解集.教师板书解答过程,并用彩笔在数轴上把相应的部分描述出来,以使学生感到醒目,加深理解记忆)例3 解不等式组:

解:解不等式①,得x<3,在数轴上表示为

(本题让一名学生板演,其余学生在练习本上自己完成,教师巡视,并及时纠正学生在解题过程中出现的问题)结合上面两个例题,教师应让学生思考并回答,解一元一次不等式组的方法及步骤是什么?

解一元一次不等式组可以分为以下两个步骤:

(1)求出这个不等式组中各个不等式的解集;

(2)利用数轴求出这些不等式的解集的公共部分,即求出这个不等式组的解集.(若各个不等式的解集无公共部分,则此不等式无解)

三、课堂练习1.填表:(投影)

2.解下列不等式组:

四、师生共同小结

首先,让学生回答以下问题: 1.本节课我们学习了哪些内容?

2.什么叫一元一次不等式组的解集?什么叫解不等式组? 3.解一元一次不等式组的步骤是什么?

4.若一元一次不等式组中,不等式的个数多于两个时,解集的求法有无变化?结合学生的回答,教师指出,一元一次不等式组的解集是这个不等式组中各个不等式的解集的公共部分;当不等式个数多于两个时,求解方法没有变化.

五、作业

解不等式组:

课堂教学设计说明

在设计教学过程时,注意到了学生的年龄特点.遵循由浅入深、循序渐进的原则,并注意利用数轴的形象、直观来表示不等式组的解集.

一元一次不等式课件 篇3

学习目标:

1、了解一元一次不等式组的概念,理解一元一次不等式组的解集的意义。

2、会解由两个一元一次不等式组成的一元一次不等式组,能借助数轴正确的表示一元一次不等式组的解集。

3、通过探讨一元一次不等式组的解法以及解集的确定,渗透转化思想,进一步感受数形结合在解决问题中的作用。

4、体验不等式在实际问题中的作用,感受数学的应用价值。

学习重点:

一元一次不等式组的解法

学习难点:

一元一次不等式组解集的确定。

一、学前准备

【回顾】

1.解不等式 ,并把解集在数轴上表示出来。

【预习】

1、 认真阅读教材34-35页内容

2、__________叫做一元一次不等式组。

_________叫做一元一次不等式组的解集。

叫做解不等式组。

4、求下列两个不等式的解集,并在同一条数轴上表示出来

二、探究活动

【例题分析】

例1. (问题1)题中的买5筒钱不够,买4筒钱又多的含义是什么?

例2. (问题2)题中的相等关系是什么?不等关系又是什么?

例3. 解不等式组

【小结】

不等式组解集口诀

同大取大,同小取小,大小小大中间找,大大小小解不了

一元一次不等式组解集四种类型如下表:

不等式组(a)

(1)xb

xb 同大取大

(2)x

x

(3)xax

a

(4)xb

无解 大大小小解不了

【课堂检测】

1、不等式组 的解集是( )

A. B. C. D.无解

2、不等式组 的解集为( )

A.-1

3、不等式组 的解集在数轴上表示正确的是( )

A B C D

4、写出下列不等式组的解集:(教材P35练习1)

三、自我测试

1.填空

(1)不等式组x-1 的解集是___;

(2)不等式组x-2 的解集 ;

(3)不等式组x1 的解集是____;

(4)不等式组x-4 解集是____。

2、解下列不等式组,并在数轴上表示出来

四、应用与拓展

若不等式组 无解,则m的取值范围是 _____.

一元一次不等式课件 篇4

一元一次不等式组(2)

文星中学唐波

一、教学目标

(一)知识与技能目标

1、熟练掌握一元一次不等式组的解法,会用一元一次不等式组解决有关的实际问题。

2、理解一元一次不等式组应用题的一般解题步骤,逐步形成分析问题和解决问题的能力。

(二)过程与方法目标

通过利用列一元一次不等式组解答实际问题,初步学会从数学的角度提出问题、理解问题、并能综合运用所学的知识解决问题,发展应用意识。

(三)情感态度与价值观

通过解决实际问题,体验数学学习的乐趣,初步认识数学与人类生活的密切联系。

二、教学重难点

(一)重点:建立用不等式组解决实际问题的数学模型。

(二)难点:正确分析实际问题中的不等关系,根据具体信息列出不等式组。

三、学法引导

(一)教师教法:直观演示、引导探究相结合。

(二)学生学法:观察发现、交流探究、练习巩固相结合。

四、教具准备:多媒体演示

五、教学过程

(一)、设问激趣,引入新课

猜一猜:我属狗,请同学们根据我的实际情况来猜测我的年龄。(学生大胆猜想,利用不等关系分析得出答案。)

(二)、观察发现,竞赛闯关

1、比一比:填表找规律

(学生抢答,教师补充。)2利用发现的规律解不等式组 ?(学生解答,抽生演板。)你可以得到它的整数解吗?

(抽生回答:因为大于11小于14的整数有12和13,所以整数解为12和13。)3填空:三角形三边长分别为2、7、c,则 c的取值范围是__________。如果c是一个偶

数,则 c=__________。

(学生回答,教师补充更正。)

(三)、欣赏图片,探究新知

1、欣赏“五岳看山”。

2、利用欣赏引出例题(教科书P139例2仿编)

例:3名同学计划在10天内到嵩山拍照500张(每天拍照数量相同),按原来的计划,不能完成任务;如果每人每天比原计划多拍1张,就能提前完成任务,每个同学原计划每天............拍多少张?

生齐读,找出题中的已知条件和未知条件;再默读,找一找表示数量关系的句子。师引导分析,并提出问题:

(1)你是怎样理解“不能完成任务”的数量含义的?你是怎样理解“提前完成任务”的数量含义的?

(2)解决这个问题,你打算怎样设未知数?

(3)在本题中,可以找出几个不等关系,可以列出几个不等式?(学生交流讨论,教师指导。)

?7x?98

?7(x?3)?98

解答完成后,学生自学课本例2。

3、由例解题答过程,类比列二元一次方程组解应用题的步骤,总结列一元一次不等式组的解题步骤:

(1)、分析题意,设未知数; .(2)、利用不等关系,列不等式组; .(3)、解不等式组; .

(4)、检验,根据题意写出答案。.(学生总结,抽生回答,教师补充。)

(四)、闯关练习,巩固新知

1练一练:为纪念“5·12”大地震一周年,“五一”部分同学到青城山拍照留念,如果每人拍8张则多于如果每人拍9张则不够问共有多少个同学参加青城山旅游? ..150张;..180张。

教师引导:抓住重点词语,找到不等关系,列出不等式组。学生独立完成,抽生回答。

比较列二元一次方程组和列一元一次不等式组解应用题的区别:

(学生类比找区别,教师补充。)2练一练(教科书P140练习第2题):一本英语书共98页,张力读了一周(7天)还没读完,而李永不到一周就已读完。李永平均每天比张力多读3页,张力平均每天读多少页(答案取整数)?

学生分析列出不等式组,教师指导。(前面的练习已解出不等式组。)

(五)、畅所欲言,归纳小结 学生畅所欲言,谈收获体会 多媒体展示,本课内容小结:

1、解一元一次不等式组的秘笈:同大取大,同小取小,大小小大中间找,大大小小解不了。

2、具有多种不等关系的问题,可通过不等式组解决。

3、列一元一次不等式组解应用题的步骤是:(1)、分析题意,设未知数;(2)、利用不等关系,列不等式组;(3)、解不等式组;

(4)、检验,根据题意写出答案。

(六)、课后演练,终极挑战

必做题:教材习题第4、5、6题;

选做题:一个两位数,它的十位数字比个位数字大1,而且这个两位数大于30小于42,则这个两位数是多少?

六、板书设计

一元一次不等式组(2)

解:设每个同学原计划每天拍x张,得

① ?3?10x?500

?

?3?10(x?1)?500②

1、分析题意,设未知数;

解得x

3根据题意,x应为整数,所以x=16 答:每个同学原计划每天拍16张。

2??

2、找不等关系,列不等式组; ?

?

3、解不等式组; ?步骤

??

?

4、检验并根据题意写出答案。?

一元一次不等式课件 篇5

一、素质教育目标

(一)知识教学点

1.理解一元一次不等式组解集的概念,会利用数轴较简单的一元一次不等式组。

2.掌握一元一次不等式组解集的几种情况。

(二)能力训练点

通过利用数轴解不等式组,培养学生的观察能力、分析能力、归纳总结能力。

(三)德育渗透点

通过不等式组解集的求法,培养学生的观察与分析能力,渗透辩证唯物主义的观点。

(四)美育渗透点

用数轴求不等式组的解集,渗透用数学图形解题的直观性、简捷性的数学美。

二、学法引导

1.教学方法:引导发现法、观察法、归纳总结法。

2.学生学法:学会利用数轴将两个不等式的解集表示出来,并观察出其公共部分,再小结出不等式组的解集。

三、重点·难点·疑点及解决办法

(一)重点

理解一元一次不等式组解集的概念,会用数轴表示一元一次不等式组解集的几种情况。

(二)难点

正确理解一元一次不等式组解集的含义。

(三)疑点

弄清一元一次不等式解集和不等式组的解集的关系,以及对四种不等式组解集的一般形式的理解。

(四)解决办法

加强对不等式组解集含义的理解,并熟练掌握用数轴表示不等式解集,利用观察法、归纳法即可掌握求不等式组解集的办法。

四、课时安排

一课时.

五、教具学具准备

直尺、铅笔、投影仪或电脑、自制胶片。

六、师生互动活动设计

1.教师设计提问有关一元一次不等式的定义及其解集的概念,并复习用数轴表示一元一次不等式的解集的方法。

2.教示范一元一次不等式组解集的四种常规图形的表示方法,并引导学生理解记忆它们。

3.通过反复的师生共练,从实践中归纳小结出不等式组解集的规律。

七、教学步骤

(一)明确目标

本节课重点学习用数轴表示不等式组解集的方法,并能熟练地加以应用。

(二)整体感知

要正确表示出不等式组的解集的关键在于学会用数轴表示。若有解,必为其公共部分;若无公共部分,则为无解.并要正确地理解一元一次不等式组解集的规律。

(三)教学过程

1.创设情境,复习引入

(1)什么是一元一次不等式,不等式的解,不等式的解集,解不等式?

(2)已知一个数比2大但比4小,请在数轴上表示数。

学生活动:口答(1)题.板演(2)题,如下图所示:

教师分析:一个数比2大但比4小,说明取值使不等式与都成立,把一元一次不等式与合在一起,就组成了一个一元一次不等式组,记作在数轴上表示不等式①②的解集

可以看出,使不等式,都成立的值,是所有大于2并且小于4的数(记作),它们是不等式①、②的解集的公共部分,在数轴上表示成:

不等式①、②的解集的公共部分,叫做由不等式①、②组成的一元一次不等式组的解集。

【教法说明】通过学生板演,教师分析,使学生形成对不等式组解集的初步认识,激发了他们应用旧知识探索新知识的热情。

2.探索新知,讲授新课

(1)不等式组的解集:一般地,几个一元一次不等式的解集的公共部分叫做由它们组成的不等式组的解集。

说明:求不等式组解集的关键是找不等式解集的“公共部分”。若有公共部分,公共部分即为解集;若无公共部分,则不等式组无解。

(2)解不等式组:求不等式组解集的过程叫解不等式组。

请同学们根据自己的理解,解答下列各题。

例1利用数轴判断下列不等式组有无解集?若有解集,请求出。

① ② ③ ④

学生活动:学生在练习本上完成,同时指定四个学生板演.板演完成后,由学生判断是否正确。

解:① ②

不等式组解集为不等式组解集为

③ ④

不等式组解集为不等式组无解

【教法说明】教学时,可用彩笔在数轴上描出折线的公共部分,这样可以使学生直观、形象地理解不等式组解集的含义,并掌握解集的表示方法。

3.尝试反馈,巩固知识

利用数轴判断下列不等式组有无解集?如有,请表示出来。

教学活动:独立完成,同桌互阅,投影出示正确答案。

教师活动:抽查部分学生,纠正错误。

一元一次不等式组中,不等式个数多于两个,解集求法有无变化呢?同学们通过解答下列各题,仔细体会。

利用数轴解下列不等式组:

学生活动:分析讨论,尝试得出答案;指名回答,与投影出示的正确解题过程对比.

答案:(1)(2)(3)(4)无解

4.变式训练,培养能力

单项选择:

(1)不等式组的整数解是()

A.0,1 B.0 C.1 D.

(2)不等式组的负整数解是()

A.-2,0,-1 B.-2 C.-2,-1 D.不能确定

(3)不等式组的解集在数轴上表示正确的是()

(4)不等式组的解集在数轴上表示正确的为()

(5)根据图中所示可知不等式组的解集为()

A.B.C.D.

学生活动:前后桌结组讨论完成,各组以抢答方式说出答案.

参考答案:C,C,D,A,C

【教法说明】设置上述题组旨在训练学生的思维能力;以抢答形式完成则是为了激发学生探索知识的热情.

(四)总结、扩展

不等式组

1.图示

2.折线特点

3.解集

4.解集与公共部分关系

折线的公共部分

即为不等式组的解集

无解若,不等式组的解集是什么?有规律可寻吗?

【教法说明】学生通过实践尝试得到规律,以此揭示规律存在的一般性、必然性,既训练了学生的归纳总结能力,也充分发挥了主体作用.

注意问题:教学时,每组不等式不要超过三个,关键是使学生理解和掌握解不等式的方法,不宜过于难、过于多,避免重复的机械计算.

八、布置作业

(一)必做题:P78 1;P79 A组1.

(二)选择题:

填空题:

1.不等式组的非负整数解是_______________.

2.若同时满足与,则的取值范围是______________.

3.一元一次不等式组()的解集为,则与的大小关系为____________.

【教法说明】补充题旨在训练学生的思维能力、应变能力和解题灵活性.

参考答案

略.

九、板书设计

Yjs21.coM更多幼师资料延伸读

一元一次不等式课件


每位老师不可或缺的课件是教案课件,因此教案课件可能就需要每天都去写。教案是课程开展的向导。今天小编为大家带来了一篇关于“一元一次不等式课件”的相关文章,如果你希望长期关注我的分享请不要忘记将它收藏起来!

一元一次不等式课件 篇1

【知识与技能】

1、了解一元一次不等式组的概念。

2、理解一元一次不等式组的解集,能求一元一次不等式组的解集。

3、会解一元一次不等式组。

【过程与方法】

通过具体问题得到一元一次不等式组,从而了解一元一次不等式组的概念,解出每个不等式,利用数轴求出各不等式解集的公共部分,从而得到不等式组的解集,通过解几个有代表性的一元一次不等式组,总结出求不等式组解集的法则。

【情感态度】

运用数轴确定不等式组的解集是行之有效的方法。这种“数形结合”的方法今后经常用到,锻炼同学们数形结合的能力,提高学习兴趣。

【教学重点】

一元一次不等式组的解法。

【教学难点】

确定一元一次不等式组的解集。

一、情境导入,初步认识

问题1 现有两根木条a和b,a长10cm,b长3cm,如果要再找一根木条c,用这三根木条钉成一个三角形木框,那么木条c的长度有什么要求?

解:由于三角形中两边之____大于第三边,两边之____小于第三边,设c的长为xcm,则x<____,①x>____,②

合起来,组成一个__________。

由①解得_____________,由②解得_____________。

在数轴上表示就是________________。

容易看出:x的取值范围是____________________。

这就是说,当木条c比____cm长并且比____cm短时,它能与木条a和b一起钉成三角形木框。

问题2 由上面的解不等式组的过程用自己的语言归纳出一元一次不等式组的解法。

【教学说明】全班同学可独立作业,也可分组自由讨论,10分钟后交流成果,逐步得出结论。

二、思考探究,获取新知

思考什么叫一元一次不等式组,什么叫一元一次不等式组的解集,什么叫解不等式组?

【归纳结论】

1、定义:

(1)一元一次不等式组:几个含有相同未知数的一元一次不等式合起来组成一个一元一次不等式组。

(2)一元一次不等式组的解集:几个不等式的解集的公共部分,叫做由它们所组成的不等式的解集。

(3)解不等式组:求一元一次不等式组的解集的过程叫解一元一次不等式组。

2、一元一次不等式组的解法:

(1)求出每个一元一次不等式的解集。

(2)求出这些解集的公共部分,便得到一元一次不等式组的解集。

一元一次不等式课件 篇2

一元一次不等式教案

教学目标

1、能够根据实际问题中的数量关系,列一元一次不等式(组)解决实际问题.

2、通过例题教学,学生能够学会从数学的角度认识问题,理解问题,提出问题,?? 学会从实际问题中抽象出数学模型.

3、能够认识数学与人类生活的密切联系,培养学生应用所学数学知识解决实际问题的意识.

教学重点? 能够根据实际问题中的数量关系,列出一元一次不等式(组)解决 实际问题

教学难点? 审题,根据实际问题列出不等式.

例题? 甲、乙两商场以同样的。价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费。顾客到哪家商场购物花费少??

解:设累计购物x元,根据题意得

(1)当0 < x≤50时,到甲、乙两商场购物花费一样;

(2)当50< x≤100时,到乙商场购物 m. 花费少;

(3)当x > 100时,到甲商场的花费为100+0.9(x-100) , 到乙商场的花费为50+0.95(x-50)则

50+0.95(x-50) > 100+0.9(x-100),解之得x >150

50+0.95(x-50) < 100+0.9(x-100),解之得x < 150

50+0.95(x-50) = 100+0.9(x-100),?? 解之得x = 150

答:当0 < x≤50时,到甲、乙两商场购物花费一样;

当50< x≤100时,到乙商场购物花费少;当x>150时,到甲商场购物花费少;当100 < x <150时,到乙商场购物花费少;当x=150时,到甲、乙两商场购物花费一样。

变式练习? 学校为解决部分学生的午餐问题,联系了两家快餐公司,两家公司的报价、质量和服务承诺都相同,且都表示对学生优惠:甲公司表示每份按报价的90%收费,乙公司表示购买100份以上的部分按报价的80%收费。问:选择哪家公司较好?

解:设购买午餐x份,每份报价为“1”,根据题意得

0.9x > 100+0.8(x-100),解之得x >200

0.9x < 100+0.8(x-100),解之得x < 200

0.9x = 100+0.8(x-100),解之得x = 200

答:当x>200时,选乙公司较好;当0 < x <200时,选甲公司较好;当x=200时,两公司实际收费相同。

作业

1、某商店5月1号举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠。已知小敏5月1日前不是该商店的会员。请帮小敏算一算,采用哪种方案更合算?

2、某单位计划10月份组织员工到杭州旅游,人数估计在10~25之间。甲乙两旅行社的服务质量相同,且组织到杭州旅游的价格都是每人200元。该单位联系时,甲旅行社表示可以给予每位旅客七五折优惠;乙旅行社表示可先免去一带队领导的旅游费用,其余游客八折优惠。问该单位怎样选择,可使其支付的旅游总费用较少?

以上就是一米范文范文为大家带来的6篇《人教版初中数学一元一次不等式教案范文》,希望对您的写作有所帮助,更多范文样本、模板格式尽在一米范文范文。

一元一次不等式课件 篇3

尊敬的各位老师:

大家好,今天,我说课的内容是一元一次不等式。

对于本节课,我将从教什么、怎么教、为什么这么教来阐述本次说课。

新课标指出:数学课程要面向全体学生,适应学生个性发展的需要,使得人人都能获得良好的数学教育,不同的人在数学上都能得到不同的发展。今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。

教材是连接教师和学生的纽带,在整个教学过程中起着至关重要的作用,所以,先谈谈我对教材的理解。

本节课主要讲述的是一元一次不等式的概念及其解法。

在本节课之前学生已经掌握了一元一次方程的相关知识和不等式的性质,所以,本节课类比一元一次方程的解法,利用不等式的性质解一元一次不等式。另外,本节课为后续学习解一元一次不等式组奠定基础。

不等式在日常生产生活中的应用很广泛,它与数、式、方程、函数甚至几何图形有着密切的联系,它几乎渗透到初中数学的每一部分。所以,本节课在数学领域中起着非常重要的地位。

合理把握学情是上好一堂课的基础,本次课所面对的学生群体具有以下特点。

本学段的学生逐渐掌握抽象概念和复杂的概念系统,能作科学定义,抽象逻辑思维逐步占优势。

本阶段的学生类比推理能力都有了一定的发展,并且在生活中已经遇到过很多关于一元一次方程的具体的事例,所以在生活上面有了很多的经验基础。为本节课的顺利开展做好了充分准备。

根据以上对教材的.分析以及对学情的把握,我制定了如下三维目标:

通过对比解一元一次方程的步骤,学生自己总结归纳一元一次不等式步骤的过程,提高归纳能力,并学会类比的学习方法。

通过数学建模,提高对数学的学习兴趣。

本着新课程标准,吃透教材,了解学生特点的基础上我确定了以下重难点:

掌握一元一次不等式的概念,会解一元一次不等式并能够在数轴上表示出来。

一元一次不等式课件 篇4

人教版七年级数学下册《一次函数与一元一次不等式》教学反思

例1:请画出函数y=-3x+12的图像,你能利用图像解决下列问题吗?

(1)方程-3x+12=0的解(2)不等式-3x+12>0的解集.

(3)如果y的值在-6≤y≤6的范围内,那么相应的x的值在什么范围内?

问题一提出,就有学生不假思索,答案脱口而出,前两问也太简单了吧?我提醒学生注意题目要求,这时有学生开始画函数图像。让学生自己动手,画出一次函数y=-3x+12的图像,目的是让学生从画图的过程中感受从左至右,直线是呈“下降”趋势的。即y随x的增大而减小。对于前两问,学生还比较好理解,但到第3问,有些学生就找不到答案了。这时就要引导学生从第2问,开始延伸,当解-3x+12>0,即函数值为正数时,对应的函数的图像在x轴的上方,y>0时,坐标系中表示的`是一个平面区域,在这个区域中找出对应的自变量x的取值范围即为不等式的解。让学生对第3问,再次进行探究,由图像找出函数值在-6--6之间的部分,对应地可以找出自变量x的取值范围。要求学生能在函数图像上找到这个区域,老师再用多媒体进行动态演示。进一步激发学生思考,你能用其他方法解决这个问题吗?学生能联想到第3问也可以利用解不等式组的方法求出x的取值范围。通过本题的解决,让学生初步感受不等式与方程、函数的内在联系

一元一次不等式课件 篇5

一元一次不等式的应用教案

一元一次不等式的应用教案 孙云云 一、前置作业 请自学课本12、13页,相信你会有很大的收获!带着的你的例子借助一元一次不等式来解决实际问题。 二、教学过程 一)导入 在现实中的许多问题,可以借助于一元一次不等式来解决。本节课我们来研究用元一次不等式解决实际 问题。 二、检查前置作业,交流组内存在问题 怎样借助一元一次不等式解决实际问题 三、班级汇报展示 带着你的`例子借助一元一次不等式来解决实际问题。 四、总结提升 你学会了什么? 五、布置作业 教学反思:开始课堂沉闷,学生有些紧张,后来在教师的调解下,气氛活跃了。樊广文出的题中缺少一个条件,马悦出的三道题所提出的问题都有不正确,尽管学生在编的实际问题中出现了失误,但学生真的动起来了,在思想的相互碰撞中,每个问题都得到了解决。但也有不足,如小组的时效性较小,虽然经历了小组交流,但问题并未深入的解决,马悦的三道题是代表小组的,但小组只停留在马悦出题了,也没有交流她出题的正确性。导致三道题都出现同一个问题。在今后的教学中教师更应该关注小组的时效性。

一元一次不等式组课件优选13篇


幼儿教师教育网今天为大家介绍的是一篇有关“一元一次不等式组课件”的文章。对于新入职的老师而言,教案课件还是很重要的,因此教案课件不是随便写写就可以的。只有高质量的教案才能带来好的教学效果。希望本文能够为您提供一些实用建议!

一元一次不等式组课件【篇1】

教学目标

1.能够根据具体问题中数量关系,列出一元一次不等式组,解决简单问题。

2.渗透“数学建模”思想。最优化理论。

3.提高分析问题解决问题能力。

教学重点

分析实际问题列不等式组。

教学难点

1.找实际问题中的不等关系列不等式组。

2.有条理的表达思考过程。

教学过程

一、创设问题情境。

本节课我们一起学习用一元一次不等式组解决一些简单的实际问题。

出示问题:

某公园售出一次性使用门票,每张10元。为吸引更多游客,新近推出购买“个人年票”的售票方法。年票分A、B两类。A类年票每张100元,持票者每次进入公园无需再购买门票。B类年票每张50元,持票者进入公园时需再购买每次2元的门票。你能知道某游客一年中进入该公园至少超过多少次,购买A类年票最合算吗?

二、建立模形。

1.分析题意回答:

①游客购买门票,有几种选取择方式?

②设某游客选取择了某种门票,一年进入该公园x次,门票支出是多少?

③买A类年票最合算,应满足什么关系?

2.讨论交流,列出不等式组。

3.解不等式组,说出问题的答案。

三、应用。

学生讨论、交流。

1.什么情况下,购买每次10元的门票最合算。

2.什么情况下,购买B类年票最合算?

学生清晰、有条理地表达自己的思考过程,且考虑问题要全面。

四、练习。

某校安排寄宿时,如果每项间宿舍住7人,那么有1间虽有人住,但没住满。如果每间宿舍住4人,那么有100名学生住不下。问该校有多少寄宿生?有多少间宿舍?

(提示学生找到本题中的两个不等关系。学生人数,宿舍间数都为整数。解本题时,先独立思考,再小组交流)

五、小结

列一元一次不等式组,解决实际问题的基本步骤是什么?(讨论、交流,指名回答)

六、作业。

习题1.3A组第1题。

后记:

一元一次不等式组课件【篇2】

[学习目标]

1.进一步巩固一元一次不等式组的解法

2.会用一元一次不等式组解决有关的实际问题

3.理解一元一次不等式组应用题的一般解题步骤

[学习重点]一元一次不等式组的应用

[学习难点]在实际问题中寻找不等关系,列出不等式组

[学习过程]

一、春耕(创设情境,导入新课)

在上课之前,老师请大家来帮一个忙,帮老师来解决一道难题:老师有一个熟人姓王,他有一个哥哥和一个弟弟,哥哥的年龄是20岁,小王的年龄的2倍加上他弟弟年龄的5倍等于97.现在小王要老师猜猜他和他弟弟的年龄各是多少?俗话说三个臭皮匠,可抵一个诸葛亮,现在我们全班同学可抵得上很多诸葛亮,所以老师相信大家一定有办法的.

