幼儿教师教育网,为您提供优质的幼儿相关资讯

数列的课件教案

发布时间:2023-03-17 数列课件教案

数列的课件教案集锦。

作为老师的任务写教案课件是少不了的,认真规划好自己教案课件是每个老师每天都要做的事情。老师在上课时会按照教案课件来实施。幼儿教师教育网编辑收集并整理了“数列的课件教案”,相信你能找到对自己有用的内容!

数列的课件教案【篇1】

教学目标:

知识技能

(1)通过观察、猜测、操作等活动,找出最简单的事物的排列数。

(2)经历探索简单事物排列的过程。

(3)培养学生有序、全面思考问题的意识,感受教学与生活的紧密联系。

过程与方法

经历观察、比较、自主合作探究等活动,讨论事物排列的规律。

情感态度与价值观

让学生感受数学与生活的紧密联系,培养学生学习数学的兴趣和用数学解决问题的意识。

教学重、难点:

重点:探索简单事物的排列规律。

难点:掌握排列不重复不漏掉的方法。

教法与学法:

教法:谈话法。

学法:小组研讨法。

教学准备:

每组三张数字卡片、课件。

教学过程:

一、创设情境,激发兴趣

(课件出示智慧城堡)这节课我们将在智慧城堡里学习,这是为爱动脑筋的、有智慧的小朋友准备的,你爱动脑筋吗?

二、动手操作,探索新知

(1)初步感知排列。

(课件出现一把锁)这是一把密码锁,密码是1和2组成的两们数。用1和2能组成几个两位数呢?

指名学生回答。

密码正确,我们进去吧!欢迎同学们进入智慧城堡!走,我们先去哪好呢?

(2)自主探究。

在游乐园里玩是需要游戏卡的,每个游戏都有一张对应的游戏卡,想知道怎样才能取得游戏卡吗?

(课件出示:在数字卡片1、2、3中拿其中两张,组成一个两位数。)同学们大声地读一遍。

请同学们摆卡片。

(3)汇报结果。

谁愿意告诉大家你摆了几个两位数?

指名回答。

合作探究排列。

①合作讨论。

不重复,不漏掉。

②观察、比较、分析。

③总结规律。

三、联系生活,应用拓展

(1)3名学生在智慧乐准备合影留念,3名同学坐成一排合影,有几种坐法?(学生操作)

学生展出回答。

(2)有3本书,分别是《儿童文学》《数学趣题》《自然奥秘》,送给小丽、小清和小红各一本,一共有多少种送法?

(指名学生说一两个)

还有吗?看来有很多种送法,究竟一共有多少种送法呢?拿出学习卡,把你的想法摆出来。

四、课堂小结

这节课有趣吗?说说你学会了什么。

板书设计

排列

用1、2、3三张数字卡片可以组成6个两位数。

方法一:方法二:方法三:

121212

231321

132113

212331

313123

323232

与顺序有关,有序思考

课后反思

本节课我运用了分组合作、共同探究的学习模式,让学生互相交流,互相沟通。比如“1、2、3这三个数字可以组成多少个两位数”,不是学生一眼就能看出的,一下子就想明白的,它需要认真观察、思考。因此我要求学生独立思考、独立完成,小组合作交流后选择最佳方案汇报。这就给学生留出了自己动脑思考的空间,再通过小组交流获得自我表现的机会,实现了信息在群体中多向交流。

同时我也考虑:在本节课中,很多同学表现非常出色,对这部分学生该怎么处理?在孩子起点高时是否可以让学生通过这节课的学习学会对事物进行整合分类?对于有的同学能用简单符号代替实物的又是否可以要求他们进一步深化理解?这些都是在课堂上没有深入研究的。

数列的课件教案【篇2】

学习内容:二年级下册第116页例2

学习目标:

1、通过一系列的活动,使学生发现数的排列规律,认识新的数列即等差数列。

2、培养学生的观察、归纳及推理能力,激发学习兴趣和探索欲望。

学习重点、难点:认识并发现等差数列的规律,能初步运用规律。

教具准备:课件

预设流程:

一、课前轻松,请同学们互相猜谜语

师:大家情绪这么活跃,能不能课堂上也这样。我发现同学们,特别喜欢猜,这节课就让同学们玩一玩,猜一猜,好不好?

二、谈话导入

师:今天我们班还来了一位数学王国的小朋友,猜,他是谁?(课件出示明明)明明觉的大家很聪明,想和大家来猜谜,你们愿意吗?(愿意)

明明带来了一堆小气球,第一组他挂出了一格。(课件出示)第二组他会挂出几个小旗子呢?你能猜出来吗?

三、初步探索

1、小组讨论,猜测明明第2组会挂出几个小气球子。

2、汇报:可能有以下几种情况:

第二组挂出2个小气球

第二组挂出3个小气球

第二组挂出10个小气球

3、揭示谜底

师:我们来看看明明是怎样想的吧。(课件出示)是几个小气球?(2面)

谁猜中了举一下手。其他同学虽然你们和明明的想法不一样,但是都很好,很有想法。

仔细看图,你还能发现什么?(第2组比第1组多出1个小气球。)

大家愿不愿意继续来猜猜明明是怎样想的?我们来听听明明是怎样说的吧。课件出示。(画外音:我想让小旗子有规律的摆放)

四、深入探讨

1、师明确要求:老师来提一个要求,请同学这次继续想出下面3组气球的摆放,如果同学们想和明明想的一样的几率大一些,可以多想几种情况。先自己利用小旗子代替学具摆一摆。

2、4人小组,讨论交流,并把想法画在纸上(播放音乐)。

3、汇报:(明确先说一说,每组摆了多少个小气球,再说一说有什么摆放规律)

(1)第一种12345(课堂上生是指着所画小气球来说的)

规律:每次都比上一次多一面。

师在纸上画出来,每组都比上一组多出一面。问:大家看明白了吗?是有规律的吗?谁和他们组想法一样?

(2)第二种12121

生说出每组小旗的摆放数量,让大家共同找出其中的规律。

师:谁和他们组想法一样请举手。

(3)第三种124711

生说完之后,师:这么多的小气球,大家能数的过来吗,你有更好的方法表示吗?

生在黑板用数字上记录,横着记录。

124711

+1+2+3+4

师引导生继续发现1234都相差1。

明确再继续汇报时,一人指着图说,一人在黑板上写。

第四种:1251017(板书)

第五种124816(板书)

4、汇报后,揭示谜底

师:我们来看看明明是怎样想的吧.

课件出示,先出示第3组,再出示4,5组。

请一个学生说一说明明是按着怎样的规律去想的。

师:谁和明明的想法一样,举一下手,你们真棒。如果明明能像大家一样再添上黑板上的表示方法,我想大家能看的更清楚,对吗?

五、揭示课题

师:同学们的想法真是又多又好。

真善于动脑筋!这节课我们探索的就是事物中存在的一些简单的数量规律。板书:找规律

六、巩固练习

1、师:刚才有的同学猜的小气球的摆放是这样的

出示1101001000

最后一组,应是多少?(生齐答10000)师:为什么?

提示:数量上是怎样有规律的变化的?几个1变成了10,几个10变成100

指明答后,师总结:也就是说,每次增加10倍,就变成了下一个数。

2、师:老师也摆出了几组小气球,课件出示

24814224458

师:你能不摆出图片,就猜出老师空中所要摆的数字是几吗?规律是什么,想好后,可以像黑板上的样子,写出来。

指明订正,出示正确答案。让学生说一说,还有什么发现。(即增加数字都相差5)

3、师:明明从同学们的讨论中也得到了许多知识,现在他想带同学们到森林中走一走,坐一坐运动,你们想去吗?(想)不过,要去森林王国必须要闯过三关,你们能闯过去吗?(能)

第一关27173252

第二关100907040

第三关139

每一关都让学生说一说答案,以及找出的规律。

师:同学们,你们真棒,三关都闯过了,我们就一起随着明明到达森林里去吧。

播放课件(让学生欣赏一段大森林里的动画美景。)

师:大森林里这样美,明明做起了运动。你知道他是怎样运动的吗?

出示练习十二第四、五题,学生完成。

七、拓展练习

师:聪聪看大家玩的这样高兴,也来了。他给大家带来了一个拼摆游戏。

课件出示,练习十二思考题。

第四组该是几个圆片,是多少,应该怎样放呢?愿不愿意和聪聪一起想一想,分成4人小组,利用学具代替圆片,摆一摆想一想。

八、小结

师:通过这节课的学习,我发现同学们有着丰富的想象和推理。在我们生活中到处都存在着规律,希望同学们做个有心人,不断的来发现它,创造它,丰富它,好不好?

数列的课件教案【篇3】

教学目标:

1.知识与技能目标:理解等差数列的概念,了解等差数列的通项公式的推导过程及思想,掌握并会用等差数列的通项公式,初步引入“数学建模”的思想方法并能运用。

2.过程与方法目标:培养学生观察分析、猜想归纳、应用公式的能力;在领会函数与数列关系的前提下,渗透函数、方程的思想。

3.情感态度与价值观目标:通过对等差数列的研究培养学生主动探索、勇于发现的求知的精神;养成细心观察、认真分析、善于总结的良好思维习惯。

教学重点:

等差数列的概念及通项公式。

教学难点:

(1)理解等差数列“等差”的特点及通项公式的含义。

(2)等差数列的通项公式的推导过程及应用。

教具:多媒体、实物投影仪

教学过程:

一、复习引入:

1.回忆上一节课学习数列的定义,请举出一个具体的例子。表示数列有哪几种方法——列举法、通项公式、递推公式。我们这节课接着学习一类特殊的数列——等差数列。

2.由生活中具体的数列实例引入

(1).国际奥运会早期,撑杆跳高的记录近似的由下表给出:

你能看出这4次撑杆条跳世界记录组成的数列,它的各项之间有什么关系吗?

(2)某剧场前10排的座位数分别是:

48、46、44、42、40、38、36、34、32、30

引导学生观察:数列①、②有何规律?

引导学生发现这些数字相邻两个数字的差总是一个常数,数列①先左到右相差0.2,数列②从左到右相差-2。

二.新课探究,推导公式

1.等差数列的概念

如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列,这个常数叫做等差数列的公差,通常用字母d来表示。

强调以下几点:

① “从第二项起”满足条件;

②公差d一定是由后项减前项所得;

③每一项与它的前一项的差必须是同一个常数(强调“同一个常数” );

所以上面的2、3都是等差数列,他们的公差分别为0.20,-2。

在学生对等差数列有了直观认识的基础上,我将给出练习题,以巩固知识的学习。

[练习一]判断下列各组数列中哪些是等差数列,哪些不是?如果是,写出首项a1和公差d,如果不是,说明理由。

1.3,5,7,…… √ d=2

2.9,6,3,0,-3,…… √ d=-3

3. 0,0,0,0,0,0,…….; √ d=0

4. 1,2,3,2,3,4,……;×

5. 1,0,1,0,1,……×

在这个过程中我将采用边引导边提问的方法,以充分调动学生学习的积极性。

2.等差数列通项公式

如果等差数列{an}首项是a1,公差是d,那么根据等差数列的定义可得:

a2 - a1 =d即:a2 =a1 +d

a3 – a2 =d即:a3 =a2 +d = a1 +2d

a4 – a3 =d即:a4 =a3 +d = a1 +3d

……

猜想: a40 = a1 +39d

进而归纳出等差数列的通项公式:an=a1+(n-1)d

此时指出:这种求通项公式的办法叫不完全归纳法,这种导出公式的方法不够严密,为了培养学生严谨的学习态度,在这里向学生介绍另外一种求数列通项公式的办法------迭加法:

n=a1+(n-1)d

a2-a1=d

a3-a2=d

a4-a3 =d

……

an –a(n-1) =d

将这(n-1)个等式左右两边分别相加,就可以得到

an-a1=(n-1)d

即an=a1+(n-1)d (Ⅰ)

当n=1时,(Ⅰ)也成立,所以对一切n∈N﹡,上面的公式(Ⅰ)都成立,因此它就是等差数列{an}的通项公式。

三.应用举例

例1求等差数列,12,8,4,0,…的第10项;20项;第30项;

例2 -401是不是等差数列-5,-9,-13,…的项?如果是,是第几项?

四.反馈练习

1.P293练习A组第1题和第2题(要求学生在规定时间内做完上述题目,教师提问)。目的:使学生熟悉通项公式对学生进行基本技能训练。

五.归纳小结提炼精华

(由学生总结这节课的收获)

1.等差数列的概念及数学表达式.

强调关键字:从第二项开始它的每一项与前一项之差都等于同一常数

2.等差数列的通项公式an= a1+(n-1) d会知三求一

六.课后作业运用巩固

必做题:课本P284习题A组第3,4,5题

数列的课件教案【篇4】

一、教学内容分析

本节课是《普通高中课程标准实验教科书·数学5》(人教版)第二章数列第二节等差数列第一课时。

数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面,数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了“联想”、“类比”的思想方法。

二、学生学习情况分析

教学内容针对的是高二的学生,经过高中一年的学习,大部分学生知识经验已较为丰富,具备了较强的抽象思维能力和演绎推理能力,但也可能有一部分学生的基础较弱,所以在授课时要从具体的生活实例出发,使学生产生学习的兴趣,注重引导、启发学生的积极主动的去学习数学,从而促进思维能力的进一步提高。

三、设计思想

1.教法

⑴诱导思维法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性。

⑵分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性。

⑶讲练结合法:可以及时巩固所学内容,抓住重点,突破难点。2.学法

引导学生首先从四个现实问题(数数问题、女子举重奖项设置问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法。

用多种方法对等差数列的通项公式进行推导。

在引导分析时,留出“空白”,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。

四、教学目标

通过本节课的学习使学生能理解并掌握等差数列的概念,能用定义判断一个数列是否为等差数列,引导学生了解等差数列的通项公式的推导过程及思想,掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题;并在此过程中培养学生观察、分析、归纳、推理的能力,在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力。

五、教学重点与难点

重点:

①等差数列的概念。

②等差数列的通项公式的推导过程及应用。难点:

①理解等差数列“等差”的特点及通项公式的含义。②理解等差数列是一种函数模型。关键:

等差数列概念的理解及由此得到的“性质”的方法。

六、教学过程(略)

数列的课件教案【篇5】

各位老师你们好!

今天我要为大家讲的课题是:等差数列的前n项和

一、教材分析(说教材):

1、教材所处的地位和作用:《等差数列的前n项和》是高中数学人教版第一册第三章第三节内容在此之前学生已学习了集合、函数的概念、等差数列的概念、通项公式和它的一些性质等基础知识,这为过渡到本节的学习起着铺垫作用。

2、教育教学目标:

根据上述分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:

(1)知识目标:深刻理解等差数列求和公式的推导方法;熟记求和公式;能够应用求和公式并发现求和公式的函数本质;

(2)能力目标:通过教学初步培养学生分析问题,解决实际问题的能力;初步培养学生运用知识、探索知识间联系的能力。

(3)情感目标:通过对等差数列求和公式的认识使学生感受到现实生活中数据间存在的规律性,这种规律性体现数学美从而激发学生学习兴趣。

3、重点,难点以及确定依据:

教学重点是等差数列前项和公式的推导和应用,难点是公式推导的思路。推导过程的展示体现了人类解决问题的一般思路,即从特殊问题的解决中提炼一般方法,再试图运用这一方法解决一般情况,所以推导公式的过程中所蕴含的思想方法比公式本身更为重要.等差数列前项和公式有两种形式,应根据条件选择适当的形式进行计算;另外反用公式、变用公式、前项和公式与通项公式的综合运用体现了方程(组)思想.高斯算法表现了大数学家的智慧和巧思,对一般学生来说有很大难度,但大多数学生都听说过这个故事,所以难点在于一般等差数列求和的思路上。

二、教学策略(说教法)

1、教学手段:

应着重采用启发式的教学方法层层推进:

①本节内容分为两课时,一节为公式推导及简单应用,一节侧重于通项公式与前项和公式综合运用。

②前项和公式的推导,建议由具体问题引入,使学生体会问题源于生活。

③强调从特殊到一般,再从一般到特殊的思考方法与研究方法。

④补充等差数列前项和的最大值、最小值问题。

2、教学方法及其理论依据:

坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,采用学生参与程度高的学导式讨论教学法在学生看书,讨论的基础上,在老师启发引导下,运用问题解决式教法,师生交谈法,图像信号法,问答式,课堂讨论法在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情有效的开发各层次学生的潜在智能,力求使学生能在原有的基础上得到发展同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的知识和技能,在教学中积极培养学生学习兴趣和动机,明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力

三、学情分析:(说学法)

(1)学生特点分析:中学生心理学研究指出,高中阶段是(查同中学生心发展情况)抓住学生特点,积极采用形象生动,形式多样的教学方法和学生广泛的积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展生理上表少年好动,注意力易分散

(2)知识障碍上:学生原有的知识等差数列的性质许多学生出现遗忘,所以应全面系统的去讲述;并进行适当的复习。学生学习本节课的知识,关键是推导思路的获得学生不易理解,所以教学中深入浅出的分析

(3)动机和兴趣上:明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力

四、教学程序及设想:

1、新课引入(由实例得出本课新的知识点)

提出问题(播放媒体资料):一个堆放铅笔的V形架的最下面一层放一支铅笔,往上每一层都比它下面一层多放一支,最上面一层放100支。这个V形架上共放着多少支铅笔?(课件设计见课件展示或在黑板上画出简图)

问题就是(板书)

这是小学时就知道的一个故事,高斯的算法非常高明,回忆他是怎样算的。(由一名学生回答,再由学生讨论其高明之处)高斯算法的高明之处在于他发现这100个数可以分为50组,第一个数与最后一个数一组,第二个数与倒数第二个数一组,第三个数与倒数第三个数一组,…,每组数的和均相等,都等于101,50个101就等于5050了。高斯算法将加法问题转化为乘法运算,迅速准确得到了结果。

我们希望求一般的等差数列的和,高斯算法对我们有何启发?

2、讲解新课

1、公式推导(板书)

问题(幻灯片):设等差数列的首项为,公差为,由学生讨论,研究高斯算法对一般等差数列求和的指导意义。

思路一:运用基本量思想,将各项用和表示,得,有以下等式,问题是一共有多少个,似乎与的奇偶有关。这个思路似乎进行不下去了。

思路二:上面的等式其实就是个改写,为回避个数问题,做一,两式左右分别相加,得于是有:。这就是倒序相加法。

思路三:受思路二的启发,重新调整思路一,可得于是得到了两个公式(投影片):和。

2、公式记忆:公式中含有四个量,运用方程的思想,知三求一。 3。公式的应用例1。求和:(结果用表示)

评:解题的关键是数清项数,小结数项数的方法。

例2。等差数列中前多少项的和是9900?本题实质是反用公式,解一个关于的一元二次函数,注意得到的项数必须是正整数。

五、小结

1、推导等差数列前项和公式的思路;

2。公式的应用中的数学思想。

3。进一步提醒学生前n项和公式的函数本质

六、板书设计

七、布置作业

针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有余力的学生有所提高,(可分必做题,选做题,思考题)

数列的课件教案【篇6】

教学目标:

(1)理解等差数列的概念,掌握等差数列的通项公式;

(2)利用等差数列的通项公式能由a1,d,n,an“知三求一”,了解等差数列的通项公式的推导过程及思想;

(3)通过作等差数列的图像,进一步渗透数形结合思想、函数思想;通过等差数列的通项公式应用,渗透方程思想。

教学重、难点:等差数列的定义及等差数列的通项公式。

知识结构:一般数列定义通项公式法

递推公式法

等差数列表示法应用

图示法

性质列举法

教学过程:

(一)创设情境:

1.观察下列数列:

1,2,3,4,……;(军训时某排同学报数)①

10000,9000,8000,7000,……;(温州市房价平均每月每平方下跌的价位)②

2,2,2,2,……;(坐38路公交车的车费)③

问题:上述三个数列有什么共同特点?(学生会发现很多规律,如都是整数,再举几个非整数等差数列例子让学生观察)

规律:从第2项起,每一项与前一项的差都等于同一常数。

引出等差数列。

(二)新课讲解:

1.等差数列定义:

一般地,如果一个数列从第项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母表示。

问题:(a)能否用数学符号语言描述等差数列的定义?

