幼儿教师教育网,为您提供优质的幼儿相关资讯

高中三角函数教材分析与反思(摘录十篇)

发布时间:2024-10-21

作为一名为他人授业解惑的教育工作者,常常需要准备教学设计,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。那么大家知道规范的教学设计是怎么写的吗?下面是小编为大家收集的高中数学教学设计,仅供参考,希望能够帮助到大家。

高中三角函数教材分析与反思 篇1

一、教学内容与学情分析

1、本课内容在教材、新课标中的地位和作用

《锐角三角函数的简单应用》是初中数学九年级上册第一章第六节的内容。本节课是《锐角三角函数的简单应用》的第三课时,是继前面学习了三角函数应用中的有关旋转问题和测量问题后的又一种类型的应用:即有关工程中的坡度问题。三种类型的问题只是问题的背景不同,其实解决问题所用的工具都相同,即直角三角形的边角关系。因此本节课沿用前两节课的教学模式。直角三角形是最简单、最基本的几何图形,在生活中随处可见,是研究其他图形的基础,在解决实际问题中也有着广泛的应用.《锐角三角函数的简单应用》是解直角三角形的延续,渗透着数形结合思想、方程思想、转化思想。因此本课无论是在本章还是在整个初中数学教材中都具有重要的地位。

关于锐角三角函数的简单应用,《数学新课程标准》中要求:运用三角函数解决与直角三角形有关的简单实际问题,考纲中的能级要求为C(掌握)。

2、学生已有的知识基础和学习新知的障碍

通过前几节课的学习,学生已经经历过了建立三角函数模型解决问题的过程,掌握了一定的解题技巧和方法,具备了一定的分析问题、解决问题的能力。这为本节课的学习奠定了良好的基础。

由于坡度问题涉及梯形的有关性质和解题技巧,而学生对此遗忘严重,再次面对梯形的问题情境,会产生思维上的障碍。另外坡度问题的计算较复杂,而学生的计算能力较弱,计算器使用不熟练,特殊角的三角函数值还没记牢,这些对整个问题的解决都会起到延缓的作用。

二、目标的设定

基于以上分析,将本节课教学目标设定为:

1、应用三角函数解决有关坡度的问题,进一步理解三角函数的意义。

2、经历探索实际问题的求解过程,进一步体会三角函数在解决问题过程中的应用。

3、经历实际问题数学化的过程,在独立思考探索解决问题方法的过程中,不断克服困难,增强应用数学的意识和解决问题的能力。

三、重、难点的确立及依据

1、重点:有关坡度问题的计算。

确立依据:坡度问题是很现实的实际问题,是应用三角函数解决实际问题很好的素材,也是中考的重要内容,但坡度问题的计算量较大,学生计算能力又很弱,所以很容易出错。故将本节课重点设为:有关坡度问题的计算。

2、难点:建立直角三角形模型,把实际问题转化为数学问题。

确立依据:从认知规律看,学生已经具有初步的探究能力和逻辑思维能力。但直角三角形的应用题型较多,有关坡度问题的情境学生又不是很熟悉,而且含有很多专有名词,学生理解起来比较困难,导致建立直角三角形模型上可能会有困难,从而不能把实际问题转化为数学问题。故将本节课难点设为:建立直角三角形模型,把实际问题转化为数学问题。

四、教法设计

1、教学结构及教学基本思路

本节课主要内容是一个关于坡度的实际问题,本节课采用研究体验式教学,通过问题情境自然引入新课,通过对实际问题的探究、拓展,体验实际问题的解决过程,体会数学的应用价值,体会数学思想在解题中的应用,提高解题能力,培养数学建模意识,通过课堂练习巩固知识。具体思路如下:

⑴ 出示问题情境,让学生了解坡度与坡角的关系,为后继解题排除知识的干扰。

⑵ 探究:出示问题1,学生独立思考后小组讨论交流。让学生先分析解决,体会实际问题的解决需要建立数学模型来刻画实际问题。

⑶ 拓展与延伸:对问题1进行变式、拓展,要求学生先画出示意图后再分析。

⑷ 课堂练习,及时巩固新知。安排两道简单的练习题供学生独立解决。

⑸师生共同总结,完成本课

2、重、难点的突破方法

通过创设问题情境,提炼新概念为后续的学习做好必要的准备,降低问题1的思维量;通过让学生主动经历探索问题解决的过程,加深对知识的理解;通过例题教学,及时发现问题并加以纠正;通过课堂练习,提高学生解决问题的能力,突现本节课的重点。

通过引导学生审题、画图分析,教师师生点拨,逐步建立数学模型;通过帮助学生根据需要作出辅助线,从而将梯形中的计算问题化归为解直角三角形问题;通过在问题1教学后引导学生加以总结:梯形、斜三角形的高时将其转化为直角三角形的辅助线。解直角三角形本质上是解边角关系,其他几何图形的边角关系问题也可以通过作辅助线化归为解直角三角形来解决。通过让学生说思路、写过程调动学生探究学习的积极性;通过师生、生生间的合作与交流,达成学生对疑难问题的理解与解决,从而突破难点。

