因数和倍数教案
发布时间:2023-04-11 因数倍数教案[精]因数和倍数教案(汇总10篇)。
教案课件是老师教学工作的起始环节,也是上好课的先决条件,每位老师都要用心的考虑自己的教案课件。老师上课要根据教案课件来实施,怎么样的教案才算是好教案课件?幼儿教师教育网的编辑特意收集并为您呈上“因数和倍数教案”相关内容,欢迎阅读,希望你能够喜欢并分享!
因数和倍数教案 篇1
(一)知识、技能目标:
1、使学生结合整数乘、除法运算初步认识倍数和因数的含义,探索并掌握找一个数的倍数和因数的方法,发现一个数的倍数、因数中最大的数、最小的数及其个数方面的特征。
2、使学生在认识倍数和因数以及探索一个数的倍数或者因数的过程中,进一步体会数学知识之间的内在联系,提高数学思考的水平。
(二)情感、价值目标:
让学生初步意识到可以从一个新的角度来研究非零自然数的特征及其相互关系,培养学生的观察、分析和抽象概括能力,体会教学内容的奇妙、有趣,产生对数学的好奇心。
(三)本课的教学重难点:
是理解因数和倍数的概念,能有序地求出一个数的因数和倍数。
(四)、教学过程:
(一)激发兴趣,引入新课:让学生针对12个正方形的摆法讨论,激发学生兴趣,引入数学中自然数和自然数之间也有各种关系,初步体会数和数的对应关系,既拉近了数学和生活的联系,又培养了学生的兴趣。
(二)情境体验,理解概念:分三个层次进行教学。
(1)情境体验,初步感知倍数和因数的意义。让学生根据12个正方形的不同摆放方式写出算式,让学生充分经历了“由形到数、再由数到形”的`过程,既为倍数和因数概念的提出积累了素材,又初步感知倍数和因数的关系,为正确理解概念提供了帮助。
(2)在具体的乘法算式中,理解倍数和因意义。这样做不仅降低了难度,而且为学生的后续学习拓展了空间。根据算式介绍倍数和因数的意义,然后让学生根据其余两道乘法算式模仿的说一说,充分的读一读,在通过“能说4是因数,36是倍数吗?这一反例的教学,充分感受倍数和因数是相互依存的。
明确:倍数和因数表示的是两个数之间的关系,所以不能单说谁是倍数,谁是因数。
(设计意图:结合具体的乘法算式介绍倍数和因数时,让学生充分地读一读,使学生初步感受倍数和因数是相互依存的,再通过对反例的辨析,使学生的感受更加深刻。)
接下来结合板书算式,考考大家谁是谁的倍数,谁是谁的因数?
若学生没有举到除法算式,就由老师举例一道除法算式。“能说谁是谁的倍数,谁是谁的因数吗?”
学生自由发言,统一认识。
小结:除法可以转化成乘法,只要满足两个自然数的乘积等于另外一个自然数,它们之间就存在倍数和因数的关系。
第三个环节是探索方法,发现特征:分两个层次进行,首先找一个数的因数,为了考查学生的动手有的可能是用乘法想(乘积是20的两个数是20的因数)有的可能是用除法想(除数和商都是20的因数)这两种方法都出现一个问题:无序。从而导致重复、遗漏现象。为了解决问题,我再次放手,小组交流,并在此基础上让学生自主探求”怎样找才会有序,找到什么时候为止”?用自己的语言总结,最后师生达成共识:按一定的顺序一对对的找,找到两个数接近为止。并通过找三个数的所有因数,而找出引述的特征,从而在互相评价、充分比较、集体交流中感悟有序思考的必要性和科学性。
接下来找一个数的倍数。我将教学过程设计成了一个个问题链,什么样的数是3的倍数?,怎样找才能有条理?比一比谁找的倍数多?能把3的倍数全找完吗,应该怎样表示问题的答案?你有什么窍门找一个数的倍数?在学生自主探索的基础上,小组合作,全班交流,并在找因数特征的基础找到倍数的特征。
因数和倍数教案 篇2
一、教学内容
1、因数和倍数
2、2、5、3的倍数的特征
3、质数和合数
二、教学目标
1、使学生掌握因数、倍数、质数、合数等概念,知道有关概念之间的联系和区别。
2、使学生通过自主探索,掌握2、5、3的倍数的特征。
3、逐步培养学生的数学抽象能力。
三、编排特点
1、精简概念,减轻学生记忆负担。
三方面的调整:
A、不再出现“整除”概念,直接从乘法算式引出因数和倍数的概念。
B、不再正式教学“分解质因数”,只作为阅读性材料进行介绍。
C、公因数、公因数、公倍数、最小公倍数移至“分数的意义和性质”单元,作为约分和通分的知识基础,更突出其应用性。
2、注意体现数学的抽象性。
数论知识本身具有抽象性。学生到了高年级也应注意培养其抽象思维。
四、具体编排
1、因数和倍数
因数和倍数的概念
过去:用÷=表示能被整除,÷=表示能被整除。
现在:用=直接引出因数和倍数的概念。
(1)用2×6=12给出因数和倍数的概念。
(2)用3×4=12进一步巩固上述概念。
(3)让学生利用因数和倍数的概念自主发现12的其他因数。
(4)可引导学生利用一般的乘法算式×=归纳出因数和倍数的概念。
(5)说明本单元的研究范围。
注意以下几点:
(1)虽然不出现“整除”一词,但本质上仍是以整除为基础,因此,乘法算式中的乘数和积都必须是整数。
(2)因数和倍数是一对相互依存的概念,不能单独存在。
(3)注意区分乘法各部分名称中的“因数”和本单元中的“因数”的联系和区别。
(4)注意区分“倍数”与前面学过的“倍”的联系与区别。
例1(一个数的因数的求法)
(1)可用不同的方法求出18的因数(列出积是18的乘法算式或列出被除数是18的除法算式),但应引导学生有序思考。
(2)用集合圈表示因数,为后面求两个数的公因数作铺垫。
一个数的因数的特点
(1)因数是其自身,最小因数是1。
(2)因数个数有限。
(3)此结论通过例1和“做一做”中的特例通过不完全归纳法得出,体现了从具体到一般的思路。
例2(一个数的倍数的求法)
(1)求法:用该数乘任一非0自然数所得的积都是该数的倍数。
(2)用集合圈表示倍数,为后面求两个数的公倍数作铺垫。
做一做
与例1结合起来,提供了2、3、5的倍数,为后面探讨2、3、5倍数的特征作准备。
一个数的倍数的特点
(1)最小倍数是其自身,没有的倍数。
(2)因数个数无限。
(3)此结论通过例1和“做一做”中的特例通过不完全归纳法得出,体现了从具体到一般的思路。
2、2、5、3的倍数的特征
因为2、5的倍数的特征在个位数上就体现出来了,而3的倍数涉及到各数位上的数字之和,较为复杂,因此后安排3的倍数的特征。本部分内容对于熟练掌握约分、通分、分数的四则运算有很重要的作用。
2的倍数的特征
(1)从生活情境“双号”引入。
(2)观察2的倍数的个位数,总结出2的倍数的特征。
(3)介绍奇数和偶数的概念。
(4)可让学生随意找一些数进行验证,但不要求严格的证明。
5的倍数的特征
(1)编排方式与2的倍数的特征类似。
(2)可进一步总结既是2的倍数又是5的倍数的特征,即10的倍数的特征。
3的倍数的特征
(1)强调自主探索,让学生经历观察――猜想――_猜想――再观察――再猜想――验证的过程。
(2)可任意选择一个数,用正面、反面的例子对结论进一步验证。
(3)也可对任一3的倍数的各位数调换位置,更深刻地理解3的倍数的特征。
3、质数和合数
质数和合数的概念
(1)根据20以内各数的因数个数把数分成三类:1、质数、合数。
(2)可任出一个数,让学生根据概念判断其为质数还是合数。
例1(找100以内的质数)
(1)方法多样。可以根据质数的概念逐个判断,也可用筛法。
(2)把握教学要求:知道100以内的质数,熟悉20以内的质数。
五、教学建议
1、加强对概念间相互关系的梳理,引导学生从本质上理解概念,避免死记硬背。
从因数和倍数的含义去理解其他的相关概念。
2、要注意培养学生的抽象思维能力。
因数和倍数教案 篇3
一、教学过程:
(一)动手操作,感受并认识因数与倍数。
1、老师和同学们都在课前准备了几个小正方形,如果用这些小正方形拼成一个长方形,可以怎么拼?(让学生独立拼摆)
2、全班交流,请学生上黑板拼一拼,拼法用乘法算式表示出来。
指出:有三种拼法,列出三个不同的乘法算式,今天我们研究的内容就藏在着三个算式中。
3、教师选择一个算式指出4×3=12,4是12的因数,12是4的倍数,看这个算式还可以说:谁是谁的因数?谁是谁的倍数吗?
4、揭示课题:倍数和因数。
5、看其他两个算式,你还能说什么吗?你觉得哪个算式给你的感觉有些特别?
6、自己写一个乘法算式,让你的同桌说一说谁是谁的因数,谁是谁的倍数,选一些特殊的例子:如0×8=0的形式16÷2=8。辨析:能不能说16是倍数,2是因数。
7、完成想想做做(1)。
8、完成想想做做(2)。(交流:应付元数与4元有什么关系?省略号表示什么意思?从这个省略好你知道了什么?)
9、想想做做(3)。(从中发现了什么?24有那些因数?最大的是几?最小的是几?)
(二)找倍数和因数。
1、找一个数的倍数(让学生自己在纸上写,然后交流:你是怎么找的?)
提问:
(1)3的最小的倍数是几?最大的呢?
(2)3的倍数有无数个,那么该怎么表示?
2、完成试一试。
反思:怎样找一个数的倍数比较方便?一个数的倍数最小是几?找得到最大的倍数吗?
3、找一个数的因数。
先让学生独立找36的因数,再进行交流。
提问:36最小的因数是几?最大的呢?怎样找才能保证不重复不遗漏?对好的方法及时的给以肯定。
完成试一试
4、提问:15的最小因数是几?最大的因数是几?16呢?你有什么发现?
5、巩固练习:
(1)4的倍数有:
(2)25以内4的倍数有:
(3)30的因数有:
(4)15的因数有:
(三)课堂小结:略。
(四)作业布置:
1、6的倍数有:
2、7的倍数有:
3、100以内9的倍数有:
4、24的因数有:
5、11的因数有:
二、教学反思:
本节课重点围绕“理解倍数和因数的含义,能按要求找出一个数的倍数和因数”进行教学。在写一个数的倍数和因数时,要让学生经历探索的过程,在相互交流时,得出最优的方法,在探索倍数和因数的规律时,既不能让学生毫无目的的去探究,也不能把这个结论直接告诉学生。
先出示一些具体的数,从这些具体的数的基础上进行探究,起到了较好的效果。在探究一个数的因数的方法时,先在前面孕伏着除法中也有倍数和因数,为探究一个数的因数埋下了伏笔。这个方法要比倍数的方法难一些,教师要有耐心,把学生的方法全部板书在黑板上,然后通过比较,发现商也是这个数因数,又发现一个数的因数,是成队出现的,所以怎样做到既不重复,又不遗漏,就要有序思考,与前面学过的找规律的方法有机地联系在一起。
因数和倍数教案 篇4
【教学目标】
1.使学生掌握因数、倍数、质数、合数等概念,知道有关概念之间的联系和区别。
2.使学生通过自主探索,掌握2、5、3的倍数的特征。
3.逐步培养学生的数学抽象思维能力。
【重点难点】
1.掌握因数、倍数、质数、合数等概念的联系及其区别。
2.掌握2、5、3的倍数的特征。
3.质数和奇数的区别。
【教学指导】
由于本单元内容较为抽象,很难结合生活实例或具体情境来进行教学,学生理解起来有一定的难度,所以教学应注意以下两点:
1.加强对概念间相互关系的梳理,引导学生从本质上理解概念,避免死记硬背。本单元中因数和倍数是最基本的两个概念,理解了因数和倍数的含义,对于一个数的因数的个数是有限的,倍数的个数是无限的等结论自然也就掌握了。对于后面的公因数、公倍数等概念的理解也就水到渠成了,要引导学生用联系的方法去掌握这些知识,而不是机械地记忆一堆支离破碎,毫无关联的概念和结论。
2.由于本单元知识特有的抽象性,教学时要注意培养学生的抽象思维能力。虽然我们强调从生活的角度引出数学知识,但在过去的数学教学中,一些老师往往忽视概念的本质,而让学生死记硬背相关概念或结论,导致学生无法理清各概念间的前后承接关系,达不到融会贯通的程度,而学生到了五年级,抽象能力已经有了进一步提高,有意识地培养他们的抽象概括能力也是很有必要的,如让学生通过几个特殊的例子,自行总结出任何一个数的倍数的个数都是无限的结论,逐步形成从特殊到一般的归纳推理能力等等。
【课时安排】
建议共分7课时
1.因数和倍数2课时
2.2、5、3的倍数的特征3课时
3.质数和合数2课时
【知识结构】
因数和倍数(1)
学习内容认识因数和倍数(教材第5页内容,以及第7页练习二的第1题)。第1课时课型新授
学习目标1.从操作活动中理解因数和倍数的意义,会
2.培养学生抽象、概括的能力,渗透事物之间相互联系、相互依存的辩证唯物主义的观点。
3.培养学生的合作意识、探索意识,以及热爱数学学习的情
教学重点理解因数和倍数的含义
教学难点判断一个数是不是另一个数的因数或倍数。
教具运用课件
教学方法二次备课
教学过程
【复习导入】
1.教师用课件出示口算题。
10÷5=16÷2=12÷3=100÷25=150×4=
220÷4=18×4=25×4=24×3=20×86=
学生口算
2.导入:在乘法算式中,两个因数相乘,得到的结果叫做它们的积。乘法算式表示的是一种相乘的关系,在除法算式中,两个数相除,得到的结果叫做它们的商。除法算式表示的是一种相除的关系,在整数乘法和除法中还有另一种关系,这就是我们这一节课要学习探讨的内容。
(板书课题:因数和倍数(1)
【新课讲授】
1.学习因数和倍数的概念
(1)教师用课件出示教材第5页例1,引导学生观察图上的算式,把这些算式分为两类。
学生说出自己的分类方法,商是整数的分为一类,商不是整数的分为一类。教师以商是整数的第一题为例,板书:12÷2=6。
教师:在这道除法算式中,被除数和除数都是整数,商也是整数,这时我们就可以说12是2和6的倍数,2和6是12的因数。
谁来说一说其他的式子?
学生回答。
教师板书:在整数除法中,如果商是整数而没有余数,我们就说被除数是除数和商的倍数,除数和商是被除数的因数。
(2)说一说第一类的算式中,谁是谁的因数?谁是谁的倍数?
学生回答,如:在20÷10=2中,20是10和2的倍数,10和2是20的因数。或:20是10的倍数,20是2的倍数,10是20的因数,2是20的因数。(3)通过刚才同学们的回答,你发现了什么?
学生回答,教师板书:倍数与因数是相互依存的。
2.举例概括
教师:请同学们注意,为了方便,我们在研究因数和倍数时,所说的数一般指的是自然数,而且其中不包括0。
教师:在自然数中像这样的例子还有很多,我们每个同学都在心中想一个,想好了说给大家听。学生举例,并说出谁是谁的因数,谁是谁的倍数。
教师同时板书。
教师小结:像这样的例子举也举不完,那能不能用比较简洁的方式来叙述因数与倍数的关系呢?
引导学生根据“用字母表示数”的知识表述因数与倍数的关系。
如:m÷N=P,m、N、P都是非0自然数,那么N和P是m的因数,m是N和P的倍数。
A×B=c,A、B、c、都是非0自然数,那么A和B是c的因数,c是A和B的倍数。
你能从这些数中挑出两个数,说出谁是谁的因数,谁是谁的倍数吗?
3、9、15、21、36
学生独立思考并回答。
【课堂作业】
1.完成教材第5页“做一做”。
2.完成教材第7页练习二第1题。
3.下面每一组数中,谁是谁的倍数,谁是谁的因数。16和24和2472和820和5
4.下面的说法对吗?说出理由。
(1)48是6的倍数。
(2)在13÷4=3……1中,13是4的倍数。
(3)因为3×6=18,所以18是倍数,3和6是因数。
【课堂小结】
我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?
【课后作业】
完成练习册中本课时练习。
板书设计因数和倍数(1)
在整数除法中,如果商是整数而没有余数,我们就说被除数是除数和商的倍数,除数和商是被除数的因数。
因数和倍数一般指的是自然数,而且其中不包括0。
倍数与因数是相互依存的。
教学反思
【作业设计】
因数和倍数教案 篇5
一、教学分析
(一)教学内容分析
本课教学内容是国标苏教版小学数学四年级(下册)第九单元的第一课时,教材第70~72页。
例1通过用12个同样大的正方形拼成不同长方形的操作,让学生写出不同的乘法算式,在此基础上教学倍数和因数的意义。例2教学找一个数的倍数,并结合“试一试”引导发现一个数倍数的特征。例3教学找一个数的因数,再结合“试一试”引导发现一个数因数的特征。
(二)教学对象分析
在学习本单元之前,学生已经分阶段认识了百以内、千以内、万以内、亿以内以及一些整亿的数。较为系统地掌握了十进制计数法,同时也基本完成了整数四则运算的学习。但这只是对数字的浅在认识,为学生进一步学习公倍数和公因数,以及分数的约分、通分和四则运算奠定基础。
(三)教学环境分析
这节课,我采用“活动单”导学模式,依托多媒体互动视频教学系统来开展各项活动,力求通过多媒体互动视频教学系统将抽象的概念形象具体地呈现出来,将学生操作和思维清晰地展示出来,从而使学生更好地理解和掌握本节课的学习内容。
二、教学目标
知识技能:理解倍数和因数的意义,掌握找一个数的倍数和因数的方法,发现一个数的倍数、因数中最大的数、最小的数及其个数方面的特征。
数学思考:初步意识到可以从一个数的角度来研究非零自然数的特征及其相互关系。
解决问题:在探索一个数的倍数和因数的过程中培养学生观察、分析、概括能力,培养有序思考能力。
情感态度:让学生学会用数学的眼光观察生活、思考问题,能积极参与对数学问题的探究活动,真真切切地体验学习数学的快乐和价值。
三、教学重点、难点
理解倍数和因数的含义,能按要求找出一个数的倍数和因数。
四、教学流程
整合点1:用图像声音创设情境
第一步,情境导入。我运用多媒体创设了帮助神探柯南破译密码的问题情境,通过这样的问题,激发学生的探究欲望。在突出“倍数”和“因数”这两个关键词之后,板书课题,揭示本节课的教学内容。
整合点2:用直观演示深化体验
在“建立概念”部分,通过这样几个层次,进行教学。学生根据活动要求操作思考,我把学生的操作情况通过摄像头整体投射到屏幕上,根据学生的汇报把相应的组满屏显示,并把各种拼法及对应的算式剪切入电子白板中,为下一步教学做好准备。通过旋转操作,让学生直观感受到这样的两个图形代表同一种拼法。根据学生得出的乘法算式,拖出本节课的两个概念,并让学生举一反三,说说这两个算式中数字间的倍数和因数关系。
整合点3:用动态展示突出本质
在“应用概念”部分,通过这样几个环节展开教学。首先让学生自己对这些问题进行探索,在学生汇报找到的3的倍数时,有选择性地进行截屏,同时展示学生多样化的方法,让学生比较、辨析、优化,建立有序地寻找一个数倍数的方法。根据3个实例,归纳倍数的特征,我使用白板的圈画功能,形象地突出了倍数的特点,突破了难点。
接着教学找一个数因数的方法,归纳因数的特征。在学生独立思考、初步探究后,我将学生中两种典型的想法,同时呈现在白板上,这样学生的思维过程就清晰地展示了出来,在此基础上点拨提升,通过层技术显示几乘几等于36和36除以几等于几,这两个一般性的算式,并通过圈画突出列举的有序性,强调“成对找,分开写”的口诀。接着归纳因数的特征,我仍使用白板的圈画功能,突显了因数的特征。新授结束后,通过这样的练习,让学生自己在白板上操作,及时进行方法的巩固。
由于本节课的知识点比较多,所以在回顾总结时,我通过重点画面的回放,帮助学生梳理、回顾本节课的学习内容,再让学生用本节课所学知识解决课始的问题,有问有答,前后呼应。最后进行检测反馈。
教学感悟
多媒体互动视频教学系统有着强大的人机交互功能和便捷的信息采集功能,能够将课堂中的生成性资源即时保存,随时调用。在本节课中,学生操作、探究得到的各种生成性资源被有选择地展现出来,在此基础上点拨提升,言之有物、针对性强;而且这些生成性资源还是下一环节必要的教学素材,这样环环相扣、前后贯通,一步步引领学生走进倍数和因数的世界。
因数和倍数教案 篇6
大家上午好!我们团队所执教的是《因数和倍数》。
一、说教材:
《因数和倍数》是小学人教版课程标准实验教材五年级下册第二单元的内容,也是小学阶段“数与代数”部分最重要的知识之一。《因数和倍数》的学习,是在初步 认识自然数的基础上,探究其性质。其中涉及到的内容属于初等数论的基本内容,相当抽象。在这一内容的编排上与以往教材不同,没有数学化的语言给“整除”下 定义,而是在本课时通过乘法算式借助整除的模式na=b直接给出因数与位数的概念。这节课是因数与倍数的概念的引入,为本单元最后的内容,以及第四单元的 最大公因数,最小公倍数提供了必须且重要的铺垫。
根据教材所处的地位和前后关系,确定了以下目标:
知识技能目标:
掌握因数倍数的概念,理解因数与倍数的意义,掌握找一个数因数与倍数的方法。
情感,价值目标:
培养学生合作、观察、分析和抽象概括能力,体会教学内容的奇妙、有趣,产生对数学的好奇心和求知欲。
教学重点和难点:
理解倍数和因数的意义,掌握找出一个数因数和倍数的方法。
二、学情分析:
学生在平时学习中缺少主动性,一部分学生怕困难,缺乏独立思考的习惯,同时考虑问题也不够全面。在本堂课的教学中,主要调动学生学习的积极性,提高学生课 堂学习的参与性,体验成功的乐趣,通过学生的亲自探索和合作交流,来达到学习知识,掌握所学知识的目的。同时感受数学中的奥妙。
三、教法与学法指导
当今社会,人类的语言离不开素质教育,而实施素质教育必须“以学生为本”课堂教学要围绕培养学生的探索精神、创新精神出发,为全面提高学生的综合素质打下一定的基础。本节课根据学生的认知能力与心理特征来进行教学策略和方法的设计。
1、遵循学生主体,老师主导,自主探究,合作交流为主线的理念,利用学生对乘法的运算理解概念。
2、小组合作讨论法。以学生讨论,交流,互相评价,促成学生对找一个数的因数和倍数的方法进行优化处理,提升。巩固学生方法表达的完整性,有效性,避免学生只掌握方法的理解,而不能全面的正确的表达。
四,教学过程
1、揭示主题
老师直接揭示主题,大胆创新,打破了传统的为了导入而导入的教学模式。为学生的自主合作学习提供了开放的空间。
2、合作交流,理解因数,倍数的概念及其意义。
教师出示前置性作业,小组内交流,汇报学习成果,教师适时点拨,真正把课堂还给学生,也充分体现了教师的主导作用和学生的主体地位。使学生在交流中培养了合作学习的意识,对因数和倍数的概念有了初步的认识,对它们之间的联系也有了更好的理解。
3、学习求一个数的因数和倍数的方法
一个数的因数和倍数是本节课中技能目标中很重要的一部分。使学生在已有的经验基础上,独立的列举一个数的因数,在小组合作交流中得出。找一个数的因数和倍数的方法。真正地把主动权交给学生,教师通过引导,使学生加深理解,化解难点。
4、引导学生分析,比较归纳寻找共性,找出不同,得出一个数的因数,使学生学会有序思考,从而形成基本技能与方法,做到即关注了过程,又关注了结果。教师的教学水到渠成,学生的学习则是山重水复疑无路,柳暗花明又一村。
5、引导学生置疑,集体交流,化解疑问便于学生对本课所学知识更好的消化理解。
五、练习
练习题设计形式多样,有梯度。既注重基础,又有所提高,从而真正实现了课堂教学的有效性。
因数和倍数教案 篇7
尊敬的各位专家、老师:
大家好!我说课的内容是苏教版小学数学四年级下册第70—73页:《倍数和因数》。这节课教学倍数和因数的认识,学习找一个自然数的倍数和因数。教材安排了三道例题、两道“试一试”及相应的“想想做做”,例1通过用12个同样大的正方形拼成不同的长方形的操作,让学生写出不同的乘法算式,在此基础上教学倍数和因数的意义。例2教学找一个数的倍数,并结合“试一试”引导发现一个数倍数的特征。例3教学找一个数的因数,再结合“试一试”引导发现一个数因数的特征。通过本节课的学习,要达到以下教学目标:
1、通过操作活动得出相应的乘除算式,帮助学生理解倍数和因数的意义;探索求一个数的倍数和因数的方法,发现一个数倍数和因数的某些特征。
2、使学生在认识倍数和因数以及探索一个数的倍数或者因数的过程中,进一步体会数学知识之间的内在联系,提高数学思考的水平。
教学重点是理解倍数和因数的含义,掌握找一个数的倍数和因数的方法。
教学难点是掌握找一个数的倍数和因数的方法。
为了顺利完成教学目标,有效突出重点,突破难点,在尊重教材的基础上,我打算根据学生的认知特点和心理特征,通过激趣、操作、比一比谁写得多,找朋友等形式多样的活动激发学生持续的学习兴趣,让学生通过独立思考、合作交流进行自主探索,教师及时引导学生掌握数学思考的方法。
基于以上认识我预设了如下几个教学环节:
(一)激发兴趣,引入新课。
(二)操作发现,理解概念
(三)探索方法,发现特征
(一)激发兴趣,引入新课
首先和学生交流生活中的各种各样的关系,“比如你们和老师是什么关系?你和妈妈呢?其次引入数学中自然数和自然数之间也有各种关系,初步体会数和数的对应关系,既拉近了数学和生活的联系,又培养了学生的兴趣。
(二)操作发现,理解概念
我准备分三个层次进行教学。
(1)操作体验,初步感知倍数和因数的意义。通过操作我们能发现许多的知识。请同学们拿出课前准备的12个同样大小的正方形,试一试能摆出几个不同的长方形,并思考一下其中蕴涵着那些不同的乘法算式。再让学生根据算式猜一猜“他可能是怎么摆的”,然后电脑演示相应的操作。用12个大小完全相同的小正方形,进行不同的摆法展示,为了避免简单的操作,引导学生通过算式来想他是怎么摆的。组织交流,引出算式与概念鉴定。学生充分经历了“由形到数、再由数到形”的过程,既为倍数和因数概念的提出积累了素材,又初步感知倍数和因数的关系,为正确理解概念提供了帮助。
(2)在具体的乘法算式中,理解倍数和因意义。值得注意的是,教材没有给出抽象的意义,而是结合乘法算式进行直观的描述,这样不仅降低了难度,而且为学生的后续学习拓展了空间。因此,教师首先根据算式介绍倍数和因数的意义,然后让学生根据其余两道乘法算式模仿的说一说,充分的读一读,在通过“能说4是因数,12是倍数吗?这一反例的教学,充分感受倍数和因数是相互依存的。
(3)及时练习。我把“想想做做”第1题改为学生自己出题,说说谁是谁的倍数,谁是谁的因数,既达到了巩固的目的,来自学生自身的材料又更加真实,学生更容易接受。同时考虑到学生受思维定势的影响,可能所举例子都是乘法算式,教师就需及时有效“介入”比如,“24除以3=8”,促成学生不仅从乘法的角度去思考而且也可以从除法的角度进行,为后面找一个数的因数做好伏笔。
(三)是探索方法,发现特征
分两个层次进行,首先教学找一个数的倍数。我将教学过程设计成了一个个问题链,什么样的数是3的倍数?,怎样找才能有条理?比一比谁找的倍数多?能把3的倍数全找完吗,应该怎样表示问题的答案?你有什么窍门找一个数的倍数?在学生自主探索的基础上,小组合作,全班交流,学生之间积极互动,“捕捉”对方的想法,完善自己的认知理解掌握找一个数倍数的方法并结合“试一试”,通过交流比较,发现“一个数的倍数的个数是无限的,一个数最小的倍数是它本身,没有最大的倍数”。第二个层次教学找一个数的因数,相对于找一个数的倍数而言,找一个数的因数无疑难度增加了,在此环节中不必急于告诉学生方法,而是放手让学生独立思考,尝试探索“从学生的角度看问题是教学取得实效的关键”对学生出现的情况我作了充分的预设:有的可能是用乘法想(乘积是36的两个数是36的因数)有的可能是用除法想(除数和商都是36的因数)这两种方法都出现一个问题:无序。从而导致重复、遗漏现象。为了解决问题,我再次放手,小组交流,,并在此基础上让学生自主探求”怎样找才会有序,找到什么时候为止”?用自己的语言总结,最后师生达成共识:按一定的顺序一对对的找,找到两个数接近为止。从而在互相评价、充分比较、集体交流中感悟有序思考的必要性和科学性。由于一个数倍数特征的借鉴,一个数因数的特征放手让学生自己总结。
因数和倍数教案 篇8
教学内容:
苏教版小学数学四年级(下册)第70-72页。
教学目标:
1、使学生结合乘、除法运算初步认识倍数和因数的含义,探索求一个数的倍数和因数的方法。
2、使学生在探索的过程中,进一步体会数学知识之间的内在联系,提高数学思考的水平。
3、增强学生学习数学的兴趣,感受到成功的快乐。
教学重点:
理解倍数和因数的含义,探索并掌握找一个数的倍数和因数的方法。
教学难点:
理解倍数和因数的含义及倍数和因数的相互依存关系。
教学准备:
学生:每人准备12个同样大小的正方形。教师:课件
教学过程:
一、认识倍数和因数
1、提出活动要求:每一桌的同学合作,用12个同样大小的正方形拼成一个长方形,想想有几种不同的摆法,并用乘法算式把不同的摆法表示出来。看看哪桌的同学最快完成。
2分组操作活动,师巡视指导。
3、指名汇报,出示课件,全班交流。汇报时是引导学生根据“每排摆几个”“摆了几排”这两个问题说出三种不同的乘法算式。师提示:每排摆5个,能摆几排,明确只有这三种摆法。
4、教学“倍数”和“因数”的概念。
(1)结合4×3=12,说明12是4的倍数,12也是3的倍数,4和3都是12的因数。并板书。
(2)齐读这三句话,板书课题:倍数和因数
(3)指名看式子说。
(4)请学生根据6×2=12和12×1=12两道算式,照样子说
一说哪个数是哪个数的倍数?哪个数是哪个数的因数?