用递推公式表示为或.

(b)例1:观察下列数列是否是等差数列:

(1)1,-1,1,-1,…

(2)1,2,4,6,8,10,…

意在强调定义中“同一个常数”

(c)例2:求上述三个数列的公差;公差d可取哪些值?d>0,d=0,d

(d有不同的分类,如按整数分数分类,再举几个等差数列的例子观察d的分类对数列的影

响)

说明:等差数列(通常可称为数列)的单调性:为递增数列,为常数列,为递减数列。

例3:求等差数列13,8,3,-2,…的第5项。第89项呢?

放手让学生利用各种方法求a89,从中找出合适的方法,如利用不完全归纳法或累加法,然

后引出求一般等差数列的通项公式。

2.等差数列的通项公式:已知等差数列的首项是,公差是,求.

(1)由递推公式利用用不完全归纳法得出

由等差数列的定义:,,,……

∴,,,……

所以,该等差数列的通项公式:.

(验证n=1时成立)。

这种由特殊到一般的推导方法,不能代替严格证明。要用数学归纳法证明的。

(2)累加法求等差数列的通项公式

让学生体验推导过程。(验证n=1时成立)

3.例题及练习:

应用等差数列的通项公式

追问:(1)-232是否为例3等差数列中的项?若是,是第几项?

(2)此数列中有多少项属于区间[-100,0]?

法一:求出a1,d,借助等差数列的通项公式求a20。

法二:求出d,a20=a5+15d=a12+8d

在例4基础上,启发学生猜想证明

练习:

梯子的最高一级宽31cm,最低一级宽119cm,中间还有3级,各级的宽度成等差数列,请计算中间各级的宽度。

观察图像特征。

思考:an是关于n的一次式,是数列{an}为等差数列的什么条件?

课后反思:这节课的重点是等差数列定义和通项公式概念的理解,而不是公式的应用,有些应试教育的味道。有时抢学生的回答,没有真正放手让学生的思维发展,学生活动太少,课堂氛围不好。学生对问题的反应出乎设计的意料时,应该顺着学生的思维发展。

数列的课件教案【篇7】

一、教材分析

1、教材的地位和作用:

《等差数列》是人教版新课标教材《数学》必修5第二章第二节的内容。数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面,数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。

2、教学目标

根据教学大纲的要求和学生的实际水平,确定了本次课的教学目标

a知识与技能:理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想;初步引入“数学建模”的思想方法并能运用。培养学生观察、分析、归纳、推理的能力;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。

b.过程与方法:在教学过程中我采用讨论式、启发式的方法使学生深刻的理解不完全归纳法。

c.情感态度与价值观:通过对等差数列的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。

3、教学重点和难点

重点:①等差数列的概念。

②等差数列的通项公式的推导过程及应用。

难点:①等差数列的通项公式的推导

②用数学思想解决实际问题

二、学情教法分析:

对于高一学生,知识经验已较为丰富,具备了一定的抽象思维能力和演绎推理能力,所以我本节课我采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。学生在初中时只是简单的接触过等差数列,具体的公式还不会用,因些在公式应用上加强学生的理解

三、学法分析:

在引导分析时,留出学生的思考空间,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。

四、教学过程

1.创设情景 提出问题

首先要学生回忆数列的有关概念,数列的两种方法——通项公式和递推公式

数列的课件教案【篇8】

一、教材分析

1、从在教材中的地位与作用来看

《等比数列的前n项和》是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养。

2、从学生认知角度看

从学生的思维特点看,很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导。不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q=1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错。

3、学情分析

教学对象是刚进入高中的学生,虽然具有一定的分析问题和解决问题的能力,逻辑思维能力也初步形成,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因此片面、不严谨。

4、重点、难点

教学重点:公式的推导、公式的特点和公式的运用。YjS21.coM

教学难点:公式的推导方法和公式的灵活运用。

公式推导所使用的"错位相减法"是高中数学数列求和方法中最常用的方法之一,它蕴含了重要的数学思想,所以既是重点也是难点。

二、目标分析

知识与技能目标:

理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础上能初步应用公式解决与之有关的问题。

过程与方法目标:

通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转

化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力。

情感与态度价值观:

通过对公式推导方法的探索与发现,优化学生的思维品质,渗透事物之间等价转化和理论联系实际的辩证唯物主义观点。

三、过程分析

学生是认知的主体,设计教学过程必须遵循学生的认知规律,尽可能地让学生去经历知识的形成与发展过程,结合本节课的特点,我设计了如下的教学过程:

1、创设情境,提出问题

在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,对他说:我可以满足你的任何要求。西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,第二格放2粒,第三格放4粒,往后每一格都是前一格的两倍,直至第64格。国王令宫廷数学家计算,结果出来后,国王大吃一惊。为什么呢?

设计意图:设计这个情境目的是在引入课题的同时激发学生的兴趣,调动学习的积极性。故事内容紧扣本节课的主题与重点。

此时我问:同学们,你们知道西萨要的是多少粒小麦吗?引导学生写出麦粒总数。带着这样的问题,学生会动手算了起来,他们想到用计算器依次算出各项的值,然后再求和。这时我对他们的这种思路给予肯定。

设计意图:在实际教学中,由于受课堂时间限制,教师舍不得花时间让学生去做所谓的"无用功",急急忙忙地抛出"错位相减法",这样做有悖学生的认知规律:求和就想到相加,这是合乎逻辑顺理成章的事,教师为什么不相加而马上相减呢?在整个教学关键处学生难以转过弯来,因而在教学中应舍得花时间营造知识形成过程的氛围,突破学生学习的障碍。同时,形成繁难的情境激起了学生的求知欲,迫使学生急于寻求解决问题的新方法,为后面的教学埋下伏笔、

2、师生互动,探究问题

在肯定他们的思路后,我接着问:1,2,22,.....,263是什么数列?有何特征?应归结为什么数学问题呢?

探讨1:,记为(1)式,注意观察每一项的特征,有何联系?(学生会发现,后一项都是前一项的2倍)

探讨2:如果我们把每一项都乘以2,就变成了它的后一项,(1)式两边同乘以2则有,记为(2)式。比较(1)(2)两式,你有什么发现?

设计意图:留出时间让学生充分地比较,等比数列前n项和的公式推导关键是变"加"为"减",在教师看来这是"天经地义"的,但在学生看来却是"不可思议"的,因此教学中应着力在这儿做文章,从而抓住培养学生的辩证思维能力的良好契机。

经过比较、研究,学生发现:(1)、(2)两式有许多相同的项,把两式相减,相同的项就消去了,得到:。老师指出:这就是错位相减法,并要求学生纵观全过程,反思:为什么(1)式两边要同乘以2呢?

设计意图:经过繁难的计算之苦后,突然发现上述解法,不禁惊呼:真是太简洁了!让学生在探索过程中,充分感受到成功的情感体验,从而增强学习数学的兴趣和学好数学的信心。

3、类比联想,解决问题

这时我再顺势引导学生将结论一般化,

这里,让学生自主完成,并喊一名学生上黑板,然后对个别学生进行指导。

设计意图:在教师的指导下,让学生从特殊到一般,从已知到未知,步步深入,让学生自己探究公式,从而体验到学习的愉快和成就感。

对不对?这里的q能不能等于1?等比数列中的公比能不能为1?q=1时是什么数列?此时sn=?(这里引导学生对q进行分类讨论,得出公式,同时为后面的例题教学打下基础。)

再次追问:结合等比数列的通项公式an=a1qn—1,如何把sn用a1、an、q表示出来?(引导学生得出公式的另一形式)

设计意图:通过反问精讲,一方面使学生加深对知识的认识,完善知识结构,另一方面使学生由简单地模仿和接受,变为对知识的主动认识,从而进一步提高分析、类比和综合的能力。这一环节非常重要,尽管时间有时比较少,甚至仅仅几句话,然而却有画龙点睛之妙用。

4、讨论交流,延伸拓展

在此基础上,我提出:探究等比数列前n项和公式,还有其它方法吗?我们知道,

那么我们能否利用这个关系而求出sn呢?根据等比数列的定义又有,能否联想到等比定理从而求出sn呢?

设计意图:以疑导思,激发学生的探索欲望,营造一个让学生主动观察、思考、讨论的氛围、以上两种方法都可以化归到,这其实就是关于的一个递推式,递推数列有非常重要的研究价值,是研究性学习和课外拓展的极佳资源,它源于课本,又高于课本,对学生的思维发展有促进作用、

5、变式训练,深化认识

首先,学生独立思考,自主解题,再请学生上台来幻灯演示他们的解答,其它同学进行评价,然后师生共同进行总结。

设计意图:采用变式教学设计题组,深化学生对公式的认识和理解,通过直接套用公式、变式运用公式、研究公式特点这三个层次的问题解决,促进学生新的数学认知结构的形成。通过以上形式,让全体学生都参与教学,以此培养学生的参与意识和竞争意识。

6、例题讲解,形成技能

设计意图:解题时,以学生分析为主,教师适时给予点拨,该题有意培养学生对含有参数的问题进行分类讨论的数学思想。

7、总结归纳,加深理解

以问题的形式出现,引导学生回顾公式、推导方法,鼓励学生积极回答,然后老师再从知识点及数学思想方法两方面总结。

设计意图:以此培养学生的口头表达能力,归纳概括能力。

8、故事结束,首尾呼应

最后我们回到故事中的问题,我们可以计算出国王奖赏的小麦约为1、84×1019粒,大约7000亿吨,用这么多小麦能从地球到太阳铺设一条宽10米、厚8米的大道,大约是全世界一年粮食产量的459倍,显然国王兑现不了他的承诺。

设计意图:把引入课题时的悬念给予释疑,有助于学生克服疲倦、继续积极思维。

9、课后作业,分层练习

必做:P129练习1、2、3、4

选作:

(2)"远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?"这首中国古诗的答案是多少?

设计意图:出选作题的目的是注意分层教学和因材施教,让学有余力的学生有思考的空间。

四、教法分析

对公式的教学,要使学生掌握与理解公式的来龙去脉,掌握公式的推导方法,理解公式的成立条件,充分体现公式之间的联系。在教学中,我采用"问题――探究"的教学模式,把整个课堂分为呈现问题、探索规律、总结规律、应用规律四个阶段。

利用多媒体辅助教学,直观地反映了教学内容,使学生思维活动得以充分展开,从而优化了教学过程,大大提高了课堂教学效率。

五、评价分析

本节课通过三种推导方法的研究,使学生从不同的思维角度掌握了等比数列前n项和公式。错位相减:变加为减,等价转化;递推思想:纵横联系,揭示本质;等比定理:回归定义,自然朴实。学生从中深刻地领会到推导过程中所蕴含的数学思想,培养了学生思维的深刻性、敏锐性、广阔性、批判性。同时通过精讲一题,发散一串的变式教学,使学生既巩固了知识,又形成了技能。在此基础上,通过民主和谐的课堂氛围,培养了学生自主学习、合作交流的学习习惯,也培养了学生勇于探索、不断创新的思维品质。

数列的课件教案【篇9】

教学准备

教学目标

知识目标:使学生掌握等比数列的定义及通项公式,发现等比数列的一些简单性质,并能运用定义及通项公式解决一些实际问题。

能力目标:培养运用归纳类比的方法发现问题并解决问题的能力及运用方程的思想的计算能力。

德育目标:培养积极动脑的学习作风,在数学观念上增强应用意识,在个性品质上培养学习兴趣。

教学重难点

本节的重点是等比数列的定义、通项公式及其简单应用,其解决办法是归纳、类比。

本节难点是对等比数列定义及通项公式的深刻理解,突破难点的关键在于紧扣定义,另外,灵活应用定义、公式、性质解决一些相关问题也是一个难点。

教学过程

二、教法与学法分析

为了突出重点、突破难点,本节课主要采用观察、分析、类比、归纳的方法,让学生参与学习,将学生置于主体位置,发挥学生的主观能动性,将知识的形成过程转化为学生亲自探索类比归纳的过程,使学生获得发现的成就感。在这个过程中,力求把握好以下几点:

①通过实例,让学生发现规律。让学生在问题情景中,经历知识的形成和发展,力求使学生学会用类比的思想去看待问题。②营造民主的教学氛围,把握好师生的情感交流,使学生参与教学全过程,让学生唱主角,老师任导演。③力求反馈的全面性、及时性。通过精心设计的提问,让学生思维动起来,针对学生回答的问题,老师进行适当的调控。④给学生思考的时间和空间,不急于把结果抛给学生,让学生自己去观察、分析、类比得出结果,老师点评,逐步养成科学严谨的学习态度,提高学生的推理能力。⑤以启迪思维为核心,启发有度,留有余地,导而弗牵,牵而弗达。这样做增加了学生的参与机会,增强学生的参与意识,教给学生获取知识的途径和思考问题的方法,使学生真正成为教学的主体,使学生学会学习,提高学生学习的兴趣和能力。

三、教学程序设计

(4)等差中项:如果a 、 A 、 b成等差数列,那么A叫做a与b的等差中项。

说明:通过复习等差数列的相关知识,类比学习本节课的内容,用熟知的等差数列内容来分散本节课的难点。

2.导入新课

本章引言中关于在国际象棋棋盘各格子里放麦粒的问题中,各个格子的麦粒数依次是:

1 , 2 , 4 , 8 , … , 263

再来看两个数列:

5 , 25 ,125 , 625 , ...

···

说明:引导学生通过“观察、分析、归纳”,类比等差数列的定义得出等比数列的定义,为进一步理解定义,给出下面的问题:

判定以下数列是否为等比数列,若是写出公比q,若不是,说出理由,然后回答下面问题。

-1 , -2 , -4 , -8 …

-1 , 2 , -4 , 8 …

-1 , -1 , -1 , -1 …

1 , 0 , 1 , 0 …

提出问题:(1)公比q能否为零?为什么?首项a1呢?

(2)公比q=1时是什么数列?

(3)q>0是递增数列吗?q

说明:通过师生问答,充分调动学生学习的主动性及学习热情,活跃课堂气氛,同时培养学生的口头表达能力和临场应变能力。另外通过趣味性的问题,来提高学生的学习兴趣。激发学生发现等比数列的定义及其通项公式的强烈欲望。

3.尝试推导通项公式

让学生回顾等差数列通项公式的推导过程,引导推出等比数列的通项公式。

推导方法:叠乘法。

说明:学生从方法一中学会从特殊到一般的方法,并从次数中去发现规律,以培养学生的观察能力;另外回忆等差数列的特点,并类比到等比数列中来,培养学生的类比能力及将新知识转化到旧知识的能力。方法二是让学生掌握“叠乘”的思路。

4.探索等比数列的图像

等差数列的图像可以看成是直线上一群孤立的点构成的,观察等比数列的通项公式,你能得出什么结果?它的图像如何?

变式2.等比数列{an}中,a2 = 2 , a9 = 32 , 求q.

(学生自己动手解答。)

说明:例1的目的是让学生熟悉公式并应用于实际,例2及变式是让学生明白,公式中a1 ,q,n,an四个量中,知道任意三个即可求另一个。并从这些题中掌握等比数列运算中常规的消元方法。

6.探索等比数列的性质

类比等差数列的性质,猜测等比数列的性质,然后引导推证。

7.性质应用

例3.在等比数列{an}中,a5 = 2 , a10 = 10 , 求a15

(让学生自己动手,寻求多种解题方法。)

方法一:由题意列方程组解得

方法二:利用性质2

方法三:利用性质3

例4(见教材例3)已知数列{an}、{bn}是项数相同的等比数列,求证:{an·bn}是等比数列。

8.小结

为了让学生将获得的知识进一步条理化,系统化,同时培养学生的归纳总结能力及练习后进行再认识的能力,教师引导学生对本节课进行总结。

1、等比数列的定义,怎样判断一个数列是否是等比数列

2、等比数列的通项公式,每个字母代表的含义。

3、等比数列应注意那些问题(a1≠0,q≠0)

4、等比数列的图像

5、通项公式的应用 (知三求一)

6、等比数列的性质

7、等比数列的概念(注意两点①同号两数才有等比中项

②等比中项有两个,他们互为相反数)

8、本节课采用的主要思想

——类比思想

9.布置作业

习题3.4 1②、④ 3. 8. 9.

10.板书设计

数列的课件教案【篇10】

一、教材分析:

等比数列的前n项和是高中数学必修五第二章第3、3节的内容。它是“等差数列的前n项和”与“等比数列”内容的延续。这部分内容授课时间2课时,本节课作为第一课时,重在研究等比数列的前n项和公式的推导及简单应用,教学中注重公式的形成推导过程并充分揭示公式的结构特征和内在联系。意在培养学生类比分析、分类讨论、归纳推理、演绎推理等数学思想。在高考中占有重要地位。

二、教学目标

根据上述教学内容的地位和作用,结合学生的认知水平和年龄特点,确定本节课的教学目标如下:

1、知识与技能:理解等比数列的前n项和公式的推导方法;掌握等比数列的前n项和公式并能运用公式解决一些简单问题。

2、过程与方法:通过公式的推导过程,提高学生的建模意识及探究问题、类比分析与解决问题的能力,培养学生从特殊到一般的思维方法,渗透方程思想、分类讨论思想及转化思想,优化思维品质。

3、情感与态度:通过自主探究,合作交流,激发学生的求知欲,体验探索的艰辛,体味成功的喜悦,感受思维的奇异美、结构的对称美、形式的简洁美、数学的严谨美。

三、教学重点和难点

重点:等比数列的前项和公式的推导及其简单应用。

难点:等比数列的前项和公式的推导。

重难点确定的依据:从教材体系来看,它为后继学习提供了知识基础,具有承上启下的作用;从知识本身特点来看,等比数列前n项和公式的推导方法和等差数列的的前n项和公式的推导方法可比性低,无法用类比的方法进行,它需要对等比数列的概念和性质能充分理解并融会贯通;从学生认知水平来看,学生的探究能力和用数学语言交流的能力还有待提高。

四、教法学法分析

通过创设问题情境,组织学生讨论,让学生在尝试探索中不断地发现问题,以激发学生的求知欲,并在过程中获得自信心和成功感。强调知识的严谨性的同时重知识的形成过程,

五、教学过程

(一)创设情境,引入新知

从故事入手:传说,波斯国王下令要奖赏国际象棋的发明者,发明者对国王说,在棋盘的第一格内放上一粒麦子,在第二格内放两粒麦子,第三格内放4粒,第四格内放8米,……按这样的规律放满64格棋盘格。结果是国王倾尽国家财力还不够支付。同学们,这几粒麦子,怎能会让国王赔上整个国家的财力?

关键就在于计算麦粒的总数。很明显,这是一个以1为首项,以2为公比的等比数列前64项和的问题,即如何计算1+2+22+……+263?