3、教辅手段的使用

本节课主要运用讲学稿、小黑板、计算器等一些简易媒体辅助教学,以提高课堂容量,给学生更多的思考时间和施展空间。

4、导入和过渡设计

由于问题1的情境学生不是很熟悉,含有很多专有名词,学生理解起来要花费较多时间,会让部分学生产生畏难情绪,影响学习新课的信心。因此本节课由关于坡度的实际问题情境引入几个新概念,为后面对问题的探究做好准备,同时也能自然导入新课。接下来的探究活动,通过巧妙设计问题串,为学生思考作好铺垫。问题1解决后,对问题1进行简单的变式训练,问题解决后,由学生总结有关坡度问题的解决策略。接着是对问题1的拓广与延伸,让学生进一步感受应用三角函数解决更深层次的问题。体会数学问题之间的联系,更深刻地认识问题,提高解决问题的能力。学习完上述内容之后安排两道课堂巩固练习对所学知识进行检测、补标。最后师生共同小结完成本课。各个环节层层深入、环环相扣,过渡自然,构成一个完整的整体。

5、尊重学生个体差异,因材施教

应用题对学生来说是难点,课标对这一节的内容要求不高,由于学生在认知水平和学习兴趣上有较大差异,为了能充分调动全体学生参与课堂,因此本节课上有针对性地设计了各层次学生问题,比如问题情境中的坡度问题、课堂练习1,问题1中设计问题串,把一个大问题分解成几个小问题,以满足不同层次的学生。对学生感到困难的计算,让学生自己体验,同时选能力较强的学生上黑板书写解题过程,供其他学生学习、参考。适时地安排了小组合作交流活动,带动每个同学参与学习。对于能力较强的学生,可以把对问题的思考、分析交给他们,一方面可以活跃课堂,另一方面也能锻炼他们的能力。通过拓广与延伸,让学有余力的同学进一步探索,培养他们思维的灵活性和深刻性。

五、学法设计

1、学生学习本课应采用的方法

我们常说授之以鱼不如授之以渔因此,在教学中要特别重视学法指导。我采用以下的学习方法:

(1)、让学生在做中学,使学生动起来,大胆表述、质疑,让学生自主分析,发现问题,解决问题。经历观察、探究、建立数学模型等活动,达成对问题的更深理解。

(2)、分组讨论、交流,努力营造自主探究、协作互动的课堂氛围,达成对疑难问题的理解、解决。

(3)多给学生写的机会,在书写过程中感受知识的应用,提高解题的规范性和正确率。

2、培养学生能力应采用的方法

学生是课堂的主人,为了在课堂上培养学生的能力,得到真实的学情反馈,本节课上能让学生说的就让学生说,能让学生做的就让学生做。特别是本节内容,学生已经掌握了一定的解题技巧,但还不成熟;学生的计算能力还要进一步加强。因此教师要把课堂放手让给学生,多让学生上黑板板演,并引导大家点评、发现问题。这样不仅能调动学生学习的热情,还能培养学生良好的思考习惯与学习能力。

3、学生主体地位的体现

教学中坚持以学生为主体,注重所学内容与现实生活的联系,注重使学生经历观察、交流等探索过程。并通过追问与设计问题的形式,让学生在解解决实际问题的任务中发现了新问题,并让学生带着问题探索、交流,在思考中产生新认识,获得新的提高。在突破难点的同时培养学生勤于思考,勇于探索的精神,增加学生的学习兴趣和享受成功的喜悦。

六、作业设计

根据不同层次学生设计各层次作业,作业要体现梯度、针对性。

1、课堂练习:课堂上完成,师生点评;

2、课后巩固:供学生课间完成;

3、课时作业:另发。

高中三角函数教材分析与反思 篇2

教学准备

教学目标

解三角形及应用举例

教学重难点

解三角形及应用举例

教学过程

一.基础知识精讲

掌握三角形有关的定理

利用正弦定理,可以解决以下两类问题:

(1)已知两角和任一边,求其他两边和一角;

(2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);利用余弦定理,可以解决以下两类问题:

(1)已知三边,求三角;

(2)已知两边和它们的夹角,求第三边和其他两角。

掌握正弦定理、余弦定理及其变形形式,利用三角公式解一些有关三角形中的三角函数问题.

二.问题讨论

思维点拨:已知两边和其中一边的对角解三角形问题,用正弦定理解,但需注意解的情况的讨论.

思维点拨::三角形中的三角变换,应灵活运用正、余弦定理.在求值时,要利用三角函数的有关性质.

例6:在某海滨城市附近海面有一台风,据检测,当前台风中心位于城市O(如图)的.东偏南方向300 km的海面P处,并以20 km / h的速度向西偏北的方向移动,台风侵袭的范围为圆形区域,当前半径为60 km,并以10 km / h的速度不断增加,问几小时后该城市开始受到台风的侵袭。

一. 小结:

1.利用正弦定理,可以解决以下两类问题:

(1)已知两角和任一边,求其他两边和一角;

(2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);

2.利用余弦定理,可以解决以下两类问题:

(1)已知三边,求三角;

(2)已知两边和它们的夹角,求第三边和其他两角。

3.边角互化是解三角形问题常用的手段.

