幼儿教师教育网,为您提供优质的幼儿相关资讯

八年级数学课件

发布时间:2024-06-09 八年级数学课件 八年级课件

八年级数学课件五篇。

古人云,工欲善其事,必先利其器。当幼儿园教师的教学任务遇到困难时,往往都需要参考一下我们提前准备参考资料。资料的定义比较广,可以指生活学习资料。资料对我们的学习和工作有着不可估量的作用。可是,我们的幼师资料具体又有哪些内容呢?下面是小编为大家整理的“八年级数学课件五篇”,请马上收藏本页,以方便再次阅读!

八年级数学课件 篇1

尊敬的各位评委、各位老师:

大家好!今天我说课的题目是《整式的乘法》,下面我就教材、教法与学法指导、教学设计和教学反思四个方面来向大家介绍一下我对本节课的理解与设计。

一、说教材:

1、教材的地位与作用:本节课是学生在学习了单项式乘以单项式、单项式乘以多项式之后安排的内容,既是单项式与多项式相乘的应用与推广,又为今后学习乘法公式作准备。同时,还可以激发学生对数学问题中蕴含的内在规律进行探索的兴趣和培养学生知识迁移的能力;其得出的过程涉及数形结合,整体代换等重要的数学思想。因此,它在整个初中阶段“数与式”的学习中占有重要地位。

2、教学目标:根据教材内容和学生实际情况,我确定了三个教学目标:

(1)知识与能力:通过自己的探索,用几何和代数两种方法得出多项式与多项式的乘法法则;

(2)过程与方法:在学生探究的过程中培养学生的思维能力及分析和解决问题的能力,体会数形结合的思想和整体代换的思想;(3)通过数学活动,让学生对数学产生好奇心和求知欲,从而体会到探索与创造的乐趣。

3、教学重难点:多项式乘以多项式法则的推导过程以及法则的归纳和应用。

二、说教法和学法指导:

为了充分调动学生的参与意识,更好地落实各项目标,本节课以学生的数学活动为主线,以让学生参与为本课的核心,以自主、合作、探究、实践为学生的主要学习方式,在此基础上,我采用了如下的教学方法:尝试法、实践法、讨论法、发现法,让学生全员参与,全员活动,让学生和老师、学生和学生之间互动,特别是让学生展示、点评、质疑,充分调动了学生的积极性,发挥学生的潜能。

三、说教学设计:

本节课的主要教学过程设计了“导学达标——探究释疑——拓展延伸——内化迁移”四个基本环节。

1、导学达标:

在这个环节首先检查了学生的预习案完成情况,针对预习中存在的问题进行点拨。然后由一个实际问题引入课题,激发学生兴趣,最后再解读本课的学习目标、重难点,让学生带着目标和问题展开本节课的学习。

2、探究释疑:

这一环节一共设计了两个探究活动。

第一个探究活动让学生进行了拼图游戏,通过比较所表示的拼出的大长方形面积,从而发现多项式乘以多项式的法则,然后和预习案中用代数方法所得出的结论进行比较。此时,教师引导学生进一步认识到多项式乘以多项式本质上与单项式乘以多项式一样都是乘法分配律的应用,从而突破了难点,进而让学生体会到转化以及数形结合的思想。

在得出多项式乘法的法则后,我让学生试着用文字表述它,学生的叙述开始不一定完善,在此教师要帮助学生认识到法则的本质,并最终得出多项式与多项式的乘法法则:

多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加.

接下来我设计了一道例题,例题是课本的题目,其目的是熟悉、理解法则。完成例1时,教师引导学生严格按照法则来做,并认真板书,规范了学生的解题过程,起到了示范作用。在完成例题之后,为了让学生检验自己对法则的理解和掌握程度

八年级数学课件 篇2

教学目标:

1、知识目标:了解图案最常见的构图方式:轴对称、平移、旋转……,理解简单图案设计的意图。认识和欣赏平移,旋转在现实生活中的应用,能够灵活运用轴对称、平移、旋转的组合,设计出简单的图案。

2、能力目标:经历收集、欣赏、分析、操作和设计的过程,培养学生收集和整理信息的能力,分析和解决问题的能力,合作和交流的能力以及创新能力。

3、情感体验点:经历对典型图案设计意图的分析,进一步发展学生的空间观念,增强审美意识,培养学生积极进取的生活态度。

重点与难点:

重点:灵活运用轴对称、平移、旋转……等方法及它们的组合进行的图案设计。

难点:分析典型图案的设计意图。

疑点:在设计的图案中清晰地表现自己的设计意图

教具学具准备:

提前一周布置学生以小组为单位,通过各种渠道收集到的图案、图标的剪贴、临摹以及。多种常见的图案及其形成过程的动画演示。

教学过程设计:

1、情境导入:在优美的音乐中,逐个展示生活中常见的典型图案,并让学生试着说一说每种图案标志的对象。(展示课本图3—23)

明确在欣赏了图案后,简单地复习平移、旋转的概念,为下面图案的设计作好理论准备。对教材给出的六个图案通过观察、分析进行议论交流,让学生初步了解图案的设计中常常运用图形变换的思想方法,为学生自己设计图案指明方向。其中图(1)、(2)、(3)、(4)、(5)、(6)都可以通过旋转适合角度形成(可以让学生自己说说每个旋转的角度和旋转的次数及旋转中心的位置),另外图(2)、(3)、(5)也可以通过轴对称变换形成(可以让学生指出对轴对称及对称轴的条数),而图(2)可以通过平移形成。

2、课本

1 欣赏课本75页图3—24的图案,并分析这个图案形成过程。

评注:图案是密铺图案的代表,旨在通过对典型图案的分析欣赏,使学生逐步能够进行图案设计,同时了解轴对称、平移、旋转变换是图案制作的基本手段。例题解答的关键是确定“基本图案”,然后再运用平移、旋转关系加以说明,注意旋转中心可以为图形上某一特征的点。

评注:可以取其中的任何一个为基本图案,然后通过变换得到。而且变化方式也可以是:左下角的图案通过轴对称变换得到左上图和右下图。

(二)课内练习

(1) 以小组为单位,由每组指定一个同学展示该组搜集得到的图案,并在全班交流。

(2) 利用下面提供的基本图形,用平移、旋转、轴对称、中心对称等方法进行图案设计,并简要说明自己的设计意图。

(三)议一议

生活中还有那些图案用到了平移或旋转?分析其中的一个,并与同伴进行交流。

(四)课时小结

本课时的重点是了解平移、旋转和轴对称变换是图案设计的基本方法,并能运用这些变换设计出一些简单的图案。

通过今天的学习,你对图案的设计又增加了哪些新的认识?(可以利用平移、旋转、轴对称等多种方法来设计,而且设计的图案要能表达自己的创作意图,再就是图案的设计一定要新颖,独特,这样才能使人过目不忘,达到标志的效果。)

八年级数学上册教案(五)延伸拓展

进一步搜集身边的各种标志性图案,尝试着重新设计它,并结合实际背景分析它的设计意图。

八年级数学课件 篇3

教学目标:

(一)教学知识点:梯形的判别方法.

(二)能力训练要求

1.经历探索梯形的判别条件的过程,在简单的操作活动中发展学生的说理意识.

2.探索并掌握“同一底上的两个内角相等的梯形是等腰梯形”这一判别条件.

(三)情感与价值观要求

1.通过探索梯形的判别条件,发展学生的说理意识,主动探究的习惯

2.解决梯形问题中,渗透转化思想

教学重点:梯形的判别条件

教学难点:解决梯形问题的基本方法

教学过程:

一、引入课题

上节课我们研究了特殊的梯形——等腰梯形的概念及其性质,下面我们来共同回忆一下:什么样的梯形是等腰梯形?等腰梯形有什么性质?

1.两腰相等的梯形是等腰梯形

2.等腰梯形同一底上的两个内角相等,对角线相等

怎样判定等腰梯形呢?我们这节课就来探讨等腰梯形的判定

二、讲授新课

判定:同一底上的两个内角相等的梯形是等腰梯形

问:我们能说明这种判定方法的正确性吗?

如图,在梯形ABCD中,AD∥BC,∠B=∠C

求证:梯形ABCD是等腰梯形

法一:证明:把腰DC平移到AE的位置,这时,四边形AECD是平行四边形,则AE∥CD

AE=CD,因为AE∥CE,所以∠AEB=∠C

又因为∠B=∠C,所以∠AEB=∠B

由在一个三角形中,等角对等边,得

AB=AE,所以AB=CD

因此梯形ABCD是等腰梯形

八年级数学课件 篇4

探索并掌握梯形的有关概念和基本性质,探索、了解并掌握等腰梯形的性质.

能够运用梯形的有关概念和性质进行有关问题的论证和计算,进一步培养学生的分析问题能力和计算能力.

通过添加辅助线,把梯形的问题转化成平行四边形或三角形问题,使学生体会图形变换的方法和转化的思想.

在应用等腰梯形的性质的过程养成独立思考的习惯, 在数学学习活动中获得成功的体验.

解决梯形问题的基本方法(将梯形转化为平行四边形和三角形及正确运用辅助线),及梯形有关知识的应用.

观察梯形图片,引入本节课的学习内容.

了解梯形定义、各部分名称及分类.

通过画图活动,初步发现梯形与三角形的转化关系.

探究得到等腰梯形的性质.

通过解决具体问题,寻找解决梯形问题的方法.

通过整理回顾,巩固知识、提高能力、渗透思想.

[活动1]

观察下图中,有你熟悉的图形吗?它们有什么共同的特点?

演示图片,学生欣赏.

结合图片,教师引导学生注意这些图片的共同特征:一组对边平行而另一组对边不平行.

由现实中实际问题入手,设置问题情境,引出本课主题.通过学生观察图片和归纳图形的特点,培养学生的观察、概括能力.

[活动2]

梯形定义 一组对边平行而另一组对边不平行的四边形叫做梯形.

学生根据梯形概念画出图形,教师可以进一步引导学生类比梯形与平行四边形的区别和联系.

学生在小学已经对梯形有一定的感性认识,因此教师让学生自己介绍(1)中的基本概念,在聆听学生发言后, 教师可以强调:①梯形与四边形的关系;

②上、下底的概念是由底的长短来定义的,而并不是指位置来说的.

熟悉图形,明确概念,为探究图形性质做准备.

在下列所给图中的每个三角形中画一条线段,

(1)怎样画才能得到一个梯形?

(2)在哪些三角形中,能够得到一个等腰梯形?

在学生独立探究的基础上,学生分组交流.

教师参与小组活动,指导、倾听学生交流.针对不同认识水平的学生,引导其正确作图.

本次活动教师应重点关注:

(1)学生在活动过程中能否发现梯形与三角形之间的联系,他们之间的转化方法.

(2)学生能否将等腰三角形转化为等腰梯形.

(3)学生能否主动参与探究活动,在讨论中发表自己的见解,倾听他人的意见,对不同的观点进行质疑,从中获益.

等腰梯形的性质与等腰三角形相仿,因此在活动3中设计了第(2)题,在推导等腰梯形性质或需要添加辅助线时,可以借助等腰三角形来研究.尤其是根据等腰三角形是轴对称图形,可得到等腰梯形是轴对称图形这条性质,为活动4种开展探究奠定了基础.

探索等腰梯形的性质(引入用轴对称解决问题的思想).

在一张方格纸上作一个等腰梯形,连接两条对角线.

(1)这个图形是轴对称图形吗?对称轴在哪里?你能发现哪些相等的线段和相等的角?学生画图并通过观察猜想;

(2)这个等腰梯形的两条对角线的长度有什么关系?

学生按照实验步骤,独立完成画图过程,观察图形,思考教师提出的问题,猜想、验证、归纳结论.

针对不同认识水平的学生,教师指导学生活动.

师生共同归纳:

①等腰梯形是轴对称图形,上下底的中点连线是对称轴.

②等腰梯形两腰相等.

③等腰梯形同一底上的两个角相等.

④等腰梯形的两条对角线相等.

教学中要注意引导学生证明等腰梯形的性质,尤其在证明“等腰梯形同一底上的两个角相等”这条性质时,“平移腰”和“作高”这两种常见的辅助线,在教学中头一次出现,可以借此机会,给学生介绍这两种辅助线的添加方法.

例1 (教材P118的例1)略.

例2 如图,梯形ABCD中,AD∥BC,

∠B=70°,∠C=40°,AD=6cm,BC=15cm.

求CD的长.

师生共同分析,寻找解决问题的方法和策略.

例1是等腰梯形性质的直接运用,请学生分析、解答,教师聆听,同时注意指导学生,在证明△EAD是等腰三角形时,要用到梯形的定义“上下底互相平行(AD∥BC)”这一点.

分析:设法把已知中所给的条件都移到一个三角形中,便可以解决问题.

其方法是:平移一腰,过点A作AE∥DC交BC于E,因此四边形AECD是平行四边形,由已知又可以得到△ABE是等腰三角形(EA=EB),因此CD=EA=EB=BC―EC=BC―AD=9cm.

通过题目的练习与讲解应让学生知道:解决梯形问题的基本思想和方法就是通过添加适当的辅助线,把梯形问题转化为已经熟悉的平行四边形和三角形问题来解决.在教学时应让学生注意它们的作用,掌握这些辅助线的使用对于学好梯形内容很有帮助.

例3已知:如图,在梯形ABCD中,AD∥BC,∠D=90°,∠CAB=∠ABC,

分析:要证BE=CD,需添加适当的辅助线,构造全等三角形,其方法是:平移一腰,过点D作DF∥AB交BC于F,因此四边形ABFD是平行四边形,则DF=AB,由已知可导出∠DFC=∠BAE,因此Rt△ABE≌Rt△FDC(AAS),故可得出BE=CD.

例2与例3这里给出的辅助线均是“平移一腰”,老师们在教学或练习中可以根据学生的实际情况,再引导、补充其他辅助线的添加方法,让学生多了解、多见识.

(1)已知等腰梯形的锐角等于60°它的两底分别为15cm和49cm,求它的腰长和面积.

梯形ABCD中,CD//AB,,.

(3)已知,如图,

梯形ABCD中,AD∥BC,E是AB的中点,DE⊥CE,求证:AD+BC=DC.(延长DE交CB延长线于点F,由全等可得结论)

(1)“平移腰”:把梯形分成一个平行四边形和一个三角形(图1);

(5)“等积变形”,连结梯形上底一端点和另一腰中点,并延长与下底延长线交于一点,构成三角形(图5).

尽量多地让学生参与发言是一个交流的过程.

梳理本节课应用过的辅助线添加方法,既可以锻炼学生思维,又可以留给学生继续探究的空间.

学生通过独立思考,完成课后作业,便于发现问题,及时查漏补缺.

八年级数学课件 篇5

教学目标

一、教学知识点:

1.旋转的定义.2.旋转的基本性质.

