乘方课件
发布时间:2024-05-02 乘方课件乘方课件(模板十一篇)。
教案课件既关系到教学步骤,也关系到教学的课程标准,每位老师都要用心的考虑自己的教案课件。 制作精美的教学课件有助于提高老师的教学效果,那有哪些值得参考教案课件呢?很开心为大家推荐一篇关于“乘方课件”的好文章,请勿忘记将这个网页加入收藏夹随时查看!
乘方课件【篇1】
一、学习目标
1、能确定有理数加、减、乘、除、乘方混合运算的顺序;
2、掌握含乘方的有理数的混合运算顺序,并掌握简便运算技巧;
3、偶次幂的非负性的应用。
二、知识回顾
1、在2+ ×(-6)这个式子中,存在着3种运算。
2、上面这个式子应该先算乘方、再算2 、最后加法。
三、新知讲解
1、偶次幂的非负性
若a是任意有理数,则(n为正整数),特别地,当n=1时,有。
2、有理数的混合运算顺序
①先乘方,再乘除,最后加减;
②同级运算,从左到右进行;
③如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
四、典例探究
1、有理数混合运算的顺序意识
【例1】计算:-1-3×(-2)3+(-6)÷
总结:做有理数的混合运算时,应注意以下运算顺序:
先乘方,再乘除,最后加减;
同级运算,从左到右进行;
如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
练1计算:-2×(-4)2+3-(-8)÷ +
2、有理数混合运算的转化意识
【例2】计算:(-2)3÷(-1 )2+3 ×(- )-0.25
总结:将算式中的除法转化为乘法,减法转化成加法,乘方转化为乘法,有时还要将带分数转化为假分数,小数转化为分数等,再进行计算。
练2计算:
3、有理数混合运算的符号意识
【例3】计算:-42-5×(-2)× -(-2)3
总结:
在有理数运算中,最容易出错的就是符号。
符号“-”即可以表示运算符号,即减号;又可以表示性质符号,即负号;还可以表示相反数。
要结合具体情况,弄清式中每个“-”的具体含义,养成先定符号,再算绝对值的良好习惯。
练3计算:
4、有理数混合运算的简算意识
【例4】计算:[1 -( )× ]÷5
总结:对于较复杂的一些计算题,应注意运用有理数的运算律和一定的运算技巧,从而找到简便运算的方法,以便有效地简化计算过程,提高运算速度和正确率。
练4计算:[2 -( )×2]÷
5、利用数的乘方找规律
【例5】瑞士中学教师巴尔末成功地从光谱数据……中得到巴尔末公式从而打开了光谱奥妙的大门。
题中的这组数据是按什么规律排列的?
请你按这种规律写出第七个数据。
总结:
这是一道规律探索题。规律探索题是指给出一列数字或一列式子或一组图形的前几个,通过归纳、猜想,推出一般性的结论。
探索规律的时候,要结合学过的知识仔细分析数据特点,乘方经常出现在有理数的规律题中,所以要从乘方的角度出发考虑。
练5
五、课后小测一、选择题
1、下列各式的结果中,最大的为( )。
A. B.
C. D.
2.32015的个位数字是( )。
A.3 B.9 C.7D.1
3、已知,那么(a+b)20xx的值是( )。
A.-1 B.1 C.-32015 D.32015
二、填空题
4.a与b互为相反数,c与d互为倒数,x的绝对值为2,则x2+(a+b)20xx+(-cd)20xx=________.