(二)师生讨论、探究新知

总结归纳:当q=1时,Sn=na1

当q≠1时,

公式说明:①对等比数列{an}而言,a1,an,Sn,n,q知三可求二②运用公式时要根据条件选取适当的公式,特别注意的是,在公比不知道的情况下要分类讨论;③错位相减的思想方法。

(三)例题讲解,形成技能

例1:等比数列{an}中,

①已知a1=-4,q=1/2,求S10 ②已知a1=1,an=243,q=3,求Sn

③已知a1=2,S3=26,求q。

通过例题一,渗透知三求二的思想。

练习:求等比数列1,-1/2,1/4,-1/8,…,-1/512的各项的和。

例2、等比数列{an}中,已知a1=3,S3=9,求q,an。

练习:等比数列{an}中,若S3=7/2,S6=63/2,求an、S9。

通过练习得出等比数列前项和的一个性质:成等比数列。

例3:(1)求数列1+1/2,2+1/4,3+1/8,… n+,…的前n项和。

首先由学生分析思路,观察出这组数列的特点,它既不是等差数列,也不是等比数列,而是等差加等比。归纳出这类数列求和的方法。

思考:求和:1+a+a2+a3+…+an

(四)课堂小结

以问题的形式出现,引导学生回顾公式、推导方法,鼓励学生积极回答,然后老师再从知识点及数学思想方法两方面总结。

『设计意图:以此培养学生的口头表达能力,归纳概括能力。』

六、板书设计

七、课后记

本节课的设计体现呢“以学生为主体,教师是课堂活动的组织者、引导者和参与者”的现代教育理念。在教学的每一个环节中军设计了问题,始终以教师提出问题,引导学生解决问题的方式进行,让课堂活动变得生动而愉悦。

数列的课件教案【篇11】

教学内容:

人教版小学数学教材六年级下册第107~108页例2及相关练习。

教学目标:

1.在学习过程中引导学生探索研究数与形之间的联系,寻找规律,发现规律,学会利用图形来解决一些有关数的问题。

2.让学生经历猜想与验证的过程,体会和掌握数形结合、归纳推理、极限等基本数学思想。

重点难点:

探索数与形之间的联系,寻找规律,并利用图形来解决有关数的问题。

教学准备:

教学课件。

教学过程:

一、直接导入,揭示课题

同学们,上节课我们探究了图形中隐藏的数的规律,今天我们继续研究有关数与图形之间的联系。(板书课题:数与形)

【设计意图】直奔主题,简洁明了,有利于学生清楚本节课学习的内容和方向。

二、探索发现,学习新知

(一)教师与学生比赛算题

1.教师:你知道等于多少吗?(学生:)

教师:那等于多少呢?(学生计算需要时间)教师紧接着说:我已经算好了,是,不信你算算。

2.只要按照这个分子是1,分母依次扩大2倍的规律写下去,不管有多少个分数相加,我都能立马算出结果。有的同学不相信是吗?咱们试试就知道。为了方便,我请我们班计算最快的同学跟我一起算,看看结果是否相同。谁来出题?

在学生出题后,老师都能立刻算出结果,并且是正确的,学生感到很惊奇。

3.知道我为什么算得那么快吗?因为我有一件神秘的法宝,你们也想知道吗?

【设计意图】一方面,教师通过与学生比赛计算速度,且每次老师胜利,使学生产生好奇心,再通过教师幽默的语言,吸引学生的注意力,激发学生的学习兴趣和求知欲。另一方面,为接下来学习例题做好铺垫。

(二)借助正方形探究计算方法

1.这件法宝就是(师边说边课件出示一个正方形),让我们来把它变一变,聪明的同学们一定能看明白是怎么回事了。

2.进行演示讲解。

(1)演示:用一个正方形表示“1”,先取它的一半就是正方形的(涂红),再剩下部分的一半就是正方形的(涂黄)。

想一想:正方形中表示的涂色部分与空白部分和整个正方形之间有什么关系呢?(涂色部分等于“1”减去空白部分)空白部分占正方形的几分之几?()那么涂色部分还可以怎么算呢?(),也就是说。

(2)继续演示,谁知道除了通分,还可以怎么算?

根据学生回答,板书。

(3)演示:那么计算就可以得到?()。

3.看到这儿,你发现什么规律了吗?

4.小结:按照这样的规律往下加,不管加到几分之一,只要用1减去这个几分之一就可以得到答案了。

5.这个法宝怎么样?谁来说说它好在哪里?你学会了吗?

6.尝试练习

【设计意图】将复杂的数量运算转化为简单的图形面积计算,转繁为简,转难为易,引导学生探索数与图形的联系,让学生体会到数形结合、归纳推理的数学思想方法。

(三)知识提升,探索发现

1.感受极限。

(1)刚才我们已经从一直加到了,如果我继续加,加到,得数等于?()再接着加,一直加到,得数等于?()随着不断继续加,你发现得数越来越?(大)无数个这样的数相加,和会是多少呢?

(2)这时候你心中有没有一个大胆的猜想?(学生猜想:这样一直加下去,得数会不会就等于1了。)

(3)想象一下,如果我们在刚才加的过程中在正方形上不断涂色,那空白部分的面积就越来越?(小)而涂色部分的面积越来越接近?(1)也就是求和的得数越来越接近?(1)最终得数是1吗?你有什么方法来证明得数就是1?

(学情预设:学生提出书本的圆形图和线段图,若没有学生提出,教师自己提出。)

2.利用线段图直观感受相加之和等于“1”。

(1)书本上有两幅图,我们一起来看看(课件出示)。一幅是圆形图,一幅是线段图,你能看懂它的意思吗?请你想一想,然后告诉大家你的想法。

(2)学生看书思考。

(3)全班交流,课件演示,得出结论:这些分数不断加下去,总和就是1。

【设计意图】利用数与形的结合,让学生直观体会极限数学思想,并让学生经历猜想得数等于“1”,到数形结合证明得数等于“1”的过程,激发学生学习兴趣,培养学生探索新知的精神。

3.课堂小结。

对于这种借用图形来帮助我们解决问题的方法,你有什么感受?

教师小结:是的,“数”与“形”有着紧密的联系,在一定条件下可以相互转化。当用数形结合的方法解决问题时,你会发现许多难题的解决变得很简单。

4.举一反三。

其实在以前的学习中,我们也常用到到数形结合的数学方法帮助我们解题,你能想到些例子吗?(如学生有困难,教师举例:一年级加法,分数的认识,复杂的路程问题线段图等。)

Yjs21.coM更多幼儿园教案延伸读

找质数课件教案(集锦6篇)


宜未雨绸而缪,毋临竭而掘井。幼儿园的老师都希望自己讲的课学生们爱听,能学习的更好,为了加强学习效率,我们一般会事先准备好教案,教案对教学过程进行预测和推演,从而更好地实现教学目标。所以你在写幼儿园教案时要注意些什么呢?小编花时间专门编辑了找质数课件教案(集锦6篇),欢迎你参考,希望对你有所助益!

找质数课件教案 篇1

1、使学生理解质数和合数的概念,能正确地判断一个数是质数还是合数。

2、培养学生观察、比较、抽象、慨括的能力。

3、知道100以内的质数,熟悉20以内的质数。

4、让学生在学习活动中体验到学习数学的乐趣,培养学习数学的兴趣。

理解质数、合数的含义,能正确快速地判断一个数是质数还是合数。

能运用一定的方法,从不同的角度判断、感悟质数与合数。

课前谈话:

给教室里的人分类。体会:同样的事物,依据不同的分类标准,可以有多种不同的分类方法。明确:分类的标准很重要。

一、复习旧知

给自然数分类。根据自然数是不是2的倍数,把自然数可以分成奇数和偶数两类。

说明:这是一种有价值的分类方法,在以后的学习中很有用。

问:想不想学一种新的分类方法?关于新的分类方法,你想知道些什么?

二、进行新课

今天我们就用找因数的方法来给自然数分类。

复习:什么叫因数?怎样找一个数所有的因数?

小组合作:找出列举的各数的所有的因数。

引导学生观察:观察以上各数所含的因数的个数,你能把它们分成几种情况‘!

根据学生的回答板书。

自然数

(因数的个数)

(只有两个因数)(有3个或3个以上的因数)

引导学生思考:只含有两个因数的`,这两个因数有什么特点?引出因数的概念。

明确合数的概念.提问:合数至少有几个因数?

想一想:1的因数有哪几个?它是质数吗?它是合数吗?

明确:这是一种新的分类方法。

猜一猜:质数有多少个?合数呢?

明确:因为自然数的个数是无限的,所以,质数和合数的个数也是无限的。

三、组织趣味游戏

20以内的同学请起立,我们比比看,谁的反应快。

(1)你的学号如果是20以内的质数,请你往前一步。

(2)请你们将20以内的质数,按照从小到大的顺序排列起来。

(3)你的学号如果20以内的合数,请你后退一步。

(4)(询问学号是1的同学)你为什么两次都没动?

四、动手操作,制质数表。(教学例1)

出示P14例题1,找出100以内的质数,做一个质数表。

(1)提问:如何很快的制作一张100以内的质数表?

(2)按质数的概念逐个判断?也可以用筛选法。

(3)介绍筛选法:先排除2以外的所有偶数,接着排除3以外的所有3的倍数,再接着排除5以外的所有5的倍数,最后排除7以外的7的倍数。因为1既不是质数,也不是合数,所以也必须排除。学生操作后,提问:剩下的都是什么数?

(4)学生在组内制作质数表。

(5)讲:判断一个数是不是质数,除了用质数的定义进行判断外,还可以查质数表,如100以内的质数表。

告诉学生:古代的数学家就是用这样的方法来找质数的。

小结方法:同学们运用“排除”的方法,筛选出了100以内的质数。

五、练习巩固

1、找出下面各数的因数的个数,指出哪些是质数哪些是合数,再用质数表检查。

22293549517983

学生独立完成。

问:你是怎么判断的?

明确:可以找出每个数所有的因数,再根据质数和合数的意义来判断;一个数,只有找到1和它本身以外的第三个约束,就能判断这个数是合数还是质数。不必找出所有的因数来,这样可以提高判断的效率。

说明:判断一个数是不是质数还可以查表。100以内的质数比较常用,看书本上的100以内的质数表。用质数表检查对例子1的判断是否正确。

完成课件上的练一练。

六、课堂总结,畅谈收获。

师:通过这节课的学习,你们有什么收获?

找质数课件教案 篇2

质数和合数,例1,例2

1.理解质数和合数的意义。

2.会用质数表判断一个大于1的自然数是质数还是合数,熟记20以内的全部质数。

3.知道1既不是质数,也不是合数。

4.知道自然数按因数的个数分类可以分为质数、合数和1.

1.掌握质数。合数的概念。

2.正确地判断一个数是质数还是合数。

一.复习旧知。

2. 找出1~20奇数,偶数。

1 3 5 7 9 11 13 15 17 19

2 4 6 8 10 12 14 16 18 20

3.分类:

师:自然数可以分为哪两类?是按照什么标准分的?(2的倍数分的)

二.探究新知。

a:1.导入课题:

师:自然数可以按照能被2整除分为奇数,偶数两类。

那么自然数还有没有其他的分法。今天这节课,我

们就一起来研究“质数与合数”(板书课题)

2.提问:

师:看了这一课题后,你们想通过这节课的`学习学会些什么内容呢?

归纳问题(板书)

1) 怎样的数叫质数,怎样的数叫合数?

2) 自然数除了质数、合数外还有哪一类?

3) 用什么 方法判断一个数是质数还是合数?

b.学习质数,合数。

1.写出1~20各数的因数。(课件出示,学生完成表格)

1的因数1 6 1,2,3,6, 11 1,11, 16 1,2,4,8,16,

2 1,2, 7 1,7, 12 1,2,3,4,6,12, 17, 1,17,

3 1,3, 8 1,2,4,8, 13 1,13, 18 1,2,3,6,9,18,

4 1,2,4, 9, 1,3,9, 14 1,2,7,14, 19 1,19

5 1,5, 10, 1,2,5,10, 15 1,3,5,10 20 1,2,4,5,10,20

引导学生看因数(边回答,边看)

2.观察思考

师:这些书的因数的个数一样多吗?(生:不一样)

师:你能把这些数按因数的个数进行分类吗?

学生讨论,分类 (分为哪几类)

3.学

生12报结果(表格,学生完成)

只有一个因数 只有1和它本身两个因数 有两个以上因数的

1 2,3,5,7,11,13 4.,6,8,10,12

17,19 14,15,16,18,20

4. 观察比较,发现特点。归纳概念

质(1)师:观察2.,3,5,7,11,13,17,19 这几个数的因数有什么

特点?(每个数的因数只有1和它本身二个)像这样数叫做质数?

生:一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。

(板书) (课件出示)

找质数课件教案 篇3

质数与合数是青岛版五年级上册107~~109页的内容,是在约数和倍数以及能被2、3、5整除的数的特征的基础上进行教学的。是求最大公约数、最小公倍数以及约分、通分的基础。因此这部分内容的教学不仅要使学生掌握质数、合数的概念,而且能较快地看出常见数是质数还是合数。

(一)质数、合数的意义。能正确判断一个数是质数还是合数

(二)质数、合数与奇数、偶数的区别。

使学生掌握质数与合数根本区别在于:质数,只有1和本身二个约数;合数,除了1和本身,还有其它约数。能否被2整除是区别奇数与偶数的标准。

多媒体课件 1—50自然数表

一. 创设情境,激情导入

想必同学们对于我国的古典四大名著被并不陌生吧?尤其是《西游记》可谓是“深入学生之心”啊!师徒四人在取经的路上真是历经艰辛,有一次师徒四人途经荒山野岭,饥饿难耐,只好有孙悟空借着筋斗云去千里之外寻找食物,不负众望啊,不一会儿,悟空就带着一支硕果累累的桃枝回来,师徒四人终于可以饱餐一顿了。吃饱之后,唐僧就想逗一下八戒,就说:“八戒,你看你吃的桃子最多,数一下桃核看看你吃了多少?”“17个”“沙悟净呢?”“师傅,12个”“那悟空呢?”“9个”“如果我要你们把你们吃剩的桃核排成方阵,八戒你想一下你们三师兄谁的桃核组成的方阵最多?”“当然是我了,因为我的数字最大。”同学们你们说八戒说的对吗?那你猜想一下组成方阵的多少与什么有关呢?(与因数的多少有关)这节课我们就来研究一个数字因数多少的问题:质数与合数。

二. 合作探究,深入浅出

1、小组合作,验证猜想

以小组合作的形式找出

9、12、17这三个数字的所有因数,看一下能否组成方阵与数字的什么有关?在找因数之前谁能回答我怎样才能快速的找出一个数字的因数?

同学们通过我们刚才找数字的因数,能告诉我能否组成方阵与数字的什么有关吗?(因数的个数)

2、合作探究,总结概括

刚才我们知道了能否组成方阵与因数的个数有关,现在请同学们观看大屏幕,请写出这些数字的所有的因数并试着给他们分类。(小组合作,共同完成)

24 25 28 29 30 31 32

小组汇报: 24 25 28 30 32 29 31 17

我们把含有三个或三个以上因数的数字叫做合数。

把只含有1与本身这两个因数的数字叫做质数。 那数字1呢?

只有自己本身一个因数。1这个数字既不符合质数也不符合合数的意义,所以1既不是质数也不是合数。

大屏幕出示数字,37 45 51 53 91 请判断哪些数字是质数,哪些数字是合数

3、细化分类

知道奇数、偶数、质数、合数的区别

上一节课我们把自然数按照能否被2整除分为哪几类?(奇数与偶数)现在你能不能按照数字因数的多少来能他们分类?

自然数:质数合数

三、巩固深化,加深记忆 出示1~~50自然数表

请在1~20的自然数中选出质数是();合数是()。

20以内的质数非常重要,在分解质因数的时候我们都要用到,所以你必须铭记于心,现在以小组合作互相说一说20以内的质数,看谁记得快。

请圈出21~~50以内的质数。(23、29、31、37、41、43、47、)请想办法记住他们。

请写出20以内的`

1、既是质数又是奇数的数字。()

2、既是质数又是偶数的数字。()

3、既是合数又是奇数的数字。()

4、既是合数又是偶数的数字。()

下面几种说法对不对?说明理由。

1、质数都是奇数。( )

2、合数都是奇数。( )

3、除2以外的偶数都是合数.。()

4、自然数除了质数就是合数。( )

5、自然数除了奇数就是偶数。( )

6、“一个数有1和它本身两个约数,这样的数叫做质数。”(

填空:

1、最小的质数 。( )

2、最小的合数。( )

3、最小的奇数是()

4、最小的偶数是()

四、

1、这节课你学到了什么?

2、通过这节课的学习我们知道了给出某一个数字就能知道有几个因数,你能不能根据这节课的学习给我们学校每个班40人的广播操比赛设计一种或几种方阵呢?

本节课的教学从学生喜闻乐见的故事出发,引导学生先尝试猜想,然后让学生动手操作与讨论,从而得出结论。充分体现了学生的主体地位与老师的主导地位。

本节课在学生自己总结认识质数与合数的基础上让学生掌握自然数的分类,不仅仅是学生认识自然数的升华,尤其是让学生写出20以内既是质数又是奇数等等问题的数字,更对学生的理解能力起到更上一层楼的作用。

找质数课件教案 篇4

一、谈话导入

师:同学们,今天我们继续研究有关数的知识。

(出示数字卡片:把2、13、9、12、7、16、15贴在黑板上。)

师:看到这些数,你想到了什么?

生:2是12的因数,12是2的倍数,13、9、7、15是奇数,2、12、16是偶数……

师:9不仅是奇数,还有一个名字叫合数;2不仅是偶数,还有一个名字叫质数。2是质数,9是合数,那么其他的数是质数还是合数呢?

今天这节课,我们就一起来研究有关质数与合数的知识。(板书课题:质数与合数)

[通过复习,了解学生的知识储备,为下面的学习奠定基础。]

二、动手操作,探索新知

(一)操作,感悟

师:请两个同学商量一下你们想研究哪个数。

(学生商量研究的数。)

师(出示边长1厘米的正方形):今天,我们就借助这些小正方形帮助我们理解。

我来提出活动要求:

(1)你们研究哪个数,就从学具袋中取出几个正方形。

(2)用你们选好的正方形来拼摆长方形或正方形。能摆几种,就要摆出几种。

(3)将你摆的结果,填在表格中。

同时请你思考问题:

(1)你用几个小正方形拼出了你的长方形或正方形?

(2)你是怎样拼的?长方形的长、宽各是多少?或正方形的边长是多少?

(两个学生利用学具独立操作、拼摆。)

(学生依次汇报自己拼摆的结果,教师用电脑演示学生汇报的结果,并展示图形。)

[通过动手操作,让学生在操作中了解事物的特征,明确正方形的个数与长方形的长与宽之间的关系。学生通过动手操作得到了大量的学习资源,为后面的'学习奠定了基础。学生与学生之间的互相交流,更加利于学生对知识的掌握。他们在相互的探讨中,使问题得到解决。]

(二)发现图形与算式的关系

师:你们看,拼成的长方形的长、宽与正方形的个数有什么关系?

(图形消失,出示乘法算式:7=7X1。)

生:长与宽相乘就得到了正方形的个数。

师:用XX个小正方形,可以拼出几个长方形?所以写出了几个乘法算式?

(学生根据自己拼摆的结果作出相应的回答。)

(三)发现算式与因数的关系

找质数课件教案 篇5

教学目标:

①使学生掌握质数和合数的意义,能正确判断一个常见数是质数还是合数。

②知道100以内的质数,熟悉20以内的质数。

③培养学生自主探索、独立思考、合作交流的能力。

④让学生在学习活动中体验到学习数学的乐趣,培养学习数学的兴趣。

教学重点:质数和合数的意义。

教学难点:正确判断一个常见数是质数还是合数。

教学过程:

一、导入(课件出示)

1.在1——20的各自然数中,奇数有哪些?偶数有哪些?

2.想一想:自然数分成奇数和偶数,是按什么标准分的?自然数分几类?

师:自然数还有一种新的分类方法,今天就来学习这种分类方法。

二、出示预习提纲:

自学内容P23-24例1、做一做,P25—26的T1—5

思考:

1、按要求填书中表:

从上面的表格中的数据有什么特点?

2、什么叫质数和合数?举例说明。

3、在这个表中找出100以内的全部质数

小组讨论,你发现了什么?

4、把不理解的内容做好标记。

三、汇报展示:

1.学习质数和合数的概念。

预习反馈(1)请写出1~20各数的因数?(根据学生的回答板书)

预习反馈(2)观察:填在书中第23页表格中的数据有什么特点?

