课件与课程内容有着直接联系。所谓多媒体课件是根据教学大纲的要求和教学的需要,经过严格的教学设计,并以多种媒体的表现方式和超文本结构制作而成的课程软件。以下是小编带来的相关内容,希望对你有帮助。
3年级数学上册课件 篇1
教学目标
1、认识质量单位吨,通过积极的探索活动建立吨的概念。
2、理解吨与千克之间的关系,知道1吨=1000千克,会进行简单的换算。
3、通过实践操作、观察比较、猜测推算等活动,培养学生的估算能力。
重点难点
重点:建立质量单位“吨”的概念。
难点:“吨”与“千克”之间的单位换算。
教学过程
一、复习引入
1、说说我们学过哪些表示物体质量的单位,并举例说明它们在生活中的应用。
2、填空。
1千克=( )克
4千克=( )克
1000克=( )千克
6000克=( )千克
师:你们知道世界上最重的动物是什么吗?它的体重大约是多少呢?(课件出示蓝鲸资料,以千克标记体重)
师:克、千克是我们已经学过的质量单位,刚刚同学们也举了一些生活中用克、千克为单位的物品的例子,想想看,蓝鲸的体重用千克作单位合适吗?
师:的确,像蓝鲸这种比较重的物品再用千克来计量就不太合适了。今天我们就来认识一种更大的质量单位——吨。 (板书课题:吨的认识)
师:吨是比千克大的质量单位,计量较重的或大宗物品的质量,通常用吨(t)作单位。(板书)
二、学习新课
1、教学教材第31页例7。
(1)认识吨。
师:杨叔叔有一批货物要运送,可以选择集装箱和火车运送两种方式,你知道它们分别能装多少吨货物吗?(课件出示教材第31页例7上图,点名学生回答)
(2)吨与千克之间的关系。
师:刚才这个问题让我们对吨在生活中的应用有了初步的认识,究竟1吨有多重我们还不太清楚。那么,现在就让这堆大米告诉我们答案吧!
师:说说看,你是如何计算的。(课件出示教材第31页例7中图,点名学生回答)
师:10袋大米重1000千克,也就是1吨,因此我们有1吨=1000千克。(板书)
(3)体会1吨有多重。
师:如果同学们对用10袋100千克装大米计量1吨感知还不够清晰,我们再举一个身边的例子体会下。
师:同学们都有量过体重吧,你知道自己的体重吗?(学生小组交流)
师:图片中的这名同学体重是25千克,你能算出10名这样重的'同学大约重多少千克吗?40名呢?(课件出示教材第31页例7下图,点名学生回答)
师:还记得千克和吨的关系吗?1吨等于多少千克呢?(学生齐答)
师:40名这样重的学生大约等于几吨呢?(学生齐答)
师:正确,就是1吨。大家算一算,多少个和你一样重的同学体重等于1吨呢?(学生小组交流)
2、教学教材第32页例8。
师:我们已经知道1吨就是1000千克,那吨与千克这两种质量单位如何换算呢?我们来看下面这道例题。(点名学生回答,老师板书)
师:同千米和米之间的换算一样,吨与千克之间的进率是1000,将吨转换成千克,数字末尾添上3个0;将千克转换成吨,数字末尾去掉3个0。(板书)
三、巩固反馈
完成教材第32页上方“做一做”,下方“做一做”。 (点名学生回答)
上方做一做第1题:①很重物体的质量,如:大象,鲸鱼……②运输工具的载质量,如汽车,轮船,火车……
上方做一做第2题:2 10 20 4
下方做一做:6 5000
四、课堂小结
通过今天的学习,你对质量单位吨有哪些认识?