二、夏耘(师生互动,课堂探究)

(一)提出问题,引发讨论

当一个未知数同时满足几个不等关系时,我们就按这些关系分别列几个不等式,这样就得到不等式组,用不等式组解决实际问题时,其公共解是否一定为实际问题的解呢?请举例说明.

例:甲以5km/时的速度进行跑步锻炼,2小时后,乙骑自行车从同地出发沿同一条路追赶甲.但他们两人约定,乙最快不早于1小时追上甲,最慢不晚于1小时15分追上甲.你能确定乙骑车的速度应当控制在什么范围吗?

(二)导入知识,解释疑难

1.教材内容讲解

如课本例2(P145)(请同学自己阅读,动手列不等式组进行求解,再将自己答案与课本答案进行比较)不等式组的解集为15

又如:将若干只鸡放入若干个笼,若每个笼里放4只,则有1只鸡无笼可放;若每个笼里放5只,则有1笼无鸡可放,那么至少有多少只鸡,多少个笼?

2.探究活动

把16根火柴首尾相接,围成一个长方形(不包括正方形),怎样找到围出不同形状的长方形个数最多的办法呢?最多个数又是多少呢?

三.秋收(归纳总结,知识回顾)

1. 应用不等式组解决实际问题的步骤:1.审清题意;2.设未知数,根据所设未知数列出不等式组;3.解不等式组;4.由不等式组的解确立实际问题的解;5.作答.(与列方程组解应用题进行比较)

2.双基练习

1.已知方程组 有正整数解,则k的取值范围是_________.

2.若不等式组 无解,求a的取值范围.

3.当2(m-3)x-m的解集.

4.某学校为学生安排宿舍,现有住房若干间,若每间5人还有14人安排不下,若每间7人,则有一间还余一些床位,问学校有几间房可以安排学生住宿?可以安排住宿的学生多少人?

四.冬藏(创新提升)

某商场为了促销,开展对顾客赠送礼品活动,准备了若干件礼品送给顾客,在一次活动中,如果每人送5件,则还余8件,如果每人送7件,则最后一人还不足3件.设该商场准备了m件礼品,有x名顾客获赠,请回答下列问题:

(1)用含x的代数式表示m.

(2)求出该次活动中获赠顾客人数及所准备的礼品数

一元一次不等式组课件【篇3】

教学目标:

了解一元一次不等式的概念,掌握一元一次不等式的解法。

教学重点:

是掌握解一元一次不等式的步骤

教学难点:

是必须切实注意遇到要在不等式两边都乘以(或除以)同一负数时,必须改变不等号的方向。

教学过程:

一、问题导入

复习:

1、不等式的基本性质有哪些?什么是一元一次方程?并举出两个例子。

2、观察不等式x+3<5与x<2,说明解x<2是x+3<5依据什么变形得到的?

3、解一元一次方程:6x+5=7-2x,目的是为了与下面所学的解一元一次不等式进行类比,找到它们的联系与区别。

二、指导自学,小组合作交流

请同学们根据以下提问进行自学,先个人思考,后小组合作学习。

1、观察下列不等式,说一说这些不等式有哪些共同特点?

(1)2x+5≥8(2)x+1≤—4(3)x<2(4)6—3x>43(x+1)≤0

观察上面不等式有哪些共同特点,让学生通过交流,再总结一元一次不等式的概念。老师板书定义。

2、让学生举出2或3个一元一次不等式的例子,小组交流。

3、让学生通过比较解一元一次方程:6x+5=7-2x的解法试解一元一次不等式:6x+5<7-2x,并将解集在数轴上表示出来。

4、思考:一元一次不等式与一元一次方程的解法有哪些类似之处?有什么不同?

5、解下列不等式,并把它们的解集在数轴上表示出来。

(1)3-x<2x+9(2)2-4(x-1)>3(x+2)-x

(3)(x-1)/3≥(2-x)/2+1

总结:解一元一次不等式的依据和解一元一次不等式的步骤。

三、互动交流,教师点拨

(一)、学生易出错的问题和注意的事项:

1、确定一个不等式是不是一元一次不等式,要抓住三个要点:左右两边都是整式,只有一个未知数,未知数的次数是1。

2、对于(1),让学生说明不等式3-x<2x+9的每一步变形的依据是什么,特别注意的是:解不等式的移项和解方程的移项一样。即移项要变号(培养学生运用类比的数学思想)。

3、不等式两边同时除以(-3)时,不等号的方向改变。

2、重点点拨(2)和(3),先让学生到黑板上板演。老师再讲评。

(2)易出错的地方是:去括号时漏乘,括号前是负号,去掉括号后括号里的项没变号,还有移项没有变号;(3)易出错的地方是:去分母时漏乘无分母的项。

3、归纳解一元一次不等式的步骤(与解一元一次方程的步骤类比):去分母,去括号,移项,合并同类项,系数化为1。(在系数化为1这一步要特别提醒学生注意当系数为负数时,要记住改变不等号的方向。)

四、巩固练习

1、判断下列不等式是不是一元一次不等式,为什么?

(1)2/x—3

(2)5x+3x–1

(4)x(2x+1)

(5)X+2≥x

2、解下列不等式,并把它们的解集在数轴上表示出来

(1)3x–8

(2)2(x–1)≥x+3

(3)x/5≥1+(x–3)/2

3、[思考]当x取何值时,代数式(x–2)/2的值比(3x+1)/3的值大?

小结:

(1)不等式两边同时除以负数时,不等号的方向要改变。

(2)注意去括号时不要漏乘,括号前是负号,去掉括号后括号里的项要变号,还有移项一定要变号

(3)去分母时不要漏乘无分母的项。

一元一次不等式组课件【篇4】

教学建议

一、知识结构

本书首先结合实例引入一元一次不等式组的解集的概念,然后通过三个例题说明利用数轴解一元一次不等式组的方法,最后对一元一次不等式组的解法步骤进行了总结.

二、重点、难点分析

本节教学的重点是掌握一元一次不等式组的解法步骤并准确地求出解集.难点是正确应用不等式的基本性质对不等式进行变形、求不等式组中各个不等式解集的公共部分.不等式在中学代数中是研究问题的重要工具,例如求函数的定义域、值域、研究函数的单调性,求最大值、最小值,一元二次方程根的讨论等,都要用到不等式的知识.不等式也是进一步学习其他数学内容的基础.学习和掌握不等式的求解和不等式的证明方法,对培养学生逻辑思维能力也有极其重要的作用.在处理解不等式的问题中,一元一次不等式组的解法,具有特别重要的意义.这是因为,解各类不等式的问题都可以归结为解一些由简单不等式所组成的不等式组.

1、在构成不等式组的几个不等式中

①这几个一元一次不等式必须含有同一个未知数;

②这里的“几个”并未确定不等式的个数,只要不是一个,两个,三个,四个……都行.

2、当几个不等式的解集没有公共部分时,我们就说这个不等式组无解.

3、由两个一元一次不等式组成的不等式的解集,共归结为下面四种基本情况:

【注意】①其中第(4)个不等式组,实质上是矛盾不等式组,任何数都不能使两个不等式同时成立。所以说这个不等式组无解或说其解集为空集。②从上面列出的表中,我们可以概括出来不等式组公共解的一规律:同大取大,同小取小,一大一小中间找。

三、教法建议

1.解本节的引例及例1、例2、例3时,注意把解不等式组的思路讲清楚,即先分别解每一个不等式,求出解集,再求这些解集的公共部分.求公共部分的过程一定要结合数轴来讲。

2.这节课的讲解自始至终要突出解不等式组的基本思想以及解一元一次不等式组的步骤这两个重点.准确熟练地解一元一次不等式以及用数轴上的点表示不等式的解集是这节课的基础,因此讲新课之前要复习提问这些内容。

3.求公共解集是这节课的新授内容,教师要充分利用数轴表示不等式解集具有形象、直观、易于说明问题这些优点.解集的公共部分教师可用彩笔在数轴的相应部分描画出来,使学生感到醒目,便于理解记忆。

4.每组不等式不要超过三个,关键是使学生理解和掌握解不等式组的基本思想和两个步骤,不宜做过于难、过于多、重复的机械计算。

一元一次不等式组课件【篇5】

〖教学目标〗

1、理解一元一次不等式组的概念.

2、理解不等式组的解的概念.

3、会解由两个一元一次不等式组成的不等式组,并会用数轴确定解.

4、培养学生类比推理能力.

〖教学重点与难点〗

教学重点:一元一次不等式组的解法.

教学难点:例2较为复杂,几乎包括了解一元一次不等式的全部步骤,是本节教学的难点,用数轴表示一元一次不等式组的解也是难点。

〖教学过程〗

一.引入

1.想一想:某单位从超市购买了墨水笔和圆珠笔共15桶,所付金额超过570元,但不到580元。已知这两种笔每桶的单价为圆珠笔34.90元/支,墨水笔44.90元/支。设购买圆珠笔X桶,你能列出几个不等式?

2.学生活动:找出已知条件,列出所有不等关系式,互相讨论,类推概念,鼓励学生通过观察,分析,补充解决问题。

3.最后教师总结两个不等式。

如设购买圆珠笔的桶数为X,则:

二.新课

1.一元一次不等式组:一般地,由几个同一个未知数的一元一次不等式所组成的一组不等式,叫做一元一次不等式组。像上面就是一元一次不等式组,再

例如:

都是一元一次不等式组.

2.不等式组解的概念:组成不等式组的各个不等式的解的公共部分就是不等式组的解.当它们没有公共部分时.我们称这个不等式组无解.

3.做一做:

例1.解一元一次不等式组

解:解不等式①,

得:

X>-1

解不等式②,

得:

X≤6

②两个不等式的解表示在数轴上,如下图:

-1

6

所以原不等式组的解是-14.应用拓展:解由两个一元一次不等式组成的不等式组,在取各个不等式的解公共部分时,有几种不同情况吗?若a用数轴试一试.(设a一般由两个一元一次不等式组成的不等式组由四种基本类型确定,它们的解集、数轴表示如下表一元一次不等式组解集图示口诀x>ax>bx>b大大取大xxx小小取小x>axa比小大,比大小,中间找xx>b无解比小小,比大大,解不了(无解)5.尝试反馈:试一试,利用数轴分别求出满足下列各组不等式组的x值的公共部分:6.探索较复杂的不等式组的解法:例2.解一元一次不等式组解:由不等式①,去扩号得3-5X>X-4X+2移项,整理得-2X>-1所以X解不等式②,去分母得3X-2>10-2X移项,整理得5X>12所以X>把①,②两个不等式的解表示在数轴上.12所以原不等式组无解.7.通过范例,帮助学生总结解一元一次不等式组的步骤:(1)依次解各个一元一次不等式.(2)把各个一元一次不等式的解分别表示在同一数轴上.(3)根据解在数轴上的表示确定不等式组的解.三.巩固(学生活动,与同伴交流自己的问题和解决问题的过程)1.解下列一元一次不等式组:2.分别求出本节开头问题中购买墨水笔和圆珠笔的桶数四.归纳1.学生谈本节课的收获:优等生谈学到什么知识,上进生谈体会;2.教师小结:这节课主要学习了一元一次不等式组及不等式组的解的有关概念,要求会解有两个一元一次不等式组成的一元一次不等式组,并会用数轴确定解集;也可以利用口诀“大大取大,小小取小,比小大比大小取中间,比大大比小小无解”来求不等式组的解。五.布置作业

一元一次不等式组课件【篇6】

一元一次不等式组

教学目标:1.学生通过生活实例,了解一元一次不等式组的意义和一元一次不等式组的解集的概念。

2.学生能利用数轴熟练的确定一元一次不等式组的解集,培养学生的观察能力,分析能力。

3.掌握由两个一元一次不等式所组成的不等式组的解集的四种情况。

4.学生通过对一元一次不等式组的学习,认识到事物间的相依关系。

教学重点:根据一元一次不等式组的四种情况,说出一元一次不等式组的解集。教学难点:利用数轴确定一元一次不等式组的解集。教学过程: 一.创设情境:

1.你能列出解决这个问题的式子吗?

(小黑板)某学校初一()班准备一次秋季外出考察活动,该班级共有学生40人。学校根据预算要求该班这次活动的总经费不能超过2400元;旅游公司按成本计算这次活动总经费不能低于2000元。如果考虑双方的要求,学生所付的经费应该在哪一范围之内?

学生列式:设每人所付的经费为x元 40x≤2400 40x≥2000

?40x?2400 同时满足两个条件,列成不等式组 ?

?40x?2000给出定义:由几个含有同一个未知数的一次不等式组成的不等式组叫做一元一次不等式组。

2.(小黑板)判别下列不等式组中哪些是一元一次不等式组,并说明为什么?

?x?0?x??3?x?2(1)?(2)?(3)? x?3?0y?3x?4????2x?3?54x?1?0???3x?1?4?(4)?(5)?2(6)?3x?2?1

??x?3?0?x?y?1?x?9?0?二.尝试探究:

1.问题:怎样确定不等式组的解集呢? ?40x?2400?x?60 比如:?的解集怎样确定呢??这个式子就是不?40x?2000?x?50等式组的解集吗?

2.利用数轴来确定不等式组的解集

?x?3?x?3?x?3?x?3 例:(1)?(2)?(3)?(4)?

?x??1?x??1?x?-1?x??1 本题教师和学生共同完成

巩固练习:(书四题,学生练习,学生板演,小组互相检查,教师巡视指导)

小组讨论:当a>b时,如何确定下列不等式组的解集?

?x?a?x?a?x?a?x?a(!)?(2)?(3)?(4)?

?x?b?x?b?x?b?x?b 课后思考:当a

三.归纳小结:

1.本节课我们认识了什么是一元一次不等式组及其解集,并学会了利用数轴来确定不等式组的解集。(利用例题中四个不等式组解集情况说明不等式组解集取法)

2.一元一次不等式组和二元一次方程组类似,也有不同的地方。两者都是由两个或几个一次式组成,但不等式组是同一个字母,方程组中有两个字母。3.具体求不等式组解集的方法,下节课我们接着学习。

四.布置作业:

练习册B册习题

同步练习

一元一次不等式组课件【篇7】

1、由“弹簧挂物问题”导入

把教学内容转化为具有潜在意义的`问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想”,继而紧张地沉思,期待寻找理由和证明过程。

在实际情况下进行学习,可以使学生利用已有知识与经验,同化和索引出当前学习的新知识,这样获取的知识,不但易于保持,而且易于迁移到陌生的问题情境中。在本问题中使学生感受到一元一次不等式、一元一次方程、一次函数的内在联系

2、导疑:得出本课新的知识点是:一元一次不等式、一元一次方程、一次函数的内在联系

3、导研:讲解例题。……我们在讲解例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于发展学生的思维能力。在题中:引导学生围挠一元一次不等式、一元一次方程、一次函数的内在联系展开从多个角度进行思考。

4、导练:课后练习使学生能巩固羡慕自觉运用所学知识与解题思想方法。

5、导评:总结结论,强化认识。知识性内容的小结,可把课堂教学传授的知识尽快化为学生的素质;数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质目标。

6、变式延伸,进行重构。重视课本例题,适当对题目进行引申,使例题的作用更加突出,有利于学生对知识的串联、累积、加工,从而达到举一反三的效果。

7、板书。

8、布置作业。针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有佘力的学生有所提高,从而达到拔尖和“减负”的目的。

(教学程序:

(一):课堂结构:导入、导疑、导研、导评、导练、布置作业等几部分。

(二):教学简要过程:

1:复习提问:(理由是:);2:导入讲授新课:;3:课堂练习:4:新课巩固:5:作业布置;)

五:作业布置:略

一元一次不等式组课件【篇8】

【知识与技能】

1、了解一元一次不等式组的概念。

2、理解一元一次不等式组的解集,能求一元一次不等式组的解集。

3、会解一元一次不等式组。

【过程与方法】

通过具体问题得到一元一次不等式组,从而了解一元一次不等式组的概念,解出每个不等式,利用数轴求出各不等式解集的公共部分,从而得到不等式组的解集,通过解几个有代表性的一元一次不等式组,总结出求不等式组解集的法则。

【情感态度】

运用数轴确定不等式组的解集是行之有效的方法。这种“数形结合”的方法今后经常用到,锻炼同学们数形结合的能力,提高学习兴趣。

【教学重点】

一元一次不等式组的解法。

【教学难点】

确定一元一次不等式组的解集。

一、情境导入,初步认识

问题1 现有两根木条a和b,a长10cm,b长3cm,如果要再找一根木条c,用这三根木条钉成一个三角形木框,那么木条c的长度有什么要求?

解:由于三角形中两边之____大于第三边,两边之____小于第三边,设c的长为xcm,则x<____,①x>____,②

合起来,组成一个__________。

由①解得_____________,由②解得_____________。

在数轴上表示就是________________。

容易看出:x的取值范围是____________________。

这就是说,当木条c比____cm长并且比____cm短时,它能与木条a和b一起钉成三角形木框。

问题2 由上面的解不等式组的过程用自己的语言归纳出一元一次不等式组的解法。

【教学说明】全班同学可独立作业,也可分组自由讨论,10分钟后交流成果,逐步得出结论。

二、思考探究,获取新知

思考什么叫一元一次不等式组,什么叫一元一次不等式组的解集,什么叫解不等式组?

【归纳结论】

1、定义:

(1)一元一次不等式组:几个含有相同未知数的一元一次不等式合起来组成一个一元一次不等式组。

(2)一元一次不等式组的解集:几个不等式的解集的公共部分,叫做由它们所组成的不等式的解集。

(3)解不等式组:求一元一次不等式组的解集的过程叫解一元一次不等式组。

2、一元一次不等式组的解法:

(1)求出每个一元一次不等式的解集。

(2)求出这些解集的公共部分,便得到一元一次不等式组的解集。

一元一次不等式组课件【篇9】

1.会解一元一次不等式.

2.会用不等式来表示实际问题中的不等关系.

掌握解一元一次不等式的步骤;会用一元一次不等式解决简单的实际问题.

寻找实际问题中的不等关系,建立数学模型.

1. 不等式的基本性质有哪些?

(1)3x3.

.二、夏耘:

例 甲、乙两商店以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲店累计购买100元商品后,再购买的商品按原价的90%收费;在乙店累计购买50元商品后,再购买的商品按原价的95%收费.顾客怎样选择商店购物能获得更大优惠?

这个问题较复杂,从何处入后考虑它呢?

甲商店优惠方案的起点为购物款达___元后;

乙商店优惠方案的起点为购物款过___元后.

我们是否应分情况考虑?可以怎样分情况呢?

(1)如果累计购物不超过50元,则在两店购物花费有区别吗?

(2)如果累计购物超过50元而不超过100元,则在哪家商店购物花费小?为什么?

(3)如果累计购物超过100元,那么在甲店购物花费小吗?

三、秋收:

1.某校校长暑假将带领该校市级优秀学生乘旅行社的车去a市参加科技夏令营,甲旅行社说:“如果校长买全票一张,则其余学生可享受半价优惠”.乙旅行社说:“包括校长在内全部按全票的6折优惠”,若全票价为240元.

(1)设学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙.分别计算两家旅行社的收费(建立表达式);

(2)当学生数是多少时,两家旅行社的收费一样?

(3) 就学生数x讨论哪家旅行社更优惠.

2.某商店出售茶壶和茶杯,茶壶每只20元,茶杯每只5元,该商店有两种优惠办法:

(1) 买一只茶壶送一只茶杯;

(2) 按总价的92%付款.现有一顾客需购买4只茶壶,茶杯若干只(不少于4只).

请问:顾客买同样多的茶杯时,用哪一种优惠办法购买省钱?

3.某人的移动电话(手机)可选择两种收费办法中的一种,甲种收费办法是,先交月租费50元,每通一次电话再收费0.40元;乙种收费办法是,不交月租费,每通一次电话收费0.60元.问每月通话次数在什么范围内选择甲种收费办法合适?在什么范围内时选择乙种收费办法合适?

四、冬藏(补充练习):

1.有一批货物,如月初售出,可获利1000元,并可将本利之和再去投资,到月末获1.5%的利息;如月末售出这批货,可获利1200元,但要付50元保管费.问这批货在月初还是月末售出好.

2.某市自来水公司为限制单位用水,每月只给某单位计划内用水3000吨,计划内用水每吨收费0.5元,超计划用水超出部分每吨收费0.8元.如果单位自建水泵房抽水,每月需交500元管理费,另外每月一吨水再交0.28元,已知每抽一吨水需成本0.07元.问该单位是用自来水公司的水合算,还是自建水泵房抽水合算.

一元一次不等式组课件【篇10】

科学合理的教学方法能使教学效果事半功倍,达到教与学的和谐完美统一。

基于此,我准备采用的教法讲授法、讨论法。德国教育学家第斯多慧:差的教师只会奉送真理,好的教师则交给学生如何发现真理,老师的教是为了不教,这才是教学的最高境界,所以我采用的学法是练习法、自主合作法。

在这节课的教学过程中,我注重突出重点,条理清晰,紧凑合理。各项活动的安排也注重互动、交流,最大限度的调动学生参与课堂的积极性、主动性。

首先是导入环节,我采用复习旧知的导入方法。我会让学生回忆不等式的概念以及一元一次方程的概念,明确指出今天学习的内容是《一元一次不等式》。

这样的设计既可以考查学生对之前知识的掌握情况,还能够为今天学习一元一次方程的概念打下基础。而且开门见山的导入方式能够快速地进入主题。

接下来是新知探索环节,首先我请学生类比不等式以及一元一次方程的概念,给一元一次不等式下定义。

能够总结出:含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式。

接下来让学生回忆上节课学习的不等式x-7>26如何解决的,通过学生回忆总结可以得到:通过“不等式的两边都加7,不等号的方向不变”而得到的。

接下来提问学生有没有更加简便的方法解不等式?让学生类比解一元一次方程的步骤进行解题。可以得到相当于可以用“移项”,来解决。

在这个过程中,强调每一个步骤,在第二题最后一步,强调当不等式的两边同时乘以(或除以)同一个负数时,不等号的方向改变。

解完不等式,先让学生回忆解一元一次方程的步骤是什么?并类比解一元一次方程的步骤,总结一下解一元一次不等式的步骤是什么?

从而我们归纳:解一元一次方程,要根据等式的性质,将方程逐步化为x=a的形式;而解一元一次不等式,则要根据不等式的性质,将不等式逐步化为xa的形式。

《数学课程标准》指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者”。根据这一教学理念,在本环节中,我组织学生进行了自主探究活动,让学生在保持高度学习热情和探究欲望的活动过程中,始终以愉悦的心情,亲身经历和体验知识的形成过程。培养学生的探究能力、分析思维能力,激发他们的创新意识、参与意识。

第三个环节是课堂练习环节,出示问题,解不等式,并在数轴上表示数集:5x+15>4x-1

之所以这样设计是因为练习是掌握知识、形成技能、发展思维的重要手段,针对本课的教学重点和难点,上述练习,目的是让学生进一步巩固对新知的理解。可以深化教学内容,培养思维的灵活性。

最后一个环节为小结作业环节,关于课堂小结,我打算让学生自己来总结今天的收获。

这样既发挥了学生的主体性,又可以提高学生的总结概括能力,让我在第一时间得到学习反馈,及时加以疏导。

通过这样的方式能够为本节课学习的知识进行进一步的巩固。

我的板书设计遵循简洁明了突出重点的意图,这是我的板书设计:

一元一次不等式组课件【篇11】

(一)复习提问:

三角形的三边关系?

(二)列一元一次不等式组

问题:现有两根木条a和b,a长10cm,b长3cm.如果要再找一根木条c,用这三根木条钉成一个三角形木框,那么对木条c的长度有什么要求?

注:这个问题是本节的'引入问题,三角形木框的形状不唯一确定,只要能成为三角形即可.

探究:用三根长度分别为14cm,9cm,6cm的木条c1,c2,c3分别试试,其中哪根木条能与木条a和b一起钉成三角形木框?

可以发现,当木条a和b的长度确定后,木条c太长或太短,都不能与a和b一起钉成三角形.

由于“三角形中两边之和大于第三边,两边之差小于第三边”,设木条c长xcm,则x必须同时满足不等式x10+3①和x10-3②

注:木条c必须同时满足两个条件,即ca+b,ca-b.

类似于方程组,把这两个不等式合起来,组成一个一元一次不等式组记作注:这里并未正式给一元一次不等式组下定义,只是说这两个不等式合起来,组成一个一元一次不等式组.实际上,两个或更多的一元一次不等式组合起来,都组成一个一元一次不等式组.

(三)一元一次不等式组的解集

类比方程组的解,怎样确定不等式组中x的可取值的范围呢?

不等式组中的各不等式解集的公共部分,就是不等式组中x可以取值的范围.

注:这里还未正式出现不等式组的解集的概念,但已点出各不等式的解集的公共部分即不等式组中未知数的可取值范围.

由不等式①解得x13.

由不等式②解得x7.

从图9.3—2容易看出,x可以取值的范围为713.

注:利用数轴可以直观形象地认识公共部分.这个公共部分是两端有界的开区间.

这就是说,当木条c比7cm长并且比13cm短时,它能与木条a和b一起钉成三角形木框.

一般地,几个不等式的解集的公共部分,叫做由它们所组成的不等式组的解集.解不等式组就是求它的解集.