三.作业:P80闯关训练

高中三角函数教材分析与反思 篇3

教学目标:

1.掌握基本事件的概念;

2.正确理解古典概型的两大特点:有限性、等可能性;

3.掌握古典概型的概率计算公式,并能计算有关随机事件的概率.

教学重点:

掌握古典概型这一模型.

教学难点:

如何判断一个实验是否为古典概型,如何将实际问题转化为古典概型问题.

教学方法:

问题教学、合作学习、讲解法、多媒体辅助教学.

教学过程:

一、问题情境

1.有红心1,2,3和黑桃4,5这5张扑克牌,将其牌点向下置于桌上,现从中任意抽取一张,则抽到的牌为红心的概率有多大?

二、学生活动

1.进行大量重复试验,用“抽到红心”这一事件的频率估计概率,发现工作量较大且不够准确;

2.(1)共有“抽到红心1” “抽到红心2” “抽到红心3” “抽到黑桃4” “抽到黑桃5”5种情况,由于是任意抽取的,可以认为出现这5种情况的可能性都相等;

(2)6个;即“1点”、“2点”、“3点”、“4点”、“5点”和“6点”,

这6种情况的可能性都相等;

三、建构数学

1.介绍基本事件的概念,等可能基本事件的概念;

2.让学生自己总结归纳古典概型的两个特点(有限性)、(等可能性);

3.得出随机事件发生的概率公式:

四、数学运用

1.例题.

例1

有红心1,2,3和黑桃4,5这5张扑克牌,将其牌点向下置于桌上,现从中任意抽取2张共有多少个基本事件?(用枚举法,列举时要有序,要注意“不重不漏”)

探究(1):一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出2只球,共有多少个基本事件?该实验为古典概型吗?(为什么对球进行编号?)

探究(2):抛掷一枚硬币2次有(正,反)、(正,正)、(反,反)3个基本事件,对吗?

学生活动:探究(1)如果不对球进行编号,一次摸出2只球可能有两白、一黑一白、两黑三种情况,“摸到两黑”与“摸到两白”的可能性相同;而事实上“摸到两白”的机会要比“摸到两黑”的机会大.记白球为1,2,3号,黑球为4,5号,通过枚举法发现有10个基本事件,而且每个基本事件发生的可能性相同.

探究(2):抛掷一枚硬币2次,有(正,正)、(正,反)、(反,正)、(反,反)四个基本事件.

(设计意图:加深对古典概型的特点之一等可能基本事件概念的理解.)

例2

一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中

一次摸出2只球,则摸到的'两只球都是白球的概率是多少?

问题:在运用古典概型计算事件的概率时应当注意什么?

①判断概率模型是否为古典概型

②找出随机事件A中包含的基本事件的个数和试验中基本事件的总数.

教师示范并总结用古典概型计算随机事件的概率的步骤

例3

同时抛两颗骰子,观察向上的点数,问:

(1)共有多少个不同的可能结果?

(2)点数之和是6的可能结果有多少种?

(3)点数之和是6的概率是多少?

问题:如何准确的写出“同时抛两颗骰子”所有基本事件的个数?

学生活动:用课本第102页图3-2-2,可直观的列出事件A中包含的基本事件的个数和试验中基本事件的总数.yjs21.coM

问题:点数之和是3的倍数的可能结果有多少种?

(介绍图表法)

例4

甲、乙两人作出拳游戏(锤子、剪刀、布),求:

(1)平局的概率;(2)甲赢的概率;(3)乙赢的概率.

设计意图:进一步提高学生对将实际问题转化为古典概型问题的能力.

2.练习.

(1)一枚硬币连掷3次,只有一次出现正面的概率为_________.

(2)在20瓶饮料中,有3瓶已过了保质期,从中任取1瓶,取到已过保质期的饮料的概率为_________..

(3)第103页练习1,2.

(4)从1,2,3,…,9这9个数字中任取2个数字,

①2个数字都是奇数的概率为_________;

②2个数字之和为偶数的概率为_________.

五、要点归纳与方法小结

本节课学习了以下内容:

1.基本事件,古典概型的概念和特点;

2.古典概型概率计算公式以及注意事项;

3.求基本事件总数常用的方法:列举法、图表法.

