六年级上册数学课件
发布时间:2024-07-07 六年级上册数学课件 六年级上册课件 上册课件六年级上册数学课件合集七篇。
编辑为您精心准备了关于“六年级上册数学课件”的相关资讯,为了避免遗忘请将本网页加入您的收藏夹。教案课件是老师上课中很重要的一个课件,就需要老师用心去设计好教案课件了。教案是课堂教学的基础设施。
六年级上册数学课件【篇1】
教学目的:
1.让学生知道什么是圆的周长。
2.理解圆周率的意义。
3.理解和掌握圆的周长计算公式,并能初步运用公式解决一些简单的实际问题。
教学重点:
推导圆的周长计算公式。
教学难点:
理解圆周率的意义。
教具学具:
1.学生准备直径为4厘米、2厘米、3厘米圆片各一个,线,直尺。
2.电脑软件及演示教具。
教学过程:
一、复习:
上节课我们认识了圆,谁能说说什么是圆心?圆的半径?圆的直径?在同圆或等圆中圆的半径和直径有什么关系?用字母怎样表示?
二、导入:
这节课我们继续研究圆的周长(板书课题)。
1.指实物图片(长方形)问:这是什么图形?谁能指出它的周长?
2.指实物图片(圆)问:这是什么图形?谁能指出它的周长?
问:什么是圆的周长?
板书:围成圆的曲线的长是圆的周长。
3.你能测量出这个圆的周长吗?(能)
4.指实物(用铁丝围成的圆)问:你能测量出这个圆的周长吗?
5.用拴线的小球在空中旋转画圆。问:你能测量它的周长吗?
回答:不能。
想一想圆的周长都可以用测量的方法得到吗?(不能)这样做也会不方便、不准确。有没有更好的方法计算圆的周长呢?今天我们就来研究这个问题。
三、请同学们用圆规在练习本上画几个大小不同的圆,想一想圆的周长可能和什么条件有关?(半径或直径)再看电脑演示(半径不同周长不同)圆的周长和它的直径或半径究竟有什么样的关系?请同学们测量手中圆片的周长(用线或滚动测量),再和直径比一比,看谁能发现其中的秘密?
四、学生动手测量、教师巡视指导。
五、统计测量结果。
观察表中数据,想一想发现什么?圆的周长总是直径的三倍多一些!任何圆的周长都是直径的3倍多吗?
六、电脑演示
(几个大小不同的圆,它们的周长都是直径的3倍多一些)这是一个了不起的发现!谁知道我国历史上最早发现这个规律的人是谁?圆的周长到底是直径的3倍多多少?请同学们带着这个问题认真读书93页,默读“通过实验”到“π≈3.14”。
七、看书后回答问题:
1.是谁把圆周率的值精确计算到6位小数?
2.什么叫圆周率?
3.知道了圆周率,还需知道什么条件就可以计算圆的周长?
4.如果用字母c表示圆的周长,d表示直径,r表示半径,π表示圆周率,圆的周长的计算公式应该怎样表示?
现在你们已经掌握了圆的周长的计算方法,谁能很快说出你手中圆片的周长约是多少?(π取3.14)
八、出示例1:
一种矿山用的大卡车车轮直径是1.95米,车轮滚动一周约前进多少米?
(得数保留两位小数)
请同学们想一想:车轮滚动一周的距离实际指的是什么?
解:d=1.95 单位:米
c=πd
=3.14×1.95
=6.123
≈6.12(米)
答:车轮滚动一周约前进6.12米.
九、课堂练习:
1.投影:计算下面图形的周长.
2.判断下面各题(正确的出示“√”,错误的出示“×”)
(1)圆周率就是圆的周长除以它的直径所得的商. ( )
(2)圆的直径越大,圆周率越大. ( )
(3)圆的半径是3厘米,周长是9.42厘米. ( )
3.小明和爷爷分别沿小圆(A→B→C→D→E→A)和大圆两条路线散步.(如图)
如果速度相同,两人同时出发,谁先回到出发地点?为什么?
小明的路线长:20×3.14+20×3.14
=62.8+62.8
=125.6(米)
爷爷的路线长:3.14×(20+20)
=3.14×40
=125.6(米)
两条路线一样长,两人应同时回到出发点.
4.一棵大树(投影)又粗又壮,不用锯倒大树,你能知道大树的直径是多少吗?讨论.
结论:先测量大树一周的长度,再用周长除以圆周率,就得到了直径.
小结:今天我们共同努力研究出了圆的周长的计算方法,谁能说说圆的周长应当怎样计算?计算时要注意什么问题?今后我们在学习探索新的知识时一定要积极动手动脑,扎扎实实地学好科学知识.
六年级上册数学课件【篇2】
第六节“走路”的教学设计
课程
问题:散步
1.内容与分析 p>
、内容
莫怀奇的《行走》是六年级汉语第一卷第二单元的四篇自读课文,描述了一家三代人在早春田野上行走的“生活细节”,渗透着富裕温馨的家庭。表达一个大主题——相互尊重和爱,珍惜家庭,珍惜生命。
2. 解析
《行走》是一篇优美、隽永、丰富的精美散文,也是580字凝练的真善美。是一段亲情、人性、人生轨迹上的人类心灵的愉悦高尚之旅。因此,在这堂课中,要潜移默化地培养和感染学生高尚的道德情操和健康的审美情趣。可以采用多种方法,为学生提供广阔的学习空间,理解课文的丰富内涵。同时,引导学生对语言进行品味和理解,增强语言感,加深对课文的理解。 21名教育名师原著
教学重点与难点:通俗易懂的语言阅读与模仿。 (一)感慨地朗读课文,把握大意;
(2) 阅读通俗易懂的语言,并模仿。
2.分析
(1)有时简单的阅读是最好的教学方法;
(2)有意识地在感悟的积累中,提高自己的鉴赏力和品位,并进行模仿训练,实现读与写的结合。
三、教学问题的诊断与分析
在一课时内完成教学任务。这篇文章洋溢着浓浓温暖的亲情,很容易调动学生的学习积极性,但所蕴含的主题很深,一年级学生的思维深度不够,难上加难理解。此外,对于场景和对称句子的具体而生动的描述,学生需要大声朗读,反复思考,以便于理解。
在教学过程中,教师要激发学生的兴趣,组织讨论交流,提出适当的建议,主要通过以下教学方法:
、情境设置法:教师可以让学生作曲朗诵,营造情境,让学生自然地融入文字的意境,思想产生共鸣。
2.阅读方法:每篇文章都有自己独特的内涵。只有反复阅读,才能理解其深刻而丰富的思想内涵。在教学中,我们应该选择打动我们的段落。大声朗读,加深学生对课文的理解。
3。讨论方式:小组讨论,引导学生充分发挥集体智慧,自主学习,合作探索,分享合作的喜悦,感受成功的喜悦。
四。教学过程设计
●基本教学过程
课前回顾——揭示(学习)目标——引导自学——检查自学——检查(自学)效果——
讨论(学生),点(老师)——课内培训——课后总结
< p> ●教学情景(1)课前复习(1-2分钟)
同学们,朗读是语言学习必不可少的环节,能说说需要注意哪些方面吗大声朗读的时候?
清晰:
,停顿,给听者一个欣赏思考、理解接受的空间,帮助听者理解意思,加深印象。
2.重音,为了表达一种特殊的感觉,强调一种特殊的意义,把听者的注意力吸引到他要强调的某个部分上。
3.语气,表达语气和情绪态度的不同。
4.说话速度,一般来说,热情、欢快、兴奋、紧张的内容较快; 平静、庄重、悲伤、沉重、回忆的内容较慢。
5.情绪,取决于内容,或快乐,或沮丧,或悲伤。
设计意图:回顾旧知识,引入新知识。
导入:
有一种爱到了晚了就回不来了;有一种爱,走了就再也回不去了。是爱!从第一次出生,到懂事,到成年,它一直伴随着我们。亲情就像春天里的一滴甘露,总能在悲伤的岁月里唤醒那些枯燥的怀旧回忆;就这样,没有杂质,没有距离,也没有虚伪,只是彼此之间无声无息的相同血脉。关心。
今天,让我们走进一篇凝聚着浓浓亲情的文章——莫怀奇的《行走》。
(介绍莫怀奇,让学生画评论。)
板书题目:行走
设计意图:通过精彩的介绍,快速介绍学生吸引学生对课堂的注意力,提高学生的学习效果。
(2)揭示(学习)目标(1分钟)
(1)情绪化朗读课文,把握主题;
(2) 阅读通俗易懂的语言并模仿。
(3) 引导自学(2分钟)
问题1:学习生词。
萌芽(
)一瞬间(
)撕裂(
)委屈(
)
p> p>Divergent (
) Sparkling (
)
设计意图:关注基础知识并学习新单词。
问题二:感性地大声朗读课文,告诉我你的感受是什么样的家庭?作者在文中写了什么?
设计意图:朗读训练,从阅读入手,把握内容。
问题3:文中写了哪些场景?你最喜欢这些句子中的哪一个?
设计意图:学习具体而生动的描述。
问题4:“我妈妈老了,她习惯了服从她坚强的儿子;我儿子还小,他还习惯了服从他高大的父亲。”这句话写的很好,为什么呢? 21世纪教育网版权所有
设计意图:学习对称句子。
问题5:你认为谁做得最好?谁说的最多,他听谁的?
设计意图:抓住主要思想。
(4)巡视自学(5-8分钟)
(5)检查(自学)效果(5- 8分钟)
师生活动:通过朗读渲染气氛,让学生融入课文。学生独立思考后,合作讨论,选择代表回答问题,学生自由发表意见,教师发表意见。
、嫩芽(nèn)一时(shà
)拆(chāi
)委屈(qū
)
分歧 (qí
) 苏打水 (lín)
2. 《行走》一文比较温柔,以中速为宜,第四段要快一些,慢收尾。
一个和睦的家庭,一个互相尊重相爱的家庭,一个互相理解的家庭……
《行走》一文主要写的是春天是来了,祖孙三代。一起在田野里散步的平凡小事。 (找出时间、地点、人物和事件)
3. ①南方早春的田野; ②妈妈看到的远离小路的风景。
嫩嫩的嫩芽,呼呼的冬水,写下春天的气息。在这样的呼吸中,人们感受到了生命的存在和生命的召唤。正是因为春天来了,气候越来越暖和,生机勃勃的感觉,全家人才能一起出来散步。这是全文的伏笔。
学生喜欢的句子可以是以下任何一个句子:
例子:
①大块和小块的新绿随机铺开,有的比较粗,有的轻;
p>②树上的花蕾也很密;
③田里的冬水也在冒泡;
④那里有金黄的花椰菜,两排整齐的桑树,尽头是波光粼粼的鱼塘;
⑤但春天终于来了。我的母亲度过了又一个严冬。
4.句子的对称美构成了彼此之间的对比,这使我们读起来非常有趣。 语言简洁,思想内涵丰富。
“Walking”中有很多对称的句子。如:“妈妈要走小路,路平顺,儿子要走小路,小路很有趣”等等。
5。要求学生畅所欲言,有条不紊地表达自己的观点。 学生的回答可能有以下几个方面:
(1)①“我”做得好,因为他孝顺老人,有家庭责任感,有原则在处理家庭分歧时。不纵容孩子。
②“妻子”,干得好,因为她贤惠、懂事、孝敬老人、尊重丈夫。
③妈妈做得很好。母亲善良,善良,体贴,疼爱孙子。
④孩子表现不错,聪明、活泼、懂事。
(2) ①“我”听妈妈的话;
我和妈妈在一起的时间很短。我说:“走大路。”
②母亲“听”孙子;
但妈妈摸了摸孙子的小脑袋,改变了主意:“走小路吧。”
③儿子听“我”;
< p> 我儿子还小,习惯了服从高大的父亲。④妈妈听“我”;
我妈老了,她听惯了她坚强的儿子。
⑤妻子听“我”。
至于我老婆,在外面,她总是听我的。
在一家人的相互理解、相互尊重、相互关怀中消除了散步中的差异,家中的每一个成员都带着份量的话语。于是,他们一起向着金黄的菜花、整齐的桑树和波光粼粼的水走去。它歌颂了中华民族尊老爱幼的传统美德。
(6)讨论(学生),打电话(老师)(8-10分钟)
对于问题3的分析,老师可以问学生勾勒文本句子,让他们找到他们真正喜欢的句子并说出原因。
“行”一文不多描写景,只有两个地方,两段加起来不超过七十字,但这种轻描淡写却充满了丰富的诗意和画面感,常见的。散步提供了一个美妙的背景。
先是描写南方早春的田野:冬来春,“大片小片的新绿”又浓又淡,“树上的嫩芽也浓”,“田野里的绿”,冬水也咕咕叫。”
这“新绿”,这“嫩芽”,这“冬水”水泡分明是呼吸的启示春天,它表现出不可阻挡的活力,这是一首生命之歌,对生命力的致敬。
第二位描述了我母亲所见的路远景:金黄的菜花,整齐的桑葚树木,波光粼粼的鱼塘,春天在召唤,生命在召唤。是的,虽然“今年的春天来得太晚了”,“有些老人受不了了”,“但春天终于来了”,而我妈妈已经终于“熬过了又一个严冬”,字里行间是一种义气。对生活的热爱,对生活的热爱。
春天来了,一切都要从头开始。是时候振作精神,摆脱冬天的懒惰了;还要动动筋骨,用精力投入新的生活,迎接更美好的明天。
这两个看似短暂的场景,其实蕴含着美妙的意境和深刻的哲理。
第5题的讨论有些难,就是把握主题。
赞颂中华民族尊老爱幼的传统美德。这些“倾听”是对家人的一种尊重、信任和理解。一言以蔽之,“听”是一种对他人的“爱”。 “爱”是相互给予,奶奶爱孙子,父母爱孩子,长辈给了我们很多的爱,我们该怎么办? “孝顺”应该是最好的方式。
(7)课堂培训(10分钟)
生活中的琐事,蕴含着极其丰富的情感。请回想与家人相处时的温馨场景,仔细描述最让你感动的片段,并穿插50字左右的对称句子。
说清楚:学生写完后,可以分组讨论交流,选出2-3名代表发言。
设计意图:通过写作,实现阅读与写作的结合,学以致用。
(8) 课后总结
学习如何帮助我们写作?理智上,你的想法是什么?
清晰:让学生畅所欲言。
如:①对景物的描写可以包含美妙的意境,为后面的铺垫铺路; ②写作采用对称句型,相得益彰,趣味性十足。
如:
古人云:“百善孝为先”。一个人如果能孝顺,他就有一颗善良的心,有了这份善良,他就能造福许多人。再具体点,同学们的想法可能是这样的:【版权:21教育】
①父母老了,对父母永远怀着感恩的心;
②中学生要“自己做自己的事”,长期分担家庭劳动;
③不招摇,不乱花钱,不要求父母超出家庭经济条件;
④中学生未成年,缺乏社会生活经验,很多事情都需要听从父母的意见和指示;
⑤遵守校纪,努力学习,不要'不要让父母担心;父母生病时,要主动带水带药,耐心照顾,让父母感受到孩子的关心和回报。
......
这一刻,心情就像橄榄的甘甜在心里涌动。简单来说,充满关怀、和谐,充满孝道、责任;字里行间,流淌着真情,闪耀着理性。同学们,让我们深情地把最后一段再大声朗读一遍。
V. 作业:
、请把你写的片段分享给家人,大胆倾诉对他们的爱;
2. 把爱付诸行动,关注生活的小细节,真正做到“尊老爱幼”。
板书设计:
走路
步
敬老
妈妈
亲爱的
和谐
我
爱
妻子
儿子
p>< p>孩子爱孩子
六年级上册数学课件【篇3】
本课时的教材内容是有关职业的六个单词actor, actress, writer, singer, artist, TV reporter,以和询问他人职业的句型What does your father do? He is a ….
本课时教材是对前几册教材所学有关职业名称词汇的一个扩充和所学句型的拓展。使同学的词汇量在原来的基础上有一个提高,同时使他们掌握了多种询问职业的问答方式。
根据教材的内容和要求,我确定了以下教学目标以和教学重难点:
1、知识目标:能够听、 说 、读、写六个新授单词actor, actress, writer, singer, artist, TV reporter能听、说、认读句型What does your father do? He is a ….
2、能力目标:学会使用句型What does your father do?He is … 来询问和回答他人职业,并能使用句型What are you going to be? I’m going to be…来询问他人和表达自身的理想。
3、情感目标:在课堂中培养同学积极用英语表达的习惯,以和在各项活动中培养同学积极与他人合作的精神。
4、教学重难点:本课时的教学重点是使同学能够掌握6个四会单词和两个句型。教学难点是单词singer的语音教学。
小学英语教学应该把培养同学的学习兴趣、调动同学学习英语的主动性作为教学重点,根据同学的认知规律,我采用了游戏教学法和任务型教学法,让同学通过阅读、考虑、猜谜、调查、交流和合作等方式学习和使用英语,完成学习任务。
在学习过程中,从同学的学习兴趣、生活经验和认知水平动身,倡议体验、实践、参与和交流的学习方式,培养同学的英语综合语言运用能力,主动思维,大胆实践,形成自主学习的能力.
根据本课教材的特点,我除了采用常规的教学手段外,同时采用了多媒体现代教学技术,使同学的多种感官一起参与到整个学习过程中,激发同学的学习兴趣,提高课堂教学效率。
(1)Let’s sing..
在热身时让同学一起唱四年级上第六单元的歌曲My Father Is a Doctor,这首歌曲与本课教学内容有着密切的关系。放在课前作为热身活动,能使同学更快地进入学习状态。同时也起到复习巩固的作用。
(2)Rean and guess.通过阅读一段简单的文字来猜教师的一位新朋友来导入新课,旨在培养同学的阅读能力。
(3) Guessing game: What can Mr. Cat do?,设计这样一个游戏的第一个目的是为了自然地过渡到本课的`词汇教学;第二是为了充沛调动同学参与活动的积极性。这是一个难度比较低的游戏,考虑到六年级同学普遍存在着害羞怕出错的心理,我认为这样一个低难度的游戏能充沛调动他们的参与热情。
(1)本课六个新授词汇我都以Mr. Cat邻居的身份导入。其中我在局部单词的出现方式上稍做变化。以不同形式的猜谜方式引出,其中通过阅读文字引出赵薇actress的教学,以听歌曲的猜人物的方式引出周杰伦singer的教学,以看图片猜人物的方式引出杨红樱writer的教学,这样不只能调动同学的多种感官一起参与到整个学习过程中,激发同学的学习兴趣,还大大地提高了课堂教学效率。同时在每个单词新授后我都布置了一个同样的环节让同学说说自身所知道的各个职业的一些名人。培养同学良好的口语表达能力。
(2)单词拼读能力的训练和单词频度规律的总结。主要是训练同学对四会单词的拼读能力,其中有三个单词writer, singer,TV reporter的结尾三个字母都是er,给同学归纳总结有助于同学记忆。
(3)Guessing game: What does Mr Cat’s father do?这个游戏的主要目的还是为了进一步巩固这六个新单词的学习。考虑到六年级同学对于这种比较刺激的游戏都特别感兴趣,我把这个游戏设计成小组竞猜的形式,在此不只复习了单词和句型,又满足了同学的好胜心理。
(3)Let’s chan进一步巩固本课重点句型的学习。
(4)Group work:我把书本上的形式稍做了改变。通过Mr Cat提问的方式导入,Which job is the most popular now?让同学通过调查来协助Mr Cat解答问题,其中在调查前我让同学做一个预测,假如预测是对的每人可以得到一张书签作为奖励,以此来提高同学参与活动的积极性。
3.回家作业。
六年级上册数学课件【篇4】
大家好!我今天说课的内容是是北师大版小学数学六年级上册第四单元《比的认识》的第一课《生活中的比》的第一课时。下面我对这一节课作一个简要的概述:
一、教材分析
教材分析是教师的一项重要基本功,是教师备好课、上好课的前提。首先我们来分析一
下本节课在教材中的地位和作用。
(一)教材的地位和作用
本节课的内容是在学生学过分数的意义及分数与除法的关系、百分数的意义及应用的基础上进行教学的。比在数学中是一个重点也是一个难点,学生在理解比的意义上往往比较困难。于是教材并没有采取给出几个实例,就直接定义比的概念的做法,而是密切联系学生已有的生活经验和学习经验,设计了两类情境数学情境和生活情境,一类情境是同类量的比较,另一类是不同类量的比较,接着引发学生的讨论和思考,并在此基础上抽象出比的概念,使学生感受到需要刻画两个量之间的数量关系,体会引入比的必要性以及比在生活中的广泛存在。这一系列情境也为学生理解比的意义提供了丰富的直观背景和具体案例。
(二)重点、难点与关键
在认真分析教材的地位和作用的基础上,还要根据教学要求和教材特点,结合学生实际,分析研究教材的重点、难点与关键,才能科学地组织教学内容,设计教学过程,有效地提高课堂教学效益。
1、重点:
理解比的意义,了解比的各部分名称。
2、难点:
理解比的意义,区分比与比值的区别。
3、关键:
提供多种情境,使学生经历从具体情境中抽象出比的意义的过程。
(三)教学目标
分析完教材的编写意图和确定教学的重、难点和关键点之后,我们才可以确定本节课的教学目标。
1、知识与技能目标;
(1)经历从具体情境中抽象出比的过程,理解比的意义,并能用准确的数学语言表述两个量的比。
(2)能正确读写比,了解比的各部分名称;理解比值的概念,能正确地求出比值。
(3)对比的应用有初步的感性认识。
2、过程与方法目标
结合具体的实例,引导学生在独立思考、实际操作和合作交流中,感受比产生的背景,理解比的意义。
3、情感、态度与价值观目标
通过学习,体会引入比的必要性以及比在生活中的广泛存在和应用。
(四)教具、学具的准备
针对小学生的思维是以形象思维为主,逐渐转向抽象逻辑思维的特点,我借助一下几种教具来辅助这节课的教学。
(1)多媒体课件
(2)每人两张测量表格
(3)多张生活中的比的图片。
二、教法分析
生活化的数学课堂就是要让学生在生活和数学的交替中体验数学,在退和进的互动中理解数学。通过退回生活,为数学学习提供现实素材,积累直接经验;再通过进到数学,把生活常识、活动经验提炼上升为数学知识。
本节课我主要使用情境教学法和引导发现法。首先通过创设系列情境,激发学生对比的知识的研究兴趣,引导学生退回生活,由浅入深地独立思考,在实际操作和合作交流中,体会生活中存在两个数量之间比的关系,再通过自学课本知识理解数学概念比的意义,及尝试应用引导学生进到数学。最后则组织学生寻找生活中的比,引导学生把生活和数学有效结合起来。目的使学生对比有整体的认识,发展学生的思维能力和语言表达能力,调动学生的各种感官参与到学习活动中。而练习形式多样,使学生从多种方式理解比的意义。
三、说学法
主要采用观察法、自主探究-合作交流法、和实践操作法。首先通过系列情境让学生亲自动手测量和计算,找出两个数量之间比的关系,通过观察、讨论以及自学课本内容后总结出比的意义及相关的知识要点,然后再通过运用脚掌的长度与身高的比,来计算身高进一步激发学生对学习比的兴趣性和积极性,并巩固学生对比的意义的理解。这几种学法让学生能用数学视角来观察和思考,亲历探索过程。尤其是通过动口、动手、动脑,使学生在多种感官的协调活动中积累感性认识,从而更好地理解比的意义,突出重点,突破难点。
四、说教学过程
小学生的思维以具体形象思维为主,学习抽象的数学知识,必须在认识大量感性材料的基础上,形成经过表象达成理性认知的学习过程。为了全面完成本课的教学目标,体现出学生合作交流、自主探究的学习过程,我从如下几个程序开展教学。
(一)创设情景,感知比较的方法
首先出示情境1.
给同学们来一场选美比赛。不过这次选美比赛的对象有点特别。(教师出示规格分别是A:64、B:23、C:83、D:812、E:212五张淘气的照片,全班投票选出最美的几张照片,结果大多数学生都选A:64、B:23、D:812为最美的照片。
然后引导学生从数学的角度去观察和思考,为什么这3张照片最美,而其他两张不好看呢?这里面有什么奥妙?是否跟数学有关联呢?可贵的数学意识由此而生。如果没有了学生亲身的选美体验和经历,就不会有源自内心的思索和自问?就不会使学生将数学与生活审美的进行联系审视。
接着把这5张照片的形状画在方格纸上,引导学生探索这些长方形之间的关系,让学生意识到仅仅依靠让学生分组完成表1
长方形
长
宽
长是宽的几倍
宽是长的几分之几
A
B
C
D
E
通过表1请学生解答了长是宽的几倍和宽是长的几分之几这两个问题并列式,根据学生列的除法算式,从而发现长方形长宽之间的倍数关系,明确是长和宽两个量在比,并使学生体会同类量比的意义。接着让学生画一个具有这样倍数关系的长方形,进一步丰富例证。通过数形结合,使学生对比有一些体验。同时,借助图形分类使学生体会引入比的必要性。
接着出示情境2.
情境2向学生提供了马拉松选手赛跑的路程和所用时间的数据,以及某人骑车的路程和所用时间的数据,让学生体会到比较谁的速度快,实际上就是要算出路程与时间的比,看哪个比值大。教学时,我先不出比这个词。而是先引导学生弄清题意后,自己填表得出速度,再说一说,怎样求速度,谁的速度快。
最后出示情境3.