追问:如果说12是倍数,3是因数,可以吗?为什么?
明确:倍数和因数都是指两个数之间的关系,是相互依存的。
教师指出阅读底注明确:为了方便,我们在研究倍数和因数时,所说的数一般指不是0的自然数。不是0的自然数,0要考虑吗?那从什么数开始。如1、2、3、4、5、6、7、8、9…….在小数和分数等其他数中就也没有倍数和因数的说法了。(可根据具体的算式说明,如0×3=0,1.5×2=3。)
(5)练习:“想想做做”第1题。每位同学都各选一个乘法算式同桌之间互相说一说,
三、探索找倍数和因数的方法
1、探索找一个数的倍数的方法
(1)提出问题:什么样的数会是3的倍数呢?明确:3的倍数是3与一个数相乘的积。你能找到多少个3的倍数?先让学生独立思考,再组织交流。
(2)启发:谁能按从小到大的顺序有条理的说出3的倍数?根据什么样的乘法算式?明确:可以按从小到大的顺序,依次用1、2、3、4……与3相乘,每次乘得的积都是3的倍数。同时板书:
3×1=(3)3×2=(6)……
追问:能把3的倍数全部说完吗?应该怎样表示3的倍数有哪些呢?
根据学生的回答课件演示:3的倍数有3、6、9、12、15……
(3)完成后面的试一试。提醒学生注意有序的思考,并规范的表示出结果。
(4)一个数的倍数的特点。
提问:观察上面的几个例子,你发现一个数的倍数有什么特点?根据学生的交流归纳:一个数的倍数中,最小的是它的本身,没有最大的倍数,一个数的倍数的个数是无限的。
提问:现在你能很快说出6的最小倍数是多少吗?10呢?
2、探索找一个数的因数的方法
(1)提出问题:什么样的数是36的因数?
学生举例说明。明确:如果有两个数相乘的积是36,那么这两个数都是36的因数。
板书()×()=36
(2)提问:你能找出36的所有因数吗?启发:要做到不重复,不遗漏,怎样才能有条理地找出36的所有因数?
学生试着在练习本上列式找出。
(3)学生汇报交流,根据学生的回答课件演示。
(4)进一步启发:我们知道除法是乘法的逆运算,根据除法算式,也可以找一个数的因数。根据36÷1=36可以找到1和36……
请同学们看书71页,完成书上的填空。
(5)完成“试一试”。提醒学生有序的思考,做到不重复,不遗漏。
学生汇报,说说你是怎样找的。
(6)观察发现
提问:观察上面的例子,你发现一个数的因数有什么特点?
小结:一个数因数的个数是有限的,一个数的因数中,最小的是1,最大的是它本身。
提问:现在你能很快说出18的最小因数和最大因数是多少吗?25呢?
四、巩固练习
1、“想想做做”第2题。
组织学生读题,理解题意。表中每栏的应付元数各是怎样算出来的?他们都是4的什么数?你还能说出4的哪些倍数?能把4的倍数全部说完吗?
2、“想想做做”第3题。
组织学生读题,理解题意。表中每栏的每排人数是各怎样算出来的?排数和每排人数都是24的什么数?
五、全课总结
这节课你学会了什么?
因数和倍数教案 篇9
教学内容:
教学目标:
1、让学生理解倍数和因数的意义,掌握找一个非零自然数的倍数与因数的方法,发现一个非零自然数的倍数和因数中最大的数、最小的数以及一个非零自然数的倍数与因数个数的特征。
2、让学生初步意识到可以从一个新的角度,即倍数和因数的角度来研究非零自然数的特征及其相互关系,培养学生观察、分析与抽象概括的能力,体会数学学习的奇妙,对数学产生好奇心。
教学重点:理解倍数和因数的意义。
教学难点:从倍数和因数的意义出发,寻找一个非零自然数的倍数与因数。
教学过程:
一、直接导入
师:自然数是我们在数的王国中认识的第一种数,今天我们将从一个特定的角度,即倍数和因数的角度来研究自然数的特征及其相互关系。(板书课题:倍数和因数)
[评析:课始直接进入主题,揭示本节课新知识研究的方向,使学生产生探究新知的心理需求。]
二、教学倍数和因数的意义
(屏幕出示12个完全相同的正方形)
师:用这12个完全相同的正方形,能拼出一个长方形吗?(生:能)你能用一道乘法算式,表示你拼出的长方形吗?
生:我可以拼出一个3×4的长方形。
师:你们猜猜看,这会是一个什么样的长方形?
生:每排摆3个正方形,摆4排;或每排摆4个正方形,摆3排。(课件演示学生所猜的长方形,并让学生明白这两种拼法其实是相同的)
生:我还可以拼出一个2×6的长方形。
生:我还可以拼出一个1×12的长方形。(师问法同上,略)
师:同学们可别小看这三道算式,今天我们学习的内容,就将从研究这三道乘法算式拉开帷幕。
[评折:准确把握学生的学习起点,让学生根据所列乘法算式猜想可能拼成的长方形,大屏幕随之展示学生猜想的长方形,更加激起学生的求知欲。]
师:根据3×4=12,我们可以说(屏幕出示):12是3的倍数,12也是4的倍数;3是12的因数,4也是12的因数。
师:同学们一起来读一读,感受一下。
师:你读懂了些什么?(引导学生感知什么是倍数、什么是因数,即倍数和因数的意义;明白在乘法算式中,积就是两个乘数的倍数,两个乘数就是积的因数)
师:请你从6×2=12和12×1=12这两道算式中任选一题,用上面的话说一说。
师(出示18÷3=6):谁是谁的倍数?谁是谁的因数?为什么?
生:因为18/3=6可以改写成3×6=18,所以18是3和6的倍数,3和6是18的因数。(引导学生明白根据乘除法的互逆关系,在除法算式中也可以说谁是谁的倍数、谁是谁的因数)
屏幕出示:4是因数,24是倍数。
师:这句话对吗?(让学生理解倍数和因数是两个数之间的相互依存关系,必须说谁是谁的倍数、谁是谁的因数)
师:我们再看屏幕上这三道乘法算式(1×12=12、2×6=12、3×4=12),善于观察的同学一定发现在这三道乘法算式中。我们其实已经找到了12的所有因数,你知道都有哪些吗?(引导学生说一说)
屏幕出示一组数:36、4、9、0、5、2。
师:请你从这组数中任选两个数,用倍数和因数的关系来说一说。(生可能会选36和4、36和9、4和2这几组数)
设疑:
(1)为什么不选0呢?(让学生理解倍数和因数是针对非零的自然数)(屏幕演示将“0”去掉)
(2)为什么不选5呢?(例如36和5,因为找不到一个自然数和5相乘能得到36,或者36除以5有余数)(屏幕演示将“5”去掉)
(3)去掉了0和5,剩下的这些数和36有什么关系呢?(它们都是36的因数,或36是它们的倍数;当然,36也是36的因数,36也是36的倍数)
[评析:倍数和因数意义的学习层次分明。
(1)猜想:由1-2个完全相同的正方形拼成一个长方形的不同拼法,得出三道乘法算式。根据3×4=12这道算式中三个数的关系,让学生初次感知倍数和因数的意义。
(2)拓展:根据除法算式中“存在一个自然数等于两个自然数乘积”这一条件,揭示除法算式中依然存在着倍数和因数的关系,拓展了对倍数与因数意义的理解。
(3)深化:探索并感知倍数和因数的相互依存关系。“从一组数中任选两个数”说意义的训练,巩固与深化了对倍数和因数意义的理解。]
三、探讨找一个数的因数的方法
1、师:在刚才这组数(36、4、9、0、5、2)中,2、4、9和36都是36的因数。除了这些,36的因数还有吗?(生一个一个地举例)这样一个一个杂乱无序地找,你们觉得这种方法好吗?(生:不好!)不好在哪儿呢?
生:容易漏掉或重复。
师:你们有没有什么好办法,能一个不落地将36的所有因数都找到呢?同学们可以独立完成这个任务,也可以同桌的两位同学合作完成。如果你全部找到了,就请将36的所有因数写在练习纸上。同时将你找因数的方法写在横线的下方。(教师巡视,学生讨论交流)
展示学生的作品,学生可能出现的答案有:
(1)根据1×36=36、2×18=36……分别得出1、36、2、18、3、12、4、9、6等数都是36的因数;
(2)利用36÷1=36,36÷2=18……也可以得出1、36、2、18、3、12、4、9、6等数都是36的因数。
在写法上,可能出现的答案为1、36、2、18、3、12、4、9、6(一对一对地写),或按照从小到大的顺序写,即1、2、3、4、6、9、12、18、36。然后引导学生比较这两种写法的不同。将方法优化:运用除法算式一对一对地找一个数的因数更为简便,并且不重复、不遗漏,做到答案的完整性;在写的时候,可以一头一尾地写,这样可以做到答案的有序性。(板书:有序、完整)
2、探讨一个数的因数的特征。
课件出示12的因数、15的因数和36的因数。(从小到大排列)
学生观察、讨论下面的问题(课件出示问题):一个非零自然数的因数的个数是有限的还是无限的?一个非零自然数的最大因数是几?一个非零自然数的最小因数是几?
课件出示描述一个非零自然数的因数的特征的表格(如下),学生讨论、交流后再反馈。
师(小结):一个非零自然数的最大因数是它本身,最小因数是1,因数的个数是有限的。
[评析:找一个数的因数是本节课的教学难点。教学中,教师调整教材的编排顺序,先学习找一个数的因,数,通过置疑“一个个地找36的因数,这种方法好吗?不好在哪”,启发学生根据因数的意义和乘除法的互逆关系,有序地找出36的所有因数,并及时优化方法。同时,引导学生自主探索,在观察中发现一个数的因数的有关特征,最后进行总结,培养了学生解决问题的能力。]
四、探讨找一个数的倍数的方法
1、师:我们已经掌握了如何有序地、完整地找出一个非零自然数的所有因数的方法。如果让你找出一个数的所有倍数,你会找吗?(生:会)那么,我们就一起来找找3的倍数。(学生试着找出3的倍数,教师巡视,对有困难的学生给予帮助)
2、师:你是怎样有序地、完整地找出3的倍数的?
生:用3分别乘1、2、3……得出3的倍数。
生:用3依次地加3得到3的倍数。
师:你认为哪种方法能更迅速地找出3的倍数?(学生讨论交流)
师:3的倍数能找得完吗?(生:找不完)那么,可以怎样表示3的倍数的个数呢?(生:用省略号表示)(相机板书:3、6、9、12、15……)
3、写出30以内5的倍数。(做在练习纸上)
4、课件出示3的倍数、4的倍数、5的倍数,让学生从最大倍数、最小倍数、倍数的个数三个方面去描述一个数的倍数的特征(见下表)。
师(小结):一个非零自然数的最小倍数是它本身,没有最大的倍数,所以倍数的个数是无限的。
[评析:借助学习一个数的因数的方法,以此为基础,让学生自主探索找一个数的倍数的方法。在探索交流中,优化寻找一个数的倍数的方法,获得一个数的倍数的特征。]
五、组织游戏,深化认识
师:这节课,我们通过三道乘法算式与倍数和因数进行了两次的亲密接触。第一次的接触,让我们了解了倍数与因数的意义;第二次的接触,通过找一个数的倍数和因数,我们了解了一个数的倍数和因数的特征。通过这两次的亲密接触,相信 同学们对于今天所学的知识,已经有了比较深刻的理解。下面,就让我们轻松片刻。一起来玩一个特别好玩的游戏,感兴趣吗?
游戏——请到我家来做客
(每位学生的手中,都有一张写有该名学生的学号卡片)
课件演示并配有话外音:春天来了,浓浓的春天气息让森林里好客的小动物们,纷纷拿出自己最珍贵的食物款待大家。
(1)屏幕上出现了可爱的小狗向同学们走来(配音):24的因数是我的朋友。如果你卡片上的数是24的因数,欢迎你,我的朋友!(卡片上的数若符合要求,就请这位学生站起来)
(2)屏幕上出现了笨笨的小猪向同学们挥手(配音):我邀请的朋友是5的倍数,喜欢我,就快快来吧!
(3)瞧!可爱的小猫咪也来了。(屏幕上出现了俏皮、可爱的小猫咪)配音:如果你卡片上的数是1的倍数,请来我家做客吧!
(每位学生卡片上的数都符合要求,所以全班学生都站了起来)
师:小猫咪这么好客,老师也想去她家做客。你们来为老师想一个符合要求的数,好吗?(生答略)
师:是不是所有的自然数都可以呢?
生:除了0。
屏幕出示:所有非零自然数都是1的倍数。
(4)配音:威严的老虎来了!它请的朋友很特别,它是所有非零自然数的因数。这个数是几呢?(生讨论交流)
屏幕出示:只有1才符合要求,因为1是所有非零自然数的因数。
六、挑战自我,拓展升华
师:虽然我们只合作了这短短的三十分钟,但老师已经深深感到我们这个班的同学非常聪明,不仅善于观察,而且爱动脑筋,所以老师特别准备了一个富有挑战性的节目想考考大家,你们敢不敢接受挑战?(生:敢!)
挑战——你猜、我猜、大家猜I(屏幕演示动画标题)
规则:下面每组数,去掉一个数,剩下的数便是其中一个数的倍数或因数。你能找出这个数吗?
(1)20、5、4、3。
答案:去掉3(屏幕演示隐去“3”),剩下的数是20的因数,或20是它们的倍数。
(2)4、12、18、3。
答案有两种:一是去掉18(屏幕演示隐去“18”),剩下的数便是12的因数,或12是它们的倍数;二是去掉4(屏幕演示隐去“4”),剩下的数便是3的倍数。
[评析:设计游戏环节,对整节课的知识点进行总结深化,并引导每位学生参与其中,积极主动地思考本节课所学的知识,教学过程真实、有效。]
七、全课总结
师:通过今天这节课的学习,你有什么收获?你们学得开心吗?玩得开心吗?其实。数学就是这么简单而有趣,让我们每天都乐在其中!
总评:
本节课的教学特色是严谨灵活、细腻奔放。在“因数和倍数”概念的学习过程中,重视师生情感的交流,注重每个学生的发展,较好地体现了“教师有效引导下学生自主探索”这一教学策略。
1、意义教学引导学生自主构建。
在多次的实践教学中,发现用12个完全相同的小正方形拼出一个长方形。对于四年级的学生来说非常容易。教材这样安排的目的,在于帮助学生有意识地感受1和12、2和5、3和4这几组数之间的有机联系。
本课中,倍数和因数的意义教学分三个层次:
1、借助三个问题让学生通过想像及大屏幕的直观演示,引导学生得出三道乘法算式,同时介绍倍数和因数的含义。
2、通过除法算式找因倍关系。
3、渗透倍数和因数的相互依存性。
2、合理组织教材,将找一个数的因数及其特征教学提前。
寻找一个数的因数是本节课的教学难点,学生往往满足于答案的寻找,而忽视寻找过程中的思考策略及思维方法。
教学中,教师出示一组数,如36、4、9、0、5、2,让学生从这组数中任选两个数,用倍数和因数的关系来说一说。
最后设疑:
(1)为什么不选O呢?(让学生理解倍数和因数是针对非零的自然数)
(2)为什么不选5呢?(如36和5,因为找不到一个自然数和5相乘能得到36,或者36除以5有余数)
(3)去掉了0和5,剩下的这些数和36有什么关系呢?(它们都是36的因数,或36是它们的倍数)
这样的改变,既达到预定目的,又为学习找因数做了铺垫,引发了学生寻找36的因数的浓厚兴趣。在引导学生自主探索一个数的因数的特征时,教师让学生带着问题去观察讨论:每一个非零自然数的因数的个数是有限的还是无限的?一个非零自然数的最大因数是几?一个非零自然数的最小因数是几?以上安排,降低了学生的学习难度。
3 寻找一个数的因数和倍数的方法让学生自己生成。
在寻找一个数的因数和倍数的过程中。教师将学生推向发现与探索的前台。
寻找一个数的倍数和因数。方法不是惟一的。教师在肯定各种方法合理性的同时,及时引导学生进行沟通,寻找它们的共同点和联系,进而比较各种方法之间的优劣,遴选最优方法,提升思维效率。
4 增强游戏中数学思维的含量。
知识在游戏中深化,在挑战中升华。
本节课以“有效引导下自主探索”为教学策略。以三道乘法算式为线索,以教材文本为依托,以有梯度的游戏活动展开对知识的深化巩固,并适时、适量引入多媒体辅助教学,将诸多细小的认知活动归整在一个探究性的课堂自主研究活动中。通过自主观察、交流发现、共同分享,引领学生经历“研究与发现”的真实过程。课尾游戏的运用,激发了学生的学习热情,让学生以愉快的心情和良好的体验融入学习活动中,培养了学生用数学眼光看待游戏的意识,大大降低了学生对数学概念学习的枯燥体验。
因数和倍数教案 篇10
刘浩中心小学许夏敏
教学目标:1进一步加深学生对方程意义的理解,巩固用等式的性质解简易方程的方法,理解简单实际问题中数量关系,并能根据等量关系解决实际问题。
2进一步理解公倍数和公因数,最小公倍数和最大公因数的意义,掌握求最大公因数和最小公倍数的方法。
3通过小组合作交流,培养学生的数学交流能力和合作能力。
教学重点:理解方程的意义,巩固解方程的方法,进一步掌握求最小公倍数和最大公因数的方法。
教学难点:理解实际问题中的数量关系,根据数量关系列方程解答。
教学实施:一、疏通概念
1、同学们,本学期的内容已经全部学完了。从今天开始,我们要对所有的知识进行与复习。首先让我们一起走进“数的世界”,在十个单元中哪些是与数打交道呢?根据学生回答板书方程
公倍数与公因数
认识分数
分数的基本性质
分数的加减法
2、揭题
今天这节课我们先来复习方程,公倍数与公因数(出示课题)
3、讨论与思考:本学期学习了方程的哪些知识?
什么是公倍数与公因数?
怎样求两个数的最小公倍数和最大公因数?
二、专项练习
1、方程的复习
⑴与练习第1题,在方程下面打√,集体汇报时说出为什么不是方程?
等式
方程
X+2.5<828-12=165a分别叫什么?你觉得方程与等式有什么关系?你能用一副图来表示吗?
⑵与复习第2题
提问:根据什么来解方程?指名4人板演,校对时说说是怎么想的?
出示练一练,找出括号中方程的解
①3x=1.5(x=0.5x=2)
②x-210=30(x=240x=180)
③x÷5=120(x=24x=600)
⑶列方程解决实际问题
?米11.7平方米?米
2.7米
6.9米3.9米
学生独立完成,集体订正时说说根据什么数量关系式列方程的?
教师,用方程计算可以使很多问题变的简单,容易解决。
⑷与复习第4题学生读题后独立用方程解决。
2、公倍数和公因数的复习
对公倍数和公因数你有那些了解?怎样求两个数的最小公倍数和最大公因数呢?
出示练习①写出每组数的最小公倍数
6和94和82和3
②写出每组数的最大公因数
18和2415和602和3
请做得快的同学介绍经验
三、全课
今天我们复习了什么,你有哪些收获?
四、课堂作业
与复习第3题、第5题、第6题。
教学反思
这是一堂复习课,主要复习方程、公倍数和公因数两个单元的内容。由于课堂时间有限,因此对知识的回顾与还不是很系统。特别是对潜能生而言,教师的提问不能及时沟起他们对知识概念的回忆,因此跟基础较好的同学相比就形成了鲜明的落差。
在列方程解决实际问题时,正确掌握题中的数量关系是关键,也是学生理解中的难点。大部分学生在列方程时,因为没能找出题中的数量关系而把方程列错,或者方程列到了,却不能把方程抽象成数量关系式。诸如这些现象,主要是学生的抽象能力还不够完善,分析问题的能力还不够仔细,深入,有待进一步的发展。
在公倍数和公因数一单元中,问题不大,主要是求两个数的最小公倍数和最大公因数。对较大的两个数,如求100以内两个数的最小公倍数和最大公因数,出错率较大。因此课后还应多补充一些相应的练习。
yjs21.cOm更多幼儿园教案编辑推荐
因数和倍数教案热门
小编认真挑选为大家推荐这篇有收获的“因数和倍数教案”。在给学生上课之前老师早早准备好教案课件,本学期又到了写教案课件的时候了。教案是教学手段的增强与创新。感谢您对本文的阅读还请收藏!
因数和倍数教案 篇1
(1)用12个边长是1cm的小正方形摆一个长方形,你会几种摆法?
①可以摆成长是厘米,宽是()厘米的长方形,即()×()=12。
②也可以摆成长是()厘米,宽是()厘米的长方形,即()×()=12。
③还可以摆成长是()厘米,宽是()厘米的长方形,即()×()=12。
以上所填的都是12的(),12是这些数的()。
(2)如果a×b=c(a、b、c是不为0的整数),那么,c是()和()的倍数,a和b是c的()
如果A、B是两个整数(B≠0),且A÷B=2,那么A是B的(),B是A的()。
(3)在1、6、7、12、14、49这六个数中,是7的倍数的数有()
(5)在1,2,3,6,9,12,15,24中,6的因数有(),6的倍数有()。
(6)一个数,它的因数的个数是(),其中最小的一个因数是(),最大的一个因数是()。
(7)6的因数有(),6的倍数有()(写5个),6既是6的(),又是6的( )。
(5)一个数的最小因数是1,最大因数是它本身。
因数和倍数教案 篇2
1、一个数的因数的个数是的,其中最小的因数是(),最大的因数是()。
2、一个数的倍数的个数是()的,其中最小的倍数是()。
3、18的因数有()。
5、一个数的最小倍数减去它的最大因数,差是()。
6、一个自然数比20小,它既是2的倍数,又有因数7,这个自然数是()。
11、根据算式25×4=100,()是()的因数,()也是()的因数;()是()的倍数,()也是()的倍数。
12、在18、29、45、30、17、72、58、43、75、100中,2的倍数有();3的倍数有();5的倍数有(),既是2的倍数又是5的倍数有(),既是3的倍数又是5的倍数有()。
13、48的最小倍数是(),最大因数是()。最小因数是()。
14、用5、6、7这三个数字,组成是5的倍数的三位数是();组成一个是3的倍数的最小三位数是()。
15、一个自然数的最大因数是24,这个数是()。
16、从0、3、5、7、这4个数中,选出三个组成三位数。
17、它是42的因数又是7的倍数,它可能是()。
18、它的最大因数和最小倍数都是18,它是()。
4、一个数的因数的个数是有限的,一个数的倍数的个数是无限的。( )
6、36的全部因数是2、3、4、6、9、12和18,共有7个。( )
10、一个数如果是24的倍数,则这个数一定是4和8的倍数。( )
1、15的最大因数是(),最小倍数是()。
2、在14=2×7中,2和7都是14的()。
3、一个数,它既是12的倍数,又是12的因数,这个数是()。
4、一筐苹果,2个一拿,3个一拿,4个一拿,5个一拿都正好拿完而没有余数,这筐苹果最少应有()。
5、下面的数,因数个数最多的是()。
因数和倍数教案 篇3
第一课时:因数和倍数
教学目标:
1、学生掌握找一个数的因数,倍数的方法;
2、学生能了解一个数的因数是有限的,倍数是无限的;
3、能熟练地找一个数的因数和倍数;
4、培养学生的观察能力。
教学重点:掌握找一个数的因数和倍数的方法。
教学难点:能熟练地找一个数的因数和倍数。
教学过程:
一、引入新课。
1、出示主题图,让学生各列一道乘法算式。
2、师:看你能不能读懂下面的算式?
