幼儿教师教育网,为您提供优质的幼儿相关资讯

三角形课件教案

发布时间:2023-03-21 三角形课件教案

三角形课件教案(系列9篇)。

幼儿教师教育网花时间专门编辑了三角形课件教案。老师职责的一部分是要弄自己的教案课件,相信老师对写教案课件也并不陌生。 教案课件的工作是新老师提高教学技能和水平的基础。相信你能从本文中找到需要的内容!

三角形课件教案(篇1)

教学目标:

1、使学生掌握三角形面积的计算公式,会运用公式计算三角形的面积。

2、通过图形的割补,剪拼,渗透图形变换等教学手段,培养学生的操作能力,空间想象能力和逻辑思维能力。

教学重点:

掌握三角形面积的计算公式,会运用公式计算三角形的面积。

教学难点:

理解三角形面积计算公式的推导方法。

教学关键:

引导学生理解三角形面积计算公式中除以2的意义。

本节课,我根据五年级学生的知识面较广,学习自觉性较强的特点,采用尝试教学法、实验法、练习法等教学方法进行教学。让学生带着教师提出的问题在旧知识的基础上,通过自学课本,利用学具独立作业,互相讨论和巩固练习,去尝试解决问题,教师再根据学生尝试练习中的难点和教材的重点加以讲解和点拔,充分发挥学生的主体作用和教师的主导作用,有利于培养学生的探索精神和操作能力。教学时,我按导入新课、揭示课题、推导公式、实际应用、巩固练习、课堂总结这六个环节进行。

一、导入新课

新课的导入是为了引导学生迅速进入学习状态的行为方式。好的导入,可以点燃学生思维的火花,活跃学生的思维。我采用实物直观法导入新课,先引导学生观察少先队大队旗,说出大队旗的长是120厘米,宽是90厘米,让学生利用旧知识计算大队旗的面积和归纳长方形面积计算公式。再出示红领巾,引导学生说出要计算红领巾的面积,就是求三角形面积,从而发挥知识的迁移作用,激发学生强烈的求知欲望和浓厚的学习兴趣,使学生进入一个良好的学习境界,为整个教学过程创造良好的开端。

二、揭求课题

我按照学生的心理特征,运用了激趣法揭示课题,以引起学生的注意和兴趣,调动学生的学习积极性,起承上启下、开宗明义的作用。我先直接板书课题“三角形面积的计算”,再提出问题“这节课要学习哪些内容?”让学生互相讨论,说出三个问题。(1)三角形面积的计算公式是什么?(2)三角形面积的计算公式是怎样推导的?(3)怎样运用公式计算三角形的面积?这样,巧妙地让学生自己提出本课的学习目标,把目标变成自身学习的需要,使学生由“要我学数学”变成“我要学数学”。

三、推导公式

公式的推导过程是学生知识的形成过程。我根据学生的认知规律让学生有目的、有步骤地动眼观察,动脑思考,动手操作,动口讲述,以实验法推导三角形面积的计算公式。教学时,分四步进行。(1)引导猜想:我让学生按照课本75页的方法,用方格纸数出三角形的面积,引导学生观察三角形的底是多少厘米?宽是多少厘米?底和高的长度与面积之间有什么联系?让学生通过观察分析,得出三角形底是6厘米,高是4厘米,面积是12平方厘米(图1),

底6厘米高4厘米面积12平方厘米

图1

接着引导学生猜想三角形面积是底和高乘积的一半。

(2)尝试操作:

当学生心理上产生疑问,迫切地需要教师的讲解和验证时,教师要求学生回忆平行四边形面积计算公式是怎样推导的?学生一边说,我一边把平行四边形变成长方形的推导方法演示出来(沿平行四边形的高剪出一个三角形,把剪下的三角形拼到另一边,变成一个长方形,如图2)。

图2

以唤起学

生的回忆,促进知识的迁移。然后再要求学生模仿平行四边形面积公式推导的方法,把三角形转换成其他图形,并拿出课前准备的长方形学具,量出长方形的长与宽是多少?(长10厘米,宽6厘米),计算出它的面积是10×6=60平方厘米,再沿着长方形的对角线剪开,分成两个大小形状相同的三角形,算出一个三角形的面积是10×6÷2=30平方厘米(如下图)。学生清楚地看

出这个三角形是原来长方形的一半。使学生沿着形象思维到抽象思维发展的规律去理解三角形面积计算公式的推导。接着让学生拿出平行四边形纸片,量出它的底和高分别是10厘米、6厘米,用10×6计算出平行四边形的面积是60平方厘米,然后沿着平行四边形的对角线剪开,可以分成两个大小形状相同的三角形,用10×6÷2算出一个三角形的面积是30厘米。学生再一次看出这个三角形是原来平行四边形的一半,而且观察出平行四边形的底和高与剪开的三角形的底和高是一致的,攻破教学的难点。(3)归纳公式:通过两个实验,学生纷纷讨论,并归纳出三角形面积计算公式是底×高÷2,用字母表示写作S=ah÷2,并点明求三角形的面积必须要知道三角形的底和高,计算三角形的面积时把底和高相乘后不能忘记除以2,让学生的知识更系统完善。(4)看书质疑:学生通过自己实验操作已水到渠成地得出结论后,我再让学生认真阅读课本75页至77页的内容,比较与自己推导的方法有什么异同,突出说明课本是用“合”的方法验证公式,而我们是用“分”的方法来验证公式的,两种方法均把三角形变换成长方形或平行四边形来推导,都能尝试成功。之后,留一点时间让学生提出疑问,我再进行针对性的释疑,创造亲切和谐的课堂气氛,使学生有疑敢问,进一步把教师的主导作用,学生的主体作用,教科书的示范作用及学生之间的互补作用有机地结合起来,提高了课堂效率。

四、实际应用

学生推导出三角形面积计算公式后,我便出示一道同课本例题相仿的尝试题:一条红领巾的底是100厘米,高是32厘米,它的面积是多少?让学生独立解答,分别叫好、中、差三类学生板演,我进行巡堂检查,了解信息反馈,去发现所估计出现的两种情况:(1)100×32÷2=1600平方厘米;(2)100×32=3200平方厘米,并按反馈信息组织学生讨论和讲解,强调应用三角形面积计算公式时把底和高相乘后不要忘记除以2,否则会计算了长方形或平行四边形的面积,以确保学生系统地掌握知识。

五、巩固练习

练习是学生掌握知识,形成技能的必要途径,是检查教学目标落实情况的重要手段。为了提高练习的效率,我合理地设计了三道练习题。

第1题:计算下列图形的面积。这是课本77页做一做的题目,属单一性练习,用于巩固新知识。

第2题:平行四边形的面积12平方厘米,求涂色的三角形的面积。

这是课本78页练习十八的题目,属综合性练习,既复习了三角形面积公式与平行四边形面积公式的关系,又进一步巩固三角形面积计算,防止学生照样画葫芦。

第3题:计算少先队中队旗的面积,看谁的解法最简便?这题属创造性练习题,既能激发学生学习兴趣,又能促进学生的散发思维。

六、课堂总结

总结是课堂教学的重要环节,可以使学生更进一步明确具体的教学任务,抓住要点内容,形成系统的知识。我让学生联系本课初提出的学生目标,总结本课所学内容,得出:(1)三角形面积计算公式是底×高÷2;(2)三角形的底和高决定以后,三角形的面积也就决定了;(3)计算时把底和高相乘后不要忘记除以2。这样,通过疏理、归纳,起到画龙点睛的作用,使整节课的安排善始善终。

三角形课件教案(篇2)

教学内容:

义务教育课程标准实验教科书数学四年级下册80~81页的例1、例2

教学目标:

1、通过动手操作和观察比较,使学生认识三角形,知道三角形的特性及三角形的高和底的含义,会在三角形内画高。

2、培养学生观察、操作、自学的能力和应用数学知识解决实际问题的能力。

3、体验数学和生活的联系,培养学生学习数学的兴趣。

教学重点:

1、理解三角形的特性。

2、在三角形内画高。

教学难点:

理解三角形高和底的含义,会在三角形内画高。

教学准备:

多媒体课件、投影。

教学过程:

一、谈话引入。

师:我们学过哪些平面图形?

师:说一说你对三角形有哪些认识?

师:同学们对三角形已经有了初步的了解,这节课我们继续研究和三角形有关的知识。

(板书课题:三角形的特性)

二、探究新知。

1、三角形的特征。

(1)画一画。

师:请你在纸上画一个自己喜欢的三角形。并和同桌边指边说一说三角形有几条边?几个角?几个顶点?

师黑板上画一个三角形,让学生说出各部分的名称师板书。(教师板书各部分名称)

(2)摆一摆。

师:每根小棒相当于一条线段。请你动手用三根小棒摆一个三角形。

找一学生上投影前摆一摆,并说一说是怎么摆的?

(3)看一看。

老师也摆了一个三角形,课件出示。

你们有什么看法?

教师用课件演示并强调:有三条线段围成的图形(每相邻两条线段的端点相连)叫做三角形。

(4)找一找。

下面图形中是三角形的请打√,不是三角形的请打×,并说出你的理由。(学生一起用手势表示)

2、三角形的特性。

(1)动手操作发现三角形的特性。

师生拿出平行四边形框架。

师:用手拉动,说一说有什么发现?(容易变形,不稳定。)

指导学生操作:去掉一条边,再扣上拼组成三角形框架。

师:再拉一拉有什么感觉?

师:想一想这说明三角形具备什么特性?(稳定性)

(2)生活中寻找三角形的特性。

师:三角形的稳定性在生活中的用处很大,你能举个例子吗?

课件出示例2的主题图,请你找出各图中哪有三角形?说一说它们有什么作用?

3、认识三角形的底和高。

(1)情境引入。

故事引入,两个三角形争论谁的个高。课件出示

让学生说一说怎样比较这两个三角形的高,并准备好相应的两个三角形学具试着让学生前面来分别指一指它们的高,并比一比。

师:请你拿出(指锐角三角形)这样一个三角形,试着指一指它的高。

(2)看书自学。

师:什么是三角形的高?怎样正确的画出三角形的高呢?请打开书81页,看看书上是怎样说的,又是怎样画的,和你的想法一样吗?

师:谁来说一说?

请你在刚才的三角形中画出三角形的一条高,并标出它所对应的底。

(3)教师板演。

我把三角形的三个顶点分别用字母A、B、C表示,这个三角形可以称作三角形ABC。想想怎样以AC边为底画出这个三角形的高?

生说高的画法,师板演,并强调用三角板画高的方法。

(4)进一步认识三角形的高。

在三角形中标上字母ABC,和同桌说一说刚才画的高是以哪条边为底画的?

师:刚才我们画了三角形的一组底和高,想一想一个三角形只有一组底和高吗?为什么?

(三)应用练习。

1、填空:

三角形有()个顶点,()条边,()个角。

2、学校的椅子坏了,课件演示,怎样加固它呢?(教材86页第2题)

3、小明画了三角形的一条高,你说他画的对吗?为什么?

(四)课堂小结。

通过这节课的学习,你对三角形又有了哪些新的认识?

你还想了解和三角形有关的哪些知识?

三角形课件教案(篇3)

各位老师,大家好!

今天,我说课的内容是《三角形的认识》第一课时。下面我就从教材分析、教法、学法的应用、教学过程、板书设计五个方面来进行说课。

先说一下对教材的认识

本节课是九年义务教育六年制小学数学(青岛版)第八册教材第40-41页《三角形的认识》第一课时。

教材所处的地位与作用是:

三角形在平面图形中是最简单的也是最基本的多边形,一切多边形都可分割成若干个三角形,并借助三角形来学习其他相关知识内容。这部分内容是在学生学习了线段、角和直观认识了三角形的基础上进行教学的,它是进一步学习三角形分类、三角形内角和等知识的重要基础,也是今后进一步学习几何知识的基础。所以掌握三角形的特征是非常重要的。

本节课的教学目标是:

(一)知识目标:①理解三角形的含义,掌握三角形的特征和按角分类的方法;②能过操作,使学生知道三角形的特性及其在生活中的广泛应用。

(二)能力目标:培养学生的观察能力和动手操作能力。

(三)情感目标:培养学生主动探索与合作学习的精神。

本节课教学重点是:正确理解和掌握三角形的意义及三角形按角分类的方法

教学难点:正确地给三角形进行分类,并说明依据

难点突破则是:通过学生的观察、讨论、归纳将三角形按角的不同进行正确分类。

接下来说一下,本节课所采用的教学方法

新课标强调:人人学有价值的数学,人人都要获得必需的数学,让不同的人在数学上得到不同的发展。关于三角形学生已经有一定的感性认识,因此教学活动应紧密联系生活实际,在学生认知水平和已有知识经验基础上进行。因此,本节课采用多媒体课件,创设情境,激发学生的学习兴趣和求知欲,充分引导学生进行观察、操作、猜测、验证,让学生真正成为学习的主人。通过这样的教学,使学生在既获得知识的同时,也培养和提高了学习的能力。

为了体现以上教学方法,本节课采用的学法是:

全课以小组合作的形式组织教学,充分引导学生自己提出问题并自己解决问题,通过“摆一摆”、“找一找”、“猜一猜”等环节亲自体验探索知识的形成过程,培养学生解决问题的能力。

本节课的教学过程主要由:情境导入、探究新知、巩固与发展、回顾整理四部分进行。

(一)情境导入:

通过创设情境,观看有关三角形的实物图像(电脑出示一组画面:三角板、金字塔、彩色旗、自行车等),让学生感受到数学图形在生活中无处不在,数学就在我们身边,激发了学生学习数学的兴趣。然后,让学生围绕三角形提出问题,归纳为①什么叫三角形?②三角形由哪些部分组成?③三角形有什么特性?④三角形怎样分类?激发了学生探索的兴趣,为探索新知指明了方向,

(二)探究新知:

第一部分:理解三角形的概念

兴趣是最好的老师,怎样让已经点燃的兴趣的火种闪烁出智慧的火花呢?

1、通过用小棒摆三角形,让学生在动手操作中形成概念,抽向概括出三角形是由三条线段围成的图形,强调“三条线段”、“围成”二者缺一不可.

2、观察:图形中哪些是三角形?不是三角形的让学生说明理由(图略),学生在掌握了三角形的概念后,能很快地判断出哪些是三角形,哪些不是?并能说出理由。这样进一步加深了学生对三角形含义的理解,让学生在自主探索中掌握概念,真正成为概念的探索者与发现者。

第二部分:探究三角形的组成

通过让学生摸一摸,找一找,动手感知,然后自学课本,把学习的主动权交给学生,使学生能快速地掌握三角形的特征-----三条边、三个角、三个顶点。

第三部分:探究三角形的特性

三角形稳定性的应用十分广泛,但学生理解起来有一定的困难,为突破这一难点,首先设计提问,生活中有些物体为什么要设计成三角形?然后通过实验,让学生亲自动手拉用硬纸板钉成的四边形和三角形框,学生发现四边形容易变形,三角形不变形,使学生形象地认识了三角形具有稳定性。接着让学生具体说说生活中有哪些物体用到了三角形的特性?让学生感受到了数学来源于现实生活,也应用于现实生活。

第四部分:探究三角形的分类?

三角形怎样分类是本课的重点,也是难点,难点在于怎样找出分类的标准。首先,将学生事先

剪好的三角形贴在黑板上,然后让学生小组讨论:怎样给三角形分类?学生会踊跃地提出按颜色分类、按大小分类等多种分类方法,只要说的有道理,都要一一给予肯定,重点让学生观察三角形的角有什么特点?通过观察、讨论、对比,使学生知道三角形按角的不同可以分为锐角三角形、直角三角形、钝角三角形,从而掌握三角形按角分类的方法。再通过电脑演示,让学生更形象地理解、认识三类三角形。

(三)为了让学生更深入的理解所学知识,在巩固与发展这一环节,设计了一个游戏:猜猜老师书中夹的是什么三角形?

游戏是学生最喜欢的活动方式之一,通过猜一猜使学生知道了露出一个直角的一定是直角三角形,露出一个钝角一定是钝角三角形,露出一个锐角的不一定是锐角三角形,也可能是直角三角形或钝角三角形。这时老师要以合作者的身份参与到游戏中,通过师生互动,平等交流,形成了一种民主、和谐的师生关系和融洽的学习氛围。

(四)回顾整理

“这节课你学习了哪些知识?探讨了哪些问题?有什么收获?”

通过回顾,使学生对知识有一个系统的认识,培养学生的归纳概括能力,同时让学生体验到了成功的欢乐。

最后是板书设计这节课的板书设计如大屏幕所示

总之,本节课的教学坚持了“学生是探索的主体”这一教学原则,面向全体学生,充分引导学生动手操作、自主探索、合作交流,让每一个学生在自主探索的过程中感受数学与日常生活的紧密联系,体验学习数学的快乐,有效的促进师生之间、学生之间的共同发展。培养学生的创新精神和实践能力。

以上就是这节课的说课内容,不足之处,请各位老师批评指正。

三角形课件教案(篇4)

老师们:

你们好!

非常高兴能有机会和大家交流说课活动,谨此向在座的各位老师学习。

今天我说课的内容是人教版数学八年级上册第十四章第3节《等腰三角形》的第一课时,下面我将从教材分析、教学方法与教材处理及教学过程等几个方面对本课的设计进行说明。

一、 教材分析

等腰三角形是一种特殊的三角形,它除了具备有一般三角形的所有性质外,还有许多特殊的性质,由于它的这些特殊的性质,使它比一般的三角形应用更广泛,而等腰三角形的许多特殊性质,又都和它是轴对称图形有关,它也是证明两个角相等,两条线段相等,两条直线互相垂直的方法,学好它可以为将来初三解决代数、几何综合题打下良好的基础。它在理论上有这样重要的地位,并在实际生活中也有广泛的应用,因此这节课的教学显得相当重要。根据本班学生的特点我确定如下:

(一)教学目标:

1、知识与技能:能够探究,归纳,验证等腰三角形的性质,并学会应用等腰三角形的性质

2、过程与方法:经历剪纸,折纸等探究活动,进一步认识等腰三角形的定义和性质,了解等腰三角形是轴对称图形。

3、情感态度与价值观:培养学生的观察能力,激发学生的好奇心和求知欲,培养学习的自信心

(二)教学重点与难点

等腰三角形性质的探索和应用是本节课的重点。由于初二学生的几何知识有限,而本节课性质的证明又添加了辅助线,所以等腰三角形性质的验探究是本节课的难点。

二、教学方法

本节课中我遵循教师为主导,学生为主体的原则,针对当前学生的厌学情绪,我运用课件,实物演示等多种教学手段激发学生的学习兴趣,让学生感到容易学,采用创设情景、实验法来分散难点让学生感到愿意学,并设置适当的追问、探究,让学生来主宰课堂,成为学习的主人。

三、学法指导及能力培养

人教版数学八年级上册(等腰三角形),标签:初二数学说课稿,初中数学说课视频,

好的学习方法才能培养能力,在学生探索知识的过程中培养他们掌握好的学习和解题方法,并且通过自己动手操作、动脑思考、动口表述,培养学生的观察、猜想、概括、表述论证的能力

四、教学过程

(一)情景设置

首先我用一个三角形测平架,测量黑板的下边是否水平,并让学生猜想其中的道理和奥妙,这样的引入既明确了本节课的主要内容,也激发了学生的学习兴趣,又使学生了解到数学来源于生活又适用于生活。

教育学中有句谚语:“告诉我我会忘记,做给我看我会记得,让我去做我才会懂”,由此可见实验法在教学中具有重要的作用。因此我设计了一个动手操作的环节,让学生按要求剪出一个三角形,为下面折纸操作作好铺垫,结合剪出的等腰三角形学习相关的概念加深印象,并指明等腰三角形是轴对称图形。

(二)探索新知

在这个环节我安排了两个探究,通过折纸的方法猜想并归纳。首先通过折纸让学生猜想∠B和∠C有什么关系?鼓励学生用多种方法来验证他们的猜想,并归纳出等腰三角形的第一条性质。这个地方我设计一个疑问,来强调等边对等角有一个前提条件就必须是在同一个三角形中,为了保证学生思维的连贯性,在这里我是这样引入探究二的,“从刚才辅助线的作法中,你发现了什么?”让学生感觉到这三条辅助线好像是一条线段,然后在通过折纸归纳出性质二。

学生在长时间的学习和探究中大脑已感到疲劳,随即引出课前设置的疑问,再次激发学生的学习热情。由于“三线合一”的性质在描述上经常出错,所以我设置了一个辨析,然后用填空的形式规范“三线合一”的符号表示形式,让学生理解性质的内涵。

(三)巩固练习

我用两个练习巩固等腰三角形的性质并让学生体验分类讨论的思想在解题中的应用。由于本节课的例题较难,因此我对它进行了改编,先让学生解决“等腰三角形一个底角的外角是108°时,三个内角分别是多少度?”然后再延长CD,得到一个新的等腰三角形,运用性质一就可以解决这两个问题,然后今天的例题就可以迎刃而解了,同时也要强调此题图形的特殊性,只有顶角是36°的等腰三角形才能满足这样的性质。

(四)课堂小结

课堂教学,一是注重引入激发兴趣,二是注重教学过程、重视方法,三就是注重概括总结。首先我让学生回想一下本节课的内容,“通过本节课的学习,你对等腰三角形有什么新的认识吗?”然后教师肯定学生的积极性。

(五)作业布置(略)

人教版数学八年级上册(等腰三角形),标签:初二数学说课稿,初中数学说课视频,

(六)板书设计(略)

总之,在整个教学过程中,我遵循着“教师为主导,学生为主体,训练为主线”的原则,在课上的每个环节中通过各种媒体,各种手段,始终注重兴趣的激发,培养学生的学习热情,让他们在轻松愉快中学习知识。

以上是我对这节课的教学设计,望各位老师批评指正,谢谢!

三角形课件教案(篇5)

今天我说课的内容是人教实验版七年级数学(下)第七章第二节中的:三角形的外角。下面我从教材分析、学生情况分析、教学目标分析、教法及学法分析、教学过程分析、教学反思这六个方面加以说明:

一、教材分析

新课程的教材力求体现“课程标准”实质,体现义务教育普及性、基础性、发展性;体现学生主动学习的过程,以学生的发展为本,从学生熟悉的情景出发,让学生亲身参与活动,进行探索和发现,以自己的亲身体验获取知识和技能,力求提高学生的创新精神与实践能力。本节课的教学设计较好地体现了上述特点。同时,这节课内容也是今后三角形、四边形等有关图形知识的基础,起着承上启下的作用。

二、学生情况分析

七年级学生的特点足模仿力强,喜欢动手,思维活跃,同时学生已学过三角形的内角和定理,以及三角形的边、顶点、内角和等概念,这为本节课的学习打下了基础。在以往的学习中,学生的动手实践、自主探索及合作探究能力都得到一定的训练,这就为学生自主探究,动手实验,讨论交流、尝试说理做好了准备。

三、教学目标分析

经过认真研读课标及教材,针对学生实际,我为这节课制定了如下的教学目标:

总体目标是理解三角形外角的概念,掌握三角形外角的性质,并能在实际问题中运用性质解决问题。

分解为四方面的目标:

1.知识技能目标是理解三角形外角的概念,掌握三角形外角的性质及简单说理。

2.数学思考目标是学生是学习的主体,激发学生的学习兴趣,使学生感知数学来源于生活又高于生活。

3.解决问题目标是让学生经历观察、思考、猜想、归纳、推理的活动过程;通过分析问题、解决问题、证实结论,达到通晓数学知识的发生与形成过程,提高学生的合作意识和沟通、表达能力。

4.情感态度目标是通过射门集锦短片欣赏,增强学生对学习本课知识的兴趣;同时让学生体验数学课堂中的激情气氛,让学生体验生活中团队协作、力争上游、奋勇拼搏的精神。

教学重难点

1、由于三角形的外角知识在今后的学习中经常用到,新课程中又特别关注学生的主动学习,因此,本节课的重点是:学生实际动手操作、参与活动,探索、发现、归纳出三角形外角的性质。

2、由于新课程标准对图形内容的要求,一方面培养和发展学生的合情推理能力,另一方面也要培养学生的数学说理习惯和能力,而后者是初中学生(尤其初一学生)所不足或缺乏的,因此,学生探索出的外角特征的说理推导过程是本节课的难点。

四、教法及学法分析

新课程理念强调“经历过程与获取结论同样重要”,有时过程比结论更有意义。我们不能把学生看成是一个“容器”把知识往里塞;也不能把学生训练成一个只会解题的“机器”,而应该让他们投入到获取知识的过程中去,在过程中激发学习兴趣和动机,展现思路和方法,学会学习;从过程中建构进取型人格,通过过程中的“成功感”来完善自我,我觉得这是目前学生最需要的。因此本节课我采用探究式的教学方式。

在学法指导中,本节课主要通过学生的动手实验,自主探索,概括出三角形外角的两条性质:并通过交流探讨,说理论证,加深认识三角形的外角两条性质,进一步综合运用三角形的外角性质、三角形的内角和性质进行有关的计算。在课堂上充分地体现了学生的主体地位及其学习的规律,即:发现知识,认识知识,掌握知识,运用知识。

五、教学过程分析

环节一、展现问题:

观赏足球比赛射门集锦,激发学习欲望,带着问题学习。

(设计目的:创设问题情境,新课程比较注重让学生从实际问题入手,引起兴趣,体会数学与生活的联系,赋予数学一种生活气息,让学生尝试用数学知识解决生活实际问题,是对学生数学建模思想的一种培养,也为后面探索外角问题埋下伏笔。)

环节二、学习几个概念

我结合图形,讲解外角的概念,并特别注意“不相邻”的意义,后辅以练习,加强巩固。

(目的是对概念难点的突破,能在复杂图形中辨析外角。)

环节三、自主探索外角与不相邻内角的关系

体现课改精神,体现学生为主体,教师是学习的参与者,合作者,设计了△ABC中,∠A=70°,∠B=60°,∠ACD是△ABC的一个外角,探究∠ACD与∠A,∠B有什么关系。并注重说理引导。并开拓学生思维,体现教师对学生的尊重,让学生发表自己不同的解法。

(设计目的:课堂上要大胆让学生动起来,老师“沉”下去,要努力转换教师角色,要相信:给了孩子权利,他会选择得更好;给了孩子条件,他会锻炼得更棒。)

在学生得出三角形的外角结论后,我故意说:这些结论不一定对,我画的那个三角形可能是老师故意设计好的,其它三角形是否也有这样的结论呢?大家试一试,尽量画各种不同的三角形并验证(如钝角三角形、直角三角形、锐角三角形),我相信大家能成功!

(设计目的:我想点燃学生思维的火花,让学生不能满足于一个现成图形的结论,而要有一种自己去探索、去发现的精神,要注意问题的一般性,学生在这一过程中投入到了获取知识的过程,较好地体现了学生学习方式的变革。)

设置及时练习的目的是依据学习策略中的分散学习与集中学习的效果设计的,就是提升学生的学习的有效性。

环节四、提升能力,挑战自我

设置一道思维性强,拓展性高的题(目的是开拓学生的思维,感受成功的喜悦。)

环节五、勇攀高峰

继续提升外角运用得几何价值,让学生感受数学学习的乐趣(目的是遵从课改让每一个学生都得到发展的理念)

环节六、课堂小结

学生自主谈收获,我给出知识点

(目的是归纳所学知识)

环节七、布置作业

教学反思:

在教学中我们必须意识到学生是学习的主体,教师是学习的合作者,参与者,讨论者,只有变换教师位置才能的促进学生学习的高效。在教学中要关注预设于生成的关系,发挥学生主动性的同时也要尊重书本知识,促进每一个学生都向前发展,使每一个学生都学到有用的数学。因此,我们的教学应站在学生的角度思考,学生是发展中的人!

我的说课到此结束,谢谢大家。

三角形课件教案(篇6)

一、说教材

(一)、内容:

《三角形的特性》是人教版义务教育课程标准实验教科书80—81页内容,这部分内容包括三角形的定义,三角形各部分名称,三角形的稳定性等。学生通过上册对空间与图形内容的学习对三角形已有了直观认识,能够从平面图中分辩出三角形。例题1:是有关三角形定义的教学,着重是让学生在“画三角形”的操作活动中进一步感知三角形的属性。抽象出概念。例题2:着重于三角形的重要特性是“稳定性”,在生活中有着广泛应用。它可以让学对三角形有更为全面和深入的认识。同时有利于培养学生的实践精神和实践能力。

(二)、教学目标:

1、通过动手操作和观察比较,使学生认识三角形,知道三角形的特性及三角形高和底的含义,会在三角形内画高。

2、通过实验,使用权学生知道三角形的稳定性及其在生活中的应用。

3、培养学生观察,操作能力和应用数学知识解决实际问题。

(三)、教学重点:理解三角形的特性。

(四)、教学难点:在三角形内画高。

二、说教法

(一)、情境教学法。

在特定的情境中进行学习,能激发学生兴趣,激活学生思维。为了解决问题,学生会主动探索新方法,从而将问题的解决和方法融为一体,这样安排有利于密切数学与生活的联系。

(二)、操作讨论法。

在动手操作,讨论交流时学生各抒己见,这样即启迪学生思维,又能增强其合作意识。学生动手、动脑,在探索发现问题的过程中解决问题,真正体现了以学生为主体的教学理念,教师在课堂上起到了组织者,引导者与合作者的作用。

三、说学法。

(一)、自主探究《数学课程标准》指出有效的数学活动不能单纯地进行模仿与记忆,动手实践,自主探究与合作交流是学生学习数学的重要方法。因此在教学中我让学生通过动手实践,亲身体验。如:画一画、议一议、说一说等活动发现新知、建构新知,从而掌握新知,培养合作意识和探究品质,发展思维能力和解决问题的能力。

(二)、学以致用,在学完新知后,我及时引导学生运用所学知识解决生活中的一些实际问题。这样,不仅增长学生智慧又使学生进一步感受到了数学与生活密不可分的关系,增强了学习数学兴趣和信心。

四、说教学程序。

(一)、联系生活,情境导入

1、出示80页情境图,学生观察,发现描述三角形。

2、说一说:生活中还有哪些物体上有三角形。

3、课件出示生活中常见的物体上的三角形。

4、导入并板书课题。

(二)、操作感知,理解概念

1、发现三角形的特征

2、概括三角形的定义

(1)、引导学生用自己的话概括什么叫三角形?