情境3向学生分别提供了三个水果摊位出售苹果的价钱的情况,使学生体会到比较哪个摊位的苹果便宜,实际上就是要算出总价与数量的比,看哪个比值小。这里也先不出比这个词。而是先启发学生想一想,能不能直接比较哪个摊位上的苹果最便宜,怎样才能比较?引导学生独立思考、完成填表,再让学生说一说求单价的方法。
情境2和情境3,让学生感受到在同一背景下,总价和它相对应的数量之间存在固定的倍数关系,使学生体会不同类量比的意义。
利用分块式呈现信息材料,一是渗透要学会用全面的观点看待生活中出现的问题;二是创设不同背景下的数学问题情景;更重要的是引导学生在比较两个数量之间的关系时,逐步体验感悟出:单纯从绝对量的多少(比差)来比较是不够的,还要用相对量(比商)来比较。
(二)探究比的意义,揭示学习的主题
在以上3个情境的基础上,接着揭示课题,引出比的概念。因为六年级的学生已经具备一定的自学能力,于是,接下来就让学生自学书本第50页认一认中比的概念、比的读法和写法以及如何求比值,然后由学生汇报学习成果,进一步培养学生的自学能力和表达能力。在汇报比的概念的时候,我则着重引导学生寻找概念的重点词、重点意义和条件来加深对概念的理解和记忆。而比的概念中,关键字就是相除。
接着组织学生回顾前面情境中的有关数量关系,鼓励学生用比的方式说一说,写一写。先是由个别学生说,教师再对学生的表达进行规范,然后让学生在小组里互相说。然后,引导学生说出求比值的方法就是用前项除以后项。北京市教科院基础教育科学研究所研究员、国家数学课程标准研制组、北师大(新世纪)版数学实验教科书编写组的成员陶文中教授给我们指出:学生是否是真的掌握了所学知识,要做到三清想清、写清和说清。想清、写清,绝大部分老师在教学过程中都是非常重视培养学生这一方面的能力,而说清却往往被忽略。这样不利于学生良好的数学素养的养成。于是,在我这节课中,我非常重视学生是否能用准确的数学语言表达3个情境中有关数量的比的关系,给予学生充分表达的机会与时间。
(三)巩固新知、拓展运用,深化理解比的意义
在学生想清和说清的基础上,为了让学生进一步内化知识,形成扎实的转化,发展能力,同时体现新课标倡导的人人学有价值的数学;人人获得必需的数学;不同的人在数学上得到不同的发展的新理念,我设计了以下三个层次的练习。
第一组:巩固性练习
1、读出下面各比,并求出比值。
(1)3:12(2)5/8(3)6:2/3(4)1/5:1/6
通过各种类型的比,使学生知道比的前项、后项的呈现方式是多种的,比值可以是整数、分数、小数。以及让学生仔细观察比与比值的区别,明确比表示两个数量之间的倍数关系,它是一个式子,而比值是一个数,这是很多学生往后比较容易出错的一个知识难点。
2、找比。
六(1)班有男生25人,女生21人。
男生人数与女生人数的比是()。
女生人数与男生人数的比是()。
通过这一题让学生弄清楚,究竟是谁与谁相比。
第二组:综合性练习
判断。
1、小强身高148厘米,小明身高12分米,小强和小明身高的比是148﹕12.
2、54又可以说成5比4,又可以写成5/4.
通过这两道题,使学生明白两个量之间的比要统一单位。
3、体育比赛中的4﹕0的意义是什么?它是一个比吗?(让学生展开讨论,然后回答。)
这一环节再次引起了学生思考的小高潮。在同学们的激烈的辩论之后有的同学指出:各类比赛中的比不是我们这节课学习的比,它只是一种计分形式,是比较大小的,是相差关系,不是相除关系。
还有的同学指出:从4﹕0这个比出发,根据求比值的方法,4﹕0=40=?这个问题,根据除法中除数不能为0和分数中分母不能为0,得知比的后项不能是0,所以这个不是我们这节课所学的比。
第三组:发展性练习
1、从同学们非常喜欢的柯南破案故事入手。告诉同学们:(前不久,一个月黑风高的晚上,某珠宝店发生了一起特大失窃案,侦察员接到报警后立即赶到现场,这时罪犯已经逃走,现场只留下一个脚印)这时柯南来了,他仔细观察完现场后只是量了量脚印的长25厘米,就果断地推算出疑犯的身高。你们知道这里面有什么奥秘吗?你能算出这个疑犯的身高吗?这个故事挑起学生探究的热情和兴趣,引发学生对数学知识的联想和猜测,这可能与人的身高与脚印长(即脚长)之间的关系有关,于是紧接着鼓动他们展开研究和讨论,以小组为单位从自己身上进行研究,量一量,算一算,并提示学生将发现的关系用刚学到的比的知识来表示。这样教师就不用多费一句口舌,他们饱涨的热情和关注使得他们立刻就发现了其中蕴含的规律。
汇报交流中:教师随机板书几位学生身高与脚长的比及比值,当写到第5个时,下面就有学生喊了起来:老师,我发现了一个规律:身高与脚长的比值都接近整数7!
又有学生说:柯南就是用罪犯的脚印长度乘7来推算出疑犯的身高的。
刚刚学到的知识能马上学以致用,自己也当一回小柯南,这带给了学生强烈的探究的欲望、研究的乐趣和发现的激情,同时也让他们感受到学习比的重要性以及比的广泛存在和应用。
接着,教师随即分别出示维纳斯女神雕像图片、芭蕾舞演员踮起脚尖的图片、我国的国旗图片及摔碎的古玩花瓶图片,从而引出美学中的比、国旗中的比及考古学中比的应用,给学生带来了一种新奇的体验,一种清新的熏陶。此时教师适时接上:其实,生活中有趣的比还有很多,感兴趣的话,可以去搜集搜集。从而将学生由课内引到课外。
(四)归纳小结,质疑问难
通过这节课的学习,你有什么收获?你对自己的表现满意吗?还有什么不清楚的问题吗?
五、板书设计
生活中的比
两个数相除,又叫做这两个数的比。
六年级上册数学课件【篇5】
教学内容:
人教版小学数学教材六年级上册第2~3页例1、例2及相关练习。
教学目标:
1.联系学生的生活实际创设情境,引导学生通过观察、讨论、比较、验证等环节探索并理解分数乘整数的意义;一个数乘分数的意义就是求“这个数的几分之几是多少”。
2.让学生在自主探索的基础上进行合作交流,从而归纳分数乘整数的计算方法,并能够正确地进行计算。
3.能利用所学知识解决生活中的简单问题,并进一步培养学生的分析和推理能力。
教学难点:
理解分数乘整数和一个数乘分数的意义。
教学准备:
课件。
教学过程:
一、情境创设,探求新知
(一)探索分数乘整数的意义
1.教学例1(课件出示情景图)
师:仔细观察,从图中能得到哪些数学信息?这里的“个”表示什么?你能利用已学知识解决这个问题吗?(学生独立思考)
师:想一想,你还能找出不一样的方法验证你的计算结果吗?
2.小组交流,汇报结果
预设:(根据学生发言依次板书)
3.比较分析
师:我们先来比较第(1)和第(2)两种方法,请分别说说你是怎么想的?预设:
生1:每个人吃个,3个人就是3个()相加。
生2:3个6分之一个相加也可以用乘法表示
提出质疑:3个六分之一相加的和可以用乘法计算吗?为什么?
预设:乘法是求几个相同加数的和的简便计算,只是这里的相同加数是一个分数。
引导说出:分数乘整数的意义与整数乘法的意义相同。(板书)
师:我们再来比较第(2)和第(3)两种方法,这样算可以吗?为什么?
引导说出:这两个式子都可以表示“求3个()相加是多少”。
师:再来看这里的第(4)种方法,你能理解它表示的意思吗?结合图形把你的想法跟同桌进行交流。
4.归纳小结
通过刚才的学习,我们知道了这三个算式解决的是同一个问题。并且知道了分数乘整数的意义与整数乘法的意义相同。接下来我们再看看它们的计算方法有什么联系和区别。
【设计意图:呈现生活情景,引导学生观察思考“一共吃了多少个?”,使学生迅速进入学习状态。以原有的知识和经验为基础,经历独立思考、自主计算并验证、小组交流等环节,鼓励学生大胆地呈现个性化的方法,兼顾了不同层次的学习状态。采用因势利导的方式,通过比较分析沟通新旧知识间的联系,引导学生自主得出结论,加深了对分数乘整数意义的理解。】
(二)分数乘整数的计算方法
1.不同方法呈现和比较
师:刚才的第(4)种方法用语言描述得出计算结果的过程,结合自己的解题方法回顾一下,计算过程用式子该如何表示?预设:
生1:按照加法计算
生2:
师:比较一下,这两种方法计算结果相同吗?它们的相同点在哪里?(分母都是9)不同之处又是什么?(根据学生回答分别打上方框)这里的2+2+2和2×3都是在求什么?预设:有多少个
2.归纳算法
师:你觉得哪一种方法更简单?那么这种方法是怎样计算的呢?
引导说出:用分子与整数相乘的积作分子,分母不变。(板书)
3.先约分再计算的教学
师:刚才我看到有一位同学是这样计算的。与这里的第二种算法又有什么不同呢?
预设:一种算法是先计算再约分,另一种是先约分再计算。
师:比较一下,你认为哪一种方法更简单?为什么?
小结:“先约分再计算”的方法,使参与计算的数字比原来小,便于计算。但是要注意格式,约得的数与原数上下对齐。
【设计意图:通过比较,明确了自主探索的方向,使得对算法的感知上升到理解。教学过程中有意识地留给学生充足的思考时间,最大程度地发挥学生的主体性。“为什么分母不变,只用分子与整数相乘”这是教学的难点,通过多次追问,适度引导转化,促进学生的理解。对于“先约分再计算”这种方法的教学,充分利用课堂生成资源,引导学生经历观察与思考的过程,从而使学生“知其然”,更“知其所以然”。】
二、巩固练习,强化新知
1.例1“做一做”第1题
师:说出你的思考过程。
2.例1“做一做”第2题
师:在计算时要注意什么?(强化算法,突出能约分的要先约分,再计算。)
三、探索一个数乘分数的意义
教学例2(课件出示情景图)
(1)师:根据提供的信息你能提出什么问题?该怎样计算?说说你的想法。
预设1:求3桶共有多少升?就是求3个12 L的和是多少。
预设2:还可以说成求12 L的3倍是多少。
预设3:单位量×数量=总量,所以12×3=36(L)。
(2)师:我们再来看这个问题,你能列出算式吗?(学生思考,自主列式。)
交流:是根据什么列式的?引导说出思考的过程并板书:“求12 L的一半,就是求12 L的二分之一是多少。”
(3)出示第2小题学生自练。引导说出:“12×3分之一表示求12 L的三分之一是多少。”在这里都是把12 L看作单位“1”。
(4)师:依据单位量×数量=总量,你还能提出类似的问题并解决吗?(学生练习,交流。)
归纳小结:在这里,我们依据单位量×数量=总量的关系式可以得出:一个数乘几分之几表示的是求这个数的几分之几是多少。
四、课堂练习,深化理解
1.出示例2“做一做”。一袋面粉重3千克。已经吃了它的三分之一,吃了多少千克?
师:你能说说这个算式表示的意义吗?“求3千克的三分之二是多少。”
2.比较两种意义
出示:一袋面包重50千克,3袋重多少千克?
师:列出算式,并与前一个式子进行比较。这两个式子有什么不同?
预设1:一个是分数乘整数,另一个是整数乘分数。
预设2:它们表示的意义相同但有所区别。
六年级上册数学课件【篇6】
【教学内容】人教版课程标准实验教科书《数学》六年制上册第75鈥?6页
【教材简析】《确定起跑线》是一节综合应用数学知识的实践活动课,是在学生掌握了圆的概念和周长等知识的基础上设计的。教材设计这个数学综合实践活动,一方面让学生了解田径场跑道的结构,通过小组合作的探究性活动,综合运用所学的知识和方法,动手实践解决问题,学会确定起跑线的方法;另一方面让学生体会数学在日常生活中的应用价值,增强学生应用数学的意识,不断提高实践能力和解决问题的能力。
【教学目标】
1、通过数学活动让学生了解田径跑道的结构,学会确定跑道起跑线的方法。
2、结合具体的实际问题,通过观察、比较、分析、归纳等数学活动,让学生通过独立思考与合作交流等活动提高解决实际问题的能力。
3、在主动参与数学活动的过程中,让学生切实体会到探索的乐趣,感受到数学知识在生活中的广泛应用。
【教学重点】通过对跑道周长的计算,了解田径场跑道的结构,能根据所学知识解决确定起跑线的问题。
【教学难点】综合运用圆的知识解答生活中遇到的实际问题,探究起跑线位置的设置与什么有关。
【教学过程】
一、创设情景,提出问题:
(1)播放20xx年世界田径锦标赛男子100米决赛场面,博尔特以9秒58创新世界纪录。
师:100米赛为什么那么吸引人?让那么多人为这9秒58而欢呼不停?(因为公平,才吸引人。与学生聊一聊比赛中公平的话题。)
(2)播放20xx年世界田径锦标赛男子400米决赛场面。
师:看了两个比赛,你们有什么发现,又有什么想法?(组织学生交流)
(100米跑运动员站在同一条起跑线上,而400米跑运动员为什么要站在不同的起跑线上?
400米跑的起跑线位置是怎样安排的?外面跑道的运动员站在最前,这样公平吗?)
师:今天,我们就带着这些问题走进运动场,用我们学过的知识来研究、解决这些问题,了解比赛的时候各跑道的起跑线是如何确定的。
二、观察跑道、探究问题:
(一)观察思考,找出问题关键。
(课件出示完整跑道图)
师:观察跑道图,每条跑道一圈的长度相等吗?差别在哪里昵?比赛的时候,是怎样解决这个问题的?怎样才能做到公平比赛?
(二)分析比较,确定解决问题思路。
1、小组交流:观察跑道图,说一说,每一条跑道具体是由哪几部分组成的?内外跑道的差异是怎样形成的?
学生充分交流得出结论:
①跑道一圈长度=2条直道长度+一个圆的周长
②内外跑道的长度不一样是因为圆的周长不一样。
2、小组讨论:怎样找出相邻两个跑道的差距?
①分别把每条跑道的长度算出来,也就是计算2个直道长度与一个圆周长的总和,再相减,就可以知道相邻两条跑道的差距。
②因为跑道的长度与直道无关,只要计算出各圆的周长,再算出相邻两圆的周长相差多少米,就是相邻跑道的差距。
(三)计算验证,解决问题:
师:计算圆的周长要知道什么?
生:直径
师:第一道的直径为72.6米,第二道是多少?第三道呢?
(让学生选择自己喜欢的方法进行计算)
方法一:计算完成下表。
方法二:
75.13.14-72.63.14=7.85(m)
77.63.14-75.13.14=7.85(m)
(引导学生将3.14159换成进行计算)
师:刚才大家通过计算已经知道了400米跑相邻两个跑道长度大约相差7.85米,也就是相邻跑道的起跑线应该相差7.85米。哪一种方法更快更简便呢?
生:第二种方法更简便。
师:如果我们在计算圆的周长时直接用来表示,看你有什么发现?
(72.6+1.252)-72.6
=72.6-72.6+1.252
=1.252
(75.1+1.252)-75.1
=75.1-75.1+1.252
=1.252
(相邻跑道起跑线相差都是跑道宽2)
师:从这里可以看出:起跑线的确定与什么关系最为密切?
生:与跑道的宽度关系最为密切。
师(小结):同学们经过努力终于找到了确定起跑线的秘密!对了,其实只要知道了跑道的宽度,就能确定起跑线的位置。
三、巩固应用,形成技能:
1、师:小学生运动会的跑道宽比成人比赛的跑道宽要窄些,要开小学生运动会,你能帮裁判计算出相邻两条跑道的起跑线又该相差多少米吗?400米的跑步比赛,跑道宽为1米,起跑线该依次提前多少米?如果跑道宽是1.2米呢?
2、在运动场上还有200米的比赛,跑道宽为1.25米,起跑线又该依次提前多少米?
四、回顾小结,体验收获:
谈一谈,这节课你有什么收获?
六年级上册数学课件【篇7】
《折扣》是六年级上册数学课本中第五单元中的一节课。它是在学生学习了运用百分数解决实际问题的基础上来进行教学的,主要是让学生进一步掌握“已知一个数的百分之几是多少,求这个数”的问题,使学生理解折扣意义,懂得求折扣的应用题的数量关系。
教学目标:1、使学生理解打折的含义,进一步解决求一个数的百分之几的问题的解法;2、培养学生根据实际情况选择最佳方案与策略的能力,提高运用所学知识解决实际问题的能力;3、使学生学会用数学的眼光来看待周围的事物,感受数学的魅力。
教学重难点:根据教材的要求和目的,我认为本节课的教学重点是:理解折扣的含义,并用所学的知识解答问题。难点是弄清原价、现价、降价对应的分率。
学生他们有一个共同的特点:喜欢与生活实际相联系的事物,直观认知能力较好。所以在教学过程中,我尽量多采用学生熟悉的情境,让学生亲身体会,多让学生动口讨论等方式来进行教学。这将有利于学生对知识的学习和掌握,同时也能提高学生学习数学的兴趣,使学生能积极参与到教学中来。
针对学生的特点,为了更好地传授本节的知识,培养学生的能力,调动学生的学习数学的兴趣。依据教学规律,我采用了“指导--自主--合作”的教学方法,让学生在讨论中学到知识、在练习中巩固知识。
教学是教师和学生的双边活动,我遵循“教师为主导,学生为主体,合作为桥梁”的教学思想进行学法指导,采用了小组讨论、合作交流、学生自学、练习等学习方法。使学生成为课堂的主人,活跃了课堂气氛,提高了学生学习数学的兴趣,调动了学生课堂学习的积极性和主动性,从而达到更好地掌握本节课知识的目的。
为了使学生更好地掌握本节课的知识点,突破重点、难点。我把本节课的教学分成五大环节:
第一环节是新课引入:用我星期天上街的情境来切入课题,进而导入到课本中的例4。既明确本节课学习的知识点,也让学生体会到数学源于生活,生活需要数学的道理。
第二环节是例题教学:导入新课后,让学生自学课本,明确折扣数的意义,在学习的基础上,独立解答例4。掌握了已知原价和打几折,求现价的问题。接着,通过计算买随身听的原价是160元,打九折后,便宜了多少元的问题,让学生列出两种不同的算式解答。进一步巩固百分数的知识。
第三环节是拓展延伸:学生已经学会了已知原价和打几折,求现价的问题了。还要让学生学会已知现价和打几折,求原价的问题。我设计了一组对比练习,让学生通过练习比较出每两道题的异同点。会求原价是多少钱?”继续拓展求打几折的问题。让学生明确原价,现价,降价,及对应的分率。对三种量举一反三。
第四环节是归纳小结:通过与本节课所学的“折扣”比较,其它几种促销方法对于我们消费者来说,哪种获得的实慧更多呢?留给学生课后思考、探究的空间,让学生走向社会,了解社会。
创设情境,让学生学习有趣的数学;自主探索,合作学习,让学生学习思考的数学;体会数学源于生活,生活需要数学的道理
yjs21.cOm更多幼师资料编辑推荐
人教版七年级数学上册课件
教案是老师上课之前需要备好的课件,每个老师都需要仔细规划教案课件。教案是教学的策略关系到教学效果。编辑为您精选了这份特别的“人教版七年级数学上册课件”希望您感到满意,所述文章仅供参考请勿用于非法用途!
人教版七年级数学上册课件(篇1)
课题:1.2.2数轴
学习目标:
1、掌握数轴概念,理解数轴上的点和有理数的对应关系。
2、会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数
轴上的点读出所表示的有理数。
3、使学生初步理解数形结合的思想。
教学重点:数轴的概念。
教学难点:从直观认识到理性认识,从而建立数轴的概念,并初步体会数形结合的思想方法。
教学过程:
一、创设情境:
问题1:在一条东西走向的马路上,有一个汽车站,汽车站东3米和
7.5米处分别有一棵柳树和一棵杨树,汽车站西3米和4.8米处分别有一棵槐树和一根电线杆,你能画图表示这一情境吗?
师提出问题:(1)先画什么呢?
(2)先找什么?再找什么?
(3)怎样正确摆放这几者的位置呢?
问题2:怎样用数轴简明地表示这些树,电线杆与汽车站的相对位置
关系(方向、距离)
师生合作完成二、合作交流,探索新知
引导学生思考上面的问题,引导学生建立数轴的概念。
问题3:怎样正确地画一条数轴,数轴需哪几个条件?
怎样才能将不同数的点清楚表示出来?
尝试画满足条件的数轴。
可以先让学生试着画出自己想象的数轴,并把学生不同画法展示出来。先让学生交流哪种画法规范,然后师生共同分析归纳得出数轴的特征:
(1)数轴是一条直线。
(2)数轴三要素:原点
正方向
单位长度
由此我们可以说:规定了原点、正方向和单位长度的直线叫做数轴。练习:下列图形哪些是数轴?哪些不是,为什么?
(题目及图形在导学案上)
三、动手操作,亲身体验。
问题
4、如果给你一些数,你能相应地在数轴上找出它们的准确位置吗?如果给你数轴上的点,你能读出它所表示的数吗?
(1)画出数轴并表示下列有理数
91.5-22-2.52(2)写出数轴上A、B、C、D、E表示的数
(图形在导学案上)
观察发现:(1)哪些数在原点的左边?哪些数在原点的右边?由此你会
发现什么规律?
(2)每个数到原点的距离是多少?由此你会发现什么规律?
小组讨论,交流归纳完成上述问题。
四、巩固提高
1、画出数轴并表示下列有理数。
(1)-3-2-10123
(2)-30-20-100102030
(3)155122-2-
2五、课堂小节:、数轴的概念。、数轴的三要素。、数轴的作法及数与点转化过程。
六、作业:
必做题:教科书第14面习题1、2第二题123
人教版七年级数学上册课件(篇2)
教学目标:
1.掌握把整亿的数改写成以亿为单位的数。四舍五入省略“亿”后面的尾数求近似数的方法。理解改写与省略的相同与不同。
2.在探究亿以上数的改写和省略尾数方法的过程中,渗透比较的思维方法,培养初步的观察、比较及概括的能力和符号意识。
3.在现实情境中,感受大数在日常生活中的广泛应用,进一步体验数学的应用价值,培养学生对数学的兴趣和良好情感。
教学难点:
1.课件出示:把下面画横线的数改写成用“万”作单位的数。
(1)水星到太阳的平均距离是57910000千米。
(2)太阳中心的温度是10000000摄氏度。
(3)8月8日,有150900多观众在现场观看了北京奥运会开幕式。
(4)地球赤道周长40075700米。
(1)先分级,再去掉57910000万位后面的4个0,换成万字,是5791万。
(2)先分级,再去掉10000000万位后面的4个0换成万字,是1000万。
(3)先分级,150900的千位上是0,比5小,把尾数舍去,写上万字,约是15万。
(4)先分级,40075700的千位上是5,够5,向万位后面进1,舍去尾数,写上万字,约是4008万。
4.师:怎样把不是整万的数省略万位后面的尾数求近似数?这种方法叫什么?
师:我们已经学过了亿以内数的改写和省略,那亿以上的数怎么改写用“亿”作单位的数呢?这节课我们就来学习。
(一)亿以上数的改写。
(2)把这些数改写成用“亿”作单位的数。
(2)师:改写时,是不是要去掉所有的0?(只需要去掉亿位后面的0,不是有几个0就去掉几个0)
(3)5305┊0000┊0000=5305亿,去掉亿位后面的8个0
4.小结:怎样把整亿数改写用“亿”作单位的数?(先分级,去掉亿位后面的8个0,换成“亿”字)
人教版七年级数学上册课件(篇3)
一、教学目标:(1)熟练地进行同分母的分式加减法的运算.
(2)会把异分母的分式通分,转化成同分母的分式相加减.
进行异分母的分式加减法的运算是难点,异分母的分式加减法的运算,必须转化为同分母的分式加减法,,然后按同分母的分式加减法的法则计算,转化的关键是通分,通分的关键是正确确定几个分式的最简公分母,确定最简公分母的一般步骤:(1)取各分母系数的最小公倍数;(2)所出现的字母(或含字母的式子)为底的幂的因式都要取;(3)相同字母(或含字母的式子)的幂的因式取指数的.在求出最简公分母后,还要确定分子、分母应乘的因式,这个因式就是最简公分母除以原分母所得的商.
异分母的分式加减法的一般步骤:(1)通分,将异分母的分式化成同分母的分式;(2)写成“分母不便,分子相加减”的形式;(3)分子去括号,合并同类项;(4)分子、分母约分,将结果化成最简分式或整式.
1. P18问题3是一个工程问题,题意比较简单,只是用字母n天来表示甲工程队完成一项工程的时间,乙工程队完成这一项工程的时间可表示为n+3天,两队共同工作一天完成这项工程的 .这样引出分式的加减法的实际背景,问题4的目的与问题3一样,从上面两个问题可知,在讨论实际问题的数量关系时,需要进行分式的加减法运算.
2. P19是为了让学生回忆分数的加减法法则,类比分数的加减法,分式的加减法的实质与分数的加减法相同,让学生自己说出分式的加减法法则.
3.P20例6计算应用分式的加减法法则.第(1)题是同分母的分式减法的运算,第二个分式的分子式个单项式,不涉及到分子变号的问题,比较简单,所以要补充分子是多项式的例题,教师要强调分子相减时第二个多项式注意变号;
第(2)题是异分母的分式加法的运算,最简公分母就是两个分母的乘积,没有涉及分母要因式分解的题型.例6的练习的题量明显不足,题型也过于简单,教师应适当补充一些题,以供学生练习,巩固分式的加减法法则.
(4)P21例7是一道物理的电路题,学生首先要有并联电路总电阻R与各支路电阻R1, R2, …, Rn的关系为 .若知道这个公式,就比较容易地用含有R1的式子表示R2,列出 ,下面的计算就是异分母的分式加法的运算了,得到 ,再利用倒数的概念得到R的结果.这道题的数学计算并不难,但是物理的知识若不熟悉,就为数学计算设置了难点.鉴于以上分析,教师在讲这道题时要根据学生的物理知识掌握的情况,以及学生的具体掌握异分母的分式加法的运算的情况,可以考虑是否放在例8之后讲.
1.出示P18问题3、问题4,教师引导学生列出答案.
引语:从上面两个问题可知,在讨论实际问题的数量关系时,需要进行分式的加减法运算.
2.下面我们先观察分数的加减法运算,请你说出分数的加减法运算的法则吗?
3. 分式的加减法的实质与分数的加减法相同,你能说出分式的加减法法则?
4.请同学们说出 的最简公分母是什么?你能说出最简公分母的确定方法吗?
第(1)题是同分母的分式减法的运算,分母不变,只把分子相减,第二个分式的分子式个单项式,不涉及到分子是多项式时,第二个多项式要变号的问题,比较简单;第(2)题是异分母的分式加法的运算,最简公分母就是两个分母的乘积.
第(1)题是同分母的分式加减法的运算,强调分子为多项式时,应把多项事看作一个整体加上括号参加运算,结果也要约分化成最简分式.
第(2)题是异分母的分式加减法的运算,先把分母进行因式分解,再确定最简公分母,进行通分,结果要化为最简分式.
人教版七年级数学上册课件(篇4)
三维目标:
1、通过贴近学生生活实际的素材,在丰富多彩的实践活动中充分体会时、分、秒的实际意义。
教学重、难点:
时间单位的简单转换和求经过时间的方法。
第2题,先让学生独立完成,再让学生说一说每一题是怎么比较的,允许学生用不同的方法进行比较,只要说得有道理就行。
第3题,读读书上的三个例子,并要求学生收集类似的信息。
第4、5题,学生计算经过的时间。如果部分学生有困难,让他们借助钟面模型加以演示、理解,教师给予适当的帮助。
第6题,要求学生先估计,再实际进行验证,验证的数据可以由学生和家长一起完成。
第7题,事先让学生找几个自己感兴趣的节目,想办法把它们开始和结束的时刻都记录下来。
二、补充题目。
2、电影《神奇的宇宙》从2:05开始,到2:50结束,这场电影放映了多长时间?
3、你会提问题让同学们算经过的时间吗?
二、三维目标:
1、使学生巩固时间的认识和计算,养成从小珍惜时间、合理安排时间的好习惯;
2、加强数学知识与现实生活的联系,逐渐培养学生从不同渠道获取信息的意识和能力。
三、教学重点:
巩固时间的认识和计算,逐渐培养学生从不同渠道获取信息的意识和能力。
1、师:说一说什么时候上早仔自习,什么时候出早操,什么时候上第一节课?