板书设计
吨的认识
吨是比千克大的质量单位,计量较重的或大宗物品的质量,通常用吨(t)作单位。
3年级数学上册课件 篇2
第 1 课时
时间与数学
教学目标:
1、知识与技能:通过具体问题的探索,体会时间与数学的密切联系。
2、过程与方法:在观察比较、发现规律的现实活动中,进一步提高观察能力和发现的能力。
3、情感态度与价值观:在数学活动中培养学生的观察能力和开放性思维能力。
教学重点:
通过具体问题的探索,体会时间与数学的密切联系。
教学难点:
在观察比较、发现规律的现实活动中,进一步提高观察能力和发现的能力。
教学方法:
观察、交流
教学准备:
投影、挂图
教学过程:
一、创设情境,提出问题
教师活动 学生活动 二次备课
二、主动探索,解决问题
1、领会情境中的问题
奇思的父亲每天工作3天休息一天,你怎样理解这句话?母亲每工作一天休息1天,你又是怎样理解呢?
2、让学生按要求在日历上分别标出父亲、母亲、奇思的休息日,可以分别用不同的符号表示,然后进行反馈。
3、进一步引导学生:根据奇思一家3口的休息日,我们还能知道什么?
三、日历中的规律
1、观察日历可以先看上下,再看左右,然后再看对角线上的数,说说你发现了什么?
2、观察日历表中的4个数字,你发现了什么?
交流自己的发现
3、 观察日历表中有阴影的9个数,你又有什么发现?
4、 你还能在日历中找到什么规律?
四、这节课你有什么收获?
3年级数学上册课件 篇3
教学目标
一、基础性目标:
1、通过生活中的事例,使学生初步体会数字编码思想在解决实际问题中的应用。
2、让学生通过观察、比较、猜测来探索数字编码的简单方法,学会用数进行编码,初步培养抽象、概括能力。
二、发展性目标:
1、让学生进一步体会数在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养应用意识和实践能力。
2、使学生在数学活动中养成与人合作的良好习惯,初步学会表达和交流解决问题的过程和结果。
教学重点:
1、了解邮政编码的结构,初步体会数字编码的方法。
2、了解身份证号码中蕴含的简单信息,加深对编码方法的理解。
3、掌握利用符号和数字组合编码的方法。
教学难点:
1、了解邮政编码的结构,初步体会数字编码的方法。
2、了解身份证号码中蕴含的`简单信息,加深对编码方法的理解。
3、掌握利用符号和数字组合编码的方法。
教材分析:
1、“数学广角”主要是向学生渗透一些重要的数学思想方法。本单元是通过日常生活中的一些事例,使学生初步体会数字编码思想在解决实际问题中的应用,并通过观察、比较、猜测来探索数字编码的简单方法,让学生学会运用数进行编码,初步培养学生的抽象、概括能力。
2、在日常生活中,数有着非常广泛的应用。让学生明确,数不仅可以用来表示数量和顺序,还可以用来编码,并通过实践活动进行简单的数字编码,培养学生的数学思维能力。
3、数字编码和我们的生活紧密相关,让学生通过生活中的具体事例,比如邮政编码、身份证号码、电话号码等,体会到运用数字或者符号来描述事物,可以比较简洁、准确地表示出事物蕴含的客观规律,也便于我们分类查询和统计。
4、通过一些生活中的事例向学生渗透数字编码思想,通过观察、比较、猜测来探索数字编码的简单方法,并通过实践活动加以应用。让学生体会到数学应用的广泛性,从而提高他们学习数学的兴趣和积极性。
教学建议:
1、恰当把握目标。数字编码是一种抽象的数学思想方法,在这里学生只要能从邮政编码、身份证号码等具体实例中初步了解蕴含其中的一些简单信息和编码的含义,探索出数字编码的简单方法,并能在实践活动中加以应用就可以了,不要求学生掌握编码中每个数字的信息和含义。