二、能力训练要求:

1.通过具体实例认识旋转,理解旋转的基本涵义.

2.探索旋转的基本性质,理解旋转前后两个图形对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角彼此相等的性质.

三、情感与价值观要求

1.经历对生活中与旋转现象有关的图形进行观察、分析、欣赏以及动手操作、画图等过程,掌握有关画图的操作技能,发展初步的审美能力,增强对图形欣赏的意识.

2.通过学习使学生能用数学的眼光看待生活中的有关问题,进一步发展学生的数学观.

教学重点:旋转的基本性质.

教学难点:探索旋转的基本性质.

教学方法:

1、遵循学生是学习的`主人的原则,在为学生创造大量实例的基础上,引导学生自主思考、交流、讨论、归纳、学习。

2、采用多媒体课件辅助教学。

教学过程:

一.巧设情景问题,引入课题

日常生活中,我们经常见到以下情景(出示图示:钟表、汽车方向盘、辘轳或电脑演示:钟表指针的转动、汽车方向盘的转动、辘轳打水的情景). (1)上面情景中的转动现象,有什么共同特征?(2)钟表的指针、钟摆在转动过程中,其形状、大小、位置是否发生改变?汽车方向盘的转动呢?

1.在这些转动的现象中,它们都是绕着一个点转动的.

2.每个物体的转动都是向同一个方向转动.

3.钟表的指针、钟摆在转动过程中,它的形状、大小没有变化,只是它的位置有所改变.

4.汽车的方向盘在转动过程中,同样它的形状、大小没有改变,方向盘上的每点的位置所变化.同学们观察得很仔细,我们把这样的转动叫旋转(circumrotate),这节课我们就来探讨生活中的旋转.

二.讲授新课

在数学中,如何定义旋转呢?在平面内,将一个图形绕着一个定点沿某个方向转动一个角度,这样的图形运动称为旋转(circumrotate).这个定点称为旋转中心,转动的角称为旋转角.注意:“将一个图形绕一个定点沿某个方向转动一个角度”意味着图形上的每个点同时都按相同的方式转动相同的角度.在物体绕着一个定点转动时,它的形状和大小不变.因此,旋转具有不改变图形的大小和形状的特征.

议一议:(课本67页)答:(1)旋转中心是O点,旋转角是∠AOD.旋转角还可以是∠BOE.

(2)四边形AOBC绕O点旋转到四边形DOEF的位置.这时点A旋转到点D的位置,点B旋转到点E的位置.

(3)可以把OA看作钟表的指针,它OA的位置旋转到OD的位置,指针的长短、形状没有变化,所以OA与OD是相等的.同样,线段OB与OE是相等的.

(4)因为四边形AOBC绕O点旋转到四边形DOEF的位置,在旋转的过程中,图形上的每个点同时都按相同的方向旋转相同的角度,所以∠AOD与∠BOE是相等的.

(4)也可以这样理解:因为四边形AOBC绕O点旋转到四边形DOEF的位置,所以∠AOB与∠DOE是相等的,又因为∠BOD是公共角,所以,∠AOD与∠BOE是相等的.

看上图,四边形DOEF是由四边形AOBC绕O点旋转得到的,经过旋转,点A移动到点D的位置,点B移动到点E的位置,点C移动到点F的位置,则点A与点D、点B与点E、点C与点F就是对应点.从刚才大家得出的结论中,能否总结出旋转的性质呢?

答:因为O是旋转中心,点A与点D是对应点,点B与点E是对应点,且OA=OD,OB=OE,所以可以知道:对应点与旋转中心所连的线段的长度是相等的.

因为点A与点D、点B与点E是对应点,且∠AOD=∠BOE,所以由此可以知道:对应点与旋转中心的连线所成的角是互相相等的.

由此我们得到了旋转的基本性质:经过旋转,图形上的每一点都绕旋转中心沿相同方向转动了相同的角度.任意一对对应点与旋转中心的连线所成的角都是旋转角,旋转角彼此相等.对应点到旋转中心的距离相等.

[例1](课本68页例1)

[师生共析]经演示(钟表实物或教具)可以知道,分针是绕着表面盘的中心位置,即钟表的轴心旋转的,它旋转一周时的度数是360°,一周需要60分,因此每分钟分针所转过的度数是6°,这样20分时,分针逆转的角度即可求出.

解:(见课本68页)

书上68页做一做

三.课堂练习

课本P69随堂练习.

1.解:旋转5次得到,旋转的角度分别等于60°、120°、180°、240°、300°.

四.课时小结

五.课后作业:课本P69习题3.4 1、2、3.

六.活动与探究

1.分析图中的旋转现象.过程:让学生画图、找规律,也可让他们通过剪切,找到旋转规律.

结果:旋转现象为:

整个图形可以看做是图形的八分之一(一组大小不等的三个“角”)绕中心位置,按照同一方向连续旋转45°、90°、135°、180°、225°、270°、315°前后的图形共同组成的.

整个图形也可以看做是图形的四分之一(两组相邻的“角”)绕中心位置连续旋转90°、180°、270°前后的图形共同组成的.

整个图形还可以看做是图形的二分之一(四组相邻的“角”)绕中心位置旋转180°前后的图形共同组成的.

2.图中是否存在这样的两个三角形,其中一个是另一个通过旋转得到的?

过程:同样让学生在画图过程中体会图形中每个三角形之间的关系;或让学生仔细观察图形,分析图形,找出关系.

结果:图中存在这样的三角形,其中一个是另一个通过旋转得到的.

整个图形可以看做图形的四分之一(一组“楼梯”)绕中心连续旋转90°、180°、 270°.前后的图形共同组成的.

整个图形也可以看做图形的二分之一(两组“楼梯”)绕中心位置旋转180°前后的图形共同组成的.

板书设计:略

教学反思:本节课仍然是图形的基本变换。借助多媒体教学直观生动形象。学生一般都能在教师的指导下掌握。也在培养学生的空间想象能力。

yjs21.cOm更多幼师资料编辑推荐

八年级数学课件十二篇


考试是一种严格的知识水平鉴定方法。通过考试可以检查学生的学习能力和其知识储备。对于不同的考试,为了保证结果的公正、公平,考场必须要求有很强的纪律约束,并且专门设有主考、监考等监督考试过程,绝对禁止任何作弊行为,否则将要承担法律和刑事责任。仅供参考,大家一起来看看吧。

八年级数学课件 篇1

一、变量与函数

1.变量:在一个变化过程中,数值发生变化的量叫做变量。

2.常量:数值始终不变的量叫做 常量。

3.函数:一般的,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说y是x的函数,x是自变量。Y的值叫函数值。

4.函数解析式:表示x与y的函数关系的式子,叫函数解析式。自变量的取值不能使函数解析式的分母为0。

5.函数的图像:一般的,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么在坐标平面内由这些点组成的图形,就是这个函数的图象。

6.描点法画函数图像的步骤:①列表、②描点、③连线。

表示函数的方法:①列表法、②解析式法、③图像法。

二、一次函数

1.正比例函数:一般地,形如y=kx(k为常数,且k≠0)的函数叫做正比例函数.其中k叫做比例系数。

2.正比例函数的图象与性质:

(1)图象:正比例函数y= kx (k 是常数,k≠0)) 的图象是经过原点的一条直线,我们称它为直线y= kx 。

(2)性质:当k>0时,直线y= kx经过第三,一象限,从左向右上升,即随着x的增大y也增大;当k

3.一次函数:一般地,形如y=kx+b(k,b为常数,且k≠0)的函数叫做一次函数。当b =0 时,y=kx+b 即为 y=kx,所以正比例函数,是一次函数的特例。

4.函数的图象与性质:

(1)一次函数y=kx+b(k,b为常数,且k≠0)的图象是一条直线,我们称它为直线 y=kx+b。 相当于由直线y=kx平移|b|个单位长度而得。

(2)性质:当k>0时,直线y= kx+b从左向右上升,即随着x的增大y也增大;当k

5.求函数解析式的方法: 待定系数法(先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法。)

八年级数学课件 篇2

一、基本情况分析

本次数学检测试卷题型多样,覆盖全面,能重点考察学生的应用基础知识能力。从整体上看,本次试题难度偏上,注重应用知识,内容紧密联系生活实际,注重了实践性和创新性。突出了学科特点,以能力立意命题,有利于考察数学基础和基本技能的掌握程度,有利于教学方法和学法的引导和培养。

二、试题分析

数学试卷分为“填空”、“判断”、“选择”、“计算”、“观察物体”、“解决问题”等几道大题。概括有以下特点:

1、注重基础知识

本套试题考查面广,涉及知识点多,难易程度偏上,能考察学生对知识的正确理解和应用水平。

2、试题结构均衡

试题做到了计算技能考查与思维水平考查相结合。其中“判断”、“填空”、“选择”、“计算”重在考查对基础知识的理解以及灵活应用情况,注重了数学概念,思维方式,解题技巧的检测。而“解决问题”考查了学生的观察能力、整合信息能力以及发散思维能力。

3、贴近生活实际

试题从学生熟悉的生活索取题材,把枯燥的知识生活化、情景化,让学生感觉到生活中处处有数学,数学离不开生活。

三、试卷分析

(一)取得成绩

1、基础知识部分。学生答的还算理想,这是我们在平时的教学中对基础知识抓的实,对学生应当掌握的知识训练的比较到位。大多数学生对本册书前半部分知识掌握得很牢固,但仍有部分学生出现问题。

2、计算能力不容乐观,但多数学生的计算准确率较以前都有明显的提高,这与平时的课堂训练,还有合理的作业布置是分不开的。

3、在解决问题中,学生基本能够解决本册知识与生活之间的联系,不过还是有部分学生因为审题不认真,对知识掌握不够牢固而丢失了很多分数,这是我们今后应当努力做好的。

(二)存在问题

1、“选择”中的第6题学生选对的正确率很小,学生的思考空间没有开发性,多数学生都做错了,这说明学生实际应用数学的意识还有待加强。

2、“计算”中的`解方程部分,很多学生失分不少。计算作为一个基础知识和基本技能,还需加强练习,其中部分学生是因为方法没有掌握,还有一部分是格式不正确。

3、“解决问题”的最后一题,对条件问题的分析综合能力不够,解决问题的策略训练有待提高。应用题是日常生活在数学中的反映,既能发展学生数学思维能力,也是培养学生应用意识和创新能力的重要途径,从卷面看:

⑴学生解决问题的分析、综合能力有待提高;

⑵学生解题的策略性还不够。这说明在平时的教学中,还要着重让学生学会找题中的数量关系。

(三)今后的教学方向

从试卷的方向来看,我认为今后在教学中可以从以下几个方面来改进:

1、培养学生良好的学习习惯,有个别学生在一些比较简单的计算题中出现问题,并不是他们不会,而是不够细心,比较浮躁。这是各班中普遍存在的问题,所以我认为最重要的还是要培养学生认真、细心、书写工整、独立检查等一些好的学习习惯。

2、立足于教材,扎根于生活。在教学中,我们既要以教材为本,扎扎实实地渗透教材的重点、难点,不忽视有些自己以为无关紧要的知识;又要在教材的基础上,紧密联系生活,让学生多了解生活中的数学,用数学解决生活的问题。

3、重视学生的学习过程,培养学生的审题能力、分析能力,掌握一定的解题技巧与方法,尤其是检查的良好习惯。加强学生的发散思维能力。

八年级数学课件 篇3

【活动目标】

1.认识正方体、长方体,感知它们的特征。

2.比较正方形和正方体、长方形和长方体之间的异同,初步了解立体图形和平面图形之间的关系。

3.在活动中体验帮助别人、合作游戏的快乐。

【活动准备】

1.搜集长方体和正方体的盒子及物品。

2.神秘袋一个,内装有正方体1个、长方形体2个(一个是6个面都是长方形;一个2个面是正方形,4个面是长方形)。

3.幼儿操作用小正方体、长方形体。

【活动过程】

一、通过小故事,引起幼儿的兴趣

师:今天老师接到一个电话,前几天森林里刮大风,把小兔子家的房子吹倒了,小兔子非常着急,怎么办呢?(小朋友帮助小兔搭房子)。

教师:小兔子有要求,搭建房子必须用指定的形体,我们要想帮助小兔子搭建房子,就先来认识一下用什么样的形体。

二、认识正方体、长方体

1.认识正方体的特征

(1)利用神秘袋导入活动。

放入6张一样大小、不同颜色的.正方形,取出一个正方体,认识正方体的特征(正方体有6个面)。

(2)幼儿取一个小正方体,自己操作探索(如:利用比一比、画一画等方法)验证正方体的6个面一样大。

小结:正方体不仅有6个面,而且6个面是一样大的正方形。

2.认识长方体的特征。

(1)教师放入神秘袋中6张不同颜色的长方形(分别两两相同大小),变出6个面都是长方形的长方体,引导幼儿比较长方体和正方体的不同。

长方体和正方体看上去都是方方的,都有六个面。不过正方体的6个面一样大,长方体的6个面不都是一样大。

(2)幼儿取一个小长方体(6个都是长方形),仔细观察发现,说出6个面是什么形状的。

小结:长方体有6个面,而且都是长方形的。

(3)教师从神秘袋中变出4个面是长方形、2个面是正方形的长方体。提问帮助幼儿认识这种长方体的特征。

这个形体有几个面?这些面都是什么形状的?