师:像这样比较固定的事情发生的时间就可成为作息时间。
3、仿照课程表的设计思路,根据自己的实际情况,制定作息时间表。
4、引导学生互相交流、比较,看看别人的作息时间表中有哪些比自己合理的地方。(如是不是自己睡觉太晚了,起床太晚了,是不是有很多时间白白浪费了等等—)
师:你们都会制定一个合理的作息时间表了,但严格地遵守自己制定的作息时间表更为重要。希望你们能督促自己在以后的生活中更加合理、有效地安排和利用时间。
二、以小组为单位,统计完成某些共同事件所需的时间。
1、统计小组成员完成家庭作业所需的时间。
列出统计表后,对表中的数据进一步分析和讨论,如有的同学用的时间少很少,而有的同学花很长时间,原因是什么,
请作业做得又快又好的同学介绍一下经验。
师:希望你们能从刚才的事件中养成按时、认真完成家庭作业的习惯。
2、统计每位同学的睡眠时间。并说一说计算睡眠时间的方法。根据统计结果看看谁的睡眠时间最长,谁的最短,大家的睡眠时间是否够。请大家课后想办法去查一查。
3、统计同学们每天参加体育锻炼的时间和看电视、看书的时间。
4、小结:一寸光阴一寸金,请你们是时间生活中要合理地安排学习、锻炼、娱乐、休息的时间。
三、巩固练习。
练习十四第8、9、10题。
人教版七年级数学上册课件(篇5)
七年级数学上册教案人教版3篇
教师是学生的一个引导者,每一个七年级数学老师要在课堂上引导学生正确的理解教学内容。数学是我们每一个人都必须掌握的技能,作为七年级数学老师你会写七年级数学教案?你是否在找正准备撰写“七年级数学上册教案人教版”,下面小编收集了相关的素材,供大家写文参考!
七年级数学上册教案人教版篇1
学习目标
1. 理解三线八角中没有公共顶点的角的位置关系 ,知道什么是同位角、内错角、同旁内角.
2. 通过比较、观察、掌握同位角、内错角、同旁内角的特征,能正确识别图形中的同位角、内错角和同旁内角.
重点难点
同位角、内错角、同旁内角的特征
教学过程
一·导入
1.指出右图中所有的邻补角和对顶角?
2. 图中的∠1与∠5,∠3与∠5,∠3与∠6 是邻补角或对顶角吗?
若都不是,请自学课本P6内容后回答它们各是什么关系的角?
二·问题导学
1.如图⑴,将木条,与木条c钉在一起,若把它们看成三条直 线则该图可说成"直线 和直线 与直线 相交" 也可以说成"两条直线 , 被第三条直线 所截".构成了小于平角的角共有 个,通常将这种图形称作为"三线八角"。其中直线 , 称为两被截线,直线 称为截线。
2. 如图⑶是"直线 , 被直线 所截"形成的图形
(1)∠1与∠5这对角在两被截线AB,CD的 ,在截线EF 的 ,形如" " 字型.具有这种关系的一对角叫同位角。
(2)∠3与∠5这对角在两被截线AB,CD的 ,在截线EF的 ,形如" " 字型.具有这种关系的一对角叫内错角。
(3)∠3与∠6这对角在两被截线AB,CD的 ,在截线EF的 ,形如" " 字型.具有这种关系的一对角叫同旁内角。
3.找出图⑶中所有的同位角、内错角、同旁内角
4.讨论与交流:
(1)"同位角、内错角、同旁内角"与"邻补角、对顶角"在识别方法上有什么区别?
(2)归纳总结同位角、内错角、同旁内角的特征:
同位角:"F" 字型,"同旁同侧"
"三线八角" 内错角:"Z" 字型,"之间两侧"
同旁内角:"U" 字型,"之间同侧"
三·典题训练
例1. 如图⑵中∠1与∠2,∠3与∠4, ∠1与∠4分别是哪两条直线被哪一条直线所截形成的什么角?
小结 将左右手的大拇指和食指各组成一个角,两食指相对成一条直线,两个大拇指反向的时候,组成内错角;
两食指相对成一条直线,两个大拇指同向的时候,组成同旁内角;
自我检测
⒈如图⑷,下列说法不正确的是( )
A、∠1与∠2是同位角 B、∠2与∠3是同位角
C、∠1与∠3是同位角 D、∠1与∠4不是同位角
⒉如图⑸,直线AB、CD被直线EF所截,∠A和 是同位角,∠A和 是内错角,∠A和 是同旁内角.
⒊如图⑹, 直线DE截AB, AC, 构成八个角:
① 指出图中所有的同位角、内错角、同旁内角.
②∠A与∠5, ∠A与∠6, ∠A与∠8, 分别是哪一条直线截哪两条直线而成的什么角?
⒋如图⑺,在直角ABC中,∠C=90°,DE⊥AC于E,交AB于D .
①指出当BC、DE被AB所截时,∠3的同位角、内错角和同旁内角.
②试说明∠1=∠2=∠3的理由.(提示:三角形内角和是1800)
相交线与平行线练习
课型:复习课: 备课人:徐新齐 审核人:霍红超
一.基础知识填空
1、如图,∵AB⊥CD(已知)
∴∠BOC=90°( )
2、如图,∵∠AOC=90°(已知)
∴AB⊥CD( )
3、∵a∥b,a∥c(已知)
∴b∥c( )
4、∵a⊥b,a⊥c(已知)
∴b∥c( )
5、如图,∵∠D=∠DCF(已知)
∴_____//______( )
6、如图,∵∠D+∠BAD=180°(已知)
∴_____//______( )
(第1、2题) (第5、6题) (第7题) (第9题)
7、如图,∵ ∠2 = ∠3( )
∠1 = ∠2(已知)
∴∠1 = ∠3( )
∴CD____EF ( )
8、∵∠1+∠2 =180°,∠2+∠3=180°(已知)
∴∠1 = ∠3( )
9、∵a//b(已知)
∴∠1=∠2( )
∠2=∠3( )
∠2+∠4=180°( )
10.如图,CD⊥AB于D,E是BC上一点,EF⊥AB于F,∠1=∠2.试说明∠BDG+∠B=180°.
二.基础过关题:
1、如图:已知∠A=∠F,∠C=∠D,求证:BD∥CE 。
证明:∵∠A=∠F ( 已知 )
∴AC∥DF ( )
∴∠D=∠ ( )
又∵∠C=∠D ( 已知 ),
∴∠1=∠C ( 等量代换 )
∴BD∥CE( )。
2、如图:已知∠B=∠BGD,∠DGF=∠F,求证:∠B + ∠F =180°。
证明:∵∠B=∠BGD ( 已知 )
∴AB∥CD ( )
∵∠DGF=∠F;( 已知 )
∴CD∥EF ( )
∵AB∥EF ( )
∴∠B + ∠F =180°( )。
3、如图,已知AB∥CD,EF交AB,CD于G、H, GM、HN分别平分∠AGF,∠EHD,试说明GM ∥HN.
七年级数学上册教案人教版篇2
列代数式
教学目标
1. 使学生在了解代数式概念的基础上,能把简单的与数量有关的词语用代数式表示出来;
2. 初步培养学生观察、分析和抽象思维的能力.
教学重点和难点
重点:列代数式.
难点:弄清楚语句中各数量的意义及相互关系.
课堂教学过程设计
一、从学生原有的认知结构提出问题
1用代数式表示乙数:(投影)
(1)乙数比x大5;(x+5)
(2)乙数比x的2倍小3;(2x-3)
(3)乙数比x的倒数小7;( -7)
(4)乙数比x大16%((1+16%)x)
(应用引导的方法启发学生解答本题)
2在代数里,我们经常需要把用数字或字母叙述的一句话或一些计算关系式,列成代数式,正如上面的练习中的问题一样,这一点同学们已经比较熟悉了,但在代数式里也常常需要把用文字叙述的一句话或计算关系式(即日常生活语言)列成代数式本节课我们就来一起学习这个问题。
二、讲授新课
例1 用代数式表示乙数:
(1)乙数比甲数大5; (2)乙数比甲数的2倍小3;
(3)乙数比甲数的倒数小7; (4)乙数比甲数大16%
分析:要确定的乙数,既然要与甲数做比较,那么就只有明确甲数是什么之后,才能确定乙数,因此写代数式以前需要把甲数具体设出来,才能解决欲求的乙数。
解:设甲数为x,则乙数的代数式为
(1)x+5 (2)2x-3; (3) -7; (4)(1+16%)x
(本题应由学生口答,教师板书完成)
最后,教师需指出:第4小题的答案也可写成x+16%x
例2 用代数式表示:
(1)甲乙两数和的2倍;
(2)甲数的 与乙数的 的差;
(3)甲乙两数的平方和;
(4)甲乙两数的和与甲乙两数的差的积;
(5)乙甲两数之和与乙甲两数的差的积
分析:本题应首先把甲乙两数具体设出来,然后依条件写出代数式
解:设甲数为a,乙数为b,则
(1)2(a+b); (2) a- b; (3)a2+b2;
(4)(a+b)(a-b); (5)(a+b)(b-a)或(b+a)(b-a)
(本题应由学生口答,教师板书完成)
此时,教师指出:a与b的和,以及b与a的和都是指(a+b),这是因为加法有交换律但a与b的差指的是(a-b),而b与a的差指的是(b-a)两者明显不同,这就是说,用文字语言叙述的句子里应特别注意其运算顺序
例3 用代数式表示:
(1)被3整除得n的数;
(2)被5除商m余2的数
分析本题时,可提出以下问题:
(1)被3整除得2的数是几?被3整除得3的数是几?被3整除得n的数如何表示?
(2)被5除商1余2的数是几?如何表示这个数?商2余2的数呢?商m余2的数呢?
解:(1)3n; (2)5m+2
(这个例子直接为以后让学生用代数式表示任意一个偶数或奇数做准备)
例4 设字母a表示一个数,用代数式表示:
(1)这个数与5的和的3倍;(2)这个数与1的差的 ;
(3)这个数的5倍与7的和的一半;(4)这个数的平方与这个数的 的和
分析:启发学生,做分析练习如第1小题可分解为“a与5的和”与“和的3倍”,先将“a与5的和”例成代数式“a+5”再将“和的3倍”列成代数式“3(a+5)”
解:(1)3(a+5); (2) (a-1); (3) (5a+7); (4) a2+ a
(通过本例的讲解,应使学生逐步掌握把较复杂的数量关系分解为几个基本的数量关系,培养学生分析问题和解决问题的能力)
例5 设教室里座位的行数是m,用代数式表示:
(1)教室里每行的座位数比座位的行数多6,教室里总共有多少个座位?
(2)教室里座位的行数是每行座位数的 ,教室里总共有多少个座位?
分析本题时,可提出如下问题:
(1)教室里有6行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?
(2)教室里有m行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?
(3)通过上述问题的解答结果,你能找出其中的规律吗?(总座位数=每行的座位数×行数)
解:(1)m(m+6)个; (2)( m)m个
三、课堂练习
1设甲数为x,乙数为y,用代数式表示:(投影)
(1)甲数的2倍,与乙数的 的和; (2)甲数的 与乙数的3倍的差;
(3)甲乙两数之积与甲乙两数之和的差;(4)甲乙的差除以甲乙两数的积的商
2用代数式表示:
(1)比a与b的和小3的数; (2)比a与b的差的一半大1的数;
(3)比a除以b的商的3倍大8的数; (4)比a除b的商的3倍大8的数
3用代数式表示:
(1)与a-1的和是25的数; (2)与2b+1的积是9的数;
(3)与2x2的差是x的数; (4)除以(y+3)的商是y的数
〔(1)25-(a-1); (2) ; (3)2x2+2; (4)y(y+3)〕
四、师生共同小结
首先,请学生回答:
1怎样列代数式?2列代数式的关键是什么?
其次,教师在学生回答上述问题的基础上,指出:对于较复杂的数量关系,应按下述规律列代数式:
(1)列代数式,要以不改变原题叙述的数量关系为准(代数式的形式不);
(2)要善于把较复杂的数量关系,分解成几个基本的数量关系;
(3)把用日常生活语言叙述的数量关系,列成代数式,是为今后学习列方程解应用题做准备要求学生一定要牢固掌握
五、作业
1用代数式表示:
(1)体校里男生人数占学生总数的60%,女生人数是a,学生总数是多少?
(2)体校里男生人数是x,女生人数是y,教练人数与学生人数之比是1∶10,教练人数是多?
2已知一个长方形的周长是24厘米,一边是a厘米,
求:(1)这个长方形另一边的长;(2)这个长方形的面积.
学法探究
已知圆环内直径为acm,外直径为bcm,将100个这样的圆环一个接着一个环套环地连成一条锁链,那么这条锁链拉直后的长度是多少厘米?
分析:先深入研究一下比较简单的情形,比如三个圆环接在一起的情形,看 有没有规律.
当圆环为三个的时候,如图:
此时链长为,这个结论可以继续推广到四个环、五个环、…直至100个环,答案不难得到:
解:
=99a+b(cm)
七年级数学上册教案人教版篇3
教学目的
通过天平实验,让学生在观察、思考的基础上归纳出方程的两种变形,并能利用它们将简单的方程变形以求出未知数的值。
重点、难点
1.重点:方程的两种变形。
2.难点:由具体实例抽象出方程的两种变形。
教学过程
一、引入
上一节课我们学习了列方程解简单的应用题,列出的方程有的我们不会解,我们知道解方程就是把方程变形成x=a形式,本节课,我们将学习如何将方程变形。
二、新授
让我们先做个实验,拿出预先准备好的天平和若干砝码。
测量一些物体的质量时,我们将它放在天干的左盘内,在右盘内放上砝码,当天平处于平衡状态时,显然两边的质量相等。
如果我们在两盘内同时加入相同质量的砝码,这时天平仍然平衡,天平两边盘内同时拿去相同质量的砝码,天平仍然平衡。
如果把天平看成一个方程,课本第4页上的图,你能从天平上砝码的变化联想到方程的变形吗?
让同学们观察图(1)的左边的天平;天平的左盘内有一个大砝码和2个小砝码,右盘上有5个小砝码,天平平衡,表示左右两盘的质量相等。如果我们用x表示大砝码的质量,1表示小砝码的质量,那么可用方程x+2=5表示天平两盘内物体的质量关系。
问:图(1)右边的天平内的砝码是怎样由左边天平变化而来的?它所表示的方程如何由方程x+2=5变形得到的?
学生回答后,教师归纳:方程两边都减去同一个数,方程的解不变。
问:若把方程两边都加上同一个数,方程的解有没有变?如果把方程两边都加上(或减去)同一个整式呢?
让同学们看图(2)。左天平两盘内的砝码的质量关系可用方程表示为3x=2x+2,右边的天平内的砝码是怎样由左边天平变化而来的?
把天平两边都拿去2个大砝码,相当于把方程3x=2x+2两边都减去2x,得到的方程的解变化了吗?如果把方程两边都加上2x呢?
由图(1)、(2)可归结为;
方程两边都加上或都减去同一个数或同一个整式,方程的解不变。
让学生观察(3),由学生自己得出方程的第二个变形。
即方程两边都乘以或除以同一个不为零的数,方程的解不变:
通过对方程进行适当的变形.可以求得方程的解。
例1.解下列方程
(1)x-5=7 (2)4x=3x-4
(1)解两边都加上5,x,x=7+5 即 x=12
(2)两边都减去3x,x=3x-4-3x 即 x=-4
请同学们分别将x=7+5与原方程x-5=7;x=3x-4-3,与原方程4x=3x-4比较,你发现了这些方程的变形。有什么共同特点?
这就是说把方程两边都加上(或减去)同一个数或同一个整式,就相当于把方程中的某些项改变符号后,从方程的一边移到另一边,这样的变形叫做移项。
注意:“移项’’是指将方程的某一项从等号的左边移到右边或从右边移到左边,移项时要先变号后移项。
例2.解下列方程
(1)-5x=2 (2) x=
这里的变形通常称为“将未知数的系数化为1”。
以上两个例题都是对方程进行适当的变形,得到x=a的形式。
练习:
课本第6页练习1、2、3。
练习中的第3题,即第2页中的方程①先让学生讨论、交流。
鼓励学生采用不同的方法,要他们说出每一步变形的根据,由他们自己得出采用哪种方法简便,体会方程的不同解法中所经历的转化思想,让学生自己体验成功的感觉。
三、巩固练习
教科书第7页,练习
四、小结
本节课我们通过天平实验,得出方程的两种变形:
1.把方程两边都加上或减去同一个数或整式方程的解不变。
2.把方程两边都乘以或除以(不等零)的同一个数,方程的解不变。第①种变形又叫移项,移项别忘了要先变号,注意移项与在方程的一边交换两项的位置有本质的区别。
五、作业
教科书第7—8页习题6.2.1第1、2、3。
人教版七年级数学上册课件(篇6)
本课的重点是了解正数与负数是由实际需要产生的以及有理数包括哪些数。难点是学习负数的必要性及有理数的分类。关键是要能准确地举出具有相反意义的量的典型例子以及要明确有理数分类的标准。
正、负数的引入,有各种不同的方法。教材是由学生熟知的两个实例:温度与海拔高度引入的。比0℃高5摄氏度记作5℃,比0 ℃低5摄氏度,记作-5℃;比海平面高8848米,记作8848米,比海平面低155米记作-155米。由这两个实例很自然地,把大于0的数叫做正数,把加“-”号的数叫做负数;0既不是正数也不是负数,是一个中性数,表示度量的“基准”。这样引入正、负数,不仅有利于学生正确使用正、负数表示具有相反意义的量,而且还将帮助学生理解有理数的大小性质。把负数理解为小于0的数。教材中,没有出现“具有相反意义的量”的概念。这是有意回避或淡化这个概念。目的是,从正、负数引入一开始就能较深刻的揭示正、负数和零的性质,帮助学生正确理解正、负数的概念。
关于有理数的分类要明确的是:分类标准不同,分类结果也不同,分类结果应是不重不漏,即每一个数必须属于某一类,又不能同时属于不同的两类。
这节课是在小学里学过的数的基础上,从表示具有相反意义的量引进负数的.从内容上讲,负数比非负数要抽象、难理解.因此在教学方法和教学语言的选择上,尽可能注意中小学的衔接,既不违反科学性,又符合可接受性原则。例如,在讲解有理数的概念时,让学生清楚地认识有理数与算术数的根本区别,有理数是由两部分组成:符号部分和数字部分(即算术数).这样,在理解算术数和负数的基础上,对有理数的概念的理解就简便多了.
为了使学生掌握必要的数学思想和方法,在明确有理数的分类时,可以有意识地渗透分类讨论的思想方法,理解分类的标准、分类的结果,以及它们的相互联系。通过正数、负数都统一于有理数,可以将对立统一的辩证思想的逐步树立渗透到日常教学中。
1﹒对于正数和负数的概念,不能简单的理解为:带“+”号的数是正数,带“-”号的数是负数。
2﹒引入负数后,数的范围扩大为有理数,奇数和偶数的外延也由自然数扩大为整数,整数也可以分为奇数和偶数两类,能被2整除的数是偶数,如…-6,-4,-2,0,2,4,6…,不能被2整除的数是奇数,如…-5,-4,-2,1,3,5…
3﹒到现在为止,我们学过的数细分有五类:正整数、正分数、0、负整数、负分数,但研究问题时,通常把有理数分为三类:正数、0、负数,进行讨论。
4﹒通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数;负整数和0统称为非正整数。
整数和分数统称为有理数。1)正整数、零、负整数统称为整数;正分数、负分数统称为分数。
2)整数也可以看作分母为1的分数,但为了研究方便,本章中分数是指不包括整数的分数。
3)注意概念中所用“统称”二字,它与说“整数和分数是有理数”的意思不大一样。前者回避了分数是否包括整数的问题,即使把整数包括在分数范围内,说“统称”还是不错,而用后一种说法就欠妥了。
4)分数和小数的区别:
分数(既约分数)都可表示成小数,但不是所有的小数都能表示成分数的。
5)到目前为止,所学过的数(除π外)都是有理数。
人教版七年级数学上册课件(篇7)
1 知识与技能:
使学生理解和掌握整十数除整十数、几百几十数(商一位数)的口算方法,能正确地进行计算。
2 过程与方法:
通过观察、操作、讨论的活动,使学生经历探究口算方法的全过程。
3 情感态度与价值观:
让学生感受数学与生活的联系,培养学生用数学知识解决简单实际问题的能力。
20×3= 7×50= 6×3=
20×5= 4×9= 8×60=
24÷6= 8÷2= 12÷3=
42÷6= 90÷3= 3000÷5=
有80面彩旗,每班分20面,可以分给几个班?
(1)提出问题,寻找解决问题的方法。
师:怎样算80÷20呢,请同学们先自己想一想、算一算,再说给同桌听一听。
学生汇报:
预设学生可能会有以下两种口算方法:
B.因为8÷2=4, 所以80÷20=4 这是根据计数单位的组成
为什么可以不看这个“0”? ( 80÷20可以想“8个十里面有几个二十?”)
这样我们就把除数是整十数的转化为我们已经学过的表内除法。
(4)师小结:
同学们有的用乘法算除法的,也有用表内除法来想的,都很好,那么你喜欢哪种方法呢?
师:你能知道题目要求我们做什么吗?你怎么知道的?你是怎样计算的?和同学们交流一下。
生:求83除以20、80除以19大约得多少,从题目中的约等号看出不用精确计算。
预设:83接近于80,80除以20等于 4,所以83除以20约等于4。
19接近于20,80除以20等于 4,所以80除以19约等于4。
(3)你是怎么这样快就算出的呢?
A.因为15÷5=3,所以150÷50=3。
B.因为3个50是150,所以150÷50=3。
这一题跟刚才分彩旗的口算方法有不同吗?
都是运用想乘算除和表内除法这两种方法来口算的。
师:在解决分彩旗和刚才的问题中,我们共同探讨了除法的口算方法,(板题:口算除法)口算时,可以用自己喜欢的方法来口算。
口算练习:150÷30 240÷80 300÷50 540÷90
你能估吗?请先估算,再把你的估算方法与同伴交流,看看能否互相借鉴。
(2)谁想把你的方法跟大家说一说。
(4)判断估算是否正确:122÷60=2 349÷50≈8 为什么不正确?
观察每道题,怎样很快说出下面除法算式的商?
如果估算的话把谁估成多少。
2.算一算、说一说。
(1)除数不变,被除数乘几,商也乘几。
(2)被除数不变,除数乘几,商反而除以几。
(1)一共要寄240本书,每包40本。要捆多少包?
你能找到什么条件、问题。你会解决吗?
(2)这个小朋友也是一个爱看书的好孩子,她在看一本故事书。
问:要求看完这本书大约需要几个月?必须要知道哪些条件,你会求吗?
这节课你有什么收获?还有什么问题?
本节课学习了整十数除整十数、几百几十数(商一位数)的口算方法,能正确地进行计算。
有80面彩旗,每班分20面,可以分给几个班?
80÷20=
人教版七年级数学上册课件(篇8)
教学内容:
人教版小学数学教材六年级下册第107~108页例2及相关练习。
教学目标:
1.在学习过程中引导学生探索研究数与形之间的联系,寻找规律,发现规律,学会利用图形来解决一些有关数的问题。
2.让学生经历猜想与验证的过程,体会和掌握数形结合、归纳推理、极限等基本数学思想。
重点难点:
探索数与形之间的联系,寻找规律,并利用图形来解决有关数的问题。
教学准备:
教学课件。
教学过程:
一、直接导入,揭示课题
同学们,上节课我们探究了图形中隐藏的数的规律,今天我们继续研究有关数与图形之间的联系。(板书课题:数与形)
【设计意图】直奔主题,简洁明了,有利于学生清楚本节课学习的内容和方向。
二、探索发现,学习新知
(一)教师与学生比赛算题
1.教师:你知道等于多少吗?(学生:)
教师:那等于多少呢?(学生计算需要时间)教师紧接着说:我已经算好了,是,不信你算算。
2.只要按照这个分子是1,分母依次扩大2倍的规律写下去,不管有多少个分数相加,我都能立马算出结果。有的同学不相信是吗?咱们试试就知道。为了方便,我请我们班计算最快的同学跟我一起算,看看结果是否相同。谁来出题?
在学生出题后,老师都能立刻算出结果,并且是正确的,学生感到很惊奇。
3.知道我为什么算得那么快吗?因为我有一件神秘的法宝,你们也想知道吗?
【设计意图】一方面,教师通过与学生比赛计算速度,且每次老师胜利,使学生产生好奇心,再通过教师幽默的语言,吸引学生的注意力,激发学生的学习兴趣和求知欲。另一方面,为接下来学习例题做好铺垫。
(二)借助正方形探究计算方法
1.这件法宝就是(师边说边课件出示一个正方形),让我们来把它变一变,聪明的同学们一定能看明白是怎么回事了。
2.进行演示讲解。
(1)演示:用一个正方形表示“1”,先取它的一半就是正方形的(涂红),再剩下部分的一半就是正方形的(涂黄)。
想一想:正方形中表示的涂色部分与空白部分和整个正方形之间有什么关系呢?(涂色部分等于“1”减去空白部分)空白部分占正方形的几分之几?()那么涂色部分还可以怎么算呢?(),也就是说。
(2)继续演示,谁知道除了通分,还可以怎么算?
根据学生回答,板书。
(3)演示:那么计算就可以得到?()。
3.看到这儿,你发现什么规律了吗?
4.小结:按照这样的规律往下加,不管加到几分之一,只要用1减去这个几分之一就可以得到答案了。
5.这个法宝怎么样?谁来说说它好在哪里?你学会了吗?
6.尝试练习
【设计意图】将复杂的数量运算转化为简单的图形面积计算,转繁为简,转难为易,引导学生探索数与图形的联系,让学生体会到数形结合、归纳推理的数学思想方法。
(三)知识提升,探索发现
1.感受极限。
(1)刚才我们已经从一直加到了,如果我继续加,加到,得数等于?()再接着加,一直加到,得数等于?()随着不断继续加,你发现得数越来越?(大)无数个这样的数相加,和会是多少呢?
(2)这时候你心中有没有一个大胆的猜想?(学生猜想:这样一直加下去,得数会不会就等于1了。)
(3)想象一下,如果我们在刚才加的过程中在正方形上不断涂色,那空白部分的面积就越来越?(小)而涂色部分的面积越来越接近?(1)也就是求和的得数越来越接近?(1)最终得数是1吗?你有什么方法来证明得数就是1?