三、解答题
5、计算:
(1) ;
(2) 。
6、计算:
(1) ;
(2) 。
7、计算:
(1) ;
(2) 。
8、计算:
(1) ;
(2) 。
9、已知与互为相反数,求:
(1) ;(2) 。
典例探究答案:
【例1】【解析】原式=-1-3×(-8)+(-6)÷
=-1-(-24)+(-54)
=-1+24-54
=-31
练1【解析】原式=-2×16+3-(-8)÷ + =-32+3-(-32)+ =3
【例2】【解析】原式=(-2)3÷(- )2+ ×(- )-
=-8÷ +(- )-
=-8× +(- )-
=-
练2【解析】原式=9×( )-16×(-2)+ × = +32+2=
【例3】【解析】原式=-16+1-(-8)
=-16+1+8
=-7
练3【解析】原式=-4-(-27)×1-(-1)
=-4+27+1
=24
【例4】【解析】原式=[ -( )×(-64)]÷5
=[ -( )]÷5
=( -20)×
= × -20×
= -4=-3
练4【解析】原式=[ -( )]÷
=( - )×8
=19-2- +3
=
【例5】【解析】(1)观察这组数据,发现分子都是某一个数的平方,分别为32,42,52,62……分母和分子相差4,由此发现排列的规律。即:第n个数可以表示为。
(2)第七个数据为。
练5【解析】n+1/n+2=(n+1)2/n+3
课后小测答案:
一、选择题
1.C
2.C
3.A
二、填空题
4.3
三、解答题
5、(1)原式=-16-16-1-1=-34;
(2)原式= =-30.
6、(1)-27;(2)31.
7、(1)原式=16×(-4)+5=-64+5=-59;
(2)原式= =0.
8、(1)原式=-64-16-9×( )=-64-16+7=-73;
(2)原式= 。
9、解:由题意,得。
又因为,,
所以,,得a=2,b=-1.
所以(1) ;
(2) 。
乘方课件【篇2】
教学目标:
1、知识目标:利用10的乘方,进行科学记数,会用科学记数法表示大于10的数.
2、能力目标:会解决与科学记数法有关的实际问题.
3、情感态度和价值观:正确使用科学记数法表示数,表现出一丝不苟的精神.
教学重点与难点:
教学重点:
会用科学记数法表示大于10的数.
教学难点:
正确使用科学记数法表示数.
教学过程:
一、科学记数法
用乘方的形式,有时可方便地来表示日常生活中遇到的一些较大的数,如:
太阳的半径约696000千米
富士山可能爆发,这将造成至少25000亿日元的损失
光的速度大约是300000000米/秒;
全世界人口数大约是6100000000.
这样的大数,读、写都不方便,考虑到10的乘方有如下特点:
102 = 100,103 = 1000,104 = 10000,?
一般地,10的n次幂,在1的后面有n个0,这样就可用10的幂表示一些大数,如,
6100000000=6.1×1000000000=6.1×109.[读作6.1乘10的9次方(幂)]
像上面这样把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫做科学记数法.
科学记数法也就是把一个数表示成a×10n的形式,其中1≤a的绝对值<10的数,n的值等于整数部分的位数减1.
二、例题
例1、用科学记数法记出下列各数:
(1)1000000;(2)57000000;(3)123000000000
解:(1)1000000 = 1×106
(2)57000000 = 5.7×107
(3)123000000000 = 1.23×1011.
用科学记数法表示一个数时,首先要确定这个数的整数部分的位数.
注意:一个数的科学记数法中,10的指数比原数的整数位数少1,如原数有6位整数,指数就是5.说明:在实际生活中有非常大的数,同样也有非常小的数.本节课强调的是大数可以用科学记数法来表示,实际上非常小的数也同样可以用科学记数法表示,如本章引言中有1纳米=109米1,意思是1米是1纳米的10亿倍,也就是说1纳米是1米的十亿分一.用表达式表示为1米=109纳米,或者1纳米=米=米.
三、课堂练习
1.用科学记数法记出下列各数.
(1)30060;(2)15400000;(3)123000.
2.下列用科学记数法记出的数,原来各是什么数?
(1)2×105;(2)7.12×103;(3)8.5×106.
3.已知长方形的长为7×105mm,宽为5×104mm,求长方形的面积.
4.把199 000 000用科学记数法写成1.99×10n3的形式,求n的值.
课堂练习答案
1.(1)3.006×104;(2)1.54×107;(3)1.23×105.