小结:有6个面,4个面是长方形的,2个面是正方形。

(4)幼儿取一个小长方体(4个面是长方形、2个面是正方形),仔细观察发现,说出6个面是什么形状的。

小结:这样有4个面是长方形、2个面是正方形的形体也是长方体。

3.请幼儿分成两组做游戏,帮小兔子搭房子,巩固对长方体和正方体的认识。

教师:我们认识了为小兔子搭建房子的正方体和长方体,下面就开始为小兔子搭建房子。

(1)请两组幼儿分别到老师前面的筐子里只选择长方体或正方体的物品,共同合作搭建一座房子。

(2)相互检查各组选择的形体对不对,若有选错的及时纠正。

4.活动延伸。

请幼儿课后在幼儿园、回家里找一找,有哪些东西也是正方体和长方体的,然后告诉小朋友和老师。

八年级数学课件 篇4

三角形的外角:

三角形的一条边的延长线和另一条相邻的边组成的角,叫做三角形的外角。

三角形的外角特征:

①顶点在三角形的一个顶点上,如∠ACD的顶点C是△ABC的一个顶点;

②一条边是三角形的一边,如∠ACD的一条边AC正好是△ABC的一条边;

③另一条边是三角形某条边的延长线如∠ACD的边CD是△ABC的BC边的延长线。

性质:

①. 三角形的外角与它相邻的内角互补。

②. 三角形的一个外角等于和它不相邻的两个内角的和。

③. 三角形的一个外角大于任何一个和它不相邻的内角。

④. 三角形的外角和等于360°。

设三角形ABC 则三个外角和=(A+B)+(A+C)+(B+C)=360度。

定理:三角形的一个外角等于不相邻的两个内角和。

定理:三角形的三个内角和为180度。

八年级数学课件 篇5

一、整式的乘法

1.同底数幂的乘法:aman=am+n(m,n都是正整数)即同底数幂相乘,底数不变,指数相加。

2.幂的乘方法则:(am)n=amn(m,n都是正整数)幂的乘方,底数不变,指数相乘。

3.积的乘方法则:(ab)n = anbn(n为正整数) 积的乘方=乘方的积

4.单项式与单项式相乘法则:

(1)系数与系数相乘;(2)同底数幂与同底数幂相乘;(3)其余字母及其指数不变作为积的因式

5.单项式与多项式相乘:就是用单项式去乘多项式的每一项,再把所得的积相加。

6.多项式与多项式相乘:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

二、乘法公式

1.平方差公式:(a+b)(a-b)=a2-b2。

2.完全平方公式:(a±b)2=a2±2ab+b2

口诀:前平方,后平方,积的两倍中间放,中间符号看情况。(这个情况就是前后两项同号得正,异号得负。)

3.添括号:添括号时,如果括号前面是正号,括到括号里面的各项都不变符号;如果括号前面是负号,括到括号里面的各项都改变符号。

八年级数学课件 篇6

多边形

1、多边形的概念:

在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。组成多边形的各条线段叫做多边形的边;每相邻两条边的公共端点叫做多边形的顶点;多边形相邻两边组成的角叫多边形的内角,一个n边形有n个内角;多边形的边与它的邻边的延长线组成的角叫做多边形的外角。在定义中应注意:

①一些线段(多边形的边数是大于等于3的正整数);

②首尾顺次相连,二者缺一不可;

③理解时要特别注意“在同一平面内”这个条件,其目的是为了排除几个点不共面的情况,即空间多边形。

2、多边形的分类:

多边形可分为凸多边形和凹多边形,画出多边形的任何一条边所在的直线,如果整个多边形都在这条直线的同一侧,则此多边形为凸多边形,反之为凹多边形。

凸多边形 凹多边形 各个角都相等、各个边都相等的多边形叫做正多边形。

3、多边形的对角线:

连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

(1)从n边形一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形。

(2)n边形共有条对角线。

4、多边形的内角和外角

(1)多边形的内角和公式:n边形的内角和为(n-2)×180°(2)多边形的外角和等于360°,它与边数的多少无关。

推论:(1)内角和与边数成正比:边数增加,内角和增加;边数减少,内角和减少。每增加一条边,内角的和就增加180°(反过来也成立),且多边形的内角和必须是180°的整数倍。

(2)多边形最多有三个内角为锐角,最少没有锐角(如矩形);多边形的外角中最多有三个钝角,最少没有钝角。

八年级数学课件 篇7

活动目标:

1、认识正方形,知道正方形的名称和基本特征。

2、让幼儿积极参与活动,体验探索的快乐,提高思维的灵活性,发展幼儿的想象力和创造力。

活动准备:

1、正方形娃娃一个、正方形手工纸两张、“正方形世界”图案一幅。

2、每个幼儿两张手工纸、一件正方形(或圆形、三角形)挂饰。

3、课前场地上布置好小动物的家,有圆形、三角形、正方形。

活动过程:

一、开始部分:出示正方形娃娃。

教师:今天,我给小朋友请来了一位客人“图形娃娃”,看一看,它是什么样子的呢?

幼儿:正方形。

二、基本部分:知道正方形的名称和基本特征。

1、 让幼儿观察正方形。

教师:正方形有几条边?几个角?(教师带领幼儿点数。)

幼儿:正方形有四条边,四个角。

2、教师以变魔术的游戏形式导入,激发幼儿兴趣,让幼儿积极探索正方形的基本特征。

教师打扮成魔术师的样子对幼儿说:“我是神奇的魔术师,我能变出很多很多的东西,看我变变变。”(边说边用一张正方形的手工纸按对角线快速地对折成四层小三角形。)提问:

(1) 正方形变成了什么形状?(三角形)

(2)正方形的边变到哪里去了?(启发幼儿观察并说出:正方形的边变到一块儿去了,它的四条边一样长。)

教师又对幼儿说:“我是神奇的魔术师,我能变出很多很多的东西,看我变变变。”(边说边用一张正方形手工纸按边快速地对折成四层小正方形。)提问:

(3)一张大的正方形变成了什么?(小的正方形)

(4)正方形的角变到哪里去了?(启发幼儿观察并说出:正方形的角也变到一块儿去了,四个角一样大。)

3、根据小班幼儿爱模仿的心理特点,让幼儿也来当小小魔术师,积极探索正方形的'基本特征。

教师:刚才老师扮演了魔术师,现在请小朋友也来当小小魔术师,看一看谁最聪明!(幼儿操作)

师幼共同小结:正方形有四条边、四个角,四条边儿一样长,四个角儿一样大。

4、游戏:正方形翻跟头。

教师:小朋友讲得真对,现在“正方形娃娃”要表演节目,给你们看“翻跟头”的游戏,请你们认真仔细地观察。(教师演示正方形转动的不同角度,让幼儿多角度的看,加深对正方形的认识,掌握其基本特征。)

教师:正方形翻跟头,翻到“正方形世界”里去了。教师出示“正方形世界”图案,幼儿观察后回答:

(1)“正方形世界”里有什么?(许多正方形)

(2)有哪些正方形?(红的、黄的、蓝的正方形;大的、小的正方形;不同角度的正方形。)

师幼共同小结:它们都有四条边、四个角,四条边儿一样长,四个角儿一样大。转正位置后(指与水平线平行),都是同一形状。

5、让幼儿感知正方形在生活中的应用,学会留意生活中的图形。

教师:小朋友,在我们日常生活中,有哪些东西是正方形的呢?(请幼儿说一说,找一找。)

小结:原来在生活中有这么多的正方形。

三、巩固应用。做游戏:小动物找家。

教师请一名幼儿扮演老狼,其余的幼儿扮演小动物,脖子上套着各种图形挂饰。小动物在老狼身后边走边问:“老狼老狼几点了?”老狼回答:“一点了。”如此反复,直到“六点了”,“天黑了。”老狼转身抓小动物,小动物们按图形挂饰快速地找到自己的家。游戏可交换挂饰反复进行。

教学反思:

1、将毫无生命的正方形称为“娃娃”,将枯燥的形状拟人化,这样能帮助幼儿将抽象的概念转化为具体的形象,使学习活动从一开始就让幼儿感到亲切、好玩,激发幼儿探讨的兴趣和欲望。

2、这节课,我不是直接把正方形的特征表述出来,而是引导幼儿通过对折游戏感知,充分给予了幼儿实际操作的机会,体现了让幼儿自己动手感知,自己得出结论这一科学的教育理念。

3、让幼儿通过寻找生活中的正方形,意识到生活中处处都有数学,培养孩子关注生活,了解生活的情感,达到学习数学的真正意义。

4、爱游戏是孩子的天性,游戏是幼儿最感兴趣的活动。活动中运用变魔术的游戏、正方形翻跟头的游戏、小动物找家的游戏,充分调动了幼儿的积极性、主动性和创造性,体现了“以游戏为幼儿园基本活动”的思想。

八年级数学课件 篇8

一、试卷分析:

1、从整体上看,本次试题难度适中,符合学生的认知水平。试题能全面考查半学期所学的知识,在考查基础知识和基本技能的同时,考查基本数学思想方法和综合运用数学知识的能力,有利于教学方法和学法的引导和培养。

2、不足之处是有些学生在答题时,暴露出学生的基础知识掌握不牢,计算能力不过关,练习不够,运用知识点十分不熟练,思维缺乏想象能力,缺乏灵活性;不能够认真审题,在运用数学知识解决生活实际问题上不足。

二、考试数据分析和学生答题主要错误分析:

我校八年级参考人数282人,及格69人,优良30人,20分以下110人,10分以下36人。

第5题、第20题考查学生对平方根、算术平方根、无理数、实数等有关实数概念、意义的认识,学生混淆不清,学生的基础知识掌握不牢,计算能力不过关。

第7题、第18题考查学生对特殊三角形、特殊平行四边形的.判断,学生思维缺乏想象能力。

第17、21小题探究勾股定理部分同学有困难,学生不能很好理解题意,缺乏数学思维导致在画图时不能正确构建直角三角形而失分。

第24、25题考查学生对平行四边形、特殊平行四边形的判断、学生书面表达能力差,逻辑混乱。

三、存在情况:

1、后进生情况令人担忧,缺乏学习目的,学习的知识点非常容易遗忘、老师在堂上讲解多遍的知识点,考试时仍然不会做;两级分化严重。

2、数学思维缺乏(数形结合思想),学生一遇到难题就怕,不愿开动脑筋思考,对条件的因果表达还存在相当的缺陷,对几何知识掌握不扎实。

3、对所学数学概念理解不透彻,对所学知识不会融会贯通,不能用所学知识解决实际问题。

四、今后打算和教学建议:

1、进一步加强思想教育、八年级是学生数学学习分化加剧的关键期,每个班级中都存在着一定数量的差生,他们对学习数学缺少信心,厌学情绪较重,有的甚至放弃数学学习、鉴于此,我们有责任在数学教学中对学生加强思想教育,端正学生学习态度,让其明白八年级数学学习的重要性,充分调动他们学习数学的主动性和积极性,最大限度地缩小差生面。

2、重视双基训练、在教学中要始终注意对学生双基的训练、要把运算的准确性落在实处,把书写规范化的训练落在实处、注重知识发生、发展过程的同时,有效安排学生的活动和技能训练、在教学过程中强化几何训练、强化格式、知识点和思维。

3、教师应充分备课、备学生、教师详细地备好每一节课,突出重点、难点,选取适合学生的练习题和作业,精讲多练提高每节的教学效率。

4、认真抓好提优补差、在教学中,问题情景的设计、教学过程的展开、练习的安排中,尽可能地让所有学生能主动参与,让那些没有上课就能完成作业或上了课却完全听不懂的学生有事可做,并认真做好差生的辅导工作。

总之,在今后的教学过程中要以学生为重点,重在引导学生学会学习,让学生能乐学、爱学、好学,采取有针对性的补救措施,提高学生的基础知识和基本技能,加强对学生课后学习和练习的监管和督促力度,加强学生分析问题的能力,培养其创新思维能力,为今后的学习数学打好基础。

八年级数学课件 篇9

一、变量与函数

[变量和常量]

在一个变化过程中,数值发生变化的量,我们称之为变量,而数值始终保持不变的量,我们称之为常量。

[函数]

一般地,在一个变化过程中,如果有两个变量 与 ,并且对于 的每一个确定的值, 都有唯一确定的值与其对应,那么我们就说 是自变量, 是 的函数。如果当 时 ,那么 叫做当自变量的值为 时的函数值。

[自变量取值范围的确定方法]

1、 自变量的取值范围必须使解析式有意义。

当解析式为整式时,自变量的取值范围是全体实数;当解析式为分数形式时,自变量的取值范围是使分母不为0的所有实数;当解析式中含有二次根式时,自变量的取值范围是使被开方数大于等于0的所有实数。

2、自变量的取值范围必须使实际问题有意义。

[函数的图像]

一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.

[描点法画函数图形的一般步骤]

第一步:列表(表中给出一些自变量的值及其对应的函数值);

第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);

第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。

[函数的表示方法]

列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。

解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。

图象法:形象直观,但只能近似地表达两个变量之间的函数关系。

[正比例函数]

一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数(proportional function),其中k叫做比例系数.

[正比例函数图象和性质]

一般地,正比例函数y=kx(k是常数,k≠0)的图象是一条经过原点和(1,k)的直线.我们称它为直线y=kx.当k>0时,直线y=kx经过三、一象限,从左向右上升,即随x的增大y也增大;当k

(1) 解析式:y=kx(k是常数,k≠0)

(2) 必过点:(0,0)、(1,k)

(3) 走向:k>0时,图像经过一、三象限;k

(4) 增减性:k>0,y随x的增大而增大;k

(5) 倾斜度:|k|越大,越接近y轴;|k|越小,越接近x轴

[正比例函数解析式的确定]——待定系数法

1. 设出含有待定系数的函数解析式y=kx(k≠0)

2. 把已知条件(一个点的坐标)代入解析式,得到关于k的一元一次方程

3. 解方程,求出系数k

4. 将k的值代回解析式

二、一次函数

[一次函数]

一般地,形如y=kx+b(k、b是常数,k 0)函数,叫做一次函数. 当b=0时,y=kx+b即y=kx,所以正比例函数是一种特殊的一次函数.

[一次函数的图象及性质]

一次函数y=kx+b的图象是经过(0,b)和(- ,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx平移|b|个单位长度得到.(当b>0时,向上平移;当b

(1)解析式:y=kx+b(k、b是常数,k 0)

(2)必过点:(0,b)和(- ,0)

(3)走向: k>0,图象经过第一、三象限;k

b>0,图象经过第一、二象限;b

直线经过第一、二、三象限

直线经过第一、三、四象限

直线经过第一、二、四象限

直线经过第二、三、四象限

(4)增减性: k>0,y随x的增大而增大;k

(5)倾斜度:|k|越大,图象越接近于y轴;|k|越小,图象越接近于x轴.

(6)图像的平移: 当b>0时,将直线y=kx的图象向上平移b个单位;

当b

[直线y=k1x+b1与y=k2x+b2的位置关系]

(1)两直线平行:k1=k2且b1 b2

(2)两直线相交:k1 k2

(3)两直线重合:k1=k2且b1=b2

[确定一次函数解析式的方法]

(1)根据已知条件写出含有待定系数的函数解析式;

(2)将x、y的几对值或图象上的几个点的坐标代入上述函数解析式中得到以待定系数为未知数的方程;

(3)解方程得出未知系数的值;

(4)将求出的待定系数代回所求的函数解析式中得出结果.

[一次函数建模]

函数建模的关键是将实际问题数学化,从而解决最佳方案、最佳策略等问题. 建立一次函数模型解决实际问题,就是要从实际问题中抽象出两个变量,再寻求出两个变量之间的关系,构建函数模型,从而利用数学知识解决实际问题.

正比例函数的图象和一次函数的图象在赋予实际意义时,其图象大多为线段或射线. 这是因为在实际问题中,自变量的取值范围是有一定的限制条件的,即自变量必须使实际问题有意义.

从图象中获取的信息一般是:(1)从函数图象的形状判定函数的类型;

(2)从横、纵轴的实际意义理解图象上点的坐标的实际意义.

解决含有多个变量的问题时,可以分析这些变量的关系,选取其中某个变量作为自变量,再根据问题的条件寻求可以反映实际问题的函数.

三、用函数观点看方程(组)与不等式

[一元一次方程与一次函数的关系]

任何一元一次方程到可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值. 从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.