2、注意数学与生活的联系,适度关注学生的生活经验。教学中,教师要尽量从学生身边的具体事例来引入教学。同时,启发学生了解生活中的数学,比如通过调查了解邮政编码和身份证号码的含义,了解生活中的一些数字编码的意义等。
3、让学生动手实践,提供自主探索的空间。学生在实践中可以有不同的编码方法,教师要允许学生采用不同的形式,并且要放手让学生亲身去体会、经历运用所学知识解决实际问题的过程,培养学生的探索精神和实践能力。教师只是在必要时给以一定的点拨、引导。
3年级数学上册课件 篇4
设计说明
根据《数学课程标准》对数与代数内容的安排,小学阶段笔算加、减法的最高要求就是三位数加、减法的笔算,而万以内的加法和减法这部分内容的重点是培养学生的计算能力、估算能力和选择合适策略解决问题的能力。本节复习课的重点是引导学生巩固计算方法、提高计算能力,培养学生灵活运用所学知识解决实际问题的能力。
1.注重复习方法,提高计算能力。
在本节课的教学中,先让学生通过计算回顾万以内的加法和减法的计算方法,再结合教材提供的资源,进一步加强计算方法的指导,使学生在进一步理解算理的同时,提高计算能力。
2.重视从实际生活情境中提炼问题,培养学生解决实际问题的能力。
在教学中,把计算融入到具体的生活情境中去,让学生在具体情境中提取信息,提出问题,并运用所学知识解决问题,使学生充分体会数学与生活的'密切联系,体验数学计算的实用价值,从而提高学生分析问题和解决问题的能力。
课前准备
PPT课件
教学过程
整理复习
1.课件出示:计算下面各题。
175+62=985-423=259+148=
806-714= 325+464= 310-207=
2.先让学生独立完成,然后集体交流。
3.同桌之间互相说一说万以内的加法和减法的计算方法。
(加法:相同数位对齐,从个位加起,哪一位上的数相加满十,就向前一位进1.减法:相同数位对齐,从个位减起,哪一位上的数不够减,要从前一位退1当10,加上本位上的数再减)
4.组内讨论:计算万以内的加、减法时,要注意什么?
(计算加法时要注意哪一位满十向前一位进1,每一位相加时不要忘记加上进位的1.计算减法时要注意哪一位不够减从前一位退1,被减数中间有0的减法,要连续退位,0被退位以后要当作9来计算)
设计意图:复习万以内的加法和减法的计算方法时,重点突出加、减法中容易出现错误的知识点,使学生在计算万以内的加、减法时,注意容易出现错误的地方,从而有效地提高正确率,加深学生对算理的理解。
巩固运用
课件出示教材109页1题中的表格及问题:一架飞机先从北京飞到广州,再飞行690千米到三亚,一共飞行了多少千米?比从北京直接飞到三亚多飞多少千米?
3年级数学上册课件 篇5
教学目标:
1.让学生经历韦恩图的产生过程,能借助直观图,利用集合的思想方法解决简单的实际问题。
2.培养学生善于观察、善于思考的学习习惯。使学生感受到数学在现实生活中的广泛应用,尝试用数学的方法解决实际生活中的问题,体验解决问题策略的多样性。
教学重点:
让学生感知集合的思想,并利用集合的思想方法解决简单的实际问题。
教学难点:
学生对重叠部分的理解。
教学准备:
多媒体课件、姓名卡片等。
教学过程:
(一)创设情境,引出新知
1.出示信息。
出示教科书例1,只出示统计表,不出示问题。让学生说一说从中获得了哪些信息。
2.提出问题,激发“冲突”
让学生自由提出想要解决的问题,重点关注“参加这两项比赛的共有多少人”这个问题,让学生解答。关注不同的答案,抓住“冲突”,激发学生探究的欲望。
(二)自主探究,学习新知
1.独立思考表达方式,经历知识形成过程。
师:大家对这个问题产生了不同的意见。你能不能借助图、表或其他方式,让其他人清楚地看出结果呢?