(2)、议一议:下面的图形是不是三角形?

(3)、讨论:哪种说法更准确?

(4)、指导阅读80页“三角形”定义。

3、认识三角形的底和高

(1)、出示三角形屋顶的房子。(问:你能测出三角形房顶的高度吗?学生动手操作)。

(2)、你是怎么测量的?(学生交流汇报)。

(3)、讲解测量过程?(得出:三角形高、底的概念)。

(4)、出示81页三角形(问:这是这个三角形的一组底和高吗?你还能画出其它的底和高吗?学生动手操作,然后评议交流)。

4、拓展

在三角形ABC中,以AB为底边的高是();以AC为底边的高是();以BC为底边的高是()。

(三)、实验解疑,探索特性

1、提出问题:出示81页插图,问图中哪里有三角形?生产生活中为什么要把这部分做成三角形呢?它具有什么特性?

2、实验解疑

(1)、学生拿出准备好的三角形、四边形学具分小组实验,拉一拉学具会有什么发现?

(2)、得出结论:三角形具有稳定性。

(3)、举例说出生活中应用三角形稳定性。

(四)、巩固运用,提高认识

课件出示练习十四:1、2、3题

(五)、总结评价,质疑问难

1、本节课学习了什么内容?

2、你对三角形有了哪些认识?

三角形课件教案(篇7)

今天我说课的内容是人教版九年义务教育小学数学四年级下册第五单元第67页的《三角形的内角和》。根据xxx教授的授课七步法,即说教材,说学情,说目标,说模式,说方法,说设计,说板书,我将进行本课的说课。

一、说教材

“三角形的内角和”是新课标人教版四年级下册第五单元第三节的内容。本节课是在学生学过角的度量、三角形的特征和分类等知识的基础上进行教学的,“三角形的内角和”是三角形的一个重要性质,学好它有助于学生理解三角形内角之间的关系,也是进一步学习几何的基础。

仔细分析教材的知识结构,它是分成3个部分来呈现的。第一部分是让学生通过量一量、算一算,初步感知三角形的内角和是180°;第二部分是通过拼角的实验来探究并归纳三角形内角和的规律,第三部分是运用规律、解决问题。教材这样编排由发现问题,到验证问题,再到运用规律,充分体现了知识结构的有序性和强烈的数学建模思想,既符合四年级学生的认知规律,又突出了本课教学的重点。

二、说学情

1、通过前面的学习,学生已经掌握了三角形的一些基础知识,会用工具量角、画角,具备了探索三角形内角和的知识与基础技能。

2、学生的生活经验是可利用的教学资源。我在课前了解到,已经有不少学生知道了三角形内角和是180度,但却不知道怎样才能得出这个结论,因此学生在这节课上的主要目标是验证三角形的内角和是180度。

三、说目标

根据小学数学教学大纲对四年级学生的具体要求,结合教材特点及学生年龄特征,将本节课的目标制定为以下几点:

认知技能:学生动手操作,在猜想后通过量、剪、拼、折的方法,探索并发现"三角形内角和等于180度"的规律。

数学思考:在操作实验中,让学生感受图形的转化过程及数学建模思想,初步培养学生的空间思维观念。

解决问题:在运用知识解决问题的过程中,感受所学知识的重要性,初步培养学生的应用意识。

情感态度:通过各种实验活动,激发学习兴趣,体验学习成功感,并在教学中,感受生活与数学的密切联系。

将运用各种实验方法探究三角形内角和为180度的过程并掌握规律,运用规律解决实际问题确定为本节课的教学重点。而同时学生难以理解不易掌握的探究规律的全过程则是本节课的教学难点。

四、说模式

“三角形的内角和”一课,知识与技能目标并不难,我认为本节课更重要的是通过自主探索与合作交流使学生经历知识的形成过程,领悟转化思想在解决问题中的应用,以及在探索过程中,培养学生实事求是、敢于质疑的科学态度,同时合作交流中,开拓思维、提升能力。基于以上理念,本节课,我准备引导学生采用自主探究、猜想验证、合作探究的学习模式。体现“以学生的发展为本”这一教育理念。

五、说方法

本节课主要是通过教师的精心引导和点拨,学生在小组中合作探索,通过量一量,折一折,撕一撕,画一画,选择不同的一种或者几种方法来验证三角形的内角和是180度。

因为《课程标准》明确指出:“要结合有关内容的教学,引导学生进行观察,操作,猜想,培养学生初步的思维能力”。四年级学生经过第一学段以及本单元的学习,已经掌握了三角形的分类,比较熟悉平角等有关知识;具备了初步的动手操作,主动探究的能力,他们正处于由形象思维向抽象思维过渡的阶段。因此,本节课,我将重点引导学生从“猜测――验证”展开学习活动,让学生感受这种重要的数学思维方式。

六、说设计

根据我对教材的把握和对学情的了解,设计了4个环节展开教学。

一、创设情境,发现问题

小游戏:猜一猜藏在信封后面的是什么三角形。

师:我们在猜三角形的时候,看到一个直角,就能断定它一定是直角三角形;看到一个钝角,就能断定他一定是钝角三角形;但只看到一个锐角,就判断不出来是哪种三角形。看来在一个三角形中,只能有一个直角或一个钝角,为什么画不出有两个直角或两个钝角的三角形呢?

三角形的这三个角究竟存在什么奥秘呢,我们一起来研究研究。

(创设的不是生活中的情境,而是数学化的情境。有的孩子认为一个三角形中可能会有两个钝角,还有的提出等边三角形中可能会有直角,这两个问题显现出学生在认知上的矛盾,学生用已经学的三角形的特征只能解释"不能是这样",而不能解释"为什么不能是这样"。这样引入问题恰好可以利用学生的这种认知冲突,激发学生的学习兴趣,让学生在疑问与猜想中寻找验证的方法。)

教学进入第二环节——引导探究

二、动手操作,探究规律

1.介绍内角、内角和,并提出猜想

师:我们现在研究三角形的三个角,都是它的内角。

课件演示:三角形的三个内角

师:今天我们就来一起探究《三角形的内角和》。猜一猜其它三角形的内角和是多少度呢?同桌互相说说自己的看法。

2.确定研究范围

师:研究三角形的内角和,是不是应该包括所有的三角形?只研究黑板上这一个行不行?那就随便画,挨个研究吧。(学生反对)

请你想个办法吧!

(通过引导学生分析,"研究哪几类三角形,就能代表所有的三角形"这个问题,来渗透研究问题要全面,也就是完全归纳法的数学思想)

3.建立模型,解决问题

(一)测量法:

(1)学生自然想到要量出三角形每个角的度数就能够求出三角形的内角和,从而证明三角形的内角和与三角形的大小和形状没有关系都接近180度。

(2)教师要组织学生进行小组合作每人用量角器量出一种三角形(锐角三角形、钝角三角形、直角三角形)的三个内角并计算出它们的总和是多少?

(3)记录小组测量结果及讨论结果

实验名称三角形内角和

实验目的探究三角形内角和是多少度。

实验材料尺子剪刀量角器锐角三角形纸片直角三角形纸片钝角三角形纸片

方法一三角形的形状每个内角的度数三个内角的

方法二

我的发现

(4)学生汇报量的方法,师请同学评价这种方法。

师小结:直接量的方法挺好,虽然测量有误差,不准,但我们能知道,三角形的内角和只能在180°左右,究竟是不是一定就是180度呢,谁还有别的方法?

(二)剪拼法

学生汇报后师小结:能想到这个方法不简单,拼成的看起来像平角,到底是不是平角呢,我们一起来试试看。(教师和学生剪一剪、拼一拼)

师:把三角形的三个内角凑到了一起,拼成了一个大角,角的两条边是不是在一条直线上呢?看起来挺象的,但在操作的过程中难免会产生误差,有时会差一点点,谁还有别的方法确定三角形的内角和一定是180°?

(三)折拼法

学生汇报后师小结:我们要研究三角形的内角和,实际上就是想办法把三角形的三个内角凑到一起,像剪和折的方法,看三个内角拼到一起是不是180度,都是借助我们学过的平角解决的问题。

这三种方法都不错,在操作的过程中,有时会有误差,不太有说服力。想一想,你还能不能借助我们学过的哪种图形,想办法说明三角形的内角和一定是180度?

(四)演绎推理法

(借助学过的长方形,把一个长方形沿对角线分成两个三角形。)

师:你认为这种方法好不好?我们看看是不是这么回事。

(演示课件:两个完全相同的三角形内角和等于360°,一个三角形内角和等于180°)

师小结:这种方法避免了在剪拼过程中由于操作出现的误差,非常准确的说明了三角形的内角和一定是180度。

(学生通过小组合作的方式学到方法,分享经验,更重要的是领悟到科学研究问题的方法。就学生的发展而言,探究的过程比探究获得的结论更有价值。)

学生用的方法会非常多,但它们的思维水平是不平行的。

直接测量法是学生利用已有的知识,测量出每个角的度数,再用加法求和;

拼角求和法,也就是间接剪拼和折拼这两种方法,都是通过拼成一个特殊角,也就是平角来解决问题;

而演绎推理法,即把两个完全相同的三角形合二为一,或把长方形一分为二,成为两个三角形,这是更深层次的思考。

前两种方法是不完全归纳法,能使我们确定研究的范围只能是180度左右,而不可能是其他任意猜想的度数。最后一种方法具有演绎推理的色彩,把一个长方形沿对角线分成两个完全相同的三角形后,因为两个三角形的内角和是原来长方形的四个内角之和360度,所以一个三角形的内角和就是360°÷2=180°,这种方法从科学证明的角度阐述了三角形的内角和,它有严密性和精确性。

本节课引导学生经历从直观到抽象、思维程度从低到高的过程,感悟数学的严谨性。让学生在经历量和拼之后,逐渐会在思维发散的过程中得到集中,集中为分的方法,最后将四边形一分为二,五边形一分为三,六边形一分为四……,又会发现一些新的规律。】

4.验证猜想"三角形的内角和是180度"

5.进一步感受

(1)三角形内角和与三角形大小的关系

教师出示一个小三角形,问学生内角和是多少度?再出示一个大的等腰三角形,问学生它的内角和是多少度?把这个大三角形平均分成两份,每份内角和是多少度?你有什么发现吗?

(2)三角形内角和与三角形形状的关系

(演示不断变化的三角形。)仔细观察,在这个过程中,什么变化了?什么没变化?(三个角的度数都在变化,内角和却总是不变的)你有什么新发现吗?

如果老师把一个角一直往下拽,猜一猜会怎样?

(通过变化的三角形和三个内角的数据显示,进一步感受三角形的内角和与三角形的形状、大小都没有关系;当把三角形的一个角一直向下拽,这个角变成了一个180度的平角,另外两个角变成了0度角,虽然已经不再是三角形,也能从一个侧面证明三角形的内角和是180度,使学生感受到极限的思维方法。)

6.解释课前问题

用内角和的知识解释课前的问题,为什么在三角形中不能有两个直角或钝角。

三、拓展应用,深化创新

本节课的练习由易到难,设计成三个层次。

1、基本练习形成技能

2、变式练习巩固技能

3、综合练习发展提高技能

介绍科学家帕斯卡(出示帕斯卡的资料)

师:帕斯卡为科学作出了巨大的贡献,在我们以后学习的知识中,也有很多是帕斯卡发现和验证的,他12岁就发现三角形内角和是180度,我们同学还没到12岁,看你能不能通过自己的努力也去探索和发现。

多边形边形内角和

(设计求多边形的内角和,旨在把新问题转化归结为求几个三角形内角和的问题上,渗透化归的数学学习方法。)

四、总结全课,全面提升

我们用三角形内角和的知识知道了六边形内角和,那么五边形、七边形……这些多边形的内角和是多少度?有没有什么规律可循,你能用学到的知识和方法去探究问题,相信你还会有一些精彩的发现。

七、说设计

三角形的内角和是180度。

转化的思想:量、撕、剪、折、拼

三角形课件教案(篇8)

一、教材分析

本教材选自《幼儿园教育教学安排意见》小班内容,认识三角形是幼儿几何形体教育的内容之一,幼儿的几何形体教育使幼儿数学教育的重点内容。幼儿学习一些几何形体的简单知识能帮助他们对客观世界中形形色色的物体做出辨别和区分。发展它们的空间知觉能力和初步的空间想象力从而为小学学习几何形体做些准备。小班幼儿在他们充分获得对圆形的感知和确认后,再让他们认识三角形的特征,这对发展幼儿的观察力、比较能力和空间概念具有重要意义。认识三角形是在认识圆形的基础上进行的。这就为比较圆形和三角形奠定了知识基础,有利于幼儿对三角形的感知和掌握。本节课的知识点就是三角形的特征。基于以上对教材的分析,结合幼儿的认知特点,确定以下教学目标:

1、教幼儿知道三角形的名称和主要特征,知道三角形由3条边、3个角。

2、教幼儿把三角形和生活中常见的实物进行比较,能找出和三角形相似的物体。

3、 发展幼儿观察力、空间想象力,培养幼儿的动手操作能力。

确定目标的依据:小班上学期虽然还没有进行数的形成教学,但在日常活动中已经渗透了许多数的概念教育,因此,通过数形结合认识三角形的特征幼儿有一定的基础。3岁幼儿经常会把几何形体理解为他们所熟悉的实物,因此,教幼儿把三角形和生活中常见的实物进行比较找出和三角形相似的物体有利于发展幼儿对应能力。

围绕教学目标根据小班幼儿的认知特点,我认为本节课的重点是认识三角形的特征,幼儿认知几何形体对图形的知觉属于空间知觉的范畴,从幼儿感知三角形的形状到表达需要完成配对——指认——图形的特征,因此,三角形的特征定为本节课的重点。

三角形的特征同时也是本节课的难点。三角形的特征有三条边、三个角。但是,对于还没学过一一对应点数的幼儿来说还有一定的难度,所以把三角形的特征定为本节课的难点。

二、教学方法

为了让幼儿更好地掌握知识,充分发挥教与学的互动作用,更好地完成教学任务,我将采用游戏法和启发探索法,体现教师为主导,幼儿为主体的师生双边活动。

游戏法:在计算教学中运用游戏法能激发幼儿的学习兴趣,集中幼儿的注意力,帮助幼儿轻松愉快地理解知识,因此,在本节课中,无论是新知的学习,还是复习巩固我都采用游戏的形式,如在课的开始,教师以游戏的

不错的口吻介绍两个图形娃娃到小班做客,激发了幼儿的学习兴趣,在复习巩固三角形特征时,设计了游戏给图形娃娃找朋友、奇妙的拼图、拼拼三角形使幼儿进一步巩固了三角形的特征,又激发了幼儿的学习兴趣。

启发探索法:这一教学方法是教学过程中依靠 幼儿已有的数学知识和经验启发幼儿去探索并获得新知。其最大的特点是激发幼儿的兴趣,最大限度地调动幼儿学习的积极性、主动性,在本节课认识三角形的特征时,我采用这一方法先出示一个圆形娃娃,再出示一个三角形娃娃,启发幼儿比较三角形和圆形的不同,在幼儿的观察探索中得出三角形有角、有边,通过亲自数一数、试一试,让幼儿明确有三个角的图形是三角形,三角形的角有点儿扎手。

本节课采用的教具:

⑴圆形、三角形娃娃各一个,用于引出课题,激发幼儿兴趣。⑵图形拼图一幅

⑶每桌一盘各类几何图形及冰糕棍若干。

选取教具的依据是小班幼儿的年龄特点及认知特点。

三、学法指导

1、复习内容的确定:三角形的特征有三条边、三个角。幼儿要掌握三角形的特征,就必须通过数一数来掌握,因此,3的数数的掌握直接影响到幼儿学习三角形的效果,因此将3的数数定为学习内容。采用幼儿比较喜欢的体态动作(拍手、拍肩、拍褪)进行,幼儿比较感兴趣又很快地集中了幼儿的注意力。

2、引导幼儿用探索法和操作法学习新知,发展幼儿的观察力。为了便于幼儿更好地掌握三角形的特征,请幼儿通过观察圆形和三角形有哪些地方不一样?通过亲自数一数、摸一摸来感知三角形的特征。幼儿从观察、判断到表述是幼儿利用旧知获取新知,主动学习的过程。

3、在操作、游戏中发展幼儿的空间想象力,在复习巩固三角形特征时,采取了游戏《给图形娃娃找朋友》、用小棍拼三角形。幼儿在游戏时,就需要将头脑中三角形的特征的轮廓体现出来,需要幼儿将想象、图形小棒联系在一起,进一步发展了幼儿的空间想象力,同时幼儿联想生活中的实物与三角形想象的物体将图形与实物相联系,从而发展幼儿的空间想象力。

4、数形结合,时幼儿在掌握特征的同时,加深幼儿对3的认识,在学习三角形特征时让幼儿数数三角形有几条边、几个角在看拼图找三角形的游戏中,让幼儿数数蝴蝶的翅膀、树身、房顶个由几个三角形拼成,在数形结合中既巩固了新知,又发展了幼儿的观察力和思维能力。

四、教学程序

不错的为了小学过程中更好地突出重点,突破难点取得较好的教学效果,我准备分以下几个步骤完成教学任务:

1、复习3的数数

设计这一环节的目的是为了在下步学习三角形特征时幼儿能更好地学习掌握,能准确感知图形特征这一环节,采用体态动作一集体复习的形式进行。

2、学习三角形特征:这一环节是本节课的重点难点所在,我准备分以下几步完成,以突出重点、突破难点。

⑴引导幼儿观察比较圆形娃娃和三角形娃娃的不同,提供

不错的幼儿每人一三角形,通过自己数一数,试一试,感知图形特征,并充分让幼儿表述,得出图形的特征。

⑵引导幼儿观察几个不同形状、不同大小的三角形,通过验证得出三角形都有三条边、三个角,有三条边、三个角的图形都是三角形。

⑶老师小结三角形特征,使幼儿获得的知识完整化。

3、复习巩固三角形的特征。在幼儿初步掌握三角形特征的基础上只有通过各种形式的练习才能得以巩固,准备分三步完成这一环节。

⑴给图形娃娃找朋友:目的是幼儿排除干扰从众多几何图形卡片中找出三角形。

⑵看图拼图找三角形:

图形拼图能进一步激发幼儿的学习兴趣通过让幼儿观察:

这些拼图像什么?哪些部分是用三角形拼成的?用了几个三角形?

⑶周围环境中找出像三角形的东西:幼儿通过自己的联想寻找发展幼儿的空间想象能力,进一步巩固了三角形的特征。

四、延伸活动:

幼儿用冰糕棒拼三角形,引导幼儿拼完后讲一讲你拼得三角形有几条边?几个角?用了几根冰糕棒?

三角形课件教案(篇9)

微课作品介绍本微课是苏教版小学数学四年级下册《三角形内角和》的课前先学指导,学生在家观看视频内容,同时结合学习任务单,在视频的指导下通过猜、量、算、剪、拼等方法探索三角形的内角和是180度。学生在课前利用视频完成学习任务单,然后到学校课堂中和老师、同学进行交流,再进一步提升。

教学需求分析适用对象分析该微课的适用对象是苏教版四年级下学期的小学生,学生应认识三角形的基本特征,学习过角和角的度量,知道平角是180度。具备了一定的动手操作能力和数学思维能力。

学习内容分析该微课让学生发现、验证三角形的内角和是180度的结论。这部分内容是在学生认识了三角形的基本特征和三边的关系后,三角形分类前学习的。这在苏教版中和原来的教材不同,放在这里是因为三角形内角和是学生进一步学习和探究三角形分类方法的重要前提。学生知道了三角形的内角和是180度,对三角形分类及命名的方法,才能知其然,还能知其所以然。

教学目标分析:

1、通过学生的实际操作,理解并验证三角形的内角和等于180°,并能够运用结论解决简单的实际问题;

2、使学生通过观察、实验,经历猜想与验证三角形内角和的探索过程,在活动中发展学生的空间观念和推理能力。

3、已经有不少学生知道了三角形内角和是180度,,但却不知道怎样才能得出这个结论,因此学生在学习时的主要目标是验证三角形的内角和是180度。

教学过程设计本微课教学过程:

一、明确多边形的内角、内角和概念。

首先要明确概念,才好继续研究。内角、内角和以前学生没有学过,还是有必要给学生明确的。

二、探索三角尺的内角和,猜想三角形的内角和。

从学生熟悉的三角板开始计算三角板的内角和,引发学生猜想,三角形的内角和是多少。

三、验证三角形内角和是否为180°。

验证分为三个层次:首先是量教材提供的三角形,算出内角和,可能会有误差。其次把三角形三个内角拼在一起,拼成是平角180度。最后自己任意画一个三角形剪下来,拼一拼,得出结论。让学生经历由特殊到一般的认知过程。

四、拓展延伸,探究梯形、平行四边形和六边形内角和。

由三角形的内角和,学生自然就会想到已学过的梯形、平行四边形和六边形内角和是多少呢。教师留下问题让学有余力的学生进一步去探索。

五、自主学习检测

学生观看完了视频是否学会了,是需要检测的。学生通过做完自主检测后进行校对,检验自己所学。

学习指导本微视频应配合下面的学习任务单共同使用,在观看视频时,根据视频提示随时暂停视频依次完成任务单。

自主学习前准备:

请在自主学习前阅读学习任务单的学习指南,并准备好数学书、一副三角尺、量角器、剪刀、铅笔等学习用具。

自主学习任务单:

通过观看教学资源自学,完成下列学习任务:

任务一:明确多边形的内角、内角和概念

1、你认识下面的图形吗?他们各有几个角,请在图中标出来。

2、你刚才标出的角,又叫做每个图形的()。

3、如果把一个图形所有的内角的度数加起来,所得的总和就是这个图形的()。

4、你知道图中长方形和正方形的内角和是多少度吗?你是怎么知道的?

长方形内角和正方形内角和

任务二:探索三角尺的内角和,猜想三角形的内角和。

1、请拿出一副三角尺,你知道每块三角尺上各个角的度数?在图上标出来。

2、算一算,每个三角尺3个内角的和是多少度。

3、根据你刚才的计算结果,你能猜想一下,任意一个三角形它的内角和的度数呢?

任务三:验证任意三角形内角和是否为180°

1、请从数学书本第113页剪下3个三角形,用量角器量出每个三角形3个内角的度数。

算一算,每个三角形3个内角的和是多少度。

2还可以用什么办法来验证剪下的这3个三角形的内角和等于180度?(把你的验证方法展示在下面。)如果你想不出来请看下面的提示。

温馨提示:平角正好是180°,这三个内角能正好拼成一个平角吗?

3、自己任意画一个三角形,先剪下来,再拼一拼。

4、你发现了什么?写在下面。

5、请你回顾一下我们研究三角形形内角和是180度的过程?简单的写下来。

任务四:拓展延伸

任务一中还有梯形、平行四边形和六边形,如果你有兴趣,你可以研究他们的内角和。

任务五:自主学习检测

1、右边三角形中,∠1=75°,∠2=40°,∠3=()°

2、第3个三角形还可以怎样计算,哪种更简便?

3、一块三角尺的内角和是180°,用两块完全一样的三角尺拼成一个三角形,拼成的三角形内角和是多少度?

4、用一张长方形纸折一折,填一填

配套学习资料苏教版小学数学四年级下册教材

制作技术介绍CamtasiaStudio软件制作、PPT。

Yjs21.Com更多幼儿园教案扩展阅读

相似三角形课件教案(汇总9篇)


古人云,工欲善其事,必先利其器。幼儿园的老师都想教学工作能使小朋友们学到知识,因此,老师会在授课前准备好教案,有了教案上课才能够为同学讲更多的,更全面的知识。怎么才能让幼儿园教案写的更加全面呢?在这里,你不妨读读相似三角形课件教案(汇总9篇),欢迎阅读,希望你能阅读并收藏。

相似三角形课件教案【篇1】

各位老师:

早上好

今天我说课的内容是《相似三角形的判定一》,下面我将从以下几个方面进行阐述。

一、说教材

内容选自华师大版九年级上册第二十四章第3节,是属于空间与图形领域的知识。在这之前,学生学习了全等三角形的相关知识,相似三角形是全等三角形的拓广和发展,而相似三角形的判定是相似三角形的主要内容之一,相似三角形的判定是进一步对相似三角形的本质和定义的全面研究,也是相似三角形性质的研究基础,同时还是研究圆中比例线段和三角函数的重要工具,可见相似三角形的判定占据着重要的地位。新的教学理念要求学生掌握的事思维方法,而不是仅仅记住结论,所以本节课的重点是对判定定理一的探索和理解判定定理一并学会应用,而寻找判定定理一的条件证是难点。基于以上对教材的认识,考虑到学生已有的认知结构和心理特征,我设定了以下教学目标。

二、说目标

1、知识与技能目标:

(1)、掌握两个三角形相似的方法——有两个角分别对应相等的两个三角形相似。

(2)、会用这种方法判断两个三角形相似。

2、过程与方法目标:

(1)、通过探索相似三角形判定定理(一)的过程,培养学生的动手操作能力,观察、分析、猜想和归纳能力,渗透类比、转化的数学思想方法、

(2)、利用相似三角形的判定定理(一)进行有关判断及计算,训练学生的灵活运用能力,提高表达能力和逻辑推理能力、

3、情感与态度目标:

(1)、通过实物演示和多媒体教学手段,把抽象问题直观化,激发学生学习的求知欲,感悟数学知识的奇妙无穷、

(2)、通过主动探究、合作交流,在学习活动中体验获得成功的喜悦、

三、学情分析

经过两年的几何学习,学生对几何图形的观察,几何图形的分析能力有一定的基础。部分学生解题思维能力比较高,能够正确归纳所学知识,通过学习小组讨论合作交流,能够形成解决问题的思路。现在的学生已经厌倦教师单独的说教方式,希望教师创设便于他们进行观察的几何环境,给他们自己探索、发表自己的见解和表现自己的才华的机会;更希望教师满足他们的创造愿望。

四、说教法

针对初三学生的年龄特点和心理特征,以及他们的知识水平,根据教学目标,本节课采用探究发现式教学法和参与式教学法为主,利用多媒体引导学生始终参与到学习活动的全过程中,处于主动学习的状态。通过实验探索、猜想验证、归纳总结,学习知识,培养能力。同时根据学生的不同层次,为了让每个学生得到发展,教学中还辅之以多种教学方法。

五、学法指导

为了充分体现《新课标》的要求,培养学生的动手实践能力,逻辑推理能力,积累丰富的数学活动经验。这节课主要采用动手实践,自主探索与合作交流的学习方法,使学生积极参与教学过程。在教学过程中展开思维,培养学生提出问题、分析问题、解决问题的能力,进一步理解观察、类比、分析等数学思想。

六、教学过程

根据《新课标》中“要引导学生投入到探索与交流的学习活动中”的教学要求,本节课的教学过程我是这样设计的:

1、复习三角形的定义及利用相似三角形的定义判定两个三角形相似。

2、新课引入的好坏在某种程度上关系到课堂教学的成败,本节课选择以旧孕新为切入点,创设问题情境,引入新课:

提出问题:按定义来来判定两个三角形相似需要三个角分别对应相等,三条边分别对应成比例,需要太多的条件,那么是否存在判定两个三角形相似的简便方法呢?

猜想:根据三角形的稳定性判定两个三角形相似应该可以适当的减少一些条件。

这一节课我们先从“角”入手来研究一下用尽可能少的条件判定两个三角形相似。

探究活动:

情景1、现有一块三角形玻璃ABC,不小心打碎了,但是找到了一个角∠A=40°(如图)。利用这个角能否知道原三角形的形状? (即:有一个角对应相等的两个三角形相似吗?) 利用几何画板让学生更清楚地发现:有一个角相等的两个三角形不一定相似。(条件太少)

情境2:(在情景1的基础上)于是老师在破碎的玻璃堆中详细寻找,又找到了另一个角∠B=80°.现在利用这两个角能否知道原三角形的形状?(有两个角对应相等的两个三角三角形相似吗?)