(3)学生讨论后归纳分成三类:只有因数1的;只有1和它本身这两个因数的;除了1和本身之外还有其他因数的。)

反馈:只有一个因数的:1

只有1和它本身两个因数的:2,3,5,7,11,13,17,19

有两个以上的因数的:4,6,8,9,10,12,14,15,16,18,20

(4)教学质数和合数的概念。

①自然数只有两个因数的,如:2、3、5、7、11、13、17、19等。这几个数的因数一定是多少?

讲:一个数,如果只有1和它本身两个因数,我们把这样的数叫做质数(或素数)。(板书“质数”)

②4、6、8、9、10、12、14、……这些数的因数与上面的数的因数相比有何不同?

讲:一个数,如果除了1和它本身两个因数外还有别的因数,我们把这样的数叫做合数。(板书“合数”)

注意:1既不是质数,也不是合数。

(5)提问:什么叫质数?什么叫合数?自然数按因数个数来分,可以分几类?

2、质数、合数的判断方法。

(1)我们应该怎样去判断一个数是质数还是合数?(根据因数的个数来判断)

(2)完成P23做一做,判断下列各数中哪些是质数,哪些是合数?(先独立完成,再同桌互查)

(3)提问:你是怎样判断的?(找出每个数的因数的个数)

判断是质数还是合数,是不是把所有的因数都找出来?(不必要,只要发现自然数除了1和本身指望还有其它的因数,不管有几个,它都是合数)

3.出示P24例题1,找出100以内的质数,做一个质数表。

(1)提问:如何很快的制作一张100以内的指数表?

(2)按质数的概念逐个判断?也可以用筛选法。

(3)介绍筛选法:先排除2以外的所有偶数,接着排除3以外的所有3的倍数,再接着排除5以外的.所有5的倍数,最后排除7以外的7的倍数。因为1既不是质数,也不是合数,所以也必须排除,这样剩下的就是100以内的质数。

100以内的质数:(略)

(4)讲:判断一个数是不是质数,除了用质数的定义进行判断外,还可以查质数表,如100以内的质数表。(或者看6的倍数的左右)

四、反馈检测

完成P25题1~5

第3题:质数+质数=10,质数×质数=21,分析:这两个质数一定小于10,10以内的质数有2,3,5,7,通过观察可知,只有3和7。

同样,质数+质数=20,质数×质数=91,只有3+17=20和7+13=20,而积是91的只有7和13。

板书设计

质数和合数

质数(素数):只有1和它本身两个因数。如2、3、5、7

合数:除了1和它本身还有别的因数。如4、6、15、49

附质数和合数检测题:

一、填空。(口答)课件出示

1、最小的自然数是(),最小的质数是(),最小的合数是(),最小的奇数是()。

2、20以内的质数有(),20以内的偶数有(),20以内的奇数有()。

3、20以内的数中不是偶数的合数有(),不是奇数的质数有()。

4、在5和25中,()是()的倍数,()是()的约数,()能被()整除。

二、猜一猜:(课件出示)

三、判断题,对的在括号里写“√”,错的写“×”。

(1)任何一个自然数,不是质数就是合数。()

(2)偶数都是合数,奇数都是质数。()

(3)7的倍数都是合数。()

(4)20以内最大的质数乘以10以内最大的奇数,积是171。()

(5)只有两个约数的数,一定是质数。()

(6)两个质数的积,一定是质数。()

(7)2是偶数也是合数。()

(8)1是最小的自然数,也是最小的质数。()

(9)除2以外,所有的偶数都是合数。()

(10)最小的自然数,最小的质数,最小的合数的和是7。()

找质数课件教案 篇6

人教版数学五年级下册练习四第3、4、5题

本节课是在学生学习了奇数、偶数、质数、合数等知识的基础上进行教学的。由于这些概念比较抽象,学生容易混淆,本节课的目的是让学生更好地掌握质数、合数的意义,理顺奇数、偶数、质数、合数知识间的内在联系。通过复习回顾,指导练习,提高练习,由浅入深,让学生在掌握、运用知识中提升。练习的形式多样,通过说一说,找一找,猜一猜,让学生根据所学知识解决一些实际的问题,体会数学源于生活又用于生活,感受数学知识之间的密切联系和应用价值,激发学生学习数学知识的兴趣,培养和提高学生解决问题的能力。

1、进一步掌握质数和合数的意义,会根据质数和合数解决一些实际问题。

2、掌握质数、合数、偶数、奇数之间的联系和区别。

3、经历概念的辨别和指导练习的过程,体验比较分析,归纳整理,练习提高的学习方法。

一、复习回顾

1、什么叫做质数?什么叫做合数?

学生回顾已学知识,在小组中交流后汇报。

2、20以内的质数有 。

学生在练习本上写出20以内的质数,再汇报交流。

3、在23 8 15 4 13 19 2 26 9 45 52 32 17 22 97 这些数中,质数有 ,合数有 ;

奇数有 ,偶数有 。

先找出质数、合数,然后找奇数、偶数,再让学生说出分类的标准。

【设计意图:通过回顾质数和合数的概念,找质数,把非0自然数按不同的'标准分类,在分类、对比中复习质数、合数、奇数、偶数,进一步加强概念的辨析。】

二、指导练习

(一)说一说

1、理解质数、合数、偶数、奇数之间的联系和区别。

(1)师出示以下问题

a、什么数既不是质数也不是合数?

b、最小的质数是多少?它是偶数还是奇数?

c、是不是所有的偶数都是合数,所有的质数都是奇数?

d、最小的合数是多少?

(2)组织学生在小组中讨论以上问题,并互相交流。

学生汇报时,要求学生举例说明。

【设计意图:通过讨论、交流、举例说明让学生更好地理解质数、合数、偶数、奇数之间的联系和区别。】

2、练习四第3题:

出示:

(1)先让学生在小组中自主探讨这三个问题。

(2)组织学生汇报,说一说这些数都是几?你是怎样判断的?

【设计意图:通过猜谜语这个趣味性的活动让学生熟悉20以内的质数,培养学生的学习兴趣。】

3、练习四第4题。

(1)师出示题目,引导学生观察图画,理解题意。

师:从图上你知道了哪些数学信息?小猴遇到了什么问题?3个3个地装是什么意思?和我们学得什么知识有关?2个2个地装呢?5个5个地装呢?

(2)让学生独立帮助小猴解决问题,把解决问题的过程在小组中交流。

(3)如果有75个桃子呢?

小结:2、3、5的倍数的特征。

【设计意图:把数学与生活紧密联系,让学生在解决问题中巩固2、3、5的倍数的特征。教学层次分明,先引导学生理解题意,再独立解决,然后在小组交流;补充第(3)个问题,把本题设计成题组,再让学生解决,起到举一反三的作用。】

(二)找一找

练习四第5题

(1)师说明游戏规则:先由老师说出一个大于2的偶数,同学们找出和等于这个数的两个质数,看谁找得又快又对。

(2)找质数。

14=( )+( ) 8=( )+( ) 20=( )+( )

12=( )+( ) 24=( )+( )

师:一个大于2的偶数都可以表示为两个质数的和吗?

(3)小组合作:每两个人一组,其中一人说一个大于2的偶数,另一个人来找和等于这个数的质数。找出后,两人一起讨论是否正确,然后交换角色继续游戏。

(4)引导学生学习第26页“你知道吗”。

师适时对学生进行爱国主义和探索精神的渗透。

【设计意图:通过分层的游戏活动,在学生理解、掌握知识的同时,培养学生探究知识的能力,满足每个学生数学学习的需要,让不同的人在数学上得到不同的发展。】

三、提高练习

1、猜一猜

师:学校组织郊游,可咱班还有一个同学没来,要赶紧给他打电话。咱们先玩一个游戏,我说,你们把电话号码数字按顺序写下来。看谁猜得有快又准。

小于10的最大偶数是( )。

有因数3,也有因数6是( )。

10以内最大的质数是( )。

10以内最大的奇数是( )。

既不是质数,也不是合数,也不是0是( )。

最小的质数是( )。

是5的倍数,又是5的因数是( )。

最小的合数是( )。

该电话号码是( )。

2、把自己的学号进行自我介绍。

师提示:根据本单元学习的质数、合数、偶数、奇数,2、3、5的倍数的特征向大家介绍自己的学号。

(1)4人小组互相介绍。

(2)指名介绍。

【设计意图:创设一个郊游情境,让学生解决实际问题,提高学生的综合能力。通过自我介绍学号,让学生在玩中复习巩固已学的知识,训练学生的表达能力;通过学生与学生之间的互动,提高他们的学习兴趣。体会到数学源于生活又用于生活,实现人人学有价值的数学。】

四、课堂小结

通过这节课的学习活动,你有哪些收获?

等比数列课件合集


俗话说,做什么事都要有计划和准备。身为一位优秀的幼儿园的老师我们都希望自己能教孩子们学到一些知识,最好的解决办法就是准备好教案来加强学习效率,。教案对教学过程进行预测和推演,从而更好地实现教学目标。幼儿园教案的内容具体要怎样写呢?于是,小编为你收集整理了等比数列课件合集。欢迎阅读,希望大家能够喜欢!

等比数列课件(篇1)

所以Sn = a1+a1*q^1+...+a1*q^(n-1) (1)

qSn =a1*q^1+a1q^2+...+a1*q^n (2)

(1)-(2)注意(1)式的第一项不变。

把(1)式的第二项减去(2)式的第一项。

把(1)式的第三项减去(2)式的第二项。

以此类推,把(1)式的第n项减去(2)式的第n-1项。

(2)式的.第n项不变,这叫错位相减,其目的就是消去这此公共项。

即Sn =a1(1-q^n)/(1-q)。

①若 m、n、p、q∈N*,且m+n=p+q,则am*an=ap*aq;

②在等比数列中,依次每 k项之和仍成zhi等比数列.

“G是a、b的等比中项”dao“G^2=ab(G≠0)”.

③若(an)是等比数列,公比为q1,(bn)也是等比数列,公比是q2,则

(a2n),(a3n)…是等比数列,公比为q1^2,q1^3…

(can),c是常数,(an*bn),(an/bn)是等比数列,公比为q1,q1q2,q1/q2。

(5) 等比数列前n项之和Sn=A1(1-q^n)/(1-q)=A1(q^n-1)/(q-1)=(A1q^n)/(q-1)-A1/(q-1)

在等比数列中,首项A1与公比q都不为零.

(6)由于首项为a1,公比为q的等比数列的通向公式可以写成an*q/a1=q^n,它的指数函数y=a^x有着密切的联系,从而可以利用指数函数的性质来研究等比数列

等比数列课件(篇2)

一、教材分析

1.从在教材中的地位与作用来看

《等比数列的前n项和》是数列这一章中的一个重要内容,从教材的编写顺序上来看,等比数列的前n项和是第一章“数列”第六节的内容,它是“等差数列的前n项和”与“等比数列”内容的延续、与前面学习的函数等知识也有着密切的联系。就知识的应用价值上来看,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养。就内容的人文价值上来看,等比数列的前n项和公式的探究与推导需要学生观察、分析、归纳、猜想,有助于培养学生的创新思维和探索精神,是培养学生应用意识和数学能力的良好载体。

2.从学生认知角度来看

从学生的思维特点看,很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导.不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q = 1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错。

3. 学情分析

教学对象是刚进入高二的学生,虽然具有一定的分析问题和解决问题的能力,逻辑思维能力也初步形成,但对问题的分析缺乏深刻性和严谨性。

4. 重点、难点

教学重点:公式的推导、公式的特点和公式的运用.

教学难点:公式的推导方法和公式的灵活运用.

公式推导所使用的“错位相减法”是高中数学数列求和方法中最常用的方法之一,它蕴含了重要的数学思想,所以既是重点也是难点。

二、目标分析

1.知识与技能目标:理解等比数列的前n项和公式的推导方法;掌握等比数列的前n项和公式并能运用公式解决一些简单问题。

2.过程与方法目标:通过公式的推导过程,培养学生猜想、分析、综合的思维能力,提高学生的建模意识及探究问题、分析与解决问题的能力,体会公式探求过程中从特殊到一般的思维方法,渗透方程思想、分类讨论思想及转化思想,优化思维品质。

3.情感态度与价值观:通过经历对公式的探索,激发学生的求知欲,鼓励学生大胆尝试、勇于探索、敢于创新,磨练思维品质,从中获得成功的体验,感受思维的奇异美、结构的对称美、形式的简洁美、数学的严谨美。用数学的观点看问题,一些所谓不可理解的事就可以给出合理的解释,从而帮助我们用科学的态度认识世界。

三、教学方法与教学手段

本节课属于新授课型,主要利用计算机辅助教学,

采用启发探究,合作学习,自主学习等的教学模式.

四、教学过程分析

学生是认知的主体,也是教学活动的主体,设计教学过程必须遵循学生的认知规律,引导学生去经历知识的形成与发展过程,结合本节课的特点,我按照自主学习的教学模式来设计如下的教学过程,目的是在教学过程中促使学生自主学习,培养自主学习的习惯和意识,形成自主学习的能力。

1.创设情境,提出问题

一个穷人到富人那里去借钱,原以为富人不愿意,哪知富人一口答应了下来,但提出了如下条件:在30天中,富人第一天借给穷人1万元,第二天借给穷人2万元,以后每天所借的钱数都比上一天多1万;但借钱第一天,穷人还1分钱,第二天还2分钱,以后每天所还的钱数都是上一天的两倍,30天后互不相欠.穷人听后觉得挺划算,本想定下来,但又想到此富人是吝啬出了名的,怕上当受骗,所以很为难。”请在座的同学思考讨论一下,穷人能否向富人借钱?

启发引导学生数学地观察问题,构建数学模型。

学生直觉认为穷人可以向富人借钱,教师引导学生自主探求,得出:

穷人30天借到的钱:(万元)

穷人需要还的钱:?

2.学生探究,解决情境

(2)教师紧接着把如何求?的问题让学生探究,

①若用公比2乘以上面等式的两边,得到

若②式减去①式,可以消去相同的项,得到:

(分) ≈1073(万元) > 465(万元)

由此得出穷人不能向富人借钱

【设计意图】留出时间让学生充分地比较,等比数列前n项和的公式推导关键是变“加”为“减”,在教师看来这是很显然的事,但在学生看来却是“不可思议”的,因此教学中应着力在这儿做文章,从而培养学生的辩证思维能力.

解决情境问题:经过比较、研究,学生发现:(1)、(2)两式有许多相同的'项,把两式相减,相同的项就可以消去了,得到: ≈1073(万元) > 465(万元) 。老师强调指出:这就是错位相减法,并要求学生纵观全过程,反思:为什么(1)式两边要同乘以2呢?

【设计意图】经过繁难的计算之苦后,突然发现上述解法,不禁惊呼:真是太简洁了,让学生在探索过程中,充分感受到成功的情感体验,从而增强学习数学的兴趣和学好数 学的信心,同时也为推导一般等比数列前n项和提供了方法。

3.类比联想,解决问题

这时我再顺势引导学生将结论一般化,设等比数列为,公比为q,如何求它的前n项和?让学生自主完成,然后对个别学生进行指导。

一般等比数列前n项和:

方法:错位相减法

这里的q能不能等于1?等比数列中的公比能不能为1?q=1时是什么数列?此时sn=?

在学生推导完成之后,我再问:由得

【设计意图】在教师的指导下,让学生从特殊到一般,从已知到未知,步步深入,让学生自己探究公式,从而体验到学习的愉快和成就感。

4.小组合作,交流展示

探究1.求和

探究2.求等比数列的第5项到第10项的和.

方法1: 观察、发现:.

方法2:此等比数列的连续项从第5项到第10项构成一个新的等比数列。

探究3:求的前n项和.

【设计意图】采用变式教学设计题组,深化学生对公式的认识和理解,通过直接套用公式、变式运用公式、研究公式特点这三个层次的问题解决,促进学生新的数学认知结构的形成.通过以上形式,让全体学生都参与教学,以此培养学生自主学习的意识.解题时,以学生分析为主,教师适时给予点拨。

5.总结归纳,加深理解

以问题的形式出现,引导学生回顾公式、推导方法,鼓励学生积极回答,然后老师再从知识点及数学思想方法两方面总结。

1.等比数列的前n项和公式

2. 数学思想: (1)分类讨论 (2)方程思想

3.数学方法: 错位相减法

【设计意图】以此培养学生的口头表达能力,归纳概括能力。

6.当堂检测

(1)口答:

在公比为q的等比数列中

若,则________,若,则________

若=3,=81,求q及 ,

若 ,求及q.

(2)判断是非:

① ( )

② ( )

③若③且,则

( )

【设计意图】对公式的再认识,剖析公式中的基本量及结构特征,识记公式,并加强计算能力的训练。

7.课后作业,分层练习

必做: P30习题 1—3 A组 第1题,

选作题1:求的前n项和

(2)思考题:能否用其他方法推导等比数列前n项和公式

【设计意图】布置弹性作业以使各个层次的学生都有所发展. 让学有余力的学生有思考的空间,便于学生开展自主学习。

五、评价分析

本节课通过推导方法的研究,使学生掌握了等比数列前n项和公式.错位相减:变加为减,等价转化;递推思想:纵横联系,揭示本质;学生从中深刻地领会到推导过程中所蕴含的数学思想,培养了学生思维的深刻性、敏锐性、广阔性、批判性.同时通过展示交流,学生点评,教师总结,使学生既巩固了知识,又形成了技能,在此基础上,通过民主和谐的课堂氛围,培养了学生自主学习、合作交流的学习习惯,也培养了学生勇于探索、不断创新的思维品质,形成学习能力。

六、教学设计说明

1.情境设置生活化.

本着新课程的教学理念,考虑到高二学生的心理特点,让学生学生初步了解“数学来源于生活”,采用故事的形式创设问题情景,意在营造和谐、积极的学习气氛,激发学生主动探究的欲望。

2.问题探究活动化.

教学中本着以学生发展为本的理念,充分给学生想的时间、说的机会以及展示思维过程的舞台,通过他们自主学习、合作探究,展示学生解决问题的思想方法,共享学习成果,体验数学学习成功的喜悦.通过师生之间不断合作和交流,发展学生的数学观察能力和语言表达能力,培养学生思维的发散性和严谨性。

3.辨析质疑结构化.

在理解公式的基础上,及时进行正反两方面的“短、平、快”填空和判断是非练习.通过总结、辨析和反思,强化了公式的结构特征,促进学生主动建构,有助于学生形成知识模块,优化知识体系。

4.巩固提高梯度化.

例题通过公式的正用和逆用进一步提高学生运用知识的能力;由教科书中的例题改编而成,并进行适当的变式,可以提高学生的模式识别的能力,培养学生思维的深刻性和灵活性。

5.思路拓广数学化.

从整理知识提升到强化方法,由课内巩固延伸到课外思考,变“知识本位”为“学生本位”,使数学学习成为提高学生素质的有效途径。以生活中的实例作为思考,让学生认识到数学来源于生活并应用于生活,生活中处处有数学.

6.作业布置弹性化.

通过布置弹性作业,为学有余力的学生提供进一步发展的空间,有利于丰富学生的知识,拓展学生的视野,提高学生的数学素养.