出示:因为2脳6=12
所以2是12的因数,6也是12的因数;
12是2的倍数,12也是6的倍数。
3、师:你能不能用同样的方法说说另一道算式?
(指名生说一说)
师:你有没有明白因数和倍数的关系了?
那你还能找出12的其他因数吗?
4、你能不能写一个算式来考考同桌?学生写算式。
师:谁来出一个算式考考全班同学?
5、师:今天我们就来学习因数和倍数。(出示课题:因数倍数)
齐读p12的注意。
二、新授:
(一)找因数:
1、出示例1:18的因数有哪几个?
从12的因数可以看得出,一个数的因数还不止一个,那我们一起找找看18的因数有哪些?
学生尝试完成:汇报
(18的因数有:1,2,3,6,9,18)
师:说说看你是怎么找的?(生:用整除的方法,18梅1=18,18梅2=9,18梅3=6,18梅4=鈥Γ挥贸朔ㄒ欢砸欢哉遥?脳18=18,2脳9=18鈥Γ?/p>
师:18的因数中,最小的是几?最大的是几?我们在写的时候一般都是从小到大排列的。
2、用这样的方法,请你再找一找36的因数有那些?
汇报36的因数有:1,2,3,4,6,9,12,18,36
师:你是怎么找的?
举错例(1,2,3,4,6,6,9,12,18,36)
师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)
仔细看看,36的因数中,最小的是几,最大的是几?
看来,任何一个数的因数,最小的一定是(),而最大的一定是()。
3、你还想找哪个数的因数?(18、5、42)请你选择其中的一个在自己的练习本上写一写,然后汇报。
4、其实写一个数的因数除了这样写以外,还可以用集合表示:如
18的因数
1、2、3、6、9、18
小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?
从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。
(二)找倍数:
1、我们一起找到了18的因数,那2的倍数你能找出来吗?
汇报:2、4、6、8、10、16、
师:为什么找不完?
你是怎么找到这些倍数的?(生:只要用2去乘1、乘2、乘3、乘4、)
那么2的倍数最小是几?最大的你能找到吗?
2、让学生完成做一做1、2小题:找3和5的倍数。
汇报3的倍数有:3,6,9,12
师:这样写可以吗?为什么?应该怎么改呢?
改写成:3的倍数有:3,6,9,12,
你是怎么找的?(用3分别乘以1,2,3,倍)
5的倍数有:5,10,15,20,
师:表示一个数的倍数情况,除了用这种文字叙述的方法外,还可以用集合来表示
2的倍数3的倍数5的倍数
2、4、6、83、6、95、10、15
师:我们知道一个数的因数的个数是有限的,那么一个数的倍数个数是怎么样的呢?
(一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数)
三、课堂小结:
我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?
作业:
完成练习二1~4题
第二课时:2、5的倍数的特征
教学目标:
1、掌握2、5倍数的特征
2、理解并掌握奇数和偶数的概念。
3、能运用这些特征进行判断。
4、培养学生的概括能力。
教学重点和难点:
1、是2、5倍数的数的特征。
2、奇数和偶数的概念。
教学用具:投影片。
教学过程:
一、复习准备
1、提问。
①说出20的全部因数。
②说出5个8的倍数。
③26的最小因数是几?最大因数是几?最小的倍数是几?
2、按要求在集合圈里填上数。
二、学习新课:
(一)2的倍数的特征。
1、教师:(练习2)右边集合圈里的数与左边圈里的数是什么关系?
教师:请观察右边圈里的数,它们的个位数有什么特点?
(个位上是0,2,4,6,8.)
教师:请再举出几个2的倍数,看看符不符合这个特点?
学生随口举例。
教师:谁能说一说是2的倍数的数的特征?
学生口答后老师板书:个位上是0,2,4,6,8的数,都是2的倍数。
2、口答练习:(投影片)请把下面的数按要求填在圈内(是2的倍数,不是2的倍数)
1,3,4,11,14,20,23,24,28,31,401,826,740,1000,6431.
学生口答完后,老师介绍:奇数和偶数的定义
板书:上面两个集合圈上补写出偶数,奇数。
教师:上面两个集合圈里该不该打省略号?为什么?
学生讨论后老师说明:
在本题所列的有限个数里,奇数、偶数都是有限的,但是自然数是无限的,奇数、偶数也是无限的,所以集合圈里要写上省略号。
教师:奇数、偶数在我们日常生活中你遇到过吗?习惯上称它们为什么数?(单数、双数。)
3、练习:(先分小组小说,再全班统一回答。)
①说出5个2的倍数。(要求:两位数。)
②说出3个不是2的倍数的三位数。
③说出15~35以内的偶数。
④50以内的偶数有多少个?奇数有多少个?
(二)5的倍数的特征。
1、教师先在黑板上画出两个集合圈,然后提出要求:你们能不能用与研究2的倍数的特征的相同方法,找出5的倍数的特征?
学生自己动手填数、观察、讨论。老师巡视过程中选一位同学板书填空。
教师:说一说5的倍数的特征?
教师:请举几个多位数验证。
教师:再说一说什么样的数是5的倍数。
板书:个位上是0或者5的数,都是5的倍数。
2、练习:
①按从小到大的顺序,说出50以内5的倍数。
②(投影片)下面哪些数是5的倍数?
240,345,431,490,545,543,709,725,815,922,986,990。
③(投影片)从下面的数中挑出既是2的倍数,又是5的倍数的数。这些数有什么特点?
12,25,40,80,275,320,694,720,886,3100,3125,3004.
学生口答后教师板书:个位数字是0。
④教师随口说出数,请立即说出这个数是2的倍数还是5的倍数,或者同时是2和5的倍数,并说明判断的依据。
巩固反馈:
1、在1~100的自然数中,2的倍数有()个,5的倍数数有()个。
2、比75小,比50大的奇数有()。
3、个位是()的数同时是2和5的倍数。
4、用0,7,4,5,9五个数字组2的倍数;5的倍数;同时是2和5的倍数的数。
全课总结:这节课你学会了什么?有什么收获?
因数和倍数教案 篇4
教学目标
1、知识与技能
掌握因数、倍数的概念,知道因数、倍数的相互依存关系。
2、过程与方法
通过自主探究,使学生学会用因数、倍数描述两个数之间的关系。
3、情感态度与价值观
使学生感悟到数学知识的内在联系的逻辑之美。
教学重难点
教学重点
掌握找一个数的因数、倍数的方法。
教学难点
能熟练地找一个数的因数和倍数。
教学工具
课件、投影
教学过程
一、迁移引入
同学们,在我们的日常生活中,人与人之间存在着许多相互依存的关系,如:佳爸是佳佳的爸爸,佳佳是佳爸的儿子。其实在我们的数学王国里,数与数回见也存在着这种相互依存的关系,请看大平米,认识这些吗?(课件出示:0,1,2,3,4,5……)
这些自然数。(课件去“0”)
去0后这又是什么数?(非零自然数中。)这节课我们就在非零自然数中来研究数与数之间的这种相互依存的关系。
板书:因数和倍数
二、情境创设,探究新知
1、理解整除的意义。
(1)出示例1,在前面学习中,我们见过下面的算式。
12÷2=6 8÷3=2……2 30÷6=5 19÷7=2……5 9÷5=1.8
26÷8=3.25 20÷10=2 21÷21=1 63÷9=7
你能把这些算式分类吗?
(2)分类所得:
第
一
类
12÷2=6 20÷10=2
30÷6=5 21÷21=1
63÷9=7
第
二
类
8÷3=2……2 9÷5=1.8
19÷7=2……5 26÷8=3.25
(3)观察发现,合作交流。
观察算式,说一说谁是谁的倍数,谁是谁的约数。
2、理解因数、倍数的意义。
12÷2=6中,我们就说12是2的倍数,2是12的因数。12÷6=2,所以12是6的倍数,6是12的因数。由此可知:(在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。)
3、总结归纳
(1)在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。
(2)因数与倍数是相互依存的关系。
4、注意:
为了方便,在研究因数和倍数的时候,我们所说的数指的.是自然数(一般不包括0)。
5、做一做。
下面的4组数中,谁是谁的因数?谁是谁的倍数?
4和24 36÷13 75÷25 81÷9
6、教学例2
18的因数有哪几个?
18的因数有1、2、3、6、9、18。
也可以这样用图表示。
18的因数
1,2,3,
6,9,18
30的因数有哪些?36呢?
7、教学例3
2的倍数有哪些?
2的倍数有2、4、6、8……
2的倍数
2,4,6,
8,10,12,
14,……
3的倍数有哪些?5呢?
8、小组讨论,归纳总结
一个数的最小因数是1,最大的因数是它本身。一个数的最小倍数是它本身,没有最大倍数。
一个数的因数的个数是有限的,一个数的倍数的个数是无限的。
课后小结
一个数的最小因数是有限的,其中最小的因数是1,最大的因数是它本身。一个数的最小倍数是它本身,没有最大倍数。
一个数的因数的个数是有限的,最大的因数是它本身。一个数的倍数的个数是无限的。
课后习题
1、填空。
(1)36是4的( )数。
(2)5是25的( )。
(3)2.5是0.5的( )倍。
2、下面各组数中,有因数和倍数关系的有哪些?
(1)18和3 (2)120和60 (3)45和15 (4)33和7
3、24和35的因数都有哪些?
板书
一个数的最小因数是有限的,其中最小的因数是1,最大的因数是它本身。一个数的最小倍数是它本身,没有最大倍数。
一个数的因数的个数是有限的,最大的因数是它本身。一个数的倍数的个数是无限的。
因数和倍数教案 篇5
复习内容:公因数和公倍数。
复习目标:通过复习,能又快又准地找出两个数的最大公因数和最小公倍数,并能运用所学知识解决实际问题。
复习重点:又快又准的找出两个数的最大公因数和最小公倍数。
复习难点:运用所学知识熟练的解决生活中的数学问题。
复习过程:
一、谈话引出课题
1、这一单元,我们学习了什么?(生答)
今天我们一起复习公因数和公倍数。(揭题)
2、现在,你知道了哪些有关公因数和公倍数的知识?(小组讨论→全班交流)
二、解答实际问题
1、我们已经学会了好几种求最大公因数和最小公倍数的方法,你最喜欢哪种方法,为什么?(又快又准)
下面我们就用短除法求最大公因数和最小公倍数(24和36)。
2、谈话:有些最大公因数和最小公倍数一眼就能看出,你想试一试吗?
找出每组数的最大公因数和最小公倍数。
8和16( ) [ ]27和9( )[ ]
13和39( ) [ ]51和17( )[ ]
问:你们为什么这么快就能找出它们的最大公因数和最小公倍数?
3、找出下面每组数的最大公因数和最小公倍数
16和1( )[ ] 5和7( )[ ]
11和8( )[ ]9和10( )[ ]
问:通过练习,我们又发现了什么?
4、你能说出下面每个分数中分子与分母的最大公因数吗?
14/21( ) 35/45 ( ) 22/33 ( ) 80/90 ( )
5、说一说每组分数中两个分母的最小公倍数。
2/3和4/7[ ] 3/5和9/10[ ] 5/9和5/6[ ] 7/8和11/12[ ]
6、判断:
1、3和5没有公因数。( )
2、a = 4b(a、b都是整数)a和b的最大公因数是b。( )
3、30是3和10的倍数。( )
4、两个数的最小公倍数一定比这两个数都大。( )
5、如果两个数的最大公因数是1,那么最小公倍数一定是它们的.乘积。( )
三、解决生活问题
谈话:我们学习数学,就是为了用数学方法解决生活中的问题,现在老师带来了一些生活中的数学问题,大家想挑战吗?
1、长途汽车站每隔8分钟向a地发一辆车,每隔10分钟向b地发一辆车,这两趟车早上7:00同时发车,第二次同时发车是什么时候?
问:解决这个问题,实际上就是求什么?
2、一篮鸡蛋,5个5个地数,6个6个地数,都少了2个,这篮鸡蛋至少多少个?
3、有一种长方形地砖,长6dm,宽4dm,至少取多少块才能拼成一个正方形?
4、有两根长分别是32cm和40cm的木条,把它们锯成同样长的小段(每小段都是整厘米数),并没有剩余,每小段最长是多少?
问:读了这道题后,你认为哪些地方要引起大家注意?
5、把一块长20cm宽15cm的长方形红布,剪成边长是整厘米数且面积尽可能大的相等的正方形,一共可以剪多少个?
6、思考题:
李老师把25本练习本和15支铅笔,分别平均分给一个组的同学,结果练习本多了1本,铅笔少了1支,你知道这组最多有几个同学吗?
四、交流新的收获?
五、作业:完成《补充习题》
因数和倍数教案 篇6
教学目标:
1、通过操作活动得出相应的乘除法算式,协助同学理解倍数和因数的意义;探索求—个数的倍数和因数的方法,发现一个数倍数和因数的某些特征。
2、在探索一个数的倍数和因数的过程中培养同学观察、分析、概括能力,培养有序考虑能力。
3、通过倍数和因数之间的互相依存关系使同学感受数学知识的内在联系,体会到数学内容的奇妙、有趣。
教学重点:理解倍数和因数的意义。
教学难点:探索求一个数的倍数和因数的方法。
教学准备:每桌准各12个一样大小的正方形,每人准备一张自身学号的卡片。
设计理念:通过竟猜、操作、比一比谁写得多,找朋友等形式多样的活动激发同学持续的学习兴趣;同学通过独立考虑、合作文流进行自主探索;教师引导同学掌握数学考虑的方法。
教学过程:
一、智力竞猜 引入新课
1、让同学进行“智力竞猜”——春暖花香的季节,公园里许多人在划船,一条船上有两个父亲两个儿子,但总共只有3个人,这是怎么回事呢?(局部同学能猜出三个人分别是孙子、爸爸、和爷爷)
2、孙子、爸爸、爷爷的名字分别是韩韩,韩有才、韩广发。请同学以韩有才为中心介绍—下三个人的关系。同学可能会说出“韩有才.是爸爸”,“韩有才是儿子”的语句,这时引导同学说出“谁是谁的爸爸”“谁是准的儿子”。
3、上述“父子关系”是一种互相依存的关系,在表述时一定要完整。并向同学说明自然数中某两个数之间也有这种类似的依存关系——倍数和因数。
设计说明:“智力竞猜”走同学喜欢的形式,因为每个同学都有争强好胜之心,“竞猜”有两个作用,一是激发同学的学习兴趣,二是以此引出“相互依存”的关系,为理解倍数和因数的相互依存关系作铺垫。
二、操作发现 理解概念
1、师:“‘智慧从手指问流出’,通过操作我们能发现许多的知识。请同桌同学拿出课前准备的12个同样大小的正方形,试一试能摆出几个不同的长方形,并考虑一下其中蕴涵着哪些不同的乘除法算式。”
2、请同学汇报不同的摆法,以和相应的.乘除法算式。(乘法算式和除法算式分开写)再向同学说明:假如一个图形经过旋转后和另一个图形一样,我们就认为这两个图形是一样的,让同学特重复的图形和算式去掉。(板书三十乘法算式,和几十相应的除法算式)
设计说明;让同学写出蕴涵的乘除法算式符合同学的知识基础,同学有的可能用乘法表示,也有的可能用除法表示;让同学将旋转后相同的去掉,这是一次简化,很多同学并不知道,需要指导,这样可以使同学认识到事物的实质。
3、让同学一起看乘法算式4×3=12,向同学指出:12是4的倍数,12也是3的倍数,4是12的因数,3也是12的因数。
4、先请一个同学站起来说一说.然后同桌的同学再互相说一说。
5、让同学仿照说出6×2=12和12×1=12中哪个数是哪个数的倍数,哪个数是哪个数的因数。
6、同学相互出一道乘法算式,并说一说谁是谁的倍数,谁是谁的因数。同学可能会出现0×( )=0的情况,借此向同学说明我们研究因敷和倍数一般指不是0的自然数。
设计说明:倍数和因数是全新的概念,需要教师的“传授、讲解”,需要同学的适当“记忆”——重复、仿照。当然,要使同学真正理解还必需举一反三,通过互相举例可以逐步完善同学对倍数和因数的认识,同时使同学明确倍数和因数的研究范围。
7、以4×3=12与12÷3=4为例,向同学说明后面的除法算式是由前面的乘法算式得到的,根据这个除法算式可以说谁是谁的倍数,谁是谁的因数,说好后再让同学试一试其他几个除法算式中的关系。
8、练习:根据下面的算式,说说哪个数是哪个数的因数,哪个数是哪个数的倍数
5×4=20 35÷7=5 3+4=7
(1)同学回答后引发同学考虑:能不能说20是倍数,4是因数。使同学进一步理解倍数是两个数之间的一种相互依存的关系,必需说哪个是哪个的倍数,因数也同样如此。
(2)通过3+4=7使同学进一步理解倍数和因数都是建立在乘法或除法的基础之上的。
设计说明:乘法和除法是一种互逆的关系,在学习中应该沟通它们之间的联系;通过三道练习可以巩固刚刚获得的对倍数和因数的认识,将融会贯通落到实处。
三、探索方法 发现特征
1、找一个数的因数。
(1)联系板书的乘除法算式观察考虑12的因数有哪些,井想方法找出15的所有因数。
(2)同学独立考虑,明白根据一个乘法(除法)算式可以找出15的两个因数,在同学充沛交流的基础上引导同学有条理的“一对一对”说出15的因数。
(3)用“一对一对”的方法找出36的所有因数。可能有的同学根据乘法算式找的,也有的同学是根据除法算式找的,都应该给予肯定。
(4)引导同学观察12、15、36的因数,说一说有什么发现。一个数的因数个数是有限的,其中最小的因数都是1,最大的都是它自身。
设计说明:先布置同学“找一个数的因数”可以使同学利用操作得到的算式进行,观察,这样比较自然,而且为于找一个数的因数指明了方向。同学交流时突出了方法的多样性,既可以根据乘法算式想,也可以根据除法算式想,交流后引导同学“一对一对”的找是必要的,它可以培养同学的有序考虑。最后引导同学观察。使同学自主发现、归纳出一个数的因数的某些特征。
2、找一个数的倍数。
(1)让同学找3的倍数,比一比谁找得多。
(2)同学汇报后,引导同学有序考虑,并得出3的倍数可以用3乘连续的自然数1、2、3……,3的倍数的个数是无限的,所以写3的倍数时要借助省略号表示结果。
(3)找出2的倍数和5的倍数,并引导同学观察3、2、5的倍数情况,说一说有什么发现。一个数的倍数个数是无限的,其中最小的倍数是它自身,没有最大的倍数。
设计说明:让同学比一比谁找的倍数多,可以使同学发生认知抵触,认识到一个数的倍数个数是无限的,在同学汇报后同样需要引导同学的有序考虑,需要引导同学自主发现、归纳一个数倍数的特征。
四、巩固练习
师;刚才同学们认识了倍数和因数,并且探索了求一个数因数和倍数的方法,想不想检查一下自身掌握得如何?
1、“想想做做”的第l题。同学表述后强调哪个是哪个的倍数(或因数)。
2、“想想做做”的第2题。同学填好后引导同学说一说:表中的“应付元数”其实都是什么?表格中为什么用省略号?
3、“想想做做”的第3题。同学填好后引导同学说一说:表格中所有数都是什么?这个表格中为什么没有省略号?
4、游戏——“找朋友”。让同学拿出各自的学号卡片,找出自身学号数的所有因数,使同学发现每个学号数的因数都在全班的学号数以内;再让同学找一找自身学号数的倍数,井说一说能不能在全班学号数内部找到一个,还有其他的吗?
设计说明:第l题是基础练习.可以巩固对倍数和因数的认识,2、3两题联系实际,使同学感悟到其中蕴藏着求一个数倍数和因数的方法,以和倍数和因数的某些特征。第4题通过游戏活动进一步激发同学持续的学习热情,而且可以综合应用求倍数和因数的方法,再次认识到倍数和因数的某些特征。
五、自我梳理 探索延伸
1、通过这节课的学习你有什么收获?向你的同伴介绍一下。
2、生活中许多现象与我们学习的“倍数和因数”的知识有关,课后同学们可以利用今天所学的知识探索一下“1小时等于60分”的好处。通过探索使同学明白由于60的因数是两位数中最多的,可以方便计算。
设计说明:“向同伴介绍自身的收获”可以将课堂中学到的知识进行自我梳理,同时通过探索“1小时等于60分”的好处“,可以巩固倍数和因数的相关知识,沟通知识间的联系,拓展同学的知识面,使同学认识到数学知识的应用价值。
因数和倍数教案 篇7
教学内容:
人教版小学数学第十册教材12-13因数和倍数>
教学要求:
1、通过学生自学让学生理解掌握因数和倍数的意义,明确因数和倍数是相互依存的。
2 、通过学生合作学习,让学生掌握找一个数的因数的方法。
3、培养学生的自学能力、观察能力、抽象概括能力以及学生的合作探究能力。
4 、培养学生的合作意识、探究意识、以及热爱学习数学的情感。
师:今天老师特别想听一首歌《世上只有妈妈好》,你们愿意唱给老师听吗?
生:不能。因为他们不能分开,必须说谁是谁的妈妈,谁是谁的儿子。
师:其实在数学中也有这样的两个数,它们是相互依存的,他们也是不能单独存在的,那就是——《因数和倍数》,今天我们一起来学习。
........
师:这些问题是老师告诉你们,还是你们自己去学习?
1 、请同学们带着想知道的问题先自学教材12-13,然后完成学案一
(3)、因为24÷6=4所以24是6的倍数,4是24的`因数。
师:看了张江楠的学习作品你想说点什么?(没有学生举手)你们没有问题,那老师有问题请教你们了。
师: 在 a×b=c 中, 为什么a、b、c均为非零自然数?
师:因为0.8×5=4 所以0.8是4的因数。( )这句话对吗?
师:因为3×6=18 ,所以18是倍数,3和6是因数。( )这句话对吗?
生:不对,因为因数和倍数是相互依存的,是不能单独存在的。
师:因为24÷6=4所以24是6的倍数,4是24的因数。
师:通过你们的自学初步理解因数和倍数的意义。你们会找一个数的因数吗?
师:学号是30的因数的请起立,(不完整)看来找一或几个不难,要找得既准确又完整,就需要方法了。你们有没有信心自己去探究。
师:那好,你们4人小组合作找出30的因数,并完成学案二。
1 、小组合作找出30的因数有哪些?(有乘法和除法两种,用你们最喜欢的方法)。再组内讨论以下三个问题
(1)你们是怎样找一个数的因数的?
(2)你们找一个数的因数是怎样才能做到既准确,又完整的?
(3)你们找一个数的因数是找到什么时候为止?
........
生5:从1开始去乘一个数等于30的两个数就是30的因数。
生6:用30除以1到它本身能整除的就是30的因数。
从1开始用乘法或除法有序成对的找,找到重复或接近为止。
2、先找出下列各数的因数,再观察这几组数据你有什发现写在括号里。
........
生6:我发现了一个数的因数最小是1,最大是它本身。
生7:我发现了一个数的因数的个数是有限的,因为一个数的因数最小是1,最大是它本身
生齐读一个数的因数最小是1,最大是它本身。一个数的因数的个数是有限的。
学号是48的因数的同学请起立。
生:因为1是所有自然数的因数,坐下了还要起立。
师:同学们想挑战老师吗(想)比老师叫起立的人多。
1、这节课你有什么收获?
2、如果还有不懂的小组内讨论。
因数和倍数教案 篇8
关于因数、倍数、质数、合数,我们学过了哪些概念?这些概念之间又有怎样的联系呢?(板书课题:因数、倍数、质数、合数)
复习并理解相关概念。
(1)因数和倍数。
①什么是倍数?什么是因数?因数与倍数的关系是怎样的?(小组讨论后教师明确概念)
例如:4×5=20,20是5和4的倍数,4和5都是20的因数。因数和倍数的关系是互相依存的。(强调:在研究因数和倍数时,所研究的数指的都是非0自然数)
生1:一个数的因数的个数是有限的,其中最小的因数是1,最大的.因数是它本身。例如:20的因数有1,20,2,10,4,5,一共6个。
生2:一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。例如:4的倍数有4,8,12,…
(2)质数与合数。
过渡:根据一个数所含因数的个数的不同,还可以得到质数与合数的概念。
课件出示如下问题:
①什么是质数?最小的质数是多少?
②什么是合数?最小的合数是多少?
③如何判断一个数是质数还是合数?1是什么数?
(3)公因数与最大公因数,公倍数与最小公倍数。
①什么叫公因数?什么叫最大公因数?公因数与互质数的概念有什么联系?互质数与质数有什么区别?
公因数:几个数公有的因数,叫做这几个数的公因数。其中最大的一个,叫做这几个数的最大公因数。
互质数与质数的区别:互质数是指两个数的关系,这两个数的公因数只有1;质数是对一个自然数而言的,质数只有1和它本身两个因数。
②什么叫公倍数?什么叫最小公倍数?请举例说明。
公倍数:几个数公有的倍数,叫做这几个数的公倍数。其中最小的一个,叫做这几个数的最小公倍数。
例如:2的倍数有2,4,6,8,10,12,14,16,18,…
3的倍数有3,6,9,12,15,18,…其中6,12,18,…是2和3的公倍数,6是它们的最小公倍数。
(4)2,3,5的倍数的特征。
提问:2,3,5的倍数的特征是什么?什么是偶数?什么是奇数?(学生自主讨论后指名回答)
1.课件出示例1。
下面的数哪些有因数3?哪些有因数5?哪些既有因数3又有因数5?哪些有因数2,3,5?