注:这里正式给出不等式组的解集以及解不等式组的定义13.注:利用数轴可以直观形象地认识公共部分.这个公共部分是两端有界的开区间.这就是说,当木条c比7cm长并且比13cm短时,它能与木条a和b一起钉成三角形木框.一般地,几个不等式的解集的公共部分,叫做由它们所组成的不等式组的解集.解不等式组就是求它的解集.注:这里正式给出不等式组的解集以及解不等式组的定义。

一元一次不等式组课件【篇12】

一、教材分析

《一元一次不等式组》是华东师大版义务教育课程标准实验教科书数学七年级下册第八章第三节,我把本节内容分为两个课时,第一课时是一元一次不等式组的概念及解法,第二课时是不等式组的实践与探索。今天,我说课的内容是第一课时。

《数学课程标准》对本节的要求是:充分感受生活中存在着大量的不等关系,了解不等式组的意义;会解简单的一元一次不等式组,并会用数轴确定解集。

《一元一次不等式》的主要内容是一元一次不等式(不等式组)的解法及其简单应用。是在学习了有理数的大小比较、等式及其性质、一元一次方程的基础上,开始学习简单的数量之间的不等关系,进一步探究现实世界数量关系的重要内容,是继一元一次方程和二元一次方程组之后,又一次数学建模思想的学习,也是后继学习一元二次方程、函数及进一步学习不等式的重要基础,具有承前启后的重要作用。

《一元一次不等式组》是本章的最后一节,是一元一次不等式知识的综合运用和拓展延伸,是进一步刻画现实世界数量关系的数学模型,是下一节利用一元一次不等式组解决实际问题的关键。因此,我把本节课的教学重点确定为一元一次不等式组的解法。

数学课程应当从学生熟悉的现实生活开始,沿着数学发现过程中人类的活动轨迹,从生活中的问题到数学问题,从具体问题到抽象概念,从特殊关系到一般规则,逐步通过学生自己的发现去学习数学、获取知识。得到抽象化的数学知识之后,再及时地把它们应用到新的现实问题上去。按照这样的途径发展,数学教育才能较好地沟通生活中的数学与课堂上的数学的联系,才能有益于学生理解数学,热爱数学和使数学成为生活中有用的本领。

本节课,既有概念教学又有解题教学,而概念教学,应该从生活、生产实例或学生熟悉的已有知识引入,引导学生通过观察、比较、分析、综合,抽取共性,得到概念的本质属性。在此基础上归纳概括出概念的定义,并引导学生弄清定义中每一个字、词的确切含义。华师版的'教科书中,只设计了一个问题情境,我感觉还不够,不能从一个问题抽象出概念的本质。因此,在这里我又增加了一个问题情境,以增加对不等式组概念的理解,加强数学应用意识的培养。

二、学情分析

从学生学习的心理基础和认知特点来说,学生已经学习了一元一次不等式,并能较熟练地解一元一次不等式,能将简单的实际问题抽象为数学模型,有一定的数学化能力。但学生将两个一元一次不等式的解集在同一数轴上表示会产生一定的困惑。这个年龄段的学生,以感性认识为主,并向理性认知过渡,所以,我对本节课的设计是通过两个学生所熟悉的问题情境,让学生独立思考,合作交流,从而引导其自主学习。

基于对学情的分析,我确定了本节课的教学难点是:正确理解不等式组的解集。

三、教学目标

在教材分析和学情分析的基础上,结合预设的教学方法,确定了本节课的教学目标如下:

1、通过实例体会一元一次不等式组是研究量与量之间关系的重要模型之一。

2、了解一元一次不等式组及解集的概念。

3、会利用数轴解较简单的一元一次不等式组。

4、培养学生分析、解决实际问题的能力。

5、通过实际问题的解决,体会数学知识在生活中的应用,激发学生的学习兴趣。能在解决问题过程中勤于思考、乐于探究,体验解决问题策略的多样性,体验数学的价值。

四、教学手段

本节课采用多媒体教学,利用多媒体教学信息容量大、操作简单、形象生动、反馈及时等优点,直观地展示教学内容,这样不但可以提高学习效率和质量,而且容易激发学生学习的兴趣,调动积极性。

五、教学过程

本节课的教学流程如下:实际问题——一元一次不等式组——解集——解法——应用。

活动一、实际问题,创设情境

问题1。

小宝和爸爸,妈妈三人在操场上玩跷跷板,爸爸体重为72千克,体重只有妈妈一半的小宝和妈妈一同坐在跷跷板的另一端,这时爸爸的一端仍然着地。后来,小宝借来一副质量为6千克的哑铃,加在他和妈妈坐的一端,结果爸爸被跷起离地。猜猜小宝的体重约是多少?在这个问题中,如果设小宝的体重为x千克。

(1)从跷跷板的状况你可以找出怎样的不等关系?

(2)你认为怎样求x的范围,可以尽可能地接近小宝的体重?

我提出问题(1),学生独立思考,回答问题。

考察学生对应用一元一次不等式解决实际问题的能力,并引出新知。

教师提出问题(2),学生小组合作、探索交流,回答问题。

我预计学生对于这个问题会产生两种不同的看法:一种方法是利用估算的方法将特殊值代入来求出适合不等式组的特殊解;另一种方法是求出两个不等式的解集,并分别将这两个解集在数轴上表示。因此教师应引导学生进一步理解本题的实际意义,能将两个不等式的解集综合分析。

这里是通过对数量关系的分析、抽象,突出数学建模思想的教学,注重对学生进行引导,让学生充分发表意见,并鼓励学生提出不同的解法。

问题2。

现有两根木条,一根长为10厘米,另一根长为30厘米,如果再找一根木条,用这三根木条钉一个三角形木框,那么第三根木条的长度有什么要求?

教师提出问题,学生独立思考,回答问题。

教学效果预估与对策:预计学生对三角形三边关系可能有所遗忘,教师应给予提示。

设计意图:这是一个与三角形相关的问题,要求学生能综合运用已有的知识,独立思考、自主探索、尝试解决,促使学生在探索和解决问题的过程中获得体验、得到发展,学会新的东西,发展自己的思维能力。

活动二、总结归纳,得出概念

1、一元一次不等式组

通过上面两个实际问题的探究,归纳概括出一元一次不等式组的概念和一元一次不等式组解集的概念。

即:把两个(或两个以上)一元一次不等式合在一起,就得到了一个一元一次不等式组(linearinequalitiesofoneunknown)。

2、一元一次不等式组的解集

同时满足不等式(1)、(2)的未知数x应是这两个不等式解集的公共部分。在同一数轴上表示出这两个解集,找到公共部分,就是所列不等式组的解集。

不等式组中几个不等式的解集的公共部分,叫做这个不等式组的解集。

师生活动:在活动一的基础上,将学生得出的结论进行归纳总结。教师要注意倾听学生叙述问题的准确性和全面性。

教学效果预估与对策:估计多数学生在经历了上述的探索过程后,能够对这个结论有所认识。

一元一次不等式组课件【篇13】

学习目标:

1、了解一元一次不等式组的概念,理解一元一次不等式组的解集的意义。

2、会解由两个一元一次不等式组成的一元一次不等式组,能借助数轴正确的表示一元一次不等式组的解集。

3、通过探讨一元一次不等式组的解法以及解集的确定,渗透转化思想,进一步感受数形结合在解决问题中的作用。

4、体验不等式在实际问题中的作用,感受数学的应用价值。

学习重点:

一元一次不等式组的解法

学习难点:

一元一次不等式组解集的确定。

一、学前准备

【回顾】

1.解不等式 ,并把解集在数轴上表示出来。

【预习】

1、 认真阅读教材34-35页内容

2、__________叫做一元一次不等式组。

_________叫做一元一次不等式组的解集。

叫做解不等式组。

4、求下列两个不等式的解集,并在同一条数轴上表示出来

二、探究活动

【例题分析】

例1. (问题1)题中的买5筒钱不够,买4筒钱又多的含义是什么?

例2. (问题2)题中的相等关系是什么?不等关系又是什么?

例3. 解不等式组

【小结】

不等式组解集口诀

同大取大,同小取小,大小小大中间找,大大小小解不了

一元一次不等式组解集四种类型如下表:

不等式组(a)

(1)xb

xb 同大取大

(2)x

x

(3)xax

a

(4)xb

无解 大大小小解不了

【课堂检测】

1、不等式组 的解集是( )

A. B. C. D.无解

2、不等式组 的解集为( )

A.-1

3、不等式组 的解集在数轴上表示正确的是( )

A B C D

4、写出下列不等式组的解集:(教材P35练习1)

三、自我测试

1.填空

(1)不等式组x-1 的解集是___;

(2)不等式组x-2 的解集 ;

(3)不等式组x1 的解集是____;

(4)不等式组x-4 解集是____。

2、解下列不等式组,并在数轴上表示出来

四、应用与拓展

若不等式组 无解,则m的取值范围是 _____.

2023不等式课件14篇


经验时常告诉我们,做事要提前做好准备。在平日里的学习中,幼儿园教师时常会提前准备好有用的资料。资料可以指人事物的相关多类信息、情报。有了资料才能更好地安排接下来的学习工作!你是否收藏了一些有用的幼师资料内容呢?以下是由小编为大家整理的“2023不等式课件14篇”,仅供参考,欢迎大家阅读。

不等式课件 篇1

七年级数学不等式课件

教学目标:

通过对具体实例的学习,使学生能够了解生活中的不等量关系,理解不等式的概念,知道什么是不等式的解,为以后学习不等式的解法奠定基础.

知识与能力:

1.通过对具体事例的分析和探索,得到生活中不等量的关系.

2.通过理解得到不等式的概念,从而使学生经历实际问题中数量的分析、抽象过程,体会现实中有各种各样错综复杂的数量关系.

3.了解不等式的意义,知道不等式是用来刻画生活中的数量关系的.

4.知道什么是不等式的解.

过程与方法:

1.引导学生分析具体事例,从对具体事例的分析中得到不等量关系.

2.引导并帮助学生列出不等式,分析不等式的成立条件.

3.通过分析、抽象得到不等式的概念和不等式的解的概念.

4.通过习题巩固和加深对概念的理解.

情感、态度与价值观:

1.通过学生的分析和抽象过程使他们体会现实中错综复杂的数量关系,然后从而培养其抽象思维能力.

2.通过分组讨论学习,体会在解决具体问题的过程中与他人合作的重要性,培养学生的团体协作精神,使学生获得合作交流的学习方式.

3.通过联系与发展、对立与统一的思考方法对学生进行辩证唯物主义教育.

4.通过创设问题串,让学生仔细观察、对比、归纳、整理,尝试对有理数进行分类,然后体验教学活动充满着探索性和创造性.

教学重、难点及教学突破

重点:不等式的概念和不等式的解的概念.

难点:对文字表述的数量关系能列出不等式.

教学突破:由于学生在以前已经对数量的大小关系和含数字的不等式有所了解,但还没有接触过含未知数的不等式,在学生分析问题的时候注意引入现实中大量存在的数量间的不等关系,研究它们的变化规律,使学生知道用不等式解决实际问题的方便之处.在本节的教学中能够在组织学生讨论的过程中适当地渗透变量的知识,让学生感受其中的函数思想,并引导学生发现不等式的解与方程的解之间的区别.在处理本节难点时指导学生练习有理数和代数式的知识,准确“译出”不等式.

教学过程:

一.研究问题:

世纪公园的票价是:每人5元,一次购票满30张可少收1元.某班有27名少先队员去世公园进行活动.当领队王小华准备好了零钱到售票处买了27张票时,爱动脑的李敏同纪学喊住了王小华,提议买30张票.但有的同学不明白.明明只有27个人,买30张票,岂不浪费吗?

那么,究竟李敏的提议对不对呢?是不是真的浪费呢

二.新课探究:

分析上面的问题:设有x人要进世纪公园,①若x≥30,应该如何买票?②若x

结论:至少要有多少人进公园时,买30张票才合算?

概括:1、不等式的定义:表示不等关系的式子,叫做不等式.不等式用符号>,

2、不等式的解:能使不等式成立的未知数的值,叫做不等式的解.

3、不等式的分类:⑴恒不等式:-71+4,a+2>a+1.

⑵条件不等式:x+3>6,a+2>3,y-3>-5.

三、基础训练.

例1、用不等式表示:⑴a是正数;⑵b不是负数;⑶c是非负数;⑷x的平方是非负数;⑸x的一半小于-1;⑹y与4的和不小于3.

注:⑴不等式表示代数式之间的不相等关系,与方程表示相等关系相对应;

⑵研究不等关系列不等式的重点是抓关键词,弄清不等关系.

例2、用不等式表示:⑴a与1的和是正数;⑵x的2倍与y的3倍的差是非负数;⑶x的2倍与1的和大于—1;⑷a的一半与4的差的绝对值不小于a.

例3、当x=2时,不等式x-1

注:⑴检验字母的值能否使不等式成立,只要代入不等式的左右两边,如果符合不等号所表示的关系,就成立,否则就不成立.⑵代入法是检验不等式的解的重要方法.

学生练习:课本P42练习1、2、3.

四、能力拓展

学校组织学生观看电影,某电影院票价每张12元,50人以上(含50人)的团体票可享受8折优惠,现有45名学生一起到电影院看电影,为享受8折优惠,必须按50人购团体票.

⑴请问他们购买团体票是否比不打折而按45人购票便宜;

⑵若学生到该电影院人数不足50人,应至少有多少人买团体票比不打折而按实际人数购票便宜.

解:⑴按实际45人购票需付钱_________ 元,然后如果按50人购买团体票则需付钱50×12×80%=480元,所以购买团体票便宜.

⑵设有x人到电影院观看电影,当x_____时,按实际人数买票______张,需付款_______元,而按团体票购票需付款________元,如果买团体票合算,那么应有不等式________________,

由①得,当x=45时,上式成立,让我们再取一些数据试一试,将结果填入下表:

x12x比较480与12x的大小48

由上表可见,至少要__________人时进电影院,购团体票才合算.

五、小结:

⑴不等式的定义,不等式的'解.

⑵对实际问题中探索得到的不等式的解,然后不仅要满足数学式子,而且要注意实际意义.

六、作业课本P42习题8.1第1、2、3题.

补充题:

1.用不等式表示:

(1)与1的和是正数;(2)的与的的差是非负数;

(3)的2倍与1的和大于3;(4)的一半与4的差的绝对值不小于.

(5)的2倍减去1不小于与3的和;(6)与的平方和是非负数;

(7)的2倍加上3的和大于-2且小于4;(8)减去5的差的绝对值不大于

2.小李和小张决定把省下的零用钱存起来.这个月小李存了168元,然后小张存了85元.下个月开始小李每月存16元,小张每月存25元.问几个月后小张的存款数能超过小李?(试根据题意列出不等式,并参照教科书中问题1的探索,找出所列不等式的解)

3.某公司在甲、乙两座仓库分别有农用车12辆和6辆,现需要调往A县10辆,调往B县8辆,已知从甲仓库调运一辆农用车到A县和B县的运费分别为40元和80元,然后从乙仓库调运一辆农用车到A县和B县的运费分别为30元和50元,(1)设从乙仓库调往A县农用车辆,用含的代数式表示总运费W元;(2)请你用尝试的方法,探求总运费不超过900元,共有几种调运方案?你能否求出总运费最低的调运方案.

不等式课件 篇2

(1)本节内容,是在学习了用方程思想解决实际问题和一元一次不等式的性质及其解法等知识的基础上,把实际问题和一元一次不等式结合在一起,既是对已学知识的运用和深化,又为今后用不等式组解决实际问题以及更广泛的应用数学建模的思想方法奠定基础,具有在代数学中承上启下的作用;

(2)通过本节的学习,学生将继续经历把生活中的数和数量关系转化为数学符号的体验过程,体会不等式和方程一样都是刻画现实世界数量关系的重要模型。

(3)在列不等式解决实际问题的探索过程中,引导学生注意估算意识,体会算式结果所对应的实际意义,渗透建立数学模型,分类讨论等数学思想,对提升学生应用数学意识思考和解决问题的能力起到积极的作用。

对于用不等式解决实际问题,学生容易出现的认知困难主要有两个方面:①哪类的实际问题需要用一元一次不等式来解决;②如何将实际问题转化为一元一次不等式并加以解决。

根据以上的分析和《数学课程标准》对本课内容的教学要求,本节课的教学重点是:一元一次不等式在决策类实际问题中的应用;难点是:如何将实际问题中的数量关系符号化,并根据解集和结合实际情况分类讨论得出合理结论。

根据本课教材的特点、《数学课程标准》对本节课的教学要求以及学生的认知水平,我从三个方面确定了以下教学目标:

1、能进一步熟练的解一元一次不等式,能从实际问题中抽象出不等关系的数学模型,并结合解集解决简单的实际问题。

2、通过观察、实践、讨论等活动,积累利用一元一次不等式解决实际问题的经验,提高分类考虑、讨论问题的能力,感知方程与不等式的内在联系,体会不等式和方程同样都是刻画现实世界数量关系的重要模型。

3、在积极参与数学学习活动的过程中,体会实事求是的态度和从数学的角度思考问题的习惯;学会在解决困难时,与其他同学交流,相互启发,培养合作精神。

根据教学内容、教学目标和学生的认知水平,我主要采取教师启发引导,学生自主探究的教学方法.教学过程中,创设适当的教学情境,引导学生独立思考、共同探究,使学生经历将生活中的数和数量关系转化为数学符号的具体建模过程,体会不等式作为刻画现实世界数量关系的重要模型的价值。

教学中使用多媒体投影、计算机辅助教学,目的是充分发挥其快捷、生动、形象的特点,为学生提供直观感性的材料,有助于学生对问题的关注和理解,激发学生的学习兴趣.

为了达到本节课的教学目标,突出重点,突破难点,我把教学过程通过两个实际问题逐步深入;最后归纳小结,布置作业.具体过程如下:

1、课题引入:

我们以前已经学过了一元一次方程以及二元一次方程组的解法,并在解决许多实际问题的过程中感受到:将相等关系用数学符号抽象后所得到的“方程”确实是一种有效数学工具,它能让我们的思维过程更加准确和简明!

但是,生活中除了相等的数量关系以外,还存在着大量的不等关系,通过前几节课的学习,我们也已经基本了解了不等式的性质和简单不等式的解法。今天,就让我们通过一些带有选择“决策”意义的实际问题来共同探讨一下一元一次不等式这种数学模型是如何解决生活中的实际问题的。

实际情景1:在为我校初一年级学生选定营养餐的过程中选中了有两家公司.

这两家公司某种适合初一学生的营养餐的报价均是是6.5元/份,营养含量和服务承诺也均相同,且都表示对学生优惠:甲公司表示每份按报价的90%收费,乙公司表示购买100份以上的部分按报价的80%收费.

结 合新课标对本小节的要求:会用一元一次不等式解决简单的实际问题,我选择的是从数量关系上与教材例题类似的收费问题,并且真实数值与所在年级事情相一致,比书上的例题更能贴近学生的实际生活,引发学生探求的`兴趣。特别的,通常此类题目是不给出具体单价的,因为并不影响最后结论,考虑到学生现阶段的数学抽象 仍以识别数量的具体含义为主,所以我在此处添加了单价,并增设了问题一,用以降低抽象思维的梯度,为后续的设未知数的“代数化抽象”作适当的铺垫。

问题(1)请你判断,我们年级580人用餐,应该选择哪家公司能让每位学生的餐费平均算来更低呢?

预案 一:教师应关注学生能否在讨论中认清“每位学生的餐费平均算来更低”所对应的数量意义,将之转化为“付给公司的总金额少”。在此处不排除学生因生活经历的缺乏,而对题目中所隐含的数量关系抽象能力弱。应关注每一位同学的感受,让同学们充分理解交流,扩大参与思考的广度,获得基本抽象思维的生长点。

预案二:在进行甲乙公司所需费用的计算时,会有分部计算和综合计算两种计算形式,对于那些列综合算式的同学,教师应多给予展示机会,从而帮助其他同学整理思路,理解算式的实际含义;为后续的字母抽象做好铺垫。具体计算学生可以合理使用计算器提高课堂速度。

预案三:学生还有可能不通过计算,直接猜测甲公司合算或者乙公司合算,对于这种有可能产生的声音,教师应从估算的角度加以引导。引导学生体会在580人的前提下,超过100人部分(480人)的甲公司是九折乙公司是八折, 10%的差距,;100人以内(少于100人)甲公司九折,乙公司不打折10%的差距,480的10%明显大于100的10%,所以选乙合算,并引导学生用计算的方法验证估算的准确性。

结论:580人时选择乙公司能让每位学生的餐费平均算来更低。

问题(2)你能否用以前学过的知识,在不知道具体人数的前提下制定一套方案,当其他学校的初一年级也想在这两家公司之间进行选择时,不用重复第一题的计算过程,只要知道人数就马上能根据你方案的结论作出决策呢?

结合以前的训练,学生很容易想到要通过设未知数的方法进行符号表达,将非常关键而题目中并未给出的学生人数设为未知数。由于本题的具体分析过程仍然是由学生分析讨论完成,可能出现的情况是:

预案一:一部分综合能力较强的同学会根据实际意义直接列出综合算式:或

此处教师应该引导学生观察,在化简不等式的过程中单价并未影响结果(利用不等式性质二将其作为公倍数约去),即:题目中没有具体的单价也不会影响本题的决策。

还可以结合小学单位一的思想化简不等式,引导学生体会并不是题目中出现的所有数量都会影响不等关系,有可能引发学生的关于数量关系的深层次思考。

预案 二:还有一部分学生会因为生活经验少的关系,综合思考能力弱,无法快速的理清数量关系,列出综合算式,思考受阻,教师应引导学生体会在第一题的算式意义的提示下,如何分别列出表达甲乙公司所需总费用的过程量代数式。然后在通过将之用不等号连接的方式,来表达两笔费用的大小,降低因综合性所引起的思维梯度, 在过程中让学生体会“分步建模”的思维的条理性。

问题(1)如果你是该企业的高级管理人员,请你设计该企业在购买设备时两种型号有几种不同的组合方案;

问题(2)若按固定产量预算企业每月产生的污水量约为20xx吨,为了节约资金,应选择哪种购买方案?

实际情景2的选择除涉及“角色扮演”和“环保”等人文因素的考虑以外,在在结合本节的教学目标上还有如下考虑,

1、 本题取材于真实的实际生活问题,情景中的符号和数量关系较多,不等关系在文字语言的叙述中显得比第一题更加隐蔽,需要学生更深化的思考才能列出算式,是在第一个情景的基础上的扩展和深化。

2、 在学生的讨论过程中,教师应注重引导学生体会,用图表表示的数字信息比文字表达更便于观察和有序思考,感受“有序表达”在实际中的价值。

3、 结合本题每一个的具体问题的分析和解决,学生必须要从表格中分析筛选相关的有用数据,(例如:在第一问设计方案时未用到“处理污水量”和“年消耗费”,在第二问中未用到“价格”和“年消耗费”)这种分析和筛选的思考经历将有助于加强学生对数据关系的理解和运用能力。

结合以前的训练,在思考问题(1)学生很容易想到要通过设A型或B型设备的

例如:(1)设购买污水处理设备A型 台,则B型(10 – )台,由题意知:

在此处,将“限额为105万元”转化为“≤105”是学生要突破的第一关,教师应在次处多展示同学的对“限额为105万元”语言解释,尽可能多的在具有不同经历基础的同学心中将这个抽象过程生活化、自然化。

因为在实际情景中往往要根据未知数所代表的具体含义为未知数的加一个取值范围的限定,而这个隐含的限制条件往往是学生中所不容易考虑到的,教师应注意引导学生注意这一问题,

例如:本题中的 是设备的台数,应用非负整数的限制,所以 可取0、1、2,因此有三种购买方案:

①购A型0台,B型10台;

②购A型1台,B型9台;

③购A型2台,B型8台。

此处细节性的思考经历,有助于提高学生在建模过程中更全面的考虑数值的实际意义,促进抽象符号与具体意义在头脑中的融合。

特别的,此处的“0”是学生最容易忽视和丢掉的,教师在此处应重点引导学生思考当“ ”时,往往是企业最可能选的方案,因为不同的设备涉及到不同的维护问题,单一品种的设备往往更便于管理,这种思考有助于发散学生的思维,促进其结合实际作更全面的思考。

问题(2)的思维梯度较前几个问题进一步加大,学生必须理解“节约资金”这个目的的达成 一定是在“完成任务”的前提下的,要先通过对(1)中所得的三套方案是否能完成任务加以讨论和验证,然后再涉及计算哪个方案费用更低的问题

在验证三套方案的可行性时,收思维方式的局限,学生往往会选择逐一列举计算的讨论方式,并且由于数量少,很容易得出答案,教师可引导学生思考,如果满足(1)的方案不是三种,而是三十种呢?三百种呢?除了逐一讨论以外还有没有什么更好的方式能帮助我们迅速缩小范围呢?引导学生将所买设备能否完成任务量转化为如下不等关系:

(2)同(1)所设购买污水处理设备A型 台,则B型(10 – )台,

240 +200(10 – )≥20xx;

因此为了节约资金,应选购A型1台,B型9台。

此处的分析和引导有助于学生体会不等式在有效缩小讨论范围时的实际价值。

通过以上问题的解决,学生对不等式和方程一样都是刻画现实世界数量关系的重要模型有了进一部的认识,并感受到不等式确实是从实际问题中提出,又为解决实际问题提供明确的帮助有效数学工具。

本阶段通过学习小结进行课堂教学的反馈,组织和指导学生归纳知识、技能、方法,深化对数学思想方法的认识,为后续学习打好基础。

不等式课件 篇3

(1)本节内容,是在学习了用方程思想解决实际问题和一元一次不等式的性质及其解法等知识的基础上,把实际问题和一元一次不等式结合在一起,既是对已学知识的运用和深化,又为今后用不等式组解决实际问题以及更广泛的应用数学建模的思想方法奠定基础,具有在代数学中承上启下的作用;

(2)通过本节的学习,学生将继续经历把生活中的数和数量关系转化为数学符号的体验过程,体会不等式和方程一样都是刻画现实世界数量关系的重要模型。

(3)在列不等式解决实际问题的探索过程中,引导学生注意估算意识,体会算式结果所对应的实际意义,渗透建立数学模型,分类讨论等数学思想,对提升学生应用数学意识思考和解决问题的能力起到积极的作用。

对于用不等式解决实际问题,学生容易出现的认知困难主要有两个方面:①哪类的实际问题需要用一元一次不等式来解决;②如何将实际问题转化为一元一次不等式并加以解决。

根据以上的分析和《数学课程标准》对本课内容的教学要求,本节课的教学重点是:一元一次不等式在决策类实际问题中的应用;难点是:如何将实际问题中的数量关系符号化,并根据解集和结合实际情况分类讨论得出合理结论。

根据本课教材的特点、《数学课程标准》对本节课的教学要求以及学生的认知水平,我从三个方面确定了以下教学目标:

1.能进一步熟练的解一元一次不等式,能从实际问题中抽象出不等关系的数学模型,并结合解集解决简单的实际问题。

2.通过观察、实践、讨论等活动,积累利用一元一次不等式解决实际问题的经验,提高分类考虑、讨论问题的能力,感知方程与不等式的内在联系,体会不等式和方程同样都是刻画现实世界数量关系的重要模型。

3.在积极参与数学学习活动的过程中,体会实事求是的态度和从数学的角度思考问题的习惯;学会在解决困难时,与其他同学交流,相互启发,培养合作精神。

三、教学方法的选择

根据教学内容、教学目标和学生的认知水平,我主要采取教师启发引导,学生自主探究的教学方法.教学过程中,创设适当的教学情境,引导学生独立思考、共同探究,使学生经历将生活中的数和数量关系转化为数学符号的具体建模过程,体会不等式作为刻画现实世界数量关系的重要模型的价值,

教学中使用多媒体投影、计算机辅助教学,目的是充分发挥其快捷、生动、形象的特点,为学生提供直观感性的材料,有助于学生对问题的.关注和理解,激发学生的学习兴趣.