(学情预设:学生提出书本的圆形图和线段图,若没有学生提出,教师自己提出。)
2.利用线段图直观感受相加之和等于“1”。
(1)书本上有两幅图,我们一起来看看(课件出示)。一幅是圆形图,一幅是线段图,你能看懂它的意思吗?请你想一想,然后告诉大家你的想法。
(2)学生看书思考。
(3)全班交流,课件演示,得出结论:这些分数不断加下去,总和就是1。
【设计意图】利用数与形的结合,让学生直观体会极限数学思想,并让学生经历猜想得数等于“1”,到数形结合证明得数等于“1”的过程,激发学生学习兴趣,培养学生探索新知的精神。
3.课堂小结。
对于这种借用图形来帮助我们解决问题的方法,你有什么感受?
教师小结:是的,“数”与“形”有着紧密的联系,在一定条件下可以相互转化。当用数形结合的方法解决问题时,你会发现许多难题的解决变得很简单。
4.举一反三。
其实在以前的学习中,我们也常用到数形结合的数学方法帮助我们解题,你能想到些例子吗?(如学生有困难,教师举例:一年级加法,分数的认识,复杂的路程问题线段图等。)
【设计意图】让学生体会“数形结合”是数学学习中常用的方法。
三、练习巩固
1.基础练习。
(1)学生独立计算。
(2)全班交流反馈。
【设计意图】通过练习,回顾新知,巩固新知,使学生对新知识掌握得更扎实。
2.小林、小强、小芳、小兵和小刚5人进行象棋比赛,每2人之间都要下一盘。小林已经下了4盘,小强下了3盘,小芳下了2盘,小兵下了1盘。请问:小刚一共下了几盘?分别和谁下的?
解决问题
(1)全班读题,学生独立思考。
(2)指名回答。
(3)根据学生回答情况,连线(课件演示)。
(4)结合连线图得出:小刚一共下了2盘,分别和小林、小强下的。
【设计意图】让学生进一步体会数形结合的直观性和变难为易的特点。
四、课堂总结
快下课了,请你来说说这节课有什么收获?
课后反思:
图形的直观形象的特点,决定了化数为形往往能达到以简驭繁的目的,例2中,用举例的方法求出等比数列的有限和,都不能证明无限多项相加结果为1,但是接近 1,但这个无限接近于1的数是多少呢?电子白板呈现出圆形模型和线段模型来表示“1”,使学生结合分数意义,在圆上和线段上分别有规律地表示这些加数,当这个过程无止境地持续下去时,所有的扇形和线段就会把整个圆和整条线段占满,即和为“1”,用画图的方法来表示计算过程和结果,让学生感受到什么叫无限接近,什么叫直观形象,同时,一个极其抽象的极限问题,变得十分直观和便捷。
人教版七年级数学上册课件(篇9)
1.经历观察、操作、想像、推理、交流等活动,进一步发展推理能力和有条理表达能力.
学习重难点:探索并掌握直线平行的条件是本课的重点也是难点.
1.两条直线被第三条直线所截,如果同位角相等,那么内错角也相等.( )
2.两条直线被第三条直线所截,如果内错角互补,那么同旁内角相等.( )
2、填空1.如图1,如果∠3=∠7,或______,那么______,理由是__________;如果∠5=∠3,或笔________,那么________, 理由是______________; 如果∠2+ ∠5= ______ 或者_______,那么a∥b,理由是__________.
2.如图2,若∠2=∠6,则______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.
A.AB∥EF,CD∥EF B.∠5=∠A; C.∠ABC+∠BCD=180° D.∠2=∠3
A.由∠1=∠6,得AB∥FG;
C.由∠1+∠2+∠3+∠5=180°,得CE∥FI;
四、已知直线a、b被直线c所截,且∠1+∠2=180°,试判断直线a、b的位置关系,并说明理由.
五、作业课本15页-16页练习的1、2、3、
间观念,推理能力和有条理表达能力.
毛2.分析题意说理过程,能灵活地选用直线平行的方法进行说理.
学习难点:选取适当判定直线平行的方法进行说理是重点也是难点.
平行线的判定方法有几种?分别是什么?
二.巩固练习:
1.如图2,若∠2=∠6,则______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.
2.如图,一个合格的变形管道ABCD需要AB边与CD边平行,若一个拐角∠ABC=72°,则另一个拐角∠BCD=_______时,这个管道符合要求.
2.如图,直线AB、CD被直线EF所截,使∠1=∠2≠90°,则( )
三、解答题.
1.你能用一张不规则的纸(比如,如图1所示的四边形的纸)折出两条平行的直线吗?与同伴说说你的折法.
2.已知,如图2,点B在AC上,BD⊥BE,∠1+∠C=90°,问射线CF与BD平行吗?试用两种方法说明理由.
人教版七年级数学上册课件(篇10)
1.通过类比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0),分清二次项及其系数、一次项及其系数与常数项等概念.
2.了解一元二次方程的解的概念,会检验一个数是不是一元二次方程的解.
通过类比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0)和一元二次方程的解等概念,并能用这些概念解决简单问题.
一元二次方程及其二次项系数、一次项系数和常数项的识别.
1.什么是方程?你能举一个方程的例子吗?
2.下列哪些方程是一元一次方程?并给出一元一次方程的概念和一般形式.
(1)2x-1 (2)mx+n=0 (3)1x+1=0 (4)x2=1
3.下列哪个实数是方程2x-1=3的解?并给出方程的解的概念.
根据题意列方程.
1.教材第2页 问题1.
提出问题:
(1)正方形的大小由什么量决定?本题应该设哪个量为未知数?
(2)本题中有什么数量关系?能利用这个数量关系列方程吗?怎么列方程?
(3)这个方程能整理为比较简单的形式吗?请说出整理之后的方程.
2.教材第2页 问题2.
提出问题:
(1)本题中有哪些量?由这些量可以得到什么?
(2)比赛队伍的数量与比赛的场次有什么关系?如果有5个队参赛,每个队比赛几场?一共有20场比赛吗?如果不是20场比赛,那么究竟比赛多少场?
(3)如果有x个队参赛,一共比赛多少场呢?
3.一个数比另一个数大3,且两个数之积为0,求这两个数.
提出问题:
本题需要设两个未知数吗?如果可以设一个未知数,那么方程应该怎么列?
4.一个正方形的面积的2倍等于25,这个正方形的边长是多少?
提出问题:
(1)上述方程与一元一次方程有什么相同点和不同点?
(2)类比一元一次方程,我们可以给这一类方程取一个什么名字?
(3)归纳一元二次方程的概念.
1.一元二次方程:只含有________个未知数,并且未知数的次数是________,这样的________方程,叫做一元二次方程.
2.一元二次方程的一般形式是ax2+bx+c=0(a≠0),其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.
提出问题:
(1)一元二次方程的一般形式有什么特点?等号的左、右分别是什么?
(2)为什么要限制a≠0,b,c可以为0吗?
(3)2x2-x+1=0的一次项系数是1吗?为什么?
3.一元二次方程的解(根):使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解(根).
例1 在下列方程中,属于一元二次方程的是________.
(1)4x2=81;(2)2x2-1=3y;(3)1x2+1x=2;
(4)2x2-2x(x+7)=0.
总结:判断一个方程是否是一元二次方程的依据:(1)整式方程;(2)只含有一个未知数;(3)含有未知数的项的次数是2.注意有些方程化简前含有二次项,但是化简后二次项系数为0,这样的方程不是一元二次方程.
例2 教材第3页 例题.
总结:判断一个数是否为方程的解,可以将这个数代入方程,判断方程左、右两边的值是否相等.
练习:
1.若(a-1)x2+3ax-1=0是关于x的一元二次方程,那么a的取值范围是________.
2.将下列一元二次方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项.
(1)4x2=81;(2)(3x-2)(x+1)=8x-3.
3.教材第4页 练习第2题.
4.若-4是关于x的一元二次方程2x2+7x-k=0的一个根,则k的值为________.
我们学习了一元二次方程的哪些知识?一元二次方程的一般形式是什么?一般形式中有什么限制?你能解一元二次方程吗?
理解一元二次方程“降次”——转化的数学思想,并能应用它解决一些具体问题.
提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=0型的一元二次方程.
运用开平方法解形如(x+m)2=n(n≥0)的方程,领会降次——转化的数学思想.
通过根据平方根的意义解形如x2=n的方程,将知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程.
(1)x2-8x+________=(x-________)2;(2)9x2+12x+________=(3x+________)2;(3)x2+px+________=(x+________)2.
解:根据完全平方公式可得:(1)16 4;(2)4 2;(3)(p2)2 p2.
问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程与一元一次方程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法?
上面我们已经讲了x2=9,根据平方根的意义,直接开平方得x=±3,如果x换元为2t+1,即(2t+1)2=9,能否也用直接开平方的方法求解呢?
老师点评:回答是肯定的,把2t+1变为上面的x,那么2t+1=±3
例1 解方程:(1)x2+4x+4=1 (2)x2+6x+9=2
分析:(1)x2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1.
例2 市政府计划2年内将人均住房面积由现在的10 m2提高到14.4 m2,求每年人均住房面积增长率.
分析:设每年人均住房面积增长率为x,一年后人均住房面积就应该是10+10x=10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x)2
因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去.
所以,每年人均住房面积增长率应为20%.
共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想称为“降次转化思想”.
本节课应掌握:由应用直接开平方法解形如x2=p(p≥0)的方程,那么x=±p转化为应用直接开平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±p,达到降次转化之目的.若p
理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题.
通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面两种形式的一元二次方程的解题步骤.
七年级上册数学课件实用十篇
每个老师在上课前需要规划好教案课件,又到了老师开始写教案课件的时候了。 教案和课件设计得好,能够让学生更好地掌握知识。这是一篇非常不错的“七年级上册数学课件”网络文章值得推荐给大家,建议您收藏此页以方便随时阅读!
七年级上册数学课件【篇1】
1.用它们拼成各种形状不同的四边形,并计算它们的周长。
(鼓励学生把长方形和等腰三角形拼和成各种图形,分别计算出它们的周长和面积)
师生小结:整式的加减实际上是“去括号”和“合并同类项”法则的综合应用,
1.进行整式的加减运算时,如果有括号先去括号,再合并同类项。
2.教学例二 例2 求2a2-4a+1与-3a2+2a-5的差.
(本题首先带领学生根据题意列出式子,强调要把两个代数式看成整体,列式时应加上括号)
(1)求多项式2x -3 +7与6x -5 -2的和.
提问:你有哪些计算方法?(可引导学生进行竖式计算,并在练习中注意竖式计算过程中需要注意什么?)
(2)(-3x2 Cx +2)+(4x2 +3x -5) (3)(4a2 -3a )+(2a2 +a -1)
(4)(x2 +5x C2 )-(x2 +3x -22) (5)2(1-a +a2)-3(2-a Ca2)
先化简下式,再求值:
解:5(3a2b Cab2)-4(-ab2 +3a2b),其中=-2 ,=3
1.进行整式的加减运算时,如果有括号先去括号,再合并同类项。
(1)去括号。
习题4.5 2. (3) ;4. (2);5.。
七年级上册数学课件【篇2】
教学目标:
1.掌握数轴三要素,能正确画出数轴.
2.能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数.
师:对照大家画的图,为了使表达更清楚,我们把0左右两边的数分别用正数和负数来表示,即用一直线上的点把正数、负数、0都表示出来,也就是本节要学的内容——数轴.
【点拨】(1)引导学生学会画数轴.
第二步:规定从原点向右的方向为正(左边为负方向).
第四步:拿出教学温度计,由学生观察温度计的结构和数轴的结构是否有共同之处.
对比思考 原点相当于什么;正方向与什么一致;单位长度又是什么?
(2)有了以上基础,我们可以来试着定义数轴:
规定了原点、正方向和单位长度的直线叫数轴.
做一做 学生自己练习画出数轴.
试一试 你能利用你自己画的数轴上的点来表示数4,1.5,-3,-2,0吗?
讨论 若a是一个正数,则数轴上表示数a的点在原点的什么位置上?与原点相距多少个单位长度?表示-a的点在原点的什么位置上?与原点又相距多少个单位长度?
小结 整数在数轴上都能找到点表示吗?分数呢?
可见,所有的 都可以用数轴上的点表示; 都在原点的左边, 都在原点的右边.
【例1】 下列所画数轴对不对?如果不对,指出错在哪里?
【例2】试一试:用你画的数轴上的点表示4,1.5,-3,-,0.
【例3】下列语句:
①数轴上的点只能表示整数;②数轴是一条直线;③数轴上的一个点只能表示一个数;④数轴上找不到既不表示正数,又不表示负数的点;⑤数轴上的点所表示的数都是有理数.正确的说法有( )
【例4】在数轴上表示-2 和1,并根据数轴指出所有大于-2 而小于1 的整数.
【例5】数轴上表示整数的点称为整点,某数轴的单位长度是1cm,若在这个数轴上随意画出一条长为cm的线段AB,则线段AB盖住的整点有( )
数轴是非常重要的工具,它使数和直线上的点建立了一一对应的关系.它揭示了数和形的内在联系,为我们今后进一步研究问题提供了新方法和新思想.大家要掌握数轴的三要素,正确画出数轴.提醒大家,所有的有理数都可以用数轴上的相关点来表示,但反过来并不成立,即数轴上的点并不都表示有理数.
1.规定了 、 、的直线叫做数轴,所有的有理数都可从用上的点来表示.
2.P从数轴上原点开始,向右移动2个单位长度,再向左移5个单位长度,此时P点所表示的数是 .
3.把数轴上表示2的点移动5个单位长度后,所得的对应点表示的数是( )
5.数轴上表示5和-5的点离开原点的距离是 ,但它们分别表示 .
6.与原点距离为3.5个单位长度的点有2个,它们分别是 和 .
7.画出一条数轴,并把下列数表示在数轴上:
+2,-3,0.5,0,-4.5,4,3.
8.在数轴上与-1相距3个单位长度的点有 个,为 ;长为3个单位长度的木条放在数轴上,最多能覆盖 个整数点.
七年级上册数学课件【篇3】
教学要求:
1、通过使用挂图和教具的教学,使学生了解“多、少”、“大、小”、“长、短”、“上、中、下”、“左、右”等常用的词语的含义。
2、通过实物、图片等学具的教学,使学生能通过操作进行简单的分类。
3、通过实物或教具的教学,使学生初步知道“有”、“没有”、“同样多”、“多些”、“少些”的含义。
4、使学生初步学会正确的执笔、写字姿势和方法,会写横、竖、拐弯。
5、通过课文插图对刚入学的聋哑儿童进行思想教育,培养他们尊师爱校、爱学习的良好行为习惯。
教学重点、难点:
1、通过实物、图片等教具的教学,使学生能进行简单的分类,初步知道“有”、“没有”、“同样多”、“多些”、“少些”的含义。
2、使学生初步学会正确的执笔、写字姿势和方法,会写横、竖、拐弯。
教学目的:通过实物、图片的教学对刚入学的聋哑儿童进行思想教育,培养他们尊师爱校、爱学习的良好行为习惯。
1、认识同学、老师。
2、说明上课要求:师生问好,上课要坐好,有事要举手,不要随便讲话。
二、带学生参观学校环境。
三、看图教学。
图一:
1、教师对照书上的插图进行启发,引起学生看图兴趣,集中学生的注意力,介绍:这幅图是新学年的开始,小朋友们高高兴兴地来到学校。
2、指导学生按照从左到右、从远到近的顺序观察画面内容。
3、根据图回答问题:图上都有哪些人、物?他们在做什么?图中有几名学生?几名老师?
图二:
1、引导学生观察图上的内容。
2、回答问题:
七年级上册数学课件【篇4】
两圆的公切线
第一课时 两圆的公切线(一)
教学目标:
(1)理解两圆相切长等有关概念,掌握两圆外公切线长的求法;
(2)培养学生的归纳、总结能力;
(3)通过两圆外公切线长的求法向学生渗透“转化”思想.
教学重点:
理解两圆相切长等有关概念,两圆外公切线的求法.
教学难点:
两圆外公切线和两圆外公切线长学生理解的不透,容易混淆.
教学活动设计
(一)实际问题(引入)
很多机器上的传动带与主动轮、从动轮之间的位置关系,给我们以一条直线和两个同时相切的形象.(这里是一种简单的数学建模,了解数学产生与实践)
(二)两圆的公切线概念
1、概念:
教师引导学生自学.给出两圆的外公切线、内公切线以及公切线长的定义:
和两圆都相切的直线,叫做两圆的公切线.
(1)外公切线:两个圆在公切线的同旁时,这样的公切线叫做外公切线.
(2)内公切线:两个圆在公切线的两旁时,这样的公切线叫做内公切线.
(3)公切线的长:公切线上两个切点的距离叫做公切线的长.
2、理解概念:
(1)公切线的长与切线的长有何区别与联系?
(2)公切线的长与公切线又有何区别与联系?
(1)公切线的长与切线的长的概念有类似的地方,即都是线段的长.但公切线的长是对两个圆来说的,且这条线段是以两切点为端点;切线长是对一个圆来说的,且这条线段的一个端点是切点,另一个端点是圆外一点.
(2)公切线是直线,而公切线的长是两切点问线段的长,前者不能度量,后者可以度量.
(三)两圆的位置与公切线条数的关系
组织学生观察、概念、概括,培养学生的学习能力.添写教材P143练习第2题表.
(四)应用、反思、总结
例1、已知:⊙O1、⊙O2的半径分别为2cm和7cm,圆心距O1O2=13cm,AB是⊙O1、⊙O2的外公切线,切点分别是A、B.求:公切线的长AB.
分析:首先想到切线性质,故连结O1A、O2B,得直角梯形AO1O2B.一般要把它分解成一个直角三角形和一个矩形,再用其性质.(组织学生分析,教师点拨,规范步骤)
解:连结O1A、O2B,作O1A⊥AB,O2B⊥AB.
过 O1作O1C⊥O2B,垂足为C,则四边形O1ABC为矩形,
于是有
O1C⊥C O2,O1C= AB,O1A=CB.
在Rt△O2CO1和.
O1O2=13,O2C= O2B- O1A=5
AB= O1C=
(cm).
反思:(1)“转化”思想,构造三角形;(2)初步掌握添加辅助线的方法.
例2-、如图,已知⊙O1、⊙O2外切于P,直线AB为两圆的公切线,A、B为切点,若PA=8cm,PB=6cm,求切线AB的长.
分析:因为线段AB是△APB的一条边,在△APB中,已知PA和PB的长,只需先证明△PAB是直角三角形,然后再根据勾股定理,使问题得解.证△PAB是直角三角形,只需证△APB中有一个角是90°(或证得有两角的和是90°),这就需要沟通角的关系,故过P作两圆的公切线CD如图,因为AB是两圆的公切线,所以∠CPB=∠ABP,∠CPA=∠BAP.因为∠BAP+∠CPA+∠CPB+∠ABP=180°,所以2∠CPA+2∠CPB=180°,所以∠CPA+∠CPB=90°,即∠APB=90°,故△APB是直角三角形,此题得解.
解:过点P作两圆的公切线CD
∵ AB是⊙O1和⊙O2的切线,A、B为切点
∴∠CPA=∠BAP∠CPB=∠ABP
又∵∠BAP+∠CPA+∠CPB+∠ABP=180°
∴ 2∠CPA+2∠CPB=180°
∴∠CPA+∠CPB=90°即∠APB=90°
在 Rt△APB中,AB2=AP2+BP2
说明:两圆相切时,常过切点作两圆的公切线,沟通两圆中的角的关系.
(五)巩固练习
1、当两圆外离时,外公切线、圆心距、两半径之差一定组成( )
(A)直角三角形 (B)等腰三角形 (C)等边三角形 (D)以上答案都不对.
此题考察外公切线与外公切线长之间的差别,答案(D)
2、外公切线是指
(A)和两圆都祖切的直线 (B)两切点间的距离
(C)两圆在公切线两旁时的公切线 (D)两圆在公切线同旁时的公切线
直接运用外公切线的定义判断.答案:(D)
3、教材P141练习(略)
(六)小结(组织学生进行)
知识:两圆的公切线、外公切线、内公切线及公切线的长概念;
能力:归纳、概括能力和求外公切线长的能力;
思想:“转化”思想.
(七)作业:P151习题10,11.
第二课时 两圆的公切线(二)
教学目标:
(1)掌握两圆内公切线长的求法以及公切线与连心线的夹角或公切线的交角;
(2)培养的迁移能力,进一步培养学生的归纳、总结能力;
(3)通过两圆内公切线长的求法进一步向学生渗透“转化”思想.
教学重点:
两圆内公切线的长及公切线与连心线的夹角或公切线的交角求法.
教学难点:
两圆内公切线和两圆内公切线长学生理解的不透,容易混淆.
教学活动设计
(一)复习基础知识
(1)两圆的公切线概念:公切线、内外公切线、内外公切线的长.
(2)两圆的位置与公切线条数的关系.(构成数形对应,且一一对应)
(二)应用、反思
例1、(教材例2)已知:⊙O1和⊙O2的半径分别为4厘米和2厘米,圆心距 为10厘米,AB是⊙O1和⊙O2的一条内公切线,切点分别是A,B.
求:公切线的长AB。
组织学生分析,迁移外公切线长的求法,既培养学生解决问题的能力,同时也培养学生学习的迁移能力.
解:连结O1A、O2B,作O1A⊥AB,O2B⊥AB.
过 O1作O1C⊥O2B,交O2B的延长线于C,
则O1C= AB,O1A=BC.
在Rt△O2CO1和.
O1O2=10,O2C= O2B+ O1A=6
∴O1C=
(cm).
∴AB=8(cm)
反思:与外离两圆的内公切线有关的计算问题,常构造如此题的直角梯行及直角三角形,在Rt△O2CO1中,含有内公切线长、圆心距、两半径和重要数量.注意用解直角三角形的知识和几何知识综合去解构造后的直角三角形.
例2 (教材例3)要做一个图那样的矿型架,将两个钢管托起,已知钢管的外径分别为200毫米和80毫米,求V形角α的度数.
解:(略)
反思:实际问题经过抽象、化简转化成数学问题,应用数学知识来解决,这是解决实际问题的重要方法.它属于简单的数学建模.
组织学生进行,教师引导.
归纳:(1)用解直角三角形的有关知识可得:当公切线长l、两圆的两半径和R+r、圆心距d、两圆公切线的夹角α四个量中已知两个量时,就可以求出其他两个量.
,
;
(2)上述问题可以通过相似三角形和解三角形的知识解决.
(三)巩固训练
教材P142练习第1题,教材P145练习第1题.
学生独立完成,教师巡视,发现问题及时纠正.
(四)小结
(1)求两圆的内公切线,“转化”为解直角三角形问题.公切线长、圆心距、两半径和三个量中已知任何两个量,都可以求第三个量;
(2)如果两圆有两条外(或内)公切线,并且它们相交,那么交点一定在两圆的连心线上;
(3)求两圆两外(或内)公切线的夹角.
(五)作业
教材P153中12、13、14.
第三课时 两圆的公切线(三)
教学目标:
(1)理解两圆公切线在解决有关两圆相切的问题中的作用, 辅助线规律,并会应用;
(2)通过两圆公切线在证明题中的应用,培养学生的分析问题和解决问题的能力.
教学重点:
会在证明两圆相切问题时,辅助线的引法规律,并能应用于几何题证明中.
教学难点:
综合知识的灵活应用和综合能力培养.
教学活动设计
(一)复习基础知识
(1)两圆的公切线概念.
(2)切线的性质,弦切角等有关概念.
(二)公切线在解题中的应用
例1、如图,⊙O1和⊙O2外切于点A,BC是⊙O1和⊙O2的公切线,B,C为切点.若连结AB、AC会构成一个怎样的三角形呢?
观察、度量实验(组织学生进行)
猜想:(学生猜想)∠BAC=90°
证明:过点A作⊙O1和⊙O2的内切线交BC于点O.
∵OA、OB是⊙O1的切线,
∴OA=OB.
同理OA=OC.
∴ OA=OB=OC.
∴∠BAC=90°.
反思:(1)公切线是解决问题的桥梁,综合应用知识是解决问题的关键;(2)作两圆的公切线是常见的一种作辅助线的方法.
例
2、己知:如图,⊙O1和⊙O2内切于P,大圆的弦AB交小圆于C,D.
求证:∠APC=∠BPD.
分析:从条件来想,两圆内切,可能作出的辅助线是作连心线O1O2,或作外公切线.
证明:过P点作两圆的公切线MN.
∵∠MPC=∠PDC,∠MPN=∠B,
∴∠MPC-∠MPN=∠PDC-∠B,
即∠APC=∠BPD.
反思:(1)作了两圆公切线MN后,弦切角就把两个圆中的圆周角联系起来了.要重视MN的“桥梁”作用.(2)此例证角相等的方法是利用已知角的关系计算.
拓
展:(组织学生研究,培养学生深入研究问题的意识)
己知:如图,⊙O1和⊙O2内切于P,大圆⊙O1的弦AB与小圆⊙O2相切于C点.
是否有:∠APC=∠BPC即PC平分∠APB.
答案:有∠APC=∠BPC即PC平分∠APB.如图作辅助线,证明方法步骤参看典型例题中例4.
(三)练习
练习1、教材145练习第2题.
练习2、如图,已知两圆内切于P,大圆的弦AB切小圆于C,大圆的弦PD过C点.
求证:PA·PB=PD·PC.
证
明:过点P作两圆的公切线EF
∵ AB是小圆的切线,C为切点
∴∠FPC=∠BCP,∠FPB=∠A
又∵∠1=∠BCP-∠A∠2=∠FPC-∠FPB
∴∠1=∠2∵∠A=∠D,∴△PAC∽△PDB
∴PA·PB=PD·PC
说明:此题在例2题的拓展的基础上解得非常容易.
(三)总结
学习了两圆的公切线,应该掌握以下几个方面
1、由圆的轴对称性,两圆外(或内)公切线的交点(如果存在)在连心线上.
2、公切线长的计算,都转化为解直角三角形,故解题思路主要是构造直角三角形.
3、常用的辅助线:
(1)两圆在各种情况下常考虑添连心线;
(2)两圆外切时,常添内公切线;两圆内切时,常添外公切线.
4、自己要有深入研究问题的意识,不断反思,不断归纳总结.
(四)作业教材P151习题中15,B组2.
探究活动
问题:如图1,已知两圆相交于A、B,直线CD与两圆分别相交于C、E、F、D.
(1)用量角器量出∠EAF与∠CBD的大小,根据量得结果,请你猜想∠EAF与∠CBD的大小之间存在怎样的关系,并证明你所得到的结论.
(2)当直线CD的位置如图2时,上题的结论是否还能成立?并说明理由.
(3)如果将已知中的“两圆相交”改为“两圆外切于点A”,其余条件不变(如图3),那么第(1)题所得的结论将变为什么?并作出证明.
提示:(1)(2)(3)都有∠EAF+∠CBD=180°.证明略(如图作辅助线).
说明:问题从操作测量得到的实验数据入手,进行数据分析,归纳得出猜想,进而证明猜想成立.这也是数学发现的一种方法.第(2)、(3)题是对第(1)题结论的推广和特殊化.第(3)题中若CD移动到与两圆相切于点C、D,那么结论又将变为∠CAD=90°.
七年级上册数学课件【篇5】
一、教学目标:(1)熟练地进行同分母的分式加减法的运算.