因数和倍数教案 篇9
教学目标:
1、学生掌握找一个数的因数,倍数的方法;
2、学生能了解一个数的因数是有限的,倍数是无限的;
3、能熟练地找一个数的因数和倍数;
4、培养学生的观察能力。
教学重点:
掌握找一个数的因数和倍数的方法。
教学难点:
能熟练地找一个数的因数和倍数。
教学过程:
一、引入新课。
1、出示主题图,让学生各列一道乘法算式。
2、师:看你能不能读懂下面的算式?
出示:因为2×6=12
所以2是12的因数,6也是12的因数;
12是2的倍数,12也是6的倍数。
3、师:你能不能用同样的方法说说另一道算式?
(指名生说一说)
师:你有没有明白因数和倍数的关系了?
那你还能找出12的其他因数吗?
4、你能不能写一个算式来考考同桌?学生写算式。
师:谁来出一个算式考考全班同学?
5、师:今天我们就来学习因数和倍数。(出示课题:因数 倍数)
齐读p12的注意。
二、新授
(一)找因数
1、出示例1:18的因数有哪几个?
从12的因数可以看得出,一个数的因数还不止一个,那我们一起找找看18的因数有哪些?
学生尝试完成:汇报
(18的因数有: 1,2,3,6,9,18)
师:说说看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一对一对找,如1×18=18,2×9=18…)
师:18的因数中,最小的是几?最大的是几?我们在写的时候一般都是从小到大排列的。
2、用这样的方法,请你再找一找36的因数有那些?
汇报36的因数有: 1,2,3,4,6,9,12,18,36
师:你是怎么找的?
举错例(1,2,3,4,6,6,9,12,18,36)
师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)
仔细看看,36的因数中,最小的是几,最大的是几?
看来,任何一个数的因数,最小的一定是( ),而最大的一定是( )。
3、你还想找哪个数的因数?(18、5、42……)请你选择其中的一个在自己的练习本上写一写,然后汇报。
4、其实写一个数的因数除了这样写以外,还可以用集合表示:如
18的因数
1、2、3、6、9、18
小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?
从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。
(二)找倍数
1、我们一起找到了18的因数,那2的倍数你能找出来吗?
汇报:2、4、6、8、10、16、……
师:为什么找不完?
你是怎么找到这些倍数的? (生:只要用2去乘1、乘2、乘3、乘4、…)
那么2的倍数最小是几?最大的你能找到吗?
2、让学生完成做一做1、2小题:找3和5的倍数。
汇报 3的倍数有:3,6,9,12
师:这样写可以吗?为什么?应该怎么改呢?
改写成:3的倍数有:3,6,9,12,……
你是怎么找的?(用3分别乘以1,2,3,……倍)
5的倍数有:5,10,15,20,……
师:表示一个数的倍数情况,除了用这种文字叙述的方法外,还可以用集合来表示
2的倍数 3的倍数 5的倍数
2、4、6、8…… 3、6、9…… 5、10、15……
师:我们知道一个数的因数的个数是有限的,那么一个数的倍数个数是怎么样的呢?
(一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数)
三、课堂小结
我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?
四、独立作业
完成练习二1~4题
因数和倍数教案范本十一篇
在给学生上课之前老师早早准备好教案课件,因此老师最好能认真写好每个教案课件。与此同时老师写好教案课件,对自己教学情况也能有所提升。让我们跟随编辑一同了解“因数和倍数教案”吧,热烈欢迎您的阅读希望这篇文章能够与您的需求相符!
因数和倍数教案【篇1】
教学目标
1、知识与技能
(1)能直接在方格图上,数出相关图形的面积。
(2)能利用分割的方法,将较复杂的图形转化为简单的图形,并用较简单的方法计算面积。
2、过程与方法
(1)在解决问题的过程中,体会策略、方法的多样性。
(2)学会与人交流思维过程与结果。
3、情感态度与价值观
积极参与数学学习活动,体验数学活动充满着探索、体验数学与日常生活密切相关。
重点难点及处理问题的策略
1、重点是指导学生如何将图形进行分割,从而让学生体会到解决问题的多样性和简便性。难点是灵活运用方法。
2、借助图形,让学生动手,自主探索、合作交流解决问题的方法。
教学过程:
一、创设情境、揭示新课。
我要说班里每位同学都是优秀的设计师!因为大家都在设计着自己美好的将来,所以在很用功的学习。希望大家继续努力,使自己美好的设计成为现实。下面我们来看一看,我们的同行——一位地毯图案设计师,设计的图案。
展示地毯上的图形,让学生仔细观察图形特点,说发现。
地毯是正方形,边长为14米蓝色部分图形是对称的,……
师:看这副地毯图,请你提出数学问题。
根据学生的回答展示问题:“地毯上蓝色部分的面积是多少?”
师板书课题:地毯上的图形面积
二、自主探索、学习新知
如果每个小方格的面积表示1平方米,,那么地毯上的图形面积是多少呢?
1、学生独立解决问题
要求学生独立思考,解决问题,怎样简便就怎样想,并把解决问题的方法记录下来。
2、小组内交流、讨论
3、班内反馈
请学生汇报蓝色部分面积,重点汇报求蓝色面积的方法。对于每一种方法,只要学生说得合理都给以肯定。
学生的答案也许有:
(1)直接一个一个地数,为了不重复,在图上编号;(数方格法)
(2)因为这个图形是对称的,所以平均分成4份,先数出一份中蓝色的面积,再乘4;(化整为零法)
(3)用总正方形面积减去白色部分的面积;(大减小法)
(4)将中间8个蓝色小正方形转移到四周兰色重叠的地方,就变成4个3×6的长方形加上4个3×3的正方形。(转移填补法)
4、学生总结求蓝色部分面积的方法。
三、巩固练习、拓展运用(课本第19页练一练)
1、第1题
(1)学生独立思考,求图1的面积。
(2)说一说计算图形面积的方法。引导学生了解“不满一格的当作半格数”。
2、第2题
独立解决后班内反馈。
3、第3题
(1)学生独立填空。求出每组图形的面积。学生完成后班内交流反馈答案。
(2)学生观察结果,说发现。
第(1)题的4个图形面积分别为1、2、3、4的平方数;第(2)题与第(1)题进行比较,第(2)题的3个图形的面积分别是前面一组题的前3个图形 面积的一半。
四、全课小结,课后拓展
今天我们进行了那些活动,你收获了什么?
师:对于计算方格图中规则图形的面积,我们可以分割,可以直接数,可以“大减小”,还可以转移填补。如果没有方格图,我们该怎样解决一些图形的面积呢?明天的数学课上我们将继续学习。课后,有兴趣的同学可以在空白方格纸上设计一些你喜欢的图案,让你的同桌帮你算一算图案的面积。
因数和倍数教案【篇2】
师:人与人之间存在着许多种关系,你们和你们的妈妈之间是什么关系……?
师:对,我是你们的老师,你们是我的学生,我们的关系是师生关系。在数学中,数与数之间也存在着多种关系,这一节课,我们一起探讨两数之间的因数与倍数关系。(板书课题:因数与倍数)
师:现在我们来研究自然数中数与数之间的关系。请你们用12个小正方形摆成不同的长方形,并根据摆成的不同情况写出乘法算式。
师:(指着第②组)像这样的乘式子中的三个数之间的关系还有一种说法,你们想知道吗?请看大屏幕
生:2和6是12的因数,12是2的倍数,也是6的倍数。
师:也就是说,2和12、6的关系是因数和倍数的关系,这几组算式中,谁和谁还有因数和倍数的关系?
生:3、4和12有因数和倍数关系,3和4是12的因数,12是3和4的倍数。
生:我认为1和12也有因数和倍数关系。1是12的因数,12是1的倍数。
生:我认为可以,12×1=12,1和12都是12的因数。
师:说得真好,从上面3组算式中,我们知道1,2,3,4,6,12都是12的因数。
师:你能举一个算式,并说说谁是谁的倍数,谁是谁的因数吗?
生:2×4=8,2和4是8的因数,8是2和4的倍数。
生:40÷2=20,40是2和20的倍数,2和20是40的因数。
通过刚才的计算,你有什么发现?
师:所以在研究因数和倍数时,我们所说的数一般指整数,不包括0。
生:我有一个疑问,在2×6=12中,2叫因数是指在算式中它的名称,而2是12的因数指的是2和12的关系,这两种说法一样吗?
生:我认为不一样,在2×6=12中,2叫因数是指在算式中它的名称,而2是12的因数指的是2和12的关系。
师:说的真好。这节课我们研究因数与倍数的关系中所说的因数不是以前乘法算式中各部分名称中的“因数”,两者可不能混哦!
三、师生交流、合作探究:
从12的因数可以看得出,一个数的因数不止一个,那么我们一起找找看18的因数有哪些?
学生尝试完成并交流汇报,说说你是怎么找的?(18的因数有:1,2,3,6,9,18)
我们在写的时候怎样写才能做到不遗漏、不重复?。
(生:用乘法一对一对找,如1×18=18,2×9=18…;用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…)
5。小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?(从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。)
(5)在4x0。5=2中,4和0。5是2的因数。 ( )
(2)、一个数的最大因数是24这个数是()它的最小的因数是()。
(3)、自然数32有()个因数,它们是( )。
(5)、19的因数只有( )和( )。
(1)、27的因数有哪些?
(2)、27是哪些数的倍数?
六、课时小结:
本节课大家学习到什么知识,还有什么不明白的地方吗?有什么疑问请提出来我们共同来解决。
教学内容:
《义务教育课程标准实验教科书数学(五年级下册)》第12~13页。
教学目标:
1、从操作活动中理解因数和倍数的意义,会判断一个数是不是另一个数的因数或倍数。
2、培养学生抽象、概括的能力,渗透事物之间相互联系、相互依存的辩证唯物主义观点。
3、培养学生的合作意识、探索意识,以及热爱数学学习的情感。
教学难点:
能准确、全面的求一个数的因数。
教学反思:
教学《因数和倍数》,这是一个非常枯燥的课题,但我巧妙地运用生活中人与人之间的关系,自然引入到数与数之间关系。为了让学生理解因数和倍数的含意,教学过程中,我立足体现一个“实”字,充分应用多媒体的优点,学生从算式中找出能整除的算式,揭示整除、倍数、因数之间的关系,再通过举例去验证倍数与因数之间的联系,在推理中“悟”出知识的规律。学生在学习中实实在在经历了一个探究的过程。“动脑筋出教室”这一游戏的设计,学生在积极参与探讨、质疑、创造的教学活动,既巩固了知识,又享受了数学思维的快乐。
在授课时,我体验到了学生的快乐。当学生用自己的学号说整除、因数、倍数之间的关系时,由于像顺口溜,很有趣。每个学生都在愉快中学会了这节课的知识。
因数和倍数教案【篇3】
教学目标:1进一步加深学生对方程意义的理解,巩固用等式的性质解简易方程的方法,理解简单实际问题中数量关系,并能根据等量关系解决实际问题。
2进一步理解公倍数和公因数,最小公倍数和最大公因数的意义,掌握求最大公因数和最小公倍数的方法。
3通过小组合作交流,培养学生的数学交流能力和合作能力。
教学重点:理解方程的意义,巩固解方程的方法,进一步掌握求最小公倍数和最大公因数的方法。
教学难点:理解实际问题中的数量关系,根据数量关系列方程解答。
1、同学们,本学期的内容已经全部学完了。从今天开始,我们要对所有的知识进行与复习。首先让我们一起走进“数的世界”,在十个单元中哪些是与数打交道呢?根据学生回答板书方程
什么是公倍数与公因数?
怎样求两个数的最小公倍数和最大公因数?
⑴与练习第1题,在方程下面打√,集体汇报时说出为什么不是方程?
X+2.5<828-12=165a分别叫什么?你觉得方程与等式有什么关系?你能用一副图来表示吗?
提问:根据什么来解方程?指名4人板演,校对时说说是怎么想的?
学生独立完成,集体订正时说说根据什么数量关系式列方程的?
教师,用方程计算可以使很多问题变的简单,容易解决。
⑷与复习第4题学生读题后独立用方程解决。
对公倍数和公因数你有那些了解?怎样求两个数的最小公倍数和最大公因数呢?
这是一堂复习课,主要复习方程、公倍数和公因数两个单元的内容。由于课堂时间有限,因此对知识的回顾与还不是很系统。特别是对潜能生而言,教师的提问不能及时沟起他们对知识概念的回忆,因此跟基础较好的同学相比就形成了鲜明的落差。
在列方程解决实际问题时,正确掌握题中的数量关系是关键,也是学生理解中的难点。大部分学生在列方程时,因为没能找出题中的数量关系而把方程列错,或者方程列到了,却不能把方程抽象成数量关系式。诸如这些现象,主要是学生的抽象能力还不够完善,分析问题的能力还不够仔细,深入,有待进一步的发展。
在公倍数和公因数一单元中,问题不大,主要是求两个数的最小公倍数和最大公因数。对较大的两个数,如求100以内两个数的最小公倍数和最大公因数,出错率较大。因此课后还应多补充一些相应的练习。
因数和倍数教案【篇4】
教学内容:
人教版小学数学五年级下册第13~16页。
教学目标:
1、学生掌握找一个数的因数,倍数的方法;
2、学生能了解一个数的因数是有限的,倍数是无限的;
3、能熟练地找一个数的因数和倍数;
4、培养学生的观察能力。
教学重点:
理解因数和倍数的含义;自主探索并总结找一个数的因数和倍数的方法。
教学难点:
自主探索并总结找一个数的因数和倍数的方法;归纳一个数的因数的特点。
教学具准备:
学号牌数字卡片(也可让学生按要求自己准备)。
快乐学习、大胆言问、不怕出错!
学习最重要的是快乐,要掌握学习的方法。
1、4×0.5=2,所以4和0.5都是2的因数,2是4和0.5的倍数。这句话对吗?
2、我们在因数与倍数的学习中,只讨论什么数?
3、8÷2=4,所以8是倍数,4是因数。这句话对吗?
今天,我和大家一道来继续共同探讨“因数与倍数”
请认为自己是18的因数的同学带着号码牌上台来。
a、学生上台――找对子,击掌―――。完后提示:老师觉得有点乱,有没有什么方法可以让这些找因数的方法有序些?
b、学生再次依照1x18,2x9,3x6的顺序一个个讲出乘法算式。接着追问:那18的因数就有???从1开始做手势:(1,18,2,9,3,6)有没有遗漏的呢?为了让人家看得更明白,我们从小到大排一下,好不好?
学生预设:有的学生可能会说还有6x3,9x2,18x1等,出现这种情况时可以冷一下,让学生想一想这样写的话会出现什么情况,最后让学生明白一个数的因数是不能重复的。
c、可是老师觉得这样子写又有点乱,有没有更好的办法让人看得更清楚些,让这些数字的有序地排列?
可以用一串数字表示;也可以用集合圈的方法表示。
它最小的因数是几?
最大的因数是几?
做一做(在做这些练习时应放手让学生去做,相信学生的知识迁移与消化新知的能力)
a、30的因数有哪些,你是怎么想的?
b、36的因数有几个?你是怎么想的?为什么6x6=36,这里只写一个因数?
c、对比18、30、36的因数,分别让学生说说每个数最小的因数是几?最大的因数是几?各有几个因数?
d、让学生讨论:你从中发现了“一个数的因数”有什么相同的地方吗?
最大的因数是它本身;
因数的个数是有限的。
轻松一下:
我们来了解一点小知识:完全数,什么叫完全数呢?就是一个数所有的因数中,把除了本身以外的因数加起来,所得的和恰好是这个数本身,那这样的数我们就叫它完全数,也叫完美数,比如6~~(学生读课本14页完全数的相关知识)
因为有了前面探究找一个数因数的方法,在这一环节更可大胆让学生自己去想,去说,去发现,去归纳。教师只要适当做点组织和引导工作就行。
过渡:大家都很棒!这么快就找出了一个数的因数并总结好了它的规律,现在杨老师想放开手来让大家自己来学习下面的知识:找一个数的倍数。
a、2的倍数有哪些?你是怎么想的?从1开始做手势:1x2=2,2x2=4,2x3=6,一倍一倍地往上递加。
发现:这样子写下去,写得完吗?写不完,我们可以用一个什么号来表示?这个省略号就表示像这样子的数还有多少个?
b、那5的倍数有哪些?按从小到大的顺序至少写出5个来,看谁写得又快又好
c、对比“一个数的因数”的规律,学生自由讨论:一个数的倍数有什么规律呢?
(到这一环节就无需再提问了,要相信学生能够在类比中找到学习的方法)
没有最大的倍数;
倍数的个数是无限的。
(哦,大家这么聪明啊,不用老师教都会了,看来你们真的是太棒了,这也说明学习要学得轻松就一定要掌握~~方法!)
c、看样子大家都满怀信心了,那老师就用黑板上的两个例题来考考大家,看大家的观察能力是不是真的好厉害。
指着板书中的18的因数与2的倍数提问:
你能从中找出既是18的因数又是2的倍数的数吗?(计时开始:10,9,8,~~~)
四、通过这堂课的学习,你有什么收获?
请学号是2的倍数的同学起立,你们先离场,
不是2的倍数的同学后离场。
一个数的最小因数是1,最大因数是它本身。
2,4,6,……
一个数的最小倍数是它本身,没有最大倍数。
倍数的个数是无限的。
因数和倍数教案【篇5】
教学目标:
1、理解和掌握因数和倍数的概念,认识他们之间的联系和区别。
2、学会求一个数的因数或倍数的方法,能够熟练的求出一个数的因数或倍数。
3、知道一个数的因数的个数是有限的,一个数的倍数的个数是无限的。
教学重点:
掌握找一个数的因数和倍数的方法。
教学难点:
理解和掌握因数和倍数的概念。
师:对,我是你们的老师,你们是我的学生,我们的关系是师生关系。是啊,人与人之间的关系是相互的。再比如:我们班的曹雪飞与贺正博之间是同桌关系,他们之间的关系是相互依存的,不能单独存在,我们可以说曹雪飞是贺正博的同桌,或者说贺正博是曹雪飞的同桌,而不能说曹雪飞是同桌!在数学王国里,在整数乘法中也存在着这样相互依存的关系,这节课,我们一起探讨两数之间的因数与倍数关系。(板书课题:因数与倍数)
(设计意图:先让学生体会关系,再通过同桌关系让学生体会相互依存,不能独立存在,进而为因数与倍数的相互依存关系打下基础。)
(一)1、出示主题图,仔细观察,你得到了哪些数学信息?
学生说:图上有两行飞机,每行六架,一共有12架。(注意培养学生提取数学信息的能力和语言表达能力,即:数学语言要求简练严谨)
所以2是12的因数,6也是12的因数;
12是2的倍数,12也是6的倍数。
从这道算式中,你知道谁是谁的因数?谁是谁的倍数吗?(让学生自己说一说,进而加深因数倍数关系的认识。)
教师小结:因数和倍数是相互依存的,为了方便,我们在研究因数与倍数时,我们所说的数是整数,一般不包括0.
5、让其他学生来说一说谁是谁的因数谁是谁的倍数。
6、看来都难不住你们,那老师来考考你们:18÷3=6在这道算式中,谁来说说谁是谁的因数谁是谁的倍数。
(二)找因数:
1、师:我们知道了因数与倍数之间的关系,从上面的研究中,我们还可以知道,一个数的因数还不止一个12的因数有: 1,2,3,4,6,12. 那么怎样求一个数的因数呢?
注意:请同学们四人以小组讨论,在找18的因数中如何做到不重复,不遗漏。
师:说说看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一对一对找,如1×18=18,2×9=18…)
师:18的因数中,最小的是几?最大的是几?我们在写的时候一般都是从小到大排列的。
2、用这样的方法,请你再找一找36的因数有那些?
师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)
师:18和36的因数中,最小的是几?最大的是几?我们在写的时候一般都是从小到大排列的。
请同学们观察一个数的因数有什么特点。
在教师引导下,学生总结出:任何一个数的因数,最小的一定是( ),而最大的一定是( ),因数的个数是有限的。
3、其实写一个数的因数除了这样写以外,还可以用集合表示:如 18的因数
小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?
从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。
(三)找倍数:
1、我们学会找一个数的因数了,那如何找一个数的倍数呢?2的倍数你能找出来吗?
你是怎么找到这些倍数的?
那么2的倍数最小是几?最大的你能找到吗?
2、再找3和5的倍数。
师:表示一个数的倍数情况,除了用这种文字叙述的方法外,还可以用集合来表示 :2的倍数,3的倍数,5的倍数
师:我们知道一个数的因数的个数是有限的,那么一个数的倍数个数是怎么样的呢? 让学生观察2、3、5的倍数,说一说一个数的倍数有什么特点。
学生试着总结:一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。
三、课堂小结:
通过今天这节课的学习,你有什么收获?
学生汇报这节课的学习所得。
四、拓展延伸。
1、教材16页练习二第5题。学生在小组中讨论交流:这四位同学的说法是否正确?为什么?
2、教材第15页练习二第1题。组织学生独立完成,然后在小组中互相交流检查。
因数和倍数教案【篇6】
1 让学生理解倍数和因数的意义,掌握找一个非零自然数的倍数与因数的方法,发现一个非零自然数的倍数和因数中最大的数、最小的数以及一个非零自然数的倍数与因数个数的特征。
2 让学生初步意识到可以从一个新的角度,即倍数和因数的角度来研究非零自然数的特征及其相互关系,培养学生观察、分析与抽象概括的能力,体会数学学习的奇妙,对数学产生好奇心。
教学难点:从倍数和因数的意义出发,寻找一个非零自然数的倍数与因数。
师:自然数是我们在数的王国中认识的第一种数,今天我们将从一个特定的角度,即倍数和因数的角度来研究自然数的特征及其相互关系。(板书课题:倍数和因数)
[评析:课始直接进入主题,揭示本节课新知识研究的方向,使学生产生探究新知的心理需求。]
师:用这12个完全相同的正方形,能拼出一个长方形吗?(生:能)你能用一道乘法算式,表示你拼出的长方形吗?
生:每排摆3个正方形,摆4排;或每排摆4个正方形,摆3排。(课件演示学生所猜的长方形,并让学生明白这两种拼法其实是相同的)
师:同学们可别小看这三道算式,今天我们学习的内容,就将从研究这三道乘法算式拉开帷幕。
[评折:准确把握学生的学习起点,让学生根据所列乘法算式猜想可能拼成的长方形,大屏幕随之展示学生猜想的长方形,更加激起学生的求知欲。]
师:根据3×4=12,我们可以说(屏幕出示):12是3的倍数,12也是4的倍数;3是12的因数,4也是12的因数。
师:你读懂了些什么?(引导学生感知什么是倍数、什么是因数,即倍数和因数的意义;明白在乘法算式中,积就是两个乘数的倍数,两个乘数就是积的因数)
师:请你从6×2=12和12×1=12这两道算式中任选一题,用上面的话说一说。
生:因为18/3=6可以改写成3×6=18,所以18是3和6的倍数,3和6是18的因数。(引导学生明白根据乘除法的互逆关系,在除法算式中也可以说谁是谁的倍数、谁是谁的因数)
师:这句话对吗?(让学生理解倍数和因数是两个数之间的相互依存关系,必须说谁是谁的倍数、谁是谁的因数)
师:我们再看屏幕上这三道乘法算式(1×12=12、2×6=12、3×4=12),善于观察的同学一定发现在这三道乘法算式中。我们其实已经找到了12的所有因数,你知道都有哪些吗?(引导学生说一说)
师:请你从这组数中任选两个数,用倍数和因数的关系来说一说。(生可能会选36和4、36和9、4和2这几组数)
设疑:
(1)为什么不选0呢?(让学生理解倍数和因数是针对非零的自然数)(屏幕演示将“0”去掉)
(2)为什么不选5呢?(例如36和5,因为找不到一个自然数和5相乘能得到36,或者36除以5有余数)(屏幕演示将“5”去掉)
(3)去掉了0和5,剩下的这些数和36有什么关系呢?(它们都是36的因数,或36是它们的倍数;当然,36也是36的因数,36也是36的倍数)
[评析:倍数和因数意义的学习层次分明。(1)猜想:由1 2个完全相同的正方形拼成一个长方形的不同拼法,得出三道乘法算式。根据3×4=12这道算式中三个数的关系,让学生初次感知倍数和因数的`意义。(2)拓展:根据除法算式中“存在一个自然数等于两个自然数乘积”这一条件,揭示除法算式中依然存在着倍数和因数的关系,拓展了对倍数与因数意义的理解。(3)深化:探索并感知倍数和因数的相互依存关系。“从一组数中任选两个数”说意义的训练,巩固与深化了对倍数和因数意义的理解。]
1 师:在刚才这组数(36、4、9、0、5、2)中,2、4、9和36都是36的因数。除了这些,36的因数还有吗?(生一个一个地举例)这样一个一个杂乱无序地找,你们觉得这种方法好吗?(生:不好!)不好在哪儿呢?
师:你们有没有什么好办法,能一个不落地将36的所有因数都找到呢?同学们可以独立完成这个任务,也可以同桌的两位同学合作完成。如果你全部找到了,就请将36的所有因数写在练习纸上。同时将你找因数的方法写在横线的下方。(教师巡视,学生讨论交流)
展示学生的作品,学生可能出现的答案有:
(1)根据1×36=36、2×18=36……分别得出1、36、2、18、3、12、4、9、6等数都是36的因数;
(2)利用36÷1=36,36÷2=18……也可以得出1、36、2、18、3、12、4、9、6等数都是36的因数。
在写法上,可能出现的答案为1、36、2、18、3、12、4、9、6(一对一对地写),或按照从小到大的顺序写,即1、2、3、4、6、9、12、18、36。然后引导学生比较这两种写法的不同。将方法优化:运用除法算式一对一对地找一个数的因数更为简便,并且不重复、不遗漏,做到答案的完整性;在写的时候,可以一头一尾地写,这样可以做到答案的有序性。(板书:有序、完整)
2 探讨一个数的因数的特征。
学生观察、讨论下面的问题(课件出示问题):一个非零自然数的因数的个数是有限的还是无限的?一个非零自然数的最大因数是几?一个非零自然数的最小因数是几?