在卡纸上画一个三角形,使它的两个内角分别为40°和80°,然后再把它剪下来,跟其他同学比较一下有什么发现?同桌的两个先比较 ,再与小组的其他人比较。

学生动手操作,教师巡回指导,启发点拨。

学生经过画一画、剪一剪、量一量、算一算、拼一拼,在小组合作基础上,讨论交流,可能得出下面结论:

①通过观察三角形的形状好像一样。

②两个三角形三个角都对应相等(根据三角形内角和180°)。

③通过度量后计算,得到三边对应成比例(测量时误差较大,教师可以动手用几何画板现场操作比较准确的比值)。

由相似三角形的`定义可以发现:有两个角对应相等的两个三角形相似。

于是我们得到识别两个三角形相似的一种较为简便的方法(判定一):

如果一个三角形的两角分别与另一个三角形的两角对应相等,那么这两个三角形相似,简单地说:两角对应相等,两三角形相似。

三、练习

1、如图,AB∥CD,AC交BD于点E,证明:△CDE∽△ABE。

2、图中DG∥EH∥FI∥BC,找出图中所有的相似三角形。

3、开放性的题目:

如图△ABC中,D是AB的边上一点,过点D作一直线与AC相交于E,要使△ADE与△ABC会相似,你怎样画这条直线,并说明理由,和你的同伴交流作法是否一样?

四、小结

1、提问:“通过这节课的学习有什么收获?”

让学生同桌间畅谈自己的学习感受和体会,并请个别学生发言。

2、用定理“两角对应相等,两三角形相似”时,要注意图形中的公共角、对顶角、直角、两直线平行时的同位角、内错角等等。

相似三角形课件教案【篇2】

数学教案:相似三角形的判定教学设计

课题:相似三角形的判定

教学目标

知识与技能目标:

初步掌握运用两角对应相等的方法来判定两个三角形相似;

过程与方法目标:

1、经历三角形相似判定的探索过程,体会类比三角形全等的方法来进行三角形相似的探究的过程,从而体会研究问题的方法;

2、能利用添加辅助线将三角形相似判定定理的图形转化为预备定理的基本图形。

情感与态度目标:

1.在三角形相似判定的探究过程中,培养学生大胆动手、勇于探索和勤于思考的精神.

2.在合作与交流活动中发展学生的合作意识和团队精神,在探究活动中获得成功的体验.

教学重点:探究运用两角对应相等的方法来判定两个三角形相似,并能简单运用.

教学难点:三角形相似判定方法的证明。.

教学方法:采用学生自主探索和合作学习的教学方法;

教学手段:采用多媒体辅助教学。

教学过程:

教师活动学生活动设计意图

一、复习引入:

1、两个三角形相似的定义:

2、我们已经学过的三角形相似的判定方法及各自的适用的范围:(定义及预备定理)

若使用预备定理,我们发现需要存在平行线截三角形两边的基本图形,而对于任意的两个三角形,我们只能运用定义去判定,我们需准备对应角相等,且对应边成比例,那么是否存在识别三角形相似的简单方法呢?

3、回忆并叙述三角形全等判定定理的探究过程。(由一个条件到多个条件,逐个按边、角及其组合的顺序去寻找)。

二、新课探究、巩固新知:

本节课,我们将类比三角形全等的探究方法来进行三角形相似判定的探究:

教师给出题目:

(1)在上面的网格中,已知△ABC,至少需要保证几个角对应相等才能确定出△DEF,使得△ABC∽△DEF;

(2)利用网格自己作出图形,并用刻度尺和量角器验证作出的图形与原图形相似;

(3)小组选派代表准备展示本组的成果:图形与判定三角形相似的猜想。

教师结合学生汇报的结果点评,并适时引导学生小结猜想:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。

教师适时引导:借助辅助线将两个独立的三角形构造出预备定理的基本图形即可(强调作辅助线思想:平移小三角形到大三角形内部,但语言叙述应为:作线段或角等)。

教师板书判定定理1的符号语言:

在△ABC和△DEF中,

∵∠A=∠A`;∠B=∠B`(已知)

∴△ABC∽△DEF(两角对应相等的两三角形相似)

教师引导学生与三角形全等进行类比:

1、判定三角形全等的方法有ASA、AAS、SAS,至少有一组边相等;而判定相似只需两角对应相等即可。

2、证明三角形全等需要准备3个条件,而证明三角形相似需要2个条件即可。

例1、判断正误,并说明理由:

(1)任意等边三角形是相似三角形;

(2)有一角对应相等的两等腰三角形是相似三角形;

(3)顶角对应相等的两等腰三角形是相似三角形;

(4)任意直角三角形都相似;

(5)有一锐角对应相等的两直角三角形相似。

练习1:独立编写出一个能运用判定定理1来判断两三角形是否相似的题目,并与同学进行交流。

练习2:(1)如图:E是平行四边形ABCD的一边BA延长线上一点,CE交AD于点F,请找出图中的相似三角形,并说明理由:

(2)在Rt△ABC中,CD是斜边上的高,请找出图中相似的三角形,并说明理由。

教师巡视,并辅导重点学生。

解答完题目后,教师适时引导学生小结基本图形。

例2、已知△ABC和△DEF均为等边三角形,点D、E分别在边AB、AC上,请找出一个与△DBE相似的三角形,并说明理由。

教师适时点拨:由△DBE的角的特点入手,先由特殊角600作为突破口,通过观察确定方向(寻找另外的一组角相等即可),再去证明。

教师引导学生小结例2的证明思路:当存在一组角相等时,我们需寻找另外一组角相等,从而证明三角形相似。

三、小结提升:

谈谈自己的收获:

1、知识点方面:判定三角形相似的判定方法(定义、预备定理、定理1);

基本图形:双垂直;A字型、八字型。

2、学习方法:类比旧知识学习新知识。回忆知识点;

结合教师给出的探究题目学生小组合作,大胆进行

尝试。

派学生代表展示讨论结果;

结合图形,学生口述该命题的已知与求证,并思考命题的证明过程。

学生在教师的引导下口述证明过程。

思考:运用角的条件判定全等与相似的区别。

学生独立思考并作答。

学生自编题目练习:三角形相似的判定定理1。

学生独立解决后,组内交流。

体会双垂直的基本图形,小结结论。

独立分析此题目,大胆尝试此证明过程。

学生回忆本节课教学内容,归纳提升。培养学生及时小结知识点的学习方法

激发学生探究的欲望;

为探究相似铺垫思路。

培养学生探究能力与归纳能力。

运用网格既可以准确作出图形,又可以为后面两个判定打好基础。

由于证明过程对学生有一定难度,所以在学生展示完自己的猜想后,教师引导学生进行证明。

渗透转化的意识。

加强对学生学法的训练;

要求:正确的题目需结合定理1简单叙述理由,错误的题目需举出反例

加强对判定定理1的巩固。

自编题目,激发学习兴趣。

结合图形巩固判定定理1

对于比例线段的结论由学生课下完成。

总结基本图形为学生解决较复杂题目打基础。

学生自己小结本节课的知识要点及数学方法以提高学生的学习能力。

板书设计:

课题:

(投影)判定方法:(文字语言、图形语言)例2、

相似三角形课件教案【篇3】

各位老师:

大家好!下面我就我上的《相似三角形的复习》这一课说一说我的一些想法。

一、教材分析:

(一)教材的地位和作用

相似三角形是在全等三角形知识的基础上拓广和发展的,它在工农业生产、土木建筑、测量绘图和日常生活中有着广泛的应用。比如我们在测量水塔、高楼大厦的高度时,都要利用相似三角形的判定来解决有关问题。因此,相似三角形在初中数学教学中有着举足轻重的地位。

本课主要是复习相似三角形的判定和性质及其应用。通过本节课的学习,培养学生猜想、实验、证明、探索等能力,对掌握观察、比较、类比、转化等思想有重要作用。

(二)教学目标:

根据《新课程标准纲要》对这部分内容的要求结合学生的实情,我将本节课的教学目标确定为:

知识目标:

①掌握三角形相似的判定方法。

②会用相似三角形的判定方法和性质来判断及计算。

能力目标:

①通过相似三角形的判定方法培养学生的动手操作能力。

②利用相似三角形的判定及其性质进行有关判断及计算,培养学生探究新知识,提高分析问题和解决问题的能力,

情感目标:加强对学生探究知识的兴趣和情感培养,引导学生勇于探索,大胆推想,感受数学的魅力,激发其学习的欲望与创造力

(三)教学重点与难点

这节课的重点是三角形相似的判定性质及其应用。

难点是三角形相似的判定和性质的灵活运用。

突破重难点的方法是充分运用多媒体教学手段,设置问题、探究讨论、例题讲解、小组讨论,逐一突破重难点。

二、教学方法的选择与应用

本节课采用了多媒体辅助教学,一方面能够直观、生动地反映图形,增加课堂的容量,同时有利于突出重点、分散难点,增强教学条理性,形象性,更好地提高课堂效率。教学中启发学生发现问题、思考问题,培养学生逻辑思维能力,逐步设疑,引导学生积极参与讨论,提高学生学习的兴趣和学习积极性。

三、学法

《数学新课程标准纲要》指出:有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学习数学的重要方式。为了充分体现《数学新课程标准纲要》的要求,培养学生的动手实践能力,逻辑推理能力,积累丰富的数学活动经验,本节课主要采用自主探索与合作交流的学习方法,使学生积极参与教学过程,在教学过程培养学生提出问题、分析问题、解决问题的能力,进一步理解观察、类比、分析等数学思想方法。

四、教学设计:

根据《数学课程标准》中“要引导学生投入到探索与交流的学习活动中”的教学要求,本节课教学过程我是这样设计的。

(一)、温故知新

1、选一选下列各对三角形不能判定为相似的是( )

A.一腰和底边成比例的两个等腰三角形

B.有一个角对应相等的两个等腰三角形

C.△ABC的三边为1,2,△DEF的三边为2,3

D.有一个锐角对应相等的两个直角三角形

(设计意图:使学生加深对相似三角形判定方法的理解。)

2补一补如图点P是△ABC的AB边上的一点,要使△APC∽△ACB,则需补上哪个条件?

(设计意图:通过让学生自己补条件得到到两个相似三角形,进一步让学生理解判定方法,同时激发学生自主学习,学会自己编题目,做学习的主人)

(二)、寻找相似三角形,相似三角形的证明,和图形变换

3.数一数:

已知△ABC中, BD,CE分别是高线,BD,CE交于点O

求证:△ABD∽△ACE

思考

(1)图中与△ABD相似的三角形有几个?数一数图中相似三角形有几对?

(2)如果连接ED,看看图中相似三角形还有吗?

△AED=1,S△ABC=4,求∠A的度数

(设计意图:在数相似三角形时既要不漏数也要不少数是一个重点,也是一个难点。所以一开始我先让学生数图中与△ABD相似的三角形有哪几个?再让学生数一数图中相似三角形有几对?学生就不会漏数,因为学生特别在数两两相似的三角形时学生往往漏数。另外出示的问题分三步走,由易到难,各种知识相结合,使题目进一步得到延伸与拓展,培养学生的综合运用知识的能力。)

4.证一证:

已知:△ABC内接于⊙O,AB=AC,D为BC上一点,延长AD交⊙O于E,求证:AB2=AD.AE

思考:如改为D为BC延长线上的一点,其它条件都不变,结论是否成立?

(设计意图:教师在多媒体几何画板上直观地演示从两个图形的探索,引导学生发现:尽管有时尽管图形变了,但证明的思路和方法也不变。也就是“形变实不变”。另由于采用多媒体数学,不仅增加了课堂教学的容量,而且能让学生在图形的运动中直观地获取知识,享受到几何的动感美。

(三)画图题

通过画图构造两个或三个相似三角形和在4x4的正方形网格中构造相似三角形是近年来中考中的一个亮点,本环节通过一系列画图问题的设置和解决,旨在使学生在获得新知的情况下,体验成功,从而增加对数学的兴趣。

5(1)已知:△ABC中,∠C=90,∠A=60,∠B=30;△DEF中,∠D=90,∠E=50,∠F=40,将这两个三角形各分成两个三角形,使△ABC所分成的每一个三角形与△DEF所分成的每个三角形分别对应相似。

(2)在方格纸中,每个小格的顶点叫做格点,以格点为顶点的三角形叫做格点三角形.在如图4x4的方格纸中,△ABC是一个格点三角形,请你画一个格点三角形,使它与△ABC相似(相似比不为1)

课外探究题

(3)点F是△ ABC中AB边上的一点,过点F作直线(不与直线AB重合)截△ ABC,使截得的三角形与原三角形相似,满足这样条件的直线最多有几条,最少有几条?(设计意图课堂教学中,应尽量创造愉悦的求知氛围,培养他们勇于探索、勇于发现问题的能力,形成良好的思维习惯

以上是我的本堂课的一些粗浅的想法,不足之处谨各位老师批评指正,谢谢大家。

相似三角形课件教案【篇4】

九年级数学教案:相似三角形的判定

教学目标:1.使学生在经历探究相似三角形判定方法的过程中,初步掌握相似三角形的判定定理,理解定理的证明方法,初步会运用定理来解决有关问题.

2.培养学生运用类比联想,猜想命题,再加以证明的研究问题的方法以及化归的思想.

3.通过观察、猜想、归纳、探究等数学活动,给学生创造成功机会,使他们爱学、乐学、会学,同时培养学生勇于探索、积极合作的精神.

教学重点和难点:

重点:相似三角形的判定定理的理解和初步应用;

难点:相似三角形的判定定理的证明.

教学方法:自主探究与小组合作相结合

教学过程设计

一、创设情境,提出问题

请学生出示课前按要求剪好的三角形,教师利

用已知三角形模板验证两个三角形是否全等的同时

请学生回答他裁剪方法的理论依据,借此复习全等三角形的判定方法.

1.SAS;2.ASA;3.AAS;4.SSS。

在此基础上教师要求学生动手剪一个三角形与已知三角形相似.

学生可能马上利用平行线截一个三角形,教师要求学生说出这种裁剪方法的依据——预备定理.在肯定答案的同时提出,那么如何判断三角形相似呢?目前你掌握的方法有哪些?1.相似三角形的预备定理;2.定义教师提出:判定两三角形相似时,定义的条件过多,预备定理的使用要求具有局限性,那么是否还有其它的判定方法呢?本节课我们继续研究:相似三角形的判定(二).你认为我们可以从哪儿入手研究呢?引导学生类比全等三角形的判定方法进行猜想.

学生类比联想,自主探究猜想相似三角形的判定方法:

1.利用投影展示一般三角形全等的判定定理

(1)ASA:

若∠A=∠A’,∠B=∠B’,,

则有△ABC≌△A’B’C’

(2)AAS:

若∠A=∠A’,∠B=∠B’,,则有△ABC≌△A’B’C’

3)SAS:

若,∠A=∠A’,则有△ABC≌△A’B’C’

4)SSS:

若,则有△ABC≌△A’B’C’

2.猜想相似三角形的判定方法

引导学生利用相似三角形与全等三角形的区别与联系,把上述全等三角形判定定理中比值为1改成比值为正数“k”,就可得到相似三角形的判定方法,得到猜想.

猜想一(类比角边角公理和角角边定理)

△ABC与△A’B’C’中,若∠A=∠A’,∠B=∠B’,则△ABC∽△A’B’C’.

猜想二(类比边角边公理)

△ABC与△A’B’C’中,若,∠A=∠A’,则有△ABC∽△A’B’C’.

猜想三(类比边边边公理)换元

△ABC与△A’B’C’中,若,则有△ABC∽△A’B’C’.

二、小组合作,探究新知

得到猜想后学生分组动手实践,进一步探究猜想的正确性。合作探究后,以猜想1为例分析证明思路.

猜想1.两角对应相等,两三角形相似。

已知:△ABC与△A’B’C’中,

∠A=∠A’,∠B=∠B’。

求证:△ABC∽△A’B’C’。

启发学生结合刚才的动手实践思考,若平移△A’B’C’得到△ADE,则可转化为预备定理的形式.如何实现平移是关键,在此可让学生集思广益阐述观点.

方法之一:由∠A=∠A’,∠B=∠B’,能实现上述平移.

证明法一:在AB上截取AD=A’B’,且过点D作DE∥BC交AC于E.

∴∠ADE=∠B,∵∠B=∠B’

∴∠B’=∠ADE

又∵∠A=∠A’,AD=A’B’

∴△ADE≌△A’B’C’(ASA)

又∵DE∥BC

∴△ADE∽△ABC,∴△ABC∽△A’B’C’

法二:截取AD=A’B’且作∠ADE=∠B’交AC于E.

证法:略

师生共同总结实现上述化归的思路:

(1)利用添加辅助线的方法将问题化归为相似三角形的预备定理(图中,DE∥BC则△ADE∽△ABC).

(2)利用平移变换将证明三角形相似转化为证明三角形全等(图中△ADE≌△A’B’C’).

利用上述思路,证明猜想,得到判定定理1:如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似.简记:两角对应相等,两三角形相似.

判定定理2,3的证明过程由学生仿照定理1的证明完成.请二人上黑板板演.

猜想证明完毕,让学生观察、对比三个定理的证明方法,在证明过程中是否有共性?证法的本质是什么?让学生深入思考,感受三个判定定理的证法本质是一样的,即:将相似三角形的判定利用平移的方法,化归为预备定理的形式,最终转化为判断两个三角形全等,区别就在于全等的证明方法不同.

请学生分别说出三个定理的推理形式且提出:如果不是“夹角”,结论是否仍然成立,请学生分析并举出反例.

在△ABC与△A’B’C’中,

已知∠B=∠B’,

但△ABC不相似于△A’B’C’

三、实战演练,巩固新知

例在△ABC和△DEF中,

∠A=40,∠B=80,∠E=80,∠F=60.

求证:△ABC∽△DEF.

思考题:

如图,已知,在△ADC和△ACB中,

∠A=∠A,请你添加一个条件,

使△ADC∽△ACB。

四、复习小结,归纳新知

师生共同回忆并总结:

今天你有什么收获?

新知的获得采用了什么方法?——类比、转化

你还有困难与困惑吗?

教师根据学生的回答总结类比学习方法及转化思想的重要意义.

五、作业

整理课上定理证明.

六、板书设计:

相似三角形课件教案【篇5】

今天,我的说课将分三大部分进行:一、说教材;二、说教学策略;三、说教学程序。

一、说教材

从教材地位、学习目标、重点难点、学情分析、教学准备五个方面阐述

1、本课内容在教材中的地位

本节教学内容是本章的重要内容之一。本节内容是在完成对相似三角形的判定条件进行研究的基础上,进一步探索研究相似三角形的性质,从而达到对相似三角形的定义、判定和性质的全面研究。从知识的前后联系来看,相似三角形可看作是全等三角形的拓广,相似三角形的性质研究也可看成是对全等三角形性质的进一步拓展研究。另外相似三角形的性质还是研究相似多边形性质的基础,也是今后研究圆中线段关系的有效工具。

从新课程对几何部分的编写来看,几何知识的结论较之老教材已经大为减少,教材首要关注的不是掌握多少几何知识的结论,相对更重视的是对学生合情推理能力的训练与培养。从这个角度上说,不论是全等还是相似,教材只是将它们作为训练学生合情推理的一个有效素材而已,正因为此,本节课应重视学生有条理的思考及有条理的表达。

2.学习目标

知识与技能方面:

探索相似三角形、相似多边形的性质,会运用相似三角形、相似多边形的性质解决有关问题;

过程与方法方面:

培养学生提出问题的能力,并能在提出问题的基础上确定研究问题的基本方向及研究方法,渗透从特殊到一般的拓展研究策略,同时发展学生合情推理及有条理地表达能力。

情感态度与价值观方面:

让学生在探求知识的活动过程中体会成功的喜悦,从而增强其学好数学的信心。

3.教学重点、难点

立足新课程标准和学生已有知识经验、数学活动经验,我确立了如下的教学重点和难点。

教学重点:相似三角形、相似多边形的性质及其应用

教学难点:①相似三角形性质的应用;

②促进学生有条理的思考及有条理的表达。

4.学情分析

从七上开始到现在,学生已经经历了一些平面图形的认识与探究活动,尤其是全等三角形性质的探究等活动,让学生初步积累了一定的合情推理的经验与能力,这是学生顺利完成本节学习内容的一个有利条件。

对相似形的性质的结论,学生是有生活经验与直观感受的。比如说两幅大小不等的中国地图,如果其相似比为2:1,我们在较大的地图上量出北京到南京的图上距离为4cm,问在较小的地图上北京到南京的图上距离是几厘米?学生肯定知道是2cm,这个问题中学生又没有学过相似形的性质,他怎么会知道呢?从中可以看出学生对比例尺的理解实际上是基于生活经验的。再比如说,如果你找一个没学过相似形性质的学生来问他:“如果用放大镜将一个小五角星的边长放大到原来的5倍,则这个小五角星的周长被放大到原来的几倍?面积被放大到原来的几倍?”这些问题学生基本上能给出较准确的回答。其实这就是学生对相似形性质的一种生活化的直观感受。

大家知道,源于学生原有认知水平和已有生活经验的教学设计才更能激发学生学习的内驱力,从而取得良好的教学效果。所以本节课在教学设计过程中不能把学生当作是对相似形的性质一无所知的,而是应在充分尊重学生已有的生活经验的基础上展开富有成效的教学设计。

5.教学准备

教师:直尺、多媒体课件

学生:必要的学习用具

二、说教学策略

从设计的指导思想、教学方法、学习方法三方面阐述

新课程标准指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者”,那么如何让学生在教学过程中真正成为学习的主人,同时教师在教学过程中又引导什么,与学生如何合作?这就是我这节课处理教学设计时的指导思想。为了更好地体现“学生主体”“教师主导”的地位,我打算从两条主线进行教学设计:一是从知识研究的大背景出发,结合知识的生长点拓展延伸、合理整合、组织教学;二是从尊重学生已有的知识与生活经验出发,利用学生已有的生活本能体验感受相似形的一系列性质的结论,并在此基础上创设教学情境,组织教学。力图将这两条线索有机融合,行成完整的教学体系。

采取引导发现法进行教学,充分发挥教师的主导作用与学生的主体作用,加强知识发生过程的教学,环环紧扣、层层深入,逐步引导学生观察、比较、分析,用探索、发现的方法,使学生在掌握知识的同时,逐步形成技能。

有一位教育家说过:“教给学生良好的学习方法比直接教给学生知识更重要。”本节课教给学生的学习方法有:提出问题,感受价值,探究解决的研究问题的基本方法,从特殊到一般的拓展研究方法等。以此发展学生思维能力的独立性与创造性,逐步训练学生由“被动学会”变成“主动会学”。

三、说教学程序

(一)类比研究,明确目标

师:同学们,回顾我们以往对全等三角形的研究过程,大家会发现,我们对一个几何对象的研究,往往从定义、判定和性质三方面进行。类似的我们对相似三角形的研究也是如此。而到目前为止,我们已经对相似形进行了哪些方面的研究呢?

生:已经研究了相似三角形的定义、判别条件。

师:那么我们今天该研究什么了?

生:相似三角形的性质。

设计意图:

从几何对象研究的大背景出发,给学生一个研究问题的基本途径。从而让学生自然明白本节课的学习目标:相似三角形的性质。

(二)提出问题,感受价值,探究解决

师:就你目前掌握的知识,你能说出相似三角形的1-2条性质吗?并说明你的依据。

生:相似三角形的对应角相等,对应边成比例。根据是相似三角形的定义。

师:对于相似三角形而言,边和角的性质我们已经得到,除边角外你认为还有哪些量之间的性质值得我们研究呢?

设计意图:

我们常常会说:提出问题比解决问题更重要。但是作为教师,我们应该清醒地认识到,学生提出问题的能力是需要逐步培养的。此处设问就是要培养学生提出问题的能力。我希望学生能提出周长、面积、对应高、对应中线、对应角平分线之间的关系来研究,甚至于我更希望学生能提出所有对应线段之间的关系来研究。估计学生能提出这其中的一部分问题。如果学生能提出这些问题(如相似三角形周长之比等于相似比等),就说明他的生活经验的直觉已经在起作用了。如果学生提不出这些问题,说明他的生活直觉经验还没有得到激发,我可以利用前面提到的放大镜问题、大小两幅地图问题等逐步启发,激发学生的一些源自生活化的思考,从而回到预设的教学轨道。

师:对于同学们提出的一系列有价值的问题,我们不可能在一节课内全部完成对它们的研究,所以我们从中挑出一部分内容先行研究。比如我们来研究周长之比,面积之比,对应高之比的问题。

师:为了让同学们感受到我们研究问题的实际价值。我们来看一个生活中的素材:

给形状相同且对应边之比为1:2的两块标牌的'表面涂漆。如果小标牌用漆半听,那么大标牌用漆多少听?

师:(1)猜想用多少听油漆?(2)这个实际问题与我们刚才的什么问题有着直接关联?

生:可能猜半听、1听、2听、4听等。同时学生能感受到这是与相似三角形面积有关的问题。

设计意图:从学习心理学来说,如果能知道自己将要研究的知识的应用价值,则更能激发起学生学习的内在需求与研究热情。

师:同学们的猜测到底谁的对呢?请允许老师在这儿先卖个关子。让我们带着这个疑问来对下面的问题进行研究。到一定的时候自然会有结论。

情境一:如图,ΔABC∽ΔDEF,且相似比为2:1,DE、EF、FD三边的长度分别为4,5,6。(1)请你求出ΔABC的周长(学生只能用相似三角形对应边成比例求出ΔABC的三边长,然后求其周长)

(2)如果ΔDEF的周长为20,则ΔABC的周长是多少?说出你的理由。(通过这个问题的研究,学生已经可以得到相似三角形周长之比等于相似比的结论)

(3)如果ΔABC∽ΔDEF,相似比为k:1,且ΔDEF三边长分别用d、e、f表示,求ΔABC与ΔDEF的周长之比。

结论:相似三角形的周长之比等于相似比。

情境二:

师:相似三角形周长比问题研究完了,下面我们该研究什么内容了?

生:面积比问题。

师:那么对于相似三角形的面积比问题你打算怎样进行研究?请你在独立思考的基础上与小组同学一起商量,给出一个研究的基本途径与方法。

设计意图:人类在改造自然的过程中,会遇到很多从未见过的新情境、新课题。当我们遇到新问题的时候,确定研究方向与策略远比研究问题本身更有价值。如果你的研究方向与研究策略选择错误的话,你根本就不可能取得好的研究成果。而这种确定研究问题基本思路的能力也是我们向学生渗透教育的重要内容。所以对于相似三角形面积比的研究,我认为让学生探索所研究问题的基本走向与策略远比解题的结论与过程更有价值。

(师)在学生交流的基本研究方向与策略的基础上,与学生共同活动,作出两个三角形的对应高,通过相似三角形对应部分三角形相似的研究得到“相似三角形的对应高之比等于相似比”的结论。进而解决“相似三角形的面积比等于相似比的平方”的问题。体现教材整合。

(三)拓展研究,形成策略,回归生活

拓展研究一:由相似三角形对应高之比等于相似比,类比研究相似三角形对应中线、对应角平分线之比等于相似比的性质;(留待下节课研究,具体过程略)

拓展研究二:由相似三角形研究拓展到相似多边形研究

师:通过上述研究过程,我们已经得到相似三角形的周长之比等于相似比,面积之比等于相似比的平方。那么这些结论对一般地相似多边形还成立吗?下面请大家结合相似五边形进行研究。

情境三:如图,五边形ABCDE∽五边形A/B/C/D/E/,相似比为k,求其周长比与面积之比。

说明:对于周长之比,可由学生自行研究得结论。对于面积之比问题,与前面一样,先由学生讨论出研究问题的基本方向与策略——转化为三角形——来研究。然后通过师生活动合作研究得结论。

拓展结论1:相似多边形的周长之比等于相似比;

相似多边形的面积之比等于相似比的平方。

(结合相似五边形研究过程)

拓展结论2:相似多边形中对应三角形相似,相似比等于相似多边形的相似比;

相似多边形中对应对角线之比等于相似比;

进而拓展到:相似多边形中对应线段之比等于相似比等。

回归生活一:

师:通过前面的研究,我们得到了有关相似形的一系列结论,现在让我们回头来看前面的标牌涂漆问题。你能确定是几听吗?如果把题中的三角形条件改成更一般的“相似形”你还能解决吗?

回归生活二:(以师生聊天的方式进行)

其实我们生活中对相似形性质的直觉解释是正确的,线段、周长都属于一维空间,它的比当然等于相似比,而面积就属于二维空间了,它的比当然等于相似比的平方了,比如两个正方形的边长之比为1:2,面积之比一定为1:4。甚至在此基础上我们也可以想像:相似几何体的体积之比与相似比的关系是什么?

生:相似比的立方。

设计意图:新课程标准指出“数学教学活动要建立在学生已有生活经验的基础上---”;教育心理学认为:“源于学生生活实际的教育教学活动才更能让学生理解与接受,也更能激发学生的学习热情,从而导致好的教学效果”;于新华老师在一些教研活动中曾经说过:“源于学生的生活经验与数学直觉来展开教学设计,构建知识,发展能力,最终还要回到学生的生活经验理解上来,形成新的数学直觉。这才是教学的最高境界。”

而我的设计还有一个意图就是向学生渗透从生活中来回到生活中去的思想,让学生体会学好数学的重要性。

(四)操作应用,形成技能

课内检测:

1.已知两上三角形相似,请完成下面表格:

相似比2

对应高之比0.5

周长之比3 k

面积之比100

2.在一张比例尺为1:20xx的地图上,一块多边形地区的周长为72cm,面积为200cm2,求这个地区的实际周长和面积。

设计意图:落实双基,形成技能

(五)习题拓展,发展能力

已知,如图,ΔABC中,BC=10cm,高AH=8cm。点P、Q分别在线段AB、AC上,且PQ∥BC,分别过点P、Q作BC边的垂线PM、QN,垂足分别为M、N。我们把这样得到的矩形PMNQ称为△ABC的内接矩形。显然这样的内接矩形有无数个。

(1)小明在研究这些内接矩形时发现:当点P向点A运动过程中,线段PM长度逐渐变大,而线段PQ的长度逐渐变小;当点P向点B运动的过程中,线段PM逐渐变小,而线段PQ的长度逐渐变大,根据此消彼长的想法,他提出一个大胆的猜想:在点P的运动过程中,矩形PQNM的面积s是不变的。你认为他的猜想正确吗?为什么?