高中三角函数教材分析与反思 篇4

教材:

角的概念的推广

目的:

要求学生掌握用“旋转”定义角的概念,并进而理解“正角”“负角”“象限角”“终边相同的角”的含义。

过程:

一、提出课题:“三角函数”

回忆初中学过的“锐角三角函数”——它是利用直角三角形中两边的比值来定义的。相对于现在,我们研究的三角函数是“任意角的三角函数”,它对我们今后的学习和研究都起着十分重要的作用,并且在各门学科技术中都有广泛应用。

二、角的概念的推广

1.回忆:初中是任何定义角的?(从一个点出发引出的两条射线构成的几何图形)这种概念的优点是形象、直观、容易理解,但它的弊端在于“狭隘”

2.讲解:“旋转”形成角(P4)

突出“旋转” 注意:“顶点”“始边”“终边”

“始边”往往合于轴正半轴

3.“正角”与“负角”——这是由旋转的方向所决定的。

记法:角 或 可以简记成

4.由于用“旋转”定义角之后,角的范围大大地扩大了。

1° 角有正负之分 如:a=210° b=-150° g=-660°

2° 角可以任意大

实例:体操动作:旋转2周(360°×2=720°) 3周(360°×3=1080°)

3° 还有零角 一条射线,没有旋转

三、关于“象限角”

为了研究方便,我们往往在平面直角坐标系中来讨论角

角的顶点合于坐标原点,角的始边合于 轴的正半轴,这样一来,角的终边落在第几象限,我们就说这个角是第几象限的角(角的终边落在坐标轴上,则此角不属于任何一个象限)

例如:30° 390° -330°是第Ⅰ象限角 300° -60°是第Ⅳ象限角

585° 1180°是第Ⅲ象限角 -2000°是第Ⅱ象限角等

四、关于终边相同的角

1.观察:390°,-330°角,它们的终边都与30°角的终边相同

2.终边相同的角都可以表示成一个0°到360°的角与 个周角的和

390°=30°+360°

-330°=30°-360° 30°=30°+0×360°

1470°=30°+4×360°

-1770°=30°-5×360°

3.所有与a终边相同的角连同a在内可以构成一个集合

即:任何一个与角a终边相同的角,都可以表示成角a与整数个周角的和

4.例一 (P5 略)

五、小结:

1° 角的概念的推广用“旋转”定义角 角的范围的扩大

2°“象限角”与“终边相同的角”

高中三角函数教材分析与反思 篇5

教学目的:

掌握圆的标准方程,并能解决与之有关的问题

教学重点:

圆的标准方程及有关运用

教学难点:

标准方程的灵活运用

教学过程:

一、导入新课,探究标准方程

二、掌握知识,巩固练习

练习:⒈说出下列圆的方程

⑴圆心(3,-2)半径为5⑵圆心(0,3)半径为3

⒉指出下列圆的圆心和半径

⑴(x-2)2+(y+3)2=3

⑵x2+y2=2

⑶x2+y2-6x+4y+12=0

⒊判断3x-4y-10=0和x2+y2=4的位置关系

⒋圆心为(1,3),并与3x-4y-7=0相切,求这个圆的方程

三、引伸提高,讲解例题

例1、圆心在y=-2x上,过p(2,-1)且与x-y=1相切求圆的方程(突出待定系数的数学方法)

练习:1、某圆过(-2,1)、(2,3),圆心在x轴上,求其方程。

2、某圆过A(-10,0)、B(10,0)、C(0,4),求圆的方程。

例2:某圆拱桥的跨度为20米,拱高为4米,在建造时每隔4米加一个支柱支撑,求A2P2的长度。

例3、点M(x0,y0)在x2+y2=r2上,求过M的圆的切线方程(一题多解,训练思维)

四、小结练习P771,2,3,4

五、作业P811,2,3,4

高中三角函数教材分析与反思 篇6

教学目标

1.明确等差数列的定义.

2.掌握等差数列的通项公式,会解决知道中的三个,求另外一个的问题

3.培养学生观察、归纳能力.

教学重点

1.等差数列的概念;

2.等差数列的通项公式

教学难点

等差数列“等差”特点的理解、把握和应用

教具准备

投影片1张

教学过程

(I)复习回顾

师:上两节课我们共同学习了数列的定义及给出数列的两种方法通项公式和递推公式。这两个公式从不同的角度反映数列的特点,下面看一些例子。(放投影片)

(Ⅱ)讲授新课

师:看这些数列有什么共同的特点?

1,2,3,4,5,6; ①

10,8,6,4,2,…; ②

生:积极思考,找上述数列共同特点。

对于数列①(1≤n≤6);(2≤n≤6)

对于数列②-2n(n≥1)(n≥2)

对于数列③(n≥1)(n≥2)

共同特点:从第2项起,第一项与它的前一项的差都等于同一个常数。

师:也就是说,这些数列均具有相邻两项之差“相等”的特点。具有这种特点的数列,我们把它叫做等差数。

一、定义:

等差数列:一般地,如果一个数列从第2项起,每一项与空的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。

如:上述3个数列都是等差数列,它们的公差依次是1,-2 。

二、等差数列的通项公式

师:等差数列定义是由一数列相邻两项之间关系而得。若一等差数列的首项是,公差是d,则据其定义可得:

若将这n-1个等式相加,则可得:

即:即:即:……

由此可得:师:看来,若已知一数列为等差数列,则只要知其首项和公差d,便可求得其通项。

如数列①(1≤n≤6)

数列②:(n≥1)

数列③:(n≥1)

由上述关系还可得:即:则:=如:

三、例题讲解

例1:(1)求等差数列8,5,2…的第20项

(2)-401是不是等差数列-5,-9,-13…的项?如果是,是第几项?