学生独立思考,并尝试解决。
2.汇报交流,初步感知集合概念。
(1)小组交流,互相介绍自己的作品。
(2)选择有代表性的方案全班交流。
请每幅作品的创作者上台介绍自己的思考过程,注意追问“如何表示出两项比赛都参加的学生”,体会两个集合中的公共元素构成的交集。
预设1:把参加两项比赛的学生姓名分别列出,把相同的名字连起,就找到两项比赛都参加的学生了,有3人。这样参加跳绳比赛的9人,加上参加踢毽比赛的8人,再去掉3个重复的,应该是14人。
预设2:先写出所有参加跳绳比赛同学的姓名,再写参加踢毽比赛的。如果与前面的相同就不重复写了,连线就能表示了。一共写出了14个不同的姓名,说明参加比赛的有14人。从姓名上如果引出两条线,就说明他两项比赛都参加了。
预设3:把参加两项比赛学生的姓名分别放到两个长方形里,再把两项比赛都参加的学生的名字移到一边,两个长方形里都有这三个名字,把这两个长方形的这部分重叠起来,名字只出一次就可以了。可以看出只参加跳绳比赛的有6人,两项比赛都参加的有3人,只参加踢毽比赛的有5人,一共有14人。
3.对比分析,介绍韦恩图。
(1)对比、分析,提示课题。
师:同学们解决问题的能力真强,而且画出了这么多不同的图示表示。上面的三幅图中,你更喜欢哪一幅?为什么?
预设1:喜欢第三幅,去掉了重复的学生的姓名,更清楚,很容易看出参加这两项比赛的学生情况。
预设2:喜欢第三幅,用两个长方形的重叠部分表示两项比赛都参加的学生,很直观。
师:在数学上,我们把参加跳绳比赛的学生看作一个整体,叫做一个集合;把参加踢毽比赛的学生看作一个整体,也是一个集合。今天我们就研究集合。(板书课题:集合。)
(2)介绍用韦恩图表示集合。
师:第三幅图先把参加跳绳的和踢毽的学生的`姓名分别放在了长方形里,很直观。回忆一下,在认识百以内数的时候,按要求写数时,就把提供的数和按要求写出的数都用类似长方形的圈圈了起,每个圈都分别表示一个集合。
师:在数学上我们常用这样的方法,直观地把集合中的具体事物表示出来。(多媒体课件出示左下图,或在黑板上将姓名卡片圈起。)
师:这个图表示什么?
预设:参加跳绳比赛的学生的集合。
出示右上图,随学生回答将参加踢毽比赛的学生姓名填入圈中。
在填入姓名时,引导学生发现,每个圈中的姓名不能重复、不能遗漏,体会集合元素的互异性;每个圈中姓名的摆放次序可以多样,体会集合元素的无序性。
(3)介绍用韦恩图表示集合的运算。
提问:利用这两个图怎样才能让他人直观地看出“参加这两项比赛的人员情况”呢?
通过多媒体课件,动态展示将左右两个图部分重叠的过程,或操作姓名卡片,去掉重复的姓名卡片,帮助学生理解姓名出现两次的学生是这两个集合的公共元素,可以用两个图的重叠部分表示它们的交集。
提问:中间重叠的部分表示的是什么?
预设:两项比赛都参加的学生;既参加跳绳比赛又参加踢毽比赛的学生。
提问:整个图表示的是什么?
预设:参加这两项比赛的学生;参加跳绳比赛或参加踢毽比赛的学生。
4.列式解答,加深对集合运算的认识。
(1)尝试独立解决。
(2)汇报交流,体会解决问题的多种方法。
预设:9+8-3=14,9+(8-3)=14,8+(9-3)=14,6+3+5=14等。
让学生通过图示与算式结合进行表达,感悟多种集合知识。可以让学生在韦恩图上指一指它们求出的是哪一部分,体会并集;指一指算式中每一步表达的是哪一部分,如“8-3”和“9-3”,体会差集。
(3)比较辨析,体会基本方法。
通过对各种计算方法的比较,发现虽然具体列式方法不同,但都解决了问题,即求出了两个集合的并集的元素个数。重点让学生说一说9+8-3=14这一算式表达的含义,“参加跳绳比赛的人数加上参加踢毽比赛的人数再减去两项比赛都参加的人数”,体会“求两个集合的并集的元素个数,就是用两个集合的元素个数的和减去它们的交集的元素个数”这一基本方法。
(三)联系生活,巩固练习
1.完成“做一做”第1题。
先独立完成,再汇报交流。
可先分别出示两个集合圈,让学生填入相应的序号,再利用多媒体课件动态展示将两个集合并的过程。
2.完成“做一做”第2题。
学生先独立完成,再汇报交流。
提问1:你是用什么方法解答第(1)题的?要注意什么?