(2)会把异分母的分式通分,转化成同分母的分式相加减.
进行异分母的分式加减法的运算是难点,异分母的分式加减法的运算,必须转化为同分母的分式加减法,,然后按同分母的分式加减法的法则计算,转化的关键是通分,通分的关键是正确确定几个分式的最简公分母,确定最简公分母的一般步骤:(1)取各分母系数的最小公倍数;(2)所出现的字母(或含字母的式子)为底的幂的因式都要取;(3)相同字母(或含字母的式子)的幂的因式取指数的.在求出最简公分母后,还要确定分子、分母应乘的因式,这个因式就是最简公分母除以原分母所得的商.
异分母的分式加减法的一般步骤:(1)通分,将异分母的分式化成同分母的分式;(2)写成“分母不便,分子相加减”的形式;(3)分子去括号,合并同类项;(4)分子、分母约分,将结果化成最简分式或整式.
1. P18问题3是一个工程问题,题意比较简单,只是用字母n天来表示甲工程队完成一项工程的时间,乙工程队完成这一项工程的时间可表示为n+3天,两队共同工作一天完成这项工程的 .这样引出分式的加减法的实际背景,问题4的目的与问题3一样,从上面两个问题可知,在讨论实际问题的数量关系时,需要进行分式的加减法运算.
2. P19是为了让学生回忆分数的加减法法则,类比分数的加减法,分式的加减法的实质与分数的加减法相同,让学生自己说出分式的加减法法则.
3.P20例6计算应用分式的加减法法则.第(1)题是同分母的分式减法的运算,第二个分式的分子式个单项式,不涉及到分子变号的问题,比较简单,所以要补充分子是多项式的例题,教师要强调分子相减时第二个多项式注意变号;
第(2)题是异分母的分式加法的运算,最简公分母就是两个分母的乘积,没有涉及分母要因式分解的题型.例6的练习的题量明显不足,题型也过于简单,教师应适当补充一些题,以供学生练习,巩固分式的加减法法则.
(4)P21例7是一道物理的电路题,学生首先要有并联电路总电阻R与各支路电阻R1, R2, …, Rn的关系为 .若知道这个公式,就比较容易地用含有R1的式子表示R2,列出 ,下面的计算就是异分母的分式加法的运算了,得到 ,再利用倒数的概念得到R的结果.这道题的数学计算并不难,但是物理的知识若不熟悉,就为数学计算设置了难点.鉴于以上分析,教师在讲这道题时要根据学生的物理知识掌握的情况,以及学生的具体掌握异分母的分式加法的运算的情况,可以考虑是否放在例8之后讲.
1.出示P18问题3、问题4,教师引导学生列出答案.
引语:从上面两个问题可知,在讨论实际问题的数量关系时,需要进行分式的加减法运算.
2.下面我们先观察分数的加减法运算,请你说出分数的加减法运算的法则吗?
3. 分式的加减法的实质与分数的加减法相同,你能说出分式的加减法法则?
4.请同学们说出 的最简公分母是什么?你能说出最简公分母的确定方法吗?
第(1)题是同分母的分式减法的运算,分母不变,只把分子相减,第二个分式的分子式个单项式,不涉及到分子是多项式时,第二个多项式要变号的问题,比较简单;第(2)题是异分母的分式加法的运算,最简公分母就是两个分母的乘积.
第(1)题是同分母的分式加减法的运算,强调分子为多项式时,应把多项事看作一个整体加上括号参加运算,结果也要约分化成最简分式.
第(2)题是异分母的分式加减法的运算,先把分母进行因式分解,再确定最简公分母,进行通分,结果要化为最简分式.
七年级上册数学课件【篇6】
【学习目标】
1、通过观察生活中的大量图片或实物,经历把实物抽象成几何图形的过程;
2、能由实物形状想象出几何图形,由几何图形想象出实物形状;
3、能识别一些简单几何体,正确区分平面图形与立体图形。
【重点难点】
识别简单的几何体是重点;从具体事物中抽象出几何图形是难点。
【导学指导】
一、知识链接
同学们,你仔细观察过我们生活的世界吗?从城市宏伟的建筑到乡村简朴的住宅,从四通八达的立交桥到街头巷尾的交通标志,从古老的剪纸艺术到现代化的城市雕塑,从自然界形态各异的动物到北京的申奥标志……,包含着形态各异的图形。图形的世界是丰富多彩的!那就让我们走进图象的世界去看看吧。
二、自主探究
1、几何图形
(1)仔细观察图4、1—1,让同学们感受是丰富多彩的图形世界;
(2)出示一个长方体的纸盒,让同学们观察图4、1—2回答问题:
从整体上看,它的`形状是什么?从不同侧面看,你看到了什么图形?只看棱、顶点等局部,你又看到了什么?
我们见过的长方体、圆柱、圆锥、球、圆、线段、点,以及小学学习过的三角形、四边形等,都是从形形色色的物体外形中得出的。我们把这些图形称为几何图形。
注意:当我们关注物体的形状、大小和位置时,得出了几何图形,它是数学研究的主要对象之一,而物体的颜色、重量、材料等则是其它学科所关注的。
2、立体图形
思考第117页思考题并出示实物(如茶叶、地球仪、字典及魔方等)及多媒体演示(如谷堆、帐篷、金字塔等),它们与我们学过的哪些图形相类似?
长方体、正方体、球、圆柱、圆锥等它们各部分不都在同一平面内,它们是立体图形。
想一想
生活中还有哪些物体的形状类似于这些立体图形呢?
思考:课本118页图4、1—4中实物的形状对应哪些立体图形?把相应的实物与图形用线连起来。
3、平面图形
平面图形的概念
线段、角、三角形、长方形、圆等它们的各部分都在同一平面内,它们是平面图形。
思考:课本118页图4、1—5的图中包含哪些简单的平面图形?
请再举出一些平面图形的例子。
长方形、圆、正方形、三角形、……。
思考:立体图形与平面图形是两类不同的几何图形,它们的区别在哪里?它们有什么联系?
立体图形的各部分不都在同一平面内,而平面图形的各部分都在同一平面内;
立体图形中某些部分是平面图形。
《4、1、2点、线、面、体》同步四维训练
知识点一:几何体的构成
1、下列结论正确的是(C)
①圆柱由3个面围成,这3个面都是平面;
②圆锥由2个面围成,这2个面中,1个是平面,1个是曲面;
③球仅由1个面围成,这个面是平面;
④正方体由6个面围成,这6个面都是平面、
A、①②B、②③C、②④D、①④
《4、1、2点、线、面、体》同步练习含解析
一、单选题(共12题;共24分)
1、圆锥体是由下列哪个图形绕自身的对称轴旋转一周得到的
A、正方形
B、等腰三角形
C、圆
D、等腰梯形
2、下面现象能说明“面动成体”的是
A、旋转一扇门,门运动的痕迹
B、扔一块小石子,小石子在空中飞行的路线
C、天空划过一道流星
D、时钟秒针旋转时扫过的痕迹
3、下列说法中,正确的是
A、棱柱的侧面可以是三角形
B、四棱锥由四个面组成的
C、正方体的各条棱都相等
D、长方形纸板绕它的一条边旋转1周可以形成棱柱
七年级上册数学课件【篇7】
教学目标①进一步理解用等式的性质解简简单的(两次运用等式的性质)一元一次方程
②初步具有解方程中的化归意识;
③培养言必有据的思维能力和良好的思维品质.
教学重点用等式的性质解方程。
知识难点需要两次运用等式的性质,并且有一定的思维顺序。
教学过程(师生活动)设计理念
复习引入解下列方程:(1)x+7=1.2;(2)
在学生解答后的讲评中围绕两个问题:
①每一步的依据分别是什么?
②求方程的解就是把方程化成什么形式?
这节课继续学习用等式的性质解一元一次方程。由于这一课时也是学习用等式的性质解方程,所以通过复习来引入比较自然。
探究新知对于简单的方程,我们通过观察就能选择用等式的哪一条性质来解,下列方程你也能马上做出选择吗?
例1利用等式的性质解方程:
()0.5x-x=3.4(2)
先让学生对第(1)题进行尝试,然后教师进行引导:
①要把方程0.5x-x=3.4转化为x=a的形式,必须去掉方程左边的0.5,怎么去?
②要把方程-x=2.9转化为x=a的形式,必须去掉x前面的'“-”号,怎么去?
然后给出解答:
解:两边减0.5,得0.5-x-0.5=3.4-0.5
化简,得
-x=-2.9,、
两边同乘-1,得l
x=-2.9
小结:(1)这个方程的解答中两次运用了等式的性质(2)解方程的目标是把方程最终化为x=a的形式,在运用性质进行变形时,始终要朝着这个目标去转化.
你能用这种方法解第(2)题吗?
在学生解答后再点评.
解后反思:
①第(2)题能否先在方程的两边同乘“一3”?
②比较这两种方法,你认为哪一种方法更好?为什么?
允许学生在讨论后再回答.
例2(补充)服装厂用355米布做成人服装和儿童服装,成人服装每套平均用布3.5米,儿童服装每套平均用布1.5米.现已做了80套成人服装,用余下的布还可以做几套儿童服装?
在学生弄清题意后,教师再作分析:如果设余下的布可以做x套儿童服装,那么这x套服装就需要布1.5x米,根据题意,你能列出方程吗?
解:设余下的布可以做x套儿童服装,那么这x套服装就需要布1.5米,根据题意,得
80x×3.5+1.5x=355.
化简,得
280+1.5x=355,
两边减280,得
280+1.5x-280=355-280,
化简,得
1.5x=75,
两边同除以1.5,得x=50.
答:用余下的布还可以做50套儿童服装.
解后反思:对于许多实际间题,我们可以通过设未知数,列方程,解方程,以求出问题的解.也就是把实际问题转化为数学问题.
问题:我们如何才能判别求出的答案50是否正确?
在学生代入验算后,教师引导学生归纳出方法:检验一个数值是不是某个方程的解,可以把这个数值代入方程,看方程左右两边是否相等,例如:把x=50代入方程80×3.5+1.5x=355的左边,得80×3.5+1.5×50=280+75=355
方程的左右两边相等,所以x=50是方程的解。
你能检验一下x=-27是不是方程的解吗?不同层次的学生经过尝试就会有不同的收获:一部分学生能独立解决,一部分学生虽不能解答,但经过老师的引导后,也能受到启发,这比纯粹的老师讲解更能激发学生的积级性。
这里补充一个例题的目的一是解方程的应用,二是前两节课中已学到了方程,在这里可以进一步应用,三是使后面的“检验”更加自然。
解题的格式现在不一定要学生严格掌握。
课堂练习①教科书第73页练习第(3)(4)题。
②小聪带了18元钱到文具店买学习用品,他买了5支单价为1.2元的圆珠笔,剩下的钱刚好可以买8本笔记本,问笔记本的单价是多少?(用列方程的方法求解)
建议:采用小组竞赛的方法进行评议
小结与作业
课堂小结建议:①先让学生进行归纳、补充。主要围绕以下几个方面:
(1)这节课学习的内容。
(2)我有哪些收获?
(3)我应该注意什么问题?
②教师对学生的学习情况进行评价。
③思考题用等式的性质求x:-2x=-5x+7引发竞争意识,提高自我评价和自我表现的机会,以达到激发兴趣,巩固知识的目的。评价包括对学生个人、小组,对学生的学习态度、情感投入及学习的效果方面等。
本课作业①必做题:教科书第73页第4(1)、(2)、(4)题;补充:用等式的性质解方程:①3+4x=17;②4-=3
②选做题:教科书第73页第4(3)题,第74页第10题。
本课教育评注(课堂设计理念,实际教学效果及改进设想)
1、力求体现新课程理念:数学教学活动必须建立在学生的认知发展水平和已有的知
识经验基础之上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会……学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者.本设计从新课的引人、例题的处理(包括解题后的反思)、反馈练习及小结提高等各环节都力求充分体现这一点.
2、在传统的课堂教学中,教师往往通过大量地讲解,把学生变成任教师“灌输”的“容
器”,学生只能接受、输入并存储知识,而教师进行的也只不过是机械地复制文化知识.新
课程的一个重要方面就是要改变学生的学习方式,将被动的、接受式的学习方式,转变为动手实践、自主探索与合作交流等方式.本设计在这方面也有较好的体现.
3、为突出重点,分散难点,使学生能有较多机会接触列方程,本章把对实际问题的讨论作为贯穿于全章前后的一条主线.对一元一次方程解法的讨论始终是结合解决实际问题进行的,即先列出方程,然后讨论如何解方程,这是本章的又一特点.本设计充分体现了这一特点
七年级上册数学课件【篇8】
教学重点:加深对圆的周长和面积的理解,灵活运用所学知识的能力。
教学难点:培养学生的空间能力,提高解决实际问题的能力。
教学目标:
1.能灵活运用本单元研究得出的知识解答问题。
2.通过图形的组合,发展学生的空间想象能力。
3.进一步感受数学的应用价值。
1、什么叫半径?什么叫直径?怎样求圆的周长?怎样求圆的'面积?
1.练习。
先指名板演,其余同学各自做在草稿纸上,然后全体师生共同讲评,指出存在的错误,尤其是做在草稿纸上的同学一定要自己找出错误的原因和正确的解答过程,小组进行练习。
然后派一名代表来汇报自己小组的分析过程和解答算式,最后师生一起小结,在小结要提醒学生其中一些题在解答中要思考的地方:第13题,大圆直径为2×3=6㎝,小圆直径是2㎝,它们的面积比是(62 )2 ÷(22 )2=9÷1,所以直径AB的圆面积是大圆面积的19 。第14题,图中长方形面积是4×6=24(㎝2),根据已知条件可知,大三角形面积为24+6=30(㎝2)(△②的面积比△①的大6㎝2,即大三角形面积比长方形大66㎝2)。因此,(4+a)×6÷2=30 a=30×2÷6-4=6㎝。第16题,甲、乙两块钢板上圆片的面积之和相等,因此剩下的边角料一样重(厚度相等)。
先让学生各自独立思考,并要求学生说出能拼出哪几号图形,对认为不能拼出的,一定要说明理由。然后,指名汇报,特别要求汇报的同学要讲一讲在拼图中的思考过程。最后师生共同较对。
第1小题可拼成的图形有①、③、④;
第2 小题可拼成的图形有①、③;
使学生体会分数混合运算的运算顺序和整数是一样的,会计算分数混合运算。
教学过程:
我们的老朋友淘气也有个爱好,那就是做计算题。今天,他想和大家比试比试!
过渡语:经过课前的谈话,我了解到同学们的兴趣很广泛。相信大家也参加了不少的兴趣小组吧!淘气在课下的时候对同学们参加兴趣小组的情况作了个调查。
2、你从这幅图中得到了哪些数学信息?
3、你能提出哪些数学问题?
② 请你用图来表示三个量之间的关系。
③ 学生独立思考和组内交流后,进行全班交流。
我们用画图的方法,清楚地了解了三个量之间的关系,请你算一算,航模小组到底有多少人?
预设一:如果学生出现了A、B两种方法,并且计算方法较多。在交流时对于B种不同算法进行重点交流。
预设二:如果算法单一,教师可以安排学生小组合作讨论计算方法。
分数混合运算的顺序与整数混合运算的顺序是一样。(教师进行引导总结)
有了这惊奇伟大的发现,我们赶快试一试吧!
①学生独立完成,如有困难可以求助老师或同组同学。
五一时节,春光明媚,正是游玩的好时候。今天就让我们一起去登上吧!
在山的不同位置设有不同的计算题,学生答对方可前进。学生可根据自己情况自由选择登山线路。到达山顶后,红旗处设有一题(解决实际问题的)答对者摘得红旗。
全班交流。
解决红旗里的问题后,对同学进行环保节水教育。请同学说一说节水的好点子。
同学们做几张分数、整数卡片,和一些加减乘除符号。同学们之间互相玩卡片做计算。
教学反思:
七年级上册数学课件【篇9】
【课前预习】
1、化简:
2、比较大小:
——; |—5| |-3.5|;
|—5| 0; |—3| |3|.
3、绝对值小于4的整数是,绝对值不小于4的非负整数是_________,的绝对值等于5,则的值为______.
4、绝对值是4的数有___个,分别为_____.
【课堂重点】
1、小明的家在学校西边3km处,小丽的家在学校东边3km处.
(1)你能将小明家、小丽家和学校的相对位置在数轴上表示出来吗?(小明家用点A表示,小丽家用点B表示,学校用点O表示)
(2)观察A、B两点表示的数,你发现了什么?
2、观察下列各对有理数,你发现了什么?与同学交流.
2和-2,0.8和-0.8,2和-2.
总结出相反数的概念:
3、学习教材22页例3,完成“练一练”23页第1,2题.
4、数a的相反数可表示为;
则-5的相反数可表示为_______;
而我们知道—5的相反数是___.
所以得结论:
5、学习教材22页例4,完成“练一练”23页第3,4题.
6、练习:
(1)下列说法正确的是()
A.正数的绝对值是负数;
B.符号不同的两个数互为相反数;
C.π的相反数是―3.14;
D.任何一个有理数都有相反数.
(2)一个数的相反数是非正数,那么这个数一定是()
A.正数B.负数C.零或正数D.零
7、通过本节课的学习,你有什么收获?
【课后巩固】
1、填空:
-2的相反数是 ,3.75与 互为相反数,
相反数是其本身的数是 .
2、-(+7)= ,-(-7)= ,
-[+(-7)]= ,-[-(-7)]= .
3、已知A、B两点分别为数轴上表示互为相反数的两个数,且两点间的距离为7,则这两个点表示的数为_____和______.
4、如图:试比较-a、-b的大小.
七年级上册数学课件【篇10】
教学目标
根据上述教材结构特点与教学重、难点,考虑到学生已有的认知结构、心理特征,结合新课改理念,特制定如下教学目标:
1.知识目标
(1)、掌握了什么样的项是同类项的基础上,通过具体情境探究得出同类项可以合并,并形成合并同类项的法则。
(2)、能运用合并同类项的法则进行合并同类项。
2.能力目标
(1)、通过具体情境的观察、思考、类比、探索、交流和反思等数学活动培养学生创新意识和分类思想,使学生掌握研究问题的方法,从而学会学习。
(2)、通过具体情境贴近学生生活,让学生在生活中挖掘数学问题,解决数学问题,使数学生活化,生活数学化。会利用合并同类项的知识解决一些实际问题。
(3)、通过知识梳理,培养学生的概括能力、表达能力和逻辑思维能力。
3.德育目标
(1)、通过由数的加减推广到同类项的合并,可以培养学生由特殊到一般的思维认知规律。
(2)、通过具体情境的探索、交流等数学活动培养学生的团体合作精神和积极参与、勤于思考意识。
4.美育目标
通过合并同类项,学生们能明显地感觉到数学的形式美、简洁美,感悟到学数学是一种美的享受,爱学、乐学数学。
二、教学方法、手段
1.教学设想
突出以学生的“数学活动”为主线,激发学生学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流过程中真正理解和掌握基本的数学知识与技能、数学思想与方法,获得广泛的数学活动经验。
2.教学方法
利用引导发现法、讨论法,引导学生从具体生活情境及已有的知识和生活经验出发,提出问题与学生共同探索、学生与学生共同探索,以调动学生求知欲望,培养探索能力、创新意识。
3.教学手段
利用多媒体创设教学情境,引导学生观察、探索、发现、归纳来激发学生学习兴趣、激活学生思维,以利于突破教学重点和难点,提高课堂教学效益。新课标提倡教学中要重视现代教育技术、要引导学生独立思考、自主探索与合作交流,让学生掌握知识的发生发展过程,主动去获得新的知识,学会获取知识的方法,因而在教学中创设情境让学生乐意并全身心投入到现实的、探索性的数学活动中去。
三、学法指导
自主探究法:主动观察→分析→思考→比较→探索→联想→猜测→类比→归纳→例题探索→练习挑战、巩固提高→总结
七年级数学上册课件(汇编5篇)
在这里,本文为大家准备了一篇关于“七年级数学上册课件”的阅读材料。每位老师都必不可少的课堂工具之一就是教案课件,希望大家可以开始动手编写自己的课堂教案课件了。教案是课堂教学的重要框架,提供的信息对大家有帮助吗?请快速分享给你的朋友,让大家都能受益!
七年级数学上册课件 篇1
学习目标:
1、从实际生活中感受有序数对的意义,并会确定平面内物体的位置。
2、通过有序数对确定位置,让学生感受二维空间观,发展符号感及抽象思维能力,让学生体会具体-抽象-具体的数学学习过程。
3、培养学生的合作交流意识和探索精神,创造性思维意识。体验数学来源于生活及应用于生活的意识,更好的激发学习兴趣。
学习重点:
理解有序数对的概念,用有序数对来表示位置。
学习难点:
理解有序数对是有序的并用它解决实际问题,
学习过程:
一、学前准备
预习疑难
二、探索与思考
1、观察思考:观察下图,什么时候气温最低?什么时候气温最高?你是如何发现的?
2、想一想:你看过电影吗?在电影院内,确定一个座位一般需要几个数据,为什么?
(1)如何找到6排3号这个座位呢?
(2)在电影票上6排3号与3排6号有什么不同?
(3)如果将6排3号简记作(6,3),那么3排6号如何表示?
(4)(5,6)表示什么含义?(6,5)呢?
3、结论:
①可用排数和列数两个不同的数来确定位置;
②排数和列数的先后顺序对位置有影响。
4、概念:
有序数对:用含有的词表示一个位置,其中各个数表示不同的含义,我们把这种两个数a与b组成的数对,叫做有序数对,记作(a,b)。
三、理解与运用
用有序数对来表示位置的情况是很常见的.如人们常用经纬度来表示地球上的地点.你有没有见过用其他的方式来表示位置的?
四、学习体会:
1、本节课你有哪些收获?你还有哪些疑惑?
2、预习时的疑难解决了吗?
五、自我检测
1、小游戏:
怪兽吃豆豆是一种计算机游戏,图中的标志表示怪兽先后经过的几个位置.如果用(1,2)表示怪兽按图中箭头所指路线经过的第3个位置.那么你能用同样的方表示出图中怪兽经过的其他几个位置吗?
2、有趣玩一玩:
中国象棋中的马颇有骑士风度,自古有马踏八方之说,如图六(1),按中国象棋中马的行棋规则,图中的马下一步有A、B、C、D、E、F、G、H八种不同选择,它的走法就象一步从日字形长方形的对角线的一个端点到另一个端点,不能多也不能少。
六、方法归类
常见的确定平面上的点位置常用的方法
(1)以某一点为原点(0,0)将平面分成若干个小正方形的方格,利用点所在的行和列的位置来确定点的位置。
(2)以某一点为观察点,用方位角、目标到这个点的距离这两个数来确定目标所在的位置。
七年级数学上册课件 篇2
本课的重点是了解正数与负数是由实际需要产生的以及有理数包括哪些数。难点是学习负数的必要性及有理数的分类。关键是要能准确地举出具有相反意义的量的典型例子以及要明确有理数分类的标准。
正、负数的引入,有各种不同的方法。教材是由学生熟知的两个实例:温度与海拔高度引入的。比0℃高5摄氏度记作5℃,比0 ℃低5摄氏度,记作-5℃;比海平面高8848米,记作8848米,比海平面低155米记作-155米。由这两个实例很自然地,把大于0的数叫做正数,把加“-”号的数叫做负数;0既不是正数也不是负数,是一个中性数,表示度量的“基准”。这样引入正、负数,不仅有利于学生正确使用正、负数表示具有相反意义的量,而且还将帮助学生理解有理数的大小性质。把负数理解为小于0的数。教材中,没有出现“具有相反意义的量”的概念。这是有意回避或淡化这个概念。目的是,从正、负数引入一开始就能较深刻的揭示正、负数和零的性质,帮助学生正确理解正、负数的概念。
关于有理数的分类要明确的是:分类标准不同,分类结果也不同,分类结果应是不重不漏,即每一个数必须属于某一类,又不能同时属于不同的两类。
这节课是在小学里学过的数的基础上,从表示具有相反意义的量引进负数的.从内容上讲,负数比非负数要抽象、难理解.因此在教学方法和教学语言的选择上,尽可能注意中小学的衔接,既不违反科学性,又符合可接受性原则。例如,在讲解有理数的概念时,让学生清楚地认识有理数与算术数的根本区别,有理数是由两部分组成:符号部分和数字部分(即算术数).这样,在理解算术数和负数的基础上,对有理数的概念的理解就简便多了.
为了使学生掌握必要的数学思想和方法,在明确有理数的分类时,可以有意识地渗透分类讨论的思想方法,理解分类的标准、分类的结果,以及它们的相互联系。通过正数、负数都统一于有理数,可以将对立统一的辩证思想的逐步树立渗透到日常教学中。
1﹒对于正数和负数的概念,不能简单的理解为:带“+”号的数是正数,带“-”号的数是负数。
2﹒引入负数后,数的范围扩大为有理数,奇数和偶数的外延也由自然数扩大为整数,整数也可以分为奇数和偶数两类,能被2整除的数是偶数,如…-6,-4,-2,0,2,4,6…,不能被2整除的数是奇数,如…-5,-4,-2,1,3,5…
3﹒到现在为止,我们学过的数细分有五类:正整数、正分数、0、负整数、负分数,但研究问题时,通常把有理数分为三类:正数、0、负数,进行讨论。
4﹒通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数;负整数和0统称为非正整数。
整数和分数统称为有理数。1)正整数、零、负整数统称为整数;正分数、负分数统称为分数。
2)整数也可以看作分母为1的分数,但为了研究方便,本章中分数是指不包括整数的分数。
3)注意概念中所用“统称”二字,它与说“整数和分数是有理数”的意思不大一样。前者回避了分数是否包括整数的问题,即使把整数包括在分数范围内,说“统称”还是不错,而用后一种说法就欠妥了。
4)分数和小数的区别:
分数(既约分数)都可表示成小数,但不是所有的小数都能表示成分数的。
5)到目前为止,所学过的数(除π外)都是有理数。
七年级数学上册课件 篇3
教学目标
1、使学生正确理解数轴的意义,掌握数轴的三要素;
2、使学生学会由数轴上的已知点说出它所表示的数,能将有理数用数轴上的点表示出来;
3、使学生初步理解数形结合的思想方法。
教学重点和难点
重点:初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数。
难点:正确理解有理数与数轴上点的对应关系。
课堂教学过程设计
一、从学生原有认知结构提出问题
1、小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?
2、用“射线”能不能表示有理数?为什么?
3、你认为把“射线”做怎样的改动,才能用来表示有理数呢?