(2)在点P的运动过程中,矩形PMNQ的面积有最大值吗?有最小值吗?

答:最大值,最小值(填“有”或“没有”)。请你粗略地画出矩形面积S随线段PM长度x变化的大致图象。

(3)小明对关于矩形PMNQ的面积的最值问题提出了如下猜想:

①当点P为AB中点时,矩形PMNQ的面积最大;

②当PM=PQ时,矩形PMNQ的面积最大。

你认为哪一个猜想较为合理?为什么?

(4)设图中线段PM的长度为x,请你建立矩形PQNM的面积S关于变量x的函数关系式。

设计意图:将课本基本习题改造成发展学生能力的开放型问题研究,体现了课程整合的价值。

(六)作业(略)

另外值得一提的是:本节课对学生的评价,更多的应关注对学生学习的过程性评价。在整个教学过程中,我都将尊重学生在解决问题过程中所表现出的不同水平,尽可能地让所有学生都能主动参与,并引导学生在与他人的交流中提高思维水平。在学生回答时,我通过语言、目光、动作给予鼓励与表扬,发挥评价的积极功能。尤其注意鼓励学有困难的学生主动参与学习活动,发表自己看法,肯定他们的点滴进步。

相似三角形课件教案【篇6】

一.教材分析

(一)教材的地位和作用

相似三角形的知识是在全等三角形知识的基础上的拓广和发展,相似三角形承接全等三角形,从特殊的相等到一般的成比例予以深化,学好相似三角形的知识,为今后进一步学习三角函数及与固有关的比例线段等知识打下良好的基础。

本节课是为学习相似三角形的判定定理做准备的,因此学好本节内容对今后的学习至关重要。

(二)教学的目标和要求

1.知识目标:理解相似三角形的概念,掌握判定三角形相似的预备定理。

2.能力目标:培养学生探究新知识,提高分析问题和解决问题的能力,增进发放思维能力和现有知识区向最近发展区迁延的能力。

3.情感目标:加强学生对斩知识探究的兴趣,渗透几何中理性思维的思想。

(三)教学的重点和难点

1.重点:相似三角形和相似比的概念及判定三角形相似的预备定理。

2.难点:相似三角形的定义和判定三角形相似的预备定理。

二、教法与学法

采用直观、类比的方法,以多媒体手段辅助教学,引导学生预习教材内容,养成良好约自学才惯,启发学生发现问题、思考问题,培养学生逻辑思维能力。逐步设疑,引导学生积极参与讨论,肯定成绩,使其具有成就感,提高他们学习约兴趣和学习的积极性。

三、教学过程的分析

看我国国旗,国旗上约大五角星和小五角星是相似图形。本节课要学习的新知识是相似三角形,准备分四个步骤进行。

1. 关于相似三角形定义的学习,是从实践中总结得出定义的两个条件,培养学生观察归纳的思维方法,从感性认识转化为理性认识。我准备用三角形的中位线定理引入,让学生动手画一个具有三角形中位线的三角形,然后问:三角形的中位线所截得的三角形与原三角形的各角有什么关系?各边有什么关系?再从中位线所在的直线上下平移进行观察,想一想怎么回答。学生容易由学过的知识得出:所截得的三角形与原三角形的“对应角相等,对应边成比例”,最后指明具有这两个特性的两个三角形就叫做相似三角形。这一段教学方法的设计是要培养学生的动手能力和观察能力。并逐步培养从具体到抽象的归纳思维能力。将所截得的三角形移出记为 △ABC,原三角形记为△A'B'C'。因此,如果有:

∠A=∠A',∠B=∠B',∠C=∠C',

那么△ABC与△A'B'C'是相似的。以此来加强两个三角形相似定义的认识。

2. 关于用相似符号“∽”来表示两个三角形相似时,考虑与全等三角形的全等符号“≌”表示相类比引入。全等符号“≌”可看成由形状相同的符号“∽”和大小相等的符号“=”所合成,而相似形只是形状相同,所以只用符号“∽”表示,这样的讲法是格数学符号形象化了。学生会比较容易记住,是否可以,请同行们提意见。必须注意:用相似符号“∽”表示两个三角形相似,书写时应把对应顶点写在对应位置上。例如,在两个相似三角形中,其顶点D与A对应,E与B对应,F和C对应,就应写成△ABC∽△DEF,而不能任意写成△ABC∽△FDE。把对应顶点写在对应位置上的问题,在以后的解题中常常显示出它的重要性。根据相似三角形约定义可知:

如果两个三角形相似,那么它们的对应角相等,对应达成比例。在由相似来判断它们的对应角及对应边时,如果其对应项点是按对应位置书写的,那么这个判断就准确而且迅速。如△ABC∽△DEF,则AB、BC、AC就分别与DE、EF、DF相对应,∠A、∠B、∠C就分别与∠D、∠E、∠F相对应。这样就可避免产生混乱和错误。对学生也是一种思维方法的训练,引导学生考虑问题时要有条理和方法。在判断相似三角形的对应边及对应角时,还常用另外一种方法,即:对应角的夹边是对应边。对应边的夹角是对应角。

3. 关于相似比概念的教学,应向学生讲清:如果两个三角形相似,那么第一个三角形的一边和第二个三角形的对应边的比叫做第一个三角形和第二个三角形的相似比 (或相似系数),这里,必须注意的是顺序问题和对应问题。例如:△ABC∽△DEF,那么是△ABC与△DEF的相似比,而是指△DEF与△ABC的相似比,而这两相似比互为倒数。由此可说明全等三角形是相似三角形当相似比等于l时约特殊情况。

4. 在教学预备定理前,可先复习上节课学习的P215页例6的结论[平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例。]对命题的引出,可以先画出一个三角形,然后作出平行于其中一边,并且和其他两边相交的直线,使学生直观地得到:所截得的三角形与原三角形相似,从而引出命题“平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似”。即如图,若DE∥BC,则 △ADE∽△ABC,然后分析命脉题的结论是要证明两个三角形相似。可以问学生:

当没有判定两个三角形相似约定理的情况下,应考虑利用什么方法来证明相似?如获至宝果用定义来证,应从哪几个方面来证?然后按教材内容给出证明。强调指出每个比的前项是同一个三角形的三边,而比的后项为另一个三角形的三边,位置不能写错。

因此我们可得(预备)定理:

定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。

以教材的内容为出发点,启动学生自发学习,引导学生探究思维,以达知识目标。为了巩固本节保所学的知识,安排课堂练习,之后进行提问与调板,了解学生掌握知识的情况。

相似三角形课件教案【篇7】

一、教学目标

1、使学生了解直角三角形相似定理的证明方法并会应用。

2、继续渗透和培养学生对类比数学思想的认识和理解。

3、通过了解定理的证明方法,培养和提高学生利用已学知识证明新命题的能力。

4、通过学习,了解由特殊到一般的唯物辩证法的观点。

二、教学设计

类比学习,探讨发现

三、重点及难点

1、教学重点:是直角三角形相似定理的应用。

2、教学难点:是了解直角三角形相似判定定理的证题方法与思路。

四、课时安排

3课时

五、教具学具准备

多媒体、常用画图工具、

六、教学步骤

[复习提问]

1、我们学习了几种判定三角形相似的方法?(5种)

2、叙述预备定理、判定定理1、2、3(也可用小纸条让学生默写)。

其中判定定理1、2、3的证明思路是什么?(①作相似,证全等;②作全等,证相似)

3、什么是“勾股定理”?什么是比例的合比性质?

【讲解新课】

类比判定直角三角形全等的“HL”方法,让学生试推出:

直角三角形相似的判定定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。

这个定理有多种证法,它同样可以采用判定定理1、2、3那样的证明思路与方法,即“作相似、证全等”或“作全等、证相似”,教材上采用了代数证法,利用代数法证明几何命题的思想方法很重要,今后我们还会遇到。应让学生对此有所了解。

定理证明过程中的“都是正数,其中都是正数”告诉学生一定不能省略,这是因为命题“若,到”是假命题(可举例说明),而命题“若,且、均为正数,则”是真命题。

教师在讲解例题时,应指出要使___。应有点A与C,B与D,C与B成对应点,对应边分别是斜边和一条直角边。

还可提问:

(1)当BD与、满足怎样的关系时?(答案:)

(2)如图,当BD与、满足怎样的关系式时,这两个三角形相似?(不指明对应关系)

(答案:或两种情况)

探索性题目是已知命题的结论,寻找使结论成立的题设,是探索充分条件,所以有一定难度,教材为了降低难度,在例4中给了探索方向,即“BD与满足怎样的关系式。”

这种题目体现分析问题的思维方法,对培养学生研究问题的习惯有好处,教师要给予足够重视,但由于有一定难度,只要求学生了解这类问题的思考方法,不应提高要求或增加难度。

[小结]

1、直角三角形相似的判定除了本节定理外,前面判定任意三角形相似的方法对直角三角形同样适用。

2、让学生了解了用代数法证几何命题的思想方法。

3、关于探索性题目的处理。

七、布置作业

教材P239中A组9、教材P240中B组3。

相似三角形课件教案【篇8】

尊敬的各位老师:

大家好!

今天我说课的题目是义务教育数学课程标准实验教材八年级下册第四章第六节的《探索相似三角形的条件(一)》这一课内容。下面我分五部分来汇报我这节课的教学设计,这就是“教材分析“、“教学”、“学法”、“教学过程”、“教学评价”。

一、教材分析:

(一)教材的地位和作用:

“探索相似三角形的条件”是在学习了相似图形及相似三角形的概念等知识后,单独研究如何探索相似三角形的条件的一课,本课是判定三角形相似的起始课,是本章的重点之一。既是前面知识的延伸和全等三角形性质的拓展,也是今后证明线段成比例,求几何图形和研究相似多边形性质的重要工具,它在工农业生产、土木建筑、测量绘图和日常生活中有着广泛的应用。比如我们在测量水塔、高楼大厦的高度时,都要利用相似三角形的判定来解决有关问题。在本课中,学生学习的主要内容是三角形相似的判定定理1及其初步应用,这就为下节课学习相似三角形的判定条件(二)(三)打下好的基础。通过本节课的学习,还可培养学生猜想、实验、证明、探索等能力,对掌握观察、比较、类比、转化等思想有重要作用。因此,这节课在本章中有着举足轻重的地位。

(二)教学目标:

根据《新课程标准纲要》对这部分内容的要求及本课的特点,结合学生的实情,我本节课的教学目标确定为:

l知识目标:

①掌握三角形相似的判定方法(一)。

②会用相似三角形的判定方法(一)来判断及计算。

l能力目标:

①通过亲身体会得出相似三角形的判定方法(一),培养学生的动手操作能力。

②利用相似三角形的判定方法(一)进行有关判断及计算,训练学生的灵活运用能力。

l情感目标:通过实物演示和电化教学手段,把抽象问题直观化,从而发

展学生的合情推理能力,进一步培养逻辑推理能力。

(三)教学重点与难点

这节课的重点是三角形相似的判定定理1及应用。

难点是三角形相似的判定方法1的运用。

突破重难点的方法是充分运用多媒体教学手段,设置问题、探究讨论、例题讲解、课后小结直至布置作业,突出主线,层层深入,逐一突破重难点。

二、教学方法的选择与应用

根据本节课的教学目标、教材内容以及学生的认知特点,教学上采用以引导发现法为主,并以讨论法、演示法相结合,设计“实验、观察、讨论”的教学方法,意在帮助学生通过直观情景观察和自己动手实验,从自己的实践中获取知识,并通过讨论来深化对知识的理解。本节课采用了多媒体辅助教学,一方面能够直观、生动地反映图形,增加课堂的容量,同时有利于突出重点、分散难点,增强教学条理性,形象性,更好地提高课堂效率。

三、学法

《数学新课程标准纲要》指出:有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学习数学的重要方式。为了充分体现《数学新课程标准纲要》的要求,培养学生的动手实践能力,逻辑推理能力,积累丰富的数学活动经验,这节课主要采用动手实践,自主探索与合作交流的学习方法,使学生积极参与教学过程,在教学过程展开思维,培养学生提出问题、分析问题、解决问题的能力,进一步理解观察、类比、分析等数学思想方法。

四、教学设计:

根据《数学课程标准》中“要引导学生投入到探索与交流的学习活动中”的教学要求,本节课教学过程我是这样设计的。

(一)、点燃思维火花(趣味题目引入,配以动画演示)

1、为了测量一个大峡谷的宽度,地质勘探人员在对面的岩石上观察到一个特别明显的标志点O,再在他们所在的这一侧选点A、B、D,使得AB┷AO,DB┷AB,然后确定DO和AB的交点C,测得AC=120m,CB=60m,BD=50m,你能帮助他们算出峡谷的宽度AO吗?

(设计意图:以趣味性题目引入,从而引起悬念,激发学生的学习兴趣。)

假如利用相似三角形原理可不可以解决这个问题呢?那么如何判定这两个三角形相似呢?这就是我们这节课要学习的内容。(引出课题)

(二)、动手实验探索(分小组研究讨论)

还记得全等三角形的判定方法吗?那么判定相似三角形要不要这么多条件呢?假如当条件只有角这个元素时,能不能判定两个三角形相似呢?

1、若有一个角对应相等,能否判定两个三角形相似?

(投示)(1)每人画一个△ABC,使∠BAC=60°,与同伴交流,两个三角形是否相似。

结论:只有一个角对应相等,不能判定两个三角形相似。

2、若有两个角对应相等,能否判定两个三角形相似?

(2)一人画△ABC,另一人画△A′B′C′,使∠A与∠A′都等于60°,∠B与∠B′都等于45°,比较∠C和∠C′是否相等,测量三边长度,探求是否相等。

改变角的度数再试一次。(用三个小组测量结果)

在此过程中,给学生充分的时间画图、观察、比较、交流,最后通过活动让学生用语言概括总结。

引出判定条件1:(学生总结,教师纠正)

如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.

可简单说成:两角对应相等,两三角形相似.

组织学生进行讨论,在此基础上教师引导学生从对应边和对应角入手进行观察。教师在多媒体几何画板上直观地演示。在教学中,通过以趣味性题目引入,从而引起悬念,引起学生的注意,激发他们的求知欲,让每个学生都积极参与。

通过学生自己探索、讨论,由学生自己得出结论:如果两个三角形中有两对角对应相等,那么这两个三角形相似。即两角对应相等的两个三角形相似。这样,从学生自己动力手操作、实验所得出的判定条件,让学生产生自豪感及满足感,培养学生的自信心及逻辑推理能力。

(三)、例题讲解:

例:如图,D、E分别是△ABC这AB、BC上的点,DE∥BC,

(1)图中有哪些相等的角?

(2)找出图中的相似三角形,并说明理由。

(3)写出三组成比例的线段。

分析:本例意在渗透平行与相似的内在联系,同时,本例有意识地渗透了简单逻辑推理的思想,承前启后。

解:(1)DE//BC

∠ADE与∠ABC是同位角∠ADE=∠ABC,∠AED=∠ACB

∠AED与∠ACB是同位角

(2)△ADE∽△ABC理由是:

∠ADE=∠ABC

∠AED=∠ACB△ADE∽△ABC

(3)△ADE∽△ABC==

想一想:在上面的例题的条件下,=吗?=吗?(学生画图,交流,老师用多媒体演示出来。)

解:由DE//BC得,=

根据比例基本性质得:

=

即=

两边同时减去1,得

1=1

即=

课后思考:若DE与BC不平行,它们还可能相似吗?说明理由。

(设计意图:分三个问题显示,由易到难,新旧知识相结合,分散难点,让学生明白判定方法(一)在实际问题中的应用,最后设置一道课后思考与讨论,使题目进一步延伸与拓展,培养学生的发散思维。)

(三)随堂练习:

判断题:(让学生判断,老师用几何画板演示)

(1)有一个锐角对应相等的两个直角三角形相似。()

(2)所有的直角三角形都相似。()

(3)有一个角相等的两个等腰三角形相似。()

(4)顶角相等的两个等腰三角形相似。()

(5)所有的等边三角形都相似。()

解:(1)对。有一个锐角对应相等的两个直角三角形相似。

因为是两个直角三角形,所以有一对直角相等,再加上一对锐角相等,根据判定方法1,得,这两个三角形相似。

(2)错。

(3)错。有一个角相等的两个等腰三角形不相似。

例:一个顶角为30°的等腰三角形与一个底角等于30°的等腰三角形就不相似.

(4)对。顶角相等的两个等腰三角形相似。

因为两个等腰三角形的顶角相等,所以它们的四个底角都相等,因此有三对角对应相等,所以这两个三角形相似。

(5)对。因为等边三角形的三个角都是60°。

(设计意图:使学生加深对判定方法(一)的理解。)

(四)补充练习:

(1)已知:△ABC和△A′B′C′中,∠B=∠B′=75°,∠C=50°,∠A′=55°,问:这两个三角形相似吗?为什么?

解:(1)在△ABC中,

∵∠B=75°,∠C=50°

∴∠A=55°

∴∠B=∠B′,∠A=∠A′

∴△ABC∽△A′B′C′

(2)已知△ABC和△A′B′C′中,∠B=∠B′=75°,∠A=50°,∠A′=55°,问:这两个三角形相似吗?为什么?

解:(1)在△ABC中,

∵∠B=75°,∠A=50°

∴∠C=55°

而在△A′B′C′中,

∵∠B′=75°,∠A′=55°

∴∠C′=50°

∴根据判定方法(一),△ABC和△A′B′C′不相似。

(设计意图:通过让学生比较这两道题中条件的异同,进一步让学生理解判定方法(一)的运用)

现再请学生回头看看引入那道题,利用判定方法(一)让学生自己去发现两个三角形相似,然后再运用相似三角形的对应边成比例来解这道题,这样一来可以加深对判定方法(一)的理解,二来可以增强学生的自信心,培养学生分析问题、解决问题的能力。

通过系列问题的设置和解决,旨在降低难度,使难度点予以突破,同时使学生在获得新知的情况下,体验成功,从而增加对数学的兴趣。

(五)、总结提高:

提问:“通过这节课的学习有什么收获?”

(同桌对讲,畅谈自己的感受和体会,学生发言,老师总结与归纳)

(设计意图:让学生自己小结,活跃了课堂气氛,做到全员参与,理清了知识脉络,强化了重点,培养了学生口头表达能力。)

(六)、分层作业:

(必做题):P119的习题4.7的1、2

(选做题):

如图,已知D是△ABC的边AB上任一点,DF∥AC交BC于E.AF交BC于M,且∠B=∠F,△AMC∽△BDE吗?请说明理由。

(设计意图:让学生巩固所学内容并进行自我检验与评价,既面向全体学生,又因材施教,照顾到学有余力的学生。)

l新的探索:(提高题)

(4)如图梯形ABCD中,AD∥BC,∠ABC=90°,对角线BD⊥DC,求证:△ABD∽△DCB.

分析:由已知条件不可能推出有关比例式时,只能找相等的角.用定理“两角对应相等,两三角形相似”时,要注意图形中的公共角、对顶角、直角、两直线平行时的同位角、内错角或等角的余角、补角等等.

(设计意图:旨在体现因材施教、分层教学的原则。同时上述问题的进一步伸展,给学生展示了一个思维发散的平台。而且这也为下节课学习证明作了必要的铺垫。)

四、教学评价:

为了实现教学目标,优化教学过程,提高课堂效率,在教学上组织学生参与“创设问题、实验、观察、讨论、总结”这符合现代教学理论的'观点,把素质教育落到实处。另一方面对学生暴露思维过程,拓展性和开放性题目的设计编排,培养了学生的直觉思维能力和发散思维能力。

五分钟小测:

1、

C

如图,AB,CD相交于E,ΔAEC∽ΔDEB,∠A与∠D是对应角,则其余的对应角为xx,对应边的比例式为xx

A

E

B

D

2、

A

如图:∠BAC=∠ADB,图中有相似三角形吗?

为什么?

D

C

B

3、已知ΔABC,P是AB上一点,连接CP,满足什么条件时,ΔACP与ΔABC相似.

相似三角形课件教案【篇9】

今天,我的说课将分三大部分进行:一、说教材;二、说教学策略;三、说教学程序。

一、说教材

从教材地位、学习目标、重点难点、学情分析、教学准备五个方面阐述

1、本课内容在教材中的地位

本节教学内容是本章的重要内容之一。本节内容是在完成对相似三角形的判定条件进行研究的基础上,进一步探索研究相似三角形的性质,从而达到对相似三角形的定义、判定和性质的全面研究。从知识的前后联系来看,相似三角形可看作是全等三角形的拓广,相似三角形的性质研究也可看成是对全等三角形性质的进一步拓展研究。另外相似三角形的性质还是研究相似多边形性质的基础,也是今后研究圆中线段关系的有效工具。

从新课程对几何部分的编写来看,几何知识的结论较之老教材已经大为减少,教材首要关注的不是掌握多少几何知识的结论,相对更重视的是对学生合情推理能力的训练与培养。从这个角度上说,不论是全等还是相似,教材只是将它们作为训练学生合情推理的一个有效素材而已,正因为此,本节课应重视学生有条理的思考及有条理的表达。

2.学习目标

知识与技能方面:

探索相似三角形、相似多边形的性质,会运用相似三角形、相似多边形的性质解决有关问题;

过程与方法方面:

培养学生提出问题的能力,并能在提出问题的基础上确定研究问题的基本方向及研究方法,渗透从特殊到一般的拓展研究策略,同时发展学生合情推理及有条理地表达能力。

情感态度与价值观方面:

让学生在探求知识的活动过程中体会成功的喜悦,从而增强其学好数学的信心。

3.教学重点、难点

立足新课程标准和学生已有知识经验、数学活动经验,我确立了如下的教学重点和难点。

教学重点:相似三角形、相似多边形的性质及其应用

教学难点:①相似三角形性质的应用;

②促进学生有条理的思考及有条理的表达。

4.学情分析

从七上开始到现在,学生已经经历了一些平面图形的认识与探究活动,尤其是全等三角形性质的探究等活动,让学生初步积累了一定的合情推理的经验与能力,这是学生顺利完成本节学习内容的一个有利条件。

对相似形的性质的结论,学生是有生活经验与直观感受的。比如说两幅大小不等的中国地图,如果其相似比为2:1,我们在较大的地图上量出北京到南京的图上距离为4cm,问在较小的地图上北京到南京的图上距离是几厘米?学生肯定知道是2cm,这个问题中学生又没有学过相似形的性质,他怎么会知道呢?从中可以看出学生对比例尺的理解实际上是基于生活经验的。再比如说,如果你找一个没学过相似形性质的学生来问他:“如果用放大镜将一个小五角星的边长放大到原来的5倍,则这个小五角星的周长被放大到原来的几倍?面积被放大到原来的几倍?”这些问题学生基本上能给出较准确的回答。其实这就是学生对相似形性质的一种生活化的直观感受。

大家知道,源于学生原有认知水平和已有生活经验的教学设计才更能激发学生学习的内驱力,从而取得良好的教学效果。所以本节课在教学设计过程中不能把学生当作是对相似形的性质一无所知的,而是应在充分尊重学生已有的生活经验的基础上展开富有成效的教学设计。

5.教学准备

教师:直尺、多媒体课件

学生:必要的学习用具

二、说教学策略

从设计的指导思想、教学方法、学习方法三方面阐述

新课程标准指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者”,那么如何让学生在教学过程中真正成为学习的主人,同时教师在教学过程中又引导什么,与学生如何合作?这就是我这节课处理教学设计时的指导思想。为了更好地体现“学生主体”“教师主导”的地位,我打算从两条主线进行教学设计:一是从知识研究的大背景出发,结合知识的生长点拓展延伸、合理整合、组织教学;二是从尊重学生已有的知识与生活经验出发,利用学生已有的生活本能体验感受相似形的一系列性质的结论,并在此基础上创设教学情境,组织教学。力图将这两条线索有机融合,行成完整的教学体系。

采取引导发现法进行教学,充分发挥教师的主导作用与学生的主体作用,加强知识发生过程的教学,环环紧扣、层层深入,逐步引导学生观察、比较、分析,用探索、发现的方法,使学生在掌握知识的同时,逐步形成技能。

有一位教育家说过:“教给学生良好的学习方法比直接教给学生知识更重要。”本节课教给学生的学习方法有:提出问题,感受价值,探究解决的研究问题的基本方法,从特殊到一般的拓展研究方法等。以此发展学生思维能力的独立性与创造性,逐步训练学生由“被动学会”变成“主动会学”。

三、说教学程序

(一)类比研究,明确目标

师:同学们,回顾我们以往对全等三角形的研究过程,大家会发现,我们对一个几何对象的研究,往往从定义、判定和性质三方面进行。类似的我们对相似三角形的研究也是如此。而到目前为止,我们已经对相似形进行了哪些方面的研究呢?

生:已经研究了相似三角形的定义、判别条件。

师:那么我们今天该研究什么了?

生:相似三角形的性质。

设计意图:

从几何对象研究的大背景出发,给学生一个研究问题的基本途径。从而让学生自然明白本节课的学习目标:相似三角形的性质。

(二)提出问题,感受价值,探究解决

师:就你目前掌握的知识,你能说出相似三角形的1-2条性质吗?并说明你的依据。

生:相似三角形的对应角相等,对应边成比例。根据是相似三角形的定义。

师:对于相似三角形而言,边和角的性质我们已经得到,除边角外你认为还有哪些量之间的性质值得我们研究呢?

设计意图:

我们常常会说:提出问题比解决问题更重要。但是作为教师,我们应该清醒地认识到,学生提出问题的能力是需要逐步培养的。此处设问就是要培养学生提出问题的能力。我希望学生能提出周长、面积、对应高、对应中线、对应角平分线之间的关系来研究,甚至于我更希望学生能提出所有对应线段之间的关系来研究。估计学生能提出这其中的一部分问题。如果学生能提出这些问题(如相似三角形周长之比等于相似比等),就说明他的生活经验的直觉已经在起作用了。如果学生提不出这些问题,说明他的生活直觉经验还没有得到激发,我可以利用前面提到的放大镜问题、大小两幅地图问题等逐步启发,激发学生的一些源自生活化的思考,从而回到预设的教学轨道。

师:对于同学们提出的一系列有价值的问题,我们不可能在一节课内全部完成对它们的研究,所以我们从中挑出一部分内容先行研究。比如我们来研究周长之比,面积之比,对应高之比的问题。

师:为了让同学们感受到我们研究问题的实际价值。我们来看一个生活中的素材:

给形状相同且对应边之比为1:2的两块标牌的表面涂漆。如果小标牌用漆半听,那么大标牌用漆多少听?

师:(1)猜想用多少听油漆?(2)这个实际问题与我们刚才的什么问题有着直接关联?

生:可能猜半听、1听、2听、4听等。同时学生能感受到这是与相似三角形面积有关的问题。

设计意图:从学习心理学来说,如果能知道自己将要研究的知识的应用价值,则更能激发起学生学习的内在需求与研究热情。

师:同学们的猜测到底谁的对呢?请允许老师在这儿先卖个关子。让我们带着这个疑问来对下面的问题进行研究。到一定的时候自然会有结论。

情境一:如图,ΔABC∽ΔDEF,且相似比为2:1,DE、EF、FD三边的长度分别为4,5,6。(1)请你求出ΔABC的周长(学生只能用相似三角形对应边成比例求出ΔABC的三边长,然后求其周长)

(2)如果ΔDEF的周长为20,则ΔABC的周长是多少?说出你的理由。(通过这个问题的研究,学生已经可以得到相似三角形周长之比等于相似比的结论)

(3)如果ΔABC∽ΔDEF,相似比为k:1,且ΔDEF三边长分别用d、e、f表示,求ΔABC与ΔDEF的周长之比。

结论:相似三角形的周长之比等于相似比。

情境二:

师:相似三角形周长比问题研究完了,下面我们该研究什么内容了?