[一次函数与一元一次不等式的关系]

任何一个一元一次不等式都可以转化为ax+b>0或ax+b

[一次函数与二元一次方程组]

(1)以二元一次方程ax+by=c的解为坐标的点组成的图象与一次函数y= 的图象相同.

(2)二元一次方程组 的解可以看作是两个一次函数y= 和y= 的图象交点.

三个重要的`数学思想

1.方程的思想。数学是研究事物的空间形式和数量关系的,初中数学最重要的就是等量关系,其次是不等量关系。最常见的等量关系就是方程。

2.数形结合的思想。任何一道题,只要与形沾边,就应该根据题意中的草图分析一番。这样做,不但直观,而且全面,整体性强。

3.对应的思想。

初中生数学成绩的提高,需要靠自己勤加练习和脚踏实地的去接受数学。

合数的概念

合数指自然数中除了能被1和本身整除外,还能被其他数(0除外)整除的数。与之相对的是质数,而1既不属于质dao数也不属于合数。最小的合数是4。其中,完全数与相亲数是以它为基础的。

八年级数学课件 篇10

分数的加减法

1、通分与约分虽都是针对分式而言,但却是两种相反的变形。约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来、

2、通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变。

3、一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备。

4、通分的依据:分式的基本性质。

5、通分的关键:确定几个分式的公分母。

通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。

6、类比分数的通分得到分式的通分:

把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。

7、同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。

同分母的分式加减运算,分母不变,把分子相加减,这就是把分式的运算转化为整式运算。

8、异分母的分式加减法法则:异分母的分式相加减,先通分,变为同分母的分式,然后再加减。

9、同分母分式相加减,分母不变,只须将分子作加减运算,但注意每个分子是个整体,要适时添上括号。

10、对于整式和分式之间的加减运算,则把整式看成一个整体,即看成是分母为1的分式,以便通分。

11、异分母分式的加减运算,首先观察每个公式是否最简分式,能约分的先约分,使分式简化,然后再通分,这样可使运算简化。

12、作为最后结果,如果是分式则应该是最简分式。

八年级数学课件 篇11

1、二元一次方程

①二元一次方程、含有两个未知数,并且所含未知数的项的次数都是1的整式方程叫做二元一次方程。

②二元一次方程的解、适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。

2、二元一次方程组

①含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。

②二元一次方程组的解二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。

③二元一次方程组的解法代入(消元)法、加减(消元)法

④一次函数与二元一次方程(组)的关系:

一次函数与二元一次方程的关系:直线y=kx+b上任意一点的坐标都是它所对应的二元一次方程kx- y+b=0的解

一次函数与二元一次方程组的关系:二元一次方程组的解可看作两个一次函数和的图象的交点。

当函数图象有交点时,说明相应的二元一次方程组有解;

当函数图象(直线)平行即无交点时,说明相应的二元一次方程组无解。

八年级数学课件 篇12

第十一章三角形

一、知识框架:

知识概念:

1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2、三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

3、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

4、中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。

5、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

6、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

7、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

8、多边形的内角:多边形相邻两边组成的角叫做它的内角。

9、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

10、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

11、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形。

12、平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,

13、公式与性质:

⑴三角形的内角和:三角形的内角和为180°

⑵三角形外角的性质:

性质1:三角形的一个外角等于和它不相邻的两个内角的和。

性质2:三角形的一个外角大于任何一个和它不相邻的内角。

⑶多边形内角和公式:边形的内角和等于·180°

⑷多边形的外角和:多边形的外角和为360°。

⑸多边形对角线的条数:

①从边形的一个顶点出发可以引条对角线,把多边形分成个三角形。

②边形共有条对角线。

第十二章全等三角形

一、知识框架:

二、知识概念:

1、基本定义:

⑴全等形:能够完全重合的两个图形叫做全等形。

⑵全等三角形:能够完全重合的两个三角形叫做全等三角形。

⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点。

⑷对应边:全等三角形中互相重合的边叫做对应边。

⑸对应角:全等三角形中互相重合的角叫做对应角。

2、基本性质:

⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性。

⑵全等三角形的性质:全等三角形的对应边相等,对应角相等。

3、全等三角形的判定定理:

⑴边边边():三边对应相等的两个三角形全等。

⑵边角边():两边和它们的夹角对应相等的两个三角形全等。

⑶角边角():两角和它们的夹边对应相等的两个三角形全等。

⑷角角边():两角和其中一个角的对边对应相等的两个三角形全等。

⑸斜边、直角边():斜边和一条直角边对应相等的两个直角三角形全等。

4、角平分线:

⑴画法:

⑵性质定理:角平分线上的点到角的两边的距离相等。

⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上。

5、证明的基本方法:

⑴明确命题中的已知和求证。(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)

⑵根据题意,画出图形,并用数字符号表示已知和求证。

⑶经过分析,找出由已知推出求证的途径,写出证明过程。

第十三章轴对称

一、知识框架:

二、知识概念:

1、基本概念:

⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。

⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称。

⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。

⑷等腰三角形:有两条边相等的三角形叫做等腰三角形。相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角。

⑸等边三角形:三条边都相等的三角形叫做等边三角形。

2、基本性质:

⑴对称的性质:

①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线。

②对称的图形都全等。

⑵线段垂直平分线的性质:

①线段垂直平分线上的点与这条线段两个端点的距离相等。

②与一条线段两个端点距离相等的点在这条线段的垂直平分线上。

⑶关于坐标轴对称的点的坐标性质

八年级下册数学课件


根据您的要求我整理了以下信息:“八年级下册数学课件”。教案课件是每个老师在开学前需要准备的东西,每个人都要计划自己的教案课件了。教案是教学成果的重要佐证。阅读一篇好文章把它分享给您的朋友让大家都能够从中受益!

八年级下册数学课件(篇1)

教学目标:

学会可化为一元一次方程或一元二次方程的分式方程的解法,会用去分母求方程的解、掌握解分式方程的一般步骤。

教学重点:

去分母法解可化为一元一次方程或一元二次方程的分式方程、验根的方法、

教学难点:

解分式方程的一般步骤。

教学过程:

复习引入:

1、什么叫分式方程?

2、解分式方程的基本思想:

分式方程整式方程

3、解方程(学生板演)

讲授新课:

1、由上述学生的板演归纳出解分式方程的一般步骤

(1)去分母:在方程的两边都乘以最简公分母,化为整式方程;

(2)解这个整式方程;

(3)检验:将所得的解代入原方程的最简公分母,若最简公分母为0,则为增根,必须舍去;若不为0,则为原方程的根、

2、范例讲解

(学生尝试练习后,教师讲评)

例1:解方程例2:解方程例3:解方程讲评时强调:

1、怎样确定最简公分母?(先将各分母因式分解)

2、解分式方程的步骤、

巩固练习:P1471t,2t、

课堂小结:解分式方程的一般步骤

布置作业:见作业本。

八年级下册数学课件(篇2)

【教学目标】

1.了解分式概念.

2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件.

【教学重难点】

重点:理解分式有意义的条件,分式的值为零的条件.

难点:能熟练地求出分式有意义的条件,分式的值为零的条件.

【教学过程】

一、课堂导入

1.让学生填写[思考],学生自己依次填出:,,,.

2.问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?

设江水的流速为x千米/时.

轮船顺流航行100千米所用的时间为小时,逆流航行60千米所用时间小时,所以=.

3.以上的式子,,,,有什么共同点?它们与分数有什么相同点和不同点?可以发现,这些式子都像分数一样都是A÷B的形式.分数的分子A与分母B都是整数,而这些式子中的A、B都是整式,并且B中都含有字母.

[思考]引发学生思考分式的分母应满足什么条件,分式才有意义?由分数的分母不能为零,用类比的方法归纳出:分式的分母也不能为零.注意只有满足了分式的分母不能为零这个条件,分式才有意义.即当B≠0时,分式才有意义.

二、例题讲解

例1:当x为何值时,分式有意义.

【分析】已知分式有意义,就可以知道分式的分母不为零,进一步解出字母x的取值范围.

(补充)例2:当m为何值时,分式的值为0?

(1);(2);(3).

【分析】分式的值为0时,必须同时满足两个条件:①分母不能为零;②分子为零,这样求出的m的解集中的公共部分,就是这类题目的解.

三、随堂练习

1.判断下列各式哪些是整式,哪些是分式?

9x+4,,,,,

2.当x取何值时,下列分式有意义?

3.当x为何值时,分式的值为0?

四、小结

谈谈你的收获.

五、布置作业

课本128~129页练习.

八年级下册数学课件(篇3)

第一章 勾股定理

1.勾股定理:直角三角形两直角边的平方和等于斜边的平方;即 。

2.勾股定理的证明:用三个正方形的面积关系进行证明(两种方法)。

3.勾股定理逆定理:如果三角形的三边长 , , 满足 ,那么这个三角形是直角三角形。满足 的三个正整数称为勾股数。

第二章 实数

1.平方根和算术平方根的概念及其性质:

(1)概念:如果 ,那么 是 的平方根,记作: ;其中 叫做 的算术平方根。

(2)性质:①当 0时, 0;当 0时, 无意义;② = ;③ 。

2.立方根的概念及其性质:

(1)概念:若 ,那么 是 的立方根,记作: ;

(2)性质:① ;② ;③ =

3.实数的概念及其分类:

(1)概念:实数是有理数和无理数的统称;

(2)分类:按定义分为有理数可分为整数的分数;按性质分为正数、负数和零。无理数就是无限不循环小数;小数可分为有限小数、无限循环小数和无限不循环小数;其中有限小数和无限循环小数称为分数。

4.与实数有关的概念: 在实数范围内,相反数,倒数,绝对值的意义与有理数范围内的意义完全一致;在实数范围内,有理数的运算法则和运算律同样成立。每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数,即实数和数轴上的点是一一对应的。因此,数轴正好可以被实数填满。

5.算术平方根的运算律: ( 0, 0); ( 0, 0)。

第三章 图形的平移与旋转

1.平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。平移不改变图形大小和形状,改变了图形的位置;经过平移,对应点所连的线段平行且相等;对应线段平行且相等,对应角相等。

2.旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。这点定点称为旋转中心,转动的角称为旋转角。旋转不改变图形大小和形状,改变了图形的位置;经过旋转,图形点的每一个点都绕旋转中心沿相同方向转动了相同和角度;任意一对对应点与旋转中心的连线所成的角都是旋转角;对应点到旋转中心的距离相等。

3.作平移图与旋转图。

八年级下册数学课件(篇4)

图形的平移

知识与技能目标:

1.平移的定义;2.平移的基本性质

过程与方法目标:

1.通过具体实例认识平移,理解平移的基本内涵.

2.探索平移的基本性质,理解平移前后两个图形对应点连线平行且相等,对应线段和对应角分别相等的性质.

情感态度与价值观目标:

经历观察、分析、操作、欣赏以及抽象、概括等过程,经历探索图形平移的基本性质的过程以及与他人合作交流的过程,进一步发展空间观念,增强审美意识。

教学重点:平移的基本性质.

教学难点:平移的基本内涵的理解.

教学方法:探索、发现法.

教具准备

图片:一些游乐园的图片、辘轳、电梯等.

电脑演示:平移的过程,粒子运动及行星运转等.

教学过程

Ⅰ.巧设情景问题,引入课题

同学们,还记得游乐园内的一些项目吗?(或投影片放图片,或在电脑上演示幻灯片):旋转木马、荡秋千、小火车、滑梯……它们曾经使我们许多人乐而忘返.不过,你想过没有:小火车在笔直的铁轨上开动时,火车头走了200米,那车尾走了多少米呢?

Ⅱ.讲授新课

下面我们来看第一节:生活中的平移(电脑演示:P57的图3—1,然后提出问题)

(1)图3—1中,传送带上的电视机的形状、大小在运动前后是否发生了变化?手扶电梯上的人呢?

好,(电脑出示问题,并演示四边形ABCD移动到四边形EFGH的位置的过程)

如果把移动前后的同一台电视机的屏幕分别记为四边形ABCD和四边形EFGH(如下图),那么四边形ABCD与四边形EFGH的形状、大小是否相同?

八年级下册数学课件(篇5)

(一)一般地,形如y=kx+b(k,b是常数,且k≠0)的函数,叫做一次函数,其中x是自变量。当b=0时,一次函数y=kx,又叫做正比例函数。

1.在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。

2.一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)。

3.正比例函数的图像总是过原点。

4.k,b与函数图像所在象限的关系:

当k>0时,y随x的增大而增大;当k

当k>0,b>0时,直线通过一、二、三象限;

当k>0,b

当k0时,直线通过一、二、四象限;

当k

当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。

这时,当k>0时,直线只通过一、三象限;当k

2、a2-b2=(a+b)(a-b);

3、a22ab+b2=(ab)2。

二、把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式。

1、把几个整式的积化成一个多项式的形式,是乘法运算。

2、把一个多项式化成几个整式的积的形式,是因式分解。

3、ma+mb+mcm(a+b+c)4、因式分解与整式乘法是相反方向的变形。

三、把多项式的各项都含有的相同因式,叫做这个多项式的各项的公因式.提公因式法分解因式就是把一个多项式化成单项式与多项式相乘的形式.找公因式的一般步骤:(1)若各项系数是整系数,取系数的最大公约数;(2)取相同的字母,字母的指数取较低的;(3)取相同的多项式,多项式的指数取较低的.(4)所有这些因式的乘积即为公因式.

四、分解因式的一般步骤为:(1)若有-先提取-,若多项式各项有公因式,则再提取公因式.(2)若多项式各项没有公因式,则根据多项式特点,选用平方差公式或完全平方公式.(3)每一个多项式都要分解到不能再分解为止.

五、形如a2+2ab+b2或a2-2ab+b2的式子称为完全平方式.