预设:圈出重复的姓名,再数出。要认真仔细找,不要漏掉。
提问2:第(2)题是求什么?你是用什么方法解答的?
预设:第(2)题求的是获得“语文之星”或“数学之星”的一共有多少人,只要获得了任何一个奖都要计算进去。先数出获得“语文之星”的集合的人数,再数出获得“数学之星”的集合的人数,相加后,再去掉既获得“语文之星”又获得“数学之星”的人数。如果学生理解题意有困难,可以借助韦恩图帮助学生理解。
(四)全课小结
师:今天我们学习了集合的知识,还会运用集合知识解决生活中的问题。说一说今天你有什么收获。
3年级数学上册课件 篇6
教学目标:
1. 在具体生动的情境中,使学生经历整十、整百数和两位数乘一位数的口算过程,学会口算方法。
2. 引导学生独立思考、合作交流,体验计算方法的多样化。
3. 培养学生学会应用数学知识解决日常生活中的简单问题,感知数学来源于生活并作用于生活,激发学生的学习数学的兴趣。
教学重点:
熟练掌握整十、整百、整千数及两位数乘一位数的口算。
教学难点:
掌握两位数乘一位数的口算方法。
教学过程:
一、情境导入
出示情境图,让学生说一说看到了什么,了解到了哪些数学信息?能提出用乘法解决的问题吗?
设计意图:通过学生喜欢的游乐园的情境,一方面激起学生的学习兴趣,一方面为下面学习乘法做背景。
二、探究新知
1. 整十、整百数乘一位数。
提出问题:坐碰碰车20元,3人需要多少钱?应该怎样列式呢?
预设:20x3=
提出问题:要怎样计算呢?
预设1:可以用加法计算,20+20+20=60
预设2:2个十乘3是6个十,也就是60。
提出问题:那200x3=多少呢?
预设:2个百乘3是6个百,也就是600。
2. 两位数乘一位数(不进位)。
提出问题:坐过山车每人12元,3人需要多少钱?怎样列式呢?
预设1:12+12+12=36。
预设2:把12分成10和2,用10x3=30,2x3=6,30+6=36。
预设3:用3乘2等于6写在个位,1乘3等于3写在十位,就是36。
提出问题:为什么要把3写到十位上呢?
预设:因为1表示1个十,1个十乘3就是3个十。
提出问题:想一想,12x4=应该怎样计算呢?
预设:2乘4等于8写到个位上,1乘4等于4写到十位上。
设计意图:培养学生自主思考解决问题的方式,提高学生的.自主性。
三、巩固练习
1. 口算下面各题,说说你是怎样想的。
20x7= 200x7 = 700x2=
21x4 = 23x2= 32x3=
2. 一辆儿童三轮车的价钱是90元。幼儿园买了4辆,一共用多少钱?
3. 一共运来多少千克苹果?
设计意图:通过练习,巩固学生对口算算法的理解,熟悉计算方法。
四、课堂小结
提出问题:说一说这节课你有什么收获?
预设1:整十、整百数乘一位数,先把0前面的数相乘,再看因数有几个0,就在积的末尾添几个0。
预设2:两位数乘一位数,把两位数分解成几个十和几个一,分别乘一位数后把乘得的积相加。
设计意图:通过交流总结,帮助学生构建本节课知识体系,理清整十、整百数乘一位数以及两位数乘一位数的口算方法。
3年级数学上册课件 篇7
一、谈话引入课题
数学故事:《生死签》
很久以前,有一个犯人被带到国王面前处死。这个国王喜欢抽签,而且盒子里只有两张签,一张是“生”,一张是“死”,抽到“生”就可以获救,抽到“死”就会被杀死。请问,如果这个犯人只抽一张结果会是什么?一定吗?