解:(1)由n=20,得(2)由得数列通项公式为:由题意可知,本题是要回答是否存在正整数n,使得-401=-5-4(n-1)成立解之得n=100,即-401是这个数列的第100项。

(Ⅲ)课堂练习

生:(口答)课本P118练习3

(书面练习)课本P117练习1

师:组织学生自评练习(同桌讨论)

(Ⅳ)课时小结

师:本节主要内容为:

①等差数列定义。

即(n≥2)

②等差数列通项公式(n≥1)

推导出公式:

(V)课后作业

一、课本P118习题3.2 1,2

二、1.预习内容:课本P116例2P117例4

2.预习提纲:

①如何应用等差数列的定义及通项公式解决一些相关问题?

②等差数列有哪些性质?

高中三角函数教材分析与反思 篇7

[学习目标]

(1)会用坐标法及距离公式证明Cα+β;

(2)会用替代法、诱导公式、同角三角函数关系式,由Cα+β推导Cα—β、Sα±β、Tα±β,切实理解上述公式间的关系与相互转化;

(3)掌握公式Cα±β、Sα±β、Tα±β,并利用简单的三角变换,解决求值、化简三角式、证明三角恒等式等问题。

[学习重点]

两角和与差的正弦、余弦、正切公式

[学习难点]

余弦和角公式的推导

[知识结构]

1、两角和的余弦公式是三角函数一章和、差、倍公式系列的基础。其公式的证明是用坐标法,利用三角函数定义及平面内两点间的距离公式,把两角和α+β的余弦,化为单角α、β的三角函数(证明过程见课本)

2、通过下面各组数的值的比较:①cos(30°—90°)与cos30°—cos90°②sin(30°+60°)和sin30°+sin60°。我们应该得出如下结论:一般情况下,cos(α±β)≠cosα±cosβ,sin(α±β)≠sinα±sinβ。但不排除一些特例,如sin(0+α)=sin0+sinα=sinα。

3、当α、β中有一个是的整数倍时,应首选诱导公式进行变形。注意两角和与差的三角函数是诱导公式等的基础,而诱导公式是两角和与差的三角函数的特例。

4、关于公式的正用、逆用及变用

高中三角函数教材分析与反思 篇8

一、基础知识回顾:

1、仰角、俯角

2、坡度、坡角

二、基础知识回顾:

1、在倾斜角为300的山坡上种树,要求相邻两棵数间的水平距离为3米,那么相邻两棵树间的斜坡距离为 米

2、升国旗时,某同学站在离旗杆底部20米处行注目礼,当国旗升至旗杆顶端时,该同学视线的仰角为300,若双眼离地面1.5米,则旗杆高度为 米(保留根号)

3、如图:B、C是河对岸的两点,A是对岸岸边一点,测得∠ACB=450,BC=60米,则点A到BC的距离是 米。

3、如图所示:某地下车库的入口处有斜坡AB,其坡度I=1:1.5,

则AB=

三、典型例题:

例2、右图为住宅区内的两幢楼,它们的高AB=CD=30米,两楼间的距离AC=24米,现需了解甲楼对乙楼采光的影响,当太阳光与水平线的夹角为300时,求甲楼的影子在乙楼上有多高?

例2、如图所示:在湖边高出水面50米的山顶A处望见一艘飞艇停留在湖面上空某处,观察到飞艇底部标志P处的仰角为450,又观其在湖中之像的俯角为600,试求飞艇离湖面的高度h米(观察时湖面处于平静状态)

例3、如图所示:某货船以20海里/时的速度将一批重要货物由A处运往正西方的B处,经过16小时的航行到达,到达后必须立即卸货,此时接到气象部门通知,一台风中心正以40海里/时的速度由A向北偏西600方向移动,距离台风中心200海里的圆形区域(包括边界)均会受到影响。

(1)问B处是否会受到台风的影响?请说明理由。

(2)为避免受到台风的影响,该船应该在多少小时内卸完货物?

(供选数据:=1.4 =1.7)

四、巩固提高:

1、 若某人沿坡度i=3:4的斜坡前进10米,则他所在的位置比原来的位置升高 米。

2、如图:A市东偏北600方向一旅游景点M,在A市东偏北300的公路上向前行800米到达C处,测得M位于C的北偏西150,则景点M到公路AC的距离为 。(结果保留根号)

3、同一个圆的内接正方形和它的外切正方形的边长之比为( )

A、sin450 B、sin600 C、cos300 D、cos600

3、如图所示,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2米,梯子的顶端B到地面的距离为7米,现将梯子的底端A向外移动到A,使梯子的底端A到墙根O的距离等于3米,同时梯子的顶端B下降至B,那么BB( )(填序号)

A、等于1米B、大于1米C、小于1米

5、如图所示:某学校的教室A处东240米的O点处有一货物,经过O点沿北偏西600方向有一条公路,假定运货车辆形成的噪音影响范围在130米以内。

(1)通过计算说明,公路上车辆的噪音是否对学校造成影响?

