作为一位杰出的老师,时常需要编写教案,教案有助于顺利而有效地开展教学活动。那么你有了解过教案吗?以下是小编为大家收集的初中数学人教版教案优秀,欢迎阅读与收藏。
初中数学教案优秀教案大全及反思 篇1
一.学生情况分析
学生已经学习了平行四边形的性质和判定,也学习了一种特殊的平行四边形菱形的性质和判定,对于类似的问题有一定的学习精力、经验和感受,这将更有利于学生对本节课的学习。
二.教学任务分析
教学目标:
知识目标:
1.掌握正方形的定义,弄清正方形与平行四边形、菱形、矩形的关系。
2.掌握正方形的性质定理1和性质定理2。
3.正确运用正方形的性质解题。
能力目标:
1.通过四边形的从属关系渗透集合思想。
2.在直观操作活动和简单的说理过程中,发展学生初步的合情推理能力、主动探究习惯,逐步掌握说理的基本方法。
情感与价值观
1.通过理解四种四边形内在联系,培养学生辩证观点
教学重点:正方形的性质的应用.
教学难点:正方形的性质的应用.
三、教学过程设计
课前准备
教具准备: 一个活动的平行四边形木框、白纸、剪刀.
学生用具:白纸、剪刀
教学过程设计分成四分环节:
第一环节:巧设情境问题,引入课题
第二环节:讲授新课
第三环节:新课小结
第四环节:布置作业
第一环节 巧设情境问题,引入课题
进入正题,提出本节课的研究主题正方形
第二环节 讲授新课
主要环节
(1)呈现两种通过不同途径得到正方形的过程,给正方形下定义
(2)讨论正方形的性质
(3)通过练习加强对正方形性质的理解
(4)寻找平行四边形、矩形、菱形、正方形之间的相互关系。
(5)寻找正方形的判定方法
目的:
1. 正方形是特殊的平行四边形,也是特殊的矩形和菱形,因此想得到一个正方形,可以在矩形的基础上强化边的条件得到,也可以在菱形的基础上强化角的条件得到。于是在课上呈现这两种变化,为后面寻求平行四边形、矩形、菱形、正方形的关系打下基础。
2. 由于采用了两种正方形形成的方式,因此正方形的性质和判定方法都可以从中挖掘和发现。
大致教学过程
呈现一个平行四边形变成正方形的全过程.(演示)
由于平行四边形具有不稳定性,所以先把平行四边形木框的一个角变为直角,再移动一条短边,截成有一组邻边相等,此时平行四边形变成了一个正方形.
这个变化过程,可用如下图表示
由此可知:正方形是一组邻边相等的矩形.即:一组邻边相等的矩形叫做正方形.
这个平行四边形木框还可以这样变化:先移动一条短边,截成有一组邻边相等的平行四边形,再把一个角变成直角,此时的平行四边形也变成了正方形.
这个变化过程,也可用图表示
你能根据上面的变化过程,给正方形下定义吗?
一组邻边相等的平行四边形是菱形.正方形是一个角为直角的'菱形,所以可以说:有一个角是直角的菱形叫做正方形.
由此可知:正方形是特殊的矩形,即是邻边相等的矩形,也是特殊的菱形,即是有一个角是直角的菱形.
因为正方形是平行四边形、菱形、矩形,所以它的性质是它们的综合,不仅有平行四边形的所有性质,也有矩形和菱形的特殊性质,即:正方形具有平行四边形、菱形、矩形的一切性质.
正方形的`性质:
边:对边平行、四边相等
角:四个角都是直角
对角线:对角线相等,互相垂直平分,每条对角线平分一组对角.
正方形是轴对称图形吗?如是,它有几条对称轴?
正方形是轴对称图形,它有四条对称轴,即:两条对角线,两组对边的中垂线.
例题
[例1]如图,四边形ABCD是正方形,两条对角线相交于点O,求AOB,OAB的度数.
分析:本题是正方形的性质的直接应用.正方形的性质很多,要恰当运用,本题主要用到正方形的对角线的性质,即正方形的轴对称性.
解:正方形ABCD是菱形,对角线AC,BD一定互相垂直,所以AOB=90.正方形ABCD是矩形,又是菱形,所以:BAD=90且对角线AC平分BAD,因此:OAB=45
拿出准备好的剪刀、白纸来做一做
将一张长方形纸对折两次,然后剪下一个角,打开,怎样剪才能剪出一个正方形?(学生动手折叠,想,剪切)
只要保证剪口线与折痕成45角即可.因为正方形的两条对角线把它分成四个全等的等腰直角三角形,把折痕作对角线,这时只需剪一个等腰直角三角形,打开即是正方形.
正方形是平行四边形、矩形、又是菱形,那么它们四者之间有何关系呢?