待学生回答后,教师指出,这就是我们本节课所要学习的内容——数轴。
二、讲授新课
让学生观察挂图——放大的温度计,同时教师给予语言指导:利用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,根据温度计的液面的不同位置就可以读出不同的数,从而得到所测的温度。在0上10个刻度,表示10℃;在0下5个刻度,表示-5℃。
与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零。具体方法如下(边说边画):
1、画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃);
2、规定直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0℃以上为正,0℃以下为负);
3、选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,……从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3,……
四、小结
指导学生阅读教材后指出:数轴是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数和形之间的内在联系,为我们研究问题提供了新的方法。
本节课要求同学们能掌握数轴的三要素,正确地画出数轴,在此还要提醒同学们,所有的有理数都可用数轴上的点来表示,但是反过来不成立,即数轴上的点并不是都表示有理数,至于数轴上的哪些点不能表示有理数,这个问题以后再研究。
七年级数学上册课件 篇4
1 知识与技能:
使学生理解和掌握整十数除整十数、几百几十数(商一位数)的口算方法,能正确地进行计算。
2 过程与方法:
通过观察、操作、讨论的活动,使学生经历探究口算方法的全过程。
3 情感态度与价值观:
让学生感受数学与生活的联系,培养学生用数学知识解决简单实际问题的能力。
20×3= 7×50= 6×3=
20×5= 4×9= 8×60=
24÷6= 8÷2= 12÷3=
42÷6= 90÷3= 3000÷5=
有80面彩旗,每班分20面,可以分给几个班?
(1)提出问题,寻找解决问题的方法。
师:怎样算80÷20呢,请同学们先自己想一想、算一算,再说给同桌听一听。
学生汇报:
预设学生可能会有以下两种口算方法:
B.因为8÷2=4, 所以80÷20=4 这是根据计数单位的组成
为什么可以不看这个“0”? ( 80÷20可以想“8个十里面有几个二十?”)
这样我们就把除数是整十数的转化为我们已经学过的表内除法。
(4)师小结:
同学们有的用乘法算除法的,也有用表内除法来想的,都很好,那么你喜欢哪种方法呢?
师:你能知道题目要求我们做什么吗?你怎么知道的?你是怎样计算的?和同学们交流一下。
生:求83除以20、80除以19大约得多少,从题目中的约等号看出不用精确计算。
预设:83接近于80,80除以20等于 4,所以83除以20约等于4。
19接近于20,80除以20等于 4,所以80除以19约等于4。
(3)你是怎么这样快就算出的呢?
A.因为15÷5=3,所以150÷50=3。
B.因为3个50是150,所以150÷50=3。
这一题跟刚才分彩旗的口算方法有不同吗?
都是运用想乘算除和表内除法这两种方法来口算的。
师:在解决分彩旗和刚才的问题中,我们共同探讨了除法的口算方法,(板题:口算除法)口算时,可以用自己喜欢的方法来口算。
口算练习:150÷30 240÷80 300÷50 540÷90
你能估吗?请先估算,再把你的估算方法与同伴交流,看看能否互相借鉴。
(2)谁想把你的方法跟大家说一说。
(4)判断估算是否正确:122÷60=2 349÷50≈8 为什么不正确?
观察每道题,怎样很快说出下面除法算式的商?
如果估算的话把谁估成多少。
2.算一算、说一说。
(1)除数不变,被除数乘几,商也乘几。
(2)被除数不变,除数乘几,商反而除以几。
(1)一共要寄240本书,每包40本。要捆多少包?
你能找到什么条件、问题。你会解决吗?
(2)这个小朋友也是一个爱看书的好孩子,她在看一本故事书。
问:要求看完这本书大约需要几个月?必须要知道哪些条件,你会求吗?
这节课你有什么收获?还有什么问题?
本节课学习了整十数除整十数、几百几十数(商一位数)的口算方法,能正确地进行计算。
有80面彩旗,每班分20面,可以分给几个班?
80÷20=
七年级数学上册课件 篇5
教学目标
根据上述教材结构特点与教学重、难点,考虑到学生已有的认知结构、心理特征,结合新课改理念,特制定如下教学目标:
1.知识目标
(1)、掌握了什么样的项是同类项的基础上,通过具体情境探究得出同类项可以合并,并形成合并同类项的法则。
(2)、能运用合并同类项的法则进行合并同类项。
2.能力目标
(1)、通过具体情境的观察、思考、类比、探索、交流和反思等数学活动培养学生创新意识和分类思想,使学生掌握研究问题的方法,从而学会学习。
(2)、通过具体情境贴近学生生活,让学生在生活中挖掘数学问题,解决数学问题,使数学生活化,生活数学化。会利用合并同类项的知识解决一些实际问题。
(3)、通过知识梳理,培养学生的概括能力、表达能力和逻辑思维能力。
3.德育目标
(1)、通过由数的加减推广到同类项的合并,可以培养学生由特殊到一般的思维认知规律。
(2)、通过具体情境的探索、交流等数学活动培养学生的团体合作精神和积极参与、勤于思考意识。
4.美育目标
通过合并同类项,学生们能明显地感觉到数学的形式美、简洁美,感悟到学数学是一种美的享受,爱学、乐学数学。
二、教学方法、手段
1.教学设想
突出以学生的“数学活动”为主线,激发学生学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流过程中真正理解和掌握基本的数学知识与技能、数学思想与方法,获得广泛的数学活动经验。
2.教学方法
利用引导发现法、讨论法,引导学生从具体生活情境及已有的知识和生活经验出发,提出问题与学生共同探索、学生与学生共同探索,以调动学生求知欲望,培养探索能力、创新意识。
3.教学手段
利用多媒体创设教学情境,引导学生观察、探索、发现、归纳来激发学生学习兴趣、激活学生思维,以利于突破教学重点和难点,提高课堂教学效益。新课标提倡教学中要重视现代教育技术、要引导学生独立思考、自主探索与合作交流,让学生掌握知识的发生发展过程,主动去获得新的知识,学会获取知识的方法,因而在教学中创设情境让学生乐意并全身心投入到现实的、探索性的数学活动中去。
三、学法指导
自主探究法:主动观察→分析→思考→比较→探索→联想→猜测→类比→归纳→例题探索→练习挑战、巩固提高→总结
人教版六年级上册数学课件
我们为您特别准备的“人教版六年级上册数学课件”一定能满足您的需求。每位老师在上课前都会带上自己的教案课件,因此他们会认真规划每份教案课件的重点和难点。在教学过程中,可以利用教案课件来激发学生的兴趣。请您收藏此页以免遗忘!
人教版六年级上册数学课件 篇1
教学内容:
人教版六年级上册第四单元第一课时。
教学目标:
1、知识目标:使学生认识圆,知道圆的各部分名称。掌握圆的特征,理解直径与半径的关系。初步学会用圆规画圆。
2、技能目标:让学生从生活中认识圆,借助动手操作活动,发现规律,培养学生的观察、分析、抽象、概括等思维能力和初步的空间观念。
3、情感目标:通过操作、研讨,培养学生独立探索能力和创新、合作的意识。
教学重点:
掌握圆的基本特征,理解直径与半径的关系。
学具准备:
圆的实物、剪好的圆片、圆规、直尺
教具准备:
细线、图钉、剪好的圆片、三角板
教学过程:
一、悬念产生好奇,好奇带入新课
(一)设置悬念
师:同学们,你们知道吗?(课件展示、图文并茂)
1、车轮为什么都是圆形的?
2、篮球场的中间为什么要设计成圆形呢?
3、枪口、炮口为什么都是圆形的?
师:同学们,这些问题你们暂时还不必回答,但老师还有一个问题需要马上回答,这三个问题都与什么有关?
(当学生回答是“圆”时,教师板书课题)
师:当同学们通过这堂课的学习,对圆有一定认识后,你们再回答这三个问题,相信你们的答案会更完整、更圆满。(在黑板的一侧板书:圆满)
[设计意图]不拘泥于教材内容,从学生年龄和心理特征出发,用心扑捉圆在生活中、自然中的原型,巧妙地创设了“三个问题”情境,引发学生的好奇心,从而使他们带着一种“打破沙锅问到底”的向往与追求的意向,以的状态进入学习角色。同时,在“暂时还不回答”的关子下,把“三个问题”集中在“圆”上,旗帜鲜明地拉开了这节课的序幕,这一导课不仅意味深长,激发了学生的学习兴趣,并开始不知不觉地渗透了“圆的文化特征”意识,可谓是一举两得。
二、在猜想中探究,在探究中感悟
(一)生活中的圆
师:生活中你们见到哪些物体是圆形的?
(学生回答时,教师可要求学生将已准备的实物举起展示)
(二)运动中的圆
师:你们都是生活中的有心人。那么下面的情况可能会出现怎样的现象呢? (课件展示)
1、一粒石子抛入平静的水面时
2、电风扇的扇叶转动时
(三)探究圆的形成
一根细线,用图钉固定一端,另一端绑着一支粉笔旋转一周。
1、师:接下来做个小实验,老师用图钉固定线的一端,将细线拉直,绑有粉笔的一端旋转一周,会出现什么现象?
师:松开细线的这头,粉笔还能转圈吗?(孕伏“定点”意识),图钉按住起什么作用?
2、师:刚才老师是怎样操作画出一个圆的?
学生交流
师:图钉按住的一端(不动),带粉笔的一端我们把它看作一个点,这个点是(运动的),怎么运动的?
师:(把线拉直)这样运动时动点就与固定的这点距离(保持不变)。粉笔在这个运动轨道上旋转一周就得到了一个(圆)。
3、师:如果把细线放长,粉笔继续旋转一圈,发生了什么变化?看来这细线的长短可以确定(所画圆的大小)
(孕伏“定长”意识)
[设计意图]以上三个教学环节,以“感知—想象—发现”为线索,逐步推进,串成学生探究“圆的形成”这一过程。感知是认识世界的开始,是思维、想象等一切心理活动的基础。通过“生活中的哪些物体是圆形的”举例,既激活了学生已有的经验,同时为过度到想象提供了丰富的表象,这样想象力也就引向了更成熟的高度。最后用他们的想象力猜测、感悟“圆的形成”两大核心要素圆心和半径,从而为后面的“圆”的本质认识打下了扎实的基础。
(四)从画圆中认识圆
1、通过回想前面的游戏,让学生在感悟“圆的形成”过程中思考:你会画圆吗?
2、学生尝试画圆(教师巡视,收集学生不圆的和圆的作品。)
3、投影展示学生作品、学生互相交流
(投影展示“不圆”的作品)
师:请你评价下这幅作品?
你想提点什么建议?
师顺着学生的阐述引出“定点”、“定长”。
(让学生自己“由误到悟”,在交流、切磋中对“画圆时要注意什么”印象深刻)
(投影展示“圆”的作品)
师:请欣赏这幅作品是怎样被圆规创造出来的?
两个学生介绍如何画圆,师追问“画的圆为什么有大有小?”
随着学生反馈画圆的三个步骤,教师同时用课件演示圆规画圆。
4、板书: 定点、定长、旋转一周。
定点确定圆的位置,定长确定圆的大小
5、如何在篮球场上画圆?
师:我们会在纸上画圆了,其实生活中还有很多地方需要画圆。例如:要在篮球场上画一个很大很大的圆,你准备怎样做?与小组里的同学说一说你的想法。
学生反馈、相互交流补充。
[设计意图] “画圆”的环节,不仅仅只是学生掌握画圆的技巧、学会用圆规画圆的过程,更重要的是继前三个环节后,进一步提升学生对圆的初步认识,由表象逐步向抽象转化的过程。在这里教师还十分关注学生情绪,尊重学生意愿,在学生跃跃欲试时,采用先让学生尝试画圆,并利用可能“出现的问题”,揭示圆的画法、“圆的位置”和“圆的大小”等深层次问题,这是数学课堂教学的一种自然本色。数学来源于生活、用于生活,画圆后教师提出了一个开放性的问题:如何在篮球场上画圆?让学生从“纸上谈兵”,过渡到解决现实情境问题,与“探究圆的形成”有个呼应。
(五)解读圆的概念
师:刚才我们用圆规画圆、用绳子画圆,工具不一样,画出来的却都是圆,这是为什么?
生1:原理都一样
生2:都是按三步骤来画的
师小结:画圆时都有两个点,一个点是固定的,一个点是运动的,两个点之间的距离保持不变,,动点在这个运动轨道上旋转一周,得到的图形就是(圆)。 所以,圆就是由无数个点连成的一条什么线?(曲线、封闭的曲线)
(课件演示)
(六)认识圆的各部分名称及其特征
1、师:有关圆你还了解哪些知识?
教师将“圆心o”“ 半径r”“直径d”写在3张卡片上,请学生一一贴在黑板上圆的有关之处。
师:谁能在黑板上的圆中将它们画出来并贴好。(3个学生依次上台)
2、直接揭示圆心的概念
3、半径
师:像这样的半径,你会画吗?
学生动手画半径
师:你是怎样画的?
(注意引导学生阐述“从哪里出发画到哪里”)
师:什么样的线段叫半径? 揭示半径的概念。
(板:半径r)
师:在同一个圆里,像这样的半径还能画吗?有多少条?为什么有无数条?
生:圆上有无数个点。
师:那它们的长度都有怎样的关系呢?谁来说说你的想法?
4、直径
师:直径你会画吗?在你的圆片上画出直径。
师:你是怎样画的? 那什么样的线段叫直径呢?
你们和数学家们总结差不多呢!翻到56页,全班齐读。
(板:直径d)
师:在同一个圆里,直径有多少条?
师:那它们的长度都有怎样的关系呢?谁来说说你的想法?
(板书:无数条 长度都相等)
5、师:其实早在2500多年前,我国伟大的教育家、科学家就曾提出有关圆的概述 (课件出示)
师:一中的“中”指的是?那“同长”的意思是?
6、判断:以下圆内哪些线段是半径,哪些线段是直径?
7、半径与直径的关系
①师:你会怎样去验证你的想法?
在小组里商量一下,再派代表反馈。
课件验证:在同一个圆里,直径长度是半径的2倍,半径是直径的1/2。 d=2r r=1/2d
②制造冲突(展示学生事先剪的一大一小的两个圆)
疑问:在这两个圆中,半径、直径二者还存在以上的关系吗?
(板书:在同一个圆里)
[设计意图]探究圆的特征是本节课的重点,又是难点。怎么有个突破,使学生能轻松地接受,本环节是采用“画”、“量”、“折”,让学生动手操作、自主探究的方法。“画”是发现,是印证;“量”是验证、确认。这一为学生搭建的自主探究学习的平台,既能使学生学得生动活泼,积极参与,而且将对所学的知识理解得更深刻,记忆得更牢固,也正好印证了“儿童的智慧出在他们手尖上”这句话。
三、运用知识,拓展思维
(一)小裁判
1、两端都在圆上的线段叫做直径。( )
2、半径2厘米的圆比半径1厘米的圆大。( )
3、圆的直径都相等。 ( )
4、在同一个圆里,圆心到圆上任意一点的距离都相等。 ( )
(二)你能帮忙找到这个圆的圆心吗?
[设计意图]由于本节课是属概念教学课,作为反馈练习,仅设计了两大题。通过这两大题训练以检查学生对概念理解的情况,并解决学生容易混淆或出错的问题。
四、解释自然中圆,欣赏人文中圆
(一)解释自然中圆
师:课的一开始,我们还留下三个问题(课件重返“三个问题”):由于时间关系,我们现在集中解决第一个问题好吗?
1、分组讨论:车轮为什么都是圆形的?
2、小组派代表汇报(教师根据学生的汇报,利用课件演示下面两个主要因素)
①平稳(因为车轴在车轮圆心上,同圆半径都相等,确定了车与地面距离不变,所以平稳)
②车速快(车轮接触地面只是一个点,摩擦力小,车速就快了。)
[设计意图]这是一道引导学生用所学知识解决实际问题的训练题,以小组合作、同学互助,共同讨论为主要解题形式,以帮助学生综合运用知识、提高技能,培养学生不断探索、不断发现的精神,增强互助合作、敢于创新为目标。同时,本练习起到了“前后呼应”之教学艺术功能,成了学生善于动脑、勇于解题的动力,使学生在成功解答后有一种满足感,以进一步激发他们的求知欲。
(二)欣赏人文中圆
1、引言:同学们,世界是美妙的、神奇的,有了圆更增添了她的梦幻般的色彩。请欣赏
2、课件演示:(配乐)
摩天轮、花丛中肆意绽放的鲜花、中国传统的圆形剪纸、陶瓷艺术、圆形建筑、2008年奥运奖牌、神秘的阴阳太极图……
还有古老的东方,中国人特别重视中秋、除夕、元宵等佳节,月下尝饼、桌上汤圆…这就意味着团圆、圆满;大陆同胞送给台湾同胞的团团、圆圆两只熊猫,不也就是盼望祖国早日统一,海峡两岸同胞早日团圆吗?
圆,在我们身上遗留下的印痕是多么深刻而广远。圆,是和谐的象征,是幸福的感受!
同学们,在这优美的旋律中,我们这堂课也接近尾声了。这节课愉快吗?你觉得这节课上得圆满吗?
[设计意图]教学本质是一种文化。我们有理由向学生传递教学本身的内涵和鲜活的文化背景,引领他们通过学习感受数学文化的博大精深,努力使数学所具有的文化特征浸润于学生心间,成为学生数学成长的不竭动力源泉,让数学课堂摆脱原有习惯思维与阴影,真正美丽起来。为此,设计“欣赏人文中的圆”这一环节,就是引发学生领略“圆”的神奇魅力及其背后所蕴含的人文的、文化的特征,拓宽学生对“圆”的认识视域。同时,让学生真切地感受中国人对“圆”的特殊情感,激发他们爱祖国、爱学习的热情,为进一步学好“圆”打下坚实的基础。
人教版六年级上册数学课件 篇2
一、填一填。
1、今有鸡兔共35只,脚共有94只,鸡( )只,兔( )只。
2、有龟和鹤共30只,龟的腿和鹤的腿共有82条。龟只、鹤()只。
3、停车场有三轮车和小轿车共7辆,总共有25个轮子。三轮车有( )辆,小轿车有( )辆。
4、2元和5元的人民币共9张,合计33元。2元有( )张,5元有( )张。
5、28名师生去公园划船,恰好坐满了大、小船共5只。大船每只坐6人,小船每只坐4人,租了( )只小船和租了( )只大船。
6、松鼠妈妈采松子,晴天每天采20个,雨天每天可采12个,它一连采了112个,平均每天采14个,这几天中有( )天是雨天。
7、一个工人要将63个零件装进两种盒子里,每只大盒子装12个零件,每只小盒子装5 个零件,需要准备4个大盒子和( )个小盒子才能把这些零件装下去。
8、口袋里有1个黄球、2个白球、3个绿球和4个红球,这些球的大小相同,从中任意 摸一个球,摸到黄球的可能性是( ),摸到白球的可能性是( ),摸到绿球的可能性是( ),摸到( )球的'可能性最大。
二、选一选。
1、学校买回4个篮球和5个排球一共用185元,一个篮球比一个排球贵8元,篮球的单价是( )元。
2、钢笔每支12元,圆珠笔每支7元,共买了6支,用了52元,钢笔买了( )支。
3、两个大人带几个小孩去公园游玩,大人门票每人5元,小孩门票每人3元,买门票一共花了22元,则这两个大人带了( )个小孩。
4、甲级铅笔5角钱一枝,乙级铅笔7角钱一枝,用7.5元可买这两种铅笔各( )枝。
5、面粉每千克5元,大米每千克3元。王叔买面粉和大米共150千克,共付人民币650元,面粉买( )千克。
6、幼儿园买来20张小桌和30张小凳共用去1860元,已知每张小桌比小凳贵8元,问小凳的价格是()?
三、算一算。
1、直接写得数对又快。
537-299=
2.7×10%=
0.25×1.2×0.4=
121×98=
0.9+99×0.9=
四、做一做。
1、商店里蓝球的单价是42元、足球的单价是35,李老师为学校买篮球和足球共6个花了231元,篮球和足球各买了多少个?
2、 12张乒乓球台上共有34人在打球,问:正在进行单打和双打的台子各有几张?
3、鸡兔同笼不知数,三十六头笼中露。数清脚共五十双,各有多少鸡和兔?
4、体育课上,跳绳的每5人一组,扔沙包的每3人一组,共有42名学生分成10组参加活动。参加跳绳和扔沙包的各有多少人?(用列方程的方法解答)
5、数学竞赛共20道选择题,答对1题得5分,答错或不答倒扣1分。小王同学在竞赛中得了82分,他答对多少道题?
6、小强有三角形、长方形的卡片共40张,这些卡片共有145个角,两种卡片各有多少张?
7、现有大小油桶50个,每个大桶可装油4千克,每个小桶可装油2千克,大桶比小桶共多装油20千克,问大小桶各多少个? (用假设法解答)
8、搬运1000只玻璃瓶,规定搬一只可得搬运费3角,但打碎一只要赔5角.如果运完以后共得到运费260元,问搬运中打碎了多少只玻璃瓶?
人教版六年级上册数学课件 篇3
1、教学内容:人教版六年级上册第69页的例题2.
2、教材所处地位
圆环的面积这部分的内容是在学生掌握了圆的面积计算的基础上进行教学的。是为了日常生活中解决一些实际问题做准备。教材第69页例2是求圆环的面积。教材通过插图帮助学生理解求圆环面积是利用外圆面积减去内圆面积的面积。
3、教学目标:
(1)、认识圆环的特征,掌握圆环面积的计算方法,合理地进行计算。
(2)、培养和发展学生的逻辑推理和概括的能力,运用所学的知识解决简单的实际问题。
4、教学重点:圆环面积公式的推导。
5、教学难点:圆环面积公式的应用。
二、说教法
1、讲解法2、讨论法
三、说学法
通过本节课的教学,要使学生掌握一些基本学法:1、教学中重视学生的思维过程的教学,培养逻辑能力。2、通过指导看书,培养学生自学能力。
四、说教学程序
(一)复习,为新课做准备
1、口算:
32 42 52 82 92 202
26 10 7 5
2、思考:
(1)圆的周长和面积分别怎样计算?二者有何区别?
(2)求圆的面积需要知道什么条件?
这部分知识在本单元学过,学生虽然不感到陌生,但也可能出现回生或遗忘。这样通过复习提问,从而唤起学生的回忆,也为下面的新课打下基础。
(二)谈话导入新课
刚才我们复习了圆的面积计算,这节课我们学习圆的环形面积。板书课题:圆环的面积。
(三)新授
教学例子,讲清算理和方法。
1、教学例2: 光盘的银色部分是个圆环,内圆半径是2cm,外圆半径是6cm。它的面积是多少?
已知:R=6厘米 r=2厘米 求: s=?
3.1462 3.1422
=3.1436 =3.144
=113.04(平方厘米) =12.56(平方厘米)
113.04-12.56=100.48 (平方厘米)
第二种解法:3.14(62-22)=100.48(平方厘米)
教学此例时,教师可以根据题意准备实物或教具(一个圆中间可以取出一个同圆心的小圆),通过演示,使学生明确,求圆环的面积就是用外圆的面积减去内圆的面积。如果是分步计算,先分别求出大圆面积和小圆面积,再求出圆环的面积。当要求列综合算式时,学生可能会列出教材上所给的两种方法,教师可以让学生说一说两种解法有什么不同,两者之间可以通过什么运算定律互相转化,引导学生在计算圆环的面积时,尽量使用简便算法,可以减少计算量。
2、小结:环形的面积计算公式:
S=R2- 或 S=(R2-r2)
3、完成做一做: 一个圆形环岛的直径是50m,中间是一个直径为10m的圆形花坛,其他地方是草坪。草坪的占地面积是多少?
(四)巩固练习。
巩固新知是课堂教学中不可缺少的过程,这一阶段是学生巩固知识、形成技能、技巧,发展智力的重要阶段。因此,我们要加强训练适当练习,确保学习效果。
1、学校有个圆形花坛,周长是18.84米,花坛的面积是多少?
选择正确算式
A、(18.843.142)23.14
B、(18.843.14)23.14
C、18.8423.14
2、环形铁片,外圈直径20分米,内圆半径7分米,环形铁片的面积是多少?
3、课堂小结。
(1)这节课的学习内容是什么?
(2)求圆的面积时题中给出的已知条件有几种情况?怎样求出圆面积?
已知半径求面积 S=r2
已知直径求面积 S=( )2
已知周长求面积 S=( )2
(3)环形面积: S=(R2-r2)
通过以上练习,使学生进一步掌握圆环面积的求法,同时也便于检查教学效果。
(五)全课总结
这节课我们学习了什么内容?谈谈你有什么收获?
(六)布置作业
课本P70第4、6、7题。
板书设计:
圆环的面积
例2: 光盘的银色部分是个圆环,内圆半径是2cm,外圆半径是6cm。它的面积是多少?
已知:R=6厘米 r=2厘米 求: s=?
3.1462 3.1422
=3.1436 =3.144
=113.04(平方厘米) =12.56(平方厘米)
113.04-12.56=100.48 (平方厘米)
第二种解法:3.14(62-22)=100.48(平方厘米)
小结:环形的面积计算公式:
S=R2- 或 S=(R2-r2)
人教版六年级上册数学课件 篇4
教学目标:
1、理解比的意义,学会比的读写法,掌握比的各部分名称及求比值的方法。
2、弄清比与除法、分数的联系,明确比的后项不能为0的道理,同时懂得事物之间是相互联系的。
3、通过主动发现的讨论式学习,激发合作意识,培养比较、分析、抽象、概括和自主学习的能力,培养爱国主义情感。
教学重点:
比的意义
教学准备:
多媒体课件、三支红粉笔、五支白粉笔
教学流程:
一、创设情境,理解意义
1、师:同学们,我们刚刚过完国庆节,你知道今年10月1日是祖国几周岁的生日吗?56年前的10月1日,五星红旗第一次在天安门广场上冉冉升起,让每一位中国人为之自豪。但你们知道吗,我们的国旗中还隐藏着很多有趣的数学问题呢!
出示出一面国旗:
2、判断:小强身高1米,他的爸爸身高173厘米,小强和爸爸身高比是1∶173。
明确:同类量相比单位名称要相同。
二、总结全课,拓展延伸
1、去年奥运会中国女排在首场比赛中以3∶0击败了美国队,打出了我国的女排风采。这里的3∶0表示什么意思?它和我们今天学习的比相同吗?为什么?
强调:这里的3∶0是表示两个队各赢了几局,不是相除关系,而今天学的比是指两个数的相除关系。
2、通过今天的学习,你有什么收获?
3、你知道吗?公元4世纪希腊数学家欧多克斯,利用线段找到了世界上最美丽的几何比——黄金分割,它的比值大约是0.618,比大约为2∶3。
介绍:黄金割应用非常广泛,国旗的宽与长的比是2比3,接近黄金分割,现在你们知道五星红旗为什么这么美观了吧!