(2)为了消除噪音对学校的影响,计划在公路边修一段隔音墙,请你计算隔音墙的长度(只考虑声音的直线传播)

高中三角函数教材分析与反思 篇9

一、目标

1.知识与技能

(1)理解流程图的顺序结构和选择结构。

(2)能用字语言表示算法,并能将算法用顺序结构和选择结构表示简单的流程图

2.过程与方法

学生通过模仿、操作、探索、经历设计流程图表达解决问题的过程,理解流程图的结构。

3情感、态度与价值观

学生通过动手作图,.用自然语言表示算法,用图表示算法。进一步体会算法的基本思想——程序化思想,在归纳概括中培养学生的逻辑思维能力。

二、重点、难点

重点:算法的顺序结构与选择结构。

难点:用含有选择结构的流程图表示算法。

三、学法与教学用具

学法:学生通过动手作图,.用自然语言表示算法,用图表示算法,体会到用流程图表示算法,简洁、清晰、直观、便于检查,经历设计流程图表达解决问题的过程。进而学习顺序结构和选择结构表示简单的流程图。

教学用具:尺规作图工具,多媒体。

四、教学思路

(一)、问题引入 揭示题

例1 尺规作图,确定线段的一个5等分点。

要求:同桌一人作图,一人写算法,并请学生说出答案。

提问:用字语言写出算法有何感受?

引导学生体验到:显得冗长,不方便、不简洁。

教师说明:为了使算法的表述简洁、清晰、直观、便于检查,我们今天学习用一些通用图型符号构成一张图即流程图表示算法。

本节要学习的是顺序结构与选择结构。

右图即是同流程图表示的'算法。

(二)、观察类比 理解题

1、 投影介绍流程图的符号、名称及功能说明。

符号 符号名称 功能说明

终端框 算法开始与结束

处理框 算法的各种处理操作

判断框 算法的各种转移

输入输出框 输入输出操作

指向线 指向另一操作

2、讲授顺序结构及选择结构的概念及流程图

(1)顺序结构

依照步骤依次执行的一个算法

流程图:

(2)选择结构

对条进行判断决定后面的步骤的结构

流程图:

3.用自然语言表示算法与用流程图表示算法的比较

(1)半径为r的圆的面积公式 当r=10时写出计算圆的面积的算法,并画出流程图。

解:

算法(自然语言)

①把10赋与r

②用公式 求s

③输出s

流程图

(2) 已知函数 对于每输入一个X值都得到相应的函数值,写出算法并画流程图。

算法:(语言表示)

① 输入X值

②判断X的范围,若 ,用函数Y=x+1求函数值;否则用Y=2-x求函数值

③输出Y的值

流程图

小结:含有数学中需要分类讨论的或与分段函数有关的问题,均要用到选择结构。

学生观察、类比、说出流程图与自然语言对比有何特点?(直观、清楚、便于检查和交流)

(三)模仿操作 经历题

1.用流程图表示确定线段A.B的一个16等分点

2.分析讲解例2;

分析:

思考:有多少个选择结构?相应的流程图应如何表示?

流程图:

(四)归纳小结 巩固题

1.顺序结构和选择结构的模式是怎样的?

2.怎样用流程图表示算法。

(五)练习P99 2

(六)作业P99 1

高中三角函数教材分析与反思 篇10

一、教学内容分析

圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象.恰当地利用定义解题,许多时候能以简驭繁.因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,再一次强调定义,学会利用圆锥曲线定义来熟练的解题”。

二、学生学习情况分析

我所任教班级的学生参与课堂教学活动的积极性强,思维活跃,但计算能力较差,推理能力较弱,使用数学语言的表达能力也略显不足。

三、设计思想

由于这部分知识较为抽象,如果离开感性认识,容易使学生陷入困境,降低学习热情.在教学时,借助多媒体动画,引导学生主动发现问题、解决问题,主动参与教学,在轻松愉快的环境中发现、获取新知,提高教学效率.

四、教学目标

1.深刻理解并熟练掌握圆锥曲线的.定义,能灵活应用定义解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。

2.通过对练习,强化对圆锥曲线定义的理解,提高分析、解决问题的能力;通过对问题的不断引申,精心设问,引导学生学习解题的一般方法。

3.借助多媒体辅助教学,激发学习数学的兴趣.