正方形、矩形、菱形及平行四边形四者之间有什么关系呢?
它们的包含关系如图:
此图给出了正方形的判别条件,即怎样判定一个平行四边形是正方形?
先判定一个四边形是平行四边形,再判定这个平行四边形是矩形,然后再判定这个矩形是菱形;或者先判定一个四边形是菱形,再判定这个菱形是矩形.
由于判定平行四边形、矩形、菱形的方法各异,所给出的条件不一样,所以判定一个四边形是不是正方形的具体条件相应可作变化,在应用时要仔细辨别后才可以作出判断.
第三环节 课堂练习
教材 随堂练习1,2
第四环节 课时小结
正方形的定义:一组邻边相等的矩形.
正方形的性质与平行四边形、矩形、菱形的性质可比较如下:(出示小黑板)
第五环节 课后作业
课本习题4.7 1,2,3.
四.教学设计反思
在教材中,并没有明确的给出正方形的判定定理。那么教师在课堂上应该帮助学生理清思路,使他们明确判定的方法。
为了实现这个目标,在本节课的开始,教师就采取了两种方式呈现正方形的形成过程,在直观上帮助学生认识了正方形与矩形、正方形与菱形之间的关系;在讲解正方形性质的过程中又再次强化了这种认识。通过层层铺垫,让学生明确矩形+邻边相等就是正方形,菱形+一个直角就是正方形,如何判定图形是矩形或是菱形,前面已经学习过,因此关于正方形的判定是需要一个条件一个条件“叠加”完成的。
初中数学教案优秀教案大全及反思 篇2
教学目标:
1、掌握一元二次方程的根与系数的关系并会初步应用。
2、培养学生分析、观察、归纳的能力和推理论证的能力。
3、渗透由特殊到一般,再由一般到特殊的认识事物的规律。
4、培养学生去发现规律的积极性及勇于探索的精神。
教学重点与难点:
重点
根与系数的关系及其推导
难点
正确理解根与系数的关系。一元二次方程根与系数的关系是指一元二次方程两根的和、两根的积与系数的关系。
教学过程:
一、复习引入
1、已知方程x2-ax-3a=0的一个根是6,则求a及另一个根的值。
2、由上题可知一元二次方程的系数与根有着密切的关系。其实我们已学过的求根公式也反映了根与系数的关系,这种关系比较复杂,是否有更简洁的关系?
3、由求根公式可知,一元二次方程ax2+bx+c=0(a≠0)的两根为x1=-b+b2-4ac2a,x2=-b-b2-4ac2a.观察两式右边,分母相同,分子是-b+b2-4ac与-b-b2-4ac.两根之间通过什么计算才能得到更简洁的关系?
二、探索新知
解下列方程,并填写表格:
方程x1 x2 x1+x2 x1x2
x2-2x=0
x2+3x-4=0
x2-5x+6=0
观察上面的表格,你能得到什么结论?
(1)关于x的方程x2+px+q=0(p,q为常数,p2-4q≥0)的两根x1,x2与系数p,q之间有什么关系?
(2)关于x的方程ax2+bx+c=0(a≠0)的两根x1,x2与系数a,b,c之间又有何关系呢?你能证明你的猜想吗?
解下列方程,并填写表格:
方程x1 x2 x1+x2 x1x2
2x2-7x-4=0
3x2+2x-5=0
5x2-17x+6=0
小结:根与系数关系:
(1)关于x的方程x2+px+q=0(p,q为常数,p2-4q≥0)的两根x1,x2与系数p,q的关系是:x1+x2=-p,x1x2=q(注意:根与系数关系的前提条件是根的判别式必须大于或等于零。)
(2)形如ax2+bx+c=0(a≠0)的'方程,可以先将二次项系数化为1,再利用上面的结论。
即:对于方程ax2+bx+c=0(a≠0)
∵a≠0,∴x2+bax+ca=0
∴x1+x2=-ba,x1x2=ca
(可以利用求根公式给出证明)
例1不解方程,写出下列方程的两根和与两根积:
(1)x2-3x-1=0 (2)2x2+3x-5=0
(3)13x2-2x=0 (4)2x2+6x=3
(5)x2-1=0 (6)x2-2x+1=0
例2不解方程,检验下列方程的解是否正确?
(1)x2-22x+1=0 (x1=2+1,x2=2-1)
(2)2x2-3x-8=0 (x1=7+734,x2=5-734)
例3已知一元二次方程的两个根是-1和2,请你写出一个符合条件的方程。(你有几种方法?)
例4已知方程2x2+kx-9=0的一个根是-3,求另一根及k的值。
变式一:已知方程x2-2kx-9=0的两根互为相反数,求k;
变式二:已知方程2x2-5x+k=0的两根互为倒数,求k.