七.教学反思

学生的根据高二学生心理特点、教材内容、遵循因材施教原则和启发性教学思想,本节课的教学策略与方法我采用规则学习和问题解决策略,即“案例—公式—应用”,案例为浅层次要求,使学生有概括印象。公式为中层次要求,由浅入深,重难点集中推导讲解,便于突破。应用为综合要求,多角度、多情境中消化巩固所学,反馈验证本节教学目标的落实。

其中,案例是基础,使学生感知教材;公式为关键,使学生理解教材;练习为应用,使学生巩固知识,举一反三。

在这三步教学中,以启发性强的小设问层层推导,辅之以学生的分组小讨论并充分运用直观完整的板书和计算机课件等教辅用具、手段,改变教师讲、学生听的填鸭式教学模式,充分体现学生是主体,教师教学服务于学生的思路,而且学生通过“案例—公式—应用”,由浅入深,由感性到理性,由直观到抽象,不仅加深了学生理解巩固与应用,也培养了

思维能力。

这节课总体上感觉备课比较充分,各个环节相衔接,能够形成一节完整就为系统的课。本节课教学过程分为导入新课、公式推导、合作探究、课堂小结、当堂检测、布置作业。本节课总体上讲对于内容的把握基本到位,对学生的定位准确,教学过程中留给学生思考的时间,以学生为主体。

.亮点之处:

学生成为课堂的主体,教师要甘当学生的绿叶

由于数学的抽象、思维严谨等特点,学生往往对于一些较为复杂或者变化多样的题目容易望而生畏,出现懒得动脑思考、动笔去做的现象。教师也常因为时间的限制不可能给学生过多的时间去做“无用功”。在本节课上我放手让学生去思考,让学生去摸索。不怕学生出错,就是让学生能够在摸索中增强思维能力、解题技能和计算经验。特别是在例3中,教师针对题目做了简要的分析和提示,让学生去尝试着解题。张漫同学的板书详尽,将思路方法概括表述出来,过程完整。只是结果出现了一个小错误,教师在点评过程中给予指出,同时也个结果错误也是学生经常犯的。

等比数列课件(篇3)

《等比数列的前n项和》是数列这一章中的一个重要内容,从教材的编写顺序上来看,等比数列的前n项和是第一章“数列”第六节的内容,它是“等差数列的前n项和”与“等比数列”内容的延续、与前面学习的函数等知识也有着密切的联系。就知识的应用价值上来看,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养。就内容的人文价值上来看,等比数列的前n项和公式的探究与推导需要学生观察、分析、归纳、猜想,有助于培养学生的创新思维和探索精神,是培养学生应用意识和数学能力的良好载体。

从学生的思维特点看,很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导.不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q=1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错。

教学对象是刚进入高二的学生,虽然具有一定的分析问题和解决问题的能力,逻辑思维能力也初步形成,但对问题的分析缺乏深刻性和严谨性。

公式推导所使用的“错位相减法”是高中数学数列求和方法中最常用的方法之一,它蕴含了重要的数学思想,所以既是重点也是难点。

1.知识与技能目标:理解等比数列的前n项和公式的推导方法;掌握等比数列的前n项和公式并能运用公式解决一些简单问题。

2、过程与方法目标:通过公式的推导过程,培养学生猜想、分析、综合的思维能力,提高学生的建模意识及探究问题、分析与解决问题的能力,体会公式探求过程中从特殊到一般的思维方法,渗透方程思想、分类讨论思想及转化思想,优化思维品质。

3、情感态度与价值观:通过经历对公式的探索,激发学生的求知欲,鼓励学生大胆尝试、勇于探索、敢于创新,磨练思维品质,从中获得成功的体验,感受思维的奇异美、结构的对称美、形式的简洁美、数学的严谨美。用数学的观点看问题,一些所谓不可理解的事就可以给出合理的解释,从而帮助我们用科学的态度认识世界。

本节课属于新授课型,主要利用计算机辅助教学,

采用启发探究,合作学习,自主学习等的教学模式、

学生是认知的主体,也是教学活动的主体,设计教学过程必须遵循学生的认知规律,引导学生去经历知识的形成与发展过程,结合本节课的特点,我按照自主学习的教学模式来设计如下的教学过程,目的是在教学过程中促使学生自主学习,培养自主学习的习惯和意识,形成自主学习的能力。

一个穷人到富人那里去借钱,原以为富人不愿意,哪知富人一口答应了下来,但提出了如下条件:在30天中,富人第一天借给穷人1万元,第二天借给穷人2万元,以后每天所借的钱数都比上一天多1万;但借钱第一天,穷人还1分钱,第二天还2分钱,以后每天所还的钱数都是上一天的两倍,30天后互不相欠、穷人听后觉得挺划算,本想定下来,但又想到此富人是吝啬出了名的,怕上当受骗,所以很为难。”请在座的同学思考讨论一下,穷人能否向富人借钱?

启发引导学生数学地观察问题,构建数学模型。

学生直觉认为穷人可以向富人借钱,教师引导学生自主探求,得出:

(2)教师紧接着把如何求?的问题让学生探究,

②若②式减去①式,可以消去相同的项,得到:

【设计意图】留出时间让学生充分地比较,等比数列前n项和的公式推导关键是变“加”为“减”,在教师看来这是很显然的事,但在学生看来却是“不可思议”的,因此教学中应着力在这儿做文章,从而培养学生的辩证思维能力。

解决情境问题:经过比较、研究,学生发现:(1)、(2)两式有许多相同的项,把两式相减,相同的项就可以消去了,得到:≈1073(万元)>465(万元)。老师强调指出:这就是错位相减法,并要求学生纵观全过程,反思:为什么(1)式两边要同乘以2呢?

【设计意图】经过繁难的计算之苦后,突然发现上述解法,不禁惊呼:真是太简洁了,让学生在探索过程中,充分感受到成功的情感体验,从而增强学习数学的兴趣和学好数学的信心,同时也为推导一般等比数列前n项和提供了方法。

这时我再顺势引导学生将结论一般化,设等比数列为,公比为q,如何求它的前n项和?让学生自主完成,然后对个别学生进行指导。

这里的q能不能等于1?等比数列中的公比能不能为1?q=1时是什么数列?此时sn=?

【设计意图】在教师的指导下,让学生从特殊到一般,从已知到未知,步步深入,让学生自己探究公式,从而体验到学习的愉快和成就感。

探究2.求等比数列的.第5项到第10项的和.

方法2:此等比数列的连续项从第5项到第10项构成一个新的等比数列。

【设计意图】采用变式教学设计题组,深化学生对公式的认识和理解,通过直接套用公式、变式运用公式、研究公式特点这三个层次的问题解决,促进学生新的数学认知结构的形成.通过以上形式,让全体学生都参与教学,以此培养学生自主学习的意识.解题时,以学生分析为主,教师适时给予点拨。

以问题的形式出现,引导学生回顾公式、推导方法,鼓励学生积极回答,然后老师再从知识点及数学思想方法两方面总结。

【设计意图】以此培养学生的口头表达能力,归纳概括能力。

若=3,=81,求q及,若,求及q。

【设计意图】对公式的再认识,剖析公式中的基本量及结构特征,识记公式,并加强计算能力的训练。

【设计意图】布置弹性作业以使各个层次的学生都有所发展、让学有余力的学生有思考的空间,便于学生开展自主学习。

本节课通过推导方法的研究,使学生掌握了等比数列前n项和公式.错位相减:变加为减,等价转化;递推思想:纵横联系,揭示本质;学生从中深刻地领会到推导过程中所蕴含的数学思想,培养了学生思维的深刻性、敏锐性、广阔性、批判性.同时通过展示交流,学生点评,教师总结,使学生既巩固了知识,又形成了技能,在此基础上,通过民主和谐的课堂氛围,培养了学生自主学习、合作交流的学习习惯,也培养了学生勇于探索、不断创新的思维品质,形成学习能力。

1.情境设置生活化、

本着新课程的教学理念,考虑到高二学生的心理特点,让学生学生初步了解“数学来源于生活”,采用故事的形式创设问题情景,意在营造和谐、积极的学习气氛,激发学生主动探究的欲望。

2.问题探究活动化.

教学中本着以学生发展为本的理念,充分给学生想的时间、说的机会以及展示思维过程的舞台,通过他们自主学习、合作探究,展示学生解决问题的思想方法,共享学习成果,体验数学学习成功的喜悦、通过师生之间不断合作和交流,发展学生的数学观察能力和语言表达能力,培养学生思维的发散性和严谨性。

3.辨析质疑结构化.

在理解公式的基础上,及时进行正反两方面的“短、平、快”填空和判断是非练习、通过总结、辨析和反思,强化了公式的结构特征,促进学生主动建构,有助于学生形成知识模块,优化知识体系。

4.巩固提高梯度化.

例题通过公式的正用和逆用进一步提高学生运用知识的能力;由教科书中的例题改编而成,并进行适当的变式,可以提高学生的模式识别的能力,培养学生思维的深刻性和灵活性。

5.思路拓广数学化.

从整理知识提升到强化方法,由课内巩固延伸到课外思考,变“知识本位”为“学生本位”,使数学学习成为提高学生素质的有效途径。以生活中的实例作为思考,让学生认识到数学来源于生活并应用于生活,生活中处处有数学.

6.作业布置弹性化.

通过布置弹性作业,为学有余力的学生提供进一步发展的空间,有利于丰富学生的知识,拓展学生的视野,提高学生的数学素养.

学生的根据高二学生心理特点、教材内容、遵循因材施教原则和启发性教学思想,本节课的教学策略与方法我采用规则学习和问题解决策略,即“案例—公式—应用”,案例为浅层次要求,使学生有概括印象。公式为中层次要求,由浅入深,重难点集中推导讲解,便于突破。应用为综合要求,多角度、多情境中消化巩固所学,反馈验证本节教学目标的落实。

其中,案例是基础,使学生感知教材;公式为关键,使学生理解教材;练习为应用,使学生巩固知识,举一反三。

在这三步教学中,以启发性强的小设问层层推导,辅之以学生的分组小讨论并充分运用直观完整的板书和计算机课件等教辅用具、手段,改变教师讲、学生听的填鸭式教学模式,充分体现学生是主体,教师教学服务于学生的思路,而且学生通过“案例—公式—应用”,由浅入深,由感性到理性,由直观到抽象,不仅加深了学生理解巩固与应用,也培养了思维能力。

这节课总体上感觉备课比较充分,各个环节相衔接,能够形成一节完整就为系统的课。本节课教学过程分为导入新课、公式推导、合作探究、课堂小结、当堂检测、布置作业。本节课总体上讲对于内容的把握基本到位,对学生的定位准确,教学过程中留给学生思考的时间,以学生为主体。

亮点之处:

学生成为课堂的主体,教师要甘当学生的绿叶由于数学的抽象、思维严谨等特点,学生往往对于一些较为复杂或者变化多样的题目容易望而生畏,出现懒得动脑思考、动笔去做的现象。教师也常因为时间的限制不可能给学生过多的时间去做“无用功”。在本节课上我放手让学生去思考,让学生去摸索。不怕学生出错,就是让学生能够在摸索中增强思维能力、解题技能和计算经验。特别是在例3中,教师针对题目做了简要的分析和提示,让学生去尝试着解题。张漫同学的板书详尽,将思路方法概括表述出来,过程完整。只是结果出现了一个小错误,教师在点评过程中给予指出,同时也个结果错误也是学生经常犯的。

等比数列课件(篇4)

1.通过教学使学生理解等比数列的概念,推导并掌握通项公式.

2.使学生进一步体会类比、归纳的思想,培养学生的观察、概括能力.

3.培养学生勤于思考,实事求是的精神,及严谨的科学态度.

重点、难点是等比数列的定义的归纳及通项公式的推导.

①-2,1,4,7,10,13,16,19,…

②8,16,32,64,128,256,…

③1,1,1,1,1,1,1,…

④243,81,27,9,3,1, , ,…

⑤31,29,27,25,23,21,19,…

⑥1,-1,1,-1,1,-1,1,-1,…

⑦1,-10,100,-1000,10000,-100000,…

⑧0,0,0,0,0,0,0,…

由学生发表意见(可能按项与项之间的关系分为递增数列、递减数列、常数数列、摆动数列,也可能分为等差、等比两类),统一一种分法,其中②③④⑥⑦为有共同性质的一类数列(学生看不出③的情况也无妨,得出定义后再考察③是否为等比数列).

请学生说出数列②③④⑥⑦的共同特性,教师指出实际生活中也有许多类似的例子,如变形虫分裂问题.假设每经过一个单位时间每个变形虫都分裂为两个变形虫,再假设开始有一个变形虫,经过一个单位时间它分裂为两个变形虫,经过两个单位时间就有了四个变形虫,…,一直进行下去,记录下每个单位时间的变形虫个数得到了一列数 这个数列也具有前面的几个数列的共同特性,这是我们将要研究的另一类数列——等比数列. (这里播放变形虫分裂的多媒体软件的第一步)

等比数列课件(篇5)

一般地,如果一个数列从第二项起,每一项与它的前一项的比都等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,通常用q表示.数学表达式: an?1

知晓定义的基础上,带领学生看书p29页,书上前面出现的关于等比数列的实

例。让学生了解等比数列在实际生活中的应用很广泛,要认真学好。

在学生对等比数列的定义有了初步了解的基础上,讲解例一。给出具体的数列,会利用定义判断是否为等比数列。对(1)(5)两小题着重分析.

判断下列数列是否为等比数列?若是,找出公比;不是,请说明理由.

(1) 1, 4, 16, 32.

(2) 0, 2, 4, 6, 8.

(3) 1,-10,100,-1000,10000.

(4) 81, 27, 9, 3, 1.

(5) a, a, a, a, a.

讲解例二,进一步熟悉定义,根据定义求数列未知项。最后的小例一为了由利

用定义的求解转到利用定义证明,二为了让学生发现等比数列隔项同号的规律。 例题二

(2) -4, b, c, ?;

①证明数列2, d, 8.仍是等比数列.

②求未知项d.

通过两道例题的讲解,让学生有个缓冲,做个巩固练习。当然此练习的安排,

也是为了进一步挖掘等比数列定义的本质,辨析找寻等差数列与等比数列的关系,将具体问题再推广到一般,并要求学生理解并掌握等比数列的判断证明方法。

判断下列数列是等差数列还是等比数列?

(1) 22 , 2 , 1 , 2-1, 2-2 .

(2) 3 , 34 , 37, 310 .

证明数列{bn}是等比数列.

由最后一例的证明,说明给出通项公式后可由定义判断该数列是否为等比数

列。反过来若数列已经是等比数列了,能否由定义导出数列通项公式呢?为下节课做铺垫。

由学生通过一堂课的学习,做个简单的归纳小结。

1理解.等比数列的定义,判断或证明数列是否为等比数列要用定义判断

2.等比数列公比q≠0,任意一项都不为零.

3.学习等比数列可以对照等差数列类比做研究.

最新数列的课件


我们听了一场关于“数列的课件”的演讲让我们思考了很多,经过阅读本页你的认识会更加全面。老师会对课本中的主要教学内容整理到教案课件中,所以老师写教案可不能随便对待。教案是评估学生学习效果的有效依据。

数列的课件 篇1

数列的极限说课稿

【一、教材分析】

1、教材的地位和作用:

数列的极限是中学数学与高等数学一个衔接点,它同时也是中学数学教学的难点之一。在中学阶段渗透近代数学的基础知识,是课程教材改革的要求之一。教材把极限作为高中阶段的必修内容,意图是在中学阶段渗透极限思想,使学生初步接触用有限刻画无限,由已知认识未知,由近似描述精确的数学方法,使学生对变量、变化过程有更深的认识,这对于提高学生数学素质有积极意义。

2、教学目标及确立的依据:

教学目标:

(1)教学知识目标:通过趣闻故事和割圆术使学生对“无限趋近”有感性的认识;

从数列的变化趋势理解数列极限的概念;

会判断一些简单数列的极限。

(2)能力训练目标:观察运动和变化的过程,初步认识有限与无限、近似与精确、量变与质变的辨证关系,提高学生的数学概括能力和抽象思维能力。

(3)德育渗透目标:通过教学提高学生学习数学的兴趣和数学审美能力,培养学生的主动探索精神和创新意识。

教学目标确立的依据:《全日制中学数学教学大纲》中明确规定,要从数列的变化趋势理解数列的极限,针对这样的情况,我依照《大纲》的要求制定了符合实际的教学目标,并在教学过程中把重点放在对数列极限的概念意义的准确把握和理解上。为了更好的达到教学目标,我设计一些形象、直观、准确的计算机演示程序,分散教学难点。

3、教学重点及难点确立的依据:

教学重点:数列极限的意义

教学难点:数列极限的概念理解

教学重点与难点确立的依据:数列极限的定义抽象性比较强,它有诸多的定义方式,我们教材是采用描述性方法定义数列的极限。数列极限的定义过程,重点是剖析“数列无限趋近于常数”的含义。所以要求学生的理性认识能力较高,所以本节课的重点难点就必然落在对数列极限概念的理解上。

【二、教材的处理】

由于极限的概念中关系到“无限”,而高中学生以往的数学学习中主要接触的是“有限”的问题,很少涉及“无限”的问题。因此,对极限概念如何从变化趋势的角度来正确理解成为本章的难点。为了解决这一难点,主要结合具体例子,首先要让学生对它形成正确的初步认识,为了理解极限概念积累一定的感性认识,还要注意从“特殊”到“一般”的归纳。在将具体例子时,注意从中提炼,概括涉及极限的本质特征,为归纳出一般概念作好准备;在讲一般概念时,注意结合具体例子予以解释说明,克服抽象理解的困难,使学生对数列极限的概念有很准确的认识。教材中只是介绍了数列极限的定义,着重让学生从变化趋势上去理解,工夫化在概念的理解上,而不过分膨胀内容、增加习题难度和过多的训练。

【三、教学方法和教学工具】

教学方法:通过观察发现特征,教师归纳概念,师生共同探讨。

确立教学方法的依据:数列极限是一个抽象的概念,关键是让学生理解从“有限”到“无限”如何从变化趋势来理解极限的概念,通过师生共同观察讨论来帮助学生深刻理解,为以后的应用打下坚实的基础。

教学工具:多媒体教学设备

【四、教学流程】

主要过程课程设计及决策意图

一、引入

(1)趣闻故事以趣闻故事引入,激发学生学习的兴趣,并使学生对“无限接近”有感性的认识。

(2)割圆术通过割圆术使学生对“无限接近”有进一步的认识,并及时进行德育渗透,增强民族自豪感。

二、数列极限的描述性定义

(1)给出几个数列,让学生由学生归纳当无限增大时数列的项的值的相关特征,教师顺其给出数列极限的描述性列表计算,并借助计算机定义,并通过描述性定义进行辨析,为后面理演示作图,观察归纳数列解“无限趋近”的数量表示做准备极限的描述性定义

(2)概念的辨析

三、“无限趋近”的数量表示

给出一个具体的数列,通过这个数列重点剖析“数列{ }无限趋近于并把这个数列的各项在数轴上常数c”的含义,让学生对“数列无限趋近于常表示,观察数列各项的点与1数c”有进一步的认识。

的距离是越来越趋近于1。

然后通过“越来越趋近于1”

在数量上的反映为当无限增大时,预先给定任意小的正数总可以找到这样的,使得与1的差的绝对值都小于,即

三、练习巩固数列极限概念

四、小结 总结数列极限概念的本质

【五.几点说明】

数学教学注重的是学生在原有的数学知识基础上,在教师的组织和指导下,充分自主的进行讨论、交流,通过表达、接受和转换,获取新的数学知识与方法,重组个人的知识结构,形成良好的数学素养,提高个人获取信息的能力,培养合作学习的精神。所以在这节课的设计上,我主要是通过趣闻吸引学生的兴趣,从而对极限有感性的认识,然后通过具体数列由观察到分析,由定性到定量,由直观到抽象,按照思维的发展规律,有浅入深设计了6个不同的层次:

1、通过趣闻和割圆术,使学生对数列极限有感性的认识,并及时渗透爱国注意教育,增强学生的民族自豪感和对数学学习的兴趣,并激励学生的好奇心和求知欲,在认知方面明确本节课的内容。

2、给出几个具体的无穷数列,让学生通过列表计算,并借助计算机作图观察,并讨论交流归纳出有极限数列当项数无限增大时的直观特点;

3、教师引导学生概括出数列极限的描述性定义;

4、通过对几个精心设计的几个问题的讨论,纠正学生在对数列的描述性定义理解上可能出现的错误,这样可以使学生对数列极限定义的进一步探讨的必要性有了初步的认识,也能够激发起学生的参与热情;

5、通过具体的例子深入分析数列极限的内涵,理解“无限趋近”的数量表示;

6、巩固练习,加深对数列极限概念的正确认识。

小结

重在对数列极限概念的本质进行总结和点拨,以便引起学生对极限的更深刻的思考,同时与教学目标相呼应。

数列的课件 篇2

学习是一个潜移默化、厚积薄发的过程。编辑老师编辑了高一数学教案:数列,希望对您有所帮助!