为了达到本节课的教学目标,突出重点,突破难点,我把教学过程通过两个实际问题逐步深入;最后归纳小结,布置作业.具体过程如下:

1、课题引入:

我们以前已经学过了一元一次方程以及二元一次方程组的解法,并在解决许多实际问题的过程中感受到:将相等关系用数学符号抽象后所得到的“方程”确实是一种有效数学工具,它能让我们的思维过程更加准确和简明!

但是,生活中除了相等的数量关系以外,还存在着大量的不等关系,通过前几节课的学习,我们也已经基本了解了不等式的性质和简单不等式的解法。今天,就让我们通过一些带有选择“决策”意义的实际问题来共同探讨一下一元一次不等式这种数学模型是如何解决生活中的实际问题的。

实际情景1:在为我校初一年级学生选定营养餐的过程中选中了有两家公司.

这两家公司某种适合初一学生的营养餐的报价均是是6.5元/份,营养含量和服务承诺也均相同,且都表示对学生优惠:甲公司表示每份按报价的90%收费,乙公司表示购买100份以上的部分按报价的80%收费.

结 合新课标对本小节的要求:会用一元一次不等式解决简单的实际问题,我选择的是从数量关系上与教材例题类似的收费问题,并且真实数值与所在年级事情相一致,比书上的例题更能贴近学生的实际生活,引发学生探求的兴趣。特别的,通常此类题目是不给出具体单价的,因为并不影响最后结论,考虑到学生现阶段的数学抽象 仍以识别数量的具体含义为主,所以我在此处添加了单价,并增设了问题一,用以降低抽象思维的梯度,为后续的设未知数的“代数化抽象”作适当的铺垫。

问题(1)请你判断,我们年级580人用餐,应该选择哪家公司能让每位学生的餐费平均算来更低呢?

预案 一:教师应关注学生能否在讨论中认清“每位学生的餐费平均算来更低”所对应的数量意义,将之转化为“付给公司的总金额少”。在此处不排除学生因生活经历的缺乏,而对题目中所隐含的数量关系抽象能力弱。应关注每一位同学的感受,让同学们充分理解交流,扩大参与思考的广度,获得基本抽象思维的生长点。

预案二:在进行甲乙公司所需费用的计算时,会有分部计算和综合计算两种计算形式,对于那些列综合算式的同学,教师应多给予展示机会,从而帮助其他同学整理思路,理解算式的实际含义;为后续的字母抽象做好铺垫。具体计算学生可以合理使用计算器提高课堂速度。

预案三:学生还有可能不通过计算,直接猜测甲公司合算或者乙公司合算,对于这种有可能产生的声音,教师应从估算的角度加以引导。引导学生体会在 580人的前提下,超过100人部分(480人)的甲公司是九折乙公司是八折, 10%的差距,;100人以内(少于100人)甲公司九折,乙公司不打折10%的差距,480的10%明显大于100的10%,所以选乙合算,并引导学生用计算的方法验证估算的准确性。

不等式课件 篇4

教学建议

一、知识结构

本书首先结合实例引入一元一次不等式组的解集的概念,然后通过三个例题说明利用数轴解一元一次不等式组的方法,最后对一元一次不等式组的解法步骤进行了总结.

二、重点、难点分析

本节教学的重点是掌握一元一次不等式组的解法步骤并准确地求出解集.难点是正确应用不等式的基本性质对不等式进行变形、求不等式组中各个不等式解集的公共部分.不等式在中学代数中是研究问题的重要工具,例如求函数的定义域、值域、研究函数的单调性,求最大值、最小值,一元二次方程根的讨论等,都要用到不等式的知识.不等式也是进一步学习其他数学内容的基础.学习和掌握不等式的求解和不等式的证明方法,对培养学生逻辑思维能力也有极其重要的作用.在处理解不等式的问题中,一元一次不等式组的解法,具有特别重要的意义.这是因为,解各类不等式的问题都可以归结为解一些由简单不等式所组成的不等式组.

1、在构成不等式组的几个不等式中

①这几个一元一次不等式必须含有同一个未知数;

②这里的“几个”并未确定不等式的个数,只要不是一个,两个,三个,四个……都行.

2、当几个不等式的解集没有公共部分时,我们就说这个不等式组无解.

3、由两个一元一次不等式组成的不等式的解集,共归结为下面四种基本情况:

【注意】①其中第(4)个不等式组,实质上是矛盾不等式组,任何数都不能使两个不等式同时成立。所以说这个不等式组无解或说其解集为空集。②从上面列出的表中,我们可以概括出来不等式组公共解的一规律:同大取大,同小取小,一大一小中间找。

三、教法建议

1.解本节的引例及例1、例2、例3时,注意把解不等式组的思路讲清楚,即先分别解每一个不等式,求出解集,再求这些解集的公共部分.求公共部分的过程一定要结合数轴来讲。

2.这节课的讲解自始至终要突出解不等式组的基本思想以及解一元一次不等式组的步骤这两个重点.准确熟练地解一元一次不等式以及用数轴上的点表示不等式的解集是这节课的基础,因此讲新课之前要复习提问这些内容。

3.求公共解集是这节课的新授内容,教师要充分利用数轴表示不等式解集具有形象、直观、易于说明问题这些优点.解集的公共部分教师可用彩笔在数轴的相应部分描画出来,使学生感到醒目,便于理解记忆。

4.每组不等式不要超过三个,关键是使学生理解和掌握解不等式组的基本思想和两个步骤,不宜做过于难、过于多、重复的机械计算。

不等式课件 篇5

(一)复习提问:

三角形的三边关系?

(二)列一元一次不等式组

问题:现有两根木条a和b,a长10cm,b长3cm.如果要再找一根木条c,用这三根木条钉成一个三角形木框,那么对木条c的长度有什么要求?

注:这个问题是本节的'引入问题,三角形木框的形状不唯一确定,只要能成为三角形即可.

探究:用三根长度分别为14cm,9cm,6cm的木条c1,c2,c3分别试试,其中哪根木条能与木条a和b一起钉成三角形木框?

可以发现,当木条a和b的长度确定后,木条c太长或太短,都不能与a和b一起钉成三角形.

由于“三角形中两边之和大于第三边,两边之差小于第三边”,设木条c长xcm,则x必须同时满足不等式x10+3①和x10-3②

注:木条c必须同时满足两个条件,即ca+b,ca-b.

类似于方程组,把这两个不等式合起来,组成一个一元一次不等式组记作注:这里并未正式给一元一次不等式组下定义,只是说这两个不等式合起来,组成一个一元一次不等式组.实际上,两个或更多的一元一次不等式组合起来,都组成一个一元一次不等式组.

(三)一元一次不等式组的解集

类比方程组的解,怎样确定不等式组中x的可取值的范围呢?

不等式组中的各不等式解集的公共部分,就是不等式组中x可以取值的范围.

注:这里还未正式出现不等式组的解集的概念,但已点出各不等式的解集的公共部分即不等式组中未知数的可取值范围.

由不等式①解得x13.

由不等式②解得x7.

从图9.3—2容易看出,x可以取值的范围为713.

注:利用数轴可以直观形象地认识公共部分.这个公共部分是两端有界的开区间.

这就是说,当木条c比7cm长并且比13cm短时,它能与木条a和b一起钉成三角形木框.

一般地,几个不等式的解集的公共部分,叫做由它们所组成的不等式组的解集.解不等式组就是求它的解集.

注:这里正式给出不等式组的解集以及解不等式组的定义13.注:利用数轴可以直观形象地认识公共部分.这个公共部分是两端有界的开区间.这就是说,当木条c比7cm长并且比13cm短时,它能与木条a和b一起钉成三角形木框.一般地,几个不等式的解集的公共部分,叫做由它们所组成的不等式组的解集.解不等式组就是求它的解集.注:这里正式给出不等式组的解集以及解不等式组的定义。

不等式课件 篇6

一元一次不等式组(2)

文星中学唐波

一、教学目标

(一)知识与技能目标

1、熟练掌握一元一次不等式组的解法,会用一元一次不等式组解决有关的实际问题。

2、理解一元一次不等式组应用题的一般解题步骤,逐步形成分析问题和解决问题的能力。

(二)过程与方法目标

通过利用列一元一次不等式组解答实际问题,初步学会从数学的角度提出问题、理解问题、并能综合运用所学的知识解决问题,发展应用意识。

(三)情感态度与价值观

通过解决实际问题,体验数学学习的乐趣,初步认识数学与人类生活的密切联系。

二、教学重难点

(一)重点:建立用不等式组解决实际问题的数学模型。

(二)难点:正确分析实际问题中的不等关系,根据具体信息列出不等式组。

三、学法引导

(一)教师教法:直观演示、引导探究相结合。

(二)学生学法:观察发现、交流探究、练习巩固相结合。

四、教具准备:多媒体演示

五、教学过程

(一)、设问激趣,引入新课

猜一猜:我属狗,请同学们根据我的实际情况来猜测我的年龄。(学生大胆猜想,利用不等关系分析得出答案。)

(二)、观察发现,竞赛闯关

1、比一比:填表找规律

(学生抢答,教师补充。)2利用发现的规律解不等式组 ?(学生解答,抽生演板。)你可以得到它的整数解吗?

(抽生回答:因为大于11小于14的整数有12和13,所以整数解为12和13。)3填空:三角形三边长分别为2、7、c,则 c的取值范围是__________。如果c是一个偶

数,则 c=__________。

(学生回答,教师补充更正。)

(三)、欣赏图片,探究新知

1、欣赏“五岳看山”。

2、利用欣赏引出例题(教科书P139例2仿编)

例:3名同学计划在10天内到嵩山拍照500张(每天拍照数量相同),按原来的计划,不能完成任务;如果每人每天比原计划多拍1张,就能提前完成任务,每个同学原计划每天............拍多少张?

生齐读,找出题中的已知条件和未知条件;再默读,找一找表示数量关系的句子。师引导分析,并提出问题:

(1)你是怎样理解“不能完成任务”的数量含义的?你是怎样理解“提前完成任务”的数量含义的?

(2)解决这个问题,你打算怎样设未知数?

(3)在本题中,可以找出几个不等关系,可以列出几个不等式?(学生交流讨论,教师指导。)

?7x?98

?7(x?3)?98

解答完成后,学生自学课本例2。

3、由例解题答过程,类比列二元一次方程组解应用题的步骤,总结列一元一次不等式组的解题步骤:

(1)、分析题意,设未知数; .(2)、利用不等关系,列不等式组; .(3)、解不等式组; .

(4)、检验,根据题意写出答案。.(学生总结,抽生回答,教师补充。)

(四)、闯关练习,巩固新知

1练一练:为纪念“5·12”大地震一周年,“五一”部分同学到青城山拍照留念,如果每人拍8张则多于如果每人拍9张则不够问共有多少个同学参加青城山旅游? ..150张;..180张。

教师引导:抓住重点词语,找到不等关系,列出不等式组。学生独立完成,抽生回答。

比较列二元一次方程组和列一元一次不等式组解应用题的区别:

(学生类比找区别,教师补充。)2练一练(教科书P140练习第2题):一本英语书共98页,张力读了一周(7天)还没读完,而李永不到一周就已读完。李永平均每天比张力多读3页,张力平均每天读多少页(答案取整数)?

学生分析列出不等式组,教师指导。(前面的练习已解出不等式组。)

(五)、畅所欲言,归纳小结 学生畅所欲言,谈收获体会 多媒体展示,本课内容小结:

1、解一元一次不等式组的秘笈:同大取大,同小取小,大小小大中间找,大大小小解不了。

2、具有多种不等关系的问题,可通过不等式组解决。

3、列一元一次不等式组解应用题的步骤是:(1)、分析题意,设未知数;(2)、利用不等关系,列不等式组;(3)、解不等式组;

(4)、检验,根据题意写出答案。

(六)、课后演练,终极挑战

必做题:教材习题第4、5、6题;

选做题:一个两位数,它的十位数字比个位数字大1,而且这个两位数大于30小于42,则这个两位数是多少?

六、板书设计

一元一次不等式组(2)

解:设每个同学原计划每天拍x张,得

① ?3?10x?500

?

?3?10(x?1)?500②

1、分析题意,设未知数;

解得x

3根据题意,x应为整数,所以x=16 答:每个同学原计划每天拍16张。

2??

2、找不等关系,列不等式组; ?

?

3、解不等式组; ?步骤

??

?

4、检验并根据题意写出答案。?

不等式课件 篇7

科学合理的教学方法能使教学效果事半功倍,达到教与学的和谐完美统一。

基于此,我准备采用的教法讲授法、讨论法。德国教育学家第斯多慧:差的教师只会奉送真理,好的教师则交给学生如何发现真理,老师的教是为了不教,这才是教学的最高境界,所以我采用的学法是练习法、自主合作法。

在这节课的教学过程中,我注重突出重点,条理清晰,紧凑合理。各项活动的安排也注重互动、交流,最大限度的调动学生参与课堂的积极性、主动性。

首先是导入环节,我采用复习旧知的导入方法。我会让学生回忆不等式的概念以及一元一次方程的概念,明确指出今天学习的内容是《一元一次不等式》。

这样的设计既可以考查学生对之前知识的掌握情况,还能够为今天学习一元一次方程的概念打下基础。而且开门见山的导入方式能够快速地进入主题。

接下来是新知探索环节,首先我请学生类比不等式以及一元一次方程的概念,给一元一次不等式下定义。

能够总结出:含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式。

接下来让学生回忆上节课学习的不等式x-7>26如何解决的,通过学生回忆总结可以得到:通过“不等式的两边都加7,不等号的方向不变”而得到的。

接下来提问学生有没有更加简便的方法解不等式?让学生类比解一元一次方程的步骤进行解题。可以得到相当于可以用“移项”,来解决。

在这个过程中,强调每一个步骤,在第二题最后一步,强调当不等式的两边同时乘以(或除以)同一个负数时,不等号的方向改变。

解完不等式,先让学生回忆解一元一次方程的步骤是什么?并类比解一元一次方程的步骤,总结一下解一元一次不等式的步骤是什么?

从而我们归纳:解一元一次方程,要根据等式的性质,将方程逐步化为x=a的形式;而解一元一次不等式,则要根据不等式的性质,将不等式逐步化为xa的形式。

《数学课程标准》指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者”。根据这一教学理念,在本环节中,我组织学生进行了自主探究活动,让学生在保持高度学习热情和探究欲望的活动过程中,始终以愉悦的心情,亲身经历和体验知识的形成过程。培养学生的探究能力、分析思维能力,激发他们的创新意识、参与意识。

第三个环节是课堂练习环节,出示问题,解不等式,并在数轴上表示数集:5x+15>4x-1

之所以这样设计是因为练习是掌握知识、形成技能、发展思维的重要手段,针对本课的教学重点和难点,上述练习,目的是让学生进一步巩固对新知的理解。可以深化教学内容,培养思维的灵活性。

最后一个环节为小结作业环节,关于课堂小结,我打算让学生自己来总结今天的收获。

这样既发挥了学生的主体性,又可以提高学生的总结概括能力,让我在第一时间得到学习反馈,及时加以疏导。

通过这样的方式能够为本节课学习的知识进行进一步的巩固。

我的板书设计遵循简洁明了突出重点的意图,这是我的板书设计:

不等式课件 篇8

1、了解一元一次不等式组的概念。

2、理解一元一次不等式组的解集,能求一元一次不等式组的解集。

3、会解一元一次不等式组。

通过具体问题得到一元一次不等式组,从而了解一元一次不等式组的概念,解出每个不等式,利用数轴求出各不等式解集的公共部分,从而得到不等式组的解集,通过解几个有代表性的一元一次不等式组,总结出求不等式组解集的法则。

运用数轴确定不等式组的解集是行之有效的方法。这种“数形结合”的方法今后经常用到,锻炼同学们数形结合的能力,提高学习兴趣。

一元一次不等式组的解法。

确定一元一次不等式组的解集。

一、情境导入,初步认识

问题1现有两根木条a和b,a长10cm,b长3cm,如果要再找一根木条c,用这三根木条钉成一个三角形木框,那么木条c的长度有什么要求?

解:由于三角形中两边之____大于第三边,两边之____小于第三边,设c的长为xcm,则x<____,①x>____,②合起来,组成一个__________。

由①解得_____________,由②解得_____________。

在数轴上表示就是________________。

容易看出:x的取值范围是____________________。

这就是说,当木条c比____cm长并且比____cm短时,它能与木条a和b一起钉成三角形木框。

问题2由上面的解不等式组的过程用自己的语言归纳出一元一次不等式组的.解法。

全班同学可独立作业,也可分组自由讨论,10分钟后交流成果,逐步得出结论。

二、思考探究,获取新知

思考什么叫一元一次不等式组,什么叫一元一次不等式组的解集,什么叫解不等式组?

1、定义:

(1)一元一次不等式组:几个含有相同未知数的一元一次不等式合起来组成一个一元一次不等式组。

(2)一元一次不等式组的解集:几个不等式的解集的公共部分,叫做由它们所组成的不等式的解集。

(3)解不等式组:求一元一次不等式组的解集的过程叫解一元一次不等式组。

2、一元一次不等式组的解法:

(1)求出每个一元一次不等式的解集。

(2)求出这些解集的公共部分,便得到一元一次不等式组的解集。

不等式课件 篇9

本节教学的重点是不等式的解集的概念及在数轴上表示不等式的解集的方法.难点为不等式的解集的概念.

相同点:定义方式相同(使方程成立的未知数的值,叫做方程的解);解的表示方法也相同.

不同点:解的个数不同,一般地,一个不等式有无数多个解,而一个方程只有一个或几个解,例如, 能使不等式 成立,那么 是不等式的一个解,类似地 等也能使不等式 成立,它们都是不等式 的解,事实上,当 取大于 的数时,不等式 都成立,所以不等式 有无数多个解.

不等式的解与不等式的解集是两个不同的概念,不等式的解是指满足这个不等式的未知数的某个值,而不等式的解集,是指满足这个不等式的未知数的所有的值,不等式的所有解组成了解集,解集中包括了每一个解.

注意:不等式的解集必须满足两个条件:第一,解集中的任何一个数值,都能使不等式成立;第二,解集外的任何一个数值,都不能使不等式成立.

一般地,一个含未知数的不等式有无数多个解,其解集是某个范围,这个范围可用一个最简单的不等式表示出来,例如,不等式 的解集是 .

如不等式 的解集 ,可以用数轴上表示4的点的左边部分表示,因为 包含 ,所以在表示4的点上画实心圆.

如不等式 的解集 ,可以用数轴上表示4的点的左边部分表示,因为 包含 ,所以在表示4的点上画实心圈.

注意:在数轴上,右边的点表示的数总比左边的点表示的数大,所以在数轴上表示不等式的解集时应牢记:大于向右画,小于向左画;有等号的画实心圆点,无等号的画空心圆圈.

1.使学生了解不等式的解集、解不等式的概念,会在数轴上表示出不等式的解集.

2.知道不等式的“解集”与方程“解”的不同点.

通过教学,使学生能够正确地在数轴上表示出不等式的解集,并且能把数轴上的某部分数集用相应的不等式表示.

通过讲解不等式的“解集”与方程“解”的关系,向学生渗透对立统一的辩证观点.

通过本节课的学习,让学生了解不等式的解集可利用图形来表达,渗透数形结合的数学美.

2.学生学法:明确不等式的解与解集的区别和联系,并能熟练地用数轴表示不等式的解集,在数轴上表示不等式的解集时,要特别注意:大于向右画,小于向左画;有等号的画实心圆点,无等号的画空心圆圈.

不等式课件 篇10

1.了解不等式及一元一次不等式概念。

2.理解不等式的解、解集,能正确表示不等式的解集。

通过类比等式的对应知识,探索不等式的概念和解,体会不等式与等式的异同,初步掌握类比的思想方法。

1.经历把实际问题抽象为不等式的过程,能够列出不等关系式。

2.初步体会不等式(组)是刻画现实世界中不等关系的一种有效数学模型,培养学生的建模意识。

通过对不等式概念及其解集等有关概念的探索,培养学生的知识迁移能力和建模意识,加强同学之间的使用与交流。

活动一:

感知不等关系,了解不等式的概念。

通过实例,让学生认识到不等关系在生活中的存在,通过问题的解答,让学生了解不等式的概念,体会不等式是解决实际问题的有效工具。

活动二:

通过类比方程,继续探索出不等式的解、解集及其表示方法。

通过解决上个环节的问题,得出不等式的解,再引导学生观察解的特点,探索出解集的两种表示方法(符号表示、数轴表示),并且培养学生用估算方法求解集的技能。

活动三:

继续探索,归纳出一元一次不等式的意义。

针对所学的不等式,让学生归纳出特点,得到一元一次不等式的概念,并对概念进行辨析。

运用本节所学的知识,解决实际问题,使学生经历将实际问题转化为数学问题,再加以解决的过程,实现对所学知识的巩固和深化。

让学生通过自我反思和互相质疑提问,归纳总结本节课的主要内容,交流在概念、解及解集学习中的心得和体会,不断积累数学活动经验,教师应主动参与学生小结中,作好引导工作,布置好作业,并作及时反馈。

小强准备随父母乘车去武当山春游。

⑴在车上看到儿童买票所需的测身高标识线。

①x满足______时,他可免票。

②x满足______时,他该买全票。

⑵已知襄樊与武当山的距离为150千米,他们上午10点钟从襄樊出发,汽车匀速行驶。

①若该车计划中午12点准时到达武当山,车速应满足什么条件?

②若该车实际上在中午12点之前已到达武当山,车速应满足什么条件?

用不等式表示:

⑴a是正数;⑵a是负数;⑶a与5的和小于7;⑷a与2的差大于-1;

⑸a的4倍大于8;

⑹a的一半小于3。

学生回答①这两个由实际生活情境设置的问题,应非常容易.问题②相对①难度加大了,难在题意中的条件不象上面那样直接明了,并且可从距离和时间两个角度来分析、解决问题,而七年级学生恰恰缺乏阅读分析题意、多维度思考解决问题的能力,所以采用小组讨论交流的形式解决问题②

学生讨论角度估计大都集中在距离这一角度,教师可深入小组讨论中,认真听听同学们的思路,应鼓励学生多发表意见,并适当点拨,直到得出两种不等式。

此次活动中,教师应重点关注:讨论要有足够的时间和空间,学生在小组讨论交流时,是否敢于发表自己的想法。

再给出不等式概念:

像前面式子一样用“>”或“

教师可要求学生举出一些表示大小的式子,学生举出的不等式中,可能会有一些不含未知数的,如5>3等。教师此时应总结:不等式中可含有未知数,也可不含未知数。

教师根据学生举例给出表示不等关系的第三种符号“≠”,并强调:像前面式子一样用“≠”表示不等关系的式子也是不等式。

巩固练习是让学生用不等式来刻画题中6个简单的不等关系。学生得出答案并不难,所以该环节让学生独立完成、互相评价,教师可深入到学生的解题过程中,观察指导学生的解题思路,倾听学生的评价。

问题1在课本中起导入新课作用,考虑学生实际情况(分析应用题能力尚欠缺)和题目难度,所以设置问题串,降低难度。这样编排教材我认为更能体现知识呈现的序列性,从易到难,让学生“列不等式”能力实现螺旋上升。

问题3作用仅仅起巩固上面所学的知识,所以采用书中的一组习题,让学生独立完成,进一步培养学生列不等式能力。

采用学生熟悉的生活情境作为导入内容,然后层层推进,步步设问,环环相扣,直至推出不等式的概念及概念理解中应注意的地方。这样实现了:让学生从已有的数学经验出发,从生活中建构数学模型,为后面利用“不等式”这一模型解决生活中实际问题作好铺垫,体现了数学生活化、生活

不等式课件 篇11

1、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。

2、解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x项的系数化为1

1、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。

2、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。

3、求不等式组的解集的过程,叫做解不等式组。

4、当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。

3、代数式1-m的值大于-1,又不大于3,则m的取值范围是( )

A.x≥1 B.x≥-1/2 C.x>1 D.x>-1/2

A.5+4>8 B.2x-1 C.2x-5≤1 D.1/x-3x≥0

A. a>0¬ B.a≥0¬ C.a

11、若关于x的不等式组 的解集是x>2a,则a的取值范围是

A. a>4 B. a>2 C. a=2 D.a≥2

12、若方程组 中,若未知数x、y满足x+y>0,则m的取值范围是

13、不等式2(1) x>-3的解集是 。

14、用代数式表示,比x的5倍大1的数不小于x的 与4的差 。

15、若(m-3)x-1,则m .

18、某次个人象棋赛规定:赢一局得2分,平一局得0分,负一局得反扣1分。在12局比赛中,积分超过15分就可以晋升下一轮比赛,小王进入了下一轮比赛,而且在全部12轮比赛中,没有出现平局,问小王最多输 局比赛

1、定义:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点。

2、心对称的两条基本性质:

(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分。

(2)关于中心对称的两个图形是全等图形。

把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。

每上第一次课,我所讲的课程内容都和学生的错题有关。我通常把试卷中的错题摘抄出几个典型题,作为课堂的例题再讲一遍。而学生的反应,或是像没有见过,或是对题目非常熟悉,但没有思路。

这些现象的发生,都是学生没有及时总结的原因。所以第一次课后我都建议我的学生做一个错题本,像写日记一样,记录下自己的错题和感想。

成也审题败也审题。如何审题呢?

(1)这个题目有哪些个已知条件?我能不能把已知条件分开?

(2)求解的目标是什么?对求解有什么要求?

(3)能不能画一个图帮助思考?好多问题是没有看清楚题意致错。审题不清,你做得越多,可能错的就越多。

(4)所给出的已知条件相互之间有什么关系?能不能从中发现隐含条件?

(5)已知条件与求解目标有什么联系?能不能从中获得解题的思路?找到进门的门槛?