生:面积比问题。

师:那么对于相似三角形的面积比问题你打算怎样进行研究?请你在独立思考的基础上与小组同学一起商量,给出一个研究的基本途径与方法。

设计意图:人类在改造自然的过程中,会遇到很多从未见过的新情境、新课题。当我们遇到新问题的时候,确定研究方向与策略远比研究问题本身更有价值。如果你的研究方向与研究策略选择错误的话,你根本就不可能取得好的研究成果。而这种确定研究问题基本思路的能力也是我们向学生渗透教育的重要内容。所以对于相似三角形面积比的研究,我认为让学生探索所研究问题的基本走向与策略远比解题的结论与过程更有价值。

(师)在学生交流的基本研究方向与策略的基础上,与学生共同活动,作出两个三角形的对应高,通过相似三角形对应部分三角形相似的研究得到“相似三角形的对应高之比等于相似比”的结论。进而解决“相似三角形的面积比等于相似比的平方”的问题。体现教材整合。

(三)拓展研究,形成策略,回归生活

拓展研究一:由相似三角形对应高之比等于相似比,类比研究相似三角形对应中线、对应角平分线之比等于相似比的性质;(留待下节课研究,具体过程略)

拓展研究二:由相似三角形研究拓展到相似多边形研究

师:通过上述研究过程,我们已经得到相似三角形的周长之比等于相似比,面积之比等于相似比的平方。那么这些结论对一般地相似多边形还成立吗?下面请大家结合相似五边形进行研究。

情境三:如图,五边形ABCDE∽五边形A/B/C/D/E/,相似比为k,求其周长比与面积之比。

说明:对于周长之比,可由学生自行研究得结论。对于面积之比问题,与前面一样,先由学生讨论出研究问题的基本方向与策略——转化为三角形——来研究。然后通过师生活动合作研究得结论。

拓展结论1:相似多边形的周长之比等于相似比;

相似多边形的面积之比等于相似比的平方。

(结合相似五边形研究过程)

拓展结论2:相似多边形中对应三角形相似,相似比等于相似多边形的相似比;

相似多边形中对应对角线之比等于相似比;

进而拓展到:相似多边形中对应线段之比等于相似比等。

回归生活一:

师:通过前面的研究,我们得到了有关相似形的一系列结论,现在让我们回头来看前面的标牌涂漆问题。你能确定是几听吗?如果把题中的三角形条件改成更一般的“相似形”你还能解决吗?

回归生活二:(以师生聊天的方式进行)

其实我们生活中对相似形性质的直觉解释是正确的,线段、周长都属于一维空间,它的比当然等于相似比,而面积就属于二维空间了,它的比当然等于相似比的平方了,比如两个正方形的边长之比为1:2,面积之比一定为1:4。甚至在此基础上我们也可以想像:相似几何体的体积之比与相似比的关系是什么?

生:相似比的立方。

设计意图:新课程标准指出“数学教学活动要建立在学生已有生活经验的基础上---”;教育心理学认为:“源于学生生活实际的教育教学活动才更能让学生理解与接受,也更能激发学生的学习热情,从而导致好的教学效果”;于新华老师在一些教研活动中曾经说过:“源于学生的生活经验与数学直觉来展开教学设计,构建知识,发展能力,最终还要回到学生的生活经验理解上来,形成新的数学直觉。这才是教学的最高境界。”

而我的设计还有一个意图就是向学生渗透从生活中来回到生活中去的思想,让学生体会学好数学的重要性。

(四)操作应用,形成技能

课内检测:

1.已知两上三角形相似,请完成下面表格:

相似比2

对应高之比0.5

周长之比3 k

面积之比100

2.在一张比例尺为1:20xx的地图上,一块多边形地区的周长为72cm,面积为200cm2,求这个地区的实际周长和面积。

设计意图:落实双基,形成技能

(五)习题拓展,发展能力

已知,如图,ΔABC中,BC=10cm,高AH=8cm。点P、Q分别在线段AB、AC上,且PQ∥BC,分别过点P、Q作BC边的垂线PM、QN,垂足分别为M、N。我们把这样得到的矩形PMNQ称为△ABC的内接矩形。显然这样的内接矩形有无数个。

(1)小明在研究这些内接矩形时发现:当点P向点A运动过程中,线段PM长度逐渐变大,而线段PQ的长度逐渐变小;当点P向点B运动的过程中,线段PM逐渐变小,而线段PQ的长度逐渐变大,根据此消彼长的想法,他提出一个大胆的猜想:在点P的运动过程中,矩形PQNM的面积s是不变的。你认为他的猜想正确吗?为什么?

(2)在点P的运动过程中,矩形PMNQ的面积有最大值吗?有最小值吗?

答:最大值,最小值(填“有”或“没有”)。请你粗略地画出矩形面积S随线段PM长度x变化的大致图象。

(3)小明对关于矩形PMNQ的面积的最值问题提出了如下猜想:

①当点P为AB中点时,矩形PMNQ的面积最大;

②当PM=PQ时,矩形PMNQ的面积最大。

你认为哪一个猜想较为合理?为什么?

(4)设图中线段PM的长度为x,请你建立矩形PQNM的面积S关于变量x的函数关系式。

设计意图:将课本基本习题改造成发展学生能力的开放型问题研究,体现了课程整合的价值。

(六)作业(略)

另外值得一提的是:本节课对学生的评价,更多的应关注对学生学习的过程性评价。在整个教学过程中,我都将尊重学生在解决问题过程中所表现出的不同水平,尽可能地让所有学生都能主动参与,并引导学生在与他人的交流中提高思维水平。在学生回答时,我通过语言、目光、动作给予鼓励与表扬,发挥评价的积极功能。尤其注意鼓励学有困难的学生主动参与学习活动,发表自己看法,肯定他们的点滴进步。

三角形的分类课件教案6篇


幼儿教师教育网小编搜集与处理,为您奉上三角形的分类课件教案,相信能给您带来很大帮助。在教师的工作中,写教案课件是一个重要的部分,因此每位老师都会精心规划每份教案课件的重点难点。经过精心编制的教学教案,教师能够更好地指导学生的学习。

三角形的分类课件教案(篇1)

教学目的:

1。通过动手操作,会按角的特征及边的特征给三角形进行分类。

2。培养学生动手动脑及分析推理能力。

教学重点:

会按角的特征及边的特征给三角形进行分类。

教学难点:

会按角的特征及边的特征给三角形进行分类,。

教学用具:

量角器、直尺。

教学过程:

一、引入:

我们认识了三角形,三角形有什么特征?今天这节课我们就按照三角形的特征对三角形进行分类。怎样分?

二、新课:

1小组活动:

(1)出示小片子,观察每个三角形。可以动手量一量,分工合作。根据你发现的特点将三角形分类。

2按角分的情况

引导学生明确:相同点是每个三角形都至少有两个锐角;不同点是还有一个角分别是锐角、钝角和直角。

我们可以根据它们的不同进行分类

(1)分类。

根据上边三个三角形三个角的特点的分析,可以把三角形分成三类。

图①,三个角都是锐角,它就叫锐角三角形。(板书)

提问:图②、图③只有两个锐角,能叫锐角三角形吗?(不能)

引导学生根据另一个角来区分。图②还有一个角是直角,它就叫直角三角形,图③还有一个钝角,它就叫钝角三角形。

请同学再概括一下,根据三角形角的特征可以把三角形分成几类?分别叫做什么三角形?

教师板书:

三个角都是锐角的三角形叫做锐角三角形;

有一个角是直角的三角形叫做直角三角形;

有一个角是钝角的三角形叫做钝角三角形。

(2)三角形的关系。

我们可以用集合图表示这种三角形之间的关系。把所有三角形看作一个整体,用一个圆圈表示。(画圆圈)好像是一个大家庭,因为三角形分成三类,就好象是包含三个小家庭。

(边说边把集合图补充完整。)

每种三角形就是这个整体的一部分。反过来说,这三种三角形正好组成了所有的三角形。

(3)三角形中至少要有两个锐角,所以判断三角形的类型,应看它最大的内角。……

问:还有没有其他的分法?

3按边分的情况:

(1) 我发现有两条边相等的三角形,还有三条边都相等的。

(2) 师:我们把两条边相等的三角形叫做等腰三角形,相等的两条边叫腰,另外一条边叫底。

(3) 师:把三条边都相等的三角形叫等边三角形。

(4) 分别量一量等腰三角形和等边三角形的各个角,你有什么发现?

(5) 从红领巾、三角板、慢行标志中找一找哪里有这两种特殊的三角形?

三巩固练习:

1。判断题。

(1)由三条线段组成的图形叫三角形。

(2)锐角三角形中最大的角一定小于90°。

(3)看到三角形中一个锐角,可以断定这是一个锐角三角形。

(4)三角形中能有两个直角吗?为什么?

2。87页7题猜一猜小组同学模仿练习

(四)作业

板书设计

按角分类

三个角都是锐角的三角形叫做锐角三角形;

有一个角是直角的三角形叫做直角三角形;

有一个角是钝角的三角形叫做钝角三角形。

三角形的分类课件教案(篇2)

一、教学目标

1、知识与技能:学生通过动手操作,实践学习,能够按照三角形各个角、各条边的关系,给在三角形分类。

2、数学思考:利用已有的分类知识,概况出三角形的特点。

3、解决问题:在分类的过程中掌握三角的共性与个性,从而为进一步学习三角形的认识奠定定基础。

4、情感与态度:在共同学习中,训练学生的自我探索能力,培养学生主动探索精神中和创新意识。

二、教学准备

1、课件一个。内有三角形分类的标准,按角分、按边分的集合图及各个练习。

2、每个学生课前准备好各不相同的6个三角形。

三、教学过程

(一)复习旧知导入新课

同学们,上节课我们已初步认识了三角形,知道每个三角形都有三条边,三个角和三个顶点。今天这节课我们一起来学习三角形的分类。

(二)探索交流,解决问题

师:老师给大家带来了一幅图片,这是?生:三角形。

师:这艘船里面有很多各种各样的三角形,我们整理一下,看看有几类三角形。要给三角形分类,就要依据一定的标准,三角形可以按照什么来分呢?生:可以按照角,也可以按照边。

师:我们回顾一下角的知识。角可以分为锐角、直角、钝角。(白板演示)师:拿出你们的自学探究1,把这艘大船上的三角形先按照角分一分。

1、小组合作、讨论。

学生动手操作,教师巡视。(学生拿出信封里的8个三角形,动手操作,有的用量角器量角的度数,并进行讨论)

2、选择一名同学上黑板分一分。

同学们,经过大家的合作、讨论,你发现了三角形的三个角有什么特征?(学生会说出:我发现有些三角形有3个锐角,有些有2个锐角。我发现三角形有2个锐角,1个直角,我发现三角形有2个锐角,1个钝角??)

3、师生共同优化

根据角你认为可以把三角形分成几类?(交流。最后结论:三个角都是锐角,两个锐角一个直角,两面个锐角一个钝角)

在这些三角形中一定会有几个锐角?第三个角又会出现几种情况?(锐角、直角、钝角)

那三角形按角的大小可分几类?(分三类。一类是三个角都是锐角,另一类是有一个角是直角,还有一类是有一个角是钝角,我觉得这样既简单又清楚三角形各类的特点)

请大家根据它们的主要特征,给这三类取个名字好吗?(三个角是锐角的叫锐角三角形,有一个角是钝角的叫钝角三角形,有一个角是直角的叫直三角形)

那为什么直角、钝角三角形只要说出有一个角是直角、钝角就可以,而锐角三角形要说出三个角都是锐角呢?(因为每个三角形都有2个锐角,而锐角三角形才有3个锐角,没有说出3个锐角。我们就不能确定它属于什么三角形)

4、得出结论。

三角形按角可分三类(幻灯片出示集合图)。

直角三角形

锐角三角形

钝角三角形

5、研究按边的分类

(1)根据角可以把三角形分成三类,你们还有其他发现吗?看看边有什么规律呢?(①我发现我这个锐角三角形三边相等。②我这个三角形只有两边相等。③我的这个三角形三边都不相等)

交流中得到:三角形按边的长短也有三种情况,一种是三边不相等,一种是两边相等,另一种是三边都相等。

(2)教师归纳:我们根据三角形三边的长短,可把三角形分为三种。(板书:按边分类)

①三边都不相等的三角形,我们把它叫做不等边三角形(任意三角形)。 ②两边相等的三角形,叫做等腰三角形,是特殊的三角形。③三边都相等的三角形叫等边三角形,是特殊的等腰三角形,也叫做正三角形。

6、认识等腰、等边三角形各部分的名称。

(1)课件出示。认识等腰三角形的腰和底,等边三角形的三条边。师生在交流中指出各部分名称:

等腰三角形中相等的两边我们把它叫做腰,另一边叫做底。我们把等边三角形叫做特殊的等腰三角形。等边三角形一定是等腰三角形,而等腰三角形只有两边相等,等腰三角形不一定是等边三角形。

(2)探究等腰三角形和等边三角形角的待征。

7、同桌合作研究这两种三角形的三个角。(量一量角的大小)

师生交流得出:等腰三角形两条腰所对的角叫底角,两个底角也相等。另一个角叫顶角。等边三角形的三个角都相等。

8、掌握按边分类三角形之间的关系。三角形按边分类的情况(课件出示集合图)。

(三)巩固应用,内化提高

1、说书上84页三个生活中的例子分别是什么三角形?

2、判断

(四)回顾整理,反思提升

今天这节课你们学会了什么?你是怎样学到这个知识的?最高兴的上什么?还有什么不懂的地方吗?对老师有什么建议?教学反思

在设计本课教学时,我觉得“要无限地相信学生的潜力”,我决定只要学生自己能说的、能做的我就绝对不说、不做。整堂课学生的自主学习相当充分,并不是留于形式,浮于表面,而是实实在在的自主学习。特别是在探索三角形分类的过程中,多次让学生观察、思考、讨论,自主探索三角形的分类知识,教师仅仅起了组织和引导的作用

三角形的分类课件教案(篇3)

《三角形的分类》教学设计

教学内容:义务教育课程标准实验教科书数学四年级下册第83页至第84页及做一做。

教学目标:

1、通过观察、操作、比较发现三角形角和边的特征,会给三角形分类,理解并掌握三角形的种类特征,能解决一些简单的问题。

2、培养学生观察能力、操作能力和形象灵活的思维能力。

3、激发学生的主动参与、合作学习意识、自我探究意识和创新精神。

教学重、难点:

1、会按角和边的特征给三角形分类。

2、区别和掌握各种三角形的特征。

教具准备:备件二合一软件、课件、实物展示台

学具准备:直尺、量角器、不同三角形若干

教学过程:

一、激趣导课,揭示课题

1、师生谈话(课件出示主题图)

今天,老师带大家坐轮船到岛上旅游,课件出示图片:这艘船是由许多三角形组成的,,他们都有三个角和三条边,这节课我们就从这角和边两方面给三角形分类。

2、揭示课题:三角形的分类

二、自主合作、探究新知

(一)任务一:按角或边给三角形分类(课件出示任务)

1、观察三角形学具,讨论分类方案。

2、小组合作选一种进行分类,研究他们各自特点,并填写表格

3、小组活动

4、汇报交流

(1)按角分

①选一组同学汇报结果

②学生实物展示台汇报,教师根据汇报在白板上拖动三角形分类,并逐个出示其特征介绍锐角三角形、直角三角形、钝角三角形的特征。对有争议三角形(如接近直角的角)用工具(三角尺或量角器)验证。

③用集合圈表示三种三角形的关系

(2)按边分

①选一组同学汇报结果

②教师根据学生汇报在白板上拖动三角形分类,并逐个出示其特征介绍等腰三角形和等边三角形的特征

③用集合圈表示等腰三角形、等边三角形的关系。

(二)任务二:探究等腰三角形、等边三角形特性

自主学习84页探究等腰三角形、等边三角形特性

①认识等腰三角形和等边三角形各部分的名称

②量一量、折一折探索等腰三角形、等边三角形的特征

等腰三角形两个底角()等边三角形三个角()

利用素材库画等腰三角形,并进行顶角变化演示,认识与锐角、直角、钝角三角形的关系。

三、游戏应用。

1、蚂蚁搬家。

2、猜猜猜。

3、在方格图上按要求围三角形。

四、课堂总结。

同学们,我们生活中到处都有三角形的利用,点击“链接网络图片”,只要大家做个有心人,多观察,多思考,一定会学到更多有关三角形的知识。

三角形的分类课件教案(篇4)

一、说教材

1.教学内容

九年义务教育六年制小学数学教科书(西师版)四年级下册第40至43页的内容及相关练习题。

2.教材简析

“三角形分类”是新课程教材中“空间与图形”领域内容的一部分。学生在学习此内容之前,已经学习了三角形的认识,能够在物体的面中找出三角形,学习了角的知识,认识了常见的角,为学生学习三角形的特征从角和边的不同角度对三角形进行分类做好了有力的知识支撑。三角形是最简单也是最基本的多边形,一切多边形都可以分割成若干个三角形,学好这部分内容,为学习其他多边形积累了知识经验,为进一步学习三角形的有关知识打下基础。

3.教学目标

根据教材内容及学生的知识水平和心理年龄特点,制定了以下教学目标:

(1)让学生通过学习活动,发现三角形和边的特征会给三角形的分类,理解并掌握各种三角形的特征。

(2)培养学生观察,操作和抽象概括能力。

(3)激发学生的主动参与意识,自我探索意识和创新精神。

4.教学重点、难点的确定

根据《三角形分类》这一知识的地位和作用,本课设计的“观察、操作、比较、小组讨论”等教学环节都是为了使学生能根据角的特点给三角形分类,因此这是教学重点。根据学生的认识水平和年龄特点,如何引导学生归纳出各种三角形的特征,这是学生掌握本课知识的一个质的飞跃。因而,“能理解并掌握各种三角形的特征”是本课教学的难点。

5.教学准备

三角板、多媒体课件、学生用表格等

二、说教法、学法

根据新课标的要求和学生的实际,以直观教学为主,运用观察动手操作,小组讨论等多种方法,结合教材,让学生在“看一看”,“量一量”,“比一比”,,“说一说”的自主探索过程中发挥学生相互之间的作用,让学生自己在动脑、动手、动口中促进思维的发展,培养学生的动手操作能力,语言表达能力和自学能力。在教学中,首先把握新旧知识的衔接点,利用教材6个三角形组成的图案,让学生说说自己对三角形的认识,引出课题“三角形的分类”。放手让学生动手操作,小组讨论交流,寻找三角形分类的方法,最后让学生说说自己归类的依据,归纳出各种三角形的特征,培养学生的抽象概括能力。

三、说教学过程

为了完成本课的教学目标,设计了以下的教学过程。

(一)创设情景,揭示课题

由学生对三角形的.认识引入课题,即为学生接受新知识做好铺垫,也让学生明确学习内容直奔放主题。

(二)动手操作,探讨三角形分类方法

1.根据角的特点,对三角形进行分类。

新课标倡导学生主动参与,乐于探究,勤于动手,培养学生搜集和处理信息的能力,分析解决问题的能力,以及交流与合作的能力,把学习变成人的主动性、能动性、独立性不断生成、张扬、发展、提升的过程。

我设计了如下环节:

(1)学生先是独立思考、独立操作,独立探索分类。(事先给每个学生准备一个学袋:一张表格)

①学生根据表格对这个三角形进行观察,再填表。填完表格,再对表格中的数据进行观察,就能容易地进行分类。

②把分类的结果填在表中。

小组交流

学生在小组内分别展示自己的劳动成果,说说自己的分类依据。

(3)展示学生代表作品,学生互评。

(4)师小结归纳(边把分类依据板书出来)

(5)鼓励学生给自己分类的三角形取个名字。

让学生感受到自己就是学习的主人,体验劳动成果的喜悦心情,增强学习的信心。

(6)引导学生对三类的三角形进行比较,得出相同点:每个三角形至少有两个锐角。

(三)指导完成课堂活动及练习十一第1至3题。主要目的是巩固复习更好引领后进生掌握按角对三角形分类。

(四)全课总结

让学生学会自我评价,体现了新课标评价的多样性,还可以训练学生的语言发展能力。

(五)说板书设计

本课的板书意在突出重点,解决知识难点,有学生分类的作品展示,有教师板书的知识点。教学内容一目了然,也便于学生观察、比较。

(六)作业设计。

目的加强巩固,能更好的掌握本课知识点。

三角形的分类课件教案(篇5)

一、导入新课。

1.谈话:今天我们继续来研究三角形,研究内容与三角形的角有关。

先回忆一下我们学过哪几种角?怎样判断一个角是直角、锐角还是钝角呢?

2.学生交流。

(直角可以用三角板上的直角去比一比,比直角大的是钝角,小的是锐角,如果用眼睛观察不能确定,也可以用三角板上的直角去比一比。还可以使用量角器测量。)

二、学习新课。

1.谈话:每个三角形都有几个角?这些角在三角形的内部,我们称之为三角形的内角。

出示:

谈话:这里有6个各式各样的三角形,请同学们仔细观察每个三角形的内角,看看它们各有几个锐角、直角和钝角,并把结果填在表格中。

2.学生观察并填表。

例如:1号这个三角形有2个锐角、1个直角、0个钝角

提问:观察表格中的数据,你有什么发现?

(学生在小组里讨论后交流。如:在一个三角形中锐角个数最多,至少2个;直角或钝角个数最多有1个,且不同时存在……)

3.自己任意画一个三角形,看看是三个内角各是什么角。

归纳:每一个三角形都有两个锐角,另外一个角有的是锐角、有的是直角、有的是钝角。

4.提问:想一想,这些三角形可以分成几类?怎样分?

(在小组里讨论后指名交流。

归纳:三个角都是锐角的三角形,一个钝角两个锐角的三角形,一个直角两个锐角的三角形。

谈话:每一类三角形有自己的名称。谁来猜猜看?(让学生试着说说)

小结:三角形按角的确可以分为锐角三角形、钝角三角形、直角三角形三类。5.提问:刚才例题中的三角形哪几个是锐角三角形、钝角三角形、直角三角形?

你画的三角形是什么三角形?

(学生交流)

6.提问:你觉得什么样的三角形是锐角三角形?什么样的三角形是直角三角形?什么样的三角形是钝角三角形?

(1)学生交流。

(2)结合书本出示各类三角形的定义:

三个角都是锐角的三角形是锐角三角形;

有一个角是直角的三角形是直角三角形;

有一个角是钝角的三角形是钝角三角形;

(1)提问:为什么直角三角形只说有一个角是直角而不说有两个锐角和一个直角,钝角三角形只说有一个角是钝角而

不说有两个锐角和一个钝角?

(学生交流)

7.用集合图表示分类结果。

1)出示一个椭圆。

提问:如果我们用这个圆表示三角形这个整体,你能把它分成几个部分,填写出每部分的名称?(2)学生思考后试一试,交流。

(把所有的三角形看作一个整体,锐角三角形、直角三角形、钝角三角形都是这个整体的一部分。)

(3)结合学生汇报板书出示

三、巩固练习,完成“想想做做”。

1.第2题。

(1)学生独立完成。

(2)指名交流,说说自己是怎样判断的,是否三个角都要看是什么角?

(只要看最大的角是什么角就可以判断)

2.第3题。

(1)学生在钉子板上分别围出锐角三角形、直角三角形和钝角三角形。

(2)同桌检验。

3.第4题。

(1)学生动手折一折。

(2)指名上前交流折法。

4.第5题。

(1)学生审题后独立思考,在小组里说说自己打算怎么做。

(2)指名交流。

5.第6题。

(1)学生审题后独立画一画。

(2)展示一份作业,交流画法。(右边的三角形画法不止一种。)

(3)提问:仔细观察,画出的线段有什么特点?

(学生交流:就是三角形的高。)

6.第7题。

(1)学生独立完成,同桌交流。

(2)全班展示交流,有多种不同的答案。

四、课堂小结。

1.谈话:今天我们学习了什么内容?你有什么收获?

2.布置作业:补充习题第18页。

三角形的分类课件教案(篇6)

一、教材依据

北师大版、小学四年级第二章、第一节、图形分类(教材22页—23页)

二、设计思想

1、指导思想:本节课注重发展学生数学感、空间感。利用学生生活经验,能对常见图形进行分类,并能找出三角形及四边形特点。

2、设计理念:利用学生在一、二年级认识图形的基础上,通过观察、操作、比较、概括等活动,对常见图形可根据自己想象进行分类。

3、教材分析:本节课学生要对一些图形进行分类,教材安排了三次对图形分类的活动。第一次是对已经学过的图形按是否是平面图形进行分类,第二次是对平面图形按是否由线段围成进行分类,第三次是按线段所围成的边数进行分类。教材呈现的内容包括三个方面:一是提供了需要学生分类的直观图形;二是对学生每次的分类结果,让他们说一说分类的标准,体会图形分类的特征;三是通过“找一找”,让学生根据分类标准,重新观察图形,提高对图形类别的认识。

4、学情分析:学生在一年级下册已经初步认识了长方形、正方形、三角形、圆,二年级下册对长方形、正方形及平行四边形加深了理解,可以说,这节课接触到的图形,学生都认识过,对它们进行分类,学生思维活跃,可能出现不同的分类标准,教师要做好引导,帮助学生从本质上去分类。

三、教学目标

1、知识与能力

①、学会把图形按一定的标准进行分类,并会说明分类依据。

②、培养观察、比较、抽象、概括、推理能力及空间观念。

③、认识四边形易变形的特性及其实际应用;认识三角形的稳定性及其实际应用。

1、方法与途径

让学生在观察、思考、操作及合作交流中探索新知。 3情感与评价

通过认识图形使学生进一步体会数学的应用价值,增强学生学习数学的积极情感。

4现代教学手段的运用

充分利用现代教育设施进行直观教学。

四、教学重点

通过分类对已学过的一些图形进行整理归类,了解图形的类别特征。

五、教学难点

通过分类对已学过的一些图形进行整理归类,了解图形的类别特征。

六、教学准备

课件、纸、笔、表格、正方体、长方体、圆柱体、球体、实物图等

七、教学过程

(一)谈话引入,提示课题

师:谁能说一说我们学过了哪些图形?(指名让学生回答,让学生回忆已学过的图形,并尽可能地说出来,学生在列举学过的图形时,可能与教材上呈现的不一致,只要合理也是可以的,应该加以肯定。)

(出示课本教学情境图)

师:这节课让我们一起来学习图形分类。

(二)合作交流,探索新知

1、观察

师:请同学们仔细观察刚才的图形,看看它们有哪些不同的特点? (让学生观察,自由发言)

1、分类

师:同学们,请你们形成四人小组讨论:你是怎样将图形分类的?将你的想法与同组的同学进行交流。

2、交流汇报

师:谁愿意说一说你将图形分成几类?为什么这样分?说说你的理由。

指名汇报讨论结果,重点是让学生说一说是怎样分的,分类的依据是什么。

3第一次分类时,学生可能按是否平面图形进行分类:

然后,教师进一步引导学生对平面图形进行分类,学生可能是按照平面图形是否由线段围成的来分类:(直线图和曲线图)

最后,教师引导学生再进一步对图形进行分类:同学们,请想一想,还能不能将图形进行分类呢?

有些学生可能想到对线段所围成图形的边数进行分类:

四边形三角形

甚至有些学生还能按四边形所围成的角是不是直角来分类:

不同的学生可能有不同的分类方法,学生针对每一次分类结果表述分类标准时,可能会出现多种标准,比如,在第二次分类时,可以是按“图形是否由线段围成来分”,也可以是按“图形是否是圆来分”只要学生说得合理,教师都给予充分的肯定。

2、课件演示

师出示课件进一步加深对知识的巩固,让学生对比和自己分法有什么不同。

在分一分活动中,我采取开放式的教学。先让学生仔细观察、独立思考去发现图形的特点,然后,小组合作,探索、交流图形分类的方法。让他们在活动中体会到立体图形与平面图形的区别,并引导学生对平面图形进行进一步的分类,使他们更全面的认识图形、形成体系。通过这样的设计,使学生体验到了学习数学的乐趣,感受数学的思想、方法,有效地发展学生的思维能力和创新意识。

(三)联系生活,深化认识

指导学生完成课本23页第1题:看一看,说一说。该题主要是展现三角形和平等四边形在日常生活中的应用。看一看:(出示教学情境图,让学生去观察。)

说一说:这些图片中的物体,你们见过吗?它们包含着哪一些我们已经学过的图形呢?为什么要这样设计呢?(让学生来说一说他的发现及

5理由)

1、运用三角形的稳定性,设计出大吊车的结构

2、利用四边形的不稳定性,制作铁的栅栏大门,四边形的伸缩变形。

3、生活中你还见过运用三角形和四边形的情况吗?

三角形:自行车三角车架;木屋架等

四边形:超市中电动升降车等

(四)动手操作

让学生进行探索:拉一拉,你发现什么?

活动要求:

(1)分组合作:四人小组

(2)动手操作:

先将课前准备好的学具摆成一个四边形,然后两手握着对角互拉,看看图形出现哪些变化?将你的发现在小组内进行交流。

你发现了什么?

四边形受力易变性,即四边形有不稳定性三角形

接着,让学生根据已有的经验,动手拼成一个三角形并探索它的特性。(根据上面的经验,学生可能很快发现:把三角形的任意两条边对拉,它的形状和大小都没有改变,也就是说,只要三角形三条边的长度

6确定,它的形状和大小也就确定了,说明三角形具有稳定性。)

1、学生自己拉一拉

2、提出问题:你有什么发现?

通过实际操作,学生发现把三角形的任意两条边对拉,图形不改变形状,它具有稳定性。

3、你能解释吗为什吗吗?

先让学生思考在组织交流,通过交流引导学生认识三角形稳定性的应用。

四、总结。

你对所学图形又有哪些新的认识?

五、作业安排

观察生活中有哪些地方利用了三角形和平行四边形的特点板书设计图形分类

按照图形是否是平面图形来分。按照图形是否由线段围成来分。按照围成图形的边数来分。平行四边形不稳固三角形具有稳固性

三角形的课件教案(精选10篇)


老师每一堂课都需要一份完整教学课件,所以在写的时候老师们就要花点时间咯。 教案课件的工作是新老师提高教学技能和水平的基础,如何才算是写好一份教案课件呢?三角形的课件教案是幼儿教师教育网小编为您准备的一些与您需要相关的内容,希望您分享本页内容与您朋友!