教学目标

1.使学生理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.

(1)理解数列是按一定顺序排成的一列数,其每一项是由其项数唯一确定的.

(2)了解数列的各种表示方法,理解通项公式是数列第项与项数的关系式,能根据通项公式写出数列的前几项,并能根据给出的一个数列的前几项写出该数列的一个通项公式.

(3)已知一个数列的递推公式及前若干项,便确定了数列,能用代入法写出数列的前几项.

2.通过对一列数的观察、归纳,写出符合条件的一个通项公式,培养学生的观察能力和抽象概括能力.

3.通过由求的过程,培养学生严谨的科学态度及良好的思维习惯.

教学建议

(1)为激发学生学习数列的兴趣,体会数列知识在实际生活中的作用,可由实际问题引入,从中抽象出数列要研究的问题,使学生对所要研究的内容心中有数,如书中所给的例子,还有物品堆放个数的计算等.

(2)数列中蕴含的函数思想是研究数列的指导思想,应及早引导学生发现数列与函数的关系.在教学中强调数列的项是按一定顺序排列的,“次序”便是函数的自变量,相同的数组成的数列,次序不同则就是不同的数列.函数表示法有列表法、图象法、解析式法,类似地,数列就有列举法、图示法、通项公式法.由于数列的自变量为正整数,于是就有可能相邻的两项(或几项)有关系,从而数列就有其特殊的表示法——递推公式法.

(3)由数列的通项公式写出数列的前几项是简单的代入法,教师应精心设计例题,使这一例题为写通项公式作一些准备,尤其是对程度差的学生,应多举几个例子,让学生观察归纳通项公式与各项的结构关系,尽量为写通项公式提供帮助.

(4)由数列的前几项写出数列的一个通项公式使学生学习中的一个难点,要帮助学生分析各项中的结构特征(整式,分式,递增,递减,摆动等),由学生归纳一些规律性的结论,如正负相间用来调整等.如果学生一时不能写出通项公式,可让学生依据前几项的规律,猜想该数列的下一项或下几项的值,以便寻求项与项数的关系.

(5)对每个数列都有求和问题,所以在本节课应补充数列前项和的概念,用表示的问题是重点问题,可先提出一个具体问题让学生分析与的关系,再由特殊到一般,研究其一般规律,并给出严格的推理证明(强调的表达式是分段的);之后再到特殊问题的解决,举例时要兼顾结果可合并及不可合并的情况.

(6)给出一些简单数列的通项公式,可以求其最大项或最小项,又是函数思想与方法的体现,对程度好的学生应提出这一问题,学生运用函数知识是可以解决的.

上述提供的高一数学教案:数列希望能够符合大家的实际需要!

数列的课件 篇3

教学目标:

1.认知目标:认识百的数列。能找出相邻数、相邻整十数,并知道邻数的由来。

2.能力目标:会用多种直观手段描绘数、展示数、数数、写数;结合数射线进行凑整、推算的练习,培养学生推算、归纳的能力。

3.情感目标:在交流探究与讨论中培养学生学习数学的兴趣,培养学生善于表达自己见解的学习习惯。

教学重难点:

1.掌握找邻数的方法,结合数射线进行凑整、推算练习。

2.探究回到整十数和进到整十数的方法。

教学过程:

一、数射线、百数表上填数。

1.出示

将39、83、45、97在百数表与数射线上表示出来。说一说是怎么找的?有什么好的方法?

二、在数龙上探究。

1.出示数龙。

(1)问:你看到了什么?看懂了什么?

(学生观察回答:数的排列顺序、邻数、数的组成、数的大小等等)

根据学生的回答适当引导、补充。

(2)在数龙上标数。

2.找邻数。

(1)先说说65、50、85、20、35的邻数,并在数龙上找一找。

(2)同桌交流找邻数的方法

(进一格或退一格;前一个数比这个数小1,后一个数比这个数大1)。

(3)练一练:

A找邻数(任选一列完成)

__15,____,75,____,20,____,80,____,35,____,85,____,40,____,90,____,55,____,95,____,60,____,100,__重点说清如何找100的邻数。

B通过向前、退后找邻数。

18-137-159-130-150-199-118+137+159+130+150+199+1

小结:找一个数的邻数,不但能在数龙上找,还能通过-1和+1的方法找到。

师:刚才我们学习了找邻数的方法,如果要找与一个数相邻的整十数,你会找吗?

3.找与某数相邻的整十数。

(1)在数龙上找一找47,63,99,16,34分别位于哪两个整十数之间。小组交流找的方法。

(2)用找的方法说说52、76、85在哪两个整十数之间。

4.回到整十数和进到整十数。

(1)尝试完成第一列后交流方法,再完成第二、第三列。

21-()=2097-()=9025-()=2022-()=2077-()=7025-()=2023-()=2057-()=5025-()=2024-()=2037-()=3025-()=2025-()=2017-()=1025-()=20交流完成后的发现。

(2)小结回到整十数的方法:一个数减去个位上的数,就可以回到整十数。

(3)进到整十数(先讨论方法,再实践练习,任选一列)

39+()=4026+()=3025+()=3038+()=4046+()=5036+()=4037+()=4066+()=7049+()=5036+()=4076+()=8064+()=7035+()=4086+()=9081+()=90(4)小结进到整十数的方法:一个数个位上的数加上某数后得到十的数,就能进到整十数。

三、运用:

1.推算。

7+3=()4+6=()8+2=()17+3=()24+6=()28+2=()37+3=()44+6=()58+2=()试一试,你有什么发现?

2.补充成整十数。

6+()=104+()=()7+()=()66+()=7024+()=()47+()=()86+()=9054+()=()77+()=()理解要求、观察算式、说说想法、谈谈疑问、动手完成、在数龙上检验。

四、总结

说说你的最大收获,你还想知道哪些?

数列的课件 篇4

§3 数列极限存在的条件

教学内容:单调有界定理,柯西收敛准则。

教学目的:使学生掌握判断数列极限存在的常用工具。掌握并会证明单调有界定理,并会运用它求某些收敛

数列的极限;初步理解Cauchy准则在极限理论中的主要意义,并逐步会应用Cauchy准则判断某些数列的敛散性。

教学重点:单调有界定理、Cauchy收敛准则及其应用。

教学难点:相关定理的应用。

教学方法:讲练结合。

教学学时:2学时。

 引言

在研究比较复杂的极限问题时,通常分两步来解决:先判断该数列是否有极限(极限的存在性问题);若有极限,再考虑如何计算些极限(极限值的计算问题)。这是极限理论的两基本问题。

本节将重点讨论极限的存在性问题。为了确定某个数列是否有极限,当然不可能将每一个实数依定义一一加以验证,根本的办法是直接从数列本身的特征来作出判断。本节就来介绍两个判断数列收敛的方法。

一、单调数列:

定义 若数列an的各项满足不等式anan1(aan1),则称an为递增(递减)数列。递增和递减数列统称为单调数列. (1)n12例如:为递减数列;n为递增数列;不是单调数列。nn

二、单调有界定理:

考虑:单调数列一定收敛吗?有界数列一定收敛吗?以上两个问题答案都是否定的,如果数列对以上两个条件都满足呢?答案就成为肯定的了,即有如下定理:

定理2.9(单调有界定理)在实数系中,有界且单调数列必有极限。

证明:不妨设an单调递增有上界,由确界原理an有上确界asupan,下面证明limana.0,n

一方面,由上确界定义aNan,使得aaN,又由an的递增性得,当nN时aaNan; 另一方面,由于a是an的一个上界,故对一切an,都有anaa;

所以当nN时有aana,即ana,这就证得limana。n

同理可证单调递减有下界的数列必有极限,且为它的下确界。

例1 设an1111,n1,2,其中2,证明数列an收敛。23n

证明:显然数列an是单调递增的,以下证明它有上界.事实上,an1111 22223n

11111111111 1223(n1)n223n1n

212,n1,2, n

于是由单调有界定理便知数列an收敛。

例2 证明下列数列收敛,并求其极限:

 n个根号

解:记an

显然a1222,易见数列an是单调递增的,现用数学归纳法证明an有上界2.22,假设an2,则有an12an222,从而数列an有上界2.n2于是由单调有界定理便知数列an收敛。以下再求其极限,设limana,对等式an12an两边

2同时取极限得a2a,解之得a2或a1(舍去,由数列极限保不等式性知此数列极限非负),从而 lim2222.n

例3证明lim(1)存在。n1nn

分析:此数列各项变化趋势如下

我们有理由猜测这个数列单调递增且有上界,下面证明这个猜测是正确的。

证明:先建立一个不等式,设ba0,nN,则由

bn1an1(ba)(bnbn1abn2a2ban1an)(n1)bn(ba)得到不等式 an1bn(n1)anb(*)

以b111111a代入(*)式,由于(n1)anb(n1)(1)n(1)1 nn1n1n

n1nn111由此可知数列1为递增数列; nn1于是1n1

再以b11111a代入(*)式,同样由于(n1)anb(n1)n(1),2n2n

2n2nn14由此可知数列1为有界数列; n111于是1112n22n

n综上由单调有界定理便知lim(1)存在。nn

n1注:数列1是收敛的,但它的极限目前没有办法求出,实际上它的极限是e(无理数),即有n

1lim(1)n=e,这是非常有用的结论,我们必须熟记,以后可以直接应用。nn

例4 求以下数列极限:

(1)lim(1);(2)lim(1nn1nn1n1);(3)lim(1)2n.n2nn

n1n1 解:(1)lim(1)lim1nnnn11; e

(2)lim(1n1n1)lim1n2n2n2ne 12

(3)lim(1n12n)n1nlim1e2.nn2

三、柯西收敛准则:

1.引言:

单调有界定理只是数列收敛的充分条件,下面给出在实数集中数列收敛的充分必要条件——柯西收敛准则。

2.Cauchy收敛准则:

定理2.10(Cauchy收敛准则)数列an收敛的充分必要条件是:对任给的0,存在正整数N,使得当n,mN时有|anam|;或对任给的0,存在正整数N,使得当nN,及任一pN,有anpan。

3.说明:

(1)Cauchy收敛准则从理论上完全解决了数列极限的存在性问题。

(2)Cauchy收敛准则的条件称为Cauchy条件,它反映这样的事实:收敛数列各项的值愈到后面,彼此愈接近,以至于充分后面的任何两项之差的绝对值可以小于预先给定的任意小正数。或者,形象地说,收敛数列的各项越到后面越是“挤”在一起。

(3)Cauchy准则把N定义中an与a的之差换成an与am之差。其好处在于无需借助数列以外的数a,只要根据数列本身的特征就可以鉴别其(收)敛(发)散性。

(4)数列an发散的充分必要条件是:存在00,对任意的NN,都可以找到n,mN,使得anam0;存在00,对任意的NN,都可以找到nN,及pN,使得anpan0.例5设an1112n,证明数列an收敛。101010

证明:不妨设nm,则

anam111m1m2n101010

1110m11nm11011111 mnm19101010mm110对任给的0,存在N

例6设an1

证明:0,对一切nmN有|anam|,由柯西收敛准则知数列an收敛。11,证明数列an发散。2n

anp1,对任意的NN,任取nN,及pn,则有 211111111an(共n项)n0 n1n22n2n2n2n2n2由柯西收敛准则知数列an发散。

数列的课件 篇5

《等比数列前n项和》选自北师大版高中数学必修5第一章第3节的内容。等比数列的前n项和是“等差数列及其前n项和”与“等比数列”内容的延续,也是函数的延续,它实质上是一种特殊的函数;公式推导中蕴涵的数学思想方法如分类讨论等在各种数学问题中有着广泛的应用,如在“分期付款”等实际问题中也经常涉及到.具有一定的探究性。

在认知结构上已经掌握等差数列和等比数列的有关知识。在能力方面已经初步具备运

用等差数列和等比数列解决问题的能力;但学生从特殊到一般、分类讨论的数学思想还需要进一步培养和提高。在情感态度上学习兴趣比较浓,表现欲较强,但合作交流的意识等方面尚有待加强。并且让学生在探究等比数列前n项和的过程中体会合作交流的重要性。

(1)能够推导出等比数列的前n项和公式;

(2)能够运用等比数列的前n项和公式解决一些简单问题。

过程与方法目标:提高学生的建模意识及探究问题、分析与解决问题的能力。体会公式探求

过程中从特殊到一般的思维方法、错位相减法和分类讨论思想。

情感与态度目标:培养学生勇于探索、敢于创新的精神,磨练思维品质,从中获得成功的体验。

《等比数列的前n项和》是这一章的重点,其中公式推导所使用的“错位相减法”是高中数学数列求和方法中最常用的方法之一,它蕴含了多种重要的数学思想,因此,本节课的教学重点为等比数列的前n项和公式的推导及其简单应用.而等比数列的前n项和公式的推导过程中用到的方法学生难以想到,因此本节课的难点为等比数列的前n项和公式的推导。

为突出重点和突破难点,我将采用的教学策略为启发式和探究式相结合的教学方法,教学手段采用计算机进行辅助教学。

为达到本节课的教学目标,我把教学过程分为如下6个阶段:

1、创设情境:

创设一个西游记后传的情景,即高老庄集团,由于资金短缺,决定向猴哥进行贷款,猴哥每天给八戒投资1万元,以后每天比前一天多1万,连续30天,但有一个条件:第一天返还1分,第二天返还2分,第三天返还4分后一天返还数为前一天的2倍.假如你是高老庄集团企划部的高参,请你帮八戒决策.这是一个悬念式的实例,后面的“假如”又把学生带入了实例创设的情境,营造了积极、和谐的学习气氛,使学生产生学习心理倾向,并进一步了解数学来源于生活.

2、探究问题,讲授新课:

根据创设的情景,在教师的诱导下,学生根据自己掌握的知识和经验,很快建立起两个等比数列的数学模型。提出如何求等比数列前n项和的问题,从而引出课题。通过回顾等差数列前n项和公式的推导过程,类比观察等比数列的特点,引导学生思考,如果我们把每一项都乘以2,则每一项就变成了它的后一项,引导学生比较这两个式子有许多相同的项的特点,学生自然就会想到把两式相减,进而突破了用错位相减法推到公式的难点。教师再由特殊到一般、具体到抽象的启示,正式引入本节课的重点等比数列的前n项和,请学生用错位相减法推导出等比数列前n项和公式。得出公式后,学生一起探讨两个问题,一是当q=1时Sn又等于什么,引导学生对q进行分类讨论,得出完整的等比数列前n项和公式,二是结合等比数列的通项公式,引导学生得出公式的另一形式。

3、例题讲解:

我们在讲解例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于发展学生的思维能力。本节课设置如下两种类型的例题:

2)等比数列中知三求二的填空题,通过公式的正用和逆用进一步提高学生运用等比数列前n项和的能力.

4.形成性练习:

练习基本上是直接运用公式求和,三个练习是按由易到难、由简单到复杂的认识规律和心理特征设计的,有利于提高学生的积极性。学生练习时,教师巡查,观察学情,及时从中获取反馈信息。对学生练习中出现的独到解法提出表扬和鼓励,对其中偶发性错误进行辨析、指正。通过形成性练习,培养学生的应变和举一反三的能力,逐步形成技能。

(2)推导公式的所用方法——从特殊到一般的思维方法、错位相减法和分类讨论思想。通过师生的共同小结,发挥学生的主体作用,有利于学生巩固所学知识,也能培养学生的归纳和概括能力。进一步完成认知目标和素质目标。

针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有余力的学生有所提高,从而达到拔尖和“减负”的目的。并可布置相应的研究作业,思考如何用其他方法来推导等比数列的前n项和公式,来加深学生对这一知识点的理解程度。

数列的课件 篇6


一、概述


在高中数学教学中,数列是一个重要的概念。数列作为数学的基础知识,广泛运用于各种数学问题的解决中,尤其在求解函数极限、数学归纳法、数学递推等方面发挥着重要作用。对于高中生来说,掌握数列的相关知识至关重要。本文将结合高中数学教学内容,详细介绍数列的定义、性质、分类以及常见解题方法,旨在帮助学生更好地理解和掌握数列知识。


二、数列的定义


数列是按照一定规律排成的一列数的有序集合。数列常用的表示方法为{an}或者(an),其中an表示数列中的第n个元素。例如,{1, 3, 5, 7, 9, ...}就是一个等差数列,其通项公式为an=2n-1。


三、数列的性质


1. 有界性:数列如果存在上下界,称之为有界数列;否则称之为无界数列。


2. 单调性:数列如果满足an ≤ an+1或者an ≥ an+1,称之为单调数列。


3. 有限项性:数列的项数有限。


4. 无限项性:数列的项数无限。


四、数列的分类


根据数列的性质和规律,数列可以分为多种类型,其中常见的数列有等差数列、等比数列和 Fibonacci 数列等。


1. 等差数列:指数列中任意两个相邻的数之差相等的数列。通项公式为an=a1+(n-1)d,其中a1为首项,d为公差。


2. 等比数列:指数列中任意两个相邻的数之比相等的数列。通项公式为an=a1*q^(n-1),其中a1为首项,q为公比。


3. Fibonacci 数列:指数列中每一项是其前两项之和的数列。通项公式为an=an-1+an-2,其中a1=1,a2=1。


五、数列的常见解题方法


1. 求通项公式:通过观察数列中的规律,可以得到数列的通项公式,从而求得数列中任意一项的值。


2. 求和公式:对于有限项数列,可以通过求和公式快速计算数列的和。


3. 求极限:对于无限项数列,可以通过求极限的方法来研究数列的性质。


六、实例分析


1. 求解等差数列{2, 5, 8, 11, ...}的第n项和前n项和。


解:观察可知,此数列的首项a1=2,公差d=3,通项公式为an=2+3(n-1)=3n-1。第n项为an=3n-1。前n项和为Sn=(a1+an)*n/2=(2+3n-1)*n/2=(n^2+2n)/2。


2. 求解等比数列{2, 6, 18, 54, ...}的第n项和前n项和。


解:观察可知,此数列的首项a1=2,公比q=3,通项公式为an=2*3^(n-1)=2*(3^n)/3。第n项为an=2*(3^n)/3。前n项和为Sn=(a1(1-q^n))/(1-q)=(2*(1-3^n))/(1-3)=2*(1-3^n)/(-2)=3^n-1。

数列的课件 篇7

1.掌握等差数列前 项和的公式,并能运用公式解决简单的问题.

(1)了解等差数列前 项和的定义,了解逆项相加的原理,理解等差数列前 项和公式推导的过程,记忆公式的两种形式;

(2)用方程思想认识等差数列前 项和的公式,利用公式求 ;等差数列通项公式与前 项和的公式两套公式涉及五个字母,已知其中三个量求另两个值;

(3)会利用等差数列通项公式与前 项和的公式研究 的最值.

2.通过公式的推导和公式的运用,使学生体会从特殊到一般,再从一般到特殊的思维规律,初步形成认识问题,解决问题的一般思路和方法.

3.通过公式推导的过程教学,对学生进行思维灵活性与广阔性的训练,发展学生的思维水平.

4.通过公式的推导过程,展现数学中的对称美;通过有关内容在实际生活中的应用,使学生再一次感受数学源于生活,又服务于生活的实用性,引导学生要善于观察生活,从生活中发现问题,并数学地解决问题.

本节内容是等差数列前 项和公式的推导和应用,首先通过具体的例子给出了求等差数列前 项和的思路,而后导出了一般的公式,并加以应用;再与等差数列通项公式组成方程组,共同运用,解决有关问题.