平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。③一个正数有2个平方根/0的平方根为0/负数没有平方根。④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。②正数的立方根是正数、0的立方根是0、负数的立方根是负数。③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

实数:①实数分有理数和无理数。②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。③每一个实数都可以在数轴上的一个点来表示。

1.要提高初中生对数学学习的兴趣和动力。首先可以从家庭引导,家长可以对数学产生浓厚的兴趣,言传身教,让孩子对数学有一种神秘的好感。老师也可以和学生进行贴心的交流,打造自己的人格魅力,让学生被自己吸引从而更好的对数学感兴趣。

2.初中生想要提高数学成绩就一定要重视基础,千里之堤始于砖泥,不重视基础的下场就是你觉得自己的数学学得很好成绩会很好,但是在你成绩出来的时候会低于你的预期很多。很多初中生经常是知道怎么演算就算了,而不去认真的做几遍,好高骛远,总想去冲击难题,结果连考试中最基础的方程都会错。

3.要抓好几个提高数学成绩的必要条件。数学运算,数学解题(保证数量和质量),准备错题本,准备一本参考书,遇到难题尽量靠自己去解决而不是直接看答案,再保持勤奋和多动笔练习。

八年级下册数学课件(篇6)

我是辽阳县唐马中学的张海英我上课的内容是九年义务教育北师大版数学教材八年级上册第四章三节《菱形》。下面我从教材分析,教法分析,学生分析与学法指导,教学过程四个方面谈一谈我对这节课的理解与设计。

一、教材分析

(一)地位和作用《菱形》紧接《平行四边形的性质》、《平行四边形的判别》之后,纵观整个初中数学教材,它是在学生掌握了平行四边形的性质与判别之后,具备了初步的观察,操作等活动经验的基础上讲授的。这一节既是前面所学知识的继续,又是后面学习矩形、正方形等知识的基础,起着承前启后的作用,同时又为九年级进一步学习平行四边形,特殊的平行四边形奠定基础。

(二)鉴于本节课在整个教材体系中的地位和作用,我确定了本节课的教学目标如下:

1、知识与技能,知道菱形在现实生活中的广泛应用,熟悉菱形的有关性质和判别条件,并能灵活运用。

2、过程与方法:经历探索菱形的性质和判别条件的过程,在观察、操作和分析的过程中进一步增强主动探究的意识,体会说理的基本方法。

3、情感态度与价值观。体验数学活动来源于生活又服务于生活,体现菱形的图形美,提高学生的审美情趣。

重点:菱形的性质与判别方法

难点:性质与判别方法的灵活运用

二、教法分析

针对本节课的特点,我准备采用“创设情境——观察讨论——总结归纳——知识运用”为主线的教学模式,观察、分析、讨论相结合的方法。教学中引导学生经过观察、思考、探索、交流获得知识,形成技能,在教学过程中注意创设思维情境,坚持学生主体,教师主导,在合作交流的气氛下进行师生互动,培养学生的自学能力和创新意识,让学生在教师的指导下自始至终处于一种积极思维,主动探究的学习状态。同时借助教具演示,以增加教学的直观性,更好的理解菱形的性质与判别,解决教学重点与难点。

三、学生分析与学法指导

在日常生活中,学生经常会遇到各种几何图形也包括菱形,但学生对这一图形的认识是直观的、肤浅的,因此在教学中既要利用原有直观感知及平行四边形的相关知识为基础,探索菱形的性质及判别方法,又要尝试利用它们解题。在本节课的教学中,要帮助学生学会运用观察,分析,比较,归纳,概括等方法,得出解决问题的方法,使传授知识与培养能力融为一体,使学生不仅学到科学的探究方法,而且体验到探究的乐趣,领会到成功的喜悦。

四、教学过程

(一)具体图片导入新课。

(二)出示本节课的学习目标,鼓舞学生树立信心,完成目标。

(三)通过课件演示,一般平行四边形变为菱形的过程,得出菱形定义,对比两图形异同点得出菱形的性质

(四)通过剪菱形探索菱形的判别方法。

(五)通过判别正误,例题教学,自我检测来尝试运用、巩固菱形的性质、判别

(六)回顾学习目标,检验完成情况,谈谈本节收获。

(七)作为课堂教学的延伸,布置作业。

八年级下册数学课件(篇7)

学习目标(学习重点):

1、经历探索菱形的识别方法的过程,在活动中培养探究意识与合作交流的习惯;

2、运用菱形的识别方法进行有关推理.

补充例题:

例1、 如图,在△ABC中,AD是△ABC的角平分线。DE∥AC交AB于E,DF∥AB交AC于F.四边形AEDF是菱形吗?说明你的理由.

例2、如图,平行四边形ABCD的对 角线AC的垂直平分线与边AD、BC分别交于E、F.

四边形AFCE是菱形吗?说明理由.

例3、如图 , ABCD是矩形纸片,翻折B、D,使BC、AD恰好落在AC上,设F、H分别是B、D落在AC上的两点,E、G分别是折痕CE、AG与AB、CD的交点

(1)试说明四边形AECG是平行四边形;

(2)若AB=4cm,BC=3cm,求线段EF的长;

(3)当矩形两边AB、BC具备怎样的关系时,四边形AECG是菱形.

课后续助:

一、填空题

1、如果四边形ABCD是平行四边形,加上条件___________________,就可以是矩形;加上条件_______________________,就可以是菱形

2、如图,D、E、F分别是△ABC的边BC、CA、AB上的点,

且DE∥BA,DF∥ CA

(1)要使四边形AFDE是菱形,则要增加条件______________________

(2)要使四边形AFDE是矩形,则要增加条件______________________

二、解答题

1、如图,在□ABCD中 ,若2,判断□ABCD是矩形还是菱形?并说明理由。

2、如图 ,平行四边形A BCD的两条对角线AC,BD相交于点O,OA=4,OB=3,AB=5.

(1) AC,BD互相垂直吗?为什么?

(2) 四边形ABCD是菱形 吗?

3、如图,在□ABCD中,已知ADAB,ABC的平分线交AD于E,EF∥AB交BC于F,试问: 四 边形ABFE是菱形吗?请说明理由。

4、如图,把一张矩形的纸ABCD沿对角线BD折叠,使点C落在点E处,BE与AD交于点F.

⑴求证:ABF≌

⑵若将折叠的图形恢复原状,点F与BC边上的点M正好重合,连接DM,试判断四边形BMDF的形状,并说明理由.

八年级下册数学教案篇2

教学目标:

1、经历数据离散程度的探索过程

2、了解刻画数据离散程度的三个量度极差、标准差和方差,能借助计算器求出相应的数值。

教学重点:会计算某些数据的极差、标准差和方差。

教学难点:理解数据离散程度与三个差之间的关系。

教学准备:计算器,投影片等

教学过程:

一、创设情境

1、投影课本P138引例。

(通过对问题串的解决,使学生直观地估计从甲、乙两厂抽取的20只鸡腿的平均质量,同时让学生初步体会平均水平相近时,两者的离散程度未必相同,从而顺理成章地引入刻画数据离散程度的一个量度极差)

2、极差:是指一组数据中最大数据与最小数据的差,极差是用来刻画数据离散程度的一个统计量。

二、活动与探究

如果丙厂也参加了竞争,从该厂抽样调查了20只鸡腿,数据如图(投影课本159页图)

问题:1、丙厂这20只鸡腿质量的平均数和极差是多少?

2、如何刻画丙厂这20只鸡腿质量与其平均数的差距?分别求出甲、丙两厂的20只鸡腿质量与对应平均数的差距。

3、在甲、丙两厂中,你认为哪个厂鸡腿质量更符合要求?为什么?

(在上面的情境中,学生很容易比较甲、乙两厂被抽取鸡腿质量的极差,即可得出结论。这里增加一个丙厂,其平均质量和极差与甲厂相同,此时导致学生思想认识上的矛盾,为引出另两个刻画数据离散程度的量度标准差和方差作铺垫。

三、讲解概念:

方差:各个数据与平均数之差的平方的平均数,记作s2

设有一组数据:x1, x2, x3,,xn,其平均数为

则s2= ,

而s= 称为该数据的标准差(既方差的算术平方根)

从上面计算公式可以看出:一组数据的极差,方差或标准差越小,这组数据就越稳定。

四、做一做

你能用计算器计算上述甲、丙两厂分别抽取的20只鸡腿质量的方差和标准差吗?你认为选哪个厂的鸡腿规格更好一些?说说你是怎样算的?

(通过对此问题的解决,使学生回顾了用计算器求平均数的步骤,并自由探索求方差的详细步骤)

五、巩固练习:课本第172页随堂练习

六、课堂小结:

1、怎样刻画一组数据的离散程度?

2、怎样求方差和标准差?

七、布置作业:习题5.5第1、2题。

八年级下册数学教案篇3

教学目标:

知识目标:

1、初步掌握函数概念,能判断两个变量间的关系是否可看作函数。

2、根据两个变量间的关系式,给定其中一个量,相应地会求出另一个量的值。

3、会对一个具体实例进行概括抽象成为数学问题。

能力目标:

1、通过函数概念,初步形成学生利用函数的观点认识现实世界的意识和能力。

2、经历具体实例的抽象概括过程,进一步发展学生的抽象思维能力。

情感目标:

1、经历函数概念的抽象概括过程,体会函数的模型思想。

2、让学生主动地从事观察、操作、交流、归纳等探索活动,形成自己对数学知识的理解和有效的学习模式。

教学重点:

掌握函数概念。

判断两个变量之间的关系是否可看作函数。

能把实际问题抽象概括为函数问题。

教学难点:

理解函数的概念。

能把实际问题抽象概括为函数问题。

教学过程设计:

一、创设问题情境,导入新课

『师』:同学们,你们看下图上面那个像车轮状的物体是什么?

『生』:摩天轮。

『师』:你们坐过吗?

……

『师』:当你坐在摩天轮上时,人的高度随时在变化,那么变化是否有规律呢?

『生』:应该有规律。因为人随轮一直做圆周运动。所以人的高度过一段时间就会重复依次,即转动一圈高度就重复一次。

『师』:分析有道理。摩天轮上一点的高度h与旋转时间t之间有一定的关系。请看下图,反映了旋转时间t(分)与摩天轮上一点的高度h(米)之间的关系。

大家从图上可以看出,每过6分钟摩天轮就转一圈。高度h完整地变化一次。而且从图中大致可以判断给定的时间所对应的高度h。下面根据图5-1进行填表:

t/分 0 1 2 3 4 5 …… h/米

t/分 0 1 2 3 4 5 …… h/米 3 11 37 45 37 11 ……

『师』:对于给定的时间t,相应的高度h确定吗?

『生』:确定。

『师』:在这个问题中,我们研究的对象有几个?分别是什么?

『生』:研究的对象有两个,是时间t和高度h。

『师』:生活中充满着许许多多变化的量,你了解这些变量之间的关系吗?如:弹簧的长度与所挂物体的质量,路程的距离与所用时间……了解这些关系,可以帮助我们更好地认识世界。下面我们就去研究一些有关变量的问题。

二、新课学习

做一做

(1)瓶子或罐子盒等圆柱形的物体,常常如下图那样堆放,随着层数的增加,物体的总数是如何变化的?

填写下表:

层数n 1 2 3 4 5 … 物体总数y 1 3 6 10 15 … 『师』:在这个问题中的变量有几个?分别师什么?

『生』:变量有两个,是层数与圆圈总数。

(2)在平整的路面上,某型号汽车紧急刹车后仍将滑行S米,一般地有经验公式,其中V表示刹车前汽车的速度(单位:千米/时)

①计算当fenbie为50,60,100时,相应的滑行距离S是多少?

②给定一个V值,你能求出相应的S值吗?

解:略

议一议

『师』:在上面我们研究了三个问题。下面大家探讨一下,在这三个问题中的共同点是什么?不同点又是什么?

『生』:相同点是:这三个问题中都研究了两个变量。

不同点是:在第一个问题中,是以图象的形式表示两个变量之间的关系;第二个问题中是以表格的形式表示两个变量间的关系;第三个问题是以关系式来表示两个变量间的关系的。

『师』:通过对这三个问题的研究,明确“给定其中某一个变量的值,相应地就确定了另一个变量的值”这一共性。

函数的概念

在上面各例中,都有两个变量,给定其中某一各变量(自变量)的值,相应地就确定另一个变量(因变量)的值。

一般地,在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。

三、随堂练习

书P152页 随堂练习1、2、3

四、本课小结

初步掌握函数的概念,能判断两个变量间的关系是否可看作函数。

在一个函数关系式中,能识别自变量与因变量,给定自变量的值,相应地会求出函数的值。

函数的三种表达式:

(1)图象;(2)表格;(3)关系式。

五、探究活动

为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过10吨时,水价为每吨1、2元;超过10吨时,超过的部分按每吨1、8元收费,该市某户居民5月份用水x吨(x>10),应交水费y元,请用方程的知识来求有关x和y的关系式,并判断其中一个变量是否为另一个变量的函数?

(答案:Y=1、8x-6或)

六、课后作业

习题6.1

八年级下册数学教案篇4

【教学目标】

1.了解分式概念.

2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件.

【教学重难点】

重点:理解分式有意义的条件,分式的值为零的条件.

难点:能熟练地求出分式有意义的条件,分式的值为零的条件.

【教学过程】

一、课堂导入

1.让学生填写[思考],学生自己依次填出:,,,.

2.问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?

设江水的流速为x千米/时.

轮船顺流航行100千米所用的时间为小时,逆流航行60千米所用时间小时,所以=.

3.以上的式子,,,,有什么共同点?它们与分数有什么相同点和不同点?可以发现,这些式子都像分数一样都是A÷B的形式.分数的分子A与分母B都是整数,而这些式子中的A、B都是整式,并且B中都含有字母.

[思考]引发学生思考分式的分母应满足什么条件,分式才有意义?由分数的分母不能为零,用类比的方法归纳出:分式的分母也不能为零.注意只有满足了分式的分母不能为零这个条件,分式才有意义.即当B≠0时,分式才有意义.

二、例题讲解

例1:当x为何值时,分式有意义.

【分析】已知分式有意义,就可以知道分式的分母不为零,进一步解出字母x的取值范围.

(补充)例2:当m为何值时,分式的值为0?

(1);(2);(3).

【分析】分式的值为0时,必须同时满足两个条件:①分母不能为零;②分子为零,这样求出的m的解集中的公共部分,就是这类题目的解.

三、随堂练习

1.判断下列各式哪些是整式,哪些是分式?

9x+4,,,,,

2.当x取何值时,下列分式有意义?

3.当x为何值时,分式的值为0?

四、小结

谈谈你的收获.

五、布置作业

课本128~129页练习.