三、课堂小结
1、根与系数的关系。
2、根与系数关系使用的前提是:
(1)是一元二次方程;
(2)判别式大于等于零。
四、作业布置
1、不解方程,写出下列方程的两根和与两根积。
(1)x2-5x-3=0 (2)9x+2=x2 (3)6x2-3x+2=0
(4)3x2+x+1=0
2、已知方程x2-3x+m=0的一个根为1,求另一根及m的值。
3、已知方程x2+bx+6=0的一个根为-2,求另一根及b的值
初中数学教案优秀教案大全及反思 篇3
教学目标
1.经历不同的拼图方法验证公式的过程,在此过程中加深对因式分解、整式运算、面积等的认识。
2.通过验证过程中数与形的结合,体会数形结合的思想以及数学知识之间内在联系,每一部分知识并不是孤立的。
3.通过丰富有趣的拼图活动,经历观察、比较、拼图、计算、推理交流等过程,发展空间观念和有条理地思考和表达的能力,获得一些研究问题与合作交流方法与经验。
4.通过获得成功的体验和克服困难的经历,增进数学学习的信心。通过丰富有趣拼的图活动增强对数学学习的兴趣。
重点
1.通过综合运用已有知识解决问题的过程,加深对因式分解、整式运算、面积等的认识。
2.通过拼图验证公式的过程,使学习获得一些研究问题与合作交流的方法与经验。
难点
利用数形结合的方法验证公式
教学方法
动手操作,合作探究课型新授课教具投影仪
教师活动学生活动
情景设置:
你已知道的关于验证公式的拼图方法有哪些?(教师在此给予学生独立思考和讨论的时间,让学生回想前面拼图。)
新课讲解:
把几个图形拼成一个新的图形,再通过图形面积的计算,常常可以得到一些有用的式子。美国第二十任总统伽菲尔德就由这个图(由两个边长分别为a、b、c的直角三角形和一个两条直角边都是c的直角三角形拼成一个新的图形)得出:c2=a2+b2他的证法在数学史上被传为佳话。他是这样分析的,如图所示:
教师接着在介绍教材第94页例题的拼法及相关公式
提问:还能通过怎样拼图来解决以下问题yjS21.COm
(1)任意选取若干块这样的硬纸片,尝试拼成一个长方形,计算它的面积,并写出相应的等式;
(2)任意写出一个关于a、b的二次三项式,如a2+4ab+3b2
试用拼一个长方形的'方法,把这个二次三项式因式分解。
这个问题要给予学生充足的时间和空间进行讨论和拼图,教师在这要引导适度,不要限制学生思维,同时鼓励学生在拼图过程中进行交流合作
了解学生拼图的情况及利用自己的拼图验证的情况。教师在巡视过程中,及时指导,并让学生展示自己的拼图及让学生讲解验证公式的方法,并根据不同学生的不同状况给予适当的引导,引导学生整理结论。
小结:
从这节课中你有哪些收获?
(教师应给予学生充分的时间鼓励学生畅所欲言,只要是学生的感受和想法,教师要多鼓励、多肯定。最后,教师要对学生所说的进行全面的总结。)
学生回答
a(b+c+d)=ab+ac+ad
(a+b)(c+d)=ac+ad+bc+bd
(a+b)2=a2+2ab+b2
学生拿出准备好的硬纸板制作
给学生充分的时间进行拼图、思考、交流经验,对于有困难的学生教师要给予适当引导。
作业第95页第3题
板书设计
复习例1板演
………………
………………
……例2……
………………
………………
教学后记
初中数学教案优秀教案大全及反思 篇4
一.教学目标
1.知识与技能
(1)通过足球赛中的净胜球数,使学生掌握有理数加法法则,并能运用法则进行计算;
(2)在有理数加法法则的教学过程中,注意培养学生的运算能力.
2.数学思考
通过观察,比较,归纳等得出有理数加法法则。
3.解决问题
能运用有理数加法法则解决实际问题。
4.情感与态度
认识到通过师生合作交流,学生主动叁与探索获得数学知识,从而提高学生学习数学的积极性。
5.重点
会用有理数加法法则进行运算.
6.难点
异号两数相加的法则.