教学重点是等差数列前 项和公式的推导和应用,难点是公式推导的思路.

推导过程的展示体现了人类解决问题的一般思路,即从特殊问题的解决中提炼一般方法,再试图运用这一方法解决一般情况,所以推导公式的过程中所蕴含的思想方法比公式本身更为重要.等差数列前 项和公式有两种形式,应根据条件选择适当的形式进行计算;另外反用公式、变用公式、前 项和公式与通项公式的综合运用体现了方程(组)思想.

高斯算法表现了大数学家的智慧和巧思,对一般学生来说有很大难度,但大多数学生都听说过这个故事,所以难点在于一般等差数列求和的思路上.

①本节内容分为两课时,一节为公式推导及简单应用,一节侧重于通项公式与前 项和公式综合运用.

②前 项和公式的推导,建议由具体问题引入,使学生体会问题源于生活.

③强调从特殊到一般,再从一般到特殊的思考方法与研究方法.

④补充等差数列前 项和的.最大值、最小值问题.

⑤用梯形面积公式记忆等差数列前 项和公式.

等差数列的前项和公式教学设计示例

1.通过教学使学生理解等差数列的前 项和公式的推导过程,并能用公式解决简单的问题.

2.通过公式推导的教学使学生进一步体会从特殊到一般,再从一般到特殊的思想方法,通过公式的运用体会方程的思想.

教学重点是等差数列的前 项和公式的推导和应用,难点是获得推导公式的思路.

提出问题(播放媒体资料):一个堆放铅笔的V形架的最下面一层放一支铅笔,往上每一层都比它下面一层多放一支,最上面一层放100支.这个V形架上共放着多少支铅笔?(课件设计见课件展示)

问题就是(板书)“ ”

这是小学时就知道的一个故事,高斯的算法非常高明,回忆他是怎样算的.(由一名学生回答,再由学生讨论其高明之处)高斯算法的高明之处在于他发现这100个数可以分为50组,第一个数与最后一个数一组,第二个数与倒数第二个数一组,第三个数与倒数第三个数一组,…,每组数的和均相等,都等于101,50个101就等于5050了.高斯算法将加法问题转化为乘法运算,迅速准确得到了结果.

我们希望求一般的等差数列的和,高斯算法对我们有何启发?

数列的课件 篇8

高中数列教案


数列是高中数学课程中的一个重要概念,它在数学领域中有着广泛的应用。数列的概念并不难理解,但要熟练掌握数列的性质和运算规律,则需要花费一定的时间和精力。在高中数学教学中,数列的教学一直是一个难点和重点。为了能够更好地帮助学生掌握数列的相关知识,老师需要设计生动有趣的课堂教学内容,制定有效的数列教案。


一、教学目标


在设计数列教案之前,首先要确定教学目标。数列教学的目标主要包括:


1. 理解数列的概念和性质;


2. 掌握数列的常用运算规律;


3. 能够应用数列解决实际问题;


4. 培养学生的逻辑思维和数学推理能力。


二、教学内容


数列的内容涉及很广泛,包括等差数列、等比数列、通项公式、数列的和等方面。在设计数列教案时,应该将这些内容有机结合,从浅入深地进行教学。


1. 等差数列


等差数列是指数列中相邻两项之差恒为常数的数列。在教学中,可以通过生动有趣的例子引入等差数列的概念,然后介绍等差数列的通项公式和求和公式,并通过例题讲解加深学生对等差数列的理解。


2. 等比数列


等比数列是指数列中相邻两项之比恒为常数的数列。在教学中,同样可以通过生动有趣的例子引入等比数列的概念,介绍等比数列的通项公式和求和公式,并通过例题讲解加深学生对等比数列的理解。


3. 数列的和


数列的和是数列中所有项的和。在教学中,可以通过生活中的实际问题引入数列的和的概念,介绍数列的和的计算方法和性质,并通过例题讲解加深学生对数列的和的理解。


三、教学方法


在设计数列教案时,要采用多种教学方法,例如讲授法、练习法、归纳法、启发法等,激发学生的学习兴趣,提高学生的学习效率。


1. 讲授法


通过讲解概念、性质和运算规律,使学生理解数列的相关知识点。


2. 练习法


通过大量的练习,巩固学生对数列的掌握程度,并培养学生的解题能力。


3. 归纳法


通过归纳总结,帮助学生理清数列的性质和运算规律,提高学生对数列的整体认识。


4. 启发法


通过启发学生思考和解题,培养学生的逻辑思维和数学推理能力。


四、教学手段


为了提高教学效果,教师可以运用多种教学手段,如教学演示、多媒体辅助、学生互动等,使数列教学更加生动有趣。


1. 教学演示


通过教学演示,可以形象直观地展示数列的概念和性质,帮助学生更好地理解和掌握数列的相关知识。


2. 多媒体辅助


通过多媒体辅助教学,可以运用图片、视频等多媒体资料,吸引学生的注意力,提高学生的学习兴趣。


3. 学生互动


通过学生互动,可以促进学生之间的交流和合作,激发学生的学习积极性,提高教学效果。


五、教学评估


在教学过程中,要及时对学生的学习情况进行评估,了解学生的学习情况,及时调整教学方法和教学内容,使教学更加有针对性。


1. 小测验


可以通过小测验来检测学生对数列的掌握程度,及时发现学生的问题并进行针对性辅导。


2. 课堂讨论


可以通过课堂讨论来检测学生的学习情况,激发学生的学习兴趣,提高学生的学习主动性。


3. 作业检查


通过作业检查,及时发现学生的问题并进行针对性的辅导,帮助学生提高数列的学习效果。


通过以上的教学目标、教学内容、教学方法、教学手段和教学评估,设计出生动具体的高中数列教案,将有助于提高教学质量,帮助学生更好地掌握数列的相关知识,提高学生的数学学习兴趣和学习效果。

数列的课件 篇9

教学准备

教学目标

熟悉与数列知识相关的背景,如增长率、存款利息等问题,提高学生阅读理解能力、抽象转化的能力以及解答实际问题的能力,强化应用仪式。

教学重难点

熟悉与数列知识相关的背景,如增长率、存款利息等问题,提高学生阅读理解能力、抽象转化的能力以及解答实际问题的能力,强化应用仪式。

教学过程

【复习要求】熟悉与数列知识相关的背景,如增长率、存款利息等问题,提高学生阅读理解能力、抽象转化的能力以及解答实际问题的能力,强化应用仪式。

【方法规律】应用数列知识界实际应用问题的关键是通过对实际问题的综合分析,确定其数学模型是等差数列,还是等比数列,并确定其首项,公差或公比等基本元素,然后设计合理的计算方案,即数学建模是解答数列应用题的关键。

一、基础训练

1、某种细菌在培养过程中,每20分钟*一次一个*为两个,经过3小时,这种细菌由1个可繁殖成

A、511B、512C、1023D、1024

2、若一工厂的生产总值的月平均增长率为p,则年平均增长率为

A、B、

C、D、

二、典型例题

例1:某人每期期初到银行存入一定金额A,每期利率为p,到第n期共有本金nA,第一期的利息是nAp,第二期的利息是n—1Ap……,第n期即最后一期的利息是Ap,问到第n期期末的本金和是多少?

评析:此例来自一种常见的存款叫做零存整取。存款的方式为每月的某日存入一定的金额,这是零存,一定时期到期,可以提出全部本金及利息,这是整取。计算本利和就是本例所用的有穷等差数列求和的方法。用实际问题列出就是:本利和=每期存入的金额[存期+1/2存期存期+1利率]

例2:某人从1999到20xx年间,每年6月1日都到银行存入m元的一年定期储蓄,若每年利率q保持不变,且每年到期的存款本息均自动转为新的一年定期,到20xx年6月1日,此人到银行不再存款,而是将所有存款的本息全部取回,则取回的金额是多少元?

例3、某地区位于沙漠边缘,人与自然进行长期顽强的斗争,到1999年底全地区的绿化率已达到30%,从20xx年开始,每年将出现以下的变化:原有沙漠面积的16%将栽上树,改造为绿洲,同时,原有绿洲面积的4%又被侵蚀,变为沙漠。问经过多少年的努力才能使全县的绿洲面积超过60%。lg2=0.3

例4、流行性感冒简称流感是由流感病毒引起的急性呼吸道传染病。某市去年11月分曾发生流感,据资料记载,11月1日,该市新的流感病毒感染者有20人,以后,每天的新感染者平均比前一天的新感染者增加50人,由于该市医疗部门采取措施,使该种病毒的传播得到控制,从某天起,每天的新感染者平均比前一天的新感染着减少30人,到11月30日止,该市在这30天内感染该病毒的患者共有8670人,问11月几日,该市感染此病毒的新的患者人数最多?并求这一天的新患者人数。

麻雀的课件教案集锦


俗话说,手中无网看鱼跳。。优质课堂,就是幼儿园的老师在讲学生在答,讲的知识都能被学生吸收,所以,很多老师会准备好教案方便教学,教案可以让上课自己轻松的同时,学生也更好的消化课堂内容。那么一篇好的幼儿园教案要怎么才能写好呢?经过搜索整理,小编为你呈现“麻雀的课件教案集锦”,更多相关内容请继续关注本网站。

麻雀的课件教案 篇1

教学目标

1、认识本课要求会认的“蹈、瞪、舔”3个生字。会写“檐、脖、摔、蹲、扯、嗓、蹈、莹、瞪、啄、舔、懊、鼠、秃”等14个字,掌握“手舞足蹈、绿莹莹、懊恼、光秃秃”等词语。

2、把握文章的主要内容,理解文章内容,从小麻雀的成长过程中,吸取成长经验,全面正确地认识这对母子。

3、指导学生有感情地朗读课文,引导学生抓住句子中的重点词语,体会句子中人物的心情。

教学重点

引导学生抓住重点词句,了解普季克是一只怎样的小麻雀,妈妈是一位怎样的妈妈。

教学难点

全面、正确地认识这对母子。

教具准备

课件

教学过程

二 次 备 课

预习题纲

1、初读课文,读准字音,读通句子,不理解的生字要查字典了解字义。

2、查找有关高尔基资料。

第一课时

一、导入新课。

1、直接导入,师生共同板书课题。

2、交流有关高尔基资料,交流时让学生抓住最感兴趣的内容谈。

二、检查预习,整体感知课文

1、检查生词⑴认读:摔下、蹲着、扯着嗓子、瞪着眼睛、啄啄后脑勺、舔舔爪子、手舞足蹈

⑵谈谈发现什么?

⑶认读:绿莹莹、光秃秃

⑷你能说两个类似的词语吗?

2、默读课文,思考课文主要讲一件什么事?

3、普季克是怎样的一只麻雀?麻雀妈妈又是怎样的妈妈?请同学们再次默读课文,边读边做批注,结合有关句子谈自己的看法。

三、细读课文,理解感悟。

交流:

1、从课文1——13自然段,你对小普季克及他的妈妈分别有什么了解?从哪读出来的?

(1)普季克:

小普季克对外界很好奇,求知欲很强。

小普季克是一个自以为是、自作聪明的孩子。

(2)妈妈:妈妈对孩子十分关心,总是耐心地、不厌其烦地告诉孩子生活常识,生怕孩子有危险。

分角色朗读:

同座位两个同学一个读妈妈,一个读普季克,只读两人的对话。读出妈妈对孩子的关爱,读出小普季克的天真与幼稚。

指名读。

总结:普季克不顾妈妈的劝告,不相信妈妈解释的话,他还不知道,自作聪明,不听劝告是要吃亏的。

2、品读重点段,感受伟大的母爱与小普季克的成长。

从14——18自然段中,你对这对母子,又有怎样的认识?从哪读出来的?引导学生找到描写妈妈的语句。

(1)出示15自然段:

A对比读:

妈妈从树上扑下来。她把普季克推到一边,浑身的毛竖起来,张大了嘴巴,双眼直瞪着大花猫。她那凶猛的样子,使大花猫大吃一惊。

麻雀妈妈那凶猛的样子,使大花猫大吃一惊。

通过对比读,你有什么体会?

B展开想象。

a读着这样的语句,你的头脑中出现了怎样的画面?你看到什么?(同学描绘头脑中出现的画面)

b出示书中的图。教师激情:同学们,在强大的敌人面前,又一只老麻雀挺身而出,用渺小的身躯拯救自己的幼儿。此时此刻,你仿佛听到什么?

指导有感情地朗读。

(2) 还从哪感受到这种伟大的母爱?

出示16自然段:

紧跟着,妈妈也飞了起来,可尾巴的羽毛却让扑上来的大花猫咬掉了。不过,她好像一点也不在乎,蹲在普季克身边,啄啄他的后脑勺,欢天喜地地问:“怎么样?怎么样?”

重点体会“好像一点也不在乎、欢天喜地”。

谈感受,指导有感情朗读

(3)、创设情境感受小麻雀的成长。

多么动人的画面,多么感人的话语!同学们,此时此刻,你就是普季克。我想问问你:普季克,当你掉下来,正在害怕时,看到妈妈飞下来,你有什么想法?是什么力量,使你竟然飞了起来?当你看到妈妈因保护你,失去了尾巴还因你学会飞高兴而忘却自己的疼痛,你又有什么感受?你说没什么,总得一样一样学,你都学会什么了,明白什么道理?(引导学生一方面感受母爱;一方面认识到小孩子自作聪明,不听劝告,是要吃亏的。另一方面要在实践中经受锻炼,增长生活的本领。)

(4)、学习19自然段

普季克终于学会飞了,他感到十分高兴;可看着妈妈那光秃秃的尾巴,他又觉得鼻子酸酸的。

你能用既……又……的句式表达同样的内容吗?这句话还可以怎样说?

(如:一方面……另一方面……)

普季克你为什么鼻子酸酸的?此时此刻,你有想对妈妈说的话吗?

引导学生从两方面谈:一方面感受妈妈的爱。一方面请妈妈不要唠叨,应该多教小麻雀一些本领。

四、布置作业。

课外阅读高尔基的其他书籍。

第二课时

一、指导书写

本课会写的字中有几个容易写错的地方:“摔”字中的“幺”不要丢“点”;“蹲”字右边的“酋”不要丢掉里面的小“横”;“蹈”字右下部的“臼”里面的两小“横”,笔顺是:撇、竖、横、横折、横、横;“舔”字右边上面是“横”不是“撇”,下面不要丢一“点”写成“小”;“秃”字下面是“几”,不要写成“儿”。

二、练习说话

你和爸爸妈妈发生过争执吗?向老师和同学说说争执的原因、经过和结果。

麻雀的课件教案 篇2

一、复习词语,顺势导入

1.复习导入。《麻雀》是一篇以麻雀为主角的叙事文章。(板书:叙事)今天,我们再次走进这个故事,去感受一种神奇的力量。首先复习一下词语。(出示)

(1)指名朗读词语,说说描写了谁?(小麻雀、猎狗、老麻雀)

(2)看着这些词语,你能简单说一下发生了什么吗?(根据学生回答,梳理故事脉络并板书:幼雀坠落遇险—母雀奋力护儿—猎狗震惊退却)

2.了解文章结构。同学们,这就是这个故事的起因、经过和结果。这几个环节能不能交换?(不能)本文就是随着故事发展的顺序来进行描写的。

二、品词析句,还原情境

1.品幼雀之无助,感受情境之危险。

(1)故事的起因是幼雀坠落遇险。请大家默读课文,找找你从哪些语句中感受到危险?

▲预设:幼雀之小。

紧扣第3自然段中“嘴角嫩黄、长着绒毛、出生不久”等词感受小麻雀的幼小。想象一下刚出生的小麻雀在这种情况下可能遇到哪些危险?(从树上掉下来,可能受伤;刚出生不久,抵抗力差;离开妈妈,没有食物等等。)

▲预设:猎狗之凶。

抓住第2自然段中“放慢脚步、悄悄地向前走”及第4自然段中“嗅了嗅、张开大嘴、露出锋利的牙齿”等词语感受猎狗带来的危险。请看看插图,再次展开想象,你感受到了什么?(太可怕,小麻雀随时都可能被一口吞掉……)

▲预设:环境之险。

从第3自然段“风猛烈地摇撼着路旁的白桦树”这句话中,你感受到什么?(危险,因为小麻雀掉下来了,树枝也可能被凤刮断掉下来。)这就是环境描写对故事情节渲染气氛的作用。今后,同学们在习作的过程中也可适当地尝试使用环境描写的写作手法。

(2)同学们,面对这些危险,幼雀的表现是怎样的?(呆呆地站在地上、无可奈何。)从中感受到什么?(很无助)它刚出生不久,身体还那么柔弱,怎么能跟那么强大的猎狗抗衡呢!(齐读第3自然段,读出弱小、紧张、担心的感觉。)

2.品母雀之无畏,感受母爱之伟大。

(1)同学们,在如此危险的状况下,看谁来了?(引读并出示:“突然,一只老麻雀从树上飞下来,像一块石头似的……”)读读这句话,你有哪些疑问?(麻雀很小,此时为什么说它像一块石头似的落在猎狗面前?什么是“挓挲”?)