生活中还有很多地方用到黄金分割:
T型台上选模特也要求模特的身长与腿长的比符合黄金分割。
理发师也将黄金分割运用到发型设计中去。
……
课后同学们还可以去调查。
人教版六年级上册数学课件 篇5
本节课是人教版六年制小学数学第十一册第五单元百分数中的内容,是在学生理解了百分数的的意义和写法,掌握了百分数和小数的互化的基础上学习的。
学情分析:根据教材特点,我也对学生做出了以下分析
学生的基础知识掌握情况还可以,同学之间的相互质疑,解疑的能力有一定的水平。但学生在分析信息、处理信息的能力较薄弱,学生从数学的角度提出问题、理解问题和解决问题的能力不强。
根据数学课程标准与本课教材特点以及学生学情和设计理念,结合学生实际情况制定以下教学目标。
1、结合学生的生活实际,通过观察、计算,主动探索的活动,认识利率,初步掌握利率计算及作用。进一步提高学生运用百分数解决实际问题的能力。
2、结合储蓄等活动,学习合理理财,逐步养成不乱花钱的好习惯。
教学重、难点:
进一步提高学生运用百分数解决实际问题的能力,体会数学与日常生活的密切联系。
我试图引导学生通过以下的学习方法掌握新知:
1、自主探究法,让学生利用已有的知识经验自主探究解决问题的方法。
2、抽象概括法,让学生通过抽象,概括出解决此类问题的一般方法。
3、互助学习法,在互助合作中体验成功的愉悦。
根据本节课的知识结构及六年级学生的认知规律和发展水平,优化教学过程,实现“尊重学生,注重发展”的课堂教学要求,我设计了以下三个环节:一、情景导入;二、新课讲解;三、巩固练习。
具体教学过程如下:
1、情景导入。
随着改革开放,社会经济不断发展,人民收入增加,人们可以把暂时不用的钱存入银行,储蓄起来。这样一是支援国家建设,二是对个人也有好处,既安全和有计划,同时又得到利息,增加收入。那么,怎样计算利息呢?这就是我们今天要学的内容。
2、巩固练习
(1)介绍存款的种类、形式。
存款分为活期、整存整取和零存整取等方式。
(2)、阅读p99页的内容,自学讨论例题,理解本金、利息、税后利息和利率和含义。
(3)、学会填写存款凭条。
(4)、利息的计算。
3、巩固练习。
“数学源自生活而应用于生活”这句话充分说明了数学与生活的密切联系。下面,我继续沿着抗震救灾这一主线设置情境,安排了三个层次的练习。在练习的设计上,我兼顾了习题的层次性和开放性,使不同层次的学生都参与练习,以求训练思维、培养能力、形成技能。
1、小华把得到的200元压岁钱存入银行,整存整取一年。她准备到期后将钱全部取出捐给“希望工程”。如果按年利率2.25%计算,到期后小华可以捐给“希望工程”多少元钱?
2、李老师把20xx元钱存入银行,整存整取五年,年利率是3.60%,利息税率为20%。到期后,李老师的本金和利息共有多少元?李老师交了多少利息税?
3、小明的爸爸打算把5000元钱存入银行(三年后用)。他如何存取才能得到最多的利息?
人教版六年级上册数学课件 篇6
第一单元
分数乘法
第一课时
分数乘整数
教学内容:
教材第2页例1练习一1~3.
教学目标:
1、结合具体情境,借助示意图理解分数乘整数的意义,渗透数形结合思想。
2、借助转化的方法理解分数乘整数的算理,并能正确地进行计算,提高计算能力。
3、在探索与交流活动中培养观察、推理的能力。
教学重点:
理解他数乘整数的意义,掌握分数乘整数的计算方法。
教学难点:
理解分数乘整数的计算方法。
教学过程:
一、复习旧知,引出课题。
1、复习题。
(1)列式并根据题意说出算式中的两个乘数各表示什么。
5个12是多少?9个11是多少?8个6是多少?
提问:通过解决这三道整数乘法计算题,你有什么想说的吗?
(整数乘法是表示几个相同加数的和的简便运算)
(2)计算:
计算时向学生提问:这道题的什么特点?计算时把什么做分子?使学生看到三个加数都相同,计算时3个3连加的结果做分子,分母不变。
2、引出课题。
这题我们还可以怎么计算?今天我们就来学习分数乘法。
二、创设情境,探究分数乘整数
1、教学分数乘整数的意义。
出示例1,指名读题。小新、爸爸、妈妈一起吃一个蛋糕,每人吃个,3人一共吃多少个?
(1)分析演示
飦?题中的:鈥溞⌒隆职帧⒙杪枰黄鸪砸桓龅案猓咳顺?个鈥澮馑际裁矗浚咳顺粤苏龅案獾?)
飦?确定标准量(单位鈥?鈥潱┖捅冉狭俊C咳顺粤苏龅案獾?,是把整个蛋糕看作标准量(单位鈥?鈥潱话衙咳顺缘姆菔醋鞅冉狭俊?/p>
飦?借助示意图理解题意
根据题意列出加法算式++
(2)观察引导:这道题3个加数有什么特点?使学生看到3个加数的分数相同。
教师问:求三个相同分数的和怎样列式比较简便呢?引导学生列出乘法算式。教师板书:。再启发学生说出表示求3个相加的和。
(3)比较和12脳5两种算式异同
提示:从两算式表示的意义和两算式的特点进行比较。(让学生展开讨论)。
通过讨论使学生得出:相同点:两个算式表示的意义相同。
不同点:是分数乘整数,12脳5是整数乘整数。
(4)概括总结
教师明确:两个算式表示的意义相同,谁能用一句话概括出两算式的意义?(引导学生说出都是表示求几个相同加数的和。)
2、教学分数乘以整数的计算法则。
(1)推导算理:由分数乘整数的意义导入。
问:表示什么意义?引导学生说出表示求3个的和。板书:++。学生计算,教师板书:。提示:分子中3个2连加简便写法怎么写?学生答后板书:(块)教师说明:计算过程中间的加法算式部分是为了说明算理,计算时省略不写。(边说边加虚线)
(2)引导观察:的分子部分、分母与算式两个数有什么关系?(互相讨论)
观察结果:的分子部分2脳3就是算式中的分子2与整数3相乘,分母没有变。
(3)概括总结:请根据观察结果总结的计算方法。(互相讨论)
汇报结果:(多找几名学生汇报)使学生得出是用分数的分子2与整数3下乘的积作分子,分母不变。
根据的计算过程,明确指出:分子、分母能约分的要先约分,然后再乘。约分进约得的数要与原数上下对齐。然后让学生将按简便方法计算。
3、反馈练习:看图写算式:做一做、练习一第1题。
三、全课小结。
人教版六年级上册数学课件 篇7
教学目标:
1.使学生学会在具体情境中探索确定位置的方法,懂得能用数对表示物体的位置。
2.经历探索确定物体位置的方法的过程,让学生在学习的过程中发展空间观念。
3.使学生感受确定位置的丰富现实情景,体会数学的价值,产生对数学的亲切感。
教学重点:能用数对表示物体的位置。
教学难点:能用数对表示物体的位置,正确区分列和行的顺序。
教学准备:投影仪、本班学生座位图
教学过程:
一、复习旧知,初步感知
1、教师提问:同学们,你能介绍自己座位所处的位置吗?
学生介绍位置的方式可能有以下两种:
(1)用“第几组第几个”描述。
(2)用在我的“前面”、“后面”、“左面”、“右面”来描述。让学生先说说
2、我们全班有48名同学,但大部分的同学老师都不认识,如果我要请你们当中的某一位同学发言,你们能帮我想想要如何表示才能既简单又准确吗?
3、学生各抒己见,讨论出用“第几列第几行”的方法来表述。
二、新知探究
1、教学例1(出示本班学生座位图)
(1)如果老师用第二列第三行来表示同学的位置,那么你也能用这样的方法来表示自己的位置吗?
学生对照座位图初步感知,说出自己的位置。个别汇报,集体订正。
(2)学生练习用这样的方法来表示其他同学的位置。(注意强调先说列后说行)
(3)教学写法:同学的位置在第二列第三行,我们可以这样表示:(2,3)。按照这样的方法,你能写出自己所在的位置吗?(学生把自己的位置写在练习本上,指名回答)
2、小结例1:
(1)确定一个同学的位置,用了几个数据?(2个)
(2)我们习惯先说列,后说行,所以第一个数据表示列,第二个数据表示行。如果这两个数据的顺序不同,那么表示的位置也就不同。比较(2,3)与(3,2)的不同。
{在比较中发现不同之处,从而加深学生对数对的更深了解。}
3、 练习:
(1)教师念出班上某个同学的名字,同学们在练习本上写出他的准确位置。
(2)生活中还有哪里时候需要确定位置,说说它们确定位置的方法。
(电里的座位、地球仪上的经纬度、我国古代围棋等。)
{拓宽学生的视野,让学生体会数学在生活中的应用。}
三、当堂测评
教师课件出示,学生独立完成。小组内评比纠错。
{做到兵强兵、兵练兵。}
四、课堂总结
我们今天学了哪些内容?你觉得自己掌握的情况如何?还有什么不懂的?
{让学生说出,了解对知识的掌握情况。}
人教版六年级上册数学课件 篇8
一、教材
《画一画》这一内容是在学生学习了《变化的量》和《正比例》这两节内容以后安排的,学生已经结合大量的生活情境认识了生活中存在的许多相互依赖的变量,而且体会了这些变量之间的关系,认识了正比例及其意义,能初步判断两个相关联的两是不是成正比例,感受了正比例在生活中的应用,学生对正比例的认识有了一定的基础。教材安排这一内容,一是让学生进一步认识正比例,以及正比例中两个相关联的量之间的关系;二是通过让学生在方格纸上描出成正比例的量所对应的点并能在图中根据一个变量的值估计它所对应的变量的值,从而认识正比例图像的特点。主要意图是引导学生运用已有的知识,用图的形式去直观表示两个成正比例的量的变化关系,鼓励学生发现当两个变量成正比例关系时,所绘成的图像是一条直线,在此基础上,鼓励学生利用图,进行一些估计,解决一些问题,为以后进一步学习正比例函数打下一定的基础。
对于这一内容的设计,我结合实际主要确定了三个知识与技能的目标,即:1、在具体情景中,通过“画一画”的活动,初步认识正比例图像;2、会在方格纸上描出成正比例的量所对应的点,并能在图中根据一个变量的值估计它所对应的变量的值;3、利用正比例关系解决生活中的一些简单问题,提高学生观察与思考相结合的能力以及分析问题的能力。确定了两个情感目标,即:1、培养学生善于思考和积极参与的良好习惯;2、培养学生学习数学的兴趣。其中重难点目标是:1、会在方格纸上描出成正比例的量所对应的点,并能在图中根据一个变量的值估计它所对应的变量的值;2、利用正比例关系解决生活中的一些简单问题,提高学生观察与思考相结合的能力以及分析问题的能力。对于两个重难点目标,我将采取直观教学的形式(既PPT课件演示)和设计学生动手操作的练习题相结合,以此来分解难点,从而突破难点,化难为易。
二、教法
在教学中,我主要采用了直观教学法、启发式提问法、讲练结合法和激趣法。直观教学法就是利用PPT课件进行逐一演示,既演示解决问题的过程和方法,又演示解决问题的结果,使整个过程和方法都能清楚地展现在学生眼前,让学生更直观更形象地去感受和体验;启发式提问法能激起学生的学习兴趣,引导他们思考与交流如:横轴表示什么?纵轴表示什么?你发现了什么?;讲练结合法就是利用我设计的帮助学生进行探索和研究的练习题,让学生自己在练习题上进行动手操作,并在操作中独立思考,独立发现,把自己的发现写下来;激趣法就是在学生进行第一次研究得出结论后为了进一步验证结论,我提出了激励性的问题鼓励学生进行两次探索与研究,如:真的是这样吗?我们继续来研究和探索……这样能激起学生的探索欲望和求知欲望,让学生觉得学得轻松,我也教得轻松,也增强了学生学习数学的兴趣。
三、学法
在教学中,我主要以学生的动手活动和交流活动为主,即让学生在练习纸上动手画一画,连一连,写一写。通过学生自己描点连线,自己发现问题,得出结论,并写下来,然后在班上进行交流,学生很容易得出结论,在交流中让学生体验到成功的喜悦,既培养了学生的动手能力、操作能力和观察能力,又培养学生善于思考和积极参与的良好习惯,学生的自学能力也就提高了。
四、教学程序设计
对于教学过程,我主要设计了五个步骤:
1、温故而知新。
我设计了两道题,都是用PPT课件展示出来,一是什么是正比例的填空题,二是判断两个相关联的两个量是不是成正比例。两道题的设计是为了让学生进一步认识什么是相关联的量和正比例的意义,能正确判断两个相关联的量是不是成正比例,既是复习旧知,也是为下一步学习作准备。这一过程主要采取学生独立——汇报交流——师生评价的方式。
2、初探尝试,引入新课。
首先用PPT课件展示出来,这一内容是教材第22页的内容,通过填表、说一说、连线、交流、展示等来揭示本节课的学习主题,提出悬念,激起学生的学习兴趣和探索欲望。
3、探索与研究。
这是本节课的主要内容,我结合实际安排了两个探索内容,是为了让学生通过探索与研究能更准确地从活动中得出结论,更深刻的理解正比例图像的特点,同时也能根据正比例图像的特点更准确地进行描点、连线和估计。这一过程我主要采取了让学生动手画一画,连一连,写一写,说一说等方法让学生自己得出结论,同时利用PPT课件进行展示,加深学生的认识和理解,从而达到本节课的前两个教学目标。
4、反馈练习。
我安排了3道题,一题是判断是否成正比例,二题和三题是有关正比例图像的练习以及利用正比例图像和正比例关系解决生活中的一些问题,既加深了学生对正比例图像的理解,又能培养学生的解决问题的能力,使学生体会到数学与生活的联系。练习题在我设计的题单中,同时我也利用PPT课件进行逐一展示,这样既保证了教学内容的完成,又能提高教学效益,使本节课的第3个教学目标得以完成,充分突破重点和难点。
5、课堂总结。
这是作为新课必要的一个环节,通过学生自己总结和评价,既加深了学生对新知识的理解和消化,又让学生体验到学习数学的价值和兴趣
人教版六年级上册数学课件 篇9
一、教材分析:
“鸡兔同笼”问题是我国民间广为流传的数学趣题,它在培养学生逻辑推理能力的同时使学生体会代数方法的一般性。解决这类问题时,教材展示了学生逐步解决问题的过程。“假设法”有利于培养学生的逻辑推理能力,列方程则有助于学生体会代数方法的一般性。因此在解决“鸡兔同笼”问题时,学生选用哪种方法均可,不强求用某一种方法。
二、学情分析:
(1)“鸡兔同笼”问题是我国古代著名数学趣题,容易激发学生的探究兴趣。
(2)列方程解答此类问题数量关系直观易懂,要加以提倡。
(3)“假设法”对学生来说比较陌生,教学中要抓住其特点,讲解算理,让学生逐步掌握,根据具体问题引导学生分析理解,拓宽学生思维。
使学生了解“鸡兔同笼”问题的结构特点,掌握用列表法和假设法解决问题,初步形成解决此类问题的一般性策略。
通过自主探索,合作交流,让学生经历用不同的方法解决“鸡兔同笼”问题的过程,使学生体会解题策略的多样性,渗透化繁为简的'思想。
使学生感受古代数学问题的趣味性,体会到“鸡兔同笼”问题在生活中的广泛应用,提高学习数学的兴趣。
四、教学重点:
尝试用不同的方法解决“鸡兔同笼”问题,体会用假设法解决问题的优越性。
五、教学难点:
理解用假设法解决“鸡兔同笼”问题的算理。
1.同学们今天老师将和大家一起来学习一道我国古代非常有名的数学趣题,“今有雉兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”(PPT投影展示原题)这四句话是什么意思呢?
指生回答(笼子里有若干只鸡和兔,从上面数,有35个头;从下面数,有94只脚。鸡和兔各有几只?
2.有谁知道这类题我们把它叫做什么问题吗?(鸡兔同笼)板书。鸡兔同笼问题是我国古代三大趣题之一,记载于《孙子算经》一书中,距今已有1500多年。
(二)探究交流,尝试解决问题。
1.为了研究方便,我们把题目里的数字改小一点。“笼子里有若干只鸡和兔,从上面数,有8个头;从下面数,有26条腿。鸡和兔各有几只?”(说明:为了便于分析时叙述,把“26只脚”改成了“26条腿”课件出示)
2.我们一起来看看被关在同一个笼子里的鸡和兔给我们带来了哪些数学信息?
让学生理解:①鸡和兔共8只。②鸡和兔共有26条腿。 ③鸡有2条腿。 ④兔有4条腿。(课件出示)
3.我们先来猜猜,笼子中可能会有几只鸡几只兔呢?学生猜测,在猜测时要抓住哪个条件呢?(鸡和兔一共是8只)那是不是抓住了这个条件就一定能猜对呢?
4.怎样才能确定你们猜测的结果对不对?(把鸡的腿和兔的腿加起来看等不等于26。)
为了研究老师把所有的可能按顺序列出来了,我们先看表格中左起的第一列,8和0是什么意思?(就是有8只鸡和0只兔,也就是假设笼子里全是鸡,)那笼子里是不是全是鸡呢?(不是)那就是把里面的兔也看成鸡来计算了,那把一只4条腿的兔当成一只2条腿的鸡来算会有什么结果呢?(就会少算两条腿)(课件出示。)
26-16=10(条)(把兔看成鸡来算,4条腿兔有当成两条腿的鸡算,每只兔就少了两条腿,10条腿是少算了兔的腿)
4-2=2(假设全是鸡,是把4条腿的兔有当成两条腿的鸡。所以4-2表示是一只兔当成一只鸡就要少算2条腿。)
10÷2=5(只)兔(那把多少只兔当成鸡算就会少10条腿呢?就看10里面有几个2就是把几只兔当成了鸡来算,所以10÷2=5就是兔的只数。)
8-5=3(只)鸡(用鸡兔的总只数减去兔的只数就是鸡的只数,8-5=3只鸡)
算出来后,我们还要检验算的对不对,谁愿意口头检验。
生:3×2+5×4=26(只),5+3=8(只)。
我们再回到表格中,看看右起第一列中的0和8是什么意思?(笼子里全是兔)那是不是全都是兔呢?(不是)也就是假设笼子里全是兔。那把兔当了鸡在算。那就是把里面的鸡也当成兔来计算了,那把一只2条腿的鸡当成一只4条腿的兔来算会有什么结果呢?(就会多算两条腿)(课件出示:把一只鸡当成一只兔算,就多了两条腿)
先用假设全是鸡的办法解决了这个问题,现在假设全是兔又应该怎么分析和解决这个问题呢?同学们能自己解决吗?如果有困难可以同桌边或小组讨论。
小结:刚才我们假设都是鸡或都是兔,所以把这种方法叫做假设法。这种方法能化难为易,是解答鸡兔同笼问题的一种基本方法。(板书:假设法)
小结:请同学们回忆一下,在解决鸡兔同笼问题时,用到了哪些方法?(列表法、假设法)
好,让我们一起再次回到1500年前的这道题目:(出示课件),看看古人是怎样解决“鸡兔同笼”问题的?
1.假如让鸡抬起一只脚,兔子抬起两只脚,还有26÷2=13只脚。
2.这时每只鸡一只脚,每只兔子两只脚。笼子里只要有一只兔子,则脚的总数就比头的总数多1。
3.这时脚的总数与头的总数之差13-8=5,就是兔子的只数。
(三)练习巩固,反思提升。
1.课件出示“做一做” 生活中“鸡兔同笼”的问题。
有龟和鹤共40只,龟的腿和鹤的腿共有112条。龟、鹤各有几只?
集体反馈。
(2)新星小学“环保卫士”小分队12人参加植树活动。男生每人栽了3棵树,女生每人栽了2棵树,一共栽了32棵树。男、女生各有几人?
(3)引导学生建立“鸡兔同笼”问题的数学模型。
看来鸡兔问题这类问题我们不只局限算鸡和兔的只数问题上,只要能用“鸡兔同笼”问题来解答的问题都可以统一叫做“鸡兔同笼”问题。今后我们就用刚才学到的“鸡兔同笼”方法,来帮我们解决生活中遇到的一些实际问题。
(四)总结。
本节课你有什么收获?你们对自己这节课的表现满意吗?
(五)课外延伸与作业。
2.完成练习二十六的1-3题。
人教版六年级上册数学课件 篇10
一、教材分析
尊敬的各位老师,各位评委大家好,今天我说课的内容是义务教育课程标准实验教科书六年级上册圆的认识,圆是学生认识了长方形,正方形,三角形等平面图行后所要认识的小学阶段的又一种图形。学生认识圆应把握它的特点,借助多媒体使学生体会到圆所蕴涵的美学特征,本课教学针对的是六年级学生。他们已初步具备自主学习的能力和逻辑推理的能力,特别是结合多媒体教学使这成为现实。信息技术与课程整合,学生是学习过程的主体,多媒体教学成为学生学习的重要平台。
二、教学目标
根据数学课程标准与本课教材特点以及学生学情和设计理念,结合学生实际情况我制定了以下教学目标。在知识目标方面,使学生认识圆的个部分名称掌握圆的特征和画圆的方法,在技能目标方面,让学生在已有的知识经验基础上,熟练掌握用圆规画圆培养学生实际操作能力,在情感目标方面,我通过生动画面,图象,演示让学生感受到生活中圆的存在与作用,感受其神奇与蕴涵的美学价值。
三、教学重点与难点
根据本课的设计理念和目标设置确定本课的教学重点:通过多媒体演示及动手操作认识圆的圆心、半径及直径,掌握圆的特征,教学难点:掌握圆的特征,能熟练的画圆。
教法与学法:
根据本课的目标设置和重点难点特制定教法:以学定教,综合探究如情景陶冶法,学法是顺学而导,互助学习如师生互动学习法等。
四、教学流程
首先我通过传统节日中秋节引入圆形的概念,又结合多媒体课件演示,创设情景,展示生活中中随时都有圆的存在,让学生感受到圆的神奇进而激发学生的学习兴趣,顺利的导入到新课之中.然后让学生在课前准备好的圆形纸片上动手折一折,确定多条折痕都交于一点,这一点叫做圆心,用字母O表示。选择其中一条折痕,沿折痕画下来,分析这条折痕的特点,得到通过圆心且两端都在圆上的线段叫做直径,用字母d表示。从圆心向圆上画一条线段,给出从圆心到圆上任意一点的线段叫做半径,用字母r表示。
其次,我会让学生自己去探索新知,此时我会播放课件:在同一个圆里:你能画多少条半径?量一量这些半径都相等吗?你能画多少条直径?量一量这些直径都相等吗?直径和半径的长度有什么关系?让学生实际动手画一画,量一量发现圆内的所有直径都相等,有无数条,半径也都想等,有无数条,计算发现直径是半径的两倍。同时用多媒体以旋转两条半径得到一条直径的动画,让学生观察分析发现直径是半径的两倍,推导出半径是直径的一半.
再次,我会在认识了圆的圆心、半径、直径的基础上在向外延伸:如何才能既准确又方便地画出一个圆呢?先认识圆规,然后自学圆的画法并分组尝试画圆,一半的学生画半径是2cm的圆,另一半的学生画直径是4cm的圆,接下来我会让学生谈谈画圆的基本步骤及这个过程中需要注意哪些方面,指出直径4cm也就是半径2cm。最后播放课件圆规画圆的过程得到巩固。
最后,我根据以上所学的内容,为学生准备了两大习题,来加深所学的知识。一块是判断题和选择题,巩固对圆的圆心、半径及直径的认识。另一块是运用圆的知识解释一些生活现象如车轮为什么是圆的?理论联系实际,做到学有所用,激发学生学习数学兴趣以及在以后的数学学习中,更加用心。
本课设计把多媒体下的探索学习和认识活动整合,让学生在发现中研究,在研究中创造,使发现与创造成为数学课堂的主旋律.以上只是我个人的看法和做法,如果有什么不足之处还请在坐的各位评委和老师们多多指教,谢谢各位评委!
六年级上册数学课件(模板十篇)
教案课件是教师工作中的重要组成部分,每位教师都对编写教案课件并不陌生。只有将教师的教学方法与教案相结合,才能取得良好的教学效果。如果您正需要有关“六年级上册数学课件”的相关内容,请查看下方推荐。如果您希望进一步了解这个话题,请关注我们的主页!
六年级上册数学课件【篇1】
一、设计说明。
本节课是对本册有关统计知识的系统复习。重点复习的内容有扇形统计图的意义、特点以及从扇形统计图中获取信息和结合扇形统计图解决问题。本节复习课在教学设计上有如下特点:
1、谈话回顾,建立联系。
通过谈话,唤醒学生已有的知识经验,能促进教学任务的有效完成。上课伊始,根据复习课的特点和知识结构,进行关键点的有效回顾,帮助学生与接下来的学习内容建立联系。这样的设计,符合教育的本真,即教育的任务在于激励、唤醒。
2、充分发挥小组合作、讨论的作用。
《数学课程标准》中强调,小组合作是数学学习的一种重要方式,在小组合作中,学生的倾听能力、组织能力、思考能力都会得到锻炼与提升。在复习中重视小组合作、讨论的作用,给学生充分的讨论时间,让学生在讨论、交流中突破教学重难点,进一步理解各种统计图的特征,并学会根据统计图分析数据。
二、课前准备。
PPT课件。
三、教学过程。
(一)谈话导入。
1、我们一共学过哪几种统计图?
条形统计图、折线统计图、扇形统计图。
这几种统计图分别具有什么特点?
(1)小组内交流。
(2)学生汇报。
生1:条形统计图的特点是很容易比较各种数量的多少。
生2:折线统计图的特点是不但可以表示数量的多少,还可以清楚地看出数量的增减变化情况。
生3:扇形统计图的特点是能清楚地表示各部分数量与总数之间的关系。
2、什么是扇形统计图?
扇形统计图用整个圆表示总数,用圆内各个扇形的大小表示各部分数量占总数的百分比。
(二)复习用扇形统计图知识解决问题。
1、根据扇形统计图解决问题。
课件出示教材114页6题。
我国城市空气质量正逐步提高,在20xx年监测的330个城市中,有273个城市空气质量达到二级标准。监测城市的空气质量情况如下图所示。
(1)空气质量达到三级标准的城市有多少个?
(2)了解你所在城市的空气质量,讨论一下如何提高空气质量。
2、解决问题。
(1)解决问题(1)。
①思考:题中的有效信息有哪些?无用信息有哪些?
②汇报。
生1:题中“有273个城市空气质量达到二级标准”是无用信息。
生2:对于问题(1)而言,题中“330个城市”和“16.1%”是有效信息。
③根据统计图算出空气质量达到三级标准的城市有多少个。
330×16.1%≈53(个)
(2)解决问题(2)。
①组内交流:说一说你所在城市的空气质量问题。
②全班交流:如何提高空气质量?
生1:要改善取暖工程。
生2:加强环保意识。
生3:严禁开私家车,统一乘坐公交车,这样避免二氧化碳大量排放。
生4:减少工厂废气排放。
(三)巩固练习。
1、小红收集的各种邮票统计如上图。
(1)小红收集的风景邮票、人物邮票和建筑邮票数量的比是( )。
(2)小红收集的( )邮票数量最多。
(3)小红共收集了200张邮票,其中风景邮票有( )张。
2、完成教材117页17题。
(四)课堂总结。
通过这节课的复习,你有什么收获?