课件出示描述一个非零自然数的因数的特征的表格(如下),学生讨论、交流后再反馈。
师(小结):一个非零自然数的最大因数是它本身,最小因数是1,因数的个数是有限的。
[评析:找一个数的因数是本节课的教学难点。教学中,教师调整教材的编排顺序,先学习找一个数的因,数,通过置疑“一个个地找36的因数,这种方法好吗?不好在哪”,启发学生根据因数的意义和乘除法的互逆关系,有序地找出36的所有因数,并及时优化方法。同时,引导学生自主探索,在观察中发现一个数的因数的有关特征,最后进行总结,培养了学生解决问题的能力。]
1 师:我们已经掌握了如何有序地、完整地找出一个非零自然数的所有因数的方法。如果让你找出一个数的所有倍数,你会找吗?(生:会)那么,我们就一起来找找3的倍数。(学生试着找出3的倍数,教师巡视,对有困难的学生给予帮助)
师:3的倍数能找得完吗?(生:找不完)那么,可以怎样表示3的倍数的个数呢?(生:用省略号表示)(相机板书:3、6、9、12、15……)
4 课件出示3的倍数、4的倍数、5的倍数,让学生从最大倍数、最小倍数、倍数的个数三个方面去描述一个数的倍数的特征(见下表)。
师(小结):一个非零自然数的最小倍数是它本身,没有最大的倍数,所以倍数的个数是无限的。
[评析:借助学习一个数的因数的方法,以此为基础,让学生自主探索找一个数的倍数的方法。在探索交流中,优化寻找一个数的倍数的方法,获得一个数的倍数的特征。]
师:这节课,我们通过三道乘法算式与倍数和因数进行了两次的亲密接触。第一次的接触,让我们了解了倍数与因数的意义;第二次的接触,通过找一个数的倍数和因数,我们了解了一个数的倍数和因数的特征。通过这两次的亲密接触,相信 同学们对于今天所学的知识,已经有了比较深刻的理解。下面,就让我们轻松片刻。一起来玩一个特别好玩的游戏,感兴趣吗?
课件演示并配有话外音:春天来了,浓浓的春天气息让森林里好客的小动物们,纷纷拿出自己最珍贵的食物款待大家。
(1)屏幕上出现了可爱的小狗向同学们走来(配音):24的因数是我的朋友。如果你卡片上的数是24的因数,欢迎你,我的朋友!(卡片上的数若符合要求,就请这位学生站起来)
(2)屏幕上出现了笨笨的小猪向同学们挥手(配音):我邀请的朋友是5的倍数,喜欢我,就快快来吧!
(3)瞧!可爱的小猫咪也来了。(屏幕上出现了俏皮、可爱的小猫咪)配音:如果你卡片上的数是1的倍数,请来我家做客吧!
师:小猫咪这么好客,老师也想去她家做客。你们来为老师想一个符合要求的数,好吗?(生答略)
(4)配音:威严的老虎来了!它请的朋友很特别,它是所有非零自然数的因数。这个数是几呢?(生讨论交流)
屏幕出示:只有1才符合要求,因为1是所有非零自然数的因数。
师:虽然我们只合作了这短短的三十分钟,但老师已经深深感到我们这个班的同学非常聪明,不仅善于观察,而且爱动脑筋,所以老师特别准备了一个富有挑战性的节目想考考大家,你们敢不敢接受挑战?(生:敢!)
规则:下面每组数,去掉一个数,剩下的数便是其中一个数的倍数或因数。你能找出这个数吗?
(1)20、5、4、3。
答案:去掉3(屏幕演示隐去“3”),剩下的数是20的因数,或20是它们的倍数。
(2)4、12、18、3。
答案有两种:一是去掉18(屏幕演示隐去“18”),剩下的数便是12的因数,或12是它们的倍数;二是去掉4(屏幕演示隐去“4”),剩下的数便是3的倍数。
[评析:设计游戏环节,对整节课的知识点进行总结深化,并引导每位学生参与其中,积极主动地思考本节课所学的知识,教学过程真实、有效。]
师:通过今天这节课的学习,你有什么收获?你们学得开心吗?玩得开心吗?其实。数学就是这么简单而有趣,让我们每天都乐在其中!
总评:
本节课的教学特色是严谨灵活、细腻奔放。在“因数和倍数”概念的学习过程中,重视师生情感的交流,注重每个学生的发展,较好地体现了“教师有效引导下学生自主探索”这一教学策略。
1 意义教学引导学生自主构建。
在多次的实践教学中,发现用12个完全相同的小正方形拼出一个长方形。对于四年级的学生来说非常容易。教材这样安排的目的,在于帮助学生有意识地感受1和12、2和5、3和4这几组数之间的有机联系。
本课中,倍数和因数的意义教学分三个层次:
1 借助三个问题让学生通过想像及大屏幕的直观演示,引导学生得出三道乘法算式,同时介绍倍数和因数的含义。
2 通过除法算式找因倍关系。
3 渗透倍数和因数的相互依存性。
2 合理组织教材,将找一个数的因数及其特征教学提前。
寻找一个数的因数是本节课的教学难点,学生往往满足于答案的寻找,而忽视寻找过程中的思考策略及思维方法。
教学中,教师出示一组数,如36、4、9、0、5、2,让学生从这组数中任选两个数,用倍数和因数的关系来说一说。
最后设疑:
(1)为什么不选O呢?(让学生理解倍数和因数是针对非零的自然数)
(2)为什么不选5呢?(如36和5,因为找不到一个自然数和5相乘能得到36,或者36除以5有余数)
(3)去掉了0和5,剩下的这些数和36有什么关系呢?(它们都是36的因数,或36是它们的倍数)
这样的改变,既达到预定目的,又为学习找因数做了铺垫,引发了学生寻找36的因数的浓厚兴趣。在引导学生自主探索一个数的因数的特征时,教师让学生带着问题去观察讨论:每一个非零自然数的因数的个数是有限的还是无限的?一个非零自然数的最大因数是几?一个非零自然数的最小因数是几?以上安排,降低了学生的学习难度。
3 寻找一个数的因数和倍数的方法让学生自己生成。
在寻找一个数的因数和倍数的过程中。教师将学生推向发现与探索的前台。
寻找一个数的倍数和因数。方法不是惟一的。教师在肯定各种方法合理性的同时,及时引导学生进行沟通,寻找它们的共同点和联系,进而比较各种方法之间的优劣,遴选最优方法,提升思维效率。
4 增强游戏中数学思维的含量。
知识在游戏中深化,在挑战中升华。
本节课以“有效引导下自主探索”为教学策略。以三道乘法算式为线索,以教材文本为依托,以有梯度的游戏活动展开对知识的深化巩固,并适时、适量引入多媒体辅助教学,将诸多细小的认知活动归整在一个探究性的课堂自主研究活动中。通过自主观察、交流发现、共同分享,引领学生经历“研究与发现”的真实过程。课尾游戏的运用,激发了学生的学习热情,让学生以愉快的心情和良好的体验融入学习活动中,培养了学生用数学眼光看待游戏的意识,大大降低了学生对数学概念学习的枯燥体验。
因数和倍数教案【篇7】
教学目标:
1、学生掌握找一个数的因数,倍数的方法;
2、学生能了解一个数的因数是有限的,倍数是无限的;
3、能熟练地找一个数的因数和倍数;
4、培养学生的观察能力。
教学重点:
熟练掌握找一个数的因数和倍数的方法。
教学难点:
能够熟练地找一个数的因数和倍数。
教学过程:
一、引入新课。
1、出示主题图,让学生各列一道乘法算式。
2、师:看你能不能读懂下面的算式?
出示:因为2×6=12
所以2是12的因数,6也是12的因数;
12是2的倍数,12也是6的倍数。
3、师:你能不能用同样的方法说说另一道算式?
(指名生说一说)
师:你有没有明白因数和倍数的关系了?
那你还能找出12的其他因数吗?
4、你能不能写一个算式来考考同桌?学生写算式。
师:谁来出一个算式考考全班同学?
5、师:今天我们就来学习因数和倍数。(出示课题:因数倍数)
齐读p12的注意。
二、新授
(一)找因数
1、出示例1:18的因数有哪几个?
从12的因数可以看得出,一个数的因数还不止一个,那我们一起找找看18的因数有哪些?
学生尝试完成:汇报
(18的因数有:1,2,3,6,9,18)
师:说说看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一对一对找,如1×18=18,2×9=18…)
师:18的因数中,最小的是几?的是几?我们在写的时候一般都是从小到大排列的。
2、用这样的方法,请你再找一找36的因数有那些?
汇报36的因数有:1,2,3,4,6,9,12,18,36
师:你是怎么找的?
举错例(1,2,3,4,6,6,9,12,18,36)
师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)
仔细看看,36的因数中,最小的是几,的是几?
看来,任何一个数的因数,最小的一定是(),而的一定是()。
3、你还想找哪个数的因数?(18、5、42……)请你选择其中的一个在自己的练习本上写一写,然后汇报。
4、其实写一个数的因数除了这样写以外,还可以用集合表示:如
18的因数
1、2、3、6、9、18
小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?
从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。
(二)找倍数
1、我们一起找到了18的因数,那2的倍数你能找出来吗?
汇报:2、4、6、8、10、16、……
师:为什么找不完?
你是怎么找到这些倍数的?(生:只要用2去乘1、乘2、乘3、乘4、…)
那么2的倍数最小是几?的你能找到吗?
2、让学生完成做一做1、2小题:找3和5的倍数。
汇报3的倍数有:3,6,9,12
师:这样写可以吗?为什么?应该怎么改呢?
改写成:3的倍数有:3,6,9,12,……
你是怎么找的?(用3分别乘以1,2,3,……倍)
5的倍数有:5,10,15,20,……
师:表示一个数的倍数情况,除了用这种文字叙述的方法外,还可以用集合来表示
2的倍数3的倍数5的倍数
2、4、6、8…… 3、6、9…… 5、10、15……
师:我们知道一个数的因数的个数是有限的,那么一个数的倍数个数是怎么样的呢?
(一个数的倍数的个数是无限的,最小的倍数是它本身,没有的倍数)
三、课堂小结
我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?
四、独立作业
完成练习二1~4题
因数和倍数教案【篇8】
教学内容:
《义务教育课程标准实验教科书 数学 (五年级下册)》第12~13页。
教学目标:
1.从操作活动中理解因数和倍数的意义,会判断一个数是不是另一个数的因数或倍数。
2.培养学生抽象、概括的能力,渗透事物之间相互联系、相互依存的辩证唯物主义的观点。
3.培养学生的合作意识、探索意识,以及热爱数学学习的情感。
师:人与人之间存在着许多种关系,你们和爸爸(妈妈)的关系是……?
师:对,我是你们的老师,你们是我的学生,我们的关系是师生关系。在数学中,数与数之间也存在着多种关系,这一节课,我们一起探讨两数之间的因数与倍数关系。(板书课题:因数与倍数)
师:现在我们来研究自然数中数与数之间的关系。请你们用12个小正方形摆成不同的长方形,并根据摆成的不同情况写出乘、除算式。
师:(指着第②组)像这样的乘、除法式子中的三个数之间的关系还有一种说法,你们想知道吗?请看课本p12。
生:2和6是12的因数,12是2的倍数,也是6的倍数。
师:也就是说,2和12、6的关系是因数和倍数的关系,这几组算式中,谁和谁还有因数和倍数的关系?
生:3、4和12有因数和倍数关系,3和4是12的因数,12是3和4的倍数。
生:我认为1和12也有因数和倍数关系。1是12的因数,12是1的倍数。
生:我认为可以,12×1=12,1和12都是12的因数。
师:说得真好,从上面3组算式中,我们知道1,2,3,4,6,12都是12的因数。
师:你能举一个算式,并说说谁是谁的倍数,谁是谁的因数吗?
生:2×4=8,2和4是8的因数,8是2和4的倍数。
生:40÷2=20,40是2和20的倍数,2和20是40的因数。
通过刚才的计算,你有什么发现?
师:所以在研究因数和倍数时,我们所说的数一般指整数,不包括0。
师生小结:这节课,你们都学会了哪些知识?还有什么不明白的地方?
生:我有一个疑问,在2×6=12中,2叫因数是指在算式中它的名称,而2是12的因数指的是2和12的关系,这两种说法一样吗?
生:我认为不一样,在2×6=12中,2叫因数是指在算式中它的名称,而2是12的因数指的是2和12的关系。
师:说的真好。这节课我们研究因数与倍数的关系中所说的因数不是以前乘法算式中各部分名称中的“因数”,两者可不能搞混哦!
1.下面每一组数中,谁是谁的倍数,谁是谁的因数。
2.下面的说法对吗?说出理由。
(1)48是6的倍数。
(2)在13÷4=3……1中,13是4的倍数。
(3)因为3×6=18,所以18是倍数,3和6是因数。
师:第(3)题有两种不同的意见,请反对意见的同学说说理由。
师:在说倍数(或因数)时,必须说明谁是谁的倍数(或因数)。不能单独说谁是倍数(或因数),也就是说:因数和倍数不能单独存在。
3.在36、4、9、12、3、0这些数中,谁和谁有因数和倍数关系。
4.游戏。请生任意写一个60以内的自然数(0除外),听老师说要求,所写的数符合要求的请举手,同桌互相检查。
② 请一名学生模仿刚才老师的要求,继续练习。
③ 想一想,应该提什么要求,让全班同学都能举手?
因数和倍数教案【篇9】
教学内容:新人教版小学数学五年级下册第13~16页。
教学目标:
1、学生掌握找一个数的因数,倍数的方法;
2、学生能了解一个数的因数是有限的,倍数是无限的;
3、能熟练地找一个数的因数和倍数;
4、培养学生的观察能力。
教学重点:理解因数和倍数的含义;自主探索并总结找一个数的因数和倍数的方法。
教学难点:自主探索并总结找一个数的因数和倍数的方法;归纳一个数的因数的特点。
教学具准备:学号牌数字卡片(也可让学生按要求自己准备)。
快乐学习、大胆言问、不怕出错!
谁能说说10的因数,你是怎么想的?
今天,我和大家一道来继续共同探讨“因数与倍数”
1、谁来说说18的因数有哪些?
a、让学生举手回答,随意点名回答。回答完后提示:老师觉得有点乱,有没有什么方法可以让这些找因数的方法有序些?
b、学生再次依照1*18,2*9,3*6的顺序一个个讲出乘法算式。接着追问:那18的因数就有???从1开始做手势:(1,18,2,9,3,6)有没有遗漏的呢?
学生预设:有的学生可能会说还有6*3,9*2,18*1等,出现这种情况时可以冷一下,让学生想一想这样写的话会出现什么情况,最后让学生明白一个数的因数是不能重复的。
c、可是老师觉得这样子写又有点乱,有没有更好的办法让人看得更清楚些,让这些数字的有序地排列?
可以用一串数字表示;也可以用集合圈的方法表示。
它最小的因数是几?
最大的因数是几?
2、做一做(在做这些练习时应放手让学生去做,相信学生的知识迁移与消化新知的能力)
a、30的因数有哪些,你是怎么想的?
b、36的因数有几个?你是怎么想的?为什么6*6=36,这里只写一个因数?
c、对比18、30、36的因数,分别让学生说说每个数最小的因数是几?最大的因数是几?各有几个因数?
d、让学生讨论:你从中发现了“一个数的因数”有什么相同的地方吗?
最大的因数是它本身;
因数的个数是有限的。
轻松一下:
我们来了解一点小知识:完全数,什么叫完全数呢?就是一个数所有的因数中,把除了本身以外的因数加起来,所得的和恰好是这个数本身,那这样的数我们就叫它完全数,也叫完美数,比如6~~(学生读课本14页完全数的相关知识)
因为有了前面探究找一个数因数的方法,在这一环节更可大胆让学生自己去想,去说,去发现,去归纳。教师只要适当做点组织和引导工作就行。
过渡:大家都很棒!这么快就找出了一个数的因数并总结好了它的规律,现在杨老师想放开手来让大家自己来学习下面的知识:找一个数的倍数。
a、2的倍数有哪些?你是怎么想的?从1开始做手势:1*2=2,2*2=4,2*3=6,一倍一倍地往上递加。
发现:这样子写下去,写得完吗?写不完,我们可以用一个什么号来表示?这个省略号就表示像这样子的数还有多少个?
b、那5的倍数有哪些?按从小到大的顺序至少写出5个来,看谁写得又快又好
c、对比“一个数的因数”的规律,学生自由讨论:一个数的倍数有什么规律呢?
(到这一环节就无需再提问了,要相信学生能够在类比中找到学习的方法)
学生总结:
因数和倍数教案【篇10】
师:请看大屏幕,这是36人列队操练,每排人数要一样多,可以怎样排列?同学们可以先同桌讨论,作好记录,再汇报。(引导生说:可以站几排,每排站几个。)
根据这些信息我们能列出哪些乘法算是呢?
板书:1×36=362×18=363×12=364×9=366×6=361
师:在4×9=36这个算式中,4和9叫什么?(因数)36是?(积),这是我们以前学的乘法各部分名称。其实,在整数乘法中,因数和积之间还存在一种相互依存的关系,也就是说4是36的因数,36是4的倍数。,同样,在这个算式中,我们还可以说9是36的?(因数),36是9的?(倍数)。
2、谁能像老师这样,说一说3×12=36他们之间的关系。(先请一个学生站起来说一说)
3、下面请同桌像刚才一样互相说一说另外三个算式中(1×36=36 2×18=36 6×6=36)谁是谁的倍数,谁是谁的因数,开始。(师巡视,指导差生)然后指名说一说
4、你能根据左边的乘法算式写出相应的除法算式吗?(师根据生的回答板书)
我们现在就以36÷4=9为例,你能从这个除法算式中说一说谁是谁的倍数,谁是谁的因数?(说好后再让学生逐个说出除法算式中的关系)
5、刚才同学们都说4是36的因数,那能单独说4是因数吗?(生发表意见)
到底可以不可以这样说,请看大屏幕,(课件出示:4×9=362×2=4),请你说说4是倍数还是因数?(课件着重强调数字“4”)
引导学生说:第一个式子中,4是36的因数,第二个式子中4是2的倍数。(课件出示结果)
师:从刚才的回答中你明白了什么?(引导生知道:因数和倍数是相互依存的,不能单独存在)
6、师:下面,请同学们看这个式子,说一说谁是谁的倍数,谁是谁的因数。(课件出示:4×5=20xx÷3=53+6=96-4=20.3×2=0.6)
生回答后,引导生知道:通过后三个算式使生进一步理解,倍数和因数都是建立在乘法或除法的基础之上的,他们的研究范围在非零自然数中。
7、你能根据上面所写的乘法算式或除法算式说出36的所有因数吗?
师;那么你知道怎样找一个数的所有因数呢?(同桌商讨后,指名回答,课件出示。)
找一个数的所有因数时,可以先写出用这个数作积的所有乘法算式,或者写出用这个数作被除数的所有除法算式,再写出它的所有因数。注意,最好按照顺序从小到大来写,这样不容易遗漏。
8、师:现在,我们来练习一下。同学们分组有序的找出15、16、24、25的所有因数吗?打开练习本,快速的写出来,开始。(师巡视指导困难学生)
师:看来同学们已经充分掌握了找一个数因数的方法,观察刚才我们找的这些数的因数,你有什么发现吗?(出示合作学习要求和目的)下面请小组合作,仔细观察、比较我们找出的这些数的因数,你从这几个例子中发现了什么?请把你的发现和小组的成员说一说,注意:当一个同学在说的时候,其他成员一定要认真听,不要打断别人的发言,开始。
引导学生发现:一个非0自然数,最小的因数是1,最大的因数是它本身。一个数的因数个数是有限的
1、师:找了这么多数的因数,现在我们来找一个数的倍数,好不好?
生写,师巡视。
2、指明汇报后,并说出你是如何找一个数的倍数的?
3、师:同学们,看来一个数的倍数真的是找不完啊,谁能说一说如何找一个数的倍数?
归纳(出示找一个数的倍数的方法):找一个数的倍数从它本身开始,用非零自然数1,2,3···去乘,就可以得到。
那请大家观察这些数的倍数,你又能发现什么呢?同桌两个先互相说一说,开始吧。
生发言。
4、引导学生发现:一个数的倍数个数是无限的,其中最小的倍数是它本身,没有最大的倍数。(课件出示)
师;同学们认识了倍数和因数,探索了因数和倍数的特点,并且能正确求一个数因数和倍数的,其实,这些这些知识就在课本125、126页,打开书本,看一看书上的老师是如何说的,并把需要填写的部分填写以下。
刚才我们在数学王国里学习了这么多有趣的数学知识,现在一起来挑战几道题,看看你们是否真正的掌握了,好不好?
五、小结:这节课同学们通过自己的努力又发现了数学海洋里的新知识,真让老师感到开心,在我们今后的学习中希望大家继续带着这些热情和精神去探索、去发现。
板书设计:
因数和倍数教案【篇11】
第九单元倍数和因数
【知识点讲解和梳理】
一、数的世界
1、认识自然数和整数,联系乘法认识倍数与因数。
整数:如-3,-2,-1,0,1,2,3,4,??这样的数叫做整数。
自然数:如0,1,2,3,4,5,??这样的数叫做自然数。
2、我们只在自然数(零除外)范围内研究倍数和因数。
3、倍数与因数是相互依存的关系,要说清谁是谁的倍数,谁是谁的因数。补充【知识点】:一个数的倍数的个数是无限的。
二、2,5的倍数的特征
1、2的倍数的特征。个位上是0,2,4,6,8的数是2的倍数。
2、5的倍数的特征。个位上是0或5的数是5的倍数。
3、偶数和奇数的定义。是2的倍数的数叫偶数,不是2的倍数的数叫奇数。
4、能判断一个数是不是2或5的倍数。
5.、能判断一个非
零自然数是奇数或偶数。
补充【知识点】:既是2的倍数,又是5的倍数的特征:个位上是0的数既是2的倍数,又是5的倍数。
三、3的倍数的特征
1、3的倍数的特征。
一个数各个数位上的数字的和是3的倍数,这个数就是3的倍数。
2、能判断一个数是不是3的倍数。
补充【知识点】:1、同时是2和3的倍数的特征:个位上的数是0,2,4,6,8,并且各个数位上的数字的和是3的倍数的数,既是2的倍数,又是3的倍数。
2、同时是3和5的倍数的特征:个位上的数是0或5,并且各个数位上的数字的和是3的倍数的数,既是3的倍数,又是5的倍数。
3、同时是2,3和5的倍数的特征。个位上的数是0,并且各个数位上的数字的和是3的倍数的数,既是2和5的倍数,又是3的倍数。
四、找因数
在1~100的自然数中,找出某个自然数的所有因数。
方法:运用乘法算式,思考:哪两个数相乘等于这个自然数。找一个数的因数,就是看它可以由哪两个因数相乘得到
补充【知识点】:一个数的因数的个数是有限的。其中最小的因数是1,最大的因数是它本身。
五、找质数
1、理解质数与合数的意义。
按因数的个数分类:大于1的自然数可以分为(质数)和(合数)。
一个数只有1和它本身两个因数,这个数叫作质数。
一个数除了1和它本身以外还有别的因数,这个数叫作合数。
2、1既不是质数也不是合数。
3、判断一个数是质数还是合数的方法:
一般来说,首先可以用“2,5,3的倍数的特征”判断这个数是否有因数2,5,3;如果还无法判断,
则可以用7,11等比较小的质数去试除,看有没有因数7,11等。只要找到一个1和它本身以外的因数,就能肯定这个数是合数。如果除了1和它本身找不到其他因数,这个数就是质数。
4、100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、、79、83、89、、97。
补充【知识点】既是质数,又是偶数的自然数(2);既是质数,又是奇数的最小数(3)
既不是质数,又不是合数的数(1);既是偶数,又是合数的最小数(4)
既是奇数又是合数的最小数(9);最大的一位合数,还是偶数(8)
六、数的奇偶性
1、运用“列表”“画示意图”等方法发现规律:
小船最初在南岸,从南岸驶向北岸,再从北岸驶回南岸,不断往返。通过“列表”“画示意图”的方法会发现“奇数次在北岸,偶数次在南岸”的规律。
2、能够运用上面发现的数的奇偶性解决生活中的一些简单问题。
3、通过计算发现奇数、偶数相加奇偶性变化的规律:
偶数+偶数=偶数奇数+奇数=偶数偶数+奇数=奇数
补充【知识点】:
大于2的偶数都是合数。(√)
所有的质数都是奇数。如:2(×)
一个数最小的倍数和最大的因数都是它本身。(√)
两个相邻的自然数必定一质一合。如:2和3(×)
最小的质数是2,最小的合数是4,最小的偶数是0,最小的奇数是1
(√)两个连续的自然数都是质数,这两个数是2和3(√)
两个质数的积一定是合数(√)
两个质数的和,可能是质数,也可能是合数。如2+3=53+5=8(√)
奇数+奇数=偶数奇数+偶数=奇数(√)
【重点知识归纳及讲解】
1、公约数、最大公约数和互质数的意义
(1)公约数的意义。几个数公有的约数,叫做这几个数的公约数。
如:12和18的公约数有:1、2、3、6.
(2)最大公约数的意义。几个数的公约数中最大的一个,叫这几个数的最大公约数。如:12和18的最大公约数是6.
(3)互质数的意义。公约数只有1的两个数,叫做互质数。如:3和8是互质数,15和16也是互质数。
①成为互质数的两个数,不限定必须是质数。
②质数和互质数的意义不同。质数是就一个数说的,互质数是就两个数的关系说的。
2、注意:求两个数的最大公约数的两种特殊情况。
①如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。如:15和45的最大公约数是15。
②如果两个数是互质数,它们的最大公约数就是1。如:8和15的最大公约数是1。
3、解题技巧指点:
(1)求几个数的最大公约数时,要正确地理解和运用“最大公约数乘半边”这一规律,即求最大公约数时,要把所有的除数都乘起来。
(2)用短除法求两个数的公约数时,不一定要用最小的质数去除,也可以用较大的合数甚至是最大的公约数去除。
(3)用短除法求两个数的最大公约数时,最后的两个商一定要是互质数,否则,求得的结果就不是最大公约数。
(4)正确判断是求已知几个数的最大公约数还是求最小公倍数是应用题的解题关键。技巧是:如果所求的数能够整除几个已知同类数,是求最大公约数的问题;如果所求数必须能同时被已知几个同类数整除,是求最小公倍数问题。如:
①用某数去除23、32结果都余2,问这个数最大是多少?(求最大公约数问题)
②某班同学如果每8人一组,或是每12人一组,结果都差3人,求某班学生最少有多少人?(求最小公倍数问题)
4、求两个数最小公倍数的两种特殊情况。
(1)如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数,如:12和6的最小公倍数是12.