二.教材分析
“有理数的加法”是人教版七年级数学上册第一章有理数的第三节内容,本节内容安排四个课时,本课时是本节内容的第一课时,本课设计主要是通过球赛中净胜球数的实例来明确有理数加法的意义,引入有理数加法的法则,为今后学习“有理数的减法”做铺垫。
三.学校与学生情况分析
冲坡中学是乐东县利国镇的一所完全中学,学生都来自农村,学生的基础及学习习惯是比较差。学生对新的课堂教学方法不是很适应;不过,在新的教学理念的指导下,旧的教学方法和学习方法逐步淡化,而是培养学生的观察,比较,归纳及自主探索和合作交流能力。现在,班级中已初步形成合作交流和勇于探究的良好学风,学生间互相评价和师生互动的课堂气氛已逐步形成。
四.教学过程
(一)问题与情境
我们已经熟悉正数的运算,然而实际问题中做加法运算的数有可能超出正数范围。例如,足球循环赛中,通常把进球数记为正数,失球数记为负数,它们的和叫作净胜球数。章前言中,红队进4个球,失2个球;蓝队进1个球,失1个球。于是红队的净胜球为
4+(-2),黄队的净胜球为1+(-1)。
这里用到正数与负数的加法。
(二)、师生共同探究有理数加法法则
前面我们学习了有关有理数的一些基础知识,从今天起开始学习有理数的运算.这节课我们来研究两个有理数的加法.
两个有理数相加,有多少种不同的情形?
为此,我们来看一个大家熟悉的实际问题:
足球比赛中赢球个数与输球个数是相反意义的量.若我们规定赢球为“正”,输球为“负”,打平为“0”.比如,赢3球记为+3,输1球记为-1.学校足球队在一场比赛中的胜负可能有以下各种不同的情形:
(1)上半场赢了3球,下半场赢了1球,那么全场共赢了4球.也就是
(+3)+(+1)=+4.
(2)上半场输了2球,下半场输了1球,那么全场共输了3球.也就是
(-2)+(-1)=-3.
现在,请同学们说出其他可能的情形.
答:上半场赢了3球,下半场输了2球,全场赢了1球,也就是
(+3)+(-2)=+1;
上半场输了3球,下半场赢了2球,全场输了1球,也就是
(-3)+(+2)=-1;
上半场赢了3球下半场不输不赢,全场仍赢3球,也就是
(+3)+0=+3;
上半场输了2球,下半场两队都没有进球,全场仍输2球,也就是
(-2)+0=-2;
上半场打平,下半场也打平,全场仍是平局,也就是
0+0=0.
上面我们列出了两个有理数相加的7种不同情形,并根据它们的具体意义得出了它们相加的和.但是,要计算两个有理数相加所得的和,我们总不能一直用这种方法.现在请同学们仔细观察比较这7个算式,你能从中发现有理数加法的运算法则吗?也就是结果的符号怎么定?绝对值怎么算?
这里,先让学生思考,师生交流,再由学生自己归纳出有理数加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加;
2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;
3.一个数同0相加,仍得这个数.
(三)、应用举例 变式练习
例1 口答下列算式的结果
(1)(+4)+(+3); (2)(-4)+(-3); (3)(+4)+(-3); (4)(+3)+(-4);
(5)(+4)+(-4); (6)(-3)+0; (7)0+(+2); (8)0+0.
学生逐题口答后,师生共同得出
进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值.
例2(教科书的例1)
解:(1)(-3)+(-9) (两个加数同号,用加法法则的第2条计算)
=-(3+9) (和取负号,把绝对值相加)
=-12.
(2)(-4.7)+3.9 (两个加数异号,用加法法则的第2条计算)
=-(4.7-3.9) (和取负号,把大的.绝对值减去小的绝对值)
=-0.8
例3(教科书的例2)教师在算出红队的净胜球数后,学生自己算黄队和蓝队的净胜球数
下面请同学们计算下列各题以及教科书第23页练习第1与第2题
(1)(-0.9)+(+1.5); (2)(+2.7)+(-3); (3)(-1.1)+(-2.9);
学生书面练习,四位学生板演,教师巡视指导,学生交流,师生评价。
(四)、小结
1.本节课你学到了什么?
2.本节课你有什么感受?(由学生自己小结)
(五)练习设计
1.计算:
(1)(-10)+(+6); (2)(+12)+(-4); (3)(-5)+(-7); (4)(+6)+(+9);
(5)67+(-73); (6)(-84)+(-59); (7)33+48; (8)(-56)+37.
2.计算:
(1)(-0.9)+(-2.7); (2)3.8+(-8.4); (3)(-0.5)+3;
(4)3.29+1.78; (5)7+(-3.04); (6)(-2.9)+(-0.31);
(7)(-9.18)+6.18; (8)4.23+(-6.77); (9)(-0.78)+0.
4.用“>”或“<”号填空:
(1)如果a>0,b>0,那么a+b ______0;
(2)如果a<0,b<0,那么a+b ______0;
(3)如果a>0,b<0,|a|>|b|,那么a+b ______0;
(4)如果a<0,b>0,|a|>|b|,那么a+b ______0.
五.教学反思
“有理数的加法”的教学,可以有多种不同的设计方案.大体上可以分为两类:一类是较快地由教师给出法则,用较多的时间(30分钟以上)组织学生练习,以求熟练地掌握法则;另一类是适当加强法则的形成过程,从而在此过程中着力培养学生的观察、比较、归纳能力,相应地适当压缩应用法则的`练习,如本教学设计.