但是陷害这个犯人的官员故意把盒子里的两张签都写上了“死”字,请问,这时犯人只抽一张签结果会是什么?一定吗?他会抽到“生”签么?一定抽不到也就是不可能会抽到。
板书:可能(不一定) 一定 不可能【可能性】
二、创设情境,提出问题:
老师这节课为大家安排了一个摸球游戏,让同学们共同学习和探索可能性的知识。
1.介绍学具,将学生分成小组,每个小组一个纸箱、8个黑球、1个红球(两种球的大小和轻重一样)。
2.【猜想】请想一想:摸到的球可能是什么球?摸到的什么球的可能性更大些?【出示课件】学生对老师提出的问题进行猜测,并把自己的想法告诉给组内的同学填在书上。
三、探索研究,得出结论:
实践探索。
(1)【操作体验】以小组为单位开展摸球游戏,把每次摸得的结果记录再下表中,然后把球放回去再摸。每人摸5次,并把结果记录在表格里(组长负责)。
(2)【验证】统计摸球的结果,看一看;摸到什么球的次数多?摸到什么球的次数少?
(3)【深化认识】各小组将摸球的结果进行交流,看一看是不是得到同样的结果。实际摸到的结果与原来的猜测是否吻合。初步感受到在日常生活中有些事件发生的可能性是不确定的,事件发生的可能性是有大有小的。
(4)延伸:如果要一定摸到黑球,该怎么办?
如果要黑球和红球的可能性一样大,怎么办?
四、实际应用
1.试一试(1)先让学生按题中要求进行摸球游戏活动,然后思考题出的问题,小组内交流。接着教师组织学生进行全班交流。
试一试(2):让再次经历“猜想——实践——验证” 的探索过程,进一步感受到在日常生活中有些事件发生的可能性是不确定的,事件发生的可能性是有大有小的。(联系生活实际,说说街头转奖的骗局)
(课本85页练一练)
2、分析从下面四个箱子里,分别摸一个球,结果是哪个?连一连。【出示课件】
学生在分析的时候可能很容易找到“一定是白球”、“一定不是白球”这两个该连接的盒子,但是对于“很可能是白球”、“白球的可能性很小”会有一些争议。这里需要通过演示活动来帮助学生辨别“很可能”与“可能性很小”两者表达事情发生的程度大小。
3、问题:下面三个地方的冬天下雪吗?请用“一定”“很少”“不可能”说一说。
【出示课件】首先可以和学生说明:北方地区冬天比较寒冷(冬天会下雪),内陆地区如:江西省的冬天怎样?(学生回答),南方沿海如广西、海南等地属于亚热带气候,冬天不太冷,不会下雪;让学生说一说“武汉”、“海南”和“哈尔滨”在中国地图上的位置,查一下这几个地方的气候特点以及各季的平均气温,然后让学生分析,“下雪”时,气温的特点!再对收集到的信息进行分析,判断各地下雪的可能性!
4、说一说活动
【出示课件】
五、全课小结
在今天的活动中,我们学到了很多有关可能性的知识,在平常生活中很多事情也具有可能性,请同学们留心观察,把结果告诉爸爸、妈妈,好吗?
自我问答:让学生在参与中体验,在体验中学习,使枯燥的知识趣味性,抽象的知识形象化。学生始终处于主动探究之中。与此同时,也关注学生个性思维的发展和综合能力的提高。
3年级数学上册课件 篇8
教材分析:
“数学广角——集合”是教材专门安排来向学生介绍一种重要的数学思想方法的,即“集合”。教材例1通过统计表的方式列出参加语文小组和数学小组的学生名单,而总人数并不是这两个小组的人数之和,从而引发学生的认知冲突。这时,教材利用直观图(即韦恩图)把这两个课外小组的关系直观地表示出来,从而帮助学生找到解决问题的办法。教材只是让学生通过生活中容易理解的题材去初步体会集合思想,为后继学习打下必要的基础,学生只要能够用自己的方法解决问题就可以了。
教学目标:
1.学生借助直观图,初步体会集合的思想方法,感知韦恩图的产生过程。
2.能利用集合的思想方法来解决简单的实际问题。
3.学生在探究、应用知识中体验数学的价值,渗透多种方法解决问题的意识。
教学重点:
学生借助直观图,初步体会集合的思想方法,感知韦恩图的产生过程。经历集合图的产生过程,理解集合图的意义,使学生会借助直观图,利用集合的思想方法解决简单的实际问题。
教学难点:
经历集合图的产生过程,理解集合图的意义。
教学过程:
一、巧用对比,初悟“重复”
1.观察与比较(课件出示图片)父与子
2.提出问题:有2个爸爸2个儿子,一共有几个人?怎样列式计算?