(2)如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。
5、求三个数的最小公倍数的方法.
先用三个数的公有质因数去除,当三个数公有的质因数都找尽以后,再用任何两个数的公有质因数去除,把不能整除的那个数移下来,写在商的位置上,一直除到最后的三个商每两个数都是互质数(两两互质)为止。再把所有的除数和商都乘起来。
例1、求18和30的最大公约数。
分析:
用短除法求两个数的最大公约数。一般先用这两个数公有的质因数连续去除,一直除到所得的商是互质数为止,然后把所有的除数连乘起来。
解:
3、求最大公约数的实际应用。
例2、有两根木料,一根长12米,另一根长18米,现在要把它们截成相等的小段,每根不许有剩余,每小段最长是多少?一共可以截成多少段?
分析:
这里求每小段最长是多少米,就是求12和18的最大公约数。
2+3=5(段)
答:每小段最长6米,一共可以截5段。
4、求两个数的最小公倍数的方法。
例3、求18和30的最小公倍数。
分析:
用短除法求两个数的最小公倍数。一般先用这两个数公有的质因数连续去除,一直除到所得的商是互质数为止,然后把所有的除数和商连乘起来。
答:18和30的最小公倍数是2×3×3×5=90.
5、求最小公倍数的实际应用。
例4、一些小朋友分组做游戏,第一次分组每组4人余下2人,第二次分组每组5人也余下2人,第三次分组每组6人还是余下2人。问最少有多少名小朋友做游戏?
分析:
根据题意,要求最少有多少名小朋友做游戏,就是在求出4、5、6这三个数的最小公倍数后,再加上2。
第九单元倍数和因数
知识点:因数和倍数的含义
练习:1、4×3=12,()是()的因数,()是()的倍数。
2、3×6=18,所以3是因数,18是倍数。()【判断】
3、因为12÷()=(),所以20是()和()的倍数。【填空】
知识点:求一个数的因数和倍数
练习:1、一个数最小的因数是(),最大的因数是(),一个数因数的个数是()的。如18的最小因数是(),最大因数是()。【填空】
2、一个数最小的倍数是它(),()最大的倍数。一个数倍数的个数是()的。如:4的最小倍数是()。
3、写出7的倍数:(),40以内6的倍数(,30的因数()。91的因数()。
4、在4、6、8、12、16、18、20、24这八个数中,4的倍数有(),
6的倍数有(),既是4的倍数又是6的倍数有()。【填空】
5、在1、2、3、4、6、12、18这些数中,12的因数有(),18的因数有(),既是12的因数又是18的因数有()。【填空】
6、一个数既是40的因数,又是5的倍数,这个数可能是()。【填空】
7、一个数的最小倍数减去它的最大因数,差是()。一个数的最小倍数除以它的最大因数,商是()。
8、如果a的最大因数是17,b的最小倍数是1,则a+b的和的所有因数有()个;a-b的差的所有因数有()个;a×b的积的所有因数有()个。【填空】
9、一个数的最大因数是17,最小倍数是17,这个数是()。【填空】
练习:1、个位上是()的数,都能被2整除;个位上是()的数,都能被5整除。【填空】
2、在18、29、45、30、17、72、58、43、75、100中,2的倍数有();3的倍数有();5的倍数有(),既是2的倍数又是5的倍数有(),既是3的倍数又是5的倍数有()。【填空】
3、按要求做。从0、3、5、7、这4个数中,选出三个组成三位数。【填空】
(1)组成的数是2的倍数有:
(2)组成的数是5的倍数有:。
(3)组成的数是3的倍数有:。
4、不计算,判断哪几道题的结果没有余数。【选择】
48÷3□57÷3□342÷3□567÷3□802÷3□
5、要使7□这个两位数是3的倍数,□里可以填();三位数□12是3的倍数,□里可以填();三位数3□5是3的倍数,□里可以填()。
6、3的倍数都是9的倍数,9的倍数都是3的倍数。()【判断】
7、任何奇数加上1后都是2的倍数。()【判断】
8、个位上是3、6、9的数都是3的倍数。()【判断】
9、671至少加上()或减(),所得的自然数就是3的倍数。【填空】
10、同时是2和5倍数的数,最小两位数是(),最大两位数是()。
11、同时是2、3、5的倍数的数,最小是(),最小的三位数是()
12、4的倍数都是2的倍数,2的倍数都是4的倍数。()【判断】
13、12□既是2的倍数,又是3的倍数,□可以填()【填空】
14、一个数既是2的倍数,又是3的倍数,这个数是()的倍数,一个数既是2的倍数,又是5的倍数,这个数是()的倍数,一个数既是3的倍数,又是5的倍数,这个数是()的倍数.
知识点:奇数、偶数、素数和合数
练习:1、在27、68、44、72、587、602、431、800中。【填空】
奇数是:,偶数是:。
2、在2、3、45、10、22、17、51、91、93、97中。【填空】
质数是:,合数是:。
3、在自然数中,最小的奇数是(),最小的质数是(),最小的合数是()。【填空】
4、质数只有()个因数,它们分别是()和()。一个合数至少有()个因数,()既不是质数,也不是合数。自然数中,既是质数又是偶数的是()。【填空】
5、在1—20的自然数中,奇数有(),偶数有()素数有(),合数有()。既是奇数又是合数的数是(),连续的两个合数是()。【填空】
6、素数都是奇数,合数都是偶数。()【判断】
7、三个连续自然数,连续奇数,连续偶数的和都是3的倍数。()【判断】
8、下面是银湖小学四年级各班人数。()个班可以分成人数相等的小组,()个班不可以分成人数相等的小组。
9、按要求写出两个连续的自然数。【填空】
(1)两个数都是素数:()和()。
(2)两个数都是合数:()和()。
(3)一个数是素数、一个数是合数:()和()。
因数和倍数教案【篇12】
教学内容:
人教版小学数学五年级下册,因数与倍数的整理复习。
教学目标:
1、知识目标:归纳整理“因数和倍数”的有关概念,理解并掌握概念间的内在联系,形成认知结构。
2、技能目标:亲历数学知识的整理过程,培养学生的观察分析、比较、概括、判断等逻辑思维能力。
3、情感目标:在整理和复习的过程中,培养学生合作,交流的意识,渗透事物间互相联系,互相依存的辩证思想
教学重点:
概念间的联系和发展,运用所学的知识解决实际问题。
教学难点:
归纳和整理知识点,形成知识网络
课前活动:
1、要求学生对每个知识点的意义理解并熟练掌握。
2、把自己的整理情况写在作业本上。
本章知识点:
1、因数与倍数的意义
2、求一个数的因数和倍数的方法
3、2的倍数特征
4、奇数、偶数的概念
5、5的倍数特征
6、3的倍数特征
7、质数和合数的概念、区别
复习提纲:
教学程序:
第一步:创设情境,激趣导入
师:同学们,我们学习完因数和倍数这章知识,老师这有两个问题想考考你们,看谁的反应快,你们愿不愿意?
师:你能用因数和倍数的知识描述一下4这个数吗?
(4是自然数,合数、偶数,是8的因数,4是2的倍数)
师:你又能描述一下5吗?
(5是奇数,是10的质因数)
小结:同学们很聪明!不过,这些知识并不是孤立存在的,它们之间还有很多联系,这节课,我们就一起进一步整理复习这些内容,理顺它们之间的联系。
(板书:因数与倍数的整理复习)
第二步:发放复习提纲,布置复习任务
1、发放提纲
2、作要求
第三步:自主复习,回顾旧知识
先自己想一想,要怎么做这些题,如何回答?怎样举例?考虑之后就可以在组内交流。
第四步:合作学习、质疑问难
1、合作交流学习
2、师巡视指导
第五步:展示交流,师适时补充点拔
1、展示汇报
2、师适时点拔,补充(老师也做了相应的整理,我们一起看看板书)
第六步:知识巩固、拓展训练
技能训练题:
1、按要求填数,在1—10的自然数中,选择合适的数填入圈内。
质数 合数 偶数 奇数
既是质数又是偶数 既是合数又是奇数
2、判断
(1)12是倍数,2是因数。( )
(2)1是奇数也是质数。( )
(3)奇数都是质数,偶数都是合数。( )
(4)质数没有因数,合数有无数个因数。( )
(5)所有的偶数都是合数。( )
3、我的手机号码是:A B C D E F G H I J K ,注意每个字母代表一个数字,愿不愿意知道老师的手机号码:
A——既不是质数也不是合数( )
B——最小的奇数的3倍( )
C——5的最小倍数( )
D——比最小的质数大5( )
E——8的最大因数( )
F——3的最小倍数( )
G——最小的偶数( )
H——最小的偶数( )
I——2和5之间的奇数( )
J——既是5的倍数又是5的因数( )
K——比最小的合数小1( )
老师的手机号码是:_________
第七步:小结
今天这节课我们复习了因数与倍数;2、5、3的倍数特征:质数和合数这几个方面的知识,如果说有哪些地方弄不清楚,那么你们刚才破译出了老师的手机号码,下来可以拨打我的号码,老师随叫随到,可以帮助你,谢谢同学们的合作。
板书:
因数与倍数
a×b=c(a≠0,b≠0),
数的意义 a和b就是c的因数,
c就是a和b的倍数
因数与倍数
1、一个数的因数的个数是有限的,
求一个数的因 一个数的倍数的个数是无限的。
数和倍数的方法
2、求一个数的因数,要一对一对地找,看哪两个自然数的积等于这个数,那两个数就是这个数的因数。
1、2的倍数特征:个位上是0、2、 4、6、8的数都是2的倍数。
2的倍数特征
2、奇、偶数:自然数中,是2的倍数的数叫偶数,不是2的倍数的数叫做奇数。
5的倍数特征:个位上是0或5的数都是5的倍数
3的倍数特征:一个数各个数位上的数字的和是3的倍数,这个数就是3的倍数
2、5、3的倍数特征:个位上是0,各个数位上的数 的和是3倍数,这样的数就是2、5、3的倍数
1、质数:一个数只有1和它本身的个因数,这个数叫质数。
质数和合数
2、合数:一个数除了1和它本身以外,还有别的因数,这个数叫合数。
3、1既不是质数,也不是合数
公倍数教案7篇
愿这份"公倍数教案"能够为您提供有价值的信息。每个老师在上课前会带上自己教案课件,因此每天老师都会按质按时去写好教案课件。 精心准备的教学教案能够指导教师更好地开展教学活动。您肯定会发现很多有用的信息!
公倍数教案 篇1
公倍数和最小公倍数这部分内容,是在学生理解了倍数的基础上教学的。
本节课需要完成的教学目标有:
1、使学生在具体的操作活动中,认识公倍数和最小公倍数,会在集合图中分别表示两个数的倍数和它们的公倍数。
2、使学生学会用列举的方法找到10以内两个数的公倍数和最小公倍数,并能在解决问题的过程中主动探索简捷的方法,进行有条理的思考。
3、使学生在自主探索与合作交流的过程中,进一步发展与同伴进行合作交流的意识和能力,获得成功的体验。
本课的教学重点是公倍数与最小公倍数的概念建立。教学难点是运用“公倍数与最小公倍数”解决生活实际问题。
在教学公倍数的概念时,让学生经历操作、思考的过程,认识公倍数。如例1安排了用长3厘米、宽2厘米的长方形纸片分别铺边长是6厘米和8厘米的正方形的操作活动,通过学生的操作,引导学生观察正方形的边长与长方形的长、宽之间的关系,让学生看看正方形每条边各铺了几次?怎样用算式表示?,来说明为什么长3厘米,宽2厘米的长方形能铺满边长6厘米的正方形,不能铺满边长8厘米的正方形,接下来让学生思考这样的长方形纸片还能铺满边长是多少厘米的正方形?学生思考后,回答12厘米、18厘米、24厘米,从而引出公倍数的概念,再强调因为一个数的倍数的个数是无限的,所以两个数的公倍数的个数也是无限的,用省略号表示,最后让学生说明8是2和3的公倍数吗?为什么?让学生在自主参与、发现、归纳的基础上认识并建立公倍数的概念的过程。
学生在已经掌握公倍数的概念的基础上,让学生学习怎样找两个数的公倍数,学以致用。教学例2时,让学生独立思考,自主探索解决问题的方法,然后小组交流。通过具体的运用,巩固公倍数的概念。让学生说说怎样找6和9的公倍数,学生说了三种方法,一是先找9的倍数,从9的倍数中找6的倍数;二是分别找出6和9的倍数,再从中找出公有的倍数;三是先找6的倍数,再从中找出9的倍数,通过比较三种方法,让学生感受哪种方法比较简捷。在此基础上,揭示最小公倍数的含义,并介绍用集合圈的形式来表示6和9的倍数和公倍数,通过学生自主学习,弄清怎样用集合图来表示两个数的公倍数。帮助学生更加直观地理解概念,感受数学方法的严谨性。
一、说教材
(一)教材分析:
1、教学内容:
最小公倍数第一课时。是引导学生在自主参与、发现、归纳的基础上认识并建立并理解最小公倍数的概念的过程。
2、结合学情与新课程标准对本环节的要求,分析教材编写意图:
五年级学生的生活经验和知识背景更为丰富,新课程标准要求教材选择具有现实性和趣味性的素材,采取螺旋上升的方式,由浅入深地促使学生在探索与交流中建立公倍数与最小公倍数的概念。
在此之前,学生已经了解了整除、倍数、因数以及公因数和最大公因数。通过写出几个数的倍数,找出公有的倍数,再从公有的倍数中找出最小的一个,从而引出公倍数与最小公倍数的概念。接着用集合图形象地表示出4和6的倍数,以及这两个数公有的倍数,这一内容的学习也为今后的通分、约分学习打下的基础,具有科学的、严密的逻辑性。
(二)对教材的处理意见
1、教材中铺砖对于理解公倍数与最小公倍数的意义,比较抽象,不利于建立对概念的理解。所以把“原来铺墙砖”的题目改为“找两人的共同休息日”来建立概念。原因有三:首先,学生的学习内容应该是现实的、有意义的、富有挑战性的;其次,有效的数学活动必须建立在学生的认知发展水平和已有的知识经验基础之上;再者,课堂中最有效的时间是前15钟,做好这段时间的教学,有利于提高学习效率。从而把这一比较难理解的环节放在后面。
2、新授课中补充生活实例,引导学生从意义的理解来,解决实际问题,通过解决问题来理解意义。理由是:数学教学应密切联系学生的现实生活,使学生感到数学就在自己身边。
3、课堂习题进行了有明确针对性与目的性的改变。(后述)
(三)教学目标及教学重、难点
1、教学目标
(1)理解两个数的公倍数和最小公倍数的意义。
(2)通过解决实际问题,初步了解两个数的公倍数和最小公倍数在现实生活中的某些应用,体验解决问题策略的多样化。
(3)渗透集合思想,培养学生的抽象概括能力。
2、教学重点
公倍数与最小公倍数的概念建立。理由是:《标准》中要求4—6年级的学生能找出10以内任意两个自然数的公倍数与最小公倍数,因此,本节课的重点应放在学生对数的概念的认识上。
3、教学难点
运用“公倍数与最小公倍数”的知识解决简单的生活实际问题。理由是:《标准》中指出人人学有价值的数学,让学生通过观察、操作、反思等活动获得基本的数学技能。但小学生的生活实际问题的解决能力普遍较低,所以要达到《标准》中的要求这无疑是重点中的难点。
二、说学法
1、学情分析
小学生的动手欲较强,学生认识数的概念时更愿意自主参与,自己发现。再者,学生个人的解题能力有限,而小组合作则能更好地激发他们的数学思维,通过交流获得数学信息。
2、学法指导
通过动手,让学生在月历纸的上动手找一找,圈一圈;通过动口,在概念揭示前,学生动口说一说。给学生机会说动手之后的感悟,还可以在个人表达的同时倾听他人的说法。
三、说教法
为了实现教学目标,达到《标准》中的要求,也为了更好的解决教学重、难点,我将本节课设计成寓教于乐的形式,将教学内容融入一环环的学生自主探索发现的过程中。
1、利用情境引入新课,通过月历探索新知。
学生在月历上找日期,清楚形象的看到两个数的倍数关系
2、顺其自然地渗透概念,初步理解公倍数和最小公倍数。
学生探索后,用自己的语言梳理新知,学生便能在环环相扣的教学进程中顺理成章的理解概念,沟通二者之间的联系。
3、创设问题情境,尝试应用,方法提炼。
结合教学内容特征,创设富有生活情趣的问题情境,利用学生的生活经验与知识背景,鼓励学生解决简单的实际问题,激活学生的数学思维,提高解题技能。
4、巩固练习、不断刺激,不断巩固提升。
四、教学具准备:印有月历纸、多媒体。
五、具体的教学过程:
我设计的总体理念:让学生在自主参与的基础上感悟、理解、应用、巩固。将直观演示与抽象思维相结合。我的教学流程如下:
(一)、利用学具,导入新课(本环节为解决教学重点)
1、 学生在预先发放的月历纸上按照老师的要求,在上面找出4和6的倍数的日期。
2、引导学生观察所找出的日期数,有意识地引导学生发现日历上的有特征的数,从而引出公倍数与最小公倍数。
3、把生活问题提炼为数学问题,学生用自己的语言概括公倍数与最小公倍数的概念。
(二)、创设情境,应用知识:(本环节为解决教学难点)
1、出示同学排队的题目。理由是:用富有生活问题的情境,激发学习兴趣,再次打通生活与数学的屏障。
2、合作交流解决问题,方法提炼。
(三)、练习巩固(讲清练习的层次)
1、学会用最基本的方法求两个数的最小公倍数。
2、用这样的知识解决生活中的问题。
(1)找生日。基本——拓展
(2)铺墙砖。用数学方法来解释生活现象,隐含着求公因数与求公倍数的联系。
(四)、课堂小结
学生回忆整堂课所学知识。学生通过这一环节可以将整个学习过程进行回顾、按一定的线索梳理新知,形成整体印象,便于知识的理解记忆。
公倍数教案 篇2
教学目标
知识目标
理解公倍数、最小公倍数的概念。
能力目标
初步掌握求两个数的最小公倍数的方法
情感目标
培养学生抽象概括的能力和实际操作的能力。
重点
理解公倍数、最小公倍数的概念。
难点
初步掌握求两个数的最小公倍数的方法。
教学过程
教学预设
个性修改
目标导学
复习激趣《最小公倍数》教学设计目标导学《最小公倍数》教学设计自主合作《最小公倍数》教学设计汇报交流《最小公倍数》教学设计变式训练
创境激疑
一、复习引入
1.你能求出下面每组数的最大公因数吗?
3和86和1113和2617和51
2.求30和42的最大公因数。
教师:前面我们已学过两个数的约数和最大公因数,现在我们来研究两个数的倍数。
合作探究
二、教学过程
1.教学例1:4和6公有的倍数是哪几个?公有的最小倍数是多少?
4的倍数有:4、8、12、16、20、24、28、36……
6的倍数有:6、12、18、24、28、32、36……
4和6公有的倍数有:12、24、36……
4和6公有的最小倍数是:12
2.教学例2:怎样求6和8的最小公倍数?(学生思考方法)你们都有什么好的办法吗?
(1)采用列举的方法,分别找出6和8的各自倍数,再分析它们的最小公倍数。
(2)采用列表的方法,将6和8的倍数分别列成图表,再找出它们的最小公倍数。
(3)我们通常用分解质因数的方法来求几个数的最小公倍数。把6和8分解质因数,写出短除的竖式并指出它们公有的质因数是哪些?
①6(或8)的倍数必须包含哪些质因数?6=2×3;8=2×2×2
②6和8的公倍数必须包含哪些质因数?(2×3×2×2)
(4)总结求最小公倍数的一般方法并让学生分组讨论写成这种形式后该怎样做。
3、教学例3:
一种墙砖长3分米,宽23分米,现在用这种墙砖铺一个正方形(用的墙砖都是整块),正方形的边长可以是多少分米?最小是多少分米?
(1)学生观察图中内容,分析图中已知内容和问题分别是什么?
(2)独立思考问题并在纸上画一画。
(3)小组讨论,找出问题的答案。
解决方法:这个正方形的边长必须既是3的倍数,也是2的倍数。
思考:3和2公有的倍数是哪几个?其中最小的一个是多少?有无最大的?为什么?
拓展应用
总结求最小公倍数的一般方法并让学生分组讨论写成这种形式后该怎样做。
总结
今天你有什么收获?
作业布置
72页10、12题
板书设计
最小公倍数
1.教学例1:4和6公有的倍数是哪几个?公有的最小倍数是多少?
4的倍数有:4、8、12、16、20、24、28、36……
6的倍数有:6、12、18、24、28、32、36……
4和6公有的倍数有:12、24、36……
4和6公有的最小倍数是:12
2.教学例2:怎样求6和8的最小公倍数?(学生思考方法)你们都有什么好的办法吗?
公倍数教案 篇3
教学内容:苏教版教材25页的5鈥?题及思考题。
教学目标:
1、通过练习与对比,使学生发现和掌握求两个数最小公倍数的一些简捷方法,进行有条理的思考。
2、通过练习,使学生建立合理的认知结构,形成解决问题的多样策略。
3、在学生探索与交流的合作过程中,进一步发展学生与同伴合作交流的意识和能力,感受数学与生活的联系。
教学重点、难点:
通过学习使学生建立合理的认知结构,发现和掌握求两个数最小公倍数的一些简捷方法,进行有条理的思考。
教学过程:
一、自主练习,探究规律。
现在是三月学雷锋月,智慧老人说要挑选一批聪明的志愿者前往智慧岛,帮智慧岛上的人们做好事。你们想去吗?要通过了以下两关,才能获得开往智慧岛的车票:
【设计意图:结合三月学雷锋活动创设情境,激发学生参与学习活动的兴趣,使学生带着高昂的兴致投入到下面的练习当中。】
第一关:抢答题
求4和6的公倍数和最小公倍数。(电脑出示,学生回答)
4的倍数有:__________________
6的倍数有:__________________
4和6的公倍数有:_______________
4和6的最小公倍数是:_____
老师介绍最小公倍数的另一种表示方法:[4,6]=12
师:还有其他找公倍数和最小公倍数的方法吗?
根据学生回答小结。
师:同学们真不简单,用不同的方法找到了4和6的公倍数和最小公倍数。那下面可以进入第二关了。
第二关:求出下面每组中两个数的最小公倍数。(电脑出示)
第一组8和23和95和78和3第二组9和101和55和104和8
1、师:除了列举法,有没有更快的方法可以求两个数的最小公倍数呢?下面我们全班同学分成两大组进行比赛,第一大组的同学求这4组数的最小公倍数,第二大组求右边4组数的最小公倍数,看哪组的同学找得又快又准确!
(学生在教师发的练习纸上做,教师巡视指导)
师:谁来说说看,这几组数的最小公倍数分别是多少?
2、分组交流,观察规律。
师:观察每组中两个数的最小公倍数,看看有什么发现?跟小组里的同学说一说。
师:第一组中的两个数有什么特征呢?
师根据学生回答小结:倍数关系的两个数的最小公倍数是其中较大的那个数。
师:你能照样子说出一组有这种关系的数吗?
师:第二组中两个数的最小公倍数又有什么规律?(生交流)
师根据学生交流小结:这一组中,两个数的最小公倍数是这两个数的乘积。
根据学生回答,电脑出示小结:
(1)有倍数关系的两个数,其中较大的数就是它们的最小公倍数。
(2)两个数的乘积就是它们的最小公倍数。
3、利用规律,解决问题。
抢答:很快说出下面每组两个数的最小公倍数。
2和105和83和67和38和910和4
恭喜大家!已经顺利过关,获得开往智慧岛的车票。
【设计意图:以闯关的形式复习前面所学的有关倍数、公倍数、最小公倍数的相关知识,在此基础上进一步以分组比赛的形式让学生在求几组数的最小公倍数、分组、观察、交流等活动中自主探究每组中两个数最小公倍数的规律。培养了学生善于观察、发现规律的良好学习习惯。】
二、联系实际,解决问题。
1、开往智慧岛的车有两辆,1号车每隔7分钟发一辆车,2号车每隔8分钟发一辆车。两路车在7:00同时发车,那这两路车下一次同时发车是什么时间?
师:请同学们先填写表格。
师:我们一起来看看这题应该怎样填写。
师:从表中可以看出这两路车第二次同时发车的时间是?
(2)指导寻找其它方法。
师:是否有其它方法解决这个问题?
师:这两路车第二次同时发车的时间7∶56,7∶56中的56与7和8有什么关系?
师:还可以怎样解答这道题?
2、我们要准备上车了,要买多少张票呢?一个同学说了,我们班的同学无论每行排6人或每行排8人,都能排成一个长方形队伍。这个班的同学,有多少人呢?
师:每行排6人或每行排8人,都能排成一个长方形队伍。这句话你怎样理解?
师:那这些小朋友可能是多少人?
师:那究竟是多少人呢?
师:为什么?。
师:看来,我们在解决问题的时候,还要联系生活实际。现在我们出发了,来到智慧岛,看智慧老人给我们安排的第一项工作是什么?
【设计意图:结合到智慧岛乘车、买票的情境设计练习题,既让学生掌握了运用数学知识解决实际问题的能力,也让学生体会到数学知识的应用价值。】
3、给小鸟找朋友:任意选两个数说出它们的最小公倍数。
1234567
【设计意图:这道开放题的设计能给不同层次的学生提供体验成功喜悦的机会,并进一步巩固了运用规律很快地求两个数的最小公倍数的方法。】
4、智慧岛上的花圃每隔3天要浇一次水,草丛每隔7天浇一次水,今天我们同时给花圃和草丛浇水,请问再过几天又要同时给花圃和草丛浇水呢?
师:自己做一做看看答案是多少?
师:你是怎样想的呢?
5、生活智者
同学们的表现真棒!相信智慧老人一定非常欣赏大家!我们知道,知识源于生活,现在,老师想看看谁才是生活的智者,能够运用今天学的数学知识来解决一些生活中的问题。出示练习四第8题
(1)出示题目,理解题意。
师:请同学们看这样一道题。
(2)指导方法。
师:小林每隔6天去一次指7月31日去过以后,8月6日、12日再去并依次类推。小军每隔8天去一次指7月31日去以后,8月8日、8月16日再去并依次类推。
师:你能说说,他们下次相遇,是在几月几号呢?你是怎么知道的?