三角形的课件教案【篇1】

尊敬的各位评委,各位老师:

大家好!今天我说课的内容是人教版义务教育课程标准实验教材数学四年级下册85页内容《三角形的内角和》。

一、教材分析

新课标把三角形的内角和作为第二学段中三角形的一个重要组成部分。本课是安排在三角形的特性及分类之后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。教材所呈现的内容,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间,安排了量一量、算一算和剪一剪、拼一拼两个实验操作活动,意图使学生在动手操作、合作交流中发现并形成结论。

二、学情分析

1、通过前面的学习,学生已经掌握了三角形的一些基础知识,会用工具量角、画角,具备了探索三角形内角和的知识与技能基础。

2、学生的生活经验是可利用的教学资源。我在课前了解到,已经有不少学生知道了三角形内角和是180度,,但却不知道怎样才能得出这个结论,因此学生在这节课上的主要目标是验证三角形的内角和是180度。

三、教学目标

基于以上对教材的分析以及对学生情况的思考,我从知识与技能,过程与方法,情感态度价值观三方面拟定了本节课的教学目标:

1、通过"量一量","算一算","拼一拼","折一折"的方法,让学生推理归纳出三角形内角和是180°,并能应用这一知识解决一些简单问题。

2、通过把三角形的内角和转化为平角进行探究实验,渗透"转化"的数学思想。

3、通过数学活动使学生获得成功的体验,增强自信心,培养学生的创新意识,探索精神和实践能力。

教学重难点:理解并掌握三角形的内角和是180度这一结论。

四、教学准备:

教具:多媒体课件,

学具:各类三角形、长方形、量角器、活动记录表等。

五、教法和学法

“三角形的内角和”一课,知识与技能目标并不难,但我认为本节课更重要的是通过自主探索与合作交流使学生经历知识的形成过程,领悟转化思想在解决问题中的应用,以及在探索过程中,培养学生实事求是、敢于质疑的科学态度,同时,在不同方法的交流中,开拓思维、提升能力。基于以上理念,本节课,我准备引导学生采用自主探究、动手操作、猜想验证、合作交流的学习方法,并在教学过程中谈话激疑,引导探究;组织讨论,适时地启发帮助。使教法和学法和谐统一在“以学生的发展为本”这一教育目标之中。

六、教学过程

本节课,我遵循“学生主动和教师指导相统一,问题主线和活动主轴相统一”的原则,制定了以下教学程序:

(一)创设情境,激发兴趣

“兴趣是最好的老师”。开课伊始我利用课件动态演示一只蝴蝶在把一条绳子围成不同的三角形。让学生观察在围的过程中,什么变了?什么没变?让学生在变与不变的观察与对比中,激发学生的学习兴趣,引出本节课的学习内容(板书:三角形的内角和),为后面的探索奠定基础。

【设计意图:以问题情境为出发点,既丰富了学生的感官认识,又激发了学生的学习热情。】

(二)动手操作,探索新知

本环节是学生获取知识、提高能力的一个重要过程。我有目的、有意识的引导学生主动参与实践活动、经历知识的形成过程。

1、揭示“内角”和“内角和”的概念

明确“内角”和“内角和”的概念是学生进一步探究内角和度数的前提,本环节首先请学生都拿出一个三角形,指一指三个内角,然后让学生谈谈自己对内角和的理解,在大家交流的基础上得出:三角形的内角和就是三个内角的度数之和。

2、猜测内角和

牛顿曾说:“没有大胆的猜想,就没有伟大的发现!”所以我放手让学生猜测三角形内角和的度数,由于绝大多数学生有课外知识的积累,不难说出三角形的内角和是180度,但猜想并不等于结论,三角形的内角和到底是不是180度?(板书:?)还要进一步的验证。猜想——验证是学生探究数学的有效途径。

3、动手验证,汇报交流

(1)介绍学具筐

由教师介绍学具筐中都有什么学习材料。

(2)生独立思考、动手操作

因为合作交流应建立在独立思考的基础上,所以先让学生独立思考:打算选用什么材料,怎样来验证三角形的内角和是不是180°。然后再让学生把想法付诸实践。此环节会留给学生充分的思考、操作、发现的时间,让学生在探索中找到证明的切入点,体验成功。在这期间,教师走下讲台,参与学生的活动,与学生一起寻找验证的方法,对有困难的学生提供帮助,不放弃任何一个学生。

(3)组内交流

经过独立思考和动手操作,每人都有了自己的验证方法,先在小组内交流各自的验证方法。

(4)全班汇报交流。

在足够的交流之后,开始进入全班汇报展示过程,达到智慧共享的目的。学生可能会出现以下几种方法:

A、测量方法

活动记录表

三角形的形状每个内角的度数三个内角和

∠1∠2∠3

这个验证方法应是大多数学生都能想到的,在交流汇报结果时会发现答案不统一,可能会出现大于180度、等于180度或小于180度不同的结果。此时学生会在心中产生更大的疑惑,“三角形的内角和到底是多少度?谁的答案正确呢?”在这里教师要抓住契机,肯定学生实事求是的态度和质疑的精神,把这一问题抛给学生,再次激起学生的探究热情,强烈的求知欲和好胜心让学生跃跃欲试,让学生充分发表观点,最终使学生认识到测量法会有误差,看来仅用一种测量的方法来验证只能得到三角形的内角和在180°左右,到底是不是180°,疑问依然存在,说服力还不够,此时我顺水推舟,让用不同验证方法的学生上台汇报展示。

B、撕拼法

我认为数学课不仅是解决数学问题,更重要的是思维方式的点拨,使数学思想的种子播种在学生的头脑中。本环节主要想实现向学生渗透“转化”的数学思想的教学目标。四年级学生在以往的数学学习过程中都积累了不少“转化”的体验,但这种体验基本上处于无意识的状态,只有合理呈现学习素材,才能使学生对转化策略形成清晰的认识。所以我请用撕拼法的同学上台展示撕拼的过程,学生可能会撕拼不同类型的三角形,如:

此时教师适时追问:你是怎么想到把三个内角撕下来拼成一个平角来验证的呢?因为平角是180度,三角形的三个内角拼在一起正好形成了一个平角,所以三角形的内角和就是180度。教师可及时评价点拨:“你们把本不在一起的三个角,通过移动位置,把它转化成一个平角来验证,运用了转化策略,真了不起。”从而使学生清晰的感受到数学学习就是把新知转化成旧知的过程。

C、其它方法

除了以上两种验证方法外,学生可能还会出现不同的验证方法,比如折一折的方法,把三个完全相同的三角形用不同的三个内角拼成一个平角来验证的方法,例图:

如果学生出现用长方形剪成两个完全相同的直角三角形或把两个完全相同的直角三角形拼成长方形来验证的方法,例图:

教师可追问:“这种方法只能证明哪一类的三角形呢?”使学生明白,这种验证方法有局限性,只能证明直角三角形的内角和是180°。然后教师引导学生归纳出这些不同方法都有异曲同工之妙,就是都运用了转化的策略,让学生在不知不觉中进一步感悟转化在数学学习中的重要作用。通过各种方法的展示交流,学生对三角形内角和是不是180度的疑问已经消除,所以可以把“?”改成“。”

【设计意图:《标准》指出:“教师应激发学生的积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。”在教学设计中我注意体现这一理念,允许学生根据已有的知识经验进行猜测,在猜测后先独立思考验证的方法,再进行小组交流。给学生充分的活动时间和空间,让学生动手操作,使学生在量、剪、拼、折等一系列实验活动中理解和掌握三角形内角和是180°这个图形性质。在探索活动中,使学生学会与他人合作,同时也使学生学到了怎样由已知探索未知的思维方式与方法,培养他们主动探索的精神,让学生在活动中学习,在活动中发展。】

4、科学验证方法

数学是一门严谨的学科,数学结论的得出必须经过严格的证明。那如何科学地验证三角形内角和是不是180°呢?用课件动态演示科学家的验证方法。

【设计意图:一方面使学生为自己猜想的结论能被证明而产生满足感;另一方面使学生体会到数学是严谨的,从小就应该让学生养成严谨、认真、实事求是的学习态度。】

(三)课外拓展,积淀文化

为了使学生在获得数学知识的同时积淀数学文化,用课件介绍最早发现三角形内角和秘密的法国科学家帕斯卡(课件)让学生交流:听了这个故事,你想说什么?在学生交流的基础上,教师抓住契机,及时鼓励学生:这节课才10岁的我们利用自己的智慧发现了帕斯卡12岁时数学发现,我们同样了不起,刘老师为大家感到骄傲!(板书:!)这个感叹号不仅表示教师对学生的赞叹,更是学生对自我的一种肯定,获得成功的自豪感。

【设计意图:适当的引入课外知识,它既可以激发学生的学习兴趣,又有机的渗透了向帕斯卡学习,做一个善于思考、善于发现的孩子,对学生的情感、态度、价值观的形成与发展能起到了潜移默化的作用。】

(四)应用新知,解决问题

数学规律的形成与深化,不仅靠感知,还要辅以灵活、有趣、有层次的课堂训练,以达到练习的有效性。对此,我设计了三个层次的练习:

1、把两个小三角形拼成一起,大三形的内角和是多少度?为什么?

【设计意图:通过两个三角形分与合的过程,让学生进一步理解三角形内角和等于180度这个结论,认识到三角形的内角和不因三角形的大小而改变。】

2、想一想,做一做

在一个三角形ABC中,已知∠A═45°,∠B═85,求∠с的度数。

在一个直角三角形中,已知∠с═52,求∠A的度数。

爸爸给小红买了一个等腰三角形的风筝。它的一个底角是70°,它的顶角是多少度?

【设计意图:将三角形内角和知识与三角形特征结合起来,引导学生综合运用内角和知识和直角三角形、等腰三角形等图形特征求三角形内角的度数。】

3、思考:

你能画出一个有两个直角或两个钝角的三角形吗?为什么?

【设计意图:将三角形内角和知识与三角形的分类知识结合起来,引导学生运用三角形内角和的知识去解释直角三角形、钝角三角形中角的特征,较好地沟通了知识之间的联系。】

(五)全课小结,完善新知

你在这堂课中有什么收获?

【设计意图:这样用谈话的方式进行总结,不仅总结了所学知识技能,还体现了学法的指导,增强了情感体验。】

板书设计:

三角形的内角和180°

三角形的形状每个内角的度数三个内角和

∠1∠2∠3

总之,本节课我力图引导学生通过自主探究、合作交流,让学生充分经历一个知识的学习过程,让学生学会数学、会学数学、爱学数学。在教学中,随时会生成一些新教学资源,课堂的生成一定大于课前预设,我将及时调整我的预案,以达到最佳的教学效果。

教学特色:

本节课我努力体现以下2个教学特色:

1、引导学生自主探索,激发学生的学习兴趣,体现以学生的发展为本的教学理念。

强化学生探究学习的心理体验,把数学学习和情感态度的发展有机的结合起来。

三角形的课件教案【篇2】

微课作品介绍本微课是苏教版小学数学四年级下册《三角形内角和》的课前先学指导,学生在家观看视频内容,同时结合学习任务单,在视频的指导下通过猜、量、算、剪、拼等方法探索三角形的内角和是180度。学生在课前利用视频完成学习任务单,然后到学校课堂中和老师、同学进行交流,再进一步提升。

教学需求分析适用对象分析该微课的适用对象是苏教版四年级下学期的小学生,学生应认识三角形的基本特征,学习过角和角的度量,知道平角是180度。具备了一定的动手操作能力和数学思维能力。

学习内容分析该微课让学生发现、验证三角形的内角和是180度的结论。这部分内容是在学生认识了三角形的基本特征和三边的关系后,三角形分类前学习的。这在苏教版中和原来的教材不同,放在这里是因为三角形内角和是学生进一步学习和探究三角形分类方法的重要前提。学生知道了三角形的内角和是180度,对三角形分类及命名的方法,才能知其然,还能知其所以然。

教学目标分析:

1、通过学生的实际操作,理解并验证三角形的内角和等于180°,并能够运用结论解决简单的实际问题;

2、使学生通过观察、实验,经历猜想与验证三角形内角和的探索过程,在活动中发展学生的空间观念和推理能力。

3、已经有不少学生知道了三角形内角和是180度,,但却不知道怎样才能得出这个结论,因此学生在学习时的主要目标是验证三角形的内角和是180度。

教学过程设计本微课教学过程:

一、明确多边形的内角、内角和概念。

首先要明确概念,才好继续研究。内角、内角和以前学生没有学过,还是有必要给学生明确的。

二、探索三角尺的内角和,猜想三角形的内角和。

从学生熟悉的三角板开始计算三角板的内角和,引发学生猜想,三角形的内角和是多少。

三、验证三角形内角和是否为180°。

验证分为三个层次:首先是量教材提供的三角形,算出内角和,可能会有误差。其次把三角形三个内角拼在一起,拼成是平角180度。最后自己任意画一个三角形剪下来,拼一拼,得出结论。让学生经历由特殊到一般的认知过程。

四、拓展延伸,探究梯形、平行四边形和六边形内角和。

由三角形的内角和,学生自然就会想到已学过的梯形、平行四边形和六边形内角和是多少呢。教师留下问题让学有余力的学生进一步去探索。

五、自主学习检测

学生观看完了视频是否学会了,是需要检测的。学生通过做完自主检测后进行校对,检验自己所学。

学习指导本微视频应配合下面的学习任务单共同使用,在观看视频时,根据视频提示随时暂停视频依次完成任务单。

自主学习前准备:

请在自主学习前阅读学习任务单的学习指南,并准备好数学书、一副三角尺、量角器、剪刀、铅笔等学习用具。

自主学习任务单:

通过观看教学资源自学,完成下列学习任务:

任务一:明确多边形的内角、内角和概念

1、你认识下面的图形吗?他们各有几个角,请在图中标出来。

2、你刚才标出的角,又叫做每个图形的()。

3、如果把一个图形所有的内角的度数加起来,所得的总和就是这个图形的()。

4、你知道图中长方形和正方形的内角和是多少度吗?你是怎么知道的?

长方形内角和正方形内角和

任务二:探索三角尺的内角和,猜想三角形的内角和。

1、请拿出一副三角尺,你知道每块三角尺上各个角的度数?在图上标出来。

2、算一算,每个三角尺3个内角的和是多少度。

3、根据你刚才的计算结果,你能猜想一下,任意一个三角形它的内角和的度数呢?

任务三:验证任意三角形内角和是否为180°

1、请从数学书本第113页剪下3个三角形,用量角器量出每个三角形3个内角的度数。

算一算,每个三角形3个内角的和是多少度。

2还可以用什么办法来验证剪下的这3个三角形的内角和等于180度?(把你的验证方法展示在下面。)如果你想不出来请看下面的提示。

温馨提示:平角正好是180°,这三个内角能正好拼成一个平角吗?

3、自己任意画一个三角形,先剪下来,再拼一拼。

4、你发现了什么?写在下面。

5、请你回顾一下我们研究三角形形内角和是180度的过程?简单的写下来。

任务四:拓展延伸

任务一中还有梯形、平行四边形和六边形,如果你有兴趣,你可以研究他们的内角和。

任务五:自主学习检测

1、右边三角形中,∠1=75°,∠2=40°,∠3=()°

2、第3个三角形还可以怎样计算,哪种更简便?

3、一块三角尺的内角和是180°,用两块完全一样的三角尺拼成一个三角形,拼成的三角形内角和是多少度?

4、用一张长方形纸折一折,填一填

配套学习资料苏教版小学数学四年级下册教材

制作技术介绍CamtasiaStudio软件制作、PPT。

三角形的课件教案【篇3】

1、通过量、剪、拼、摆等直观操作的方法,让学生探索并发现三角形内角和等于180度。

2、在活动交流中培养学生合作学习的意识和能力,让学生经历猜测探索总结的数学学习过程,在实验活动中体验探索的过程和方法。

3、通过运用三角形内角和的性质解决一些简单的问题,使学生体会数学与现实生活的联系,体会到数学的价值,增加学生学数学的信心和兴趣。

探索发现三角形内角和等于180并能应用。

三角形内角和是180的探索和验证。

师:大家喜欢猜谜语吗?

生:喜欢。

师:下面请大家猜一个谜语(大屏幕出示形状似座山,稳定性能坚。三竿首尾连,学问不简单。

(打一几何图形))

生:三角形。

师:三角形中都有哪些学问?

生:三角形有三条边,三个角,具有稳定性。

生:三角形按角分,可以分成锐角三角形、直角三角形、钝角三角形。

生:三角形按边分,可以分成等腰三角形,不等边三角形,其中等腰三角形又包含了两条边相等的三角形和等边三角形。

生:一个三角形中最多只能有一个直角,最多只能有一个钝角,最少有两个锐角。

生:三角形的内有和是180。

生:(一脸疑惑)

师:(板书:三角形的内角和是180),你有什么疑惑? 生:什么是内角?

生:每个三角形的内角和都是180吗?

(根据学生的问题,在三角形的内角和是180后面加上一个?)

1、理解内角 师:什么是内角?

生:我认为三角形的内角就是指三角形的三个角。

师:三角形的每个角都是三角形的内角,每个三角形都有三个内角。

2、理解内角和。

师:那三角形的内角和又是指什么?

生:我认为三角形的内角和就是把三角形的三个内角的度数加起来的和。

师:为了方便,我们将三角形的每个内角编上序号1、2、3、我们叫它1、2、3,这三个角的度数和,就是这个三角形的内角和。

3、实践验证

师:每个三角形的内角和都是180吗?用什么方法来验证呢?

生:量一量每个角的度数,然后加起来看看是不是180。

师:请大家拿出课前准备的三角形,亲自量一量,算一算。(学生动手量一量)

师:谁愿意把你的劳动成果和大家分享一下?

生:我量的这个三角形的三个内角的度数分别是60、60、60,加起来一共是180。

师:这位同学量的是一个锐角三角形,并且是比较特殊的三角形等边三角形。

生:我量这个三角形的三个内角的度数分别是45、45、90,加起来一共是180。

师:这是我们三角尺中的一个,也比较特殊,是一个等腰直角三角形。

生:我量的是三角尺中的另一个,三个内角的度数分别是60、30、90,加起来一共是180 生:我量的是钝角三角形,三个内角的度数分别是85、60、38,加起来一共是183。

师:你发现了什么?

生:有的三角形的内角和是180,而有的三角形的内角和却不是180。

师:看来三角形的内角和不一定是180。

生:老师,测量会有误差,量出来的不是很精确,那么求出来的结果也不够精确。虽然不都是三个内角加起来不都是180,但都接近180。

生:都接近180就能说一定是180吗?

师:科学来不得半点虚假,看来这个是不能让大家信服的。那还可以用什么方法来验证呢?下面请同学们小组合作,发挥小组成员的智慧,充分利用大家的学具进行验证,比一比哪些组的方法富有新意,开始!

(学生在小组内进行探索验证。教师巡视,参与到学生的研究中)

师:请每个小组选择一个代言人,和大家分享一下你们的智慧。

生:(边展示边交流)我们小组运用了折一折的方法,把三角形的三个内角都向内折,三个内角就拼成了一个平角,也就是180,所以我们小组得出三角形的内角和是180。

师:你折的只是锐角三角形,只能证明锐角三角形的内角和是180,直角三角形,钝角三角形是不是也是这样的?

生:我们小组也有折的直角三角形,钝角三角形。

(其它的成员展示不同的三角形)

师:看这个小组的同学想问题多全面呀,不仅想到了用什么方法,还想到了用不同的三角形进行验证,老师实在是佩服你们组的智慧,让我们把掌声送给他们!

师:哪个小组和他们的方法不一样?

生:我们小组把三角形的三个内角都撕了下来,拼在了一起,正好拼成了一个平角,也就是180。我们也实验了不同的三角形,三个内角都可以拼成平角,所以我们小组得出结论,三角形的内角和是180。

师:这个小组的方法简便,易操作,很好。

生:我们小组成员是这样想的,一个长方形有4个直角,每个直角90,那么长方形的内角和就是360,每个长方形都可以平均分成两个直角三角形,每个直角三角形的内角和就是180。 师:你们小组很聪明,从长方形的内角和联想到直角三角形的内角和是180,从不同的角度去思考问题,谢谢你为我们提供了这么好的方法!

4、小结

师:刚才同学们用量、折、剪、拼、计算、推理等这么多巧妙的方法得出了无论是什么样的三角形的内角和都是1800,你还有什么疑问吗?

生:没有。

师:(去掉问号)那就让我们大声地读出来三角形的内角和是1800。

1、说一说每个三角形的内角和是多少度

师:(出示一个大三角形)这个大三角形的内角和是多少度?

生: 180

师:(出示一个小三角形)这个小三角形的内角和是多少度?

生:180

师:(演示)把这两个三角形拼在一起,拼成的大三角形的内角和是多少度?

生:180

师:为什么每个三角形的内角和是1800,而合起来还是180呢?另外那180去哪儿了?

生:把两个三角形拼成一个大三角形,两个直角不再是大三角形的内角,所以少了180

师:(演示)把一个大三角形分成两个三角形,每个三角形的内角和是多少度?

生:180

2、求下面各角的度数

师:如果老师告诉你一个三角形的两个角的度数,你能说出第三个角的度数吗?

(出)

生:三角形内角和是180,在第一个三角形中,用180-75-28,A=77

生:用180-90-35,C =55。

生:第二个三角形是直角三角形,B是直角,也可以直接用90-35=55。

生:第三个三角形中,用180-20-45,B=115。

3、一个等腰三角形的风筝,它的一个底角是70,它的顶角是多少度?

生:等腰三角形的两个底角相等,所以用180-70-70 4、

师:三角形的内角和在我们的生活中应用很广泛,老师给大家带来一个在建筑中应用的例子。

在设计这座大桥时,如果设计师将斜拉的钢索与桥柱形成的夹角设计成了56,建筑师在造桥时怎样才能确定钢索与桥柱是否形成了这个角度?

生:用量角器量一量

师:量哪个角?量一量斜拉的钢索与桥柱形成的夹角吗?

生:桥面与桥柱形成一个直角,是90,斜拉的钢索与桥柱形成的夹角是56,那么用180-90-56=34,就是斜拉的钢索与桥面的夹角,所以只要让斜拉的钢索与桥面的夹角是34,那么斜拉的钢索与桥柱形成的夹角就是56

师:你真是个善于观察、善于思考的孩子,努力学习,将来一定会成为一名优秀的建筑师。

四、回顾总结,拓展延伸

师:40分钟很快就过去了,你愿意把自己的收获与大家共同分享吗?

生:我知道了三角形的内角和是180。

生:无论是大三角形,还是小三角形,无论是锐角三角形,还是钝角三角形,还是锐角三角形,内角和都是180。

生:把一个大三角形分成两个小三角形,每个三角形的内角和还是180,把两个小三角形拼成一个大三角形,大三角形的内角和还是180。

生:我可以用撕、拼、折等方法来验证三角形的内角和是180。

师:这个同学不仅学会了知识,而且学会了方法,我们只有学会了方法,才能更好地去探究更多的知识。

师:那你现在知道为什么一个三角形内只能有一个直角或一个钝角吗?

生:两个直角的度数之和是180,再加上一个角,三个角的度数之和超过了180,所以一个三角形中最多只能有一个直角。

生:两个钝角的度数之和就超过了180,再加上一个角,就更大了,所以一个三角形中最多只能有一个钝角。

师:我们学习知识,必须知其然并知其所以然。

师:三角形中还有许许多多的学问,让我们在以后的学习中继续去研究。

三角形的课件教案【篇4】

学习目标:

1、认识现实生活中物体的相似,能利用相似三角形的性质解决一些简单的实际问题。

2、通过把实际问题转化成有关相似三角形的数学模型,培养分析问题、解决问题的能力.

学习过程:

一、创设情景,引入新课

1、说一说相似三角形的判定方法有哪些,相似三角形的性质有哪些?

2、大家都知道矗立在城中的科技大楼是我们这里比较高的楼,那么科技大楼有多高呢?

我们如何用一些简单的方法去测量出科技大楼的高度呢?

二合作交流,解读探究

导入新课:阅读课本73页例6完成下列任务:

例6中当金字塔的高度不能直接测量时,本题中构造了_______和_______相似,且_______、________、_________是已知或能测量的。

说一说测量金字塔高度的方案并加以证明。

【学法指导】同一时刻太阳光是平行直线,从而得到角相等,得到相似三角形。

例7中河的宽度也是无法直接测量的,本题中构造了_________和________相似,且_______、__________、__________是已知或能测量的。

说一说测量河的宽度的方案并加以证明。

三角形的课件教案【篇5】

今天我说课的内容是人教版九年义务教育小学数学四年级下册第五单元第67页的《三角形的内角和》。根据xxx教授的授课七步法,即说教材,说学情,说目标,说模式,说方法,说设计,说板书,我将进行本课的说课。

一、说教材

“三角形的内角和”是新课标人教版四年级下册第五单元第三节的内容。本节课是在学生学过角的度量、三角形的特征和分类等知识的基础上进行教学的,“三角形的内角和”是三角形的一个重要性质,学好它有助于学生理解三角形内角之间的关系,也是进一步学习几何的基础。

仔细分析教材的知识结构,它是分成3个部分来呈现的。第一部分是让学生通过量一量、算一算,初步感知三角形的内角和是180°;第二部分是通过拼角的实验来探究并归纳三角形内角和的规律,第三部分是运用规律、解决问题。教材这样编排由发现问题,到验证问题,再到运用规律,充分体现了知识结构的有序性和强烈的数学建模思想,既符合四年级学生的认知规律,又突出了本课教学的重点。

二、说学情

1、通过前面的学习,学生已经掌握了三角形的一些基础知识,会用工具量角、画角,具备了探索三角形内角和的知识与基础技能。

2、学生的生活经验是可利用的教学资源。我在课前了解到,已经有不少学生知道了三角形内角和是180度,但却不知道怎样才能得出这个结论,因此学生在这节课上的主要目标是验证三角形的内角和是180度。

三、说目标

根据小学数学教学大纲对四年级学生的具体要求,结合教材特点及学生年龄特征,将本节课的目标制定为以下几点:

认知技能:学生动手操作,在猜想后通过量、剪、拼、折的方法,探索并发现"三角形内角和等于180度"的规律。

数学思考:在操作实验中,让学生感受图形的转化过程及数学建模思想,初步培养学生的空间思维观念。

解决问题:在运用知识解决问题的过程中,感受所学知识的重要性,初步培养学生的应用意识。

情感态度:通过各种实验活动,激发学习兴趣,体验学习成功感,并在教学中,感受生活与数学的密切联系。

将运用各种实验方法探究三角形内角和为180度的过程并掌握规律,运用规律解决实际问题确定为本节课的教学重点。而同时学生难以理解不易掌握的探究规律的全过程则是本节课的教学难点。

四、说模式

“三角形的内角和”一课,知识与技能目标并不难,我认为本节课更重要的是通过自主探索与合作交流使学生经历知识的形成过程,领悟转化思想在解决问题中的应用,以及在探索过程中,培养学生实事求是、敢于质疑的科学态度,同时合作交流中,开拓思维、提升能力。基于以上理念,本节课,我准备引导学生采用自主探究、猜想验证、合作探究的学习模式。体现“以学生的发展为本”这一教育理念。

五、说方法

本节课主要是通过教师的精心引导和点拨,学生在小组中合作探索,通过量一量,折一折,撕一撕,画一画,选择不同的一种或者几种方法来验证三角形的内角和是180度。

因为《课程标准》明确指出:“要结合有关内容的教学,引导学生进行观察,操作,猜想,培养学生初步的思维能力”。四年级学生经过第一学段以及本单元的学习,已经掌握了三角形的分类,比较熟悉平角等有关知识;具备了初步的动手操作,主动探究的能力,他们正处于由形象思维向抽象思维过渡的阶段。因此,本节课,我将重点引导学生从“猜测――验证”展开学习活动,让学生感受这种重要的数学思维方式。

六、说设计

根据我对教材的把握和对学情的了解,设计了4个环节展开教学。

一、创设情境,发现问题

小游戏:猜一猜藏在信封后面的是什么三角形。

师:我们在猜三角形的时候,看到一个直角,就能断定它一定是直角三角形;看到一个钝角,就能断定他一定是钝角三角形;但只看到一个锐角,就判断不出来是哪种三角形。看来在一个三角形中,只能有一个直角或一个钝角,为什么画不出有两个直角或两个钝角的三角形呢?

三角形的这三个角究竟存在什么奥秘呢,我们一起来研究研究。

(创设的不是生活中的情境,而是数学化的情境。有的孩子认为一个三角形中可能会有两个钝角,还有的提出等边三角形中可能会有直角,这两个问题显现出学生在认知上的矛盾,学生用已经学的三角形的特征只能解释"不能是这样",而不能解释"为什么不能是这样"。这样引入问题恰好可以利用学生的这种认知冲突,激发学生的学习兴趣,让学生在疑问与猜想中寻找验证的方法。)

教学进入第二环节——引导探究

二、动手操作,探究规律

1.介绍内角、内角和,并提出猜想

师:我们现在研究三角形的三个角,都是它的内角。

课件演示:三角形的三个内角

师:今天我们就来一起探究《三角形的内角和》。猜一猜其它三角形的内角和是多少度呢?同桌互相说说自己的看法。

2.确定研究范围

师:研究三角形的内角和,是不是应该包括所有的三角形?只研究黑板上这一个行不行?那就随便画,挨个研究吧。(学生反对)

请你想个办法吧!