不等式课件 篇12

1.使学生感受到生活中存在着大量的不等关系,了解不等式和一元一次不等式的意义;

2.让学生自发地寻找不等式的解,会在数轴上正确地表示出不等式的解集;

3.能够根据题意准确迅速地列出相应的不等式。

1.通过汽车行驶过a地这一实例的研究,使学生体会到数学来源于生活,又服务于生活,培养学生“学数学、用数学”的意识;

2.经历由具体实例建立不等模型的过程,探究不等式的解与解集的不同意义的过程,渗透数形结合的思想。

㈢情感、态度、价值观:

1.通过对不等式、不等式的解与解集的探究,引导学生在独立思考的基础上积极参与对数学问题的讨论,培养他们的合作交流意识;

2.让学生充分体会到生活中处处有数学,并能将它们应用到生活的各个领域中去。

3.培养学生类比的思想方法、数形结合的思想。

1.教学重点:不等式、一元一次不等式、不等式解与解集的意义;在数轴上正确地表示出不等式的解集;

2.教学难点:不等式解集的意义,根据题意列出相应的不等式。

计算机、自制cai课件、实物投影仪、三角板等。

教师创设情境引入,学生交流探讨;师生共同归纳;教师示范画图,课件交互式练习。

〖创设情境——从生活走向数学〗

[多媒体展示]“五·一黄金周”快要到了,芜湖市某两个商场为了促销商品,推行以下促销方案:①甲商场:购物不超过50元者,不优惠;超过50元的,超过部分折优惠。②乙商场:购物不超过100元者,不优惠;超过100元的,超过部分九折优惠。亲爱的同学,如果五·一期间,你去购物,选择到哪个商场,才比较合算呢?

(以上教学内容是向学生设疑,激发学生探索问题、研究问题的积极性,可以让学生讨论一会儿)

教师:要想正确地解决这个问题,我们大家就要学习第九章《不等式和不等式组》,学完本章的内容后,我相信,聪明的你们一定都会作出正确的选择,真正地做到既经济又实惠。

首先,我们来共同学习本章的第一节课——9.1.1节《不等式及其解集》

〖新课学习〗

学习目标:

1.能感受到生活中存在着大量的不等关系,了解不等式和一元一次不等式和意义;

2.会寻找不等式的解,会在数轴上正确地表示出不等式的解集;

3.能够根据题意准确迅速地列出相应的不等式。

[多媒体展示一段动画]:引例:一辆匀速行驶的汽车在11:20距离a地50千米,要在12:00之前驶过a地,车速应满足什么条件?

设车速是x千米/小时,

(1)从时间上看,汽车要在12:00之前驶过a地,则以这个速度行驶50千米所用的时间不到 小时,即

(2)从路程上看,汽车要在12:00之前驶过a地,则以这个速度行驶 小时的路程要超过50千米,即

请同学们观察上面的两个式子,式子左右两边的大小关系是怎样的? 左右两边相等吗?

在学生充分发表自己意见的基础上,师生共同归纳得出:

用“>”或“<”号表示大小关系的式子叫做不等式;

用“≠”表示不等关系的式子也是不等式。

判断下列式子中哪些是不等式,是不等式的请在题后的括号内划“√”,不是的请划“×”

(1)3> 2      (     ) (2)2a+1> 0   (     )   (3)a+b=b+a  (     )

(4)x< 2x+1   (     )     (5)x=2x-5    (     ) (6)2x+4x< 3x+1 (     )          (7)15≠7+9  (     )

上面的不等式中,有些不含未知数,有些含有未知数,大家把(2)、(4)、(6)式与(5)式类比,(5)式是一个一元一次方程,能不能给(2)、(4)、(6)式也起个名字呢?

含有一个未知数, 未知数的次数是1的不等式,叫做一元一次不等式.

问题2:车速可以是78千米/小时吗?75千米/小时呢? 72千米/小时呢?

问题3:我们曾经学过“使方程两边相等的未知数的值就是方程的解”,那么我们可以把使不等式成立的未知数的值叫做什么呢?

(师生共同归纳)使不等式成立的未知数的值叫做不等式的解。

2.课堂练习二——动一动脑,动一动手,你一定能算得对。

76, 73, 79, 80, 74.9, 75.1, 90, 60

(学生做完后,师问):你还能找出这个不等式的其他的解吗?这个不等式有多少个解?你从中发现了什么规律?

(学生讨论后,师生共同总结):当x>75时,不等式 x>50总成立;而当x<75或x=75时,不等式 x>50不成立,这就是说,任何一个大于75的数都是不等式 x>50的解,这样的解有无数个。因此,x>75表示了能使不等式 x>50成立的x的取值范围,叫做不等式 x>50的解的集合,简称解集。

我们再回到前面的问题,经过刚才的分析,可以知道,要使汽车在12:00之前驶过a地,车速必须大于75千米/小时。

一个含有未知数的不等式的所有的解,组成了这个不等式的解集。

4.在数轴上表示不等式的解集;

注意:在表示75的点上画空心圆圈,表示不包括这一点.

5.课堂练习三——动一动脑,动一动手,你一定能算得对。

判断下列数中哪些是不等式x+3>6的解? 哪些不是?

-4, -2.5,  0,  1,  2.5,  3,  3.2,  4.8,  8,  12

求不等式的解集的过程叫做解不等式。

7.课堂练习四——看谁算得最快最准。

直接想出不等式的解集,并在数轴上表示出不等式的解集:

(1) x+3>6;        (2)2x<8;    (3)x-2>0

解:(1)x>3;         (2)x<4;    (3)x>2。

1.例用不等式表示:

(1)x与1的和是正数;      (2)的与的的差是负数;

(3)的2倍与1的和大于3;(4)的一半与4的差小于的3倍.

解:(1)x+1>0;         (2)+b<0;

(3)2+1>3;      (4)-4<3;

2.课堂练习五——看谁最列得又快又准。

用不等式表示:

(1)是正数;          (2)是负数;

(3)与5的和小于7;  (4)与2的差大于-1;

(5)的4倍大于8;      (6)的一半小于3.

答案;(1)>0;        (2)<0;   (3)+5>0;

学生小结,师生共同完善:

2.会寻找不等式的解,会在数轴上正确地表示出不等式的解集;

3.能够根据题意准确迅速地列出相应的不等式。

不等式课件 篇13

教学重点:掌握不等式的三条基本性质,尤其是不等式的基本性质3.

教学难点:正确应用不等式的三条基本性质进行不等式变形.

通过观察、分析、讨论,引导学生归纳总结出不等式的三条基本性质,从具体上升到理论,再由理论指导具体的练习,从而强化学生对知识的理解与掌握.

(设计说明:设置以下习题是为了温故而知新,为学习本节内容提供必要的知识准备.)

2、什么是不等式?

3、用“>”或“<”填空.

(教学说明: 复习等式的基本性质后学生自然会联想到,不等式是否有与等式相类似的性质,从而引起学生的探究欲望.接着问题3为学生探究不等式的性质提供了载体,通过观察,寻找规律,得出不等式的性质.)

先让学生独立思考,后合作交流,通过充分讨论,类比等式性质得出不等式的性质.

观察时,引导学生注意不等号的方向,通过(1)题学生容易得出不等式性质1:

不等式基本性质1 不等式两边加(或减)同一个数(或式子),不等号的方向不变.

比较(2)、(3)题,注意观察不等号方向,并思考不等号方向的改变与什么有关?由学生概括总结,教师补充完善得出:

不等式基本性质2 不等式两边乘(或除以)同一个不为零的正数,不等号的方向不变.

不等式基本性质3 不等式两边乘(或除以)同一个不为零的负数,不等号的方向改变.

通过PPT用图形演示不等式的基本性质,让学生更加清楚地认识不等式的基本性质。

不等式有传递性吗?

【学生通过讨论能够比较容易得出结论:不等式有对称性,但要注意其不等号方向的`变化;不等式也有传递性,但要注意的是同向传递性。】

三、巩固训练,熟练技能:

1、(1) a - 3____b - 3;

(3) 0.1a____0.1b;

(5) 2a+3____2b+3;

【本题目采用提问的方式,因为内容相对简单,所以可以迅速得到结论。要让提问者说清楚答案,并说明利用不等式的性质几来进行判定的。】

(1)因为7.5>5.7,所以-7.5<-5.7;

(2)因为a+8>4,所以a>-4;

(3)因为4a>4b,所以a>b;

(4)因为-1>-2,所以-a-1>-a-2;

(5)因为3>2,所以3a>2a.

【学生口答,并说明为什么。本题重点是第5小题,要引导学生总结出a的取值会影响到答案。当a>0时,3a>2a.(不等式基本性质2)

当 a=0时,3a=2a.当a<0时,3a<2a.(不等式基本性质3) 】

学生自己完成以下题目,之后进行集体讲解。

(1)如果x-5>-1,那么______________________,得:x>4

(2)如果-2x>3,那么那么______________________,得X=______

师生共同小结本节课所学重点,不等式的基本性质的具体内容。

不等式课件 篇14

基本不等式是数学中重要的一个概念,它与不等式的证明和应用有着密切的关系。基本不等式的解法和思维方法不仅能让我们更好地掌握不等式的性质和应用,同时也能让我们更好地解决数学中的其他问题。下面,让我们就基本不等式这一主题展开更加深入的探讨。

一、基本不等式的定义、证明和性质

基本不等式定义:对于任意实数$x$,$y$,有$(x^2+y^2)\geq 2xy$,等号成立当且仅当$x=y$时成立。

基本不等式的证明:我们可以通过平方展开和配方进行证明,即:

$(x-y)^2\geq 0$

$x^2-2xy+y^2\geq 0$

$x^2+y^2\geq 2xy$

证毕。

基本不等式的性质:基本不等式可以用于求证其他不等式和解决实际问题,例如可以用基本不等式证明算术平均数$\ge$几何平均数,可以用基本不等式求证要想最小化一个多项式,需要使其中的各项等于彼此等于基本不等式中的相等值等。

二、基本不等式的应用及相关例题

基本不等式的应用广泛,其中最常见的应用就是在证明和求解不等式问题中。下面,我们就通过例题来展示基本不等式的具体应用。

例题一:

已知$a,b,c$均为正实数,求出$abc$与$\frac{(a+b+c)^3}{27}$的大小关系。

解:由于$a,b,c$均为正实数,故可运用基本不等式进行求解,即

$\begin{aligned}

\frac{(a+b+c)}{3}\geq\sqrt[3]{abc}\\

(a+b+c)^3\geq 27abc

\end{aligned}$

因此,

$\frac{(a+b+c)^3}{27}\geq abc$

即$\frac{(a+b+c)^3}{27}\geq abc$

得证。

例题二:

已知$a+b=3$,$a^2+b^2=5$,求出$a,b$的大小关系。

解:由已知条件可得$(a+b)^2=a^2+b^2+2ab$,即

$9=5+2ab$

$ab=\frac{4}{3}$

由基本不等式知得

$2ab=\frac{8}{3}\leq a^2+b^2=5$

即$a^2+b^2>2ab$,因此$a^2>b^2$,

又因为$a+b=3$,所以$b=3-a$,

所以$(3-a)^2

$9+a^2-6a

$a>\frac{3}{2}$

因此,

$a>b>\frac{3}{2}-a$

即$0

例题三:

已知$a,b,c>0$,求证$\frac{(a+b)^2}{c}+\frac{(b+c)^2}{a}+\frac{(c+a)^2}{b}\geq 12(a+b+c)$

解:由基本不等式得

$(a+b)^2\geq 4ab,(b+c)^2\geq 4bc,(c+a)^2\geq 4ac$

将以上三个式子代入原式变化得

$\frac{4ab}{c}+\frac{4bc}{a}+\frac{4ac}{b}\geq 12(a+b+c)$

即$4(ab^2+bc^2+ca^2)\geq 12abc(a+b+c)$

即$(ab^2+bc^2+ca^2)\geq 3abc$

由于$a,b,c>0$,故得证。

三、基本不等式的扩展

除了基本不等式外,还有一些基本不等式的扩展形式,例如平均值不等式和柯西施瓦兹不等式等。这些扩展形式大大丰富了不等式的证明和应用,并为数学研究提供了更加广泛的空间。下面,我们就来简单介绍一下平均值不等式和柯西施瓦兹不等式的相关内容。

平均值不等式:对于$n$个非负实数$x_1,x_2,\cdots,x_n$,有

$\frac{x_1+x_2+\cdots+x_n}{n}\geq\sqrt[n]{x_1x_2\cdots x_n}$

其中等号成立当且仅当$x_1=x_2=\cdots=x_n$时成立。

柯西施瓦兹不等式:对于任意实数$x_1,x_2,\cdots,x_n$和$y_1,y_2,\cdots,y_n$,有

$(x_1^2+x_2^2+\cdots+x_n^2)(y_1^2+y_2^2+\cdots+y_n^2)\geq(x_1y_1+x_2y_2+\cdots+x_ny_n)^2$

其中等号成立当且仅当$\frac{x_1}{y_1}=\frac{x_2}{y_2}=\cdots=\frac{x_n}{y_n}$时成立。

四、总结

综上所述,基本不等式是数学中重要的一个概念,它与不等式的证明和应用有着密切的关系。基本不等式的解法和思维方法不仅能让我们更好地掌握不等式的性质和应用,同时也能让我们更好地解决数学中的其他问题。在学习和应用基本不等式时,我们还需掌握其相关的扩展形式,如平均值不等式和柯西施瓦兹不等式等。只有充分掌握了这些知识点,我们才能更加深入地理解并应用不等式的知识。

二元一次方程组课件(热门11篇)


以下是幼儿教师教育网为您呈现的“二元一次方程组课件”相关内容,希望这些资料可以对你的工作和学习起到实质性的推动作用。教案课件是我们老师工作的一部分,相信老师对要写的教案课件不会陌生。写好教案,课堂教学更有效。

二元一次方程组课件(篇1)

各位专家、领导上午好!我是黄淮学院数学科学系数学与应用数学专业的06级学生,今天的*号选手,很荣幸能站在这里参加本次教学技能大赛。我说课的内容是义务教育课程标准试验教科书人教版七年级下册第八章第一节的内容《二元一次方程组》。(板书8.1二元一次方程组)下面我将从以下七个环节对本节课的教学设计进行说明:(幻灯片)

一、教材分析

首先是教材的地位和作用。《二元一次方程组》是九年制义务教育课本七年级数学下册第八章第一节的内容。在此之前,学生已学习了《一元一次方程》,这为过渡到本节的学习起着铺垫作用。本节内容是二元一次方程组的前沿部分,在教材中起着占据承上启下的地位。

其次是教材的编写特点。教材从学生的年龄特征和知识的实际水平出发,让学生用“观察、猜想、操作、验证、归纳”的方法探索二元一次方程。这样符合学生的认知规律,同时也培养了学生主动探求知识的精神和思维的条理性。

二、教学目标

作为一名教师除了把知识教给学生,更重要的是应该教给学生学习的方法,培养他们的自主探究、合作创新的意识,使他们会学。因此根据新课标的要求、教材的特点及学生的实际情况,我制定了如下目标:

(1)知识目标:了解二元一次方程概念,会判断一组数是不是某个二元一次方程组的解。

(2)能力目标:在经历分析实际问题中数量关系过程中,使学生进一步体会方程是刻画现实世界的数学模型。通过自由思考与小组合作交流,培养学生的探讨能力

(3)情感目标:培养学生的发现意识和探究能力,使其具有强烈的好奇心和求知欲。认识知识的独立性。

三、重点难点

基于以上对教材和教学目标的分析,本着课程标准,在吃透教材基础上,我得出本节课的重点与难点。本节课的重点是:通过与一元一次方程的类比来来认识二元一次方程,通过列表求解、讨论掌握二元一次方程的解。本节课的难点是:引导学生运用“实际问题----数学问题的”建模意识来理解和探索二元一次方程的解。

下面,为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:

四、教法学法

在教法方面,结合课程标准的相关理念及七年级学生思维特征,针对本节课的特点,在教学中我主要采用了讲授式教学、合作式教学、探究式教学、自主式教学等教学方法。在教学过程中特别注意创设思维情境,坚持(学生为主体,教师为主导)的二主方针。并在教学中借助多媒体进行演示,以增加课堂容量和教学的直观性。

在学法指导上,教给学生科学的学习方法,培养良好的学习习惯是最终目的。在本节课的教学中要帮助学生学会运用观察猜想、合作交流、抽象概括、总结归纳等方法来解决问题的方法,将知识传授和能力培养融为一体,使学生不仅学到科学探究的方法,同时体验到探究的甘苦,领会到成功的喜悦。

下面,我来具体谈一谈这一堂课的教学过程:

五、教学过程

为突出重点、突破难点,达到教学目标,根据学生的认知规律和学习心理,在本节课的教学中我设定教学过程如下:(一)、情境导入(二)、探究新知(三)、跟踪反馈(四)、收获园地(五)、布置作业

(一)、情境导入

创设情境——篮球比赛积分问题,这是学生熟悉和感兴趣的问题,让学生尝试列出二元一次方程。当然本课开始并不是让学生能够熟练列出二元一次方程,而是让学生明白有些问题可以用二元一次方程来解决。为今后学习数学问题解决实际问题作铺垫。对有些学生我们可以直接给他列出方程,让他感知二元一次方程的好处。从而体现新课标下人人学有价值的数学,不同的人在数学上得到不同的发展。由情境得出本课新的知识点是:从问题到方程。自然的过渡到第二个教学环节:探究新知。

(二)、探究新知

“探究一”——生活中的实例问题,“李明和妈妈买苹果和梨各多少千克?”。探究一的设计意图是:从实例中引入二元一次问题,引导学生讨论尝试用数学语言表述现实问题。培养学生的方程思想,在用数学语表述现实问题的过程中,强化学生对方程现实意义的理解,让学生感受到数学与我们生活的密切联系,激发学生的学习热情。

“探究二”例题分析引导学生类比一元一次方程的求解方法,由重量、总重量,价格、花费入手设未知量、列方程。列好方程后,引导学生用等量关系得出二元一次方程组后让学生利用已有知识,采用代入法求解。这一点并不难,让所有的学生都参与其中,体验学习数学的乐趣和成功的喜悦。

“探究三”在例题讲解中,教师要注意讲清楚要怎样解、为什么这样解,而及时对解题方法和规律进行概括,有利于发展学生的思维能力。让学生感受到数学的严谨性、确定性,方程思想的进一步渗透,培养了学生的归纳、概括能力,突出了教学的重点。

(三)、跟踪反馈

新课标指出“在素质教育的大前提下,及时适量的的巩固与练习仍然是是帮助学生掌握新知提升能力的必要途径”故而,我设计了层次递进的三道巩固例题。教师引导学生审题,学生弄清题意后,师生共同解题,由教师示范解题过程,期间适当对题目进行引申,通过“变式延伸、引申重构”加入与概念相关的深层次题目,使例题的作用更加突出,有利于学生对知识的串联、累积、加工,从而达到举一反三的效果。及时的训练能帮助学生巩固新知,自觉运用所学知识与解题思想方法。

(四)收获园地

在此,通过总结结论、强化认识,引导学生认识二元一次方程是刻画现实世界的有效数学模型。提问:“你从上面的学习中体会到解方程组的基本思路是什么吗?主要步骤有那些吗?”以加深学生对代入法的掌握。知识性内容的小结,可把课堂教学传授的知识尽快化为学生的素质;数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质目标。

(五)、布置作业

在本环节,我将课后作业的布置分为两个层次,一是数学练习即课后习题作业的布置,旨在让学生通过及时地巩固练习加深对所学知识内容的理解与掌握。二是数学思考即写一篇数学日记,让学生将本堂课所获得经验体会写成一篇数学日记,同学相互交流。旨在提高学生对数学来源于生活的认识,唤醒学生亲近数学的热情,帮助学生强化数学知识的记忆,逐步拉近他们观念中数学与生活的联系,激发学生学习数学的兴趣。

六、板书设计

在此,我以直观、系统为主旨,针对本节课的具体内容,设计了重难点突出、简洁明了的课堂板书,配合多媒体的教学方式,最大化的利用教学资源的同时也体现了时代要素在教学中的运用。

七、反思评价

按照“以人为本、以学定教”的教学理念,本节课的重点是如何“引导”学生自主探索、合作交流,使学生在经历数学知识的形成与应用过程中,加深对所学知识的理解,从而突破重难点、达到教学目标。整节课还应做到全程关注每一个学生的学习状态,引导学生学会欣赏自己、欣赏同伴,彼此学习,在共同学习中掌握知识、发展能力。

在教学中应始终坚持“注重数学思想方法的教学,加强数学学习方法的指导,为学生终生学习打下坚实基础”为主旨,同时努力推行“成功教育、快乐教育”的理念,把握评价的时机与尺度,实现评价主体和形式的多样化,从而激发学生的学习兴趣,激活课堂气氛,提高课堂教学的效率与效果。促使学生主动参与并“卷入”到“做”数学的活动中,从而更加深刻的认识平行四边形的性质。

以上是我说课的全部内容,请给各评委老师批评指正!

结束:以上,我仅从说教材、说目标、说教学法、说重难点、说教学程序、说板书及反思评价几个方面上,说明了“教什么”和“怎么教”,阐明了“为什么这样教”。以上是我对本节课的一些初浅的认识和想法,有不足之处,希望各位委评老师批评指导。

二元一次方程组课件(篇2)

1 在方程2x+3y=5中,如果x=y,则x=_____, y=_________.

2 如果x=2a,y=3a.则2x+3y=__________.

3 设第一个数是第二个数的2倍,第一个数与第二个数的2倍之和为20,求这个数?

(设第一个数为x,第二个数为y,则有 ,所以)

三 利用投影:一个苹果和一个梨的质量合计这个苹果的质量加上一个问苹果和梨的质量各为多少克?

☆ 教师评语:在这个问题中如果设苹果和梨的质量分别为x克和y克,同学们能列出几个方程,请同学们把它们写出来(x+y=

☆ 教师然后解释:方程x+y=200和方程y=x+10中,x ,y都分别表示同一个未知数,也就是说,X,y的值必须同时满足上述两个方程,因此可以把这两个方程合起来,写成

☆ 教师归纳:像这样由两个一次方程组成,并且含有两个未知数的方程组叫作二元一次方程组。

△ 课堂练习P(让学生填表格,然后教师将表中答案说明

2 分四个小组将①②③④个二元一次方程组的结果填入相应的位置

☆ 教师归纳:同时满足二元一次方程组中各个方程的解叫作二元一次方程组的解。

例如 就是这个二元一次方程组 的`解。

例:小聪全家外出旅游,估计需要胶卷底片120张,商店里有两种型号的胶卷:A型每卷36张底片,B型每卷12张底片。小聪一共买了4卷胶卷,刚好有120张底片,如果两种胶卷分别买x卷和y卷,请根据问题中的条件列出关于x,y的方程组,并且列表尝试的方法求两种胶卷的数量。

分析:(1)审题,该问题情境涉及哪些量?哪些是已知的,哪些是未知的?

所求的是哪两个量?问题情境中两种胶卷及底片的总数有什么要求?

(2)分析数量关系,该问题情境主要数量关系有:

每卷胶卷底片的张数×胶卷数=底片总张数:

A,B两种胶卷的总卷数=4

A,B两种胶卷的底片总张数=120

(3)建立数学模型,选择二元一次,则有

△ 课堂练习P91第1,第2题分组合作讨论完成。

△ 探究活动 :略

四 归纳小结,反思提高

1 通过本课的探讨学习,你获得了哪些新知识,你认为有哪些方面的进步。

(让学生进行总结,通过学生个人回顾、合作交流,总结本节课的所作所听所感,让知识系统化、合理化。)

的概念。

3 让学生体验对于含有两个未知数的实际问题可以用方程组来解。

分析数量关系,让学生选择数学模型。

二元一次方程组课件(篇3)

各位评委、老师:大家好!

我是来自丁庄镇中心初中的王红。今天我说课的内容是人教版义务教育课程标准实验教科书《数学》七年级下册,第八章第二节《二元一次方程组的解法》第一课时代入消元法。

下面我从教材分析、教学方法、学法指导、教学过程、教学感想这五个方面汇报我对这节课的教学设想。

一、教材分析

教材的地位和作用

本节主要内容是在上一节已学习了二元一次方程(组)和二元一次方程(组)的解的概念的基础上,来学习解方程组的第一种方法——代入消元法。并初步体会解二元一次方程组的基本思想----“消元”。二元一次方程组的求解,用到了前面学过的一元一次方程的解法,是对过去所学知识的一个回顾和提高,同时,也为后面利用方程组来解决实际问题打下了基础。

2、教学目标

根据本课教材的特点、课程标准对本节课的教学要求、学生的身心发展的合理需要,我从三个不同的方面确立了以下教学目标:

(1) 知识技能目标:1)会用代入法解二元一次方程组

2)初步体会解二元一次方程组的基本思想----消元

(2) 能力目标:通过对方程组中未知数特点的观察和分析,明确解二元一次方程组的主要思路是“消元”,由未知向已知的转化,培养观察能力和体会化规思想。通过用代入消元法解二元一次方程组的训练,培养运算能力。

(3) 情感目标:通过研究解决问题的方法,培养学生合作交流意识与探究精神。

3、重点、难点

根据学生的认知特点,我确立了本节课的重难点。

重点:用代入消元法解二元一次方程组

难点:探索如何用代入法将“二元”转化为“一元”的消元过程。

为了突出重点、突破难点,让学生动手操作,积极参与并主动探索解题方法,我设计并制作了多媒体课件,帮助学生理解代入消元法。

成功的教学必须选择合适的教法和学法,因此我确定如下教法和学法:

二、教学方法

我采用了探究式教学方法,设疑思考、点拨启发、小组探究、逐步深入。

三、学法指导

我采用积极引导学生主动参与,合作交流的方法组织教学,使学生真正成为教学的主体,体会参与的乐趣,成功的喜悦,感知数学的奇妙。

四、教学设计

1、根据以上分析,我设计了以下六个教学环节:

2、教学过程

下面我就每一个教学环节,具体介绍我对本节课的教学设想。

环节一:创设情境

活动一:出示引例:我校举办“奥运杯”篮球联赛,每场比赛都要分出胜负,胜1场得2分 ,负1场得1 分,我班篮球队为了取得好名次 ,想在全部22场比赛中得40分,那么我班篮球队胜负场数应分别是多少?

学生活动:列方程或方程组解决问题

教师关注:学生是否能够多角度地考虑问题.

设计意图:创设问题情景,让学生从生活中发现数学问题,激发学生的学习兴趣。

环节二、尝试发现

活动二:小组探究:能否将二元一次方程组转化为一元一次方程进而求得方程组的解呢?