五、教学重点与难点:

教学重点

1.对圆锥曲线定义的理解

2.利用圆锥曲线的定义求“最值”

3.“定义法”求轨迹方程

教学难点:

巧用圆锥曲线定义解题

六、教学过程设计

【设计思路】

(一)开门见山,提出问题

一上课,我就直截了当地给出——

例题1:(1)已知A(-2,0),B(2,0)动点M满足|MA|+|MB|=2,则点M的轨迹是( )。

(A)椭圆(B)双曲线(C)线段(D)不存在

(2)已知动点M(x,y)满足(x1)2(y2)2|3x4y|,则点M的轨迹是( )。

(A)椭圆(B)双曲线(C)抛物线(D)两条相交直线

【设计意图】

定义是揭示概念内涵的逻辑方法,熟悉不同概念的不同定义方式,是学习和研究数学的一个必备条件,而通过一个阶段的学习之后,学生们对圆锥曲线的定义已有了一定的认识,他们是否能真正掌握它们的本质,是我本节课首先要弄清楚的问题。

为了加深学生对圆锥曲线定义理解,我以圆锥曲线的定义的运用为主线,精心准备了两道练习题。

【学情预设】

估计多数学生能够很快回答出正确答案,但是部分学生对于圆锥曲线的定义可能并未真正理解,因此,在学生们回答后,我将要求学生接着说出:若想答案是其他选项的话,条件要怎么改?这对于已学完圆锥曲线这部分知识的学生来说,并不是什么难事。但问题(2)就可能让学生们费一番周折——如果有学生提出:可以利用变形来解决问题,那么我就可以循着他的思路,先对原等式做变形:(x1)2(y2)2

5这样,很快就能得出正确结果。如若不然,我将启发他们从等式两端的式子|3x4y|5入手,考虑通过适当的变形,转化为学生们熟知的两个距离公式。

在对学生们的解答做出判断后,我将把问题引申为:该双曲线的中心坐标是,实轴长为,焦距为。以深化对概念的理解。

(二)理解定义、解决问题

例2 (1)已知动圆A过定圆B:x2y26x70的圆心,且与定圆C:xy6x910相内切,求△ABC面积的最大值。

(2)在(1)的条件下,给定点P(-2,2),求|PA|

【设计意图】

运用圆锥曲线定义中的数量关系进行转化,使问题化归为几何中求最大(小)值的模式,是解析几何问题中的一种常见题型,也是学生们比较容易混淆的一类问题。例2的设置就是为了方便学生的辨析。

【学情预设】

根据以往的经验,多数学生看上去都能顺利解答本题,但真正能完整解答的可能并不多。事实上,解决本题的关键在于能准确写出点A的轨迹,有了练习题1的铺垫,这个问题对学生们来讲就显得颇为简单,因此面对例2(1),多数学生应该能准确给出解答,但是对于例2(2)这样相对比较陌生的问题,学生就无从下手。我提醒学生把3/5和离心率联系起来,这样就容易和第二定义联系起来,从而找到解决本题的突破口。

(三)自主探究、深化认识

如果时间允许,练习题将为学生们提供一次数学猜想、试验的机会。

练习:设点Q是圆C:(x1)2225|AB|的最小值。 3y225上动点,点A(1,0)是圆内一点,AQ的垂直平分线与CQ交于点M,求点M的轨迹方程。

引申:若将点A移到圆C外,点M的轨迹会是什么?

【设计意图】练习题设置的目的是为学生课外自主探究学习提供平台,当然,如果课堂上时间允许的话,

可借助“多媒体课件”,引导学生对自己的结论进行验证。

【知识链接】

(一)圆锥曲线的定义

1.圆锥曲线的第一定义

2.圆锥曲线的统一定义

(二)圆锥曲线定义的应用举例

1.双曲线1的两焦点为F1、F2,P为曲线上一点,若P到左焦点F1的距离为12,求P到右准线的距离。

2.|PF1||PF2|2.P为等轴双曲线x2y2a2上一点,F1、F2为两焦点,O为双曲线的中心,求的|PO|取值范围。

3.在抛物线y22px上有一点A(4,m),A点到抛物线的焦点F的距离为5,求抛物线的方程和点A的坐标。

4.(1)已知点F是椭圆1的右焦点,M是这椭圆上的动点,A(2,2)是一个定点,求|MA|+|MF|的最小值。

(2)已知A(,3)为一定点,F为双曲线1的右焦点,M在双曲线右支上移动,当|AM||MF|最小时,求M点的坐标。

(3)已知点P(-2,3)及焦点为F的抛物线y,在抛物线上求一点M,使|PM|+|FM|最小。

5.已知A(4,0),B(2,2)是椭圆1内的点,M是椭圆上的动点,求|MA|+|MB|的最小值与最大值。

七、教学反思

1.本课将借助于,将使全体学生参与活动成为可能,使原来令人难以理解的抽象的数学理论变得形象,生动且通俗易懂,同时,运用“多媒体课件”辅助教学,节省了板演的时间,从而给学生留出更多的时间自悟、自练、自查,充分发挥学生的主体作用,这充分显示出“多媒体课件”与探究合作式教学理念的有机结合的教学优势。

2.利用两个例题及其引申,通过一题多变,层层深入的探索,以及对猜测结果的检测研究,培养学生思维能力,使学生从学会一个问题的求解到掌握一类问题的解决方法.循序渐进的让学生把握这类问题的解法;将学生容易混淆的两类求“最值问题”并为一道题,方便学生进行比较、分析。虽然从表面上看,我这一堂课的教学容量不大,但事实上,学生们的思维运动量并不会小。

总之,如何更好地选择符合学生具体情况,满足教学目标的例题与练习、灵活把握课堂教学节奏仍是我今后工作中的一个重要研究课题.而要能真正进行素质教育,培养学生的创新意识,自己首先必须更新观念——在教学中适度使用多媒体技术,让学生有参与教学实践的机会,能够使学生在学习新知识的同时,激发起求知的欲望,在寻求解决问题的办法的过程中获得自信和成功的体验,于不知不觉中改善了他们的思维品质,提高了数学思维能力。

幼师资料《高中三角函数教材分析与反思(摘录十篇)》一文希望您能收藏!“幼儿教师教育网”是专门为给您提供幼师资料而创建的网站。同时,yjs21.com还为您精选准备了小班三角形反思专题,希望您能喜欢!