八年级下册数学教案篇5

教学目标:

1、知识目标:了解图案最常见的构图方式:轴对称、平移、旋转……,理解简单图案设计的意图。认识和欣赏平移,旋转在现实生活中的应用,能够灵活运用轴对称、平移、旋转的组合,设计出简单的图案。

2、能力目标:经历收集、欣赏、分析、操作和设计的过程,培养学生收集和整理信息的能力,分析和解决问题的能力,合作和交流的能力以及创新能力。

3、情感体验点:经历对典型图案设计意图的分析,进一步发展学生的空间观念,增强审美意识,培养学生积极进取的生活态度。

重点与难点:

重点:灵活运用轴对称、平移、旋转……等方法及它们的组合进行的图案设计。

难点:分析典型图案的设计意图。

疑点:在设计的图案中清晰地表现自己的设计意图

教具学具准备:

提前一周布置学生以小组为单位,通过各种渠道收集到的图案、图标的剪贴、临摹以及。多种常见的图案及其形成过程的动画演示。

教学过程设计:

1、情境导入:在优美的音乐中,逐个展示生活中常见的典型图案,并让学生试着说一说每种图案标志的对象。(展示课本图3—23)

明确在欣赏了图案后,简单地复习旋转的概念,为下面图案的设计作好理论准备。对教材给出的六个图案通过观察、分析进行议论交流,让学生初步了解图案的设计中常常运用图形变换的思想方法,为学生自己设计图案指明方向。其中图(1)、(2)、(3)、(4)、(5)、(6)都可以通过旋转适合角度形成(可以让学生自己说说每个旋转的角度和旋转的次数及旋转中心的位置),另外图(2)、(3)、(5)也可以通过轴对称变换形成(可以让学生指出对轴对称及对称轴的条数),而图(2)可以通过平移形成。

2、课本

1 欣赏课本75页图3—24的图案,并分析这个图案形成过程。

评注:图案是密铺图案的代表,旨在通过对典型图案的分析欣赏,使学生逐步能够进行图案设计,同时了解轴对称、平移、旋转变换是图案制作的基本手段。例题解答的关键是确定“基本图案”,然后再运用平移、旋转关系加以说明,注意旋转中心可以为图形上某一特征的点。

评注:可以取其中的任何一个为基本图案,然后通过变换得到。而且变化方式也可以是:左下角的图案通过轴对称变换得到左上图和右下图。

(二)课内练习

(1) 以小组为单位,由每组指定一个同学展示该组搜集得到的图案,并在全班交流。

(2) 利用下面提供的基本图形,用平移、旋转、轴对称、中心对称等方法进行图案设计,并简要说明自己的设计意图。

(三)议一议

生活中还有那些图案用到了平移或旋转?分析其中的一个,并与同伴进行交流。

(四)课时小结

本课时的重点是了解平移、旋转和轴对称变换是图案设计的基本方法,并能运用这些变换设计出一些简单的图案。

通过今天的学习,你对图案的设计又增加了哪些新的认识?(可以利用平移、旋转、轴对称等多种方法来设计,而且设计的图案要能表达自己的创作意图,再就是图案的设计一定要新颖,独特,这样才能使人过目不忘,达到标志的效果。)

八年级数学上册教案(五)延伸拓展

进一步搜集身边的各种标志性图案,尝试着重新设计它,并结合实际背景分析它的设计意图。

八年级下册数学课件(篇8)

一、教学目标

1.使学生了解判定定理1及直角三角形相似定理的证明方法并会应用,掌握例2的结论.

2.继续渗透和培养学生对类比数学思想的认识和理解.

3.通过了解定理的证明方法,培养和提高学生利用已学知识证明新命题的能力.

4.通过学习,了解由特殊到一般的唯物辩证法的观点.

二、教学设计

类比学习,探讨发现

三、重点及难点

1.教学重点:是判定定理l及直角三角形相似定理的应用,以及例2的结论.

2.教学难点 :是了解判定定理1的证题方法与思路.

四、课时安排

1课时

五、教具学具准备

多媒体、常用画图工具、

六、教学步骤

[复习提问]

1.什么叫相似三角形?什么叫相似比?

2.叙述预备定理.由预备定理的题所构成的三角形是哪两种情况.

[讲解新课]

我们知道,用相似三角形的定义可以判定两个三角形相似,但涉及的条件较多,需要有

三对对应角相等,三条对应边的比也都相等,显然用起来很不方便.那么从本节课开始我们

来研究能不能用较少的几个条件就能判定三角形相似呢?

上节课讲的预备定理实际上就是一个判定三角形相似的方法,现在再来学习几种方法.

我们已经知道,全等三角形是相似三角形当相似比为1时的特殊情况,判定两个三角形

全等的三个公理和判定两个三角形相似的三个定理之间有内在的联系,不同处仅在于前者是后者相似比等于1的情况,教学时可先指出全等三角形与相似三角形之间的关系,然后引导学生自己用类比的方法找出新的命题,如:

问:判定两个三角形全等的方法有哪几种?

答:SAS、ASA(AAS)、SSS、HL.

问:全等三角形判定中的“对应角相等”及“对应边相等”的语句,用到中应如何说?

答:“对应角相等”不变,“对应边相等”说成“对应边成比例”.

问:我们知道,一条边是写不出比的,那么你能否由“ASA”或“AAS”,采用类比的方法,引出一个关于三角形相似判定的新的命题呢?

答:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.

强调:(1)学生在回答中,如出现问题,教师要予以启发、引导、纠正.

(2)用类比方法找出的新命题一定要加以证明.

如图5-53,在△ABC和△ 中, , .

问:△ABC和△ 是否相似?

分析:可采用问答式以启发学生了解证明方法.

问:我们现在已经学习了哪几个判定三角形相似的方法?

答:①三角形的定义,②上一节学习的预备定理.

问:根据本命题条件,探讨时应采用哪种方法?为什么?

答:预备定理,因为用定义条件明显不够.

问:采用预备定理,必须构造出怎样的图形?

答: 或 .

问:应如何添加辅助线,才能构造出上一问的图形?

此问学生回答如有困难,教师可领学生共同探讨,注意告诉学生作辅助线一定要合理.

(1)在△ABC边AB(或延长线)上,截取 ,过D作DE∥BC交AC于E.

“作相似.证全等”.

(2)在△ABC边AB(或延长线上)上,截取 ,在边AC(或延长线上)截取AE= ,连结DE,“作全等,证相似”.

(教师向学生解释清楚“或延长线”的情况)

虽然定理的证明不作要求,但通过刚才的分析让学生了解定理的证明思路与方法,这样有利于培养和提高学生利用已学知识证明新命题的能力.

判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.

简单说成:两角对应相等,两三角形相似.

例1 已知 和 中 , , , .

求证: ∽ .

此例题是判定定理的直拉应用,应使学生熟练掌握.

例2 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似.

已知:如图5-54,在 中,CD是斜边上的高.

求证: ∽ ∽ .

该例题很重要,它一方面可以起到巩固、掌握判定定理1的作用;另一方面它的应用很广泛,并且可以直接用它判定直角三角形相似,教材上排了黑体字,所以可以当作定理直接使用.

即 ∽△∽△.

[小结]

1判定定理1的引出及证明思路与方法的分析,要求学生掌握两种辅助线作法的思路.

2.判定定理1的应用以及记住例2的结论并会应用.

七、布置作业

八年级下册数学课件(篇9)

教学目标

(一)教学知识点

1.用分式表示生活中的一些量.

2.分式的基本性质及分式的有关运算法则.

3.分式方程的概念及其解法.

4.列分式方程,建立现实情境中的数学模型.

(二)能力训练要求

1.使学生有目的的梳理知识,形成这一章完整的知识体系.

2.进一步体验“类比”与“转化”在学习分式的基本性质、分式的运算法则及其分式方程解法过程中的重要作用.

3.提高学生的归纳和概括能力,形成反思自己学习过程的意识.

(三)情感与价值观要求

使学生在总结学习经验和活动经验的过程中,体验因学习方法的大力改进而带来的快乐,成为一个乐于学习的人.

●教学重点

1.分式的概念及其基本性质.

2.分式的运算法则.

3.分式方程的概念及其解法.

4.分式方程的应用.

●教学难点

1.分式的运算及分式方程的解法.

2.分式方程的应用.

●教学方法

讨论——交流法

讨论交流本章学习过程中的经验和收获,在反思过程中建立知识体系.

●教具准备

投影片两张,实物投影仪

第一张:问题串,(记作§3.5A)

第二张:例题分析,(记作§3.5B)

●教学过程

Ⅰ.提出问题,回顾本章的知识.

出示投影片(§3.5A)

问题串:

1.实际生活中的一些量可以用分式表示,一些问题可以通过列分式方程解决,请举一例.

2.分式的性质及有关运算法则与分数有什么异同?

3.如何解分式方程?它与解一元一次方程有何联系与区别?

[师]同学们可针对以上问题,以小组为单位讨论、交流,然后在全班进行交流.

(教师可参与于学生的讨论中,注意扫除他们学习中常犯的错误)

[生]实际生活中的一些量可以用分式表示,例如(用实物投影)

某人在外面晨练,有m分钟,他每分钟走a米;有n分钟,他每分钟跑b米.求此人晨练平均每分钟行多少米?

[生]我们组来回答此问题,此人晨练时平均每分钟行米.

我们组也举出一个例子:长方形的面积为8m2,长为pm,宽为____________m.

[生]应为m.

[师]同学们举的例子都很有特色,谁还能举.

[生]如果某商品降价x%后的售价为a元,那么该商品的原价为多少元?

[生]原价为元.……

[师]都是分式.分式有什么特点?和整式有何区别?

[生]整式A除以整式B,可表示成的形式,如果除式B中含有字母,则称是分式.而整式分母中不含字母.

[生]实际生活中的一些问题可用分式方程来解决.例如(用实物投影仪)

某车间加工1200个零件后,采用了新工艺,工效是原来的1.5倍,这样加工同样多的零件就少用10h,采用新工艺前、后每时分别加工多少个零件?

解:设采用新工艺前、后每时分别加工x个,1.5x个,根据题意,得

八年级下册数学课件(篇10)

一、教学目标:

1、学生在观察、操作、游戏等活动中体验分类标准的多样性,知道根据不同的分类标准可以有不同的分类方法,体会分类的作用。

2、感受数学与生活的紧密联系,培养学习兴趣,培养操作、合作、表达的能力,体验成功的喜悦。

二、教学重点:

体验分类的结果在同一标准下的一致性、不同标准的多样性。

三、教学难点:

让学生体会分类的思想方法,培养学生初步的观察能力、比较能力和动手操作能力。

四、教学过程:

(一)创设情境,体验分类多样性。

1、猜谜语。

四四方方一口箱,书本文具里面藏,每天上学离不了,它是我们的好伙伴。

2、对了,小朋友们每天都要带着书包来上学,陈老师想知道你们的书包都是谁整理的呀?

3、噢,除了一两个小朋友是爸爸妈妈帮助整理的以外,大部分小朋友都是自己整理的呀,都是自己的事情自己做的好孩子!

4、整理书包比赛。(动手整理自己的书包。)

(1)小朋友们平时都整理过书包,先请大家和同小组的小朋友们商量一下,打算怎么整理自己的书包。

(2)小朋友们开始互相讨论。

(3)小组汇报整理的情况:有按大小分的,有按语数分的,有按书本分的。

5、组织学生看书。

6、小结什么是分类,以及分类有什么好处。

(二)分一分。

1、分人物头像。

(1)请小朋友们以四人为一组,互相讨论看这么多的客人,该怎样分类,按什么分,分成几组,陈老师看哪一组分得又快又好,方法最多。

(2)学生边说教师边归纳,边根据分的情况动手把黑板上的人物头像移动分类。

(3)分的结果大致有以下几种:按男女分;按年龄分;按是否戴眼镜分;按是否扎辫子分;按领子形状分;按是否系红领巾分……

2、分动物。

(可以按生活环境、大小来分。)

(1)老师要带大家一起来看可爱的动物,藏在袋子里,请小朋友们打开袋子取出图片。

(2)生取出图片看到动物后进行分类。

(3)小组合作动手分一分。

3、分几何图形。

(可以按颜色、大小、形状来分。)

你们有本领给这些图形也分分类吗?这回有个要求,请小朋友们自己先独立地思考,想想我要怎么分,按什么分,分几类,看哪个小朋友想的方法又多又合理。

4、分算式。你们能给这些算式也分分类吗?怎样分?

(三)总结。

今天,我们学会了一个新本领――分类。在平时的学习和生活中有哪些地方需要用到它呢?

小朋友们以后在生活中还会经常用到。

八年级下册数学课件(篇11)

第一章一元一次不等式和一元一次不等式组

第1次

1.不等关系

一、教学目标

1、知识与技能目标

①理解不等式的意义.

②能根据条件列出不等式.

2、过程与方法目标

通过认识实际问题中的不等式关系,训练学生的分析判断能力和逻辑推理能力。

3、情感与态度目标

通过用不等式解决实际问题,使学生认识数学与人类生活的密切联系以及对人类历史发展的作用,并激发学生学习数学的信心和兴趣。

二、教学重点

通过探寻实际问题中的不等式关系,认识不等式。

三、教学难点

通过认识实际问题中的不等式关系,训练学生的分析判断能力和逻辑推理能力。

四、教学过程

第一环节:创设问题情景,引入新课

活动内容:寻找相等的量和不等的量

师:我们学过等式,知道利用等式可以解决许多问题,同时,我们也知道现实生活中还存在许多不等关系,利用不等关系同样可以解决实际问题,本章我们就来了解不等式有关的内容。

师:既然不等式关系在实际生活中并不少见,大家肯定能举出不少例子。

生:

师:还有其他例子吗?

(同学们各抒己见)

师:我这里也有一些例子。拿出给同学们参考一下。

八年级上册数学课件6篇


教案课件是教师工作中的一部分,如果教师还没有写,现在还来得及。学生反应可以成为教师反思课堂教学的机会,要写好教案课件,是否有好的范文可以借鉴呢?为了让您更加满意,我们特别编辑了“八年级上册数学课件”,这份材料仅供参考,实际操作需要根据实际情况进行。

八年级上册数学课件【篇1】

(1) 使学生经历用不同方法测量物体长度的过程。

(2) 在实践操作活动中,体会统一长度单位的必要性,了解长度单位的形成过程。

通过学生的观察、探究等学习活动,让学生在亲身经历的创造活动中,建立起对长度单位的理解。

在学习过程中,培养学生团结协作的精神和合作的意识。

教学重难点:

重点:合学生亲身经历不同测量工具的合用,体会测量方法的多样性和统一测量单位的必要性。

通过小组合作学习突破难点。

将学生分成4—6人的合作学习小组。

学生准备:学生尺、剪刀、宽1厘米的白纸条、1角的硬币、回形针、小刀、棱长1厘米的小方木。

课堂导语:同学们,比一比粉笔和回形针,哪个长,哪个短?粉笔和铅笔哪个长,哪个短?

一会说粉笔长,一会说粉笔短,这是为什么呢?这根粉笔到底有多长,有多短呢?大家想知道吗?

(1) 提出问题。

同学们,你知道我们的课桌有多长吗?让学生讨论,想办法,小组交流。

(2) 汇报交流,分组活动。

刚才同学们想了很多办法,用1角的硬币、手、三角形学具、方木块等作为工具测量,下面就请同学们分成5人一组,和老师一起测量课桌的长度。更多

测量过程中教师巡回指导。

(3) 小组交流。

让每个小组选派代表在全班交流测量结果。显然,同学们和老师的测量结果不同。

(4) 质疑问难。

为什么我们测量的都是课桌的长度,量出的结果却不一样呢?为什么同学们一拃一拃地量,老师也一拃一拃地量,结果也不一样呢?

让学生充分发表看法,使他们逐渐明白因为选用的是不同的手作为测量标准,所以量出的结果不同。

那么怎样才能得到相同的结果呢?(用相同标准进行测量)让全班同学选同一物品(如小刀或小方木)再一次测量课桌的长度,并汇报测得的结果。由此归纳出:要想得到相同的结果,应选用同样的物品作标准进行测量。

(5) 活动延伸。

①用回形针测量数学课本的宽,用小刀测量一个文具盒的长。

学生测量后汇报测量结果。(数学课本的宽是5个回形针的长,文具盒的长是5个小刀的长)

师:数学课本和文具盒不一样长,为什么它们都用5表示?