第一种:无重复情况。
黄明,他的爸爸黄伟光。李玉,他的爸爸李文华。
预设:列式一:2+2=4(人)
第二种:有重复情况。
汪聪,他的爸爸汪立成,汪立成的爸爸汪华东。
列式二:2+2=4(人)4-1=3(人)
师追问:为什么减1?
二、初步探究,感知重叠
1.查看原始数据,引出重复。
师:我们来看看三(1)班是被老师选上的幸运之星。(课件出示)
书法比赛
小丁
李方
小明
小伟
东东
绘画比赛
小明
东东
丹丹
张华
王军
刘红
师:从这张表格中你了解到了哪些信息?
(2)师:一共有多少名同学参加比赛?
师:怎么会错了呢?再仔细看看,谁来说说?
(3)师:那到底是多少人呢?我们来数数看。
重复什么意思?指着第二个小明:“他算吗?”为什么不算?
(4)师:刚才你们算出来是11人,可现在我们数出来的怎么只有9人呢?、
2.揭示课题。(板书课题:重叠问题)。
三、经历过程,建立模型
1.激发欲望,明确要求。
师:刚才,我们通过仔细地查看三(1)班参赛的学生名单,发现有2个同学重复了,但是从这份名单中你能一下子就看出是哪2个人重复了吗?有难度是吧?
师:看来我这样记录不够清楚,大家想想办法,怎样重新设计一下这份名单能让我们看得更清楚一些?(课件出示要求:既要能让人很清楚地看出参加书法比赛的是哪5个人,参加绘画比赛的是哪6个人,又要能让人很明显地看出两项比赛都参加的是哪两个人。)
请同学们思考一下,大家现在有办法了吗?先不急着说,请把你想到的方法在练习纸上表示出来,行吗?你可以自己画,如果感觉有些困难也可以和你小组内的同学合作完成。
2.独立探究,创生维恩图
学生探究画法,师巡视,从中找出有代表性的作品准备交流。
3.展示交流,感知维恩图
师:我发现咱们班同学的画法很有创意,我从中选了几份,咱们共同来分享一下。我们不让画图的同学自己介绍,只把他们画的图让大家看,我觉得,不用自己介绍就能让别人看懂的方法那才是好方法。
预设:
第一种情况:做记号
师:你是怎么想的?
第二种情况:写在最前面;写在前面并圈出来
师:你是怎么想的?这样整理有什么好处?
师:(1)哪些同学是两项都参加的?你能上来指一指吗?我们可以给他们圈一圈。
引导:重复出现的同学用两个名字,我们容易看错。要是用一个名字,也能表示出他们既参加了书法比赛,又参加了绘画比赛,那该多好啊。
第三种情况:两项都参加的同学用一个名字表示(不是写在最前面的)
出示:他把这两个名字写在这合适吗?应该写在哪?
第四种情况:在前面并一个名字来表示
师:你是怎么想的?这样整理有什么好处?
师:哪一部分是参加书法的,你能用手指一下吗?要不用笔来圈一圈,参加绘画比赛的同学该怎么圈?
师:圈的时候,你们有什么发现?为什么?
师:看来,这样调整能清楚地表示重复和不重复的部分。
4.整理画法,理解维恩图
(1)动态演示维恩图产生过程
师:下面我们把同学们创造出来的韦恩图让电脑再演示一次吧。用一个圈来表示参加书法比赛的同学,再用一个圈来表示参加绘画比赛的同学(师边说边用红色和蓝色画了两个交叉的椭圆),演示形成过程。还是两个圈,不同的是这两个圈不是分开的,而是有一部分重叠在一块的,利用两个圈重叠的`这一部分我们恰好可以用来表示什么?