相关推荐

  • 高中数学三角函数专题教案(分享7篇) 作为一位不辞辛劳的人民教师,通常需要用到教案来辅助教学,借助教案可以提高教学质量,收到预期的教学效果。教案应该怎么写才好呢?下面是小编精心整理的高三数学三角函数复习教案,供大家参考借鉴,希望可以帮助到有需要的朋友。高中数学三角函数专题教案 篇1一、教材分析及处理函数是高中数学的重要内容之...
    2024-10-09 阅读全文
  • 高中数学三角函数教学设计案例(汇总十篇) 作为一位优秀的人民教师,总不可避免地需要编写教学设计,教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。那要怎么写好教学设计呢?下面是小编收集整理的三角函数教学设计范文,欢迎阅读,希望大家能够喜欢。高中数学三角函数教学设计案例 篇1教学目标...
    2024-09-15 阅读全文
  • 高中数学三角函数教学计划方案 高中数学作文三大主科之一,对高考的拉分起到很大的作用。做好一个完整的高中数学教学工作计划,才能使工作更加有效的快速完成。以下是小编为大家整理的高三数学教学工作计划(精选9篇),希望能够帮助到大家。高中数学三角函数教学计划方案 篇1一、指导思想以学校和高三年部的教学计划为目标,深化钻研教材...
    2024-09-06 阅读全文
  • 高中三角函数公式教案(精华八篇) 总结就是把一个时段的学习、工作或其完成情况进行一次全面系统的总结,它有助于我们寻找工作和事物发展的规律,从而掌握并运用这些规律,让我们好好写一份总结吧。那么总结应该包括什么内容呢?以下是小编整理的高中三角函数公式总结,仅供参考,希望能够帮助到大家。高中三角函数公式教案 篇1一、教学目标:...
    2024-10-10 阅读全文
  • 高中三角函数教学目标(精品七篇) 光阴的迅速,一眨眼就过去了,我们又将学习新的知识,有新的感受,是不是需要好好写一份教学计划呢?但是教学计划要写什么内容才能让人眼前一亮呢?下面是小编整理的高三艺术班数学教学计划,欢迎阅读与收藏。高中三角函数教学目标 篇1一、指导思想:研究新教材,了解新的信息,更新观念,倡导理性思维,重视...
    2024-09-29 阅读全文

作为一位不辞辛劳的人民教师,通常需要用到教案来辅助教学,借助教案可以提高教学质量,收到预期的教学效果。教案应该怎么写才好呢?下面是小编精心整理的高三数学三角函数复习教案,供大家参考借鉴,希望可以帮助到有需要的朋友。高中数学三角函数专题教案 篇1一、教材分析及处理函数是高中数学的重要内容之...

2024-10-09 阅读全文

作为一位优秀的人民教师,总不可避免地需要编写教学设计,教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。那要怎么写好教学设计呢?下面是小编收集整理的三角函数教学设计范文,欢迎阅读,希望大家能够喜欢。高中数学三角函数教学设计案例 篇1教学目标...

2024-09-15 阅读全文

高中数学作文三大主科之一,对高考的拉分起到很大的作用。做好一个完整的高中数学教学工作计划,才能使工作更加有效的快速完成。以下是小编为大家整理的高三数学教学工作计划(精选9篇),希望能够帮助到大家。高中数学三角函数教学计划方案 篇1一、指导思想以学校和高三年部的教学计划为目标,深化钻研教材...

2024-09-06 阅读全文

总结就是把一个时段的学习、工作或其完成情况进行一次全面系统的总结,它有助于我们寻找工作和事物发展的规律,从而掌握并运用这些规律,让我们好好写一份总结吧。那么总结应该包括什么内容呢?以下是小编整理的高中三角函数公式总结,仅供参考,希望能够帮助到大家。高中三角函数公式教案 篇1一、教学目标:...

2024-10-10 阅读全文

光阴的迅速,一眨眼就过去了,我们又将学习新的知识,有新的感受,是不是需要好好写一份教学计划呢?但是教学计划要写什么内容才能让人眼前一亮呢?下面是小编整理的高三艺术班数学教学计划,欢迎阅读与收藏。高中三角函数教学目标 篇1一、指导思想:研究新教材,了解新的信息,更新观念,倡导理性思维,重视...

2024-09-29 阅读全文
Baidu
map