让学生分组讨论,然后集体交流。

②归纳升华。

同学们,数学课本的宽和文具盒的塔尖不一样的,它们都用5表示是因为测量的标准不一样。因此测量物体的长度必须用统一的标准。

用手一拃一拃地量桌子的长、高及凳子的高,可以一次接一次地测量。

(1) 大家亲自测量了很多物体的长度,在测量过程中,你们学会了什么?

让学生自己总结本课所学内容。

(2) 归纳强调。

在测量物体长度时,必须要用统一的标准去测量。

二用回形针测量数学课本的宽,用小刀测量文具盒的长。

教学内容:教材第3页及第4页做一做,练习一第1、2题。

(1) 通过量一量,认识长度单位厘米,初步建立1厘米的长度观念,体会1厘米的实际长度。

(2) 学会用直尺测量较短物体的长度(限整厘米)。

通过实际测量与交流,了解测量方法的多样性,初步体会测量单位的重要性。

在学习过程中,引导学生探索知识间的内在联系,激发学生学习兴趣,培养学生合作意识及良好的学习习惯。

难点;体验1厘米的长度,并形成直观印象。

图钉、刻度尺、小木棒、纸条、铅笔、练习本、墨水瓶盒、CAI课件。

老师节就要到了,我们班布置教室挂拉花时发现差了截,同学们准备用彩纸补做一条拉花,还要做多长呢?我们先找根小棒量一量。咦,怎么测量的结果不一样呢?

结论:测量的工具不同,长度标准不同,所以测量的结果不一样。

为了准确的测量,人匀发明了带刻度的尺子,我们今天就来认识“厘米”并用“厘米”作单位测量物体的长度。(板书:认识厘米 用厘米量)

(1) 认识厘米。

①认识刻度尺。

②认识1厘米。

1厘米有多长(从刻度0到刻度1是1厘米,从刻度1到刻度2是1厘米,从刻度2到刻度3也是1厘米)

③认识刻度尺上的几厘米。

从刻度0到刻度2是几厘米?4厘米有几大格?请同学们说一说。

学生汇报。

(2) 用厘米量。

① 每人发一张纸条,先估计大约有多长,再用刻度尺量一量。

② 说一说是怎样量的?

(把尺子上的0刻度线对准纸条左端,纸条右端对着数字几,就是几厘米)

③ 课件演示测量纸条过程。

④ 测量下面物体的长度。

(1) 完成“做一做”、练习一第1题。集体订正。

(2) 小组使用完成练习一的第2题,量完后互相看一看比一比。

八年级上册数学课件【篇2】

4、单项式的次数:单项式中所有字母的指数的和叫单项式的次数。

5、多项式的次数:多项式中次数的项的次数,就是这个多项式的次数。

6、余角:两个角的和为90度,这两个角叫做互为余角。

7、补角:两个角的和为180度,这两个角叫做互为补角。

8、对顶角:两个角有一个公共顶点,其中一个角的两边是另一个角两边的反向延长线。这两个角就是对顶角。

9、同位角:在“三线八角”中,位置相同的角,就是同位角。

10、内错角:在“三线八角”中,夹在两直线内,位置错开的角,就是内错角。

11、同旁内角:在“三线八角”中,夹在两直线内,在第三条直线同旁的角,就是同旁内角。

12、有效数字:一个近似数,从左边第一个不为0的数开始,到精确的那位止,所有的数字都是有效数字。

13、概率:一个事件发生的可能性的大小,就是这个事件发生的概率。

14、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

15、三角形的角平分线:在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。

16、三角形的中线:在三角形中连接一个顶点与它的对边中点的线段,叫做这个三角形的中线。

17、三角形的高线:从一个三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。

21、因变量:随着自变量变化而被动发生变化的量,叫因变量。

22、轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形。

24、垂直平分线:线段是轴对称图形,它的一条对称轴垂直于这条线段并且平分它,这样的直线叫做这条线段的垂直平分线。(简称中垂线)

就是根据识记材料的性质、特征及其内在联系,进行归纳分类,以便帮助学生记忆大量的知识。比如,学完计量单位后,可以把学过的所有内容归纳为五类:长度单位;面积单位;体积和容积单位;重量单位;时间单位。这样归类,能够把纷纭复杂的事物系统化、条理化,易于记忆。

就是把要记忆的数学知识编成歌谣、口诀或顺口溜,从而便于记忆。比如,量角的方法,就可编出这样几句歌诀:“量角器放角上,中心对准顶点,零线对着一边,另一边看度数。”再如,小数点位置移动引起数的大小变化,“小数点请你跟我走,走路先要找准‘左’和‘右’;横撇带口是个you,扩大向you走走走;横撇加个zuo,缩小向zuo走走走;十倍走一步百倍两步走,数位不够找‘0’拉拉钩。”采用这种方法来记忆,学生不仅喜欢记,而且记得牢。

即根据事物的内在联系,找出规律性的东西来进行记忆。比如,识记长度单位、面积单位、体积单位的化法和聚法。化法和聚法是互逆联系,即高级单位的数值进率=低级单位的数值,低级单位的数值÷进率=高级单位的数值。掌握了这两条规律,化聚问题就迎刃而解了。规律记忆,需要学生开动脑筋对所学的有关材料进行加工和组织,因而记忆牢固。

就是把某些容易混淆的识记材料列成表格,达到记忆之目的。这种方法具有明显性、直观性和对比性。比如,要识记质数、质因数、互质数这三个概念的区别,就可列成表来帮助学生记忆。

随着年龄的增长,所学的数学知识也越来越多,学生要想全面记住,既浪费时间且记忆效果不佳。因此,要让学生学会记忆重点内容,学生在记住了重点内容的基础上,再通过推导、联想等方法便可记住其他内容了。比如,学习常见的数量关系:工作效率×工作时间=工作量。工作量÷工作效率=工作时间;工作量+工作时间=工作效率。这三者关系中只要记住了第一个数量关系,后面两个数量关系就可根据乘法和除法的关系推导出来。这样去记,减轻了学生记忆的负担,提高了记忆的效率。

是不是感觉数学都能考满分的同学,连书都不用看,其实数学学霸更重视基础。数学公式,几何图形的性质,函数的性质等,都是数学学习的基础,甚至可以说基础的好坏,直接决定中考数学成绩的高低。

在所有科目中,数学这个科目最重要错题本学习法。特别提倡大家整理错题,李现良对于错题本有一些小窍门,那就是平时如果坚持整理错题,最终会导致自己错题本很多很厚,我们可以定期复习,对于一些彻底掌握的,可以做个标记,以后就不用再次复习,这样错题本使用起来就会效率更高。

数学学习要大量做题去巩固,但做题不要只讲究数量,更要讲究质量,遇到经典题,综合性高的题目时,每道题写完解答过程后,需要进行分析和反思,多问几个为什么,这样才能把题真正做透。

课本上的知识都是零散的,建议大家自己画思维导图把知识串起来,画思维导图的过程,就是不断理解,让知识变成结构的过程。

八年级上册数学课件【篇3】

《三角形内角和定理》

尊敬的各位老师:

大家好!我是()号考生。我说课的题目是《三角形内角和定理》。下面我将从教材分析、教法学法、教学过程和设计理念四个方面展开说课。

一、首先我来分析一下教材

《三角形内角和定理》是青岛版教材八年级上册第(5)章第(5)节的内容。本节课是在学习了(角、平行线、全等三角形)的基础上进行教学的,为以后学习(平行四边形、相似三角形和解直角三角形)奠定了重要的基础。因此本节课在整个学习过程中起着非常重要的作用。

之前学生已经学习了(角、平行线、全等三角形),而且初二学生的智力得到了很好的开发。因此,学生具备了学习这节课的知识和智力准备。

基于以上分析,确定了如下教学目标

1、知识与技能目标:结合具体情境,掌握三角形内角和定理及推论,并掌握他们的证明过程,并能进行简单的应用。

2、过程与方法目标:经历探索(三角形内角和和推论)的研究过程,培养学生推理判断的思维能力。

3、情感态度与价值观目标:结合情境进行新知识的学习,增强学生对数学学习的信心和兴趣,培养合作意识、团队精神和克服困难的坚强意志。教学重点、难点:

其中(掌握三角形内角和定理及推论,并掌握他们的证明过程,并能进行简单的应用)是本节课的教学重点。突出重点的方法是引导学生通过例题和训练巩固。(培养学生推理判断的思维能力)是本节课的教学难点。为了突破难点,我会通过学生小组合作交流,探究等方式。

二、教法学法

本着教师为主导、学生为主体的原则,我准备采用启发诱导式的教学方法,通过以问题为先导,引导学生经历知识的形成过程,构建学生自主探究型的教学模式。

在学法上,我准备让学生通过认真观察、动手操作、独立思考、大胆交流、总结归纳等一系列学习活动,培养学生学习的积极性和主动性。

本节课需要准备自制的多媒体课件,需要的教具、学具有:(三角板)

三、下面我重点阐述一下我的教学过程

第一个环节:创设情境,引入课题

一上课,我利用多媒体出示情境图上面的一段话,引导学生认真阅读,并思考上面的问题,实验发现用度量或剪拼的方法可以发现一个或几个三角形的三个内角的和都等于180度,如果测得更多三角形的三个内角的和都等于180度,是否就能说明一切三角形三个内角的和都等于180度呢?学生思考后,我指出这个问题就要用到我们这一节 课所学的知识(三角形内角和定理),这时我会写出板书(三角形内角和定理)。

这样设计的目的是通过创设生动有趣的情境将原本枯燥的数学内容变得富有吸引力,激发学生的热情,从而引出了本节课的课题。第二个环节:合作交流、探究新知

在这个环节中,我有意识的创设让学生小组合作、动手、动脑的活动,让学生在有趣的数学活动中体验到成功的乐趣。为了完成情境图中的问题,我会出示一个证明题。已知:

首先,我会让学生小组交流讨论如何才能使三角形内角和等于180度,引导学生回忆起之前曾经用把三角形纸片的三个内角撕下来,拼成一个平角,进而引出证明三角形内角和等于180度的思路,就是将三个角拼成一个平角就会等于180度。然后让学生小组交流探索如何将三角形的三个角构成平角呢?由于这是本节课的教学难点,所以我会参与到学生小组内和学生交流。当学生交流后,由学生展示采用添加平行线的的方法。并引导学生尝试独立进行证明,时我会巡视指导,对有困难的学生给予帮助,并指明学生上台板演,之后对于出现的问题我会进行针对性的讲解。在这里我会告诉学生,在原来图形上添加的线叫做辅助线,辅助线通常画成虚线。最后得出三角形内角和定理,即三角形的三个内角的和等于180度。

接着我会让学生小组继续交流探索,能否用另外两种添加辅助线的方法来证明三角形内角和定理,并引导学生独立完成,由学生展示,不完整的地方其他同学给予补充,我再进行针对性的讲解。然后让学生思考,角ACD与角A角B有什么联系?在这里我会让学生回忆外角的概念,并指明什么是不相邻,让学生交流探索,这里也是本节课的教学难点,所以我会在巡视过程中参与到学生的交流中,之后由同学展示,最后得出三角形内角和定理的推论1和推论2。并告诉学生推论的定义。

这样学生在观察、比较、探讨的过程中,轻松的突破了本节课的重难点。这时,教学进入到第三个环节。第三个环节:巩固应用、内化提高

在习题的设计上,我会体现开放性、思考性、层次性、趣味性这几个特点,首先,我会把学生分成A、B两组,以竞赛的形式让学生完成练习题1、2,这样让学生巩固了(三角形内角和定理及推论)及应用其解决问题,从而突出了本节课的重点。

然后我会出示下一个题,让学生利用今天所学知识解决生活中的实际问题,使学生感受到数学来源于生活,又服务于生活,生活中处处有数学。这时,教学进入第四个环节。第四个环节:课堂评价、拓展延伸

新授结束时,我会问同学们这节课有什么收获,引导学生对本节课的知识进行梳理和总结,培养学生归纳和语言表达的能力,使学生对所学知识有更全面更系统的认识。

然后,我会让学生下课寻找,生活中哪些地方用到了今天所学的知识,体现数学的生活化。

四、最后,我再说一下我的设计理念;

在设计本课时,我力求将知识与技能、过程与方法、情感态度与价值观三者有机结合起来,密切联系实际生活,让学生在生活中发现数学问题、提出数学问题并解决数学问题。

以上仅是我对本节课的教学预设,在实际的教学过程中,我将以学定教、顺学而导,最大限度的发挥学生的主动性、积极性和创造性,以求达到更好地教学效果。

以上是我说课的全部内容,谢谢各位老师。

八年级上册数学课件【篇4】

1.在生活实例中认识轴对称图.

〔过程与方法〕

1、在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯;

2、在灵活运用知识解决有关问题的过程中,体验并掌握探索、归纳图形性质的推理方法,进一步培说理和进行简单推理的能力。

〔情感、态度与价值观〕

1、 体会数学与现实生活的联系,增强克服困难的勇气和信心;2、会应用数学知识解决一些简单

的实际问题,增强应用意识;3、使学生进一步形成数学来源于实践,反过来又服务于实践的

辩证唯物主义观点。

能够识别轴对称图形并找出它的对称轴.

1.举实例说明对称的重要性和生活充满着对称。

2. 对称给我们带来多少美的感受!初步掌握对称的奥秒,不仅可以帮助我们发现一些图形的特征,还可以使我们感受到自然界的美与和谐.

3.轴对称是对称中重要的一种,让我们一起走进轴对称世界,探索它的秘密吧!

1.观察:几幅图片(出示图片),观察它们都有些什么共同特征.

强调:对称现象无处不在,从自然景观到分子结构,从建筑物到艺术作品,•甚至日常生活用品,人们都可以找到对称的例子.

练习:从学生生活周围的事物中来找一些具有对称特征的例子.

2.观察: 如图12.1.2,把一张纸对折,剪出一个图案(折痕处不要完全剪断),•再打开这张对折的纸,就剪出了美丽的窗花.你能发现它们有什么共同的特点吗?

3.如果一个图形沿一直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.我们也说这个图形关于这条直线(成轴)•对称.

4.动手操作: 取一张质地较硬的纸,将纸对折,并用小刀在纸的中央随意

刻出一个图案,将纸打开后铺平,你得到两个成轴对称的图案了吗?

归纳小结:由此我们进一步了解了轴对称图形的特征:一个图形沿一条直线折叠后,折痕两侧的图形完全重合.

小结得出:.像这样,•把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,•这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.