(2)介绍维恩图的历史
师:这种图最早是英国的数学家韦恩提出的,后人就用他的名字来命名,称之为韦恩图。同学真了不起,你们和伟大的数学家韦恩想到一块去了。
(3)理解维恩图各部分意义
(课件出示用不同颜色,直观理解各部分意义)
师:仔细观察,你知道韦恩图的各部分表示什么意思吗?
师:a.红色圈内表示的是什么?
b.蓝色圈里表示什么?
c.中间部分的两个表示什么?
d.左边的“紫色部分”表示什么?
e.右边的“绿色部分”表示什么?
师:对于韦恩图各部分表示的意思你都明白吗?请同位两个同学互相说一说。(学生同伴互说)
(4)比较突出维恩图的优势
我们把这个韦恩图和刚才的表格比较一下,哪个更好一些?好在哪?
(5)、数形结合,运用维恩图。
师:现在,你能不能根据韦恩图列算式来解决三(1)班一共有多少人参加了这两项比赛?教师巡视,找不同方法的学生进行板演
预设整理算法:
生1:5+6-2=9(人)
生2:3+2+4=9(人)
生3:5-2+6=9(人)
生4:6-2+5=9(人)
①看算式提问题:看第一位学生算式‘就图看算式,你有什么新启发?师:谁给他提问题?(生:你为什么减2?(课件动态演示)5在哪里?圈一圈。)重点理解为什么
②比较:
3+2+4=9(人)
5+6-2=9(人)
a.两道算式中都有个2,这个2表示什么呢?
圈出+2和-2,为什么(1)中是+2,(2)中是-2?
b、你能在第一个算式里找到5?6?
c. 3+2表示什么意思?2+4表示什么意思?
这就是(1)算式中隐藏着的信息,你也能在(2)中找到隐藏着的信息吗?(课件演示)
师:现在我们能用这么多的方法算出三(1)班参加比赛的一共是9个人,是谁帮了我们的大忙啊?(韦恩图。)
四、解决问题,运用模型
1.创设情境,生活应用(课件演示)
这样的韦恩图除了能表示刚才的比赛问题,还能表示生活中的什么?
展示生活问题
(1)这是我们科学书中的重叠问题,找到重叠部分了吗?
(2)这是我们数学书中的重叠问题,谁重叠了?
(3)这是自然界的动物,它们之间存在重叠问题吗?
(4)这是鸡毛掸,找到重叠部分了吗?在哪里?看来,将木条重叠起来,可以增加长度,解决我们生活中的问题呢!
(5)、文具店的问题。
出示下题:
2.运用新知解决问题。
这些问题你们都能解决吗?(完成练习纸)
反馈:
第1题:(生活问题第5题文具店问题)你能把这些信息在韦恩图中表示出来吗?生填写韦恩图,并解决一共进了多少种货?
展示:5+5-3=7(种)
2+3+2=7(种)
师:这里的3表示什么?
为什么一个+3,一个-3呢?
师:比较一下这两个韦恩图(刚才的比赛问题和现在的进货问题),它们有什么相同的地方?
第2题:(生活问题第3题自然界的动物)对比正确和错误的。这两个小朋友填的不一样,你赞同谁的?填的时候有什么好方法?
第3题:(生活问题第4题鸡毛掸)一共有多长?要提醒大家的是什么?
五、展开变式,深化模型
师:下面我们再回过头来,看看那份学校的通知和我们已经解决的那个问题:每班一共要选多少人参加这两项比赛?我们一开始脱口而出的答案是5+6=11人,后来看到三(1)的参赛名单,发现有2人重复了,实际只有9个人。
我们现在再来思考这个问题,三(1)班是9人,其它班级呢?如三(2)班一定是9人吗?
老师可能派了几个同学?一共有几种可能?你能画图把自己的猜想表示出来吗?
反馈:5人。6人。7人。8人。9人。
课件动态演示:
师:仔细观察你有什么发现?
同学们,这样一个我们本来觉得很简单的问题,经过我们深入地思考,原来还有这么多的学问
六、回顾总结,延伸模型。
这节课你有什么收获?你还想知道什么?