师:要知道他们再次相遇的日期,其实就是求什么?
师:你准备用什么方法求6和8的最小公倍数?
小公倍数,就是下次相遇的日期。
师:他们下次相遇的日期是?
6、小小设计师:分小组用手中的长方形拼一拼,算一算。
给智慧岛上的人们设计一个正方形的舞台,计划用长5分米、宽4分米的长方形瓷砖来铺地面,要让瓷砖刚好铺满而没有剩余,正方形舞台的边长至少有多长?
【设计意图:把学生带进智慧岛挑战不同层次、不同类型的题目,能大大激发学生参与学习活动的积极性,并在解决问题的过程中,体会到数学来源于生活,又应用于解决生活实际问题当中去。】
三、总结全课,发展延伸。
师:经过同学们的努力,已经出色地完成了智慧老人给我们安排的任务了。那在这节课中,你有什么收获呢?你觉得你或者其他同学的表现怎么样?
师:老师这里还有一道思考题,请同学们看看。
暑假期间,小华、小明和小芳都去参加游泳训练。小华每隔3天去一次,小明每隔4天去一次,小芳每隔6天去一次。8月1日三人都参加了游泳训练后,几月几日他们又再次一起参加训练?
同学们真聪明,真善于动脑,想到了这么多解决问题的好方法,看来只要积极动脑,没有解决不了的问题,让我们给自己一点掌声吧。
【设计意图:给学生一个梳理知识的机会,并在自我评价、评价他人的过程中,肯定自已或他人表现好的方面,反思不足,从而促进学生在后面的学习中不断努力在各方面做得更好。另外,思考题的出示能进一步激发学生灵活运用知识解决问题的欲望,使学生的数学思维得到发展,同时也更好地体会到学习数学的趣味所在。】
公倍数教案 篇4
教学内容:教科书第30页,练习五第12~14题、思考题。
教学目标:
1.通过练习,使学生进一步掌握求两个数最大公因数和最小公倍数的方法,进行有条理思考。
2.通过练习,使学生建立合理的认知结构,锻炼学生的思维,提高解决实际问题的能力。
教学重点:进一步理解公倍数和公因数的含义,弄清它们的联系与区别。
教学难点:弄清公倍数和公因数联系与区别。
教学过程:
一、揭示课题
今天我们继续完成一些公因数、公倍数的有关练习。
二、基础训练
1.写出36和24的公因数,最大公因数是多少?
2.写出100以内10和6的公倍数,最小公倍数是多少?
学生独立完成,汇报交流。
说说自己是用什么方法找到的?
三、综合练习
1.完成练习五第12题。
谁能说说什么数是两个数的公倍数?两个数的公因数指什么?
在书上完成连线后汇报方法。
你是怎样找出24和16的公因数的?你是怎样找到2和5的公倍数的?
2.完成第13题。
独立完成。交流各自方法。
3.完成第14题。
独立完成。交流各自方法。
求最大公因数和最小公倍数的方法有什么相同和不同?
什么情况下可以直接写出两个数的最大公因数?什么情况下可以直接写出两个数的最小公倍数?
4.完成思考题。
(1)小组讨论方法。
(2)指导解法。
把46块水果糖分给同学后剩1块,也就是同学们分了多少块糖?(46-1)38块巧克力分给同学后剩3块,也就是分了多少块巧克力?(38-3)每种糖都是平均分给这个小组的同学,因此这个小组的`人数既是45的因数,又是35的因数。要求小组最多有几人,就是求45和35的什么?(最大公因数)(45,35)=5因此这个组最多有5名同学。
5.阅读“你知道吗”介绍了我国古代求两个数的最大公因数的重要方法————辗转相除发法,以及用短除法求两个数的最大公因数和最小公倍数的符号表示方法
四、课堂
大家在学习公倍数和公因数这一单元时,首先要明白公倍数和公因数的意义,最大公因数和最小公倍数的意义,其次要掌握找公倍数、公因数、最小公倍数、最大公因数的方法,才能为后面的学习做好准备。
公倍数教案 篇5
教学内容:人教版义务教育教科书数学五年级下册第68—69页。
教学目标:
1. 学生结合具体情境,体会并理解公倍数和最小公倍数的含义,会在集合图中表示两个数的倍数和公倍数。
2. 通过自主探索,使学生经历找公倍数的方法,会利用列举法等方法找出两个数的公倍数和最小公倍数。
3. 在探索交流的学习过程中,使学生获得成功的体验,激发学生的学习兴趣。 教学重点:理解公倍数和最小公倍数的含义。
教学难点:用不同的方法求两个数的公倍数和最小公倍数。
教学过程:
一、游戏导入
同学们都知道自己的学号吧,我叫到学号的同学请起立,看看谁的反应快。(课件出示:学号是4的倍数的同学请起立;是6的倍数的同学请起立)哪些同学站起来2次?请站起来两次的同学再次起立,依次报出你们的学号。
师:想一想,他们为什么站起来两次?
生:因为他们既是4的倍数也是6的倍数。
师:你能给它起个名字吗?(板书公倍数)这节课我们就来研究关于公倍数的问题。 设计意图:说明通过报数游戏,让学生在研究现实问题的情境中学习数学,激发学生的学习积极性。
二、自主探索
(一)公倍数和最小公倍数的概念
1. 回忆学习方法
师:请同学们回忆,我们是怎样研究公因数的?
生:先分别写出两个数的因数;从这些因数中找出相同的因数就是公因数;其中最大的一个因数就是这两个数的最大公因数。
师:我们就用这样的方法来研究游戏中4和6的公倍数问题。
2. 自主探究
学生在练习本上独立找出4和6的公倍数。
3. 汇报交流
学生交流自己的学习成果,同学间互相讨论。(两个数有没有最大的公倍数?为什么?)
4. 小结概念,课件演示集合图。
12,24,36,……是4和6公有的倍数,叫做它们的公倍数。其中,12是最小的公倍数,叫做它们的最小公倍数。
设计意图:因为学生前面已经学习了公因数,这里让学生通过迁移的方法,很快地认识到这方面的知识,从而使学生获得成功的体验。
(二)求两个数的公倍数和最小公倍数的方法。
师:请用你想到的方法找出6和8的公倍数和最小公倍数。
(1)学生独立完成,全班交流。
(2)学生交流方法有:
①列举法:先找倍数,再找公倍数,最后找出最小公倍数。
例如:6 的倍数:6,12,18,24,30,36,42,48,……
8 的倍数:8,16,24,32,40,48,……
6 和 8 公倍数:24,48,……6 和 8 的最小公倍数:24
②用集合图表示也很清楚。
③6 的倍数中有哪些是 8 的倍数呢? 或者8 的倍数中有哪些是 6 的倍数呢?
师:这么多方法,你喜欢哪一种?
通过观察,想一想:①两个数的公倍数和它们的最小公倍数之间有什么关系?
练习:18和24 15和25
三、课堂练习:
找出下面每组数的最小公倍数,看看有什么发现?
3 和 6 2 和 8 5和 6 4 和 9 3和9 5和10
交流你的发现:若两数互质,两数直接相乘求最小公倍数;若两数含有倍数的关系,较大数是两数的最小公倍数。
你能举个例子吗?
四、独立作业:数学书71页2题
五、课堂小结:
师:今天学习了什么知识?你有什么收获?
生:几个数公有的倍数叫做这几个数的公倍数。其中最小的一个叫做这几个数的最小公倍数。
找两个数公倍数和最小公倍数的方法等等。
板书设计:
公倍数教案 篇6
课时:1
教学准备:
教学目标:1、复习、整理本单元的基本概念,在练习中进一步理解公因数、最大公因数、最简分数等概念。
2、通过输理、比较,建立相关概念的关系。
3、、在游戏、应用中体验数学的趣味性。
基本教学过程:
一、一、基本练习
1、复习找因数、公因数的方法:
练习第一题。
学生填写后,说说你是怎么想的。巩固找公因数的方法。
2、复习约分的方法:
练习第二题先约分,再连线。
二、运用知识模型:
1、复习分数的意义、约分等知识的综合运用。
第3题。
让学生自己用分数表示,并交流自己的思考方法。
2、第4题。
先让学生找出分数,并说说自己的思考方法?
3、第5题。
本题开放性强,学生可以自由分割,并用分数表示。
三、思考题:
本题先要帮助学生理解题意,并思考:选择怎样的地砖才能没有剩余?引导学生认识到问题的实质是要求24和30的公因数是1、2、3、6,因此可以选边长是1dm,2dm,3dm,6dm的方转。
四、实践活动:
先让学生用最简分数表示小明一天中每项活动的时间,巩固分数的意义、分数与除法、约分等知识。然后让学生自己设计一张表格,并用分数知识进行交流。
四、总结:教学反思:
内容:公倍数与最小公倍数
课时:1
教学准备:
教学目标:1、结合具体情境,体会公倍数和最小公倍数的应用。理解公倍数和最小公倍数的意义。
2、探索找公倍数的方法,会利用列举法等方法找出两个数的公倍数和最小公倍数。
基本教学过程:
一、一、创设活动情境,进行找倍数活动:
二、出示题目和8月份的日历:
1、谁能说一说“每隔2天去一次,每隔4天去一次”怎么理解?用不同的符号圈出两人去少年宫的日子。
2、把这些数写下来。
二、自主探索,总结找两个数的公倍数的方法:
1、观察这些数有什么特点?
2、再观察两人同时去少年宫的日子有什么特点?
3、师总结:揭示公倍数和最小公倍数的概念。
填一填:第48页
①学生尝试找6和9的公倍数和最小公倍数,并利用集合进一步加深对公倍数意义的理解。
②学生讨论交流找公倍数的基本方法。
③还有其他方法吗?(鼓励学生用其他方法找公倍数)
4、师总结:找公倍数和最小公倍数的方法
三、拓展引思:
1、第49页练一练
第一、二题
让学生独立填一填,再交流。
教学反思:
①15和5014和3512和484和7
说说你是怎么想的?学生明确找两个数公因数的一般方法,并对找有特征数的最大公因数的特殊方法有所体验。
注意:教师出题时,数字不要太大,要注意把握难度要求。
②练一练,第42页第1题。第2题。第3题。
③第43页第4题:
让学生找出这几组数的公因数后,说说有什么发现?
④第43页第5题:
⑤数学探索:
三、总结。
分数的大小
教学目标
1、探索分数大小比较的方法,会正确比较两个分数的大小。结合具体情境引导学生用分数描述有关现象,理解通分的含义探索并掌握通分的方法。
2、进一步加深对分数意义的理解,培养学生的发散思维能力。
3、激发学生的创新乐趣,培养学生勇于思考、敢于求异的创新精神,使学生感受比较与分类、猜想与验证在解决问题中的作用,并逐步学会用此种方法处理、解决问题。
教学过程
(一)、创设情景谈话激趣
师:同学们,你们喜欢中央电视台李咏主持的什么娱乐节目?
生:非常6+1幸运52
师:今天就让幸运带给我们五年级二班每个人好吗?在幸运52的幸运擂台挑战之前要知道我们班的课堂比赛规则:
A、把我们班分成四大组,如果哪一组回答问题出色,或者回答问题积极相应加上两颗星。
B、如果哪一组不听人家的回答则倒扣一颗星。
C、最后看哪一组胜利相应进行奖励。
师:我们已经学习了分数的意义和分数的基本性质这些知识,如何运用这些知识来比较分数的大小呢?今天我们一起来研究研究。(板书:分数大小比较)
公倍数教案 篇7
教学目标:
1.让学生通过动手操作理解公倍数和最小公倍数的意义,在表示倍数和公倍数时进一步体会集合思想。
2.掌握求两个数的最小公倍数的方法。
3.在具体的情境当中体验最小公倍数的实际应用,感受数学的价值。
教学重点:
理解公倍数和最小公倍数的意义,掌握求两个数的最小公倍数的方法。
教学难点:
会用求两个数的最小公倍数的方法解决实际问题。
师:咱们先来玩个拼图游戏,每张桌面都摆着两个正方形,大正方形边长为8厘米,小正方形边长为6厘米。桌面还放着一叠长3厘米,宽2厘米的小长方形。请你选择一个正方形,将小长方形铺在它的上面,要正好铺满,没有空隙。同桌合作完成就举手示意,开始。
生:我们选的是小正方形,因为6既是2的倍数,也是3的倍数,这样才能刚好铺完。
生:大正方形的边长是8厘米,8是2的倍数,但不是3的倍数,所以大正方形不合适。
师:也就是说得考虑正方形的边长与小长方形长,宽的关系咯?
生:正方形的边长必须是小长方形长与宽的公倍数。
师:那用长3厘米,宽2厘米的长方形纸片还能刚好铺满边长是多少厘米的正方形?
师:12,18,24等这些数就是2和3的公倍数,在生活中,公倍数有很多用处,那怎样找出两个数的公倍数呢?
教学意图:选择长方形纸片铺正方形的活动教学公倍数,让学生通过操作领会公倍数的含义。通过学生动手操作,加深对概念的理解,体会公倍数的意义。使学生在有效地操作中发现和感悟。
师:下面就用你喜欢的方法找出这两个数的最小公倍数。
学生独立完成。
生:我有个好办法,先把公倍数填好,再填它们独有的倍数,这样就不会出现重写的错误。
师:也就是说,只要知道这两个数的最小公倍数,便可以得出它们其它的公倍数了,太好了,规律能帮助我们更快地解决问题,不是吗?
教学意图:让学生通过观察思考,自己发现规律,通过交流互动总结规律,最后老师加以归纳概括,加深对规律的认识,苏霍姆林斯基曾说过:人的内心里有一种根深蒂固的需要――总感到自己是发现、研究、探寻者。作为教师要给学生留出思考的时间和空间,培养他们独立思考和发现问题的能力。
师:刚才我们提的最小公倍数,请你找出下列每组数的最小公倍数。
请你找出下列每组数的最小公倍数。
教学意图:在课堂上,要给学生交流讨论的空间, (下转第43页)(上接第39页)合理有效地组织学生进行合作学习,有助于每个学生在小组里充分发表自己的观点和见解,有助于学生通过认真倾听别人的想法来弥补自己的不足,有助于培养学生的团队意识和合作精神。
生汇报归纳:当两个数有倍数关系时,较大数就是它们的最小公倍数;当两个数是互质数时,它们的乘积就是它们的最小公倍数。
师:你们是善于观察和思考的孩子,是的,当要求两个数的最小公倍数时,先判断它们是否有倍数关系或者是否是互质数,如果不是这两种特殊关系的话,再采用列举法和筛选法找它们的最小公倍数。
师:大家应该还记得,之前找两个数的最大公因数时,用到的短除法和分解质因数的方法,不知这两种方法可否用到找最小公倍数中呢?试一试。
学生尝试用这两种方法找最小公倍数。
教学意图:把短除法和分解质因数的方法在这里教学,关键是让学生体会找最小公倍数的方法还有许多,让这个环节更突出,而不与之前公倍数的教学环节混淆,使学生在头脑中有个清晰的认识。
师:看来是可以的,这几种方法比较,你喜欢哪一种?为什么?
教学意图:解决问题的方法是多种多样的,这里不限制学生的思维,让学生自己选择适合自己的方法来解决问题,使学生的个性得到尊重和发展。
(1)找60和42的最小公倍数;
(2)完成课本91页练习十七的第三小题。
小明每3天去一次图书馆,小华每4天去一次图书馆,4月3日他们在图书馆相遇,那么下一次他们在几月几日相遇?
学生独立做题,集体交流。
公倍数教案实用
俗话说,磨刀不误砍柴工。优质课堂,就是幼儿园的老师在讲学生在答,讲的知识都能被学生吸收,所以,很多老师会准备好教案方便教学,教案的作用就是为了缓解老师的压力,提升教课效率。那么一篇好的幼儿园教案要怎么才能写好呢?经过小编精心整理,推出公倍数教案实用,为方便后续阅读,请你收藏本文。
公倍数教案【篇1】
教学内容:
书P、51-52。
教学目标:
1、结合具体情境,体会公倍数和最小公倍数的应用,理解公倍数和最小公倍数的含义。
2、探索找公倍数的方法,会运用列举法等方法找出两个数的公倍数和最小公倍数。
3、在探索找公倍数的方法过程中,培养学生的分析归纳能力,发展学生的创新精神。
教学重、难点:
探索找公倍数的方法。
教学准备:
日历表。
教学过程:
一、复习旧知,导入新课。
1、写出20以内2的倍数。
2、写出20的所有因数。
3、一个数最小的因数是什么?最大的因数是什么?
4、一个数最小的倍数是什么?最大......?
师:我们已学过了因数、倍数,最大公因数等知识,今天,我们一起来学习找最小公倍数。
板书课题:找最小公倍数。
二、探索交流,获取新知。
(一)去少年宫。△
1、创设去少年宫的情境。
2、请说一说每隔2天去一次,每隔4天去一次怎么理解。
3、引导学生探索哪几天他们同时去少年宫的解决策略。
(1)在日历表中用不同的符号圈出两人去少年宫的日子。
(2)将这些数写下来,看看这些数有什么特点:淘气去少年宫的日子都是3的倍数,小小去少年宫的日子都是5的倍数。
(3)观察两个人同时去少年宫的日子有什么特点。得出这些数都是3和5的公倍数,从而提出公倍数与最小公倍数的概念。
(二)填一填。
1、找4和6的倍数。
(1)学生独立寻找,教师巡视课堂。
(2)反馈结果。
2、找4和6的公倍数。
(1)在这些数中,既标由于△又标有○的数,有哪几个?它们是什么数?
(2)既是4的倍数,又是6的倍数,你能给它一个名称吗?
3、4和6的最小公倍数
(1)在这些公倍数中最小的是什么?可以给它一个名称吗?
(2)有最大公倍数吗?为什么?
4、小结:两个数,公有的倍数叫做这两个数的公倍数,其中最小的一个,叫做最小公倍数。公倍数的个数是无限的。
三、练一练。
1、第1、2题,请学生独立填写,再组织学生进行交流,教师进行必要的指导。这两题的目的是让学生进一步掌握找两个数的最小公倍数的基本方法。
2、第3题,求下列各组数的最小公倍数。请学生现独立练习,然后交流说说你有什么发现,鼓励学生用自己的语言来表述自己的发现。
3、第4题,让学生独立解决,对部分有困难的学生进行指导,先理解4分钟发一次车、6分钟发一次车怎么理解,然后引导他们探索解决策略,并逐步让学生体会解决问题的过程就是找出4和6的公倍数12,24等。
四、你知道吗?
这是用短除法求最小公倍数的小知识,可以让学有余力的学生了解这种方法,但不要求人人掌握。
五、总结。
什么叫做最小公倍数?怎样找最小的公倍数?
板书设计:
找最小公倍数
50以内4的倍数:4、8、12、16、20、24、28、32、36、40、44、48
50以内6的倍数:6、12、18、24、30、36、42、48
4和6的公倍数:12、24、36、48
4和6的最小公倍数:12
公倍数教案【篇2】
教学目标
1.使学生掌握求三个数的最小公倍数的方法,并能正确,合理地求三个数的最小公倍数。
重点难点
用短除法求三个数的最小公倍数。求三个数的最小公倍数的计算过程。
主要教学方法
新授课讲解法讨论法
操作过程
板书设计:求三个数的最小公倍数
例3求12、16和18的最小公倍数。
121618
把所有的除数和商连乘起来。
〔12、16、18〕=223143=144
两种特殊的情况:1如果三个数中较大数是另外两个数的倍数,那么较大数就是它们的最小公倍数。
2如果三个数两两互质,那么它们的乘积就是它们的最小公倍数
师活动:预计时间()分钟
学生活动;预计时间()分钟
一.复习准备
1填空。
4的倍数有:(4、8、12、16、20、24......)
6的倍数有:(6、12、18、24、30......)
8的倍数有:(8、16、24、32
......)
4、6和8的最小公倍数是24
2把4、6、8和24分解质因数。
4=22
6=23
8=2223
归纳:三个数的最小公倍数,就是三个数的公有质因数和任意两个数的公有质因数和各自独有质因数。
二.新课
1.例3求12、16和18的最小公倍数。
(1)用3个数公有的质因数2去除。
(2)用6和8的公有质因数2去除,9移下来。
(3)用3和9的公有质因数3去除,4移下来。
(4)除到两两互质为止。
〔12、16、18〕=223143=144
注意:用短除法求三个数的最小
公倍数,先用三个数的公约数,
然后再用任意两个数的公约数
去除。
2.看书第106页例3
3.练一练第1题
学生口答
1.名板演,其余自练。
2.观察分解质因数情况,你发现了什么?
讨论:
1.为什么当商是6、8和9时,还要用两个数的公约数2继续除?
2.除到什么时候可以不必再除?
3.最后这个最小公倍数怎么求?为什么?
1.学生看书
2.疑问难,学生练习
说说求三个数的最小公倍数与
三
san三
求三个数求
延伸练习
反馈
与
矫正
目标达成情况
公倍数教案【篇3】
教学目标
使学生学会求三个数的最小公倍数的方法,并能正确地、合理地求三个数的最小公倍数。
教学重点、难点
重点、难点:学会求三个数的最小公倍数的方法。
教具、学具准备
教学过程
备注
一、复习准备
1、回答下列每组书的最大公约数和最小公倍数:
6和712和3656和14
4和915和457和13
提问:互质数的最大公约数和最小公倍数各有是什么特点?倍数关系呢?
2、已知10=2515=35,那么10和15的最小公倍数是()
谁能说一说最小公倍数的质因数有何特点?
3、求12和18,30和45的最小公倍数。
(1)全体笔练,两个做在投影片上。
(2)反馈(投影片)失声共同评价。
(3)提问引入:你会求三个数的最小公倍数吗?(揭示课题)
二、教学新知
1、教学例3:求12、16和18的最小公倍数。
(1)学生尝试练习(两人板演,有困难可以看书)
(2)师生共同讨论(并纠正)板演:
A、为什么当商是6,8和9时,还要用两个数的公约数2继续除?
(因为每个数独有的质因数也是最小公倍数的质因数)
B、除到什么时候可以不必再除?
C、最后这个最小公倍数怎么求?为什么?
(3)小结:因为最小公倍数既含有几个数公有的质因数,又含有每个数独有的质因数,所以一直要除到每两个数都互质(简称两两互质)为止,并把除数和商全部连乘起来。
(4)练习:求下列每组数的最小公倍数
16、8和1215、30和408、9和12
A、学生练习。
B、投影反馈。
C、先同桌讨论,然后在回答:求三个数的最小公倍数与求三个数的最
教学过程
备注
公约数有什么不同?
明确:求三个数的最大公约数只要除到三个数的商只有公约数1为止,而求三个数的最小公倍数必须除到两两互质为止;求三个数的最大公约数只要把除数乘起来,而求三个数的最小公倍数必须把除数和商都连乘起来。
(5)练习:求下列每组数的最小公倍数
4、12和169、18和2712、15和18
(学生练习后反馈,并互相检查)
2、探求规律
出示:(1)15、30和60(2)3、4和7
8、10和402、5和9
9、7和631、和15
(1)学生练习:求每组数的最小公倍数
(2)反馈练习结果(生报教师板书)
[15、30、60]=60[3、4、7]=84
[8、10、40]=40[2、5、9]=90
[9、7、63]=63[1、8、15]=20
(3)第(1)组中每组数的最小公倍数有什么特点?每组中的三个数又有什么关系?第(2)组呢?
谁能用自己的话把你的发现说一说?
(4)讨论后小结:
若三个数中较大数上另外两个数的倍数,则较大数既是它们的最小公倍数;
若三个数两两互质,则它们的乘积就是它们的最小公倍数。
(注意加.内容的强调)
(5)练习:课本P62练一练2(先略做思考,再口答,并说出为什么。)
(6)综合练习课本P62练一练3(当堂反馈,矫正错误)
三、课堂总结
1、这节课学习了什么?怎样求三个数的最小公倍数?
2、通过这节课的学习,并还知道了什么?
3、在练习时要注意分析清楚每组数中各数之间的关系,再解答。
四、作业《作业本》
求三个数的最小公倍数,是本小节教学的难点,教学过程中要特别强调短除法式子中最后的结果(商)必须要两两互质。
公倍数教案【篇4】
教学内容:完成练习四的第5~8题。
教学要求:
1、通过练习,使学生发现求两个数的最小公倍数的一些简捷的方法,并能根据两个数的关系选择用合理的方法求两个数的最小公倍数。
2、让学生感受数学与生活的联系,体会解决问题策略的多样性。
教学重点与难点:让学生在用不同方法找两个数的公倍数和最小公倍数的过程中,逐步掌握方法,形成技能。
教学流程:
一、基础练习找出下面每组数的最小公倍数。4和63和75和910和6
二、完成第25页的5~8题。
1、第5题
⑴①让学生观察左边4题,说说这几组数有什么共同的特点。
②找出每组两个数的最小公倍数。
③比较和交流:有什么发现?(两个数的最小公倍数就是它们的乘积。)
⑵独立完成右边4题,再比较交流发现了什么?
2、第6题
3、第7题先让学生用列表的方法找出答案,并通过交流使学生体会到列表的过程实际上就是求7和8的最小公倍数。
4、第8题先让学生说说求几月几日小林和小军再次相遇,可以先求哪两个数的最小公倍数,再让学生独立解答。
三、小结:通过今天这一节课的学习,你有什么收获?
四、思考题
提示:先用列举法找3、4和6的最小公倍数。
公倍数教案【篇5】
教学目标
(1)使学生能比较熟练地掌握求最大公约数和最小公倍数的方法,并且能够根据不同,灵活运用简捷的方法。
(2)综合运用知识,进一步沟通知识间的联系。
教学重点、难点
重点、难点:能够根据不同,灵活运用简捷的方法。
教具、学具准备
教学过程
备注
一、基本练习
1、填空。(课本第67页第7题)
(1)9和27这两个数,()能被()整数,()是()的倍数,()是()的约数。
(2)20以内既是偶数又是素数的数是(),既是奇数又是合数的数是()
(3)在4、9和16中,成互质数的两个数有()和();()和()。
(4)三个素数的最小公倍数是42,这三个素数是()、()和()。
(5)如果甲数=235,乙数=237,那么甲数与乙数的最大公约是(),最小公倍数是()。
学生先填在书上,再集体交流讨论,注意让学生说说思考方法。
2、很快说出下面每组数的最大公约数和最小公倍数。
11和49和65、10和20
16和1580和xx年5、6和7
说的过程中注意让学生说出思考的过程及理由。
3、求下面各组数的最大公约数和最小公倍数。
80和10015、8和30
25和330、60和75
19和388、9和10
让学生用短除法做,选做三题,交流时注意小结用短除法要注意的地方,同时让学生说说还有其他的思考方法。
二、综合练习
1、你能用下面的一个或几个概念和一个或几个数连起来说一句话吗?