2.(1)100000;(2)7120;(3)8500000.
3.3.5×1010mm.
4.n的值为11.
乘方课件【篇3】
教学目标
1?理解有理数乘方的概念,掌握有理数乘方的运算;
2?培养学生的观察、比较、分析、归纳、概括能力,以及学生的探索精神;
3?渗透分类讨论思想?
教学重点和难点
重点:有理数乘方的运算?
难点:有理数乘方运算的符号法则?
课堂教学过程设计
一、从学生原有认知结构提出问题
在小学我们已经学习过aa,记作a2,读作a的平方(或a的二次方);aaa作a3,读作a的立方(或a的三次方);那么,aaaa可以记作什么?读作什么?aaaaa呢?
在小学对于字母a我们只能取正数?进入中学后,我们学习了有理数,那么a还可以取哪些数呢?请举例说明?
二讲授新课
1?求n个相同因数的积的运算叫做乘方?
2?乘方的结果叫做幂,相同的因数叫做底数,相同因数的个数叫做指数?
一般地,在an中,a取任意有理数,n取正整数?
应当注意,乘方是一种运算,幂是乘方运算的结果?当an看作a的n次方的结果时,也可以读作a的n次幂。
3、我们知道,乘方和加、减、乘、除一样,也是一种运算, 就是表示n个a相乘,所以可以利用有理数的乘法运算来进行有理数乘方的运算?
例1 计算:
(1)2, 2, 2,24; (2)-2, 2, 3,(-2)4;
(3)0,02,03,04?
教师指出:2就是21,指数1通常不写?让三个学生在黑板上计算?
引导学生观察、比较、分析这三组计算题中,底数、指数和幂之间有什么关系?
(1)模向观察
正数的任何次幂都是正数;负数的奇次幂是负数,偶次幂是正数;零的任何次幂都是零?
(2)纵向观察
互为相反数的两个数的奇次幂仍互为相反数,偶次幂相等?
(3)任何一个数的偶次幂都是什么数?
任何一个数的偶次幂都是非负数?
你能把上述的结论用数学符号语言表示吗?
当a0时,an0(n是正整数);
当a
当a=0时,an=0(n是正整数)?
(以上为有理数乘方运算的符号法则)
a2n=(-a)2n(n是正整数);
=-(-a)2n-1(n是正整数);
a2n0(a是有理数,n是正整数)?
例2 计算:
(1)(-3)2,(-3)3,[-(-3)]5;
(2)-32,-33,-(-3)5;
(3) , ?
让三个学生在黑板上计算?
教师引导学生纵向观察第(1)题和第(2)题的形式和计算结果,让学生自己体会到,(-a)n的底数是-a,表示n个(-a)相乘,-an是an的相反数,这是(-a)n与-an的区别?
教师引导学生横向观察第(3)题的形式和计算结果,让学生自己体会到,写分数的乘方时要加括号,不然就是另一种运算了?
课堂练习
计算:
(1) , , ,- , ;
(2)(-1)20xx,322,-42(-4)2,-23(-2)3;
(3)(-1)n-1?
三、小结
让学生回忆,做出小结:
1?乘方的有关概念?2?乘方的符号法则?3?括号的作用?
四、作业
1?计算下列各式:
(-3)2;(-2)3;(-4)4; ;-0.12;
-(-3)3;3(-2)3;-6(-3)3;- (-4)2(-1)5?
2?填表:
3?a=-3,b=-5,c=4时,求下列各代数式的值:
(1)(a+b)2; (2)a2-b2+c2; (3)(-a+b-c)2; (4)a2+2ab+b2?
4?当a是负数时,判断下列各式是否成立?
(1)a2=(-a)2; (2)a3=(-a)3; (3)a2= ; (4)a3= 。
5*?平方得9的数有几个?是什么?有没有平方得-9的有理数?为什么?
6*?若(a+1)2+|b-2|=0,求a20xxb3的值?