学生活动:小组探究二元一次方程组的解法,初步体验解二元一次方程的步骤。

教师关注:学生思维角度是否合理,学生是否能抓住问题的核心部分。

设计意图:在学生小组讨论的过程中提供充分从事数学活动的机会,从而激发学生的学习积极性,体会在解决问题的过程中,与他人合作的重要性。

活动三:小组展示

学生活动:分小组针对老师给出的题目,展示解二元一次方程组的方法。

教师关注:关注:学生用语言表达自己的观点的准确性与全面性。

设计意图:在学生小组展示的过程中,要让学生尽情发挥,这样才能因材施教。发展学生有条理思考问题的能力和表达能力。

活动四:再看转化、把握解题技巧

学生活动:观察转化过程中的技巧,并尝试总结。

设计意图:转化是解方程组的重要环节,也是提高解题速度和正确度的关键,在这里探讨,帮助学生更好的掌握代入消元法。

环节三、 小组闯关

活动五:闯关练习一,解二元一次方程组,分小组竞争过关比例。

学生活动:做练习题

教师关注:学生解题的步骤的完整性,和解题的正确并及时的纠正错误

设计意图:掌握用代入消元法解方程组的一般过程,会解二元一次方程组并体会消元的思想。

活动六:闯关练习二,给出一个利用二元一次方程组解决的实际问题,拓展学生的思维。

学生活动:独立完成本题。

设计意图:在前面学习解二元一次方程组的基础上,提出实际问题,发展学生得多角度思维能力。

环节四、拓展升华

活动七:出示例题2.

学生活动:先独立思考,在同学之间交流一下想法,然后解决问题。

教师关注:学生是否可以找到等量关系,列出方程组,解方程组。

设计意图:通过用方程组解决实际问题,培养学生运用代入消元法解方程组的技能和分析问题,解决问题的能力。达到将所学知识进一步升华的目的。

环节五: 反思小结

活动八:我有哪些收获?

学生活动:学生归纳总结

教师关注:(1)学生是否养成归纳、整理、总结的好习惯;

(2)评价学生是否全面理解并掌握了本节课的知识。

环节六、布置作业

1、必做题:

P103 第2题 ⑵ ⑷, 第4题

2、 选做题:

设计意图:分层次,选择作业题,有利于学有余力的学生的发展。

最后我以著名数学家笛卡尔的一句话结束这节课。

五、板书设计

8.2二元一次方程组的解法

----代入消元法

1、二元一次方程组 一元一次方程

2、代入消元法的一般步骤:

3、思想方法:转化思想、消元思想、方程(组)思想.

六、教学感想

在教学过程中,我始终:

坚持一个原则——教为主导,学为主体

坚守一个理念——先学后教,以学定教

贯穿一个思想——享受数学,快乐学习

以上是我对本节课的理解,有不当之处尽请各位老师批评指正。谢谢!

我的说课到此结束,谢谢大家!

二元一次方程组课件(篇4)

一、说教材分析

1、教材的地位和作用

函数、方程和不等式都是人们刻画现实世界的重要数学模型。用函数的观点看方程(组)与不等式,使学生不仅能加深对方程(组)、不等式的理解,提高认识问题的水平,而且能从函数的角度将三者统一起来,感受数学的统一美。本节课是学生学习完一次函数、一元一次方程及一元一次不等式的联系后对一次函数和二元一次方程(组)关系的探究,学生在探索过程中体验数形结合的思想方法和数学模型的应用价值,这对今后的学习有着十分重要的意义。

2、教学重难点

重点:一次函数与二元一次方程(组)关系的探索。

难点:综合运用方程(组)、不等式和函数的知识解决实际问题。

3、教学目标

知识技能:理解一次函数与二元一次方程(组)的关系,会用图象法解二元一次方程组。

数学思考:经历一次函数与二元一次方程(组)关系的探索及相关实际问题的解决过程,学会用函数的观点去认识问题。

解决问题:能综合应用一次函数、一元一次方程、一元一次不等式、二元一次方程(组)解决相关实际问题。

情感态度:在探究活动中培养学生严谨的科学态度和勇于探索的科学精神,在师生、生生的交流活动中,学会与人合作,学会倾听、欣赏和感悟,体验数学的价值,建立自信心。

二、说教法说明

对于认知主体——学生来说,他们已经具备了初步探究问题的能力,但是对知识的主动迁移能力较弱,为使学生更好地构建新的认知结构,促进学生的发展,我将在教学中采用探究式教学法。以学生为中心,使其在“生动活泼、民主开放、主动探索”的氛围中愉快地学习。

三、说教学过程

(一)感知身边数学

多媒体播放一段发生在电信公司里的情景:一顾客准备办理上网业务,发现有两种收费方式:方式A以每分钟0.1元的价格按上网时间计费;方式B除收月基费20元外再以每分钟0。05元的价格按上网时间计费。顾客说他每月上网的费用按这两种收费方式计算都是一样多。求这位顾客打算每月上网多长时间?多少费用?

学生已经学习过列方程(组)解应用题,因此可能列出一元一次方程 或二元一次方程组,用方程模型解决问题。结合前面对一次函数与一元一次方程、一元一次不等式之间关系的探究,我自然地提出问题:“一次函数与二元一次方程组之间是否也有联系呢?”,从而揭示课题。

[设计意图]建构主义认为,在实际情境中学习可以激发学生的学习兴趣。因此,用“上网收费”这一生活实际创设情境,并用问题启发学生去思、鼓励学生去探、激励学生去说,努力给学生造成“心求通而未能得,口欲言而不能说”的情势,从而唤起学生强烈的求知欲,使他们以跃跃欲试的姿态投入到探索活动中来。

(二)享受探究乐趣

1、探究一次函数与二元一次方程的关系

填空:二元一次方程 可以转化为 ________。

思考:

(1)直线 上任意一点 一定是方程 的解吗?

(2)是否任意的二元一次方程都可以转化为这种一次函数的形式?

(3)是否直线上任意一点的坐标都是它所对应的二元一次方程的解?

[设计意图]用一连串的问题引导学生发现一次函数与二元一次方程在数与形两个方面的关系,为探索二元一次方程组的解与直线交点坐标的关系作好铺垫。

2、探究一次函数与二元一次方程组的关系

(1)在同一坐标系中画出一次函数 和 的图象,观察两直线的交点坐标是否是方程组 的解?并探索:是否任意两个一次函数的交点坐标都是它们所对应的二元一次方程组的解?

此时教师留给学生充分探索交流的时间与空间,对学生可能出现的疑问给予帮助,师生共同归纳出:从“形”的角度看,解方程组相当于确定两条直线交点的坐标。

(2)当自变量 取何值时,函数 与 的值相等?这个函数值是什么?这一问题与解方程组 是同一问题吗?

进一步归纳出:从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这个函数值是何值。

[设计意图] 学生经过自主探索、合作交流,从数和形两个角度认识一次函数与二元一次方程组的关系,真正掌握本节课的重点知识,从而在头脑中再现知识的形成过程,避免单纯地记忆,使学习过程成为一种再创造的过程。此时教师及时对学生进行鼓励,充分肯定学生的探究成果,关注学生的情感体验。

(三)乘坐智慧快车

例题:我市一家电信公司给顾客提供两种上网收费方式:方式A以每分0.1元的价格按上网时间计费;方式B除收月基费20元外再以每分0 。05元的价格按上网时间计费。如何选择收费方式能使上网者更合算?

解法1:设上网时间为 分,若按方式A则收 元;若按方式B则收 元。然后在同一坐标系中分别画出这两个函数的图象,计算出交点坐标 ,结合图象,利用直线上点位置的高低直观地比较函数值的大小,得到当一个月内上网时间少于400分时,选择方式A省钱;当上网时间等于400分时,选择方式A、B没有区别;当上网时间多于400分时,选择方式B省钱。

解法2:设上网时间为 分,方式B与方式A两种计费的差额为 元,得到一次函数: ,即 ,然后画出函数的图象,计算出直线与 轴的交点坐标,类似地用点位置的高低直观地找到答案。

注意:所画的函数图象都是射线。

[设计意图]为培养学生的发散思维和规范解题的习惯,引导学生将上网问题延伸为例题,并用问题:“你家选择的上网收费方式好吗?”再次激起学生强烈的求知欲望和主人翁的学习姿态。通过此问题的探究,使学生有效地理解本节课的难点,体会数形结合这一思想方法的应用。

(四)体验成功喜悦

1、抢答题

(1)、以方程 的解为坐标的所有点都在一次函数 _____的图象上。

(2)、方程组 的解是________,由此可知,一次函数 与 的图象必有一个交点,且交点坐标是________。

2、旅游问题

古城荆州历史悠久,文化灿烂。今年,大型历史剧《万历首辅张居正》在荆州封镜后,来荆州的游客更是络绎不绝。据悉,张居正纪念馆门票标价20元/张,近期正在进行优惠活动,购买时有两种方式:方式A是团队中每位游客按8折购买;方式B是团队中除5张按标价购买外,其余按7折购买。如果你是团队的负责人,你会如何选择购买方式使整个团队更合算?

[设计意图]抓住学生对竞争充满兴趣的心理特征,用抢答题使学生的眼、耳、脑、口得到充分的调动,并在抢答中品味成功的快乐,提高思维的速度。在学生感兴趣的旅游问题中,进一步培养学生应用数学的意识,更好地促进学生对本节课难点的理解和应用,帮助学生不断完善新的认知结构。

(五)分享你我收获

在课堂临近尾声时,向学生提出:通过今天的学习,你有什么收获?你印象最深的是什么?

[设计意图]培养学生归纳和语言表达能力,鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价。

二元一次方程组课件(篇5)

教学建议

本节的教学重点是使学生学会用代入法.教学难点 在于灵活运用代入法,这要通过一定数量的练习来解决;另一个难点在于用代入法求出一个未知数的值后,不知道应把它代入哪一个方程求另一个未知数的值比较简便.

解二元一次方程组的关键在于消元,即将“二元”转化为“一元”.我们是通过等量代换的方法,消去一个未知数,从而求得原方程组的解.

三、教法建议

1.关于检验方程组的解的问题.教材指出:“检验时,需将所求得的一对未知数的值分别代入原方程组里的每一个方程中,看看方程的左、右两边是不是相等.”教学时要强调“原方程组”和“每一个”这两点.检验的作用,一是使学生进一步明确代入法是求方程组的解的一种基本方法,通过代入消元的确可以求得方程组的解二是进一步巩固二元一次方程组的解的概念,强调

这一对数值才是原方程组的解,并且它们必须使两个方程左、右两边的值都相等;三是因为我们没有用方程组的.同解原理而是用代换(等式的传递)来解方程组的,所以有必要检验求出来的这一对数值是不是原方程组的解;四是为了杜绝变形和计算时发生的错误.检验可以口算或在草稿纸上演算,教科书中没有写出.

2.教学时,应结合具体的例子指出这里解二元一次方程组的关键在于消元,即把“二元”转化为“一元”.我们是通过等量代换的方法,消去一个未知数,从而求得原方程组的解.早一些指出消元思想和把“二元”转化为“一元”的方法,这样,学生就能有较强的目的性.

3.教师讲解例题时要注意由简到繁,由易到难,逐步加深.随着例题由简到繁,由易到难,要特别强调解方程组时应努力使变形后的方程比较简单和代入后化简比较容易.这样不仅可以求解迅速,而且可以减少错误.

二元一次方程组课件(篇6)

教学目的

1.使学生了解二元一次方程,二元一次方程组的概念。

2.使学生了解二元一次方程;二元一次方程组的解的含义,会检验一对数是不是它们的解。

3.通过引例的教学,使学生进一步使用代数中的方程去反映现实世界中的等量关系,体会代数方法的优越性。

重点:了解二元一次方程、二元一次方程组以及二元一次方程组的解的含

难点;了解二元一次方程组的解的含义。

导学提纲:

1.什么叫一元一次方程?什么叫一元一次方程的解?怎样检验一个数是否是这个方程的解?

2.阅读教材问题1思考下列问题

⑴.能否用我们已经学过的知识来解决这个问题?

用算术法解答

用一元一次方程解答

解后反思:既然是求两个未知量,那么能不能同时设两个未知数?

⑵.此问题中有两个问题如果分别设为x、y,怎样列式呢?(完成教材中的表格)

⑶.对于方程x十y=73x+y=17请思考下列问题

①它们是一元一次方程吗?

②这两个方程有没有共同特点/若有,有河共同特点?

③类比一元一次方程的概念,总结二元一次方程的概念

3.从教材中找出二元一次方程和二元一次方程组的概念(结合一元一次方程,二元一次方程对“元”和“次”作进一步的解释)

注意二元一次方程组的书写方式,方程组中的各方程中,同一个字母必须代表同一个量

4.与是否满足方程①与是否满足方程②类比一元一次方程的解总结二元一次方程组的解的概念

注意:(1)未知数的值必须同时满足两个方程时,才是方程组的解.若取,时,它们能满足方程①,但不满足方程②,所以它们不是方程组的解.

(2)二元一次方程组的解是一对数,而不是一个数,所以必须把与合起来,才是方程组的解.

5.思考讨论在方程组①②③④

⑤⑥中,属于二元一次方程组的有

达标检测:

1.根据下列语句,分别设适当的未知数,列出二元一次方程或方程组:

(1)甲数的比乙数的2倍少7:_____________________________;

(2)摩托车的时速是货车的倍,它们的速度之和是200千米/时:________;

(3)某种时装的价格是某种皮装的价格的1.4倍,5件皮装比3件时装贵700元:______________________________.

2.下列方程是二元一次方程的是()

A、2x+x=1B、x-3yC、x+x-3=0D、x+y=2

3.下列不是二元一次方程组的是()

x+3y=5m+3m=152x+3x=0m+n=5

A、B、C、D、

2x-3x=3+=3-5y=02m+n=6

x=2

4.在方程3x-ky=0中,如果是它的一个解,则k的值为_______.

y=-3

5.若mxy+9x+3y=-9是关于x、y的二元一次方程,则m=_______n=_______.

二元一次方程组课件(篇7)

【教学目标】

知识目标: 1、通过观察,归纳二元一次方程的概念 ,会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式。

2、二元一次方程解的不定性和相关性,即二元一次方程的解有无数个,但又不是任意两个数是它的解。

过程与方法:通过与一元一次方程的比较,加强学生的类比的思想方法。

情感态度与价值观:通过“合作学习”,使学生认识数学是根据实际的需要而产生发展的观点。

【教学重点、难点】

重点:二元一次方程的意义及二元一次方程的解的概念。

难点:把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。

【教学过程】

一、 复习引入:

(1) 方程的概念;一元一次方程的概念;什么是方程的解?一元一次方程的解如何表示?

(2) 合作学习:

①小红到邮局寄挂号信,需要邮资3元8角。小红有票额为6角和8角的邮票若干张,问各需要多少张这两种面额的邮票?

这个问题中有几个未知数,能列一元一次方程求解吗?

如果设需要票额为6角的邮票x张,需要票额为8角的邮票y张,你能列出方程吗?

②在高速公路上,一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20千米,如果设轿车的速度是a千米/小时,卡车的速度是b千米/小时,你能列出方程吗?

二、 新课教学

这就是我们今天要学习的4、1二元一次方程(板书课题)

(1) 观察上述两个方程,归纳特点

(2) 讨论选择正确概念

① 含有两个未知数的方程叫二元一次方程。

② 含有两个未知数,且含有未知数的项的次数都是1次的`方程叫二元一次方程。

(3) 做一做P86——1,2

(4) 例:已知方程3x+2y=10

① 用关于x的代数式表示y (分析:只要把方程3x+2y=10看作未知数是y的一元一次方程,解关于y的方程)

② 求当x=-2,0,3时,对应的y的值

(提问:把x=-2,y=8代入方程3x+2y=10,能否使其左右两边相等?

回忆方程解的概念,得出x=-2,y=8是二元一次方程3x+2y=10的一个解,记作 。

同理试写出该方程的两个解(注意写法格式)

思考:方程3x+2y=10的解有多少个?

师归纳:二元一次方程解具不定性和相关性

(5) 练习:P88——课内练习1,2

(6) 补充练习:P89---作业题4(说明:方程的解须是正整数)

已知 ,是方程2x+3y=5的一个解,那么由此可知道些什么?

(说明:1.本例是根据教科书P89---B组第5题改编。原题要求a的值,但学

生常常有困难,因此这里把原题改为开放式命题,看起来似乎比原

题要求高了,其实有利于各类学生参与并寻求结论。

三、 课堂小结:

二元一次方程的意义及二元一次方程的解的概念(注意书写格式)

二元一次方程解的不定性和相关性

会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式

四、 作业 :

课堂作业本

二元一次方程组课件(篇8)

一、阅读教材P99-P102内容

二、独立思考;

1、用加减消元法解方程组 ,如果要消去x,方法是_______________,得到__________,如果要消去y,方法是________________,得到_____________________。

2、已知方程 有两个解分别是 和 则 =_________, =___________。

3、解方程组 为了计算较简单,最好是( )

A、①7-②3 B、①-②3 C、①+②3 D、①2-②

4、已知方程组 ,则 与 的关系是_____________________。

5、已知点A( ),点B( )关于 轴对称,则 的值是_____________。

6、解方程组 比较简单的方法是_______________。

7、大数和小数相差8,和是32,由大数是___________,小数是_______________。

8、已知方程组 ,则 =__________________。

互动课堂教学

探究一:用加减法解方程组 。

步骤 名称 具体做法 目的

1 变形 使方程中某一个未知数的系数相等或变成相反数的形式。

2 加减

3 求一元

4 求另一元

5 写出解

探究二:用加减消元法解方程组的一般步骤;

探究三:2台大收割机和5台小收割机均工作2小时共收割小麦3.6公顷,3台大收割机和2台小收割机均工作5小时共收割小麦8公顷,1台大收割机和1台小收割机每小时各收割小麦多少公顷?

自我能力评估

一、课堂作业:

1、教材P102练习第1.2.3题。

二、作业布置:

教材P103习题8.2第3、5、7、8、9题

三、自我检测

(一)填空题

1、解二元一次方程组的基本思想是________,其中常用的方法有______________、______________两种。

2、用加减消元法解下列方程组 ,较简单的消元方法是:将两方程左右两边_________,消去未知数______。

3、已知方程组 用加减消元法消去x的方法是_________,用加减法消去y的方法是_______。

4、方程组 ,可用______________消去未知数y,也可用___________消去x。

5、方程 的解是_________________。

6、用加着消元法解方程时,你认为行消哪个未知数较简单,填写消元的过程,不解:

(1) ,消元的方法是_______________________.

(2) ,消元的`方法是_________________________.

7、已知方程组 ,不解方程组,则 =___________, =___________。

8、 满足 ,那么 的值是__________________。

9、已知一个等腰三角形一腰上的中线把它的周长分为6cm和9cm两部分,则它的底边长是____________。

(二)选择题

1、解方程组比较简单的消元方法是( )

A、用含y的式子表示x,用代入法 B、加减法

C、换元法 D、三种方法完全一样

2、用加减法解方程组 ,下列解法不正确的是( )

A、○13-○22,消去x B、○12-○23,消去y

C、○1(-3)+○22,消去x D、○12-○2(-3),消去y

3、用加减法解方程组 ,其解题步骤如下:(1)○1+○2得 ;(2)○1-○22得 ,所以原方程组的解为 ,则下列说法正确的是( )

A、步骤(1)、(2)都不对 B、步骤(1)、(2)都对

C、本题不适宜用加减法解 D、加减法不能用两次

4、若二元一次方程 有公共解,则m等于( )

A、-2 B、-1 C、3 D、4

5、已知方程组 的解为 ,则 的值为( )

A、4 B、6 C、-6 D、-4

6、以方程 的解为坐标的点P( )一定不在( )

A、第一象限 B、第二象限 C、第三象限 D、第四象限

7、如果关于x、y的二元一次方程组 的解x、y的差是7,那么k的值是( )

A、-2 B、8 C、0.8 D、-8

(三)解答题

1、用加减法解下列方程组:

(1) (2) (3)

2、用适合的方法解下列方程组:

(1) (2) (3)

3、若方程组 的解满足 ,求m的值。

4、已知方程组 中 的系数已经模糊不清,但知道其中表示同一个数,也表示同一个数,且 是这个方程组的解,你能求出原方程组吗?

5、已知关于 有方程组 的解是 ,求 。

6、解方程组 。

7、在一本书上写着方程组 的解是 ,其中y的值被盖住了,你能求出p的吗?

8、已知 , ,求 的值。

9、如图,在平面直角坐标系中A、B两点的坐标满足方程

10、解这个方程组

二元一次方程组课件(篇9)

小明买了两份水果,一份是3kg苹果、2kg香蕉,共用去13.2元;另一份是2kg苹果、5kg香蕉,共用去19.8元。设苹果x元/kg,香蕉y元/kg.列出方程。

新课讲解:

列出方程组

1、解方程组

分析:关键的`出方程〈1〉中的2y与方程〈2〉中的-2y互为相反数。想象出如果相加两个方程,会是什么结果?

板演:

解:〈1〉+〈2〉得:

4x=6

x=

把x= 代入〈1〉得

+2y=1

解出这个方程,得

y=

所以原方程组的解是

2、解方程组

通过议一议,让学生都有感觉消去含x或y的项都可以,但哪个更简便?

解:〈1〉 3,得

15x-6y=12 〈3〉

〈2〉 2,得

4x-6y=-10 〈4〉

〈3〉-〈4〉,得

11x=22

x=2

将x=2代入〈1〉,得

5 2-2y=4

y=3

所以原方程组的解是

加减消元法:把方程组的两个防城(或先作适当变形)相加或相减,消去其中一个未知数,把解二元一次方程组转化为解一元一次方程。

练一练:

解方程组

小结:

加减消元法关键是如何消元,化二元为一元。

先观察后确定消元。

教学素材:

A组题:解下列方程组:

(1)

(2)

(3)

(4)

(5)

B组题:运用转化的思想方法,你能解下面的三元一次方程组吗?

(1)

(2)

学生读题,议一议

学生想一想,如感到困难则看道简单题。

由学生观察,如何求出x,y的值,学生再讨论。

试一试。学生口述。

老师板演

得到一元一次方程

学生再观察,议一议

①消去哪个未知数

②怎样消去?

P112 1(1)(2)(3)(4)

作业习题11.3 P112 1(3)(4) 3 , 4

二元一次方程组课件(篇10)

教学目标:通过学生积极思考,互相讨论,经历探索事物之间的数量关系,形成方程模型,解方程和运用方程解决实际问题的过程进一步体会方程是刻划现实世界的有效数学模型

重点:让学生实践与探索,运用二元一次方程解决有关配套与设计的应用题

难点:寻找等量关系

教学过程:

看一看:课本99页探究2

问题:1“甲、乙两种作物的单位面积产量比是1:1、5”是什么意思?

2、“甲、乙两种作物的总产量比为3:4”是什么意思?

3、本题中有哪些等量关系?

提示:若甲种作物单位产量是a,那么乙种作物单位产量是多少?

思考:这块地还可以怎样分?

练一练

一、某农场300名职工耕种51公顷土地,计划种植水稻、棉花、和蔬菜,已知种植植物每公顷所需的劳动力人数及投入的设备奖金如下表:

农作物品种每公顷需劳动力每公顷需投入奖金

水稻4人1万元

棉花8人1万元

蔬菜5人2万元

已知该农场计划在设备投入67万元,应该怎样安排这三种作物的种植面积,才能使所有职工都有工作,而且投入的资金正好够用?

问题:题中有几个已知量?题中求什么?分别安排多少公顷种水稻、棉花、和蔬菜?

教材106页:探究3:如图,长青化工厂与A、B两地有公路、铁路相连,这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地。公路运价为1、5元/(吨?千米),铁路运价为1、2元/(吨?千米),这两次运输共支出公路运费15000元,铁路运费97200元。这批产品的销售款比原料费与运输费的和多多少元?