现在,试比较这两类教学设计的得失利弊.
第一种方案,教学的重点偏重于让学生通过练习,熟悉法则的应用,这种教法近期效果较好.
第二种方案,注重引导学生参与探索、归纳有理数加法法则的过程,主动获取知识.这样,学生在这节课上不仅学懂了法则,而且能感知到研究数学问题的一些基本方法.
这种方案减少了应用法则进行计算的练习,所以学生掌握法则的熟练程度可能稍差,这是教学中应当注意的问题.但是,在后续的教学中学生将千万次应用“有理数加法法则”进行计算,故这种缺陷是可以得到弥补的.第一种方案削弱了得出结论的“过程”,失去了培养学生观察、比较、归纳能力的一次机会.权衡利弊,我们主张采用第二种教学方法。
六.点评
潘老师对本节课的设计是比较好的,体现学生是学习的主人,教师是教学活动的组织者,引导者和叁与者。的确,新课程的实施给教师提出了全新的挑战。在新课程中,教学观念的转变和课程意识的建立是首要的,教学不是教“教科书”,而是经由“教科书”来教,新课程给教师留下了广阔的空间,教师在教学中要站在课程标准的角度挖掘教材,把教材内容与学生感兴趣的事物结合起来,寓教于乐,充分调动学生的学习积极性。
初中数学教案优秀教案大全及反思 篇5
问题描述:
初中数学教学案例
初中的,随便那个年级.2000字.案例和反思
1个回答分类:数学2014-11-30
问题解答:
我来补答
2.3平行线的性质
一、教材分析:
本节课是人民教育出版社义务教育课程标准实验教科书(五四学制)七年级上册第2章第3节平行线的性质,它是平行线及直线平行的继续,是后面研究平移等内容的基础,是“空间与图形”的重要组成部分.
二、教学目标:
知识与技能:掌握平行线的性质,能应用性质解决相关问题.
数学思考:在平行线的性质的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程.
解决问题:通过探究平行线的性质,使学生形成数形结合的数学思想方法,以及建模能力、创新意识和创新精神.
情感态度与价值观:在探究活动中,让学生获得亲自参与研究的情感体验,从而增强学生学习数学的热情和勇于探索、锲而不舍的精神.
三、教学重、难点:
重点:平行线的性质
难点:“性质1”的探究过程
四、教学方法:
“引导发现法”与“动像探索法”
五、教具、学具:
教具:多媒体课件
学具:三角板、量角器.
六、教学媒体:大屏幕、实物投影
七、教学过程:
(一)创设情境,设疑激思:
1.播放一组幻灯片.内容:①火车行驶在铁轨上;②游泳池;③横格纸.
2.声音:日常生活中我们经常会遇到平行线,你能说出直线平行的条件吗?
学生活动:
思考回答.①同位角相等两直线平行;②内错角相等两直线平行;③同旁内角互补两直线平行;
教师:首先肯定学生的回答,然后提出问题.
问题:若两直线平行,那么同位角、内错角、同旁内角各有什么关系呢?
引出课题——平行线的性质.
(二)数形结合,探究性质
1.画图探究,归纳猜想
任意画出两条平行线(a‖b),画一条截线c与这两条平行线相交,标出8个角(如图).
问题一:指出图中的同位角,并度量这些角,把结果填入下表:
第一组
第二组
第三组
第四组
同位角
∠1
∠5
角的度数
数量关系
学生活动:画图——度量——填表——猜想
结论:两直线平行,同位角相等.
问题二:再画出一条截线d,看你的猜想结论是否仍然成立?
学生:探究、讨论,最后得出结论:仍然成立.
2.教师用《几何画板》课件验证猜想
3.性质1.两条直线被第三条直线所截,同位角相等.(两直线平行,同位角相等)
(三)引申思考,培养创新
问题三:请判断内错角、同旁内角各有什么关系?
学生活动:独立探究——小组讨论——成果展示.
教师活动:引导学生说理.
因为a‖b因为a‖b
所以∠1=∠2所以∠1=∠2
又∠1=∠3又∠1+∠4=180°
所以∠2=∠3所以∠2+∠4=180°
语言叙述:
性质2两条直线被第三条直线所截,内错角相等.
(两直线平行,内错角相等)
性质3两条直线被第三条直线所截,同旁内角互补.
(两直线平行,同旁内角互补)
(四)实际应用,优势互补
1.(抢答)
(1)如图,平行线AB、CD被直线AE所截
①若∠1=110°,则∠2=°.理由:.
②若∠1=110°,则∠3=°.理由:.
③若∠1=110°,则∠4=°.理由:.