(2)(出示图片,引导学生理解“挓挲”就是展开的意思。)很多动物遇到危险时都会有一些举动力求能震慑对方,而此刻老麻雀是想做什么呢?(赶走猎狗,保护幼雀。)

(3)还有可以看出它想保护幼雀的地方吗?(从“突然”一词看出老麻雀救护小麻雀的急切心情;“绝望地尖叫着”说明它知道此时危险之大,它可能无法保护它的孩子,但是它依然在努力……)

(4)现在你能理解文中所说的“像石头似的”吗?(表现出老麻雀飞下来的速度之快,同时也体现出它的毫无畏惧。)

(5)再找找课文中其他描写老麻雀的句子,读一读。

(6)(出示课文第5自然段)请同学们读读,哪些词让你的心为之一颤?(紧张、浑身发抖、嘶哑的声音、呆立着不动、一场搏斗……)结合具体的词语谈谈你的感受。(“浑身发抖”一词可以感受到当时老麻雀很紧张,它很担心自己的孩子受到猎狗的伤害;“嘶哑的声音”可以看出老麻雀已经竭尽全力在尖叫,希望猎狗能离小麻雀远一些,那种绝望时的尖叫让人心碎;“呆立着不动”可以感觉到老麻雀已经在准备着和猎狗进行一场殊死斗争,它正在积蓄能量。)

(7)读到这里,我们感觉到了什么?(战斗来临前的低沉气氛)这场搏斗的双方分别是谁?(老麻雀和猎狗,出示图片)从图片看,你觉得胜负如何?(猎狗胜,老麻雀败。)说说原因。(引导学生再看课文插图,猎狗高大凶狠,有着锋利的牙齿;老麻雀弱小,绝望。)

(8)(分别出示描写麻雀和猎狗的相应句子对比读。)老麻雀,老麻雀,你不是猎狗的对手,赶紧飞回树上逃命吧!(老麻雀:不行,我的孩子还在这里呢,我不能走!)老麻雀,老麻雀,你们的实力太悬殊了,你还是先顾自己的命吧!(老麻雀:不行,那可是我的孩子,我绝不能丢下它,我一定要保护它。)

(9)是呀!它要保护自己的孩子。因此,当看到猎狗发现掉落的小麻雀时,它(引读:突然,一只老麻雀从一棵树上飞下来……)当它很绝望时,它依然(引读:老麻雀用自己的身躯掩护小麻雀……)

(10)读着这些话,你感受到了什么?(老麻雀很爱小麻雀,竭尽全力要保护它。)文中有这样一个词“一种强大的力量”,你读懂了吗?(这就是母爱,母爱是无私,是不顾一切。板书:母爱伟大)

(11)动物和人一样有感情。人们常说世上最无私的爱就是母爱。出示相关的例子(其一,母牛阻拦人群为小牛求水;其二,汶川地震中,母亲全去身体护住幼儿等。)

3.品猎狗之进退,感受故事之精妙。

(1)同学们,这场战斗最终结果如何?一起读读课文第6自然段。(猎狗震惊退却)

(2)是什么让故事结果有了逆转呢?猎狗,猎狗,你刚才还龇牙咧嘴,势在必得,为什么愣住了?(猎狗:因为我感受到了老麻雀的奋不顾身。)猎狗,猎狗,你那么庞大,为啥怕弱小的麻雀?(猎狗:不是怕,我是敬佩老麻雀保护小麻雀的勇气。)

(3)獵狗愣住了,遇到这样的状况,它慢慢地、慢慢地往后退。小麻雀的危险暂时解除了,老麻雀护儿取得了胜利,故事结局发生了逆转,这给读者带来了意想不到的惊喜。

三、由“我”串联,复述故事

1.文中之“我”。课文中除了出现老麻雀、小麻雀和猎狗之外,还有一个“我”。读读课文的第1、7自然段,想想能否删除?(不能,其一,这个故事是我的所见、所闻、所思并有选择地记录下来的;其二,体现了人与动物相处的自然与和谐。)

2.复述故事。请同学们以四人小组为单位,练说这个故事。复述要求:按事情起因、经过、结果的顺序组内进行分工复述;复述时,关注小麻雀、老麻雀、猎狗的动作与神情等;相互进行点评。

3. 小结课文。麻雀一文是叙事性文章,作者能按照事情发展的顺序把看到的、听到的以及想到的都写出来,活灵活现地展现了麻雀和猎狗相遇时的情形,在具体细致的描写中感受到了母爱的伟大,值得我们细细品味。(齐声朗读课文)

麻雀的课件教案 篇3

小班语言活动:《爱唱歌的小麻雀》

活动目标:

1、理解故事内容,学说故事中角色的对话,愿意在集体中大胆发言

2、知道在一定的场合要保持安静,不影响别人

活动重点:理解故事内容,学说故事中角色的对话

活动难点:知道在一定的场合要保持安静,不影响别人

活动流程:

一、创设情景,引入主题

二、演示教具带领幼儿参与故事情节的展开

三、完整播放录音后,说说大家不让小麻雀唱歌的原因

四、讨论:结合生活实际,说说同伴哪些地方需要改正

活动反思:

之所以选择这一语言活动进行探究反思,缘由是在第一学期,这是骨干教师培训时一节开课的内容,当时幼儿学习故事之后,还不能很好地理解“为什么大家不让小麻雀唱歌的原因”,内容深度似乎有些超出幼儿的能力范围

因此,在第二次教学后,我根据三个方向的目标对这一活动进行了简要反思:

一、认知目标:幼儿基本可以理解故事内容,没有太大难度,但情节中的上、下空间方位则是认知中的难点,由于故事中一直强调的是“下面”这一方位,因此幼儿对“下面”这一方位的认识比“上面”认知得更好

二、能力目标:由于故事情节都是相似的,只是更换了角色,因此在前两个角色表述后,幼儿已经可以不用通过老师提醒而学说故事中重复出现的那几句对话,但对于情景内容的描述还有一定难度,大多数幼儿还只会用一句话描述,前后语句间的连贯表述是幼儿表达的难点

三、情感目标:通过生动的形象、情节,幼儿可以理解关爱朋友的美好情感,但这仅局限于这一故事内容上的认知,但若要移情到自己的生活实践中,或许对幼儿来说还有一定困难,还需要在今后的生活教学中潜移默化地不断培养

麻雀的课件教案 篇4

一、教学目标

1、学唱歌曲《小麻雀》

2、动脑为歌曲创编歌词、动作

二、教学重点难点

1、学会歌曲《小麻雀》,并能边演边唱

2、动脑为歌词创编歌词动作

三、教学过程

1、律动《早上好》

2、同学们,今天通往这节课的大门需要你们自己来开启啦。看看你们打开的什么样的世界。(打节奏)

3、我们再拍拍这个神秘的暗号,看看会出现什么?(出现青蛙,兔子,鸭子,鸽子,并且来和他们打打招呼,做做动作)

4、听,这个什么声音?

5、老师:今天老师就要介绍这只非常热情的小麻雀给大家认识。 同学们仔细听,我是一只怎么样的小麻雀呢?(录音机放歌曲PPT展示相应歌谱)

6、为了迎接小麻雀的到来,我们一起来个欢迎会吧。看老师手上有个小乐器,叫做串铃,请你竖起耳朵听一听,老师拍的是哪一条节奏。请大家伸出双手握拳,左手在下,右手在上,跟着老师一起拍一拍。 为歌曲伴奏

7、小麻雀很高兴能够认识大家,初次见面,他给大家带来了两份礼物,

8、让我们一起来夸一夸小麻雀吧。(按节奏读歌词,在读的过程中注意节奏)

9、听到了大家的夸奖,小麻雀忍不住跳起了舞蹈,请大家伸出手,跟着老师的歌声,画一画小麻雀舞蹈的路径

10、学唱:a、学唱第一乐句跟唱 b、师生合作唱谱 c、请学生找一找第一句相同处 d、请学生在相同处一起唱 e、加入赞美的歌词

11、再次用可爱的声音演唱,并为自信的小朋友带上小鸟头饰

12、此时若小鸟已经飞远了些,我们的歌声应该是怎样的

13、若小年都快看不见了,我们的歌声又该怎样

14、请带有头饰的小朋友随意飞,剩余的小朋友唱,注意小鸟来到身边应该怎么样,飞远了又该怎么样

15、编创:小麻雀带了他的一个小伙伴,听,是谁

16、开动脑经,模仿小麻雀夸一夸小花猫

17、用歌声来赞美可爱的小花猫

18、分角色演唱,比比看是小麻雀更可爱还是小花猫更可爱

19、加入串铃伴奏,丰富演唱

20、今天动物们很高兴认识我们,我们以后要爱护这些小动物,和他们做朋友

麻雀的课件教案 篇5

教学目标

1、联系课文学习、理解“摇撼”“扎煞”“无可奈何”等词语,练习抓住故事中的角色及故事的起因、经过、结果来概括课文的主要内容。

2、抓住描写老麻雀及描写猎狗的重点词句感悟老麻雀强烈的护子之爱,体会母(父)爱的力量。

3、品味描写老麻雀、小麻雀及猎狗样子、神态的语言,初步感受屠格涅夫作品的魅力。

教学重点、难点

透过作者对猎狗、老麻雀样子的描写,体会文中各角色的品质特点,真切感受爱的力量,感悟语言的表现力。

教学过程

一、名言导入,引出课文

请小朋友们看到这句名言:麻雀虽小,五脏俱全。(用幻灯片出示)

请大家读读。听过吗?知道这句名言的意思吗?也许里面的“俱全”一词不知道什么意思是吧?俱――都的意思;全――齐全的意思。这句名言讲的是麻雀虽然个儿小,但它的心、肝、脾、肺、肾这五样内脏却样样齐全;比喻某样事物虽然小,但什么也不缺,该有的东西都具备。明白了吗?请大家记住这句名言,有一天你会用上它的。

由这句名言,你感受到麻雀个儿怎样呀?认识麻雀吗?(交流)(相机出示麻雀图)

就是这么一个不起眼的小麻雀,留给人们印象不怎么特别的小麻雀,却有一个特别的故事,震撼过一位俄国大作家的心,这个故事就是我们今天要学的课文――《麻雀》。

【设计意图】将一些经典语言“植入”学生的大脑,是语文教学的使命之一。“麻雀虽小,五脏俱全”是一句在人们口头上广为流传、在许多著作中常被引用的经典名言。在这节描写麻雀的语文课之初谈起这句名言,对名言的学习来讲,找到了一个恰当的时机;对课文学习的铺垫――了解麻雀来讲,又找到一个合适的切入口――学生通过名言中的信息很快感知到麻雀个儿小的特性。聊名言――聊麻雀――揭课题,衔接自然,教学不单调,一个环节里揉合了几个教育目的,体现了语文教育的综合性,让课堂更为高效。

二、整体感知,学习生词

1、请小朋友们自由地放声朗读课文,想想课文写的是关于麻雀的什么故事,感动作者的是什么。

2、这儿有几个生词(出示幻灯片),看看大家是否能读正确,是否理解:

嗅;摇撼;无可奈何;扎煞

1)指名读词,注意正音

2)多种方法解词

嗅(做个嗅的动作)摇撼(师生合作演示风摇撼树的动作)

无可奈何(联系课文理解:讲谁做什么无可奈何?)

扎煞(联系文中语句、看插图理解)

【设计意图】自读自学后的读词解词,是扫清阅读与理解障碍的需要,也是语文课固有的任务之一;灵活采用不同的方式理解词语,即教给方法,又让学生学有乐趣。

3、检查读课文情况(开火车分节读)。

4、课文讲的是一个什么样的故事?(同桌互说后指名说,老师帮助修正表达)

板书关键词:小麻雀;猎狗;老麻雀;掉;咬;救

5、引导看着板书说故事的起因、经过、结果,并练习将起因、经过、结果连起来说故事的主要内容。

【设计意图】概括课文的主要内容对小学生来说是个难点,经过“同桌互说互评”――“指名试说,老师帮助理顺表达”――“根据课文特点抓住主要角色及故事的发展顺序来说”这么几个步骤的练习,化解了难点,让学生从说不好到人人都能抓住要点概括好。

三、紧扣结果,引发思考

这个故事新鲜吗?你对故事的结果感到奇怪吗?看看故事的结果怎么写的。(读故事的结尾部分)

这当然奇怪了:麻雀是那么弱小,猎狗是那么强大,但结果,老麻雀却赢了,吓退了猎狗,成功地救下了小麻雀。――怎么会出现这样的结果呢?难道是因为这只猎狗胆小无能吗?

【设计意图】从出人意料的故事结果切入,追溯导致结果的原因,引发了学生的学习兴趣和探究欲望,也为下面的教学找到一条统领全课、步步深入的思路。

四、感悟猎狗的老练和凶猛

那这是一只怎样的猎狗?请找出有关语句说说,感受猎狗的训练有素、凶猛、庞大。(有三处语段,点击课件出示)让学生扣重点词理解:

突然,我的猎狗放慢脚步,悄悄地向前走,好像嗅到了前面有什么野物。

猎狗慢慢地走近小麻雀,嗅了嗅,张开大嘴,露出锋利的牙齿。

在它看来,猎狗是个多么庞大的怪物哇!

1、“放慢”“悄悄”“嗅到”――通过形象演示来体会猎狗的老练;

2、“张开大嘴”“锋利的牙齿”――读、演,感受猎狗的凶残。

3、“庞大”“怪物”――站在麻雀的角度感受猎狗的庞大。

【设计意图】猎狗的老练和凶猛是突出老麻雀勇敢、无私的一个反衬,品读对猎狗动作、样子的描写,可以促进学生对课文中心的领悟及对作者所作对比描写的感知。

五、感受老麻雀不顾一切的护子之爱

过渡语:既然不是因为猎狗的懦弱,那就是老麻雀有奇特的本事了?

用波浪线画出写老麻雀表现的语句。(学生交流后点击投影)

突然,一只老麻雀从一棵树上飞下来,像一块石头似的落在猎狗面前。它扎煞起全身的羽毛,绝望地尖叫着。

老麻雀用自己的身躯掩护着小麻雀,想拯救自己的幼儿。

儿,可是因为紧张,它浑身发抖,发出嘶哑的声音。它呆立着不动,准备着一场搏斗。

看看老麻雀是不是神鸟,是不是用了特异功能把猎狗吓走的?(不是)从哪儿看出它也是一只一般的、没有特殊本领的鸟?(它很紧张,很恐惧,很绝望,因为它看到孩子处境极其危险,自己又根本不是猎狗的对手)(相机感受小麻雀的幼稚和无奈)

3、但我们又老觉得老麻雀是一只不一般的鸟,它把凶猛、庞大的猎狗吓退了,把不可能的事变成了可能。再读读写老麻雀的语句,看看它的不一般表现在哪儿,它是凭什么吓退猎狗的?小组讨论讨论。

随着交流,扣住重点词体会老麻雀对小麻雀无私的、强烈的、奋不顾身的爱:

(1)“像一块石头似的落在……”这个比喻特别吗?这样写突出了什么?(形容老麻雀奋不顾身地飞下来,速度快,有力量。)

(2)“扎煞起全身的羽毛”“绝望地尖叫”说明它虽然感觉到了这是一场力量悬殊的毫无希望的决斗,非常紧张,但却毫不犹豫地去斗猎狗,全力以赴,不顾一切。

(3)“浑身发抖”“发出嘶哑的声音”“呆立着不动”――非常紧张,全心应对强大的敌人,有再大的危险也不管了,才会这个样子。

(4)假如老麻雀会说话,它“尖叫”“发出嘶哑的声音”时会喊些什么话呢?

(5)透过老麻雀的外在表现,我们似乎可以触摸到它那颗拼死救子的内心:当它一发现猎狗靠近小麻雀了,要咬小麻雀时,它内心想?当它感受到猎狗是个庞大的怪物时,心里又想?

【设计意图】对这部分正面描写老麻雀勇斗猎狗的文字,先从“它也是一般的鸟”的角度去品读,深切感受它外表弱小、处于劣势的一面;再从“它的不一般的表现”去赏析,则体悟到它的力量,它的内心的强大。这种平凡与不平凡交织在一起,老麻雀的形象才更深刻地留在了学生心中,作者描写事物真实合理的文法也留在了学生心中。然后通过想象老麻雀叫的声音和它当时的内心活动,真切地感悟到老麻雀对幼儿无私的爱。

5、看到老麻雀感人的表现,作者也想到老麻雀内心去了:

在它看来,猎狗是个多么庞大的怪物啊!可是它不能安然地站在高高的没有危险的树枝上,一种强大的力量使它飞了下来。

“一种强大的力量”指的是什么力量?读读作者的体会,进一步感受老麻雀对孩子深厚的爱。

6、概括:这是一只怎样的老麻雀?

【设计意图】通过前面的品读感悟及体会作者的感慨,思考作者的概括,此时再来概括老麻雀的品质特点,抓课文中心,就显得水到渠成了。

六、回顾结果,体会爱的力量

1、你现在明白是什么力量让强大、凶猛的猎狗退步了吗?被这种力量震撼的仅仅是猎狗吗?还有谁?

2、参入原作作者最后抒发感触的话(投影)。体会作者对麻雀的敬佩之情。

是的,请不要见笑。对那只小小的、英勇的鸟儿,对它的爱的激情,我是怀着虔敬之情的。我想,爱比死,比死的恐惧更强大――只有它,只有爱,才维系着生命,并使它充满活力。

――摘自屠格涅夫《猎人笔记》

3、拓展:你还体验过类似的母爱或父爱的力量吗?听过类似的感人故事吗?(交流)

【设计意图】回顾结果,反观“老麻雀为何能吓退猎狗”,课始悬着的疑问至此有了明确的答案,学生对课文的学习也“回到整体”,对课文旨意的把握由含糊到明晰,提升了一个层次。接下来参入作者原著中抒发感慨的话,既能从侧面强化对中心的认识,又让“吃不饱”的学生引发更深入、更广阔的联想。后面的拓展,意在使学生超越课文,拓宽联想,将学习与生活联系起来。

七、小结

今天,我们学习了《麻雀》一课,我想我们每个人的心,都跟作者一样,被文中老麻雀爱孩子的力量和勇气震撼了。的确,这个世界上,父爱母爱是这个世界上最无私最伟大的爱。懂得了这一点,面对父母,我相信大家能更加懂得感恩。

【设计意图】简单结课,引导学生“由人及己”,看到父爱母爱的伟大,懂得感恩,学习做人。

八、课外作业(投影出示)

1、把这个故事讲给家里人听。

2、摘抄并背诵两三句歌颂母爱或父爱的诗句或名言。

3、爱阅读的你可以找到屠格涅夫的《猎人笔记》来读读。

附:板书设计

挡住;拯救

猎狗――――老麻雀――――小麻雀

(后退)(落在)(掉下)

相关推荐

  • 找质数课件教案(集锦6篇) 宜未雨绸而缪,毋临竭而掘井。幼儿园的老师都希望自己讲的课学生们爱听,能学习的更好,为了加强学习效率,我们一般会事先准备好教案,教案对教学过程进行预测和推演,从而更好地实现教学目标。所以你在写幼儿园教案时要注意些什么呢?小编花时间专门编辑了找质数课件教案,欢迎你参考,希望对你有所助益!1、使学生理解质...
    2023-06-18 阅读全文
  • 数列的说课稿集锦 培养学生自主学习的意识是育才造士、为国之本的重要手段。因此,作为教师,应该认真准备精心编写的教案,以协助学生更好地自主学习。对教师而言,写出一份优秀的教案,可以说是一项不小的挑战。不过,幼儿教师教育网编辑特地整理了“数列的说课稿”,相信您在阅读本文后,一定会有所收获!...
    2023-06-26 阅读全文
  • 等比数列课件合集 俗话说,做什么事都要有计划和准备。身为一位优秀的幼儿园的老师我们都希望自己能教孩子们学到一些知识,最好的解决办法就是准备好教案来加强学习效率,。教案对教学过程进行预测和推演,从而更好地实现教学目标。幼儿园教案的内容具体要怎样写呢?于是,小编为你收集整理了等比数列课件合集。欢迎阅读,希望大家能够喜欢!...
    2024-08-30 阅读全文
  • 小学数学课件教案集锦12篇 教师会根据教材中的主要教学内容整理教案和课件,以便按照质量和时间要求准时准备好它们。学生的认知水平和表现通过反应得到体现,因此,写好教案课件的关键在于什么?幼儿教师教育网小编在本网站搜集了一些相关资源,敬请关注!...
    2023-06-28 阅读全文
  • 最新数列的课件 我们听了一场关于“数列的课件”的演讲让我们思考了很多,经过阅读本页你的认识会更加全面。老师会对课本中的主要教学内容整理到教案课件中,所以老师写教案可不能随便对待。教案是评估学生学习效果的有效依据。...
    2024-10-14 阅读全文

宜未雨绸而缪,毋临竭而掘井。幼儿园的老师都希望自己讲的课学生们爱听,能学习的更好,为了加强学习效率,我们一般会事先准备好教案,教案对教学过程进行预测和推演,从而更好地实现教学目标。所以你在写幼儿园教案时要注意些什么呢?小编花时间专门编辑了找质数课件教案,欢迎你参考,希望对你有所助益!1、使学生理解质...

2023-06-18 阅读全文

培养学生自主学习的意识是育才造士、为国之本的重要手段。因此,作为教师,应该认真准备精心编写的教案,以协助学生更好地自主学习。对教师而言,写出一份优秀的教案,可以说是一项不小的挑战。不过,幼儿教师教育网编辑特地整理了“数列的说课稿”,相信您在阅读本文后,一定会有所收获!...

2023-06-26 阅读全文

俗话说,做什么事都要有计划和准备。身为一位优秀的幼儿园的老师我们都希望自己能教孩子们学到一些知识,最好的解决办法就是准备好教案来加强学习效率,。教案对教学过程进行预测和推演,从而更好地实现教学目标。幼儿园教案的内容具体要怎样写呢?于是,小编为你收集整理了等比数列课件合集。欢迎阅读,希望大家能够喜欢!...

2024-08-30 阅读全文

教师会根据教材中的主要教学内容整理教案和课件,以便按照质量和时间要求准时准备好它们。学生的认知水平和表现通过反应得到体现,因此,写好教案课件的关键在于什么?幼儿教师教育网小编在本网站搜集了一些相关资源,敬请关注!...

2023-06-28 阅读全文

我们听了一场关于“数列的课件”的演讲让我们思考了很多,经过阅读本页你的认识会更加全面。老师会对课本中的主要教学内容整理到教案课件中,所以老师写教案可不能随便对待。教案是评估学生学习效果的有效依据。...

2024-10-14 阅读全文
Baidu
map