二元一次方程组课件(篇11)

一、说教材

(一)地位和作用

本节主要内容是在上节已认识二元一次方程(组)和二元一次方程(组)的解等概念的基础上,来学习解方程组的第一种方法代入消元法。并初步体会解二元一次方程组的基本思想消元。二元一次方程组的求解,不但用到了前面学过的一元一次方程的解法,是对过去所学知识的一个回顾和提高,同时,也为后面的利用方程组来解决实际问题打下了基础。初中阶段要掌握的二元一次方程组的解法有代入消元法和加减消元两种,教材都是按先求解后应用的顺序安排,这样安排既可以在前一小节中有针对性的学习解法,又可在后一小节的应用中巩固前面的知识,但教材相对应的练习安排很少,不过这样也给了我们一较大的发挥空间。

(二)课程目标

1、知识与技能目标

(1)会用代入法解二元一次方程组

(2)初步体会解二元一次方程组的基本思想消元。

(3)通过对方程组中的未知数特点的观察和分析,明确解二元一次方程组的主要思路是消元,从而促成由未知向已知转化,培养学生观察能力和体会化归思想:

(4)通过用代入消元法解二元一次方程组的训练,及选用合理、简捷的方法解方程组,培养学生的运算能力。

2、情感目标:

通过研究探讨解决问题的方法,培养学生会作交流意识与探究精神。

(三)教学重点、难点

重点:用代入消元法解二元一次方程组。

难点:探索如何用代入消元法将二元转化为一元的过程。

二、说教法

针对本节特点,在教学过程中采用自主、探究、合作交流的教学方法,由教师提出明确问题,学生积极参与讨论探究、合作交流,进行总结,使学生从中获取知识。鉴于本节所学知识的特点,抽象教学、学生生搬硬套的学习方式将难取得理想效果,因此教师在引入课题时要利用好远程教育设施及资源创设情境,让学生去经历由具体问题抽象出方程组的过程。并让学生通过独立观察、合作交流来探讨怎样才能变二元为一元。然后利用单个二元一次方程的变形及时强化代入的本质。

三、说学法

本节学生在独立思考、自主探究中学习并对老师的问题展开讨论与交流。如何用代入消元法将二元转化为一元学生较难掌握,在提出消元思想后,应对具体的消元解法的过程进行归纳,让学生得到对代入法的基本步骤的概括,通过把一个方程(必要时先做适当变形)代入另一个方程实现消元。应注意引导学生认识到为什么要实施这样的步骤。把具体做法与消元结合,使学生明解其目的性。明确这样做的依据是等量代换。七年级的学生已经初步具备合作交流的能力。可以通过探究和合作来实现课程目标;此外,教学中,范例的讲解和随堂练习始终是学以对用的有效方法。随堂练习时应引导学生通过自我反省、小组评价来克服解题时的错误,必要时给与规范矫正。

四、说教学程序

本节课我将自主、探究、合作、交流运用到教学中,教学过程可以划分为以下几个环节:

1、引入新知:利用多媒体教学手段,创设情境,通过篮球比赛问题引入教学,情境活泼、自然。

2、探究新知:在篮球比赛问题中,首先可以用一元一次方程来解决实际问题,接着提出问题:能否设出两个未知数,列出两个方程组成方程组呢?(学生独立思考后分组探究讨论)。在学生得出正确的方程组之后提出问题:怎样解这个方程组呢?(学生分组讨论,教师加以适当的引导),各组派代表得出自己的结论,教师适时引导消元思想,对消元解法的过程予以归纳。

3、运用新知:在得出代入消元解二元一次方程组后,应用代入消元法解决实际问题,在学生解题过程中着重强调、矫正、理清思路和步骤。然后师生一起解后思:在解题时应注意什么?在随堂练习时教师关键是反馈矫正、积极评价。

4、教学小结,知识回顾:让学生畅所欲言谈本节课的得失,感到困惑和疑难的地方、解题的关键和步骤等。教师在学生发言的基础上再进行提炼:①解二元一次方程组的主要思路是消元②解二元一次方程组的一般步骤是:一变形、二代入、三求解。

5、课外作业。为进一步巩固知识,布置适当的、具有代表性的作业。

五、说应用

就远程教育资源的应用而言,本人是这样认为的:远程教育工程的成败,关键在于应用。那么怎样应用好这一现代化的教学设备及其资源呢?其一:应与校园网相结合,搭建信息交流平台、信息点应分布到学校办公、教学、管理所有地方。其二:宣传示范:激起应用热情、新鲜、新奇的事物总是易被人注意。学校应一方面采取座谈、演示,一帮一等多种方式,让教师熟悉远教资源,另一方面应组织教师应用远教资源上观摩课、研究课、示范课。激发广大教师利用远教资源进行课堂教学的热情,尽可能地发挥远教资源在课堂教学中的优势。其三。远教资源与校本培训相结合,树立教师应和的信心。

《数学课程标准》指出:数学来源于生活数学服务于生活数学问题要生活化,让数学走进生活已是一种全新的.教育理念,它有利于实现不同人在数学上得到不同的发展。为此,在数学课堂教学中,教师要善于创设教学情境,为学生创造一个轻松、愉悦的学习氛围,集中学生的注意力,把学生思绪带进特定的学习情境中去,激发他们浓厚的学习兴趣和强烈的求知欲望。那么究竟怎样创设情境,激发学生的学习兴趣呢?那就是运用多媒体课件导入新课,为课堂创设教学情境,有效地开启学生思维的闸门,激发联想,激励探究,使学生的学习状态由被动变为主动,在轻松愉悦的氛围中学到知识。因此,教师设计教学活动时,要充分利用现代远程教育资源结合本班的实际和知识水平,制成多媒体课件,然后利用多媒体具有的集声音、动画、图像于一体的独特优势,精心为学生创设贴进生活的学习情境,让学生有身临其境的感觉,从而激发学生的学习兴趣和求知欲。

教学重难点是否突破是一堂课能否成功的关键。教学的重难点在传统的教学中,教师往往要花费大量的时间去讲述,但学生往往难以理解。教师如果利用远程教育资源,运用多媒体教学平台来配合教学,就可以把抽象的内容变得更具体,把静止不变的图形符号转化为不断运动的活动场景,为学生提供丰富的感知材料,调动学生各种感官协同作用,解决教师难以讲清,学生难以听懂的内容,从而有效地实现精讲,突出重点,突破难点,发展学生的观察能力和想象能力,进而激发学生愉快的学习情绪,让学生在快乐中接受教育。

总之,在数学教学中利用远程教育资源,运用多媒体教学平台,能极大地方便教学,减轻教师的负担,更好地优化课堂结构,促进教学质量的提高。学生的学习方式不再单一,学习兴趣明显提高,能自主地学习,真正成为学习的主体。巧用远程教育资源进行数学教学,能让数学教学焕发出夺目的光辉,产生独特的魅力。

例题三:

已知$a,b,c>0$,求证$\frac{(a+b)^2}{c}+\frac{(b+c)^2}{a}+\frac{(c+a)^2}{b}\geq 12(a+b+c)$

解:由基本不等式得

$(a+b)^2\geq 4ab,(b+c)^2\geq 4bc,(c+a)^2\geq 4ac$

将以上三个式子代入原式变化得

$\frac{4ab}{c}+\frac{4bc}{a}+\frac{4ac}{b}\geq 12(a+b+c)$

即(ab^2+bc^2+ca^2)\geq 12abc(a+b+c)$

即$(ab^2+bc^2+ca^2)\geq 3abc$

由于$a,b,c>0$,故得证。

三、基本不等式的扩展

除了基本不等式外,还有一些基本不等式的扩展形式,例如平均值不等式和柯西施瓦兹不等式等。这些扩展形式大大丰富了不等式的证明和应用,并为数学研究提供了更加广泛的空间。下面,我们就来简单介绍一下平均值不等式和柯西施瓦兹不等式的相关内容。

平均值不等式:对于$n$个非负实数$x_1,x_2,\cdots,x_n$,有

$\frac{x_1+x_2+\cdots+x_n}{n}\geq\sqrt[n]{x_1x_2\cdots x_n}$

其中等号成立当且仅当$x_1=x_2=\cdots=x_n$时成立。

柯西施瓦兹不等式:对于任意实数$x_1,x_2,\cdots,x_n$和$y_1,y_2,\cdots,y_n$,有

$(x_1^2+x_2^2+\cdots+x_n^2)(y_1^2+y_2^2+\cdots+y_n^2)\geq(x_1y_1+x_2y_2+\cdots+x_ny_n)^2$

其中等号成立当且仅当$\frac{x_1}{y_1}=\frac{x_2}{y_2}=\cdots=\frac{x_n}{y_n}$时成立。

四、总结

综上所述,基本不等式是数学中重要的一个概念,它与不等式的证明和应用有着密切的关系。基本不等式的解法和思维方法不仅能让我们更好地掌握不等式的性质和应用,同时也能让我们更好地解决数学中的其他问题。在学习和应用基本不等式时,我们还需掌握其相关的扩展形式,如平均值不等式和柯西施瓦兹不等式等。只有充分掌握了这些知识点,我们才能更加深入地理解并应用不等式的知识。

二元一次方程组课件(热门11篇)


以下是幼儿教师教育网为您呈现的“二元一次方程组课件”相关内容,希望这些资料可以对你的工作和学习起到实质性的推动作用。教案课件是我们老师工作的一部分,相信老师对要写的教案课件不会陌生。写好教案,课堂教学更有效。

二元一次方程组课件(篇1)

各位专家、领导上午好!我是黄淮学院数学科学系数学与应用数学专业的06级学生,今天的*号选手,很荣幸能站在这里参加本次教学技能大赛。我说课的内容是义务教育课程标准试验教科书人教版七年级下册第八章第一节的内容《二元一次方程组》。(板书8.1二元一次方程组)下面我将从以下七个环节对本节课的教学设计进行说明:(幻灯片)

一、教材分析

首先是教材的地位和作用。《二元一次方程组》是九年制义务教育课本七年级数学下册第八章第一节的内容。在此之前,学生已学习了《一元一次方程》,这为过渡到本节的学习起着铺垫作用。本节内容是二元一次方程组的前沿部分,在教材中起着占据承上启下的地位。

其次是教材的编写特点。教材从学生的年龄特征和知识的实际水平出发,让学生用“观察、猜想、操作、验证、归纳”的方法探索二元一次方程。这样符合学生的认知规律,同时也培养了学生主动探求知识的精神和思维的条理性。

二、教学目标

作为一名教师除了把知识教给学生,更重要的是应该教给学生学习的方法,培养他们的自主探究、合作创新的意识,使他们会学。因此根据新课标的要求、教材的特点及学生的实际情况,我制定了如下目标:

(1)知识目标:了解二元一次方程概念,会判断一组数是不是某个二元一次方程组的解。

(2)能力目标:在经历分析实际问题中数量关系过程中,使学生进一步体会方程是刻画现实世界的数学模型。通过自由思考与小组合作交流,培养学生的探讨能力

(3)情感目标:培养学生的发现意识和探究能力,使其具有强烈的好奇心和求知欲。认识知识的独立性。

三、重点难点

基于以上对教材和教学目标的分析,本着课程标准,在吃透教材基础上,我得出本节课的重点与难点。本节课的重点是:通过与一元一次方程的类比来来认识二元一次方程,通过列表求解、讨论掌握二元一次方程的解。本节课的难点是:引导学生运用“实际问题----数学问题的”建模意识来理解和探索二元一次方程的解。

下面,为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:

四、教法学法

在教法方面,结合课程标准的相关理念及七年级学生思维特征,针对本节课的特点,在教学中我主要采用了讲授式教学、合作式教学、探究式教学、自主式教学等教学方法。在教学过程中特别注意创设思维情境,坚持(学生为主体,教师为主导)的二主方针。并在教学中借助多媒体进行演示,以增加课堂容量和教学的直观性。

在学法指导上,教给学生科学的学习方法,培养良好的学习习惯是最终目的。在本节课的教学中要帮助学生学会运用观察猜想、合作交流、抽象概括、总结归纳等方法来解决问题的方法,将知识传授和能力培养融为一体,使学生不仅学到科学探究的方法,同时体验到探究的甘苦,领会到成功的喜悦。

下面,我来具体谈一谈这一堂课的教学过程:

五、教学过程

为突出重点、突破难点,达到教学目标,根据学生的认知规律和学习心理,在本节课的教学中我设定教学过程如下:(一)、情境导入(二)、探究新知(三)、跟踪反馈(四)、收获园地(五)、布置作业

(一)、情境导入

创设情境——篮球比赛积分问题,这是学生熟悉和感兴趣的问题,让学生尝试列出二元一次方程。当然本课开始并不是让学生能够熟练列出二元一次方程,而是让学生明白有些问题可以用二元一次方程来解决。为今后学习数学问题解决实际问题作铺垫。对有些学生我们可以直接给他列出方程,让他感知二元一次方程的好处。从而体现新课标下人人学有价值的数学,不同的人在数学上得到不同的发展。由情境得出本课新的知识点是:从问题到方程。自然的过渡到第二个教学环节:探究新知。

(二)、探究新知

“探究一”——生活中的实例问题,“李明和妈妈买苹果和梨各多少千克?”。探究一的设计意图是:从实例中引入二元一次问题,引导学生讨论尝试用数学语言表述现实问题。培养学生的方程思想,在用数学语表述现实问题的过程中,强化学生对方程现实意义的理解,让学生感受到数学与我们生活的密切联系,激发学生的学习热情。

“探究二”例题分析引导学生类比一元一次方程的求解方法,由重量、总重量,价格、花费入手设未知量、列方程。列好方程后,引导学生用等量关系得出二元一次方程组后让学生利用已有知识,采用代入法求解。这一点并不难,让所有的学生都参与其中,体验学习数学的乐趣和成功的喜悦。

“探究三”在例题讲解中,教师要注意讲清楚要怎样解、为什么这样解,而及时对解题方法和规律进行概括,有利于发展学生的思维能力。让学生感受到数学的严谨性、确定性,方程思想的进一步渗透,培养了学生的归纳、概括能力,突出了教学的重点。

(三)、跟踪反馈

新课标指出“在素质教育的大前提下,及时适量的的巩固与练习仍然是是帮助学生掌握新知提升能力的必要途径”故而,我设计了层次递进的三道巩固例题。教师引导学生审题,学生弄清题意后,师生共同解题,由教师示范解题过程,期间适当对题目进行引申,通过“变式延伸、引申重构”加入与概念相关的深层次题目,使例题的作用更加突出,有利于学生对知识的串联、累积、加工,从而达到举一反三的效果。及时的训练能帮助学生巩固新知,自觉运用所学知识与解题思想方法。

(四)收获园地

在此,通过总结结论、强化认识,引导学生认识二元一次方程是刻画现实世界的有效数学模型。提问:“你从上面的学习中体会到解方程组的基本思路是什么吗?主要步骤有那些吗?”以加深学生对代入法的掌握。知识性内容的小结,可把课堂教学传授的知识尽快化为学生的素质;数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质目标。

(五)、布置作业

在本环节,我将课后作业的布置分为两个层次,一是数学练习即课后习题作业的布置,旨在让学生通过及时地巩固练习加深对所学知识内容的理解与掌握。二是数学思考即写一篇数学日记,让学生将本堂课所获得经验体会写成一篇数学日记,同学相互交流。旨在提高学生对数学来源于生活的认识,唤醒学生亲近数学的热情,帮助学生强化数学知识的记忆,逐步拉近他们观念中数学与生活的联系,激发学生学习数学的兴趣。

六、板书设计

在此,我以直观、系统为主旨,针对本节课的具体内容,设计了重难点突出、简洁明了的课堂板书,配合多媒体的教学方式,最大化的利用教学资源的同时也体现了时代要素在教学中的运用。

七、反思评价

按照“以人为本、以学定教”的教学理念,本节课的重点是如何“引导”学生自主探索、合作交流,使学生在经历数学知识的形成与应用过程中,加深对所学知识的理解,从而突破重难点、达到教学目标。整节课还应做到全程关注每一个学生的学习状态,引导学生学会欣赏自己、欣赏同伴,彼此学习,在共同学习中掌握知识、发展能力。

在教学中应始终坚持“注重数学思想方法的教学,加强数学学习方法的指导,为学生终生学习打下坚实基础”为主旨,同时努力推行“成功教育、快乐教育”的理念,把握评价的时机与尺度,实现评价主体和形式的多样化,从而激发学生的学习兴趣,激活课堂气氛,提高课堂教学的效率与效果。促使学生主动参与并“卷入”到“做”数学的活动中,从而更加深刻的认识平行四边形的性质。

以上是我说课的全部内容,请给各评委老师批评指正!

结束:以上,我仅从说教材、说目标、说教学法、说重难点、说教学程序、说板书及反思评价几个方面上,说明了“教什么”和“怎么教”,阐明了“为什么这样教”。以上是我对本节课的一些初浅的认识和想法,有不足之处,希望各位委评老师批评指导。

二元一次方程组课件(篇2)

1 在方程2x+3y=5中,如果x=y,则x=_____, y=_________.

2 如果x=2a,y=3a.则2x+3y=__________.

3 设第一个数是第二个数的2倍,第一个数与第二个数的2倍之和为20,求这个数?

(设第一个数为x,第二个数为y,则有 ,所以)

三 利用投影:一个苹果和一个梨的质量合计这个苹果的质量加上一个问苹果和梨的质量各为多少克?

☆ 教师评语:在这个问题中如果设苹果和梨的质量分别为x克和y克,同学们能列出几个方程,请同学们把它们写出来(x+y=

☆ 教师然后解释:方程x+y=200和方程y=x+10中,x ,y都分别表示同一个未知数,也就是说,X,y的值必须同时满足上述两个方程,因此可以把这两个方程合起来,写成

☆ 教师归纳:像这样由两个一次方程组成,并且含有两个未知数的方程组叫作二元一次方程组。

△ 课堂练习P(让学生填表格,然后教师将表中答案说明

2 分四个小组将①②③④个二元一次方程组的结果填入相应的位置

☆ 教师归纳:同时满足二元一次方程组中各个方程的解叫作二元一次方程组的解。

例如 就是这个二元一次方程组 的`解。

例:小聪全家外出旅游,估计需要胶卷底片120张,商店里有两种型号的胶卷:A型每卷36张底片,B型每卷12张底片。小聪一共买了4卷胶卷,刚好有120张底片,如果两种胶卷分别买x卷和y卷,请根据问题中的条件列出关于x,y的方程组,并且列表尝试的方法求两种胶卷的数量。

分析:(1)审题,该问题情境涉及哪些量?哪些是已知的,哪些是未知的?

所求的是哪两个量?问题情境中两种胶卷及底片的总数有什么要求?

(2)分析数量关系,该问题情境主要数量关系有:

每卷胶卷底片的张数×胶卷数=底片总张数:

A,B两种胶卷的总卷数=4

A,B两种胶卷的底片总张数=120

(3)建立数学模型,选择二元一次,则有

△ 课堂练习P91第1,第2题分组合作讨论完成。

△ 探究活动 :略

四 归纳小结,反思提高

1 通过本课的探讨学习,你获得了哪些新知识,你认为有哪些方面的进步。

(让学生进行总结,通过学生个人回顾、合作交流,总结本节课的所作所听所感,让知识系统化、合理化。)

的概念。

3 让学生体验对于含有两个未知数的实际问题可以用方程组来解。

分析数量关系,让学生选择数学模型。

二元一次方程组课件(篇3)

各位评委、老师:大家好!

我是来自丁庄镇中心初中的王红。今天我说课的内容是人教版义务教育课程标准实验教科书《数学》七年级下册,第八章第二节《二元一次方程组的解法》第一课时代入消元法。

下面我从教材分析、教学方法、学法指导、教学过程、教学感想这五个方面汇报我对这节课的教学设想。

一、教材分析

教材的地位和作用

本节主要内容是在上一节已学习了二元一次方程(组)和二元一次方程(组)的解的概念的基础上,来学习解方程组的第一种方法——代入消元法。并初步体会解二元一次方程组的基本思想----“消元”。二元一次方程组的求解,用到了前面学过的一元一次方程的解法,是对过去所学知识的一个回顾和提高,同时,也为后面利用方程组来解决实际问题打下了基础。

2、教学目标

根据本课教材的特点、课程标准对本节课的教学要求、学生的身心发展的合理需要,我从三个不同的方面确立了以下教学目标:

(1) 知识技能目标:1)会用代入法解二元一次方程组

2)初步体会解二元一次方程组的基本思想----消元

(2) 能力目标:通过对方程组中未知数特点的观察和分析,明确解二元一次方程组的主要思路是“消元”,由未知向已知的转化,培养观察能力和体会化规思想。通过用代入消元法解二元一次方程组的训练,培养运算能力。

(3) 情感目标:通过研究解决问题的方法,培养学生合作交流意识与探究精神。

3、重点、难点

根据学生的认知特点,我确立了本节课的重难点。

重点:用代入消元法解二元一次方程组

难点:探索如何用代入法将“二元”转化为“一元”的消元过程。

为了突出重点、突破难点,让学生动手操作,积极参与并主动探索解题方法,我设计并制作了多媒体课件,帮助学生理解代入消元法。

成功的教学必须选择合适的教法和学法,因此我确定如下教法和学法:

二、教学方法

我采用了探究式教学方法,设疑思考、点拨启发、小组探究、逐步深入。

三、学法指导

我采用积极引导学生主动参与,合作交流的方法组织教学,使学生真正成为教学的主体,体会参与的乐趣,成功的喜悦,感知数学的奇妙。

四、教学设计

1、根据以上分析,我设计了以下六个教学环节:

2、教学过程

下面我就每一个教学环节,具体介绍我对本节课的教学设想。

环节一:创设情境

活动一:出示引例:我校举办“奥运杯”篮球联赛,每场比赛都要分出胜负,胜1场得2分 ,负1场得1 分,我班篮球队为了取得好名次 ,想在全部22场比赛中得40分,那么我班篮球队胜负场数应分别是多少?

学生活动:列方程或方程组解决问题

教师关注:学生是否能够多角度地考虑问题.

设计意图:创设问题情景,让学生从生活中发现数学问题,激发学生的学习兴趣。

环节二、尝试发现

活动二:小组探究:能否将二元一次方程组转化为一元一次方程进而求得方程组的解呢?

学生活动:小组探究二元一次方程组的解法,初步体验解二元一次方程的步骤。

教师关注:学生思维角度是否合理,学生是否能抓住问题的核心部分。

设计意图:在学生小组讨论的过程中提供充分从事数学活动的机会,从而激发学生的学习积极性,体会在解决问题的过程中,与他人合作的重要性。

活动三:小组展示

学生活动:分小组针对老师给出的题目,展示解二元一次方程组的方法。

教师关注:关注:学生用语言表达自己的观点的准确性与全面性。

设计意图:在学生小组展示的过程中,要让学生尽情发挥,这样才能因材施教。发展学生有条理思考问题的能力和表达能力。

活动四:再看转化、把握解题技巧

学生活动:观察转化过程中的技巧,并尝试总结。

设计意图:转化是解方程组的重要环节,也是提高解题速度和正确度的关键,在这里探讨,帮助学生更好的掌握代入消元法。

环节三、 小组闯关

活动五:闯关练习一,解二元一次方程组,分小组竞争过关比例。

学生活动:做练习题

教师关注:学生解题的步骤的完整性,和解题的正确并及时的纠正错误

设计意图:掌握用代入消元法解方程组的一般过程,会解二元一次方程组并体会消元的思想。

活动六:闯关练习二,给出一个利用二元一次方程组解决的实际问题,拓展学生的思维。

学生活动:独立完成本题。

设计意图:在前面学习解二元一次方程组的基础上,提出实际问题,发展学生得多角度思维能力。

环节四、拓展升华

活动七:出示例题2.

学生活动:先独立思考,在同学之间交流一下想法,然后解决问题。

教师关注:学生是否可以找到等量关系,列出方程组,解方程组。

设计意图:通过用方程组解决实际问题,培养学生运用代入消元法解方程组的技能和分析问题,解决问题的能力。达到将所学知识进一步升华的目的。

环节五: 反思小结

活动八:我有哪些收获?

学生活动:学生归纳总结

教师关注:(1)学生是否养成归纳、整理、总结的好习惯;

(2)评价学生是否全面理解并掌握了本节课的知识。

环节六、布置作业

1、必做题:

P103 第2题 ⑵ ⑷, 第4题

2、 选做题:

设计意图:分层次,选择作业题,有利于学有余力的学生的发展。

最后我以著名数学家笛卡尔的一句话结束这节课。

五、板书设计

8.2二元一次方程组的解法

----代入消元法

1、二元一次方程组 一元一次方程

2、代入消元法的一般步骤:

3、思想方法:转化思想、消元思想、方程(组)思想.

六、教学感想

在教学过程中,我始终:

坚持一个原则——教为主导,学为主体

坚守一个理念——先学后教,以学定教

贯穿一个思想——享受数学,快乐学习

以上是我对本节课的理解,有不当之处尽请各位老师批评指正。谢谢!

我的说课到此结束,谢谢大家!

二元一次方程组课件(篇4)

一、说教材分析

1、教材的地位和作用

函数、方程和不等式都是人们刻画现实世界的重要数学模型。用函数的观点看方程(组)与不等式,使学生不仅能加深对方程(组)、不等式的理解,提高认识问题的水平,而且能从函数的角度将三者统一起来,感受数学的统一美。本节课是学生学习完一次函数、一元一次方程及一元一次不等式的联系后对一次函数和二元一次方程(组)关系的探究,学生在探索过程中体验数形结合的思想方法和数学模型的应用价值,这对今后的学习有着十分重要的意义。

2、教学重难点

重点:一次函数与二元一次方程(组)关系的探索。

难点:综合运用方程(组)、不等式和函数的知识解决实际问题。

3、教学目标

知识技能:理解一次函数与二元一次方程(组)的关系,会用图象法解二元一次方程组。

数学思考:经历一次函数与二元一次方程(组)关系的探索及相关实际问题的解决过程,学会用函数的观点去认识问题。

解决问题:能综合应用一次函数、一元一次方程、一元一次不等式、二元一次方程(组)解决相关实际问题。

情感态度:在探究活动中培养学生严谨的科学态度和勇于探索的科学精神,在师生、生生的交流活动中,学会与人合作,学会倾听、欣赏和感悟,体验数学的价值,建立自信心。

二、说教法说明

对于认知主体——学生来说,他们已经具备了初步探究问题的能力,但是对知识的主动迁移能力较弱,为使学生更好地构建新的认知结构,促进学生的发展,我将在教学中采用探究式教学法。以学生为中心,使其在“生动活泼、民主开放、主动探索”的氛围中愉快地学习。

三、说教学过程

(一)感知身边数学

多媒体播放一段发生在电信公司里的情景:一顾客准备办理上网业务,发现有两种收费方式:方式A以每分钟0.1元的价格按上网时间计费;方式B除收月基费20元外再以每分钟0。05元的价格按上网时间计费。顾客说他每月上网的费用按这两种收费方式计算都是一样多。求这位顾客打算每月上网多长时间?多少费用?

学生已经学习过列方程(组)解应用题,因此可能列出一元一次方程 或二元一次方程组,用方程模型解决问题。结合前面对一次函数与一元一次方程、一元一次不等式之间关系的探究,我自然地提出问题:“一次函数与二元一次方程组之间是否也有联系呢?”,从而揭示课题。

[设计意图]建构主义认为,在实际情境中学习可以激发学生的学习兴趣。因此,用“上网收费”这一生活实际创设情境,并用问题启发学生去思、鼓励学生去探、激励学生去说,努力给学生造成“心求通而未能得,口欲言而不能说”的情势,从而唤起学生强烈的求知欲,使他们以跃跃欲试的姿态投入到探索活动中来。

(二)享受探究乐趣

1、探究一次函数与二元一次方程的关系

填空:二元一次方程 可以转化为 ________。

思考:

(1)直线 上任意一点 一定是方程 的解吗?

(2)是否任意的二元一次方程都可以转化为这种一次函数的形式?

(3)是否直线上任意一点的坐标都是它所对应的二元一次方程的解?

[设计意图]用一连串的问题引导学生发现一次函数与二元一次方程在数与形两个方面的关系,为探索二元一次方程组的解与直线交点坐标的关系作好铺垫。

2、探究一次函数与二元一次方程组的关系

(1)在同一坐标系中画出一次函数 和 的图象,观察两直线的交点坐标是否是方程组 的解?并探索:是否任意两个一次函数的交点坐标都是它们所对应的二元一次方程组的解?

此时教师留给学生充分探索交流的时间与空间,对学生可能出现的疑问给予帮助,师生共同归纳出:从“形”的角度看,解方程组相当于确定两条直线交点的坐标。

(2)当自变量 取何值时,函数 与 的值相等?这个函数值是什么?这一问题与解方程组 是同一问题吗?

进一步归纳出:从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这个函数值是何值。

[设计意图] 学生经过自主探索、合作交流,从数和形两个角度认识一次函数与二元一次方程组的关系,真正掌握本节课的重点知识,从而在头脑中再现知识的形成过程,避免单纯地记忆,使学习过程成为一种再创造的过程。此时教师及时对学生进行鼓励,充分肯定学生的探究成果,关注学生的情感体验。

(三)乘坐智慧快车

例题:我市一家电信公司给顾客提供两种上网收费方式:方式A以每分0.1元的价格按上网时间计费;方式B除收月基费20元外再以每分0 。05元的价格按上网时间计费。如何选择收费方式能使上网者更合算?