(2)如图,由AB‖CD,可得()
(A)∠1=∠2(B)∠2=∠3
(C)∠1=∠4(D)∠3=∠4
(3)如图,AB‖CD‖EF,
那么∠BAC+∠ACE+∠CEF=()
(A)180°(B)270°(C)360°(D)540°
(4)谁问谁答:如图,直线a‖b,
如:∠1=54°时,∠2=.
学生提问,并找出回答问题的同学.
2.(讨论解答)
如图是一块梯形铁片的残余部分,量得∠A=100°,
∠B=115°,求梯形另外两角分别是多少度?
(五)概括存储(小结)
1.平行线的性质1、2、3;
2.用“运动”的观点观察数学问题;
3.用数形结合的方法来解决问题.
(六)作业第69页2、4、7.
八、教学反思:
①教的转变:本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者.在引导学生画图、测量、发现结论后,利用几何画板直观地、动态地展示同位角的关系,激发学生自觉地探究数学问题,体验发现的乐趣.
②学的转变:学生的角色从学会转变为会学.本节课学生不是停留在学会课本知识的层面上,而是站在研究者的角度深入其境.
③课堂氛围的转变:整节课以“流畅、开放、合作、‘隐’导”为基本特征,教师对学生的思维活动减少干预,教学过程呈现一种比较流畅的特征,整节课学生与学生、学生与教师之间以“对话”、“讨论”为出发点,以互助、合作为手段,以解决问题为目的,让学生在一个较为宽松的环境中自主选择获得成功的方向,判断发现的价值.
初中数学教案优秀教案大全及反思 篇6
一、教学目标:
1、知道一次函数与正比例函数的定义。
2、理解掌握一次函数的图象的特征和相关的性质。
3、弄清一次函数与正比例函数的区别与联系。
4、掌握直线的平移法则简单应用。
5、能应用本章的基础知识熟练地解决数学问题。
二、教学重、难点:
重点:初步构建比较系统的函数知识体系。
难点:对直线的平移法则的理解,体会数形结合思想。
三、教学过程:
1、一次函数与正比例函数的定义:
一次函数:一般地,若y=kx+b(其中k,b为常数且k≠0),那么y是一次函数。
正比例函数:对于y=kx+b,当b=0,k≠0时,有y=kx,此时称y是x的正比例函数,k为正比例系数。
2、一次函数与正比例函数的区别与联系:
(1)从解析式看:y=kx+b(k≠0,b是常数)是一次函数;而y=kx(k≠0,b=0)是正比例函数,显然正比例函数是一次函数的特例,一次函数是正比例函数的推广。
(2)从图象看:正比例函数y=kx(k≠0)的图象是过原点(0,0)的一条直线;而一次函数y=kx+b(k≠0)的图象是过点(0,b)且与y=kx
平行的一条直线。
基础训练:
1、写出一个图象经过点(1,—3)的函数解析式为:
2、直线y=—2X—2不经过第象限,y随x的增大而。
3、如果P(2,k)在直线y=2x+2上,那么点P到x轴的距离是:
4、已知正比例函数y=(3k—1)x,,若y随x的增大而增大,则k是:
5、过点(0,2)且与直线y=3x平行的直线是:
6、若正比例函数y=(1—2m)x的图像过点A(x1,y1)和点B(x2,y2)当x1<x2时,y1>y2,则m的取值范围是:
7、若y—2与x—2成正比例,当x=—2时,y=4,则x=时,y=—4。
8、直线y=—5x+b与直线y=x—3都交y轴上同一点,则b的值为。
9、已知圆O的半径为1,过点A(2,0)的直线切圆O于点B,交y轴于点C。
(1)求线段AB的长。
(2)求直线AC的解析式。
初中数学教案优秀教案大全及反思 篇7
在教学过程中,很多教师总认为自己在上课中讲得井井有条,知识条理十分透彻,演算透彻清晰,但结果是有大多数学生不能举一反三,数学学习困难重重。产生这种现象的原因,多数教师都归因于学生素质差、家庭教育环境不良等教师以外的因素,很少发现是自己教学能力和素养导致而成。
课堂教学是师生的双边活动。课堂教学的实质是师生双方的信息交流,共同学校的过程。教师得知学生在数学学习很困难时,是否想到了可能教师自己对教材理解不够,没有准确地把握教材的重点、难点,对教材内容层次没有理清和教学方法不适呢?《数学课程标准》指导下,我们的数学教学目的是要学生在数学学习中,由“听”到“懂”,再到“会”,最后到“通”。为此,教师必须深刻反思自己的教育教学行为,批判性地考察自我主体行为表现及其行为依据。通过观察、回顾、诊断、自我监控等方式,或给予肯定、支持与强化,或给予否定、思索与修正,将“学会教学”与“学会学习”结合起来,从而努力提升教学实践的合理性,提高课堂教学效能,到达提高教学质量的目的。现就以下几方面谈谈自己的看法。
一、教师要反思教育观念