(五)布置作业。
查资料,进一步了解扇形统计图的应用范围。
板书设计:
统计与概率
统计图的种类:条形统计图、折线统计图、扇形统计图。
扇形统计图的特点:清楚地表示各部分数量与总数之间的关系。
六年级上册数学课件【篇2】
教学内容:
教材第24页的内容和第25页“练一练”第1、2题,第26页“练一练”第6题。
教学目标:
1.会分析解答“求比一个数多(少)几分之几是多少”的两步计算的分数乘法应用题。
2.在解决问题的过程中培养学生分析推理能力,掌握解决问题的策略,如审题,找关键句,分析关键句的含义,找单位“1”,将文字、图示、算式结合起来。
3.培养学生解决实际问题的能力,体会数学与生活的联系。
教学重点:
学会分析解决两步计算的分数乘法应用题。
教学难点:
初步构建分数问题的知识结构。
教学准备:
教学课件。
教学过程
学生活动
(二次备课)
一、谈话导入
秋天来了,森林里的小动物正在举行第十届动物车展,我们一起来看看。请同学们用数学的眼光看一看,图画上有哪些数学信息?根据信息你能提出什么数学问题?
课件出示教材第24页情境图,学生观察找出数学信息。
第十届动物车展第一天成交量为50辆,第二天成交量比第一天增加了,问题是第二天的成交量是多少辆?
师:这是一道“求比一个数多几分之几是多少的问题”。这节课我们继续来学习分数混合运算的有关知识:求比一个数多(少)几分之几是多少的应用题。
二、预习反馈
点名让学生汇报预习情况。(重点让学生说说通过预习本节课要学习的内容,学到了哪些知识,还有哪些不明白的地方,有什么问题)
三、探索新知
1.理解题意,探究问题。
引导学生:(1)说一说你是怎么理解第二天成交量比第一天增加了的(这里的表示的不是数量,而是指第二天增加的成交量是第一天成交量的)。
师:这里的是辆吗?如果不是那它表示什么意思?
生:一定不是,汽车怎么可能出现辆。
生:增加了,是指第二天增加的成交量是第一天成交量的。
师:对。这里的是一个分率,它的单位“1”是第一天的成交量。第二天成交量比第一天增加了就表示第二天成交量比第一天多了第一天成交量的。
2.画图表示第二天的成交量。
学生理解题意后可试着描述,师生共同画出图形。
在画图时注意分析:
(1)确定单位“1”后先画单位“1”,即第一天的成交量。
(2)再画第二天的'成交量,可以提问第二天的成交量线段画的比第一天的长还是短,为什么(因为第二天比第一天多,所以线段要比第一天的长)。长出的这段要画多长(表示第一天成交量线段的)。
(3)然后分析示意图中每部分表示的意义。
第2条线段中,和表示第一天成交量的线段相对的这段表示它和第一天成交量相等,多出来的这段表示第二天比第一天多的成交量,也就是第一天成交量的。
3.看图列式,解决问题。
让学生根据分析,尝试自己列式,并在小组内说说自己的思路,再汇报。
可能会有两种意见:(1)先求比第一天增加了多少;(2)先求第二天成交量是第一天的几分之几。这两种意见教师都给予肯定。
生1:我是先求第二天比第一天增加了多少辆,50×=10(辆),再求第二天的成交量50+10=60(辆)。列成综合算式是50+50×。
生2:我是从图中看出第二天是第一天的(1+)=,再求第二天的成交量50×=60(辆)。列成综合算式是50×(1+)。
4.回顾反思。
组织学生在小组内回顾和交流这道题的解决过程和方法。
(1)读题,找出题中的条件和问题;
(2)找出单位“1”的量,画图帮助分析数量关系;
(3)根据线段图找出数量关系;
(4)列式解答。
四、巩固练习
1.完成教材第25页“练一练”第1题。
让学生先分析题目中的信息,理解题意后再完成。
2.完成教材第25页“练一练”第2题。
让学生理解“体积大约增加”是增加谁的,从而找到单位“1”解决问题。
3.完成习题:学校新购进足球30个,购进排球的数量比足球少,学校购进排球多少个?
这是求“比一个数少几分之几的数是多少
”,让学生进行迁移类推。
五、拓展提升
1.阳阳期中考试数学得了96分,语文的分数比数学低,阳阳的数学和语文一共得了多少分?
96+96×(1-)=184(分)
2.商场某品牌衣服进价240元,加价后销售,元旦促销,再降价销售,现在的售价是多少元?
240×(1+)×(1-)=225(元)
六、课堂总结
让学生说一说“求比一个数多(少)几分之几的数是多少”的解题思路和方法,并总结本节课的收获。
七、作业布置
1.教材第25页“练一练”第3题。
2.教材第26页“练一练”第6题。
观察情境图,了解题目中的信息,提出问题。
教师根据学生预习的情况,有侧重点地调整教学方案。
在小组里交流后回答。
学生列式,说出自己的理由,教师强调问每一步求的是什么。
六年级上册数学课件【篇3】
教学目标:
1、通过小组合作、自主探究建构,使学生能结合方格纸用数对来确定位置,能依据给定的数对在方格纸上确定位置。
2、通过课堂的学习活动,增强学生运用所学知识解决实际问题的能力,提高应用意识。
3、让每一个学生在通过合作学习、汇报展示、课堂互动交流中,都体验到学习带来的喜悦,培养学生的学科兴趣和学习能力。
教学重点:
在方格纸用数对确定位置。
教学难点:
利用方格纸正确表示列与行。
教学用具:
动物园示意图的方格纸图。
教学过程
一、复习导入,提出学习目标。
1、复习:先用数对表示班级某一位同学的位置,再说说数对的第1个数字表示什么?第2个数字表示什么?
2、揭题,提出学习目标。
让学生先说说,再出示学习目标:
(1)方格纸上什么线表示列,什么线表示行。
(2)利用方格纸确定物体位置的方法。
二、展示学习成果
1、认识方格纸的列与行。竖线是列,横线是行。
2、自主学习,小组内展示。
(1)独立学习课本3页例2,并完成问题1和问题2。小组之间互相交流、探讨。(教师相机进行指导,收集学生的学习信息,重在让学生展示不同的思维方法和错例,特别是引导小组内学生之间的交流与探讨。)
六年级上册数学课件【篇4】
教学目的:
1、通过教学使学生知道储蓄的意义;明确本金、利息、税后利息和利率的含义;掌握计算利息的方法,会进行简单计算。
2、对学生进行勤俭节约,积极参加储蓄;支援国家、灾区、贫困地区建设的思想品德教育。
教学重点:
掌握利息的计算方法。
教学难点:
正确地计算利息,解决利息计算的实际问题。
教学过程:
一、 导入
随着改革开放,社会经济不断发展,人民收入增加,人们可以把暂时不用的钱存入银行,储蓄起来。这样一是支援国家建设,二是对个人也有好处,既安全和有计划,同时又得到利息,增加收入。那么,怎样计算利息呢?这就是我们今天要学的内容。
二、新课
1、 介绍存款的种类、形式。
存款分为活期、整存整取和零存整取等方式。
2、 阅读P99页的内容,自学讨论例题,理解本金、利息、税后利息和利率和含义。(例如:小丽20xx年月1月1日把100元钱存入银行,整存整取一年,到20xx年1月1日,小丽不仅可以取回存入的100元,还可以得到银行多付给的确1.8元,共101.8元。)
本金:存入银行的钱叫做本金。小丽存入的100元就是本金。
利息:取款时银行多支付的钱叫做利息。
税后利息:国家规定,存款的利息要按20%的税率纳税。小丽实际得到的1.8元是税后利息。国债的利息不纳税。
利率:利息和本金的比值叫做利率。
(1)利率由银行规定,根据国家的经济发展情况,利率有时会有所调整,利率有按月计算的,也有按年计算的。
(2)阅读P99页表格,了解同一时期各银行的利率是一定的。
3、学会填写存款凭条。
把存款凭条画在黑板上,请学生尝试填写。然后评讲。(要填写的项目:户名、存期、存入金额,、存种、密码、地址等,最后填上日期。
4、利息的计算。
(1)出示利息的计算公式: 利息=本金利率时间
(2)计算方法
按照以上的利率,如果小丽的100元钱存整取三年,到期的利息是多少?学生计算后交流,教师板书:1002.70%3=8.10(元)
(3)三年后取款,小丽能得到8.10元利息吗?为什么?
学生发表意见后,教师指出:1999国家规定存款时,要按利息的确20%缴纳利息税,你能再算一算如果你存入100元,3年后实际能得多少利息吗?
(4)学生计算后回答,教师板书
利息税金:8.1020%=1.62元 税后利息:8.10-1.62=6.48元
加上她存入本金100元,到期时她可以实际得到本金和税后利息一共是106.48元。
5、练习。
(1)完成二十三的第6题,学生读题后,提问:贝贝存入的本金是多少?利率是多少?存期是多少?然后由学生解答,集体订正。
(2)完成练习二十三的第9题。
教学总结:
折扣、纳税、利息是百分数在生活中的具体应用,与人们的生活密切相关。其中,折扣是学生们日常生活最熟悉的,教学中,我没有剥夺孩子们想说的权利,让他们自由地来说说他们对折扣的理解,并引入商品打折销售的情境,解决与之相关的实际问题。但教学中我没有说清楚几折就是十分之几,因此个别孩子对于七五折这样的概念还不是很清楚。而纳税和利率,则主要是通过公式的掌握教给孩子解题的方法。
六年级上册数学课件【篇5】
教学目标:
1、理解折扣的意义。
2、掌握折扣和百分数的关系,能解答有关折扣的实际问题。
教学重点:
在理解“折扣”意义的基础上,懂得求折扣应用题的数量关系与“求一个数的百分之几是多少”的应用题数量关系是相同的,并能正确计算。
教学难点:
能灵活运用分数知识解决生活中的“折扣”问题。
教学准备:
教师:多媒体课件,投影仪。
学生:课前了解有关商场打折的信息。
教学过程:
一、提示课题
师:每到周末、节假日,我们总会看到商家为了招揽顾客,经常采用一些促销手段,你知道哪些促销手段?(学生结合经验自由回答,教师用课件出示打折的情境图。)
师:今天我们来学习有关“折扣”的问题(板书课题)。
二、出示目标
师:本节课我们的目标是:(课件出示)
1、理解折扣的意义。
2、掌握折扣和百分数的关系,能解答有关折扣的实际问题。
师:为了达到目标,下面请大家认真地看书。
2三、出示自学指导
(课件出示)认真看课本第97页“做一做“上面的内容,思考
1、什么是打折扣?打八五折出售是什么意思?
2、求“买这辆车用了多少钱”就是求什么?
3、160×(1—90℅)中1—90℅求的是什么?你还会用别的方法解答这道题吗?
5分钟后,比谁能做对与例题类似的题!
四、先学
(一)看书
学生认真看书,教师巡视,督促人人都在认真地看书。
(二)检测
1.填空。
(1)商品打八折出售,就是按原价的x%出售,也就是降价x%;打七五折出售,就是按原价的x%出售,也就是降价x%。
(2)某种商品实际售价是原价的95%,也就是打x折出售;某种商品降价30%出售,也就是打x折出售。
(学生口答)
2.课本第97页做一做
(找三名学生板演,其余学生做在练习本上,教师认真巡视,发现错例,板书于黑板上对应位置。)
五、后教
(一)更正
师:写完的同学请举手。下面,请大家一起看黑板上这些题,发现问题的同学请举手。(由差-中-好依次进行更正)
(二)讨论
1、看百分数,认为对的举手。为什么?
小结:商店有时降价出售商品,叫做打折扣销售,统称“打折”,几折就是十分之几,也就是百分之几十。一般情况下,不把折扣写成十分之几的分数形式。
2、看三道算式,认为对的举手。为什么?
3、看计算过程和结果,认为对的举手。
4、评正确率、板书,并让学生同桌对改,更正错题。
5、议一议:原价、现价、折数之间有什么关系?怎样解决求折扣的问题?
(学生先独立思考再小组讨论)
教师小结:现价=原价×折数(“求折扣”的应用题的数量关系与“求一个数的十分之几或百分之几十是多少”的应用题的数量关系是相同的,关键是要先理解折扣的`含义,再运用分数应用题的觖题方法来解决。)
六、全课总结
师:同学们,今天我们学习了有关折扣的知识,意义是什么?该怎样计算呢?计算时需要注意什么?
下面,我们就运用今天所学的知识来做作业,比谁的课堂作业能做得又对又快,字体还又端正。
七、当堂训练
作业
1、填一填
(1)下列折扣化成百分数各是多少?填在x里。
九五折x%
七折x%八八折x%
五折x%
(2)一种商品现在打八折出售,比原价便宜了x%。
2、妈妈给小强买了一套运动服,原价120元,现在打七五折出售,比原来便宜多少元?
板书设计:
折扣
1、折扣的意义:商店有时降价出售商品,叫做打折扣销售,统称“打折”,几折就是十分之几,也就是百分之几十。
2、折扣的计算方法:原价×折扣=现价
六年级上册数学课件【篇6】
教学目标
1.使学生理解反比例的意义,掌握成反比例的变化规律,并能初步运用。
2.能正确判断成正反比例的量,为解答正反比例应用题打下基础。
教学重点和难点
理解反比例的意义,掌握两种相关联的量变化规律。
教学过程设计
(一)复习准备
1.(出示幻灯)
一种练习本的数量和总页数如下表:
师:请回答下列问题。
(1)表中哪个量是固定不变的量?
(2)哪两种量是相关联的量?它们的变化规律是怎样的?
(3)表内相关联的两种量成正比例吗?为什么?
2.填空。(小黑板(一))
两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中________,这两种量叫做成________的量,它们的关系叫做________关系。
3.判断下面各题中两种量是否成正比例。
(1)文具盒的单价一定,买文具盒的个数和总价()。
(2)水稻产量一定,水稻的种植面积和总产量()。
(3)一堆货物一定,运出的和剩下的()。
(4)汽车行驶的速度一定,行驶的时间和路程()。
(5)比值一定,比的前项和后项()。
可选其中一、二题,说一说为什么?
师:通过刚才的复习,我们对正比例的意义理解得很好。你们想一想,有正比例就一定有反比例。什么时候成反比例呢?今天我们就学习反比例的意义。(板书课题:反比例的意义)
(二)学习新课
1.出示例4。(小黑板(二))
例4华丰机械厂加工一批零件,每小时加工的数量和加工的时间如下表:
(1)分析表,回答下列问题。(幻灯出示)
①表中有哪种量?
②两种相关联的量是如何变化的?
③你能说出它们的关系式吗?
④相对应的每两个数的乘积各是多少?
⑤哪种量是固定不变的?
师:请同学们打开书自学,然后分组讨论以上问题。(老师巡视、指导。)
(2)同学们发言。
根据同学发言,用彩色粉笔画出箭头并加以说明:
①每小时加工的数量扩大,加工的时间反而缩小;当每小时加工的数量缩小,加工的时间反而扩大。它们变化的规律是:一扩一缩或一缩一扩,变化的倍数相同。(板书)
②两种量中相对应的两个数的积都是600。
(板书)1060=6003020=6005012=600
③从数量关系看:
(3)我们来总结一下反比例的意义是什么?
(4)上述小结让学生照板书内容自述。
2.出示例5。
例5用600页纸装订同样的练习本,每本的页数和装订的本数有什么关系呢?请先填表后,再回答下列问题。
观察上表,回答下面的问题:
①表中有哪两种量?
②装订的本数怎样随着每本的页数变化?
③它们变化的规律是怎样的?
④题目中的600是哪种量?
⑤根据两种相关联的量,你能列出一个怎样的关系式?可以求出什么?
生:(答略)
师:我们通过这一例题再次总结一下反比例的意义。
看小黑板(一)中第二条空线,总结反比例的意义。
师:对照反比例的意义详说例5成什么比例。
生:装订的本数是随着每本页数的变化而变化的。每本的页数扩大,装订的本数反而缩小;每本的页数缩小,装订的本数反而扩大。每本的页数和装订的本数的积总是一定的。如:
1540=6002030=6002524=600
所以说每本的页数和装订的本数是成反比例的关系。
师:刚才你们对照例题总结得很好,它们的共同点是什么呢?
幻灯出示:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
(学生看幻灯,读一读。)
师:谁能对照反比例的意义说一说例4是成什么比例?
(学生看黑板叙述,老师在关系式上标出定量和它们的关系。)
生:加工的时间随着每小时加工数量的变化而变化,每小时加工的数量和加工的时间的积(零件总数)是一定的,我们就说每小时加工的数量和加工的时间是成反比例的量,它们的关系是反比例的关系。
3.学习字母公式。
师:如果用字母x和y表示两种相关联的量,用k表示它们的积(一定),你能概括出成反比例的字母公式吗?
生:xy=k(一定)。
师:很好。我们今天学习了反比例的意义。和正比例相比较,它们的相同点和不同点你能总结一下吗?(两人互相讨论)
教师指复习小黑板(一)(即填空),学生回答。
生:相同点是都有两种相关联的量,都有一个定量。不同点是,成正比例的量,两种相关联的量同扩同缩,而且相对应的两个数的商(比值)一定;成反比例的量,两种相关联的量一扩一缩,相对应的两个数的积是一定的。
师:大家总结得很好,要判断两种相关联的量成什么比例的量,就要抓住相对应的个数是商一定,还是积一定。这是判断两种量是成正比例还是成反比例的关键。
(三)巩固反馈
1.打开书看今天讲的内容,并划出重点。
2.看课本中的做一做,逐一回答书中的问题。
3.书中练习题4,用语言详叙判断成什么比例?为什么?
4.你能举出一个成反比例的例子吗?(自由发言)
5.练习判断两种量是否成反比例。
(1)煤的总量一定,每天的烧煤量和烧的天数()。
(2)李叔叔从家到工厂,骑车的速度和所需要的时间()。
(3)玉华做12道练习题,做完的与没做的题()。
(4)长方形面积一定,它的长和宽()。
(四)课堂总结
本节我们初步了解了反比例的意义,并能运用反比例的意义判断一些简单的问题。通过正、反比例意义的对比,使我们进一步认识到,要判断两种相关联的量是成正比例关系还是成反比例的关系,要抓住两种相关联的量的变化规律,这是本质。今后我们还要继续研究。
(五)布置作业
练习题中第4,5题。
课堂教学设计说明
本节课是通过知识引进、知识讨论、知识运用总结进行的。
首先通过复习,巩固了正比例的意义。通过旧知识引出新知识反比例的意义,过渡自然,知识做到了连贯性。
在引导学生学习正比例学习的基础上,启发学生主动、自觉地去观察、分析、概括、发现规律,从而既学到了新知识,又增长了自学能力。
幻灯演示、小组讨论、集体反馈,选用多样的教学手段,使枯燥的知识活起来,充分调动学生的积极性,激发学生的兴趣。
通过知识的对比,加强了知识的内在联系,并通过区别不同的概念,巩固了知识。学生的全面参与,培养了总结、区别、沟通的能力。练习的多样、及时,使学生加深概念的理解。
六年级上册数学课件【篇7】
复式条形统计图
教学内容:北师大版小学数学教材六年级上册第59—60页。教学目标:1.知识目标:认识复式条形统计图的特点,理解单式与复式统计图的异同,并能在有纵轴、横轴的图上用复式条形表示相应的数据。
2.能力目标:使学生能看懂复式条形统计图,并能根据复式条形统计图中的有关数据作简单的分析,判断和预测,能根据要求把统计图补画完整。
3.情感目标:⑴培养大家勤于动手动脑的良好习惯。⑵引导大家热爱生活,关注身边的每个事物。
教学过程:
一、谈话引入。
我们已经学过哪些统计图?这些统计图表示数据的方法和特点各是什么?生自由发言。
揭示课题:复式统计图。
二、创设情境,初步感知。
在体育课上你们做过投球游戏吗?根据你的经验,投球时单手投得远一些,还是双手投得远一些?
学生自由发言。
究竟谁的想法更合理呢?让我们先来看看第一活动小组同学投球的结果吧。(出示统计表)
从表格中能比较出结果吗?
用条形统计图怎样表示呢?自己动手试试看。
以小组为单位在方格图中尝试完成统计图。
评价一下,哪幅图更便于比较两种投球方式的投球距离?
(各小组修改统计图)
三、探索研究,猜测交流
从上面的统计图中你得到了哪些信息?
(大多数的同学都是单手比双手投得远,而且相差得也比较大;也有4号同学双手比单手投得远一些,但是差得并不太多,看来大多数同学还是单手投球会投得更远;6号同学两种情形投的距离一样远,挺有意思的。)
这是他们小组的情况,我们班的情况不知道和他们一样不一样,最好我们也实际投一投,将数据收集起来再进行比较。
我们下午有体育活动课,我们实际做这个实验,各小组要组织好,注意安全,做好记录。这次我们要进行“双手、左手、右手”的实验,先预测一下:哪种情况投掷的距离远呢???四、尝试应用,解决问题
教材60页试一试,操作应用。
提醒学生:要认真细心地确定每条直条的高度,用不同的颜色直条表示城镇居民的农村居民平均每年旅游消费的情况。
五、实践应用,走向生活。
教材60页,实践活动。
六、总结全课,储存新知
通过这节课的学习,你有什么收获?你对自己的表现满意吗?还有什么不清楚的问题吗?
六年级上册数学课件【篇8】
1. 明明有图书a本,林林的图书是明明的2倍,方方的图书比明明的3倍少8本。方方有图书??????? 本,方方的图书比林林多??????? 本。
2. 下面是一个长方体前面和上面的图形。
量一量,这个长方体的长是??? 厘米,宽是???? 厘米,高是???? 厘米;算一算,这个长方体的表面积是??????平方厘米。。
3.?6个同样大的橘子和3个同样大的梨一共重1350克,1个橘子的重相当于1个梨的 13 。1个梨重????? 克,1个橘子重????? 克。
4.?在括号里填适当的数。
87 -(??? )= 1???? 79 ×(??? )56
5. 红色小棒和蓝色小棒的长度比是1∶2,蓝色小棒和黄色小棒的长度比是2∶3。现有红、蓝、黄色小棒各两根,从中取出3根围一个三角形。可以选2根????? 色小棒和1根????? 色小棒。
6.?34 日=(??? )小时???????? 80秒=(??? )分
7.?一个小正方体的一个面写“1”,两个面写“2”,三个面写“3”。抛起这个正方体,落下后“2”朝上的可能性是??? ;朝上的数小于“3”的可能性是??? 。如果抛90次,照这样的可能性计算,“1”朝上会有???? 次。
8.?下表是六年级学生某天到学校上课的人数统计。
六年级????? 班的出勤率最高,是??????? ;六年级????? 班的出勤率最低,是??????? 。
六年级上册数学课件【篇9】
说教材:
1、本节内容是人教版六年级上册第四单元的内容
2、教材的地位和作用
学生从学习直线图形的面积到学习曲线图形的面积,无论是内容本身,还是研究方法都是一次质的飞跃。在这节课中学生将初步学习研究曲线图形的基本方法-----“化曲为直”、“化圆为方”,为以后学习圆柱、圆锥等知识奠定基础。特别是在面积的推导过程中,潜意识的培养了学生的极限思想。
根据本节课的特点确定如下教学目标.
1、知识目标:
⑴引导学生通过观察了解圆的面积公式的推导过程。
⑵帮助学生掌握圆的面积公式,并能应用公式解决实际问题。
2、能力目标:
使学生了解从“未知”到“已知”的转化过程,逐渐培养学生的抽象思维能力。
3、情感目标:
通过实例引入,让学生体验数学来源于生活,又服务于生活;向学生展示生动、活泼的数学天地,唤起学生学习数学的兴趣,使全体学生积极参与探索,在参与中体验成功的乐趣。
根据本节课的内容,确定以下教学重点与难点:
教学重点:圆的面积公式的推导过程以及圆的面积公式的应用。
六年级上册数学课件【篇10】
(一)、知识铺垫,问题引入
1、知识铺垫:“求一个数的几分之几是多少?”根据本班总人数为30人,女生占三分之一,男生占三分之二,求男女生各有多少人?并把得数用比的知识或分数的知识说一句话。
2、问题引入:在实际情境中理解按比分配
男生8人,女生16人,将48个卡片平均分成两份,分给男生组和女生组,这样分合理吗?那怎样分才合理?
这样安排,目的是把握新旧知识和连接点,通过平均分引出按比分,有利于学生掌握知识的发展变化与延伸,为分散难点起着积极的迁移作用。
(二)、交流探索,掌握方法
1、提出关于配制稀释液的实际问题,引导学生理解“稀释液”的意思。
2、出示例2,在情境中理解按比例分配。
首先在学生理解题意的基础上,引导学生收集数学信息,然后利用课件演示稀释液配制过程,帮助理解题意及掌握分配问题的结构特点。接下来引导学生分析题中数量关系:这道题配制的是什么?按照什么来配制?重点理解“按1:4配制”。再接下来鼓励小组合作尝试多种方法解答,教师进行指导,重点理解按比分配的方法。最后提示学生进行检验,培养学生自觉检验的习惯。
3、小结:按比分配的应用题有什么结构特点?怎样解答这样的应用题?
这样设计为学生提供自主探索的空间,一般学生总有自己不同的想法,所以在教学中可以灵活地依据提出的方法调换教学顺序,并引导学生掌握两种不同的结题方法。安排学生的小组讨论方式能使学生一开始就畅所欲言,把几种不同思路比较和联系起来,在理解的基础上才能更好的掌握方法,并注意培养学生的检验能力。
(三)、多层训练,形成技能。
练习是数学课堂教学一个重要环节,我设计的练习题力求做到从易到难,由浅入深,有层次,有坡度,新旧知识融合恰当,形成技能技巧,开拓思维,发展能力,达到练习的预期目的。
1、基础练习
解决课前分卡片时产生的问题。
这个练习用来分散难点,促使知识结构的内化。
2、对应性练习。
出示练习第1题:与例题比较,得出各部分数量之间没用比而是用实际数量表示。
采用讲练结合的形式巩固所学知识,让学生在学习新知之后即时得到巩固。
3、对比性练习。
出示练习第2题:比较分析题中出现三个数量,不同于其他练习。
这道练习旨在加强对比,提高学生分析和综合运用知识的能力。
(四)、拓展延伸
课件出示并介绍“黄金比”,鼓励感兴趣的同学可以课外自己去收集有关的资料。这样设计可以使学生感受到数学与生活的密切联系,激发学生学习数学的兴趣。
(五)、全课总结
你学会了什么知识?掌握了哪些方法?
这样做既检验了效果,又体现了课堂教学的整体性,从而培养学生的概括和口头表达能力。
总之,为了更好的实现本节课教学目标,我力求贴近学生的生活实际,结合学生的已有知识和生活经验,为学生提供现实情景和活跃的情趣,让学生自主探究,合作交流,使他们深刻体会到数学源于生活,用于生活,提高学生利用数学知识分析和解决生活中的实际问题的能力,从而激发学生学习数学的兴趣。