解法1:设上网时间为 分,若按方式A则收 元;若按方式B则收 元。然后在同一坐标系中分别画出这两个函数的图象,计算出交点坐标 ,结合图象,利用直线上点位置的高低直观地比较函数值的大小,得到当一个月内上网时间少于400分时,选择方式A省钱;当上网时间等于400分时,选择方式A、B没有区别;当上网时间多于400分时,选择方式B省钱。

解法2:设上网时间为 分,方式B与方式A两种计费的差额为 元,得到一次函数: ,即 ,然后画出函数的图象,计算出直线与 轴的交点坐标,类似地用点位置的高低直观地找到答案。

注意:所画的函数图象都是射线。

[设计意图]为培养学生的发散思维和规范解题的习惯,引导学生将上网问题延伸为例题,并用问题:“你家选择的上网收费方式好吗?”再次激起学生强烈的求知欲望和主人翁的学习姿态。通过此问题的探究,使学生有效地理解本节课的难点,体会数形结合这一思想方法的应用。

(四)体验成功喜悦

1、抢答题

(1)、以方程 的解为坐标的所有点都在一次函数 _____的图象上。

(2)、方程组 的解是________,由此可知,一次函数 与 的图象必有一个交点,且交点坐标是________。

2、旅游问题

古城荆州历史悠久,文化灿烂。今年,大型历史剧《万历首辅张居正》在荆州封镜后,来荆州的游客更是络绎不绝。据悉,张居正纪念馆门票标价20元/张,近期正在进行优惠活动,购买时有两种方式:方式A是团队中每位游客按8折购买;方式B是团队中除5张按标价购买外,其余按7折购买。如果你是团队的负责人,你会如何选择购买方式使整个团队更合算?

[设计意图]抓住学生对竞争充满兴趣的心理特征,用抢答题使学生的眼、耳、脑、口得到充分的调动,并在抢答中品味成功的快乐,提高思维的速度。在学生感兴趣的旅游问题中,进一步培养学生应用数学的意识,更好地促进学生对本节课难点的理解和应用,帮助学生不断完善新的认知结构。

(五)分享你我收获

在课堂临近尾声时,向学生提出:通过今天的学习,你有什么收获?你印象最深的是什么?

[设计意图]培养学生归纳和语言表达能力,鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价。

二元一次方程组课件(篇5)

教学建议

本节的教学重点是使学生学会用代入法.教学难点 在于灵活运用代入法,这要通过一定数量的练习来解决;另一个难点在于用代入法求出一个未知数的值后,不知道应把它代入哪一个方程求另一个未知数的值比较简便.

解二元一次方程组的关键在于消元,即将“二元”转化为“一元”.我们是通过等量代换的方法,消去一个未知数,从而求得原方程组的解.

三、教法建议

1.关于检验方程组的解的问题.教材指出:“检验时,需将所求得的一对未知数的值分别代入原方程组里的每一个方程中,看看方程的左、右两边是不是相等.”教学时要强调“原方程组”和“每一个”这两点.检验的作用,一是使学生进一步明确代入法是求方程组的解的一种基本方法,通过代入消元的确可以求得方程组的解二是进一步巩固二元一次方程组的解的概念,强调

这一对数值才是原方程组的解,并且它们必须使两个方程左、右两边的值都相等;三是因为我们没有用方程组的.同解原理而是用代换(等式的传递)来解方程组的,所以有必要检验求出来的这一对数值是不是原方程组的解;四是为了杜绝变形和计算时发生的错误.检验可以口算或在草稿纸上演算,教科书中没有写出.

2.教学时,应结合具体的例子指出这里解二元一次方程组的关键在于消元,即把“二元”转化为“一元”.我们是通过等量代换的方法,消去一个未知数,从而求得原方程组的解.早一些指出消元思想和把“二元”转化为“一元”的方法,这样,学生就能有较强的目的性.

3.教师讲解例题时要注意由简到繁,由易到难,逐步加深.随着例题由简到繁,由易到难,要特别强调解方程组时应努力使变形后的方程比较简单和代入后化简比较容易.这样不仅可以求解迅速,而且可以减少错误.

二元一次方程组课件(篇6)

教学目的

1.使学生了解二元一次方程,二元一次方程组的概念。

2.使学生了解二元一次方程;二元一次方程组的解的含义,会检验一对数是不是它们的解。

3.通过引例的教学,使学生进一步使用代数中的方程去反映现实世界中的等量关系,体会代数方法的优越性。

重点:了解二元一次方程、二元一次方程组以及二元一次方程组的解的含

难点;了解二元一次方程组的解的含义。

导学提纲:

1.什么叫一元一次方程?什么叫一元一次方程的解?怎样检验一个数是否是这个方程的解?

2.阅读教材问题1思考下列问题

⑴.能否用我们已经学过的知识来解决这个问题?

用算术法解答

用一元一次方程解答

解后反思:既然是求两个未知量,那么能不能同时设两个未知数?

⑵.此问题中有两个问题如果分别设为x、y,怎样列式呢?(完成教材中的表格)

⑶.对于方程x十y=73x+y=17请思考下列问题

①它们是一元一次方程吗?

②这两个方程有没有共同特点/若有,有河共同特点?

③类比一元一次方程的概念,总结二元一次方程的概念

3.从教材中找出二元一次方程和二元一次方程组的概念(结合一元一次方程,二元一次方程对“元”和“次”作进一步的解释)

注意二元一次方程组的书写方式,方程组中的各方程中,同一个字母必须代表同一个量

4.与是否满足方程①与是否满足方程②类比一元一次方程的解总结二元一次方程组的解的概念

注意:(1)未知数的值必须同时满足两个方程时,才是方程组的解.若取,时,它们能满足方程①,但不满足方程②,所以它们不是方程组的解.

(2)二元一次方程组的解是一对数,而不是一个数,所以必须把与合起来,才是方程组的解.

5.思考讨论在方程组①②③④

⑤⑥中,属于二元一次方程组的有

达标检测:

1.根据下列语句,分别设适当的未知数,列出二元一次方程或方程组:

(1)甲数的比乙数的2倍少7:_____________________________;

(2)摩托车的时速是货车的倍,它们的速度之和是200千米/时:________;

(3)某种时装的价格是某种皮装的价格的1.4倍,5件皮装比3件时装贵700元:______________________________.

2.下列方程是二元一次方程的是()

A、2x+x=1B、x-3yC、x+x-3=0D、x+y=2

3.下列不是二元一次方程组的是()

x+3y=5m+3m=152x+3x=0m+n=5

A、B、C、D、

2x-3x=3+=3-5y=02m+n=6

x=2

4.在方程3x-ky=0中,如果是它的一个解,则k的值为_______.

y=-3

5.若mxy+9x+3y=-9是关于x、y的二元一次方程,则m=_______n=_______.

二元一次方程组课件(篇7)

【教学目标】

知识目标: 1、通过观察,归纳二元一次方程的概念 ,会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式。

2、二元一次方程解的不定性和相关性,即二元一次方程的解有无数个,但又不是任意两个数是它的解。

过程与方法:通过与一元一次方程的比较,加强学生的类比的思想方法。

情感态度与价值观:通过“合作学习”,使学生认识数学是根据实际的需要而产生发展的观点。

【教学重点、难点】

重点:二元一次方程的意义及二元一次方程的解的概念。

难点:把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。

【教学过程】

一、 复习引入:

(1) 方程的概念;一元一次方程的概念;什么是方程的解?一元一次方程的解如何表示?

(2) 合作学习:

①小红到邮局寄挂号信,需要邮资3元8角。小红有票额为6角和8角的邮票若干张,问各需要多少张这两种面额的邮票?

这个问题中有几个未知数,能列一元一次方程求解吗?

如果设需要票额为6角的邮票x张,需要票额为8角的邮票y张,你能列出方程吗?

②在高速公路上,一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20千米,如果设轿车的速度是a千米/小时,卡车的速度是b千米/小时,你能列出方程吗?

二、 新课教学

这就是我们今天要学习的4、1二元一次方程(板书课题)

(1) 观察上述两个方程,归纳特点

(2) 讨论选择正确概念

① 含有两个未知数的方程叫二元一次方程。

② 含有两个未知数,且含有未知数的项的次数都是1次的`方程叫二元一次方程。

(3) 做一做P86——1,2

(4) 例:已知方程3x+2y=10

① 用关于x的代数式表示y (分析:只要把方程3x+2y=10看作未知数是y的一元一次方程,解关于y的方程)

② 求当x=-2,0,3时,对应的y的值

(提问:把x=-2,y=8代入方程3x+2y=10,能否使其左右两边相等?

回忆方程解的概念,得出x=-2,y=8是二元一次方程3x+2y=10的一个解,记作 。

同理试写出该方程的两个解(注意写法格式)

思考:方程3x+2y=10的解有多少个?

师归纳:二元一次方程解具不定性和相关性

(5) 练习:P88——课内练习1,2

(6) 补充练习:P89---作业题4(说明:方程的解须是正整数)

已知 ,是方程2x+3y=5的一个解,那么由此可知道些什么?

(说明:1.本例是根据教科书P89---B组第5题改编。原题要求a的值,但学

生常常有困难,因此这里把原题改为开放式命题,看起来似乎比原

题要求高了,其实有利于各类学生参与并寻求结论。

三、 课堂小结:

二元一次方程的意义及二元一次方程的解的概念(注意书写格式)

二元一次方程解的不定性和相关性

会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式

四、 作业 :

课堂作业本

二元一次方程组课件(篇8)

一、阅读教材P99-P102内容

二、独立思考;

1、用加减消元法解方程组 ,如果要消去x,方法是_______________,得到__________,如果要消去y,方法是________________,得到_____________________。

2、已知方程 有两个解分别是 和 则 =_________, =___________。

3、解方程组 为了计算较简单,最好是( )

A、①7-②3 B、①-②3 C、①+②3 D、①2-②

4、已知方程组 ,则 与 的关系是_____________________。

5、已知点A( ),点B( )关于 轴对称,则 的值是_____________。

6、解方程组 比较简单的方法是_______________。

7、大数和小数相差8,和是32,由大数是___________,小数是_______________。

8、已知方程组 ,则 =__________________。

互动课堂教学

探究一:用加减法解方程组 。

步骤 名称 具体做法 目的

1 变形 使方程中某一个未知数的系数相等或变成相反数的形式。

2 加减

3 求一元

4 求另一元

5 写出解

探究二:用加减消元法解方程组的一般步骤;

探究三:2台大收割机和5台小收割机均工作2小时共收割小麦3.6公顷,3台大收割机和2台小收割机均工作5小时共收割小麦8公顷,1台大收割机和1台小收割机每小时各收割小麦多少公顷?

自我能力评估

一、课堂作业:

1、教材P102练习第1.2.3题。

二、作业布置:

教材P103习题8.2第3、5、7、8、9题

三、自我检测

(一)填空题

1、解二元一次方程组的基本思想是________,其中常用的方法有______________、______________两种。

2、用加减消元法解下列方程组 ,较简单的消元方法是:将两方程左右两边_________,消去未知数______。

3、已知方程组 用加减消元法消去x的方法是_________,用加减法消去y的方法是_______。

4、方程组 ,可用______________消去未知数y,也可用___________消去x。

5、方程 的解是_________________。

6、用加着消元法解方程时,你认为行消哪个未知数较简单,填写消元的过程,不解:

(1) ,消元的方法是_______________________.

(2) ,消元的`方法是_________________________.

7、已知方程组 ,不解方程组,则 =___________, =___________。

8、 满足 ,那么 的值是__________________。

9、已知一个等腰三角形一腰上的中线把它的周长分为6cm和9cm两部分,则它的底边长是____________。

(二)选择题

1、解方程组比较简单的消元方法是( )

A、用含y的式子表示x,用代入法 B、加减法

C、换元法 D、三种方法完全一样

2、用加减法解方程组 ,下列解法不正确的是( )

A、○13-○22,消去x B、○12-○23,消去y

C、○1(-3)+○22,消去x D、○12-○2(-3),消去y

3、用加减法解方程组 ,其解题步骤如下:(1)○1+○2得 ;(2)○1-○22得 ,所以原方程组的解为 ,则下列说法正确的是( )

A、步骤(1)、(2)都不对 B、步骤(1)、(2)都对

C、本题不适宜用加减法解 D、加减法不能用两次

4、若二元一次方程 有公共解,则m等于( )

A、-2 B、-1 C、3 D、4

5、已知方程组 的解为 ,则 的值为( )

A、4 B、6 C、-6 D、-4

6、以方程 的解为坐标的点P( )一定不在( )

A、第一象限 B、第二象限 C、第三象限 D、第四象限

7、如果关于x、y的二元一次方程组 的解x、y的差是7,那么k的值是( )

A、-2 B、8 C、0.8 D、-8

(三)解答题

1、用加减法解下列方程组:

(1) (2) (3)

2、用适合的方法解下列方程组:

(1) (2) (3)

3、若方程组 的解满足 ,求m的值。

4、已知方程组 中 的系数已经模糊不清,但知道其中表示同一个数,也表示同一个数,且 是这个方程组的解,你能求出原方程组吗?

5、已知关于 有方程组 的解是 ,求 。

6、解方程组 。

7、在一本书上写着方程组 的解是 ,其中y的值被盖住了,你能求出p的吗?

8、已知 , ,求 的值。

9、如图,在平面直角坐标系中A、B两点的坐标满足方程

10、解这个方程组

二元一次方程组课件(篇9)

小明买了两份水果,一份是3kg苹果、2kg香蕉,共用去13.2元;另一份是2kg苹果、5kg香蕉,共用去19.8元。设苹果x元/kg,香蕉y元/kg.列出方程。

新课讲解:

列出方程组

1、解方程组

分析:关键的`出方程〈1〉中的2y与方程〈2〉中的-2y互为相反数。想象出如果相加两个方程,会是什么结果?

板演:

解:〈1〉+〈2〉得:

4x=6

x=

把x= 代入〈1〉得

+2y=1

解出这个方程,得

y=

所以原方程组的解是

2、解方程组

通过议一议,让学生都有感觉消去含x或y的项都可以,但哪个更简便?

解:〈1〉 3,得

15x-6y=12 〈3〉

〈2〉 2,得

4x-6y=-10 〈4〉

〈3〉-〈4〉,得

11x=22

x=2

将x=2代入〈1〉,得

5 2-2y=4

y=3

所以原方程组的解是

加减消元法:把方程组的两个防城(或先作适当变形)相加或相减,消去其中一个未知数,把解二元一次方程组转化为解一元一次方程。

练一练:

解方程组

小结:

加减消元法关键是如何消元,化二元为一元。

先观察后确定消元。

教学素材:

A组题:解下列方程组:

(1)

(2)

(3)

(4)

(5)

B组题:运用转化的思想方法,你能解下面的三元一次方程组吗?

(1)

(2)

学生读题,议一议

学生想一想,如感到困难则看道简单题。

由学生观察,如何求出x,y的值,学生再讨论。

试一试。学生口述。

老师板演

得到一元一次方程

学生再观察,议一议

①消去哪个未知数

②怎样消去?

P112 1(1)(2)(3)(4)

作业习题11.3 P112 1(3)(4) 3 , 4

二元一次方程组课件(篇10)

教学目标:通过学生积极思考,互相讨论,经历探索事物之间的数量关系,形成方程模型,解方程和运用方程解决实际问题的过程进一步体会方程是刻划现实世界的有效数学模型

重点:让学生实践与探索,运用二元一次方程解决有关配套与设计的应用题

难点:寻找等量关系

教学过程:

看一看:课本99页探究2

问题:1“甲、乙两种作物的单位面积产量比是1:1、5”是什么意思?

2、“甲、乙两种作物的总产量比为3:4”是什么意思?

3、本题中有哪些等量关系?

提示:若甲种作物单位产量是a,那么乙种作物单位产量是多少?

思考:这块地还可以怎样分?

练一练

一、某农场300名职工耕种51公顷土地,计划种植水稻、棉花、和蔬菜,已知种植植物每公顷所需的劳动力人数及投入的设备奖金如下表:

农作物品种每公顷需劳动力每公顷需投入奖金

水稻4人1万元

棉花8人1万元

蔬菜5人2万元

已知该农场计划在设备投入67万元,应该怎样安排这三种作物的种植面积,才能使所有职工都有工作,而且投入的资金正好够用?

问题:题中有几个已知量?题中求什么?分别安排多少公顷种水稻、棉花、和蔬菜?

教材106页:探究3:如图,长青化工厂与A、B两地有公路、铁路相连,这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地。公路运价为1、5元/(吨?千米),铁路运价为1、2元/(吨?千米),这两次运输共支出公路运费15000元,铁路运费97200元。这批产品的销售款比原料费与运输费的和多多少元?

二元一次方程组课件(篇11)

一、说教材

(一)地位和作用

本节主要内容是在上节已认识二元一次方程(组)和二元一次方程(组)的解等概念的基础上,来学习解方程组的第一种方法代入消元法。并初步体会解二元一次方程组的基本思想消元。二元一次方程组的求解,不但用到了前面学过的一元一次方程的解法,是对过去所学知识的一个回顾和提高,同时,也为后面的利用方程组来解决实际问题打下了基础。初中阶段要掌握的二元一次方程组的解法有代入消元法和加减消元两种,教材都是按先求解后应用的顺序安排,这样安排既可以在前一小节中有针对性的学习解法,又可在后一小节的应用中巩固前面的知识,但教材相对应的练习安排很少,不过这样也给了我们一较大的发挥空间。

(二)课程目标

1、知识与技能目标

(1)会用代入法解二元一次方程组

(2)初步体会解二元一次方程组的基本思想消元。

(3)通过对方程组中的未知数特点的观察和分析,明确解二元一次方程组的主要思路是消元,从而促成由未知向已知转化,培养学生观察能力和体会化归思想:

(4)通过用代入消元法解二元一次方程组的训练,及选用合理、简捷的方法解方程组,培养学生的运算能力。

2、情感目标:

通过研究探讨解决问题的方法,培养学生会作交流意识与探究精神。

(三)教学重点、难点

重点:用代入消元法解二元一次方程组。

难点:探索如何用代入消元法将二元转化为一元的过程。

二、说教法

针对本节特点,在教学过程中采用自主、探究、合作交流的教学方法,由教师提出明确问题,学生积极参与讨论探究、合作交流,进行总结,使学生从中获取知识。鉴于本节所学知识的特点,抽象教学、学生生搬硬套的学习方式将难取得理想效果,因此教师在引入课题时要利用好远程教育设施及资源创设情境,让学生去经历由具体问题抽象出方程组的过程。并让学生通过独立观察、合作交流来探讨怎样才能变二元为一元。然后利用单个二元一次方程的变形及时强化代入的本质。

三、说学法

本节学生在独立思考、自主探究中学习并对老师的问题展开讨论与交流。如何用代入消元法将二元转化为一元学生较难掌握,在提出消元思想后,应对具体的消元解法的过程进行归纳,让学生得到对代入法的基本步骤的概括,通过把一个方程(必要时先做适当变形)代入另一个方程实现消元。应注意引导学生认识到为什么要实施这样的步骤。把具体做法与消元结合,使学生明解其目的性。明确这样做的依据是等量代换。七年级的学生已经初步具备合作交流的能力。可以通过探究和合作来实现课程目标;此外,教学中,范例的讲解和随堂练习始终是学以对用的有效方法。随堂练习时应引导学生通过自我反省、小组评价来克服解题时的错误,必要时给与规范矫正。

四、说教学程序

本节课我将自主、探究、合作、交流运用到教学中,教学过程可以划分为以下几个环节:

1、引入新知:利用多媒体教学手段,创设情境,通过篮球比赛问题引入教学,情境活泼、自然。

2、探究新知:在篮球比赛问题中,首先可以用一元一次方程来解决实际问题,接着提出问题:能否设出两个未知数,列出两个方程组成方程组呢?(学生独立思考后分组探究讨论)。在学生得出正确的方程组之后提出问题:怎样解这个方程组呢?(学生分组讨论,教师加以适当的引导),各组派代表得出自己的结论,教师适时引导消元思想,对消元解法的过程予以归纳。

3、运用新知:在得出代入消元解二元一次方程组后,应用代入消元法解决实际问题,在学生解题过程中着重强调、矫正、理清思路和步骤。然后师生一起解后思:在解题时应注意什么?在随堂练习时教师关键是反馈矫正、积极评价。

4、教学小结,知识回顾:让学生畅所欲言谈本节课的得失,感到困惑和疑难的地方、解题的关键和步骤等。教师在学生发言的基础上再进行提炼:①解二元一次方程组的主要思路是消元②解二元一次方程组的一般步骤是:一变形、二代入、三求解。

5、课外作业。为进一步巩固知识,布置适当的、具有代表性的作业。

五、说应用

就远程教育资源的应用而言,本人是这样认为的:远程教育工程的成败,关键在于应用。那么怎样应用好这一现代化的教学设备及其资源呢?其一:应与校园网相结合,搭建信息交流平台、信息点应分布到学校办公、教学、管理所有地方。其二:宣传示范:激起应用热情、新鲜、新奇的事物总是易被人注意。学校应一方面采取座谈、演示,一帮一等多种方式,让教师熟悉远教资源,另一方面应组织教师应用远教资源上观摩课、研究课、示范课。激发广大教师利用远教资源进行课堂教学的热情,尽可能地发挥远教资源在课堂教学中的优势。其三。远教资源与校本培训相结合,树立教师应和的信心。

《数学课程标准》指出:数学来源于生活数学服务于生活数学问题要生活化,让数学走进生活已是一种全新的.教育理念,它有利于实现不同人在数学上得到不同的发展。为此,在数学课堂教学中,教师要善于创设教学情境,为学生创造一个轻松、愉悦的学习氛围,集中学生的注意力,把学生思绪带进特定的学习情境中去,激发他们浓厚的学习兴趣和强烈的求知欲望。那么究竟怎样创设情境,激发学生的学习兴趣呢?那就是运用多媒体课件导入新课,为课堂创设教学情境,有效地开启学生思维的闸门,激发联想,激励探究,使学生的学习状态由被动变为主动,在轻松愉悦的氛围中学到知识。因此,教师设计教学活动时,要充分利用现代远程教育资源结合本班的实际和知识水平,制成多媒体课件,然后利用多媒体具有的集声音、动画、图像于一体的独特优势,精心为学生创设贴进生活的学习情境,让学生有身临其境的感觉,从而激发学生的学习兴趣和求知欲。

教学重难点是否突破是一堂课能否成功的关键。教学的重难点在传统的教学中,教师往往要花费大量的时间去讲述,但学生往往难以理解。教师如果利用远程教育资源,运用多媒体教学平台来配合教学,就可以把抽象的内容变得更具体,把静止不变的图形符号转化为不断运动的活动场景,为学生提供丰富的感知材料,调动学生各种感官协同作用,解决教师难以讲清,学生难以听懂的内容,从而有效地实现精讲,突出重点,突破难点,发展学生的观察能力和想象能力,进而激发学生愉快的学习情绪,让学生在快乐中接受教育。

总之,在数学教学中利用远程教育资源,运用多媒体教学平台,能极大地方便教学,减轻教师的负担,更好地优化课堂结构,促进教学质量的提高。学生的学习方式不再单一,学习兴趣明显提高,能自主地学习,真正成为学习的主体。巧用远程教育资源进行数学教学,能让数学教学焕发出夺目的光辉,产生独特的魅力。

相关推荐

  • 一元一次不等式课件 每位老师不可或缺的课件是教案课件,因此教案课件可能就需要每天都去写。教案是课程开展的向导。今天小编为大家带来了一篇关于“一元一次不等式课件”的相关文章,如果你希望长期关注我的分享请不要忘记将它收藏起来!...
    2024-04-06 阅读全文
  • 一元一次不等式课件教案9篇 俗话说,凡事预则立,不预则废。作为幼儿园老师的我们的课堂上能更好的发挥教学效果,最好的解决办法就是准备好教案来加强学习效率,。教案有助于老师在之后的上课教学中井然有序的进行。那么如何写好我们的幼儿园教案呢?经过整理,小编为你呈上一元一次不等式课件教案9篇,仅供参考,欢迎大家阅读本文。教学目标1.能够...
    2023-04-30 阅读全文
  • 一元一次不等式组课件优选13篇 幼儿教师教育网今天为大家介绍的是一篇有关“一元一次不等式组课件”的文章。对于新入职的老师而言,教案课件还是很重要的,因此教案课件不是随便写写就可以的。只有高质量的教案才能带来好的教学效果。希望本文能够为您提供一些实用建议!...
    2024-06-14 阅读全文
  • 一元二次不等式课件(必备9篇) 经过多次优化我们为您制作了这份精选的“一元二次不等式课件”,本篇文章希望能够为您的工作和生活提供帮助。每个老师需要在上课前弄好自己的教案课件,没有写的老师就需要抓紧完成了。设计教案需要关注课堂互动和学生参与度的提高。...
    2024-07-30 阅读全文
  • 一元一次不等式说课稿5篇 假若你正在寻找“一元一次不等式说课稿”的信息,那么你来对了地方。教师的聪明才智能点亮学生学习的灵光,唯有准备科学、全面、透彻的教案才能让学生成就更大。制定有效的教案有助于教师更加有效地进行课堂授课,并确保学生的学习效果。请继续关注本网站,获得更多相关信息。...
    2023-06-30 阅读全文

每位老师不可或缺的课件是教案课件,因此教案课件可能就需要每天都去写。教案是课程开展的向导。今天小编为大家带来了一篇关于“一元一次不等式课件”的相关文章,如果你希望长期关注我的分享请不要忘记将它收藏起来!...

2024-04-06 阅读全文

俗话说,凡事预则立,不预则废。作为幼儿园老师的我们的课堂上能更好的发挥教学效果,最好的解决办法就是准备好教案来加强学习效率,。教案有助于老师在之后的上课教学中井然有序的进行。那么如何写好我们的幼儿园教案呢?经过整理,小编为你呈上一元一次不等式课件教案9篇,仅供参考,欢迎大家阅读本文。教学目标1.能够...

2023-04-30 阅读全文

幼儿教师教育网今天为大家介绍的是一篇有关“一元一次不等式组课件”的文章。对于新入职的老师而言,教案课件还是很重要的,因此教案课件不是随便写写就可以的。只有高质量的教案才能带来好的教学效果。希望本文能够为您提供一些实用建议!...

2024-06-14 阅读全文

经过多次优化我们为您制作了这份精选的“一元二次不等式课件”,本篇文章希望能够为您的工作和生活提供帮助。每个老师需要在上课前弄好自己的教案课件,没有写的老师就需要抓紧完成了。设计教案需要关注课堂互动和学生参与度的提高。...

2024-07-30 阅读全文

假若你正在寻找“一元一次不等式说课稿”的信息,那么你来对了地方。教师的聪明才智能点亮学生学习的灵光,唯有准备科学、全面、透彻的教案才能让学生成就更大。制定有效的教案有助于教师更加有效地进行课堂授课,并确保学生的学习效果。请继续关注本网站,获得更多相关信息。...

2023-06-30 阅读全文
Baidu
map