(通过引导学生分析,"研究哪几类三角形,就能代表所有的三角形"这个问题,来渗透研究问题要全面,也就是完全归纳法的数学思想)

3.建立模型,解决问题

(一)测量法:

(1)学生自然想到要量出三角形每个角的度数就能够求出三角形的内角和,从而证明三角形的内角和与三角形的大小和形状没有关系都接近180度。

(2)教师要组织学生进行小组合作每人用量角器量出一种三角形(锐角三角形、钝角三角形、直角三角形)的三个内角并计算出它们的总和是多少?

(3)记录小组测量结果及讨论结果

实验名称三角形内角和

实验目的探究三角形内角和是多少度。

实验材料尺子剪刀量角器锐角三角形纸片直角三角形纸片钝角三角形纸片

方法一三角形的形状每个内角的度数三个内角的

方法二

我的发现

(4)学生汇报量的方法,师请同学评价这种方法。

师小结:直接量的方法挺好,虽然测量有误差,不准,但我们能知道,三角形的内角和只能在180°左右,究竟是不是一定就是180度呢,谁还有别的方法?

(二)剪拼法

学生汇报后师小结:能想到这个方法不简单,拼成的看起来像平角,到底是不是平角呢,我们一起来试试看。(教师和学生剪一剪、拼一拼)

师:把三角形的三个内角凑到了一起,拼成了一个大角,角的两条边是不是在一条直线上呢?看起来挺象的,但在操作的过程中难免会产生误差,有时会差一点点,谁还有别的方法确定三角形的内角和一定是180°?

(三)折拼法

学生汇报后师小结:我们要研究三角形的内角和,实际上就是想办法把三角形的三个内角凑到一起,像剪和折的方法,看三个内角拼到一起是不是180度,都是借助我们学过的平角解决的问题。

这三种方法都不错,在操作的过程中,有时会有误差,不太有说服力。想一想,你还能不能借助我们学过的哪种图形,想办法说明三角形的内角和一定是180度?

(四)演绎推理法

(借助学过的长方形,把一个长方形沿对角线分成两个三角形。)

师:你认为这种方法好不好?我们看看是不是这么回事。

(演示课件:两个完全相同的三角形内角和等于360°,一个三角形内角和等于180°)

师小结:这种方法避免了在剪拼过程中由于操作出现的误差,非常准确的说明了三角形的内角和一定是180度。

(学生通过小组合作的方式学到方法,分享经验,更重要的是领悟到科学研究问题的方法。就学生的发展而言,探究的过程比探究获得的结论更有价值。)

学生用的方法会非常多,但它们的思维水平是不平行的。

直接测量法是学生利用已有的知识,测量出每个角的度数,再用加法求和;

拼角求和法,也就是间接剪拼和折拼这两种方法,都是通过拼成一个特殊角,也就是平角来解决问题;

而演绎推理法,即把两个完全相同的三角形合二为一,或把长方形一分为二,成为两个三角形,这是更深层次的思考。

前两种方法是不完全归纳法,能使我们确定研究的范围只能是180度左右,而不可能是其他任意猜想的度数。最后一种方法具有演绎推理的色彩,把一个长方形沿对角线分成两个完全相同的三角形后,因为两个三角形的内角和是原来长方形的四个内角之和360度,所以一个三角形的内角和就是360°÷2=180°,这种方法从科学证明的角度阐述了三角形的内角和,它有严密性和精确性。

本节课引导学生经历从直观到抽象、思维程度从低到高的过程,感悟数学的严谨性。让学生在经历量和拼之后,逐渐会在思维发散的过程中得到集中,集中为分的方法,最后将四边形一分为二,五边形一分为三,六边形一分为四……,又会发现一些新的规律。】

4.验证猜想"三角形的内角和是180度"

5.进一步感受

(1)三角形内角和与三角形大小的关系

教师出示一个小三角形,问学生内角和是多少度?再出示一个大的等腰三角形,问学生它的内角和是多少度?把这个大三角形平均分成两份,每份内角和是多少度?你有什么发现吗?

(2)三角形内角和与三角形形状的关系

(演示不断变化的三角形。)仔细观察,在这个过程中,什么变化了?什么没变化?(三个角的度数都在变化,内角和却总是不变的)你有什么新发现吗?

如果老师把一个角一直往下拽,猜一猜会怎样?

(通过变化的三角形和三个内角的数据显示,进一步感受三角形的内角和与三角形的形状、大小都没有关系;当把三角形的一个角一直向下拽,这个角变成了一个180度的平角,另外两个角变成了0度角,虽然已经不再是三角形,也能从一个侧面证明三角形的内角和是180度,使学生感受到极限的思维方法。)

6.解释课前问题

用内角和的知识解释课前的问题,为什么在三角形中不能有两个直角或钝角。

三、拓展应用,深化创新

本节课的练习由易到难,设计成三个层次。

1、基本练习形成技能

2、变式练习巩固技能

3、综合练习发展提高技能

介绍科学家帕斯卡(出示帕斯卡的资料)

师:帕斯卡为科学作出了巨大的贡献,在我们以后学习的知识中,也有很多是帕斯卡发现和验证的,他12岁就发现三角形内角和是180度,我们同学还没到12岁,看你能不能通过自己的努力也去探索和发现。

多边形边形内角和

(设计求多边形的内角和,旨在把新问题转化归结为求几个三角形内角和的问题上,渗透化归的数学学习方法。)

四、总结全课,全面提升

我们用三角形内角和的知识知道了六边形内角和,那么五边形、七边形……这些多边形的内角和是多少度?有没有什么规律可循,你能用学到的知识和方法去探究问题,相信你还会有一些精彩的发现。

七、说设计

三角形的内角和是180度。

转化的思想:量、撕、剪、折、拼

三角形的课件教案【篇6】

教学内容:

义务教育课程标准实验教科书数学四年级下册80~81页的例1、例2

教学目标:

1、通过动手操作和观察比较,使学生认识三角形,知道三角形的特性及三角形的高和底的含义,会在三角形内画高。

2、培养学生观察、操作、自学的能力和应用数学知识解决实际问题的能力。

3、体验数学和生活的联系,培养学生学习数学的兴趣。

教学重点:

1、理解三角形的特性。

2、在三角形内画高。

教学难点:

理解三角形高和底的含义,会在三角形内画高。

教学准备:

多媒体课件、投影。

教学过程:

一、谈话引入。

师:我们学过哪些平面图形?

师:说一说你对三角形有哪些认识?

师:同学们对三角形已经有了初步的了解,这节课我们继续研究和三角形有关的知识。

(板书课题:三角形的特性)

二、探究新知。

1、三角形的特征。

(1)画一画。

师:请你在纸上画一个自己喜欢的三角形。并和同桌边指边说一说三角形有几条边?几个角?几个顶点?

师黑板上画一个三角形,让学生说出各部分的名称师板书。(教师板书各部分名称)

(2)摆一摆。

师:每根小棒相当于一条线段。请你动手用三根小棒摆一个三角形。

找一学生上投影前摆一摆,并说一说是怎么摆的?

(3)看一看。

老师也摆了一个三角形,课件出示。

你们有什么看法?

教师用课件演示并强调:有三条线段围成的图形(每相邻两条线段的端点相连)叫做三角形。

(4)找一找。

下面图形中是三角形的请打√,不是三角形的请打×,并说出你的理由。(学生一起用手势表示)

2、三角形的特性。

(1)动手操作发现三角形的特性。

师生拿出平行四边形框架。

师:用手拉动,说一说有什么发现?(容易变形,不稳定。)

指导学生操作:去掉一条边,再扣上拼组成三角形框架。

师:再拉一拉有什么感觉?

师:想一想这说明三角形具备什么特性?(稳定性)

(2)生活中寻找三角形的特性。

师:三角形的稳定性在生活中的用处很大,你能举个例子吗?

课件出示例2的主题图,请你找出各图中哪有三角形?说一说它们有什么作用?

3、认识三角形的底和高。

(1)情境引入。

故事引入,两个三角形争论谁的个高。课件出示

让学生说一说怎样比较这两个三角形的高,并准备好相应的两个三角形学具试着让学生前面来分别指一指它们的高,并比一比。

师:请你拿出(指锐角三角形)这样一个三角形,试着指一指它的高。

(2)看书自学。

师:什么是三角形的高?怎样正确的画出三角形的高呢?请打开书81页,看看书上是怎样说的,又是怎样画的,和你的想法一样吗?

师:谁来说一说?

请你在刚才的三角形中画出三角形的一条高,并标出它所对应的底。

(3)教师板演。

我把三角形的三个顶点分别用字母A、B、C表示,这个三角形可以称作三角形ABC。想想怎样以AC边为底画出这个三角形的高?

生说高的画法,师板演,并强调用三角板画高的方法。

(4)进一步认识三角形的高。

在三角形中标上字母ABC,和同桌说一说刚才画的高是以哪条边为底画的?

师:刚才我们画了三角形的一组底和高,想一想一个三角形只有一组底和高吗?为什么?

(三)应用练习。

1、填空:

三角形有()个顶点,()条边,()个角。

2、学校的椅子坏了,课件演示,怎样加固它呢?(教材86页第2题)

3、小明画了三角形的一条高,你说他画的对吗?为什么?

(四)课堂小结。

通过这节课的学习,你对三角形又有了哪些新的认识?

你还想了解和三角形有关的哪些知识?

三角形的课件教案【篇7】

【教学目标】

教学知识点

1.等腰三角形的概念.

2.等腰三角形的性质.

3.等腰三角形的概念及性质的应用.

能力训练要求

1.经历作(画)出等腰三角形的过程,从轴对称的角度去体会等腰三角形的特点.

2.探索并掌握等腰三角形的性质.

情感与价值观要求

通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.

【教学重难点】

重点:

1.等腰三角形的概念及性质.

2.等腰三角形性质的应用.

难点:等腰三角形三线合一的性质的理解及其应用.

【教学过程】

一、提出问题,创设情境

师:在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,并且能够作出一个简单平面图形关于某一直线的轴对称图形,还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?

[生]有的三角形是轴对称图形,有的三角形不是.

师:那什么样的三角形是轴对称图形?

[生]满足轴对称的条件的三角形就是轴对称图形,也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.

师:很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.

二、探究新知:

(一)等腰三角形的定义:

【活动1】折纸、剪纸、展纸:

观察△ABC的特点:(1)在上述过程中,△ABC被剪刀剪过的两边是否相等?

(2)由此你能说说什么是等腰三角形吗?

归纳:有两条边相等的三角形叫等腰三角形。其中相等的两条边叫腰,另一条边叫做底边;两腰所夹的角叫顶角,底边和腰所夹的角叫底角。

(二)探索等腰三角形的性质:

【活动2】观察△ABC:(1)等腰△ABC是轴对称图形吗?它的对称轴是什么?

(2)沿着等腰△ABC中AD所在的直线对折,找出重合的线段、重合的角。

归纳:性质1、等腰三角形的两个底角相等(简写成“等边对等角”)

性质2、等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简记为“三线合一”)

(三)等腰三角形性质的证明:

由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程.

三角形的课件教案【篇8】

一、说教材

1、教材的地位与作用

等腰三角形是在学习了轴对称之后编排的,是轴对称知识的延伸和应用。等腰三角形的性质及判定是探究线段相等、角相等及两条直线互相垂直的重要工具,在教材中起着承上启下的作用。

2、教学重点和难点

本着新课程标准,在吃透教材基础上,我把探索等腰三角形的性质定为本节课的重点,通过创设问题和解决问题来突出重点。把等腰三角形性质的建立定为本课的难点,通过折纸实验和小组合作探究来突破难点。

二、说教学目标

1、学情分析

我所教的学生,从认知的特点来看,好奇爱问,求知欲强,想象力丰富;并已初步具有对数学问题进行合作探究的能力。

2、三维目标

根据教材结构和内容分析,考虑到学生已有的认知结构、心理特征 ,我制定如下目标:

知识与技能目标:

了解等腰三角形的概念,探索并掌握等腰三角形的性质,并会进行有关的论证和计算,以及运用所学的知识去解决实际问题。

过程与方法目标:

通过对性质的探究活动和例题的分析,培养学生多角度思考问题的习惯,提高学生分析问题和解决问题的能力;使学生进一步了解发现真理的方法(探究-猜想-归纳-论证)。

情感态度与价值观目标:

通过对等腰三角形的观察、试验、归纳,体验数学活动充满着探索性和创造性,数学就在我们身边。在操作活动中,培养学生的合作精神,在独立思考的同时能够认同他人. 感受合作交流带来的成功感,树立自信心.

三、说教法与学法

1、教法

根据教材分析和目标分析,我确定本课主要的教法为探究发现法。采用“问题情境—探索交流—猜想验证——建立模型”的模式安排教学,并在各个环节进行分层施教。

2、学法

我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中我特别重视学法的指导。本课采用小组合作的学习方式,让学生遵循“观察——猜想——归纳——验证——反馈——实践”的主线进行学习。

四、说教学流程

《数学课程标准》强调,教师应发扬教学民主,成为学生数学学习活动的组织者、引导者、合作者。因此本节课我分以下六个环节组织教学。

(一)创设情境,激发兴趣。

1、多媒体展示房屋人字架、艾佛尔铁塔、龙塔、香港中国银行大厦的图片,问:你认识图片中的建筑物吗?图片中存在哪些几何图形? (等腰三角形、四边形、梯形)

2、四幅图中都有哪种几何图形?(等腰三角形)

(通过实例的电脑展示,唤起学生的好奇心,提出问题,引导学生进入新知识的学习,创造一种探索的情景。在学习中,只有调动学生的非智力因素,特别是内在动机,才能使他们产生强烈的求知欲和以饱满的热情来学习新知识。)

ァ(二) 观察实物,形成概念。

活动1:学生通过观察自带的等腰三角形纸片认识等腰三角形的有关概念。

接着,我利用电脑演示等腰三角形定义的数学语言表达方式。

(让学生归纳定义增强学生的成就感,给出数学语言的表达,是为了培养学生文字语言、图形语言和符号语言的转化能力.同时也能培养学生正向思维和逆向思维的能力。)

三角形的课件教案【篇9】

设计说明:本课的教学内容是人教版三年制初二几何5.4节三角形相似的判定。

在充分理解教材的基础上,本节课首先在新旧知识的转折处创设有助于学生自主学习的问题情境,引导学生通过探索、交流,获得知识,促使学生在教师指导下生动活泼地、主动地、富有个性地学习。其次,根据变式分层的思想设计具有一定跨度的问题串,组织学生进行变式训练,有效地实施分层次教学,使每个学生都得到充分的发展。

1 教学目标

1.了解三角形相似的判定定理1的证明思路和方法, 能运用判定定理1解决有关问题;

2.掌握直角三角形被斜边上的高分成的两个直角三角形彼此相似并且都和原三角形相似;

3.学会与人合作,能与他人交流思维的过程和结果;形成评价与反思的意识;

4.能积极参与数学学习活动,体验数学活动充满着探索与创造,形成实事求是的态度以及独立思考的习惯。

2 教学重点和难点

重点是三角形相似的判定定理1及其应用, 难点是定理的证明方法。突破难点的关键是在于使用化归、全等变换、类比等数学思想方法。

3 教学、学法

本课采用“自主探索,合作交流”这一教学组织形式,首先从问题1入手,利用图形变换的对比手法,引导学生步步深入, 类比归纳出判定两个三角形相似的条件;然后通过一组变式题,保证学生在基础知识和基本技能的获得与一定的训练的同时,能感受到数学创造的乐趣,获得对数学较为全面的体验与理解。

4 教学过程

4.1 创设问题情景,引导学生探索导出新知识

4.1.1 问题讨论 显示问题1和问题2,组织学生分小组讨论。

问题1:如图1,已知∠1=∠B,试判断△ADE与△ABC是否相似?并说明理由。

利用电脑课件改变DE的位置,保持∠1=∠B,得到问题2。

问题2:如图2,已知∠1=∠B,试判断△ADE与△ABC是否相似?并说明理由。

4.1.2 小组交流与同学交流自己的想法。

鼓励学生在独立思考的基础上,积极参与数学问题的讨论,勇于发表自己的观点,能在倾听别人意见的过程中,逐渐完善自己的想法,感受到与同伴交流中获益的快乐。

教师积极引导学生利用化归的思想解决问题,在学生充分讨论的基础上,对问题解决的方法小结如下:

(1)利用同位角相等,两直线平行(∠1=∠B,DE∥BC )将问题1化归到上节所学的定理;

(2)通过全等变换,将问题2化归到问题1;

电脑三维动画显示:将△ADE绕着∠A的平分线旋转180°(即将△ADE翻一面)可得到△AD′E′,(如图3所示)即△AD′E′≌△ADE,于是有∠ADE=∠AD′E′,又因为∠ADE=∠B,所以∠AD′E′=∠B,由(1)得△ADE~△ABC。

(3)学生代表口述交流问题2证明的思路,教师板书证明过程;

(4)这里由特殊到一般来探索数学规律, 是数学研究中常用的一种思想方法。

4、导出定理:我们知道三角形全等是三角形相似的特殊情况, 在上述学习的基础上,你能否类似于三角形全等用符合某种条件来判定两个三角形相似?

学生口述三角形相似判定定理1,教师板书。

(二)变式训练,引导学生应用新知识和进行创新性学习。

1.显示习题1、习题2,供学生独立思考后回答。

习题1如图4,已知在△ABC中,AB=AC,∠A=36°,BD 平分∠ABC交AC于点D,请找出图中的相似三角形。

习题2如图5,在Rt△ABC中,∠ABC=90°,BD⊥AC于点D, 找出图中所有的相似三角形。

2.教师归纳小结:

(1)习题1利用简单计算,直接运用判定定理1便可找出△ABC~△BDC;

(2)习题2与习题1的解题方法一样,但要求全面观察图形, 图中共有三对三角形相似,即直角三角形被斜边上的高分成的两个直角三角形相似。

3.电脑显示习题3,学生独立练习后,小组交流,教师归纳小结。

习题3如图6,在△ABC中,点D为AC边上的一点,连结BD, 问∠ADB满足什么条件时,△ADB~△ABC。

4.电脑显示将图6中的△ADB绕点A旋转一定的角度,得到习题4。

习题4 如图7,已知∠D′=∠B,∠1=∠2,求证:△AD′B′~△ABC。

5.让学生在习题4的基础上改编一道变式题,课后交流。

这个问题的参与性较强,每个学生都可以展开想象的翅膀,按照自己思考的设计原则,编拟题目(如改变条件:将∠D′=∠B改成∠B′=∠C,结论不变;也可以将图形不变;也可以将图形变为如图8所示),感受数学创造的乐趣,增进学好数学的信心,获得对数学较为全面的体验与理解。

(三)师生共同作本节果小结。

作者介绍:郑碧星,福建德化第一中学

三角形的课件教案【篇10】

老师们:

你们好!

非常高兴能有机会和大家交流说课活动,谨此向在座的各位老师学习。

今天我说课的内容是人教版数学八年级上册第十四章第3节《等腰三角形》的第一课时,下面我将从教材分析、教学方法与教材处理及教学过程等几个方面对本课的设计进行说明。

一、 教材分析

等腰三角形是一种特殊的三角形,它除了具备有一般三角形的所有性质外,还有许多特殊的性质,由于它的这些特殊的性质,使它比一般的三角形应用更广泛,而等腰三角形的许多特殊性质,又都和它是轴对称图形有关,它也是证明两个角相等,两条线段相等,两条直线互相垂直的方法,学好它可以为将来初三解决代数、几何综合题打下良好的基础。它在理论上有这样重要的地位,并在实际生活中也有广泛的应用,因此这节课的教学显得相当重要。根据本班学生的特点我确定如下:

(一)教学目标:

1、知识与技能:能够探究,归纳,验证等腰三角形的性质,并学会应用等腰三角形的性质

2、过程与方法:经历剪纸,折纸等探究活动,进一步认识等腰三角形的定义和性质,了解等腰三角形是轴对称图形。

3、情感态度与价值观:培养学生的观察能力,激发学生的好奇心和求知欲,培养学习的自信心

(二)教学重点与难点

等腰三角形性质的探索和应用是本节课的重点。由于初二学生的几何知识有限,而本节课性质的证明又添加了辅助线,所以等腰三角形性质的验探究是本节课的难点。

二、教学方法

本节课中我遵循教师为主导,学生为主体的原则,针对当前学生的厌学情绪,我运用课件,实物演示等多种教学手段激发学生的学习兴趣,让学生感到容易学,采用创设情景、实验法来分散难点让学生感到愿意学,并设置适当的追问、探究,让学生来主宰课堂,成为学习的主人。

三、学法指导及能力培养

人教版数学八年级上册(等腰三角形),标签:初二数学说课稿,初中数学说课视频,

好的学习方法才能培养能力,在学生探索知识的过程中培养他们掌握好的学习和解题方法,并且通过自己动手操作、动脑思考、动口表述,培养学生的观察、猜想、概括、表述论证的能力

四、教学过程

(一)情景设置

首先我用一个三角形测平架,测量黑板的下边是否水平,并让学生猜想其中的道理和奥妙,这样的引入既明确了本节课的主要内容,也激发了学生的学习兴趣,又使学生了解到数学来源于生活又适用于生活。

教育学中有句谚语:“告诉我我会忘记,做给我看我会记得,让我去做我才会懂”,由此可见实验法在教学中具有重要的作用。因此我设计了一个动手操作的环节,让学生按要求剪出一个三角形,为下面折纸操作作好铺垫,结合剪出的等腰三角形学习相关的概念加深印象,并指明等腰三角形是轴对称图形。

(二)探索新知

在这个环节我安排了两个探究,通过折纸的方法猜想并归纳。首先通过折纸让学生猜想∠B和∠C有什么关系?鼓励学生用多种方法来验证他们的猜想,并归纳出等腰三角形的第一条性质。这个地方我设计一个疑问,来强调等边对等角有一个前提条件就必须是在同一个三角形中,为了保证学生思维的连贯性,在这里我是这样引入探究二的,“从刚才辅助线的作法中,你发现了什么?”让学生感觉到这三条辅助线好像是一条线段,然后在通过折纸归纳出性质二。

学生在长时间的学习和探究中大脑已感到疲劳,随即引出课前设置的疑问,再次激发学生的学习热情。由于“三线合一”的性质在描述上经常出错,所以我设置了一个辨析,然后用填空的形式规范“三线合一”的符号表示形式,让学生理解性质的内涵。

(三)巩固练习

我用两个练习巩固等腰三角形的性质并让学生体验分类讨论的思想在解题中的应用。由于本节课的例题较难,因此我对它进行了改编,先让学生解决“等腰三角形一个底角的外角是108°时,三个内角分别是多少度?”然后再延长CD,得到一个新的等腰三角形,运用性质一就可以解决这两个问题,然后今天的例题就可以迎刃而解了,同时也要强调此题图形的特殊性,只有顶角是36°的等腰三角形才能满足这样的性质。

(四)课堂小结

课堂教学,一是注重引入激发兴趣,二是注重教学过程、重视方法,三就是注重概括总结。首先我让学生回想一下本节课的内容,“通过本节课的学习,你对等腰三角形有什么新的认识吗?”然后教师肯定学生的积极性。

(五)作业布置(略)

人教版数学八年级上册(等腰三角形),标签:初二数学说课稿,初中数学说课视频,

(六)板书设计(略)

总之,在整个教学过程中,我遵循着“教师为主导,学生为主体,训练为主线”的原则,在课上的每个环节中通过各种媒体,各种手段,始终注重兴趣的激发,培养学生的学习热情,让他们在轻松愉快中学习知识。

以上是我对这节课的教学设计,望各位老师批评指正,谢谢!

三角形的面积课件教案5篇


古人云,工欲善其事,必先利其器。作为幼儿园老师的我们的课堂上能更好的发挥教学效果,优秀的教案能帮老师们更好的解决学习上的问题,教案可以让上课自己轻松的同时,学生也更好的消化课堂内容。我们要如何写好一份值得称赞的幼儿园教案呢?以下由小编收集整理的《三角形的面积课件教案5篇》,仅供参考,欢迎大家阅读本文。

三角形的面积课件教案(篇1)

一、说教材:

本课是义务教育课程标准实验教科书数学五年级(上册)第84页至85页的教学内容。三角形的面积计算是学生在掌握了它的特征的基础上学习的,它是进一步学习圆面积和立体图形表面积的基础知识之一。因此,体验和感知三角形面积计算的探索过程,掌握三角形面积计算公式,是学生后继学习的重要基本技能和基础知识。教材的编排是在学生已经学习了长方形、平行四边形的面积的基础上学习的。教学内容引导学生动手把两个完全一样的三角形拼成平行四边形来计算面积,培养学生的动手操作能力和思维能力。

二、说教学目标:

基于以上对教材的认识,按照新课程理念,我制定了以下的教学目标:

1、理解三角形面积公式的推导过程,正确运用三角形面积计算公式进行计算。

2、培养学生观察能力、动手操作能力和类推迁移的能力。

3、培养学生勤于思考,积极探索的学习精神。

三、说教学重点、难点:

重点是理解三角形面积计算的推导过程,会根据公式进行计算。难点是理解三角形面积公式的推导过程。

四、说教法学法:

“动手实践、自主探究与合作交流”是学生学习数学的重要方式。因此,在本课的教学采用:

1、实验法

学生通过自己动手操作学习新知识比听教师讲解新知识记忆更加深刻,兴趣更加浓厚。因此,在教学三角形面积计算公式推导过程时,让学生动手操作、讨论,体现了以学生为主体,教师为主导的教学原则。

2、课件演示,配合启发。

学生动手实验,交流汇报之后,再看课件演示,教师给予点拨,使学生更直观,更形象地理解三角形面积的计算方法。

五、说教学过程:

(一)创设情境,引入探索。

1、谈话导入:植树节快到了,我们学校要进行一些绿化、美化,看,这是块平行四边形的空地,你们能先求出它的面积吗?现在要把这块地平均分成两份,一半种月季,一半种菊花,如何分?你能算其中一块花坛的面积吗?请同学们猜想三角形的面积是怎样算的?(设计意图:渗透几何图形之间联系,为新知识的学习作好铺垫。)

2、揭示课题

板书课题:三角形的面积

(二)自主探索,合作交流

导入:下面让我们一起来验证我们的猜想是否正确,请同学们拿出学具,用两个完全一样的三角形拼已经学过的平面图形。

1、推导三角形面积计算公式

(1)小组合作,动手拼摆。(说明:学生准备直角、钝角和锐角三角形各两个,且两个直角、两个钝角和两个锐角三角形的形状分别完全一样。设计意图:教师为学生提供一个开放的空间,让学生亲身经历自主探索的过程。创设了一个问题情景,让学生在发现问题,解决问题之中感悟出“完全一样的三角形”是拼摆的前提,通过学生亲手拼摆,最大限度地发挥学生学习的主体性,也有助于“用两个形状完全一样的三角形拼出了一个平行四边形”等概念的建立。)

(2)小组代表汇报实验成果,并演示拼摆的操作过程,说明拼摆的方法。教师鼓励学生充分、大胆地发言,说出自己在操作中的发现,对学生的发现给予肯定。(设计意图:让学生汇报实验成果,教师给予表扬肯定,使学生体验学习成功的喜悦,设置“我的发现”这一开放性的问题,培养学生发散思维的能力。)

(3)课件演示三角形拼摆成平行四边形的过程。(设计意图:先让学生自由做实验,有利于学生在操作过程中自由发挥,而不束缚学生的想象力和思维能力。学生汇报实验成果之后,再观看课件演示,这就更形象、更直观,更生动的展现了图形拼摆的过程,有利于学生形象思维能力的培养。)

(4)总结归纳计算公式。

问题:两个完全一样的三角形可以拼成什么图形?

每个三角形的面积与拼成图形的面积有什么关系?

这个平行四边形的底等于三角形的什么?

这个平行四边形的高等于三角形的什么?

三角形的面积公式是怎样的?

学生借助手中的图形讨论问题。

小组代表汇报讨论学习成果。

教师结合课件补充,帮助学生解决问题。(设计意图:让学生亲自讨论、交流中发现三角形的底、高和面积与所拼成的平行四边形的底、高和面积的关系,帮助学生对三角形面积公式的推导。培养学生的合作学习意识。)

(5)回顾推导过程(用自己的语言来填空)。

用两个完全一样的三角形可以拼成 ,三角形的面积是它面积的

三角形的面积公式为 用字母表示为 。

(设计意图:加深学生对三角形面积公式推导过程的理解。)

2、公式的运用

(1)解决例1:利用公式,计算一下佩戴的`红领巾,它的面积是多少?