新课标下要求教师要改变学科的教育观,始终体现“学生是教学活动的主体”科学理念,着眼于学生的终身发展,注重培养学生浓厚的学习兴趣和正确的学习习惯。数学非常重视教学内容与实际生活的紧密联系。但是在教学活动中还是有不少教师习惯于传统的教学模式,偏重于知识的传授,强调接受式学习,这样使很多学生在学习数学上失去了兴趣。教学中教师要抓住时机,不断地引导学生在设疑、质疑、解疑的过程中,创设认知“冲突”,激发学生持续的学习兴趣和求知欲望,顺利地建立数学概念,把握数学定义、定理和规律。
教师在探究教学中要立足与培养学生的独立性和自主性,引导他们质疑、调查和探究,学会在实践中学,在合作中学,逐步形成适合于自己的学习策略。例如,在学习等腰三角形三线合一的性质时可以让三个同学合作分别去画出顶角平分线、底边上的高、底边上的中线,这是学生会发现三条线为什么会是一条线?证明三角形全等的方法有多种,为什么“角边边”不能判定两三角形全等?在学习镶嵌时,可以提这样的问题,为什么正三角形、正方形、长方形正六边形可以,而正五边形不可以?等等。
这样教师不断地设问,不断地质疑,就能引导学生进行积极思考,激发起学生浓厚的学习兴趣和求知欲望,促使学生在生活中发现和归纳各种各样的数学规律,为下一步学习数学知识打下坚实的基础。所以我们的教师必须反思自己的教育观念,紧紧抓住主导和主体的关系,解决好学生学习积极性的问题。
二、教师要反思教学设计
教学设计是课堂教学的蓝本,是对课堂教学的整体规划和预设,勾勒出了课堂教学活动的效益取向。设计教学方案时,教师对当前的教学内容及其地位(概念的“解构”、思想方法的“析出”、相关知识的联系方式等),学生已有知识经验,教学目的,重点与难点,如何依据学生已有认知水平和知识的逻辑过程设计教学过程,如何突出重点和突破难点,学生在理解概念和思想方法时可能会出现哪些情况以及如何处理这些情况,设计哪些练习以巩固新知识,如何评价学生的学习效果等,都应该有一定的思考和预设。教学设计的反思就是对这些思考和预设是否考虑到了。教学后,要对实际进程和学生的接受程度进行比较和反思,找出成功和不足之处及其原因,从而有效地改进教学。
三、教师要反思教学方法
教师教得好,本质上讲是学生学得好。在实际教学过程中我们的教学方法是否合乎学生实际呢?上课、评卷、答疑解难时,有的教师自以为讲清楚明白了,学生受到了一定的启发,但反思后发现,教师的讲解并没有很好地从学生原有的知识基础出发,从根本上解决学生认识上鸿沟问题。有的教师只是一味的设想按照自己某个固定的程序去解决某一类问题,也许学生当时听明白了,但往往是是而非,并没有真正理解问题的本质。
初中数学教学中,例习题教学是数学教学中重要的组成部分,是概念类教学的延伸和发展。教材中的例习题都是编者精心编制的,具有典型性和启发性,它们不仅是对基础知识的巩固,同时对培养学生智力、掌握数学思想和方法,及培养学生应用数学意识和能力,提高学生的数学素养等都有重要意义。
四、教师要反思学生学习方法
《数学课程标准》指出,有效的数学学习活动不能单纯依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式,因此,转变数学学习方式,倡导有意义的学习方式是课程改革的核心任务。初中学生年龄一般在十二至十六岁之间,正处生长发育期,思想不成熟,行为不稳定,办事情绪化,喜表露,易冲动,既有面见师长的羞涩,有初生牛犊不怕虎的习性。在数学学习上凭兴趣,看心情,个性反映较为突出,有不少学生学习方法也存在一定的问题。同时他们往往又很难发现自己的学习方法不妥。所以,教师就应该反思学生的学习方法,找一找哪些问题,并帮助他们努力改变不恰当的方法,使学生达到《新课标》的要求。
总之,为学之道,必本与思,思则得之,不思则不得。教学也是这个规律,只教不思就会成为教死书的教书匠,学生也得不到很好的受益。要想成为优秀的教师,只有一边教书一边总结,一边教书一边反思,才能实现自己的目的。
初中数学教案优秀教案大全及反思 篇8
一、教材分析
本节课是人民教育出版社义务教育课程标准实验教科书(六三学制)七年级下册第七章第三节多边形内角和。
二、教学目标
1、知识目标:了解多边形内角和公式。
2、数学思考:通过把多边形转化成三角形体会转化思想在几何中的运用,同时让学生体会从特殊到一般的认识问题的方法。
3、解决问题:通过探索多边形内角和公式,尝试从不同角度寻求解决问题的方法并能有效地解决问题。
4、情感态度目标:通过猜想、推理活动感受数学活动充满着探索以及数学结论的确定性,提高学生学习热情。
三、教学重、难点
重点:探索多边形内角和。
难点:探索多边形内角和时,如何把多边形转化成三角形。
四、教学方法:
引导发现法、讨论法
五、教具、学具
教具:多媒体课件
学具:三角板、量角器
六、教学媒体:
大屏幕、实物投影
七、教学过程:
(一)创设情境,设疑激思
师:大家都知道三角形的内角和是180,那么四边形的内角和,你知道吗?