这节课我们主要认识了轴对称图形,了解了轴对称图形及有关概念,进一步探讨了轴对称的特点,区

八年级上册数学课件【篇5】

※1.如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式.这种分解因式的方法叫做提公因式法.

(1)因式分解的最后结果应当是“积”;

(2)公因式可能是单项式,也可能是多项式;

(3)提公因式法的理论依据是乘法对加法的分配律,即:

※3.易错点点评:

(1)注意项的符号与幂指数是否搞错;

(2)公因式是否提“干净”;

(3)多项式中某一项恰为公因式,提出后,括号中这一项为+1,不漏掉.

※1.如果把乘法公式反过来,就可以用来把某些多项式分解因式.这种分解因式的方法叫做运用公式法.

因式分解要分解到底.如就没有分解到底.

①应是二项式或视作二项式的多项式;

②二项式的每项(不含符号)都是一个单项式(或多项式)的平方;

③二项是异号.

②其中两项同号,且各为一整式的平方;

③还有一项可正负,且它是前两项幂的底数乘积的2倍.

3.因式分解的思路与解题步骤:

(1)先看各项有没有公因式,若有,则先提取公因式;

(2)再看能否使用公式法;

(3)用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的;

(4)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解;

(5)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止.

4.分组分解法:

分组分解法的关键是如何分组,要尝试通过分组后是否有公因式可提,并且可继续分解,分组后是否可利用公式法继续分解因式.

5.十字相乘法:

※1.对于二次三项式,将a和c分别分解成两个因数的乘积,,,且满足,往往写成的形式,将二次三项式进行分解.

(1)理解:把分解因式时,如果常数项q是正数,那么把它分解成两个同号因数,它们的符号与一次项系数p的符号相同.

(2)如果常数项q是负数,那么把它分解成两个异号因数,其中绝对值较大的因数与一次项系数p的符号相同,对于分解的两个因数,还要看它们的和是不是等于一次项系数p.

※4.易错点点评:

(1)十字相乘法在对系数分解时易出错;

(2)分解的结果与原式不等,这时通常采用多项式乘法还原后检验分解的是否正确.

就是把要记忆的数学知识编成歌谣、口诀或顺口溜,从而便于记忆。比如,量角的方法,就可编出这样几句歌诀:“量角器放角上,中心对准顶点,零线对着一边,另一边看度数。”再如,小数点位置移动引起数的大小变化,“小数点请你跟我走,走路先要找准‘左’和‘右’;横撇带口是个you,扩大向you走走走;横撇加个zuo,缩小向zuo走走走;十倍走一步百倍两步走,数位不够找‘0’拉拉钩。”采用这种方法来记忆,学生不仅喜欢记,而且记得牢。

即根据事物的内在联系,找出规律性的东西来进行记忆。比如,识记长度单位、面积单位、体积单位的化法和聚法。化法和聚法是互逆联系,即高级单位的数值率=低级单位的数值,低级单位的数值÷进率=高级单位的数值。掌握了这两条规律,化聚问题就迎刃而解了。规律记忆,需要学生开动脑筋对所学的有关材料进行加工和组织,因而记忆牢固。

多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。

中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。

有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。

数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学一定要讲究“活”,只看书不做题不行,只埋头做题不总结积累也不行。记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。

要建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再 犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。

八年级上册数学课件【篇6】

一、制定计划的目的

为使学生学好代数、几何的基础知识,具备当代社会中每一位公民适应日常生活、参加社会生产和进一步学习所必需的基本技能,进一步培养学生运算能力、发展思维能力和空间观念,使学生能够运用所学知识解决实际问题,逐步形成数学创新意识,特制定本学科教学计划。

二、教材内容分析

本学期数学教材内容包括:

第一章《生活中的轴对称》、第二章《勾股定理》、第三章《实数》,第四章《概率的初步认识》,第五章《平面直角坐标系》,第六章《一次函数》,第七章《二元一次方程组》。

第一章《生活中的轴对称》的主要内容是研究轴对称图形的性质及其应用。其重点是轴对称图形的性质。

第二章《勾股定理》的主要内容是:勾股定理的探索和应用。其中勾股定理的应用是本章教学的重点。

第三章《实数》主要内容是平方根、立方根的概念和求法,实数的概念和运算。本章的内容虽然不多,但在初中数学中占有十分重要的地位。本章的教学重点是平方根和算术平方根的概念和求法,教学难点是算术平方根和实数两个概念的理解。

第四章《概率的初步认识》主要内容是通过可能性的大小认识概率,并进行简单的概率计算。概率计算是本章教学的重点。

第五章《平面直角坐标系》主要讲述平面直角坐标系中点的确定,会找出一些点的坐标。

第六章《一次函数》的主要内容是介绍函数的概念,以及一次函数的图像和表达式,学会用一次函数解决一些实际问题。其中一次函数的图像的表达式是本章的重点和难点。

第七章《二元一次方程组》要求学会解二元一次方程组,并用二元一次方程组来解一些实际的问题。

三、学生情况分析

初二(3)班共有学生44人,从上学期期未统计成绩分析,及格人数为人,优秀人数为人,这个班的学生中成绩特别差的比较多,成绩提高的难度较大。从上学期期末统测成绩来看,成绩是分,差的分,这些同学在同一个班里,好的同学要求老师讲得精深一点,差的要求讲浅显一点,一个班没有相对较集中的分数段,从几分到多分每个分数段的人数都差不多,这就给教学带来不利因素。

 四、教学目标

 第一章生活中的轴对称

1、在丰富的现实情境中,经历观察折叠剪纸图形欣赏与设计等数学活动过程,进一步发展空间观念。

2、通过丰富的生活实例认识轴对称,探索它的基本性质,理解对应点所连的线段被对称轴垂直平分的性质。

3、探索并了解基本图形的轴对称性及其相关性质。

4、能够按要求作出简单平面图形经过轴对称后的图形;探索简单图形之间的轴对称关系,并能指出对称轴。

5、欣赏现实生活中的轴对称图形,能利用轴对称进行一些图案设计,体验轴对称在现实生活中的广泛应用和丰富的文化价值。

第二章勾股定理

1、经历探索勾股定理及一个三角形是直角三角形的条件的过程,发展合情推理能力,体会数形结合的思想。

2、掌握勾股定理,了解利用拼图验证勾股定理的方法,能运用勾股定理解决一些实际问题。

3、掌握判断一个三角形是直角三角形的条件,并能运用它解决一些实际问题。

4、通过实例了解勾股定理的历史和应用,体会勾股定理的文化价值。

第三章实数

1、让学生经历数系扩张探求实数性质及其运算规律的过程;从事借助计算器探索数学规律的活动,发展学生的抽象概括能力,并在活动中进一步发展学生独立思考合作交流的意识和能力。

2、结合具体情境,让学生理解估算的意义,掌握估算的方法,发展学生的数感和估算能力。

3、了解平方根立方根实数及其相关概念;会用根号表示并会求数的平方根立方根;能进行有关实数的简单运算。

4、能运用实数的运算解决简单的实际问题,提高学生的应用意识,发展学生解决问题的能力,从中体会数学的应用价值。

第四章概率的初步认识

1、经历“猜测——验证并收集实验数据——分析实验结果”的活动过程。

2、了解必然事件,不可能事件和不确定事件发生的可能性大小,了解事件发生的可能性及游戏规则的公平性;了解概率的意义,体会概率是描述不确定现象的数学模型,发展随机观念。

3、能对两类事件发生的概率进行简单的计算,并能设计符合要求的简单概率模型。

4、进一步体会数学就在我们身边,发展用数学的意识和能力。

第五章平面直角坐标系

1、从事对现实世界中确定位置的现象进行观察分析抽象和概括活动,经历探索图形坐标变化与图形形状变化之间关系的过程,进一步发展学生的数形结合意识形象思维能力和数学应用能力。

2、认识并能画出平面直角坐标系;在给定的直角坐标系中,会根据坐标描出点的位置,由点的位置写出它的坐标。3、能在方格纸上建立适当的直角坐标系,描述物体的位置;能结合具体情境灵活运用多种方式确定物体的位置。

4、在同一直角坐标系中,感受图形变化后点的坐标的变化合格点坐标变化后图形的变化。

第六章一次函数

1、经历函数一次函数等概念的抽象概括过程,体会函数的模型思想,进一步发展学生的抽象思维能力;经历一次函数的图像及其性质的探索过程,在合作与交流活动中发展学生的合作意识和能力。

2、经历利用一次函数及其图像解决实际问题的过程,发展学生的数学应用能力;经历函数图像信息的识别与应用过程,发展学生的形象思维能力。

3、初步理解函数的概念;理解一次函数及其图像的有关性质;初步体会方程和函数的关系。

4、能根据所给信息确定一次函数表达式;会做一次函数图象,并利用它们解决简单的实际问题。

第七章二元一次方程组

1、经历从实际问题中抽象出二元一次方程组的过程,体会方程的模型思想,发展学生灵活运用有关知识解决实际问题的能力,培养良好的数学应用意识。

2、了解二元一次方程组的有关概念,会解简单的二元一次方程组;能根据具体问题中的数量关系,列出二元一次方程组解决简单的实际问题,并能检验解的合理性。

3、了解二元一次方程组的图像解法,初步体会方程与函数的关系。

4、了解二元一次方程组的消元思想,从而初步理解化未知为已知和化复杂问题为简单问题的化归思想。

五、教学措施及方法

1、理论学习

抓好教育理论特别是最新的教育理论的学习,及时了解课改信息和课改动向,转变教学观念,形成新课教学思想,树立现代化、科学化的教育思想。多听听课,向其它老师借签学习一些优秀的教学方法和教学技巧。

 2、做好各时期的计划

为了搞好教学工作,以课程改革的思想为指导,根据学校的工作安排以及初二的数学教学任务和内容,做好学期教学工作的总体计划和安排,并且对各单元、各课题的进度情况进行详细计划。

3、备好每堂课

认真钻研大纲和教材,做好初中各阶段的总体备课工作,对总体教学情况和各单元、专题做到心中有数,备好学生的学习和对知识的掌握情况,写好每节课的教案为上好课提供保证,做好课后反思和课后总结工作,以不为提高自己的教学理论水平和教学实践能力。

 4、做好课堂教学

创设教学情境,激发学习兴趣,爱因斯曾经说过:“兴趣是的老师。”激发学生的学习兴趣,是数学教学过程中提高质量的重要手段之一。结合教学内容,选一些与实际联系紧密的数学问题让学生去解决,教学组织合理,教学内容语言生动。相尽各种办法让学生爱听、乐听,以全面提高课堂教学质量。成立学习小组,实行组内帮辅和小组间竞争,增强学生学习的信心及自学能力。注重双基和学法指导。积极应用尝试教学法及其他新的教学方法和先进的教学手段。

5、批改作业

精批细改好每一位学生的每份作业,学生的作业缺陷,师生都心中有数。对每位同学的作业订正和掌握情况都尽力做到及时反馈,再次批改,让学生获得了一个较好的巩固机会。

6、做好课外辅导

全面关心学生,这是老师的神圣职责,在课后能对学进行针对性的辅导,解答学生在理解教材与具体解题中的困难,指导课外阅读因材施教,使优生尽可能“吃饱”,获得进一步提高;使差生也能及时扫除学生障碍,增强学生信心,尽可能“吃得了”。积极开展数学讲座,课外兴趣小组等课外活动。充分调动学生学习数学的积极性,扩大他们的知识视野,发展智力水平,提高分析问题与解决问题的能力。

相关推荐

  • 五年级数学课件 本文将根据您的要求,承诺提供一篇符合您需求的"五年级数学课件"。每位教师在授课前都需要仔细规划好教案和课件的内容。现在是撰写教案和课件的时候了。编写教案需要着重注意知识点的有序组织和布局安排。在此特别提醒您关注以下重要提示!...
    2024-02-06 阅读全文
  • 三年级数学课件八篇 教师的部分工作包括制作自己的教案课件,因此他们需要认真地进行教案课件的制作。在上课时,教师需要根据教案课件进行教学。现在,请阅读以下内容,了解“三年级数学课件”的故事和文化底蕴。但请注意,本文仅供参考,大家可以阅读,但不要完全依赖其中的信息。...
    2023-11-15 阅读全文
  • 五年级数学课件13篇 讲义和演示文稿也是教师工作中的一部分,就需要我们老师要认真对待。讲义和演示文稿的制作应该能够展现教师的创造性和智慧。以下是栏目小编为您收集的“五年级数学课件”供您参考,或许相信这篇文章会对您的未来产生影响!...
    2023-12-14 阅读全文
  • 四年级数学课件五篇 老师在开学前需要把教案课件准备好,现在着手准备教案课件也不迟。 学生反应是教师课堂教学有效性的重要体现,优质教案课件是怎么写成的?发现一篇网络上的好文“四年级数学课件”非常值得一看,感谢您花费宝贵时间来阅读本页!...
    2023-08-10 阅读全文
  • 五年级数学课件6篇 备课教案是指老师在授课前所准备的教学课件,按照学校的要求,每位老师都必须认真准备备课教案。备课教案的写作质量越好,所需时间就越多。那么,备课教案的写作重点在哪里呢?幼儿教师教育网小编为大家整理了《备课教案的写作重点》,希望能够对您有所帮助!...
    2023-06-09 阅读全文

本文将根据您的要求,承诺提供一篇符合您需求的"五年级数学课件"。每位教师在授课前都需要仔细规划好教案和课件的内容。现在是撰写教案和课件的时候了。编写教案需要着重注意知识点的有序组织和布局安排。在此特别提醒您关注以下重要提示!...

2024-02-06 阅读全文

教师的部分工作包括制作自己的教案课件,因此他们需要认真地进行教案课件的制作。在上课时,教师需要根据教案课件进行教学。现在,请阅读以下内容,了解“三年级数学课件”的故事和文化底蕴。但请注意,本文仅供参考,大家可以阅读,但不要完全依赖其中的信息。...

2023-11-15 阅读全文

讲义和演示文稿也是教师工作中的一部分,就需要我们老师要认真对待。讲义和演示文稿的制作应该能够展现教师的创造性和智慧。以下是栏目小编为您收集的“五年级数学课件”供您参考,或许相信这篇文章会对您的未来产生影响!...

2023-12-14 阅读全文

老师在开学前需要把教案课件准备好,现在着手准备教案课件也不迟。 学生反应是教师课堂教学有效性的重要体现,优质教案课件是怎么写成的?发现一篇网络上的好文“四年级数学课件”非常值得一看,感谢您花费宝贵时间来阅读本页!...

2023-08-10 阅读全文

备课教案是指老师在授课前所准备的教学课件,按照学校的要求,每位老师都必须认真准备备课教案。备课教案的写作质量越好,所需时间就越多。那么,备课教案的写作重点在哪里呢?幼儿教师教育网小编为大家整理了《备课教案的写作重点》,希望能够对您有所帮助!...

2023-06-09 阅读全文
Baidu
map