(2)让学生阅读书本85页的“你知道吗?”。并让学生说说有什么感想?(设计意图:让学生自主解决例1,巩固学生对基本知识的掌握。阅读“你知道吗?”让学生了解我国的数学文化,渗透爱国、爱学习的思想品德教育,激发学习热情。)

(三)实践运用,拓展创新

1、基本题的练习。

基本题的练习设计是遵循学生的认知规律,注意梯度性。学生独立计算,教师指名学生上黑板板演。判断题要求学生做出正确的判断后并说出理由。(设计意图:基本题的设计,巩固了学生对基本知识的掌握,明白计算三角形的面积必须要找准对应的底和高,同时感受到数学与生活之间联系。)

2、拓展题的练习。设计有一定的开放性,重点突出“等底等高”的关系,有利于学生学习主体性的提高。)

(四)归纳总结,回顾全课

同学们,这节课经过大家亲自实验,归纳推导出了三角形面积计算的公式,真了不起!但请大家仔细想想,这节课,你们还有什么问题吗?(设计意图:一堂课的学习,不能让学生产生错觉,认为把本节课所有的问题都解决了,教师要注重培养学生的问题意识,学生产生了疑问,才会积极地去探究。)

六、说板书设计

三角形面积的计算

三角形的面积 =平行四边形面积÷2

三角形的面积 = 底×高÷2

S = ah÷2

例1:s=ah÷2

=100×33÷2

=3300÷2

=1650(cm2)

答:它的面积是1650平方厘米。

三角形的面积课件教案(篇2)

教学内容:三角形的面积第84-85页

教学目标:

1、经历三角形面积计算公式的探索过程,理解三角形的面积计算公式。

2、通过操作和对图形的观察、比较,发展学生的空间观念。使学生知道转化的思考方法在研究三角形的面积时的运用,培养学生的分析、综合、抽象、概括和运用转化方法解决实际问题的能力。

3、培养学生的创新意识和合作精神。

教学重点:

理解三角形面积计算公式,正确计算三角形的面积.

教学难点:

在转化中发现内在联系及推导说理。

学具准备:

每个学生准备三种类型三角形(每种类型准备2个完全一样的)和一个平行四边形。红领巾等。

教学过程

复习导入:

1、复习:想一想,平行四边形的面积怎样计算?这个公式是怎么推导出来的?

指名说一说,师可再现推导过程。

2、导入:出示红领巾,它是什么图形?它的面积该怎么计算?揭示课题。

二、探究三角形的面积公式.

1.启发提问:你能否依照平行四边形面积的方法把三角形转化成已学过的图形,再计算面积呢?

2.用两个完全一样的直角三角形拼.

(1)教师参与学生拼摆,个别加以指导

(2)演示课件:拼摆图形

(3)讨论

①两个完全一样的直角三角形拼成一个大三角形能帮助我们推导出三角形面积公式吗?为什么?

②观察拼成的长方形和平行四边形,每个直角三角形的面积与拼成的平行 四边形的面积有什么关系?

3.用两个完全一样的锐角三角形拼.

(1)组织学生利用手里的学具试拼.(指名演示)

(2)演示课件:拼摆图形(突出旋转、平移)

教师提问:每个三角形的面积与拼成的平行四边形的面积有什么关系?

4.用两个完全一样的钝角三角形来拼.

(1)由学生独立完成.

(2)演示课件:拼摆图形

5.讨论:

(1)两个完全相同的三角形都可以转化成什么图形?

(2)每个三角形的面积与拼成的平行四边形的面积有什么关系?

(3)三角形面积的计算公式是什么?

6、引导学生明确:

①两个完全一样的三角形都可以拼成一个平行四边形。

②每个三角形的面积等于拼成的平行四边形面积的一半。(同时板书)

③这个平行四边形的底等于三角形的底。(同时板书)

④这个平行四边形的高等于三角形的高。(同时板书)

(3)三角形面积的计算公式是怎样推导出来的?为什么要加上“除以2”?(强化理解推导过程)

板书:三角形面积=底×高÷2

(4)如果用S表示三角形面积,用a和h表示三角形的底和高,那么三角形面积的计算公式可以写成什么?

7.教学例1

红领巾的底是100cm,高33cm,它的面积是多少平方厘米?

1.由学生独立解答.

2.订正答案(教师板书)

三、总结:

(一)总结这一节课的收获,并提出自己的问题.

(二)教师提问:要求三角形面积需要知道哪两个已知条件?求三角形面积为什么要除以2?

四、反馈练习

计算下面每个三角形的面积.

1.底是4.2米,高是2米;

2.底是3分米,高是1.3分米;

(三) 判断

一个三角形的底和高是4厘米,它的面积就是16平方厘米。( ) 2、等底等高的两个三角形,面积一定相等。 ( )

3、两个三角形一定可以拼成一个平行四边形。 ( )

4、三角形的底是3分米,高是20厘米,它的面积是30平方厘米。( )

板书设计

三角形的面积

平行四边形的面积=底×高,

三角形面积=拼成的平行四边形的一半, 100×33÷2=1650(cm)

三角形面积=底×高÷2

S=ah÷2

三角形的面积课件教案(篇3)

教学目标:

1、使学生掌握三角形面积的计算公式,会运用公式计算三角形的面积。

2、通过图形的割补,剪拼,渗透图形变换等教学手段,培养学生的操作能力,空间想象能力和逻辑思维能力。

教学重点:

掌握三角形面积的计算公式,会运用公式计算三角形的面积。

教学难点:

理解三角形面积计算公式的推导方法。

教学关键:

引导学生理解三角形面积计算公式中除以2的意义。

本节课,我根据五年级学生的知识面较广,学习自觉性较强的特点,采用尝试教学法、实验法、练习法等教学方法进行教学。让学生带着教师提出的问题在旧知识的基础上,通过自学课本,利用学具独立作业,互相讨论和巩固练习,去尝试解决问题,教师再根据学生尝试练习中的难点和教材的重点加以讲解和点拔,充分发挥学生的主体作用和教师的主导作用,有利于培养学生的探索精神和操作能力。教学时,我按导入新课、揭示课题、推导公式、实际应用、巩固练习、课堂总结这六个环节进行。

一、导入新课

新课的导入是为了引导学生迅速进入学习状态的行为方式。好的导入,可以点燃学生思维的火花,活跃学生的思维。我采用实物直观法导入新课,先引导学生观察少先队大队旗,说出大队旗的长是120厘米,宽是90厘米,让学生利用旧知识计算大队旗的面积和归纳长方形面积计算公式。再出示红领巾,引导学生说出要计算红领巾的面积,就是求三角形面积,从而发挥知识的迁移作用,激发学生强烈的求知欲望和浓厚的学习兴趣,使学生进入一个良好的学习境界,为整个教学过程创造良好的开端。

二、揭求课题

我按照学生的心理特征,运用了激趣法揭示课题,以引起学生的注意和兴趣,调动学生的学习积极性,起承上启下、开宗明义的作用。我先直接板书课题“三角形面积的计算”,再提出问题“这节课要学习哪些内容?”让学生互相讨论,说出三个问题。(1)三角形面积的计算公式是什么?(2)三角形面积的计算公式是怎样推导的?(3)怎样运用公式计算三角形的面积?这样,巧妙地让学生自己提出本课的学习目标,把目标变成自身学习的需要,使学生由“要我学数学”变成“我要学数学”。

三、推导公式

公式的推导过程是学生知识的形成过程。我根据学生的认知规律让学生有目的、有步骤地动眼观察,动脑思考,动手操作,动口讲述,以实验法推导三角形面积的计算公式。教学时,分四步进行。(1)引导猜想:我让学生按照课本75页的方法,用方格纸数出三角形的面积,引导学生观察三角形的底是多少厘米?宽是多少厘米?底和高的长度与面积之间有什么联系?让学生通过观察分析,得出三角形底是6厘米,高是4厘米,面积是12平方厘米(图1),

底6厘米高4厘米面积12平方厘米

图1

接着引导学生猜想三角形面积是底和高乘积的一半。

(2)尝试操作:

当学生心理上产生疑问,迫切地需要教师的讲解和验证时,教师要求学生回忆平行四边形面积计算公式是怎样推导的?学生一边说,我一边把平行四边形变成长方形的推导方法演示出来(沿平行四边形的高剪出一个三角形,把剪下的三角形拼到另一边,变成一个长方形,如图2)。

图2

以唤起学

生的回忆,促进知识的迁移。然后再要求学生模仿平行四边形面积公式推导的方法,把三角形转换成其他图形,并拿出课前准备的长方形学具,量出长方形的长与宽是多少?(长10厘米,宽6厘米),计算出它的面积是10×6=60平方厘米,再沿着长方形的对角线剪开,分成两个大小形状相同的三角形,算出一个三角形的面积是10×6÷2=30平方厘米(如下图)。学生清楚地看

出这个三角形是原来长方形的一半。使学生沿着形象思维到抽象思维发展的规律去理解三角形面积计算公式的推导。接着让学生拿出平行四边形纸片,量出它的底和高分别是10厘米、6厘米,用10×6计算出平行四边形的面积是60平方厘米,然后沿着平行四边形的对角线剪开,可以分成两个大小形状相同的三角形,用10×6÷2算出一个三角形的面积是30厘米。学生再一次看出这个三角形是原来平行四边形的一半,而且观察出平行四边形的底和高与剪开的三角形的底和高是一致的,攻破教学的难点。(3)归纳公式:通过两个实验,学生纷纷讨论,并归纳出三角形面积计算公式是底×高÷2,用字母表示写作S=ah÷2,并点明求三角形的面积必须要知道三角形的底和高,计算三角形的面积时把底和高相乘后不能忘记除以2,让学生的知识更系统完善。(4)看书质疑:学生通过自己实验操作已水到渠成地得出结论后,我再让学生认真阅读课本75页至77页的内容,比较与自己推导的方法有什么异同,突出说明课本是用“合”的方法验证公式,而我们是用“分”的方法来验证公式的,两种方法均把三角形变换成长方形或平行四边形来推导,都能尝试成功。之后,留一点时间让学生提出疑问,我再进行针对性的释疑,创造亲切和谐的课堂气氛,使学生有疑敢问,进一步把教师的主导作用,学生的主体作用,教科书的示范作用及学生之间的互补作用有机地结合起来,提高了课堂效率。

四、实际应用

学生推导出三角形面积计算公式后,我便出示一道同课本例题相仿的尝试题:一条红领巾的底是100厘米,高是32厘米,它的面积是多少?让学生独立解答,分别叫好、中、差三类学生板演,我进行巡堂检查,了解信息反馈,去发现所估计出现的两种情况:(1)100×32÷2=1600平方厘米;(2)100×32=3200平方厘米,并按反馈信息组织学生讨论和讲解,强调应用三角形面积计算公式时把底和高相乘后不要忘记除以2,否则会计算了长方形或平行四边形的面积,以确保学生系统地掌握知识。

五、巩固练习

练习是学生掌握知识,形成技能的必要途径,是检查教学目标落实情况的重要手段。为了提高练习的效率,我合理地设计了三道练习题。

第1题:计算下列图形的面积。这是课本77页做一做的题目,属单一性练习,用于巩固新知识。

第2题:平行四边形的面积12平方厘米,求涂色的三角形的面积。

这是课本78页练习十八的题目,属综合性练习,既复习了三角形面积公式与平行四边形面积公式的关系,又进一步巩固三角形面积计算,防止学生照样画葫芦。

第3题:计算少先队中队旗的面积,看谁的解法最简便?这题属创造性练习题,既能激发学生学习兴趣,又能促进学生的散发思维。

六、课堂总结

总结是课堂教学的重要环节,可以使学生更进一步明确具体的教学任务,抓住要点内容,形成系统的知识。我让学生联系本课初提出的学生目标,总结本课所学内容,得出:(1)三角形面积计算公式是底×高÷2;(2)三角形的底和高决定以后,三角形的面积也就决定了;(3)计算时把底和高相乘后不要忘记除以2。这样,通过疏理、归纳,起到画龙点睛的作用,使整节课的安排善始善终。

三角形的面积课件教案(篇4)

教学内容:

《现代小学数学》第九册第31~35页,三角形面积的计算。

教学目标:

一、了解三角形面积计算公式的推导过程,掌握求三角形面积的计算方法。

二、能运用三角形面积计算公式进行有关的计算。

三、渗透对立统一的辩证思想。

教学过程:

一、复习引入。

1.准备练习:你会计算这些图形的面积吗?这些图形的面积在计算时,同哪些因素有关?

出示:

2.提问:图(4)是一个什么图形?你会计算它的面积吗?猜一猜,三角形的面积同哪些因素有关?

3.揭题:大家猜得究竟对不对,下面我们就一起来探求“三角形面积的计算”方法。(出示课题)

【设计意图:通过“猜”,引导学生从新旧知识的联系中,大胆地提出假设,为新课展开做好铺垫,同时激发学生急于想验证假设的认知欲望。】

二、新课展开。

(一)实践活动。

1.让学生拿出已准备好的如下一套图形。(同桌合作)

(1)测量各平行四边形(含长方形)的底和高,算出面积,并填入表格内。

(2)找出与平行四边形等底等高的三角形,将相应的编号填入表格内。

(3)分组讨论:

①各三角形的面积是多少?请填入表格内。

②三角形的面积怎样计算?

(4)汇报、交流,初步得出三角形面积计算方法。

【设计意图:通过实践活动,让学生自己研究问题、分析问题,初步得出三角形面积的计算方法,从而突出了学生的主体地位,既让学生主动参与知识的获取过程,又从找对应关系中,渗透了对应关系的教学。】

2.验证。

(1)拿出如右图的三角形,要求剪一刀或两刀,拼成一个与原三角形面积相等的平行四边形。

数学课堂教学参谋

(2)汇报、交流:学生有几种剪拼法,就交流几种。如:

6×4÷2 6×(4÷2)

=12(平方厘米) =12(平方厘米)

6×4÷2 6÷2×4

=12(平方厘米) =12(平方厘米)

【设计意图:通过验证,培养学生科学的态度,同时从启发学生应用不同的剪拼法中,培养学生的发散思维。】

(二)归纳、小结。

1.从上面的实践活动中,你能说出求三角形面积的计算公式吗?三角形的面积同哪些因素有关?证明“三角形面积=底×高÷2”。(板书:三角形面积=底×高÷2)

2.如果用s表示三角形的面积,a和h分别表示三角形的底和高,那么三角形的面积公式可以怎么写?(板书: s= ah÷2)

(三)应用。

例 一块三角形钢板,底是8米,高是2.5米,它的面积是多少?

学生试做后,反馈、评讲。

【设计意图:通过试做例题,让学生及时把发现的三角形面积计算方法应用于实践,同时起到及时巩固作用。】

三、巩固练习。

(一)基本练习。

1.口算出每个三角形的面积。

①底8米,高7米 ②底5分米,高12分米③a:4厘米,h:2.5厘米 ④a:20分米,h:5.4分米

2.课本35页第②题,看图填写答案。(每一格代表1平方厘米)

这些三角形的高都是____厘米,底都是____厘米。

这些三角形的面积都是:□×□÷2=□(平方厘米)。

3.先量一量,标出图形的长度后,再计算各三角形的面积。

【设计意图:通过三道基本练习,进一步促进全体学生掌握三角形面积的计算方法,尤其是第3道题,使学生进一步明确要求三角形面积,需要知道三角形的底和高。】

(二)分层练习。

a组学生:做选择题。

①求右图面积的算式是( )。

a.9×4÷2 b.15×4÷2

c.15×9÷2 d.15×4

②求右图面积的算式是( )。

a.5.2×3.5÷2

b.5.2×4.1÷2

c.4.1×3.5 d.4.1×3.5÷2

③求下图面积的算式是( )。

a.25×20 b.18×25

c.18×20 d.18×20÷2

b组学生:做课本第15页第

②题:在格子图上画面积都是12平方厘米的三角形(每一小格表示1平方厘米),并在表中分别填上所有三角形的底和高。(图、表见课本。略)

c组学生:先求出下面三个三角形abc、bcd、bce的面积。再比较一下,它们的面积相等吗?为什么?

【设计意图:通过分层练习,使 a、b、c三层的学生在数学思维、数学能力方面均有提高,以体现因材施教的原则。】

四、课堂小结。

这节课研究了哪些内容?三角形面积计算方法是什么,你是怎么研究出来的?

【设计意图:通过提问,不仅回顾了所学知识,而且总结了所研究的方法,真正体现出不仅要授之以“鱼”,更要导之以“渔”。】

五、布置作业。(略)

(此文获“第二届全国小学课堂教学征文大赛”一等奖)

三角形的面积课件教案(篇5)

教学内容:人教版义务教育课程标准实验教材小学数学五年级上册第84~85页。

教学目标:

1、经历三角形面积计算公式的探索过程,理解三角形的面积计算公式。

2、通过操作和对图形的观察、比较,发展学生的空间观念。使学生知道转化的思考方法在研究三角形的面积时的运用,培养学生的分析、综合、抽象、概括和运用转化方法解决实际问题的能力。

3、培养学生的创新意识和合作精神。

教学重点:三角形面积计算公式的推导过程

教学难点:在转化中发现内在联系及推导说理。

教、学具准备:多媒体课件,红领巾,学具(两个完全相同的锐角三角形、直角三角形、钝角三角形、任意三角形若干个)。工具(直尺、剪刀)。

设计思路:

本节课有以下几个特点:

1、利用远程教育资源,通过多媒体课件复习旧知,激发学生的学习兴趣。在复习旧知时,单凭教师枯燥的提问,很难调动学生的兴趣。教学一开始,我利用远程教育资源,恰当地运用多媒体课件,直观动态地将旧知识展示在学生面前,以感染学生,为学习新知识作好铺垫。

2、利用远程教育资源,通过多媒体课件突出重点,化解难点。本节课的重点是探索三角形面积计算公式的推导,如果只有教师的讲解、演示,很难使学生真正理解、掌握新知。因此,在教学中,我力求打破传统教学以传授知识为中心的弊端,精心设计以学生为主体的实践活动,充分利用远程教育资源,发挥多媒体的功能,通过“变色”、“闪烁”、“声音”等手段突出重点,解决难点,加深学生对新知识的理解,激活学生的创造思维,掌握学习方法,培养学生的学习能力。真正发挥学生的主体作用,体现新课程的理念。

教学过程

一、创境引新

1、同学们,你们还记得怎样计算平行四边形的面积吗?(点击课件)

这个公式是怎样推导出来的呢?

电脑动态演示割拼的转化过程。

形成板书:

转化 找关系 推导

学生看大屏幕,

口答:s=ah

学生口述平行四边形面积公式的推导过程。

2、老师这里有一样东西,你想知道吗?(出示红领巾)红领巾是什么形状的?要知道做这条红领巾需要用多大的布,该怎么办?

三角形的面积该怎样计算呢?这节课老师和大家一起研究、探索这个问题。(板书课题)

生可能会说:求出它的面积。

二、自主探索

合作交流1、谈话启思。

我们能不能利用前面学过的方法来探究三角形的面积呢?想一想,用任意两个三角形可以拼成什么图形,下面同学们利用桌上的学具拼一拼、摆一摆,看一看,能拼成什么图形?

2、操作探索。

(1)四人小组合作进行操作、探索。

(2)小组汇报、交流、展示。

学生可能会拼出以下图形:

(3)课件演示拼出的各种图形。

(4)设疑:

这些图形中哪些图形的面积你会计算?

通过操作,谁能告诉老师,什么样的两个三角形能拼成平行四边形?

你能不能很快的把两个完全相同的三角形拼成平行四边形。

老师有一种方法,能很快的将两个完全相同的三角形拼成平行四边形,想学吗?

电脑演示转化的动态过程。

(5)找关系。

师:拼成的平行四边形与原三角形有什么关系?

课件出示:

a.拼得的平行四边形的底与原三角形的底有什么关系?

b.拼得的平行四边形的高与原三角形的高有什么关系?

c.其中一个三角形的面积与拼得的平行四边形的面积有什么关系?

(6)汇报

在学生回答的基础上师用电脑演示。

(7)尝试推导说理。

师:根据你们的发现,你能推导出三角形的面积计算公式吗?

在学生的汇报中形成板书:

三角形的面积=平行四边形的面积÷2

底 × 高

= 底× 高÷2

师:如果用s表示面积,a、h分别表示三角形的底和高,用字母怎样表示公式?

完善板书:s=ah÷2

学生口答:长方形、平行四边形。

生:两个完全一样的三角形能拼成平行四边形。

学生操作,感到不是很容易。

学生观看转化过程。

尝试旋转、平移的方法。

小组讨论交流。

小组派代表发言。

学生讨论后回答,并说说自己是怎样推导的?

学生发言。

学生齐说:s=ah÷2

3、探究用一个三角形进行割补转化推导。

师:我们在推导平行四边形的面积公式时,运用了割补法,你能不能运用割补法将一个三角形转化成平行四边形?

师:下面我们来观察电脑上是怎样操作的?(点击课件)

师:同学们若有兴趣,课后可以继续探索不同的割补方法。

小组合作探究,

汇报交流。

学生观看运用割补法将一个三角形转化成平行四边形过程。

三、实践应用

拓展提高

1、(出示红领巾)这下你会计算这条红领巾的面积吗?计算它的面积要知道什么条件?

你能估计一下它的底有多长吗?(课件出示红领巾)

一条红领巾的面积是多少平方厘米?

2、看图计算面积。

3、你认识这些道路交通标志吗?谁来说说。

(课件出示)

师:我们学校处在交通繁忙的三*路口,车辆较多。为了同学们的安全,交警叔叔想用铁皮做这样两个标志牌,(点击课件)

你来帮他们算算需要多少铁皮?

4、判断。

(1)、一个三角形的底和高是4厘米,它的面积就是16平方厘米。()

(2)、等底等高的两个三角形,面积一定相等。()

(3)、两个三角形一定可以拼成一个平行四边形。()

(4)、三角形的底是3分米,高是20厘米,它的面积是30平方厘米。()

5、课下请同学们找一个三角形的实物进行测量,计算出它的面积。

学生估计底的长度。

学生独立完成,一人板演。做完后集体订正。

学生口述列式。

通过图3知道要用对应的底和高计算面积。

学生说说自己认识交通标志。

学生独立完成,然后交流。可能出现下面两种方法。

方法一:s=ah÷2

=7.8×9÷2

=35.1

35.1×2=70.2(平方分米)

方法二:s=ah

=7.8×9

=70.2(平方分米)

学生判断,并说明理由。

四、评价体验

通过这节课的学习,你一定有话想对同学们说,你最想说什么?(点击课件)

学生之间互相评价。

教学反思:

1、利用远程教育资源,创设教学情景。

利用远程教育资源,创设情景,能生动直观地将教学信息再现于学生的感官。教学情景创设的好,能调动学生的好奇心,又能为学生提供生动逼真、丰富多彩的教学资源,为学生营造一个色彩缤纷,声像同步,能动能静的教学情景,提高学生的学习兴趣,能做到事半功倍的效果。三角形的面积计算是在完全认识了三角形的特征及掌握了长方形、正方形、平行四边形面积计算的基础上学习的,其推导方法与平行四边形面积计算公式的推导方法有相似之处。因此,我利用远程教育资源网搜索并下载有关平行四边形面积公式的课件,通过多媒体展示给学生。这样即吸引了学生的注意力,又激发了学生探索新知识的欲望,同时又使学生明确了探索目标与方向。

2、利用远程教育资源,引导学生自主探索,参与知识的形成过程。

数学知识只有通过学生亲身主动的参与,自主探索,才能转化为学生自己的知识。本节课,在探索新知的过程中,我让学生利用学具,以小组合作的形式,通过拼一拼、一摆、移一移等方法将两个三角形拼成各种图形。在此基础上,让学生发现只有两个完全相同的三角形才能拼成平行四边形,但学生不会用旋转、拼移的方法。这时,我恰当的运用多媒体课件动画演示,将两个完全相同三角形通过旋转、平移,能很快的拼成一个平行四边形,这样非常直观形象的展示转化过程,学生在好奇的氛围中掌握旋转、平移的方法。渗透了转化的数学思想。并再次观看多媒体课件,发现拼成的平行四边形与原三角形的内在联系,从而推导出三角形的面积计算公式。有效的突破教学难点,帮助学生深刻理解新知识,达到了事半功倍的效果提高教学效率。

割补法是学习几何知识很重要的方法。在推导平行四边行面积计算公式时,学生已初步掌握了割补法。本节课中,当学生用旋转、平移的方法推导出三角形的面积公式后,我又设计让学生运用割补法,将一个三角形转化成平行四边形,来推导三角形的面积公式。这一环节由于学生的能力和知识水平有限,对于割补法有一定的困难,因此,我充分运用多媒体课件动画,直观地展现几种割补方法,以拓展学生的思维能力,提高学生的推理能力。

3、利用远程教育资源,提高学生应用新知识的能力。

练习的设计除了注重趣味性和层次性外,更注重现实性。本节课的练习除了围绕重点设计基本练习巩固新知识外,还设计了培养学生创新意识及实践能力的练习题。为了节约教学时间,调动学生学习的积极性,运用多媒体课件展示练习题是必不可少的。因此我设计了让学生认识道路交通警示标志,并计算两块相同标志牌面积的课件,学生在练习过程中,既发散了学生的思维,又对学生进行了交通安全教育。

总之,利用远程教育资源,,对学生主体性发展、思维能力的培养具有独特的优势,教学中教师适时运用多媒体辅助教学,创设丰富的情景,调动学生多种感官参与教学过程,发挥了最佳的教学效应,从而激励学生去探索、去发现、去创造。

相关推荐

  • 相似三角形课件教案(汇总9篇) 古人云,工欲善其事,必先利其器。幼儿园的老师都想教学工作能使小朋友们学到知识,因此,老师会在授课前准备好教案,有了教案上课才能够为同学讲更多的,更全面的知识。怎么才能让幼儿园教案写的更加全面呢?在这里,你不妨读读相似三角形课件教案,欢迎阅读,希望你能阅读并收藏。各位老师:早上好今天我说课的内容是《相...
    2023-04-17 阅读全文
  • 三角形课件 每位教师都要为每一节课准备详尽的教案和课件,努力将它们设计得更加优美完善。教案不仅是衡量学习成果和提高教学效果的重要工具,也是教师们必备的必须物品。因此,希望我们的“三角形课件”能够满足您的需求,也欢迎你的阅读和分享,希望你能喜爱我们的作品!...
    2023-06-05 阅读全文
  • 解三角形课件 前辈告诉我们,做事之前提前下功夫是成功的一部分。在幼儿教育工作中,我们都有会准备一写需要用到资料。资料意义广泛,可以指一些参考素材。资料可以帮助我们更高效地完成各项工作。所以,您有没有了解过幼师资料的种类呢?为此,你可能需要看看“解三角形课件”,欢迎大家参考阅读。一、本节课的内容是四年级下册第五单元...
    2023-12-06 阅读全文
  • 三角形的分类课件教案6篇 幼儿教师教育网小编搜集与处理,为您奉上三角形的分类课件教案,相信能给您带来很大帮助。在教师的工作中,写教案课件是一个重要的部分,因此每位老师都会精心规划每份教案课件的重点难点。经过精心编制的教学教案,教师能够更好地指导学生的学习。...
    2023-05-11 阅读全文
  • 三角形全等课件 常言道,优秀的人都是有自己的事先计划。幼儿园教师在平时的学习工作中,都会提前准备很多资料。资料的定义比较广,可以指生活学习资料。参考资料可以促进我们的学习工作效率的提升。那么,你知道幼师资料的主要内容是什么吗?下面是小编帮大家整理的三角形全等课件,希望能为你提供更多的参考。教材内容分析:本节课内容是...
    2023-06-22 阅读全文

古人云,工欲善其事,必先利其器。幼儿园的老师都想教学工作能使小朋友们学到知识,因此,老师会在授课前准备好教案,有了教案上课才能够为同学讲更多的,更全面的知识。怎么才能让幼儿园教案写的更加全面呢?在这里,你不妨读读相似三角形课件教案,欢迎阅读,希望你能阅读并收藏。各位老师:早上好今天我说课的内容是《相...

2023-04-17 阅读全文

每位教师都要为每一节课准备详尽的教案和课件,努力将它们设计得更加优美完善。教案不仅是衡量学习成果和提高教学效果的重要工具,也是教师们必备的必须物品。因此,希望我们的“三角形课件”能够满足您的需求,也欢迎你的阅读和分享,希望你能喜爱我们的作品!...

2023-06-05 阅读全文

前辈告诉我们,做事之前提前下功夫是成功的一部分。在幼儿教育工作中,我们都有会准备一写需要用到资料。资料意义广泛,可以指一些参考素材。资料可以帮助我们更高效地完成各项工作。所以,您有没有了解过幼师资料的种类呢?为此,你可能需要看看“解三角形课件”,欢迎大家参考阅读。一、本节课的内容是四年级下册第五单元...

2023-12-06 阅读全文

幼儿教师教育网小编搜集与处理,为您奉上三角形的分类课件教案,相信能给您带来很大帮助。在教师的工作中,写教案课件是一个重要的部分,因此每位老师都会精心规划每份教案课件的重点难点。经过精心编制的教学教案,教师能够更好地指导学生的学习。...

2023-05-11 阅读全文

常言道,优秀的人都是有自己的事先计划。幼儿园教师在平时的学习工作中,都会提前准备很多资料。资料的定义比较广,可以指生活学习资料。参考资料可以促进我们的学习工作效率的提升。那么,你知道幼师资料的主要内容是什么吗?下面是小编帮大家整理的三角形全等课件,希望能为你提供更多的参考。教材内容分析:本节课内容是...

2023-06-22 阅读全文
Baidu
map