活动一:探究四边形内角和。
在独立探索的基础上,学生分组交流与研讨,并汇总解决问题的方法。
方法一:用量角器量出四个角的度数,然后把四个角加起来,发现内角和是360。
方法二:把两个三角形纸板拼在一起构成四边形,发现两个三角形内角和相加是360。
接下来,教师在方法二的基础上引导学生利用作辅助线的方法,连结四边形的对角线,把一个四边形转化成两个三角形。
师:你知道五边形的内角和吗?六边形呢?十边形呢?你是怎样得到的?
活动二:探究五边形、六边形、十边形的内角和。
学生先独立思考每个问题再分组讨论。
关注:
(1)学生能否类比四边形的方式解决问题得出正确的结论。
(2)学生能否采用不同的方法。
学生分组讨论后进行交流(五边形的内角和)
方法1:把五边形分成三个三角形,3个180的和是540。
方法2:从五边形内部一点出发,把五边形分成五个三角形,然后用5个180的和减去一个周角360。结果得540。
方法3:从五边形一边上任意一点出发把五边形分成四个三角形,然后用4个180的和减去一个平角180,结果得540。
方法4:把五边形分成一个三角形和一个四边形,然后用180加上360,结果得540。
师:你真聪明!做到了学以致用。
交流后,学生运用几何画板演示并验证得到的方法。
得到五边形的内角和之后,同学们又认真地讨论起六边形、十边形的内角和。类比四边形、五边形的讨论方法最终得出,六边形内角和是720,十边形内角和是1440。
(二)引申思考,培养创新
师:通过前面的讨论,你能知道多边形内角和吗?
活动三:探究任意多边形的内角和公式。
思考:
(1)多边形内角和与三角形内角和的关系?
(2)多边形的边数与内角和的关系?
(3)从多边形一个顶点引的对角线分三角形的个数与多边形边数的关系?
学生结合思考题进行讨论,并把讨论后的结果进行交流。
发现1:四边形内角和是2个180的和,五边形内角和是3个180的和,六边形内角和是4个180的和,十边形内角和是8个180的和。发现2:多边形的边数增加1,内角和增加180。
发现3:一个n边形从一个顶点引出的对角线分三角形的个数与边数n存在(n-2)的关系。
得出结论:多边形内角和公式:(n-2)·180。
(三)实际应用,优势互补
1、口答:
(1)七边形内角和()
(2)九边形内角和()
(3)十边形内角和()
2、抢答:
(1)一个多边形的内角和等于1260,它是几边形?
(2)一个多边形的`内角和是1440,且每个内角都相等,则每个内角的度数是()。
3、讨论回答:一个多边形的内角和比四边形的内角和多540,并且这个多边形的各个内角都相等,这个多边形每个内角等于多少度?
(四)概括存储
学生自己归纳总结:
1、多边形内角和公式
2、运用转化思想解决数学问题
3、用数形结合的思想解决问题
(五)作业:练习册第93页1、2、3
八、教学反思:
1、教的转变
本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者,在引导学生画图、测量发现结论后,利用几何画板直观地展示,激发学生自觉探究数学问题,体验发现的乐趣。
2、学的转变
学生的角色从学会转变为会学。本节课学生不是停留在学会课本知识层面,而是站在研究者的角度深入其境。
3、课堂氛围的转变
整节课以“流畅、开放、合作、隐导”为基本特征,教师对学生的思维减少干预,教学过程呈现一种比较流畅的特征。整节课学生与学生,学生与教师之间以“对话”、“讨论”为出发点,以互助合作为手段,以解决问题为目的,让学生在一个比较宽松的环境中自主选择获得成功的方向,判断发现的价值。
感谢您阅读“幼儿教师教育网”的《初中数学教案优秀教案大全及反思(汇集八篇)》一文,希望能解决您找不到幼儿园教案时遇到的问题和疑惑,同时,yjs21.com编辑还为您精选准备了数学教案反思专题,希望您能喜欢!