整数自然数整除约数倍数
奇数偶数合数素数质因数
公约数最大公约数公倍数最小公倍数
教学过程
备注
例2:2和8都是自然数,8能被2整除,8是2的倍数。
2、动脑筋:下面每组数中,你能找出不同类的数吗?
(1)1473.82345
(2)21216223647
(3)23792943
学生找出不同类的数并说明理由,教师要注意答案的开放性,学生的答案只要有理由,就应该肯定和鼓励.
3、猜一猜老师家的电话号码.
老师家的电话号码是七位数,排列如下:
()最小的素数
()7的最大约数
()8的最小倍数
()最小的自然数
()最小的合数
()最小的一位奇数
()既不是素数也不是合数的数
三、课堂小结
师:本单元知识概念较多,同学们要注意这些概念的区别和联系,并能够综合练习。还有什么疑问吗?
四、作业
1、课本上第9、10题中剩余题目各选一列。
2、《作业本》
教学过程中,重在引导学生根据不同情况,灵活运用简捷的方法求最大公约数和最小公倍数
公倍数教案【篇6】
教学目标:
1、理解两个数的公倍数和最小公倍数的意义。
2、探究找公倍数的方法,会利用列举法找出两个数的公倍数和最小公倍数。
3、培养学生自主探究的精神和观察、分析、概括的能力;让学生体会数学与生活的紧密联系,树立学好数学的信心。
教学重点:
理解两个数的公倍数和最小公倍数的意义。
教学难点:
探究找公倍数和最小公倍数的方法。
教具准备:
多媒体课件
教学过程:
一、创设情境
教师谈话:,乐乐就放假了,很想爸爸妈妈带她出去玩。可乐乐的妈妈从七月一日起每工作3天休息一天,爸爸从七月一日起每工作5天休息一天,他们打算等爸爸妈妈同时休息时,全家一块儿去西湖公园玩。(出示:七月份的日历)那么在这一个月里,他们可以选哪些日子去呢?你会帮他们把这些日子找出来吗?
请学生相互议论后,教师提示:同桌两位同学可分工合作来解决这个问题。一位同学找乐乐妈妈的休息日,另一位同学找小兰爸爸的休息日,然后再把两人找的结果合起来对照一下,就可以很快找出乐乐爸爸和妈妈共同的休息日了。
根据学生的回答,教师逐步完成以下板书
妈妈的休息日:4、8、12、16、20、24、28
爸爸的休息日:6、12、18、24、30
他们共同的休息日:12、24
其中最早的一天:12
二、尝试探讨
几个数的公倍数和最小公倍数的概念教学
我们一起来看妈妈的休息日,把这些数读一读(学生读数),你发现这些数有些什么特点?
师:对了,这些数都是4的倍数。(教师顺势把板书中妈妈的休息日改成了4的倍数。)
师:刚才我们是在30以内的数中,依次找出了这些4的倍数,如果继续找下去,4的倍数还有吗?有多少个?(学生举例,教师在4的倍数后面添上了省略号。)
我们再来看爸爸的休息日有什么特点?6的倍数有多少个?(把爸爸的休息日改成6的倍数并添上省略号)
师:下面我们再来看他们共同的休息日,这些数和4、6有什么关系?
师:对了,这些数既是4的倍数,又是6的倍数,你能给它一个新的名字吗?(把板书中他们共同的休息日改为4和6的公倍数。)
师:刚才我们从30以内的数中找出了4和6的公倍数有12、24,如果继续找下去,你还能找出一些来吗?可以找多少?(学生举例,老师根据学生回答,在后面添上省略号。)
师:这其中最早的一天,我们一起给它起个名字,叫什么?
(根据学生回答,把板书中其中最早的一天改为4和6的最小公倍数。)
板书
4的倍数:4、8、12、16、20、24、28、
6的倍数:6、12、18、24、30、
4和6的公倍数:12、24、
4和6的最小公倍数:12
教师谈话:4的倍数、6的倍数、4和6的公倍数、最小公倍数,我们还可以用这样的图来表示
出示集合图
4的倍数6的倍数4的倍数6的倍数
4和6的公倍数
三、深化概念
师:通过找共同的休息日,我们分别求出了这组数的公倍数和最小公倍数。
请同学们把书翻到51页看例子,填一填
师:什么是公倍数?
生:两个数公有的倍数就是他们的公倍数。
师:公倍数有多少个?
生:有无数个,找到两个数的一个公倍数,用它去乘2、乘3所得的积一定是这两个数的公倍数。
师:我们发现任意两个数都有公倍数,而且每组公倍数的个数都是无限的。那么三个数之间是否也有公倍数?四个数呢?五个数呢?
生①:举例:2、4和5的公倍数是20。
生②:无论几个数,只要相乘,它们的乘积一定是它们的公倍数。
师:那你能找出最大的或最小的公倍数吗?
生:没有最大的,只有最小的。
师:为什么?
生:因为公倍数的个数是无限的,所以没有最大公倍数。谁能用自己的话说一说什么叫公倍数?什么叫最小公倍数?
板书:几个数公有的倍数叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。
这就是我们今天要学习的内容。(揭示课题:最小公倍数)
师:那么我们刚才是怎么找出最小公倍数的呢?
生说,师写(列举法)
[点评:通过引导学生对具体问题作进一步研究,帮助学生加深对公倍数、最小公数意义的理解,使表象更加清晰。由此让学生亲身经历了一个从具体到抽象的数学化的过程。]
[出示]找最小公倍数
2和69和186和245和353和9
3和57和54和99和11
让学生找出每组数的公倍数。
师:有的同学找得很快,能给大家说一说你的方法吗?你发现了什么?
小组讨论,之后汇报。
生:如果大数是小数的倍数,那么它们的乘积也是它们的公倍数。
生:2和6的最小公倍数是12,并不是它们的乘积。
生:大数要是小数的倍数,大数就是它们的公倍数,而且是最小公倍数。例如2和6,9和18,最大的数都是它们的最小公倍数。
师:你们还能发现了什么?
生③:第二排每一组都是互质数。例如3和5两个数是互质数。互质数的最小公倍数是它们的乘积。
师总结
师;你们能举一些这类的例子吗?
请同学们用刚才的发现做书本52页的第3题,求下面各组数的最小公倍数
3和610和83和95和4
6和59和42和76和8
[点评:教师直接把找特殊情况下两个数最小公倍数这一问题抛给学生,通过学生练习、让学生不断发现不断改进。不同的学生就会有不同的想法,教师却从不给出结论性的评价,而是始终鼓励他们大胆猜测验证,互相补充说明,学生真正投入探究学习的氛围中,体验着学习给他们带来的快乐。]
四、利用最小公倍数解决生活问题,
(1)五(1)班同学参加植树劳动,按6人一组或8人一组都正好分完。五(2)班参加植树的至少有多少人?
齐读两次,找出题中的关键字,引导中理解题意后放手让生自己完成,同桌间比对。
(2)人民公园是1路和6路汽车的起点站。1路汽车每3分钟发车一次,6路汽车每5分钟发车一次。这两路汽车同时发车以后,至少再过多久又同时发车?
(设计理念:借助于生活实例进行对知识的应用,这样不仅可以让生对抽象概念得以理性认识,而且也能切身的体会到数学知识是为生活服务的,在分析中我紧抓关键字突破难点,这样可以让生学会解决问题的技巧。)
五、小结
今天学习了什么内容?什么叫最小公倍数?
我们今天学习了求最小公倍数的哪几种情况?
怎样才能很快地求出它们的最小公倍数?
板书设计:
找最小公倍数
一般关系列举法
倍数关系较大数
特殊关系
互质关系两数的乘积
公倍数教案【篇7】
1、关于公倍数、公因数概念的引入,教材改变了以往老教材毫无生机与趣味的从抽象的概念(倍数、因数)到抽象的概念(公倍数、公因数)的引入方式,通过学生动手操作、自主探索、合作交流,自然引出两个概念,完全遵循了新课程的有关学生学习方式的理念,教学效果也很好。但我总有一个感觉,两个铺长(正)方形的题粗看很相似实质又不同,学生有混淆,特别反映在此类题的练习中,况且倍数与因数原本就是相互依存的,学生说理时常达不到教师的位,他不知道老师要说倍数还是因数。
2、关于最小公倍数求法,列举法和大数翻倍法学生基本都能熟练掌握(心算能力要强);最大公因数求法,我完全放手让学生自己探索,他们自己得出了可用列举法与小数缩倍法(名字也是他们自己取出的),我对此加以了肯定与尊重。可我马上就后悔了,学生作业中出现了不讲所谓小数缩倍法不会出现的错误情况,比如12与16,有不少同学缩倍后答案不是写商4,而写了除数3,甚至33与11也出现了有同学写3。细细想来,求最大公因数千篇一律用小数缩倍法是不科学的,有时可能反而用大数缩倍法简单,关键是看少(因数个数)而不是看小,如12与57。所以还是用列举法加上让学生熟悉几种特殊情况后判断简单。
3、有关起点的实际问题。教材上练习四的4、7、8及练习册中的不少题目起点都是从零开始的,如第4题跳棋起点是在1前面而不是在1上,第8题起点是7月31日而不是8月1日,所以这类题算出的公倍数就是最后的答案,导致学生产生一个错误的认识,公倍数是几答案就是几。我不知道教材是不是有意这样编排的,但最后一个思考题,起点却是8月1日,导致学生答案都是公倍数12,而正确答案却是13。所以既然是解决实际生活问题,就要接近生活实际,题目就不能全是理想化的从零开始的。这类题应该要让学生认识到计算出的最小公倍数就是两次相隔的数量,这样不管起点是几,只要加上相隔的数量就能计算出下一次。
公倍数教案【篇8】
教学目标
(一)进一步理解并掌握最大公约数和最小公倍数的概念,分清求最大公约数和最小公倍数的相同点和不同点。
(二)培养学生仔细、认真的做题习惯和比较的思维方法。
(三)培养学生观察、分析、比较的能力。
教学重点和难点
最大公约数和最小公倍数异同点的比较。
教学用具
教具:小黑板,投影片。
学具:判断卡,选择卡。
教学过程设计
(一)复习准备
教师:
①什么叫最大公约数和最小公倍数?
②怎样求最大公约数和最小公倍数?
③求下面各题的最大公约数和最小公倍数?(口答)
8和1613和262和97和15
教师:对上面几道题你是怎么想的?各有什么特点?你能发现什么规律?
明确:
①两个数有倍数关系,最大公约数最较小数,最小公倍数是较大数。
②两个数互质,最大公约数是1,最小公倍数是两个数乘积。
(二)学习新课
1.出示例5。
求28和42的最大公约数和最小公倍数。(要求学生独立完成。)
学生口述教师板书。
28和42的最大公约数是:
27=14
28和42的最小公倍数是
2723=84
教师:观察上面两道题,谁能说出求最大公约数和求最小公倍数有什么地方相同?什么地方不同?(讨论)
在讨论的基础上,总结出下面的结论。
教师:为什么求最大公约数只要把所有除数乘起来,而求最小公倍数就要把所有除数和商都乘起来呢?
明确:求最大公约数是两个数公有质因数的积;求最小公倍数既要包含两个数公有质因数,又要包括各自独有的质因数。
教师:既然求两个数的最大公约数和最小公倍数的短除过程是相同的,那么,我们就可以用一个短除式来表示。例5怎样做简便?(由学生完成。)
2.出示做一做。
根据下面的短除,你能很快说出24和36的最大公约数和最小公倍数吗?(三)巩固反馈
1.求下面各组数的最大公约数和最小公倍数。
30和1875和3516和72
9和3120和12100和30
2.判断正误并说明理由。
①互质的两个数没有最大公约数;()
②两个数的最小公倍数,是这两个数的最大公约数的倍数;()
③
12和8的最大公约数:2232=24,
最小公倍数:22=4;()
④
36和24的最大公约数:22=4,
最小公倍数:2296=216;()
⑤17和51。
17和51的最大公约数是17,
最小公倍数是:1751=867。()
3.选择正确答案的序号填在()里。
(1)已知甲、乙两个数互质,那么甲、乙最大公约数是(),最小公倍数是()。
①1②甲③乙④甲乙
(2)已知a=232,b=235,那么a,b的最大公约数是(),最小公倍数是()。
①23
②232
③235
④2325
4.思考题。
怎样用一个短除式求下面三个数的最大公约数和最小公倍数。
8,16和24。
(四)课堂总结(学生总结)
1.求两个数的最大公约数,最小公倍数用一个短除式。
2.求最大公约数把所有的除数乘起来,求最小公倍数把所有的除数和商乘起来。
(五)布置作业:课本80页练习十六,3,4,5。
课堂教学设计说明
本节课教学是在学生学习分别求最大公约数和最小公倍数的基础上进行的,目的是让学生能够区分并深入理解求最大公约数和最小公倍数的方法。教学中在安排学生独立完成例题后,分组讨论此题求最大公约数和最小公倍数有什么异同点,由学生列表得出结论。进一步引发学生思考为什么求最大公约数是把所有除数相乘,而求最小公倍数是把所有除数和商相乘?使学生深入、透彻地理解求最大公约数和最小公倍数的方法,同时培养了学生严谨治学、独立思考的学习习惯及比较的能力。本节新课教学分为两部分。
第一部分,教学例5,由学生独立求出最大公约数和最小公倍数。
第二部分,对比例5中最大公约数,最小公倍数的求法,讨论它们有什么异同点,从而总结出结论。共分三层。
第一层:总结相同点;
第二层:总结不同点;
第三层:结合算理找出解法不同之处的内在原因。
公倍数教案【篇9】
教学目的:
1、知识与能力:使学生理解最小公倍数的意义,学会求特殊情况下两个数的最小公倍数。
2、过程与方法:通过小组合作学习,培养学生的团结协作精神。
3、情感与态度:提高学生的逻辑思维能力,培养学生科学的思维方法和创新意识。
教学重点:
使学生理解最小公倍数的意义。
教学难点:
学会求特殊情况下两个数的最小公倍数。
教具、学具:
多媒体计算机、课件,练习纸。
教学过程:
一、课堂引入:
你们坐过公共汽车吗?今天老师特意给大家带来个坐车的信息,请看:(电脑显示)
人民公园是1路和3路汽车的起点站。1路汽车每4分钟发车
一次,3路汽车每6分钟发车一次。这两路汽车同时发后,至少再过多少分钟又同时发车?
师:这正是我们今天要研究的内容。
二、新课:
1、这节课我们学习,(板书课题):最小公倍数。
2、看到这课题,你想知道什么?
3、刚才同学们提的问题很好,就让我们带着这些问题一起学习,请看:
出示例1:请顺次找出4的倍数和6的倍数。
师:齐读题目。
师:好!下面先自己找,找完后小组交流,看谁找得最快、最准确、用的方法最多。请把结果写在练习纸上。
师:谁来汇报4的倍数和6的倍数有哪些?
你是怎样找的?
你们都同意吗?
师:谁还有不同的找法?
(电脑同时在数轴上显示:)
板书:
4的倍数有:4、8、12、16、20、24、28、32、36......
6的倍数有:6、12、18、24、30、36......
师:非常聪明,找倍数的方法有:
A:原数分别乘以自然数1、2、3、4、5......。
B:连续加上原数的方法。
C:在数轴上找倍数的方法。
你认为那种方法找倍数较快,就用哪种方法找。下面仔细观察4的倍数和6的倍数(指着4和6倍数和数轴),
师:你们发现了什么?小组讨论。
(12、24、36既是4的倍数又是6的倍数)电脑同时把它们变色、闪动。
师:你们同意吗?
师:对,12、24、36既是4的倍数又是6的倍数。所以这些数是4和6公有的倍数。
板书:4和6公有的倍数有:12、24、36......
师:就这几个吗?能不能把4和6公有的倍数都说出来?为什么?同位互相说说。
(不能,因为一个数的倍数的个数是无限的,所以它们公有的倍数的个数也是无限的)
师:个数是无限的。怎样表示呢?(用......,在电脑加上......);
师:把这句话自由读一遍。
师:这些公有的倍数中最小的是几?(12)
师:说得好。请观察(显示)这两组数,按这两个思考题,四人小组讨论。
思考:①、两组数分别是谁的倍数?
②、这两组数有没有公有的倍数?如果有,请找出来。
电脑显示:3、6、9、12、15、18、21、24、27、30......
5、10、15、20、25、30、35、......
电脑显示:3的倍数。
5的倍数。
(15、30......)变色,闪动。
板书:3和5公有的倍数有:15、30......
师:3和5公有的倍数中最小的是几?(15)
师:两个数公有的倍数大家都会找,三个数公有的倍数你们会找吗?
师:请看(电脑显示):
3的倍数有:3、6、9、12、15、18、21、24、27、30、33、
36、39......。
6的倍数有:6、12、18、24、30、36......
9的倍数有:9、18、27、36、45、54......
师:请把3、6、9公有的倍数找出来,找到后请告诉同桌。
(18、36......)变色,闪动。
板书:3、6和9公有的倍数有:18、36......
师:3、6、9公有的倍数中最小的是几?(18)
师:两个数有公有的倍数,三个数也有公有的倍数。这些公有
的倍数叫什么?其中最小的又叫什么?
请大家打开课本71页,带着问题自学课本,看课本是怎样说的?
(公倍数,最小公倍数)
师:齐读一遍。
师:刚才我们找出的这些公有的倍数,其实就是它们的公倍数。(电脑显示)
师:同桌找出这三组的最小公倍数各是几?(12、15、18闪动、变色)
师:这些最小公倍数你是怎样找的?
板书:倍数公倍数最小公倍数
教师小结上面找倍数的方法,加深印象。
师:谁还有不同的方法?
师:几个数有最小的公倍数,有没有最大的公倍数?为什么?
(一个数的倍数是无限的,因此几个数的公倍数也是无限的,所以没有最大的公倍数)
师:我们已学过用图表示一个数的倍数,同样也可以用图来表示几个数的倍数和公倍数,请看电脑:
4的倍数6的倍数4的倍数6的倍数
4和6的公倍数
引导:(指图)12、24、36这些数既在这圈(4的倍数),又在那圈
(6的倍数),所以这些是公倍数。
回应:刚才那道题(显示),你有正确的答案吗?为什么?
(因为12是4和6的最小公倍数)
质疑:刚才学习了找最小公倍数,其实你们提出的问题已经解决了,
还有什么不明白的地方?
过渡:刚才学习得很好,下面我们根据这三个思考题(显示),四
人小组讨论,完成这些题目,完成后小组交流一下,你发现
了什么?
思考:
①、找出下面各组数的最小公倍数。
②、你是用什么方法找最小公倍数的?
③、通过找最小公倍数,你发现了什么?
1、1)、2和4的最小公倍数是
2)、8和4的最小公倍数是
3)、12和36的最小倍数是
2、1)、2和3的最小公倍数是
2)、4和5的最小公倍数是
3)、3和7的最小公倍数是
师:谁来回答第一个思考题?
师:你是用什么方法找的?
师:你发现了什么?
板书:贴出规律。
师:齐读一遍。
游戏:刚才我们学习了两组特殊数找最小公倍数的方法,下面我们
就用这个知识来玩一个游戏。
1)、老师出一组数,你们找出他们的最小公倍数,看哪个同学反应最快?(卡片:2和5、3和6)
2)、同学们反应真快,同桌之间也来玩。一人出题,一人出答案,相互进行。
师:这个游戏下课后可以继续玩,也可以和家人一起玩;这个知识在生活中也应用很广,请看:
从今天开始,小明的妈妈每工作2天休息一天,爸爸每工作3天也休息一天,爸爸、妈妈第一次同时休息要经过几天?(12天)
师:你是怎样想的?
师:谁还有不同的想法?
师:同意6的请举手,同意12的请举手。
师:究竟是6还是12呢?大家讨论。
师:请看电脑老师。
出示辅助图:
代表工作,代表休息。
爸爸:
妈妈:
师:那个对呢?为什么?
三、社会调查,渗透思想教育:
在日常生活和学习中,你发现还有哪些有应用最小公倍数的?
四、课堂小结:
今天你学习到什么知识?
五、布置作业:
1、预习例2。
2、第75页第3、7题。
板书设计:
最小公倍数
倍数公倍数最小公倍数
如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。
如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。
公倍数教案【篇10】
教材分析:
一、教学内容
在四年级(下册)教材里,学生已经建立了倍数和因数的概念,会找10以内自然数的倍数,100以内自然数的因数。本单元继续教学倍数和因数的知识,要理解公倍数、最小公倍数和公因数、最大公因数的意义,学会找两个数的最小公倍数和最大公因数的方法。为以后进行通分、约分和分数四则计算作准备。全单元的教学内容分三部分编排。
第22~25页教学公倍数。主要是两个数的公倍数、最小公倍数的意义,求最小公倍数的方法。
第26~31页教学公因数。包括两个数的公因数、最大公因数的意义,求最大公因数的方法。在练习五里还安排了最小公倍数与最大公因数的比较。
第32~36页实践与综合应用。利用邮政编码、身份证号码等实例,教学用数字编码表示信息。
在你知道吗里,介绍了我国古代曾经用辗转相除法求最大公因数,也介绍了现代人们经常用短除法求两个数的最大公因数和最小公倍数。在阅读这篇材料后,如果学生愿意用短除法求两个数的最大公因数或最小公倍数,是允许的。但是,不要求全体学生掌握和使用短除法。编排的一道思考题,是可以用公因数知识解决的实际问题。二、教材编写特点和教学建议
1.借助操作活动,经历概念的形成过程。
以往教学公倍数的概念,通常是直接找出两个自然数的倍数,然后让学生发现有的倍数是两个数公有的,从而揭示公倍数和最小公倍数的概念。公因数和最大公因数的教学同样如此。本单元教材注意以直观的操作活动,让学生经历公倍数和公因数概念的形成过程。这样安排有两点好处:一是学生通过操作活动,能体会公倍数和公因数的实际背景,加深对抽象概念的理解;二是有利于改善学习方式,便于学生通过操作和交流经历学习过程。以公倍数为例,教学时应让学生经历下面几个环节:第一,准备好必要的图形。要为学生准备长3厘米、宽2厘米的长方形,边长6厘米和8厘米的正方形,也要准备边长为12、18、24厘米等不同的正方形。第二,经历操作活动。让学生按要求自主操作,发现用长3厘米、宽2厘米的长方形可以正好铺满边长6厘米的正方形,而不能正好铺满边长8厘米的正方形。在发现结果的同时,还应引导学生联系除法算式进行思考。这是对直观操作活动的初步抽象。第三,把初步发现的结论进行类推,先自己尝试看还能铺满边长是多少的正方形,再在小组里交流。不难发现能正好铺满边长12厘米、18厘米、24厘米等的正方形;在此基础上,还应引导学生思考12、18、24等这些边长和长方形的长、宽有什么关系。第四,揭示公倍数和最小公倍数的概念,突出概念的内涵是既是又是即公有。第五,判断8是不是2和3的公倍数,让学生通过反例进一步认识公倍数。理解概念的外延。在此基础上,教材注意借助直观的集合图显示公倍数的意义。公因数的教学同样如此。
为了帮助学生加深对最小公倍数和最大公因数的理解,教材在练习中安排了一些实际问题。如第25页第7题,先引导学生用列表的策略通过列举找到答案,再引导学生联系最小公倍数的知识解决问题。第8题也可用最小公倍数解决问题,但也允许学生用列表的策略列举出答案。第29页第10题让学生先在图中画一画找到答案,也可让学生联系最大公因数的知识解决问题。第11题为学生提供了彩带图,学生可以在图中画一画,也可以直接用最大公因数的知识思考。
2.提倡思考方法多样化,找公倍数和公因数。
课程标准只要求在1~100的自然数中,能找出10以内两个自然数的公倍数和最小公倍数,二是只要求在1~100的自然数中,能找出两个自然数的公因数和最大公因数,而不是用分解质因数的方法求出公倍数或公因数。不教学用分解质因数的方法求最小公倍数和最大公因数还有两个原因:一是通过列举出两个数的倍数或因数的方法,找出公倍数或公因数。突出对公倍数和公因数意义的理解;二是学生对用短除的形式求最大公因数和最小公倍数的算理理解有困难,减轻学生的学习负担。在教学找公倍数或公因数时,应提倡思考方法多样化。以求8和12的公因数为例,学生可能会分别写出8和12的所有因数,再找一找;也可能先找出8的因数,再从8的因数中找出12的因数,或着先找出12的因数,再从中找出8的因数。
在找出公倍数或公因数之后,还应引导学生用集合图表示出来。要让学生经历填集合图的过程,明确集合图中每一部分的数表示的意义,体会初步的集合思想。
对于两个数有特殊关系时的最小公倍数和最大公因数,教材在练习中安排,引导学生探索简单的规律。由于教材不讲互质数,所以两个互质数的最小公倍数是它们的乘积,最大公因数是1这样的结论不要出现,只要求学生在具体的对象中感受。
为了拓宽学生对求最小公倍数和最大公因数方法的认识,教材在你知道吗栏目里介绍了辗转相除法求最大公因数和用短除法求最大公因数和最小公倍数,并介绍了两个数的最大公因数和最小公倍数的符号表示。教学时,可以让学生结合阅读进行思考。必要时,教师可以进行简单的讲解。
3.通过调查、交流和尝试,感受数在表达信息中的作用。
教学数字与信息这一实践与综合应用时,应注意引导学生通过调查和交流参与活动,感受数字在表达信息中的作用。课前调查的内容有:(1)110、112、114、120等特殊电话号码是什么号码;(2)自己所在学校和家庭居住地的邮政编码;(3)自己家庭成员的出生日期和身份证号码;(4)生活中用常见的数字编码表达信息的例子;(5)自己学籍卡上的学籍号。课后调查的内容有:(1)去邮局调查有关邮政编码的其他信息;(2)生活中还有哪些常见的数字编码。教学时,应引导学生充分开展交流活动:比如,为什么有些编号的开头是0?怎样从身份证中看出一个人出生的日期?身份证上的数字编码有哪些用处?等等。
在此基础上,教材在做一做中让学生结合实际问题,尝试用数字编码表达信息。比如,为某宾馆的两幢客房大楼的房间编号,为一年级新生编号,还安排了与方位和距离联系的问题,用编码表示家大约在学校的什么位置。