课堂教学设计说明
1?数学教学的重要目的是发展智力,提高能力,而发展智力、提高能力的核心是发展学生的思维能力?教学中,既要注重罗辑推理能力的培养,又重注重观察、归纳等合情推理能力的培养?因此,根据教学内容和学生的认知水平,我们再一次把培养学生的观察、归纳等能力列入了教学目标?
2?数学发展的历史告诉我们,数学的发展是从三个方面前进的:第一是不断的推广;第二是不断的精确化;第三是不断的逼近?在引入新时,要尽可能使学生的学习方式与数池家的研究方式类似,不断进行推广。a2是由计算正方形面积得到的,a3是由计算正方体的体积得到的,而a4,a5,,an是学生通过类推得到的?
推广后的结果是还要有严密的定义,让学生从更高的观点看自己推广的结果?一般来说,一个概念或一个公式形成后,要对其字母的意义、相互的关系、应用的范围逐项分析?在an中,a取任意有理数,n取正整数的说明还是必要的,要培养学生这种良好的学习习惯?
3?把学生做巩固性练习和总结运算规律放在一起进行,其效果就远远超出了巩固性练习的初衷?
我们知道,学生必须通过自己的探索才能学会数学和会学数学,与其说学习数学,不如说体验数学、做数学?始终给学生以创造发挥的机会,让学生自己在学习中扮演主动角色,教师不代替学生思考,把重点放在教学情境的设计上?例如,通过实际计算,让学生自己休会到负数与分数的乘方要加括号?
4?有理数的乘方中反映出来的数学思想主要是分类讨论思想,在例1中,精心设计了三组计算题,引导学生从底数大于零、等于零、小于零分析、归纳、概括出有理数乘方的符号法则,使学生在潜移默化中形成分类讨论思想?符号语言的使用,优化了表示分类讨论思想的形式,尤其是负数的奇次幂和偶次幂是大分类中的小分类,用符号语言就更加明显?在练习中让学生完成问题(-1)n-1,进一步巩固了分类讨论思想,使这种思想得以落实?
乘方课件【篇4】
乘方是数学中一个重要而又有趣的概念,它在我们的日常生活和科学研究中都起着重要的作用。而乘方课件,则是教学中常用的一种工具,用于向学生解释和展示乘方的概念、性质和应用。本文将详细、具体且生动地介绍乘方课件的相关内容,以帮助读者更好地理解和应用乘方。
在乘方课件的标题中,我们可以看到“乘方”这个词,它来自于拉丁文“exponere”和希腊文“potentia”的组合,意为“放置在外面”或“力量”。乘方即指数运算,是指将某一数值(基数)重复乘以自身某一次数(指数)的乘积。比如,2的3次方等于2乘以2乘以2,即2³=8。乘方有许多有趣的性质和应用,下面我们将逐一介绍。
首先,乘方有一些基本的性质。其中之一是指数的乘法法则,即a的m次方乘以a的n次方等于a的m+n次方。比如2的3次方乘以2的2次方等于2的(3+2)次方,即2³×2²=2⁵=32。这个法则在计算中非常常用,它能够简化乘方运算,并帮助我们更快地得出结果。
其次,乘方还有一些特殊的性质。比如,任何数的零次方等于1,即a的0次方等于1。这个性质看似不起眼,但却在数学推导和计算中经常用到。此外,还有负次方的概念,比如a的负m次方等于1除以a的m次方。这些特殊的性质能够帮助我们更好地理解和应用乘方。
乘方不仅仅只是一个数学概念,它还有许多实际的应用。比如,乘方在几何学中被广泛应用。通过乘方,我们可以计算出一个形状的面积或体积。比如,正方形的面积等于边长的平方,即边长的2次方。圆的面积等于半径的平方乘以π(π约等于3.14159),即半径的2次方乘以π。通过乘方的运算,我们可以准确地计算出形状的面积和体积,为几何学的研究和应用提供了重要的工具。
乘方还在科学研究中发挥着重要的作用。比如,在物理学中,乘方被广泛应用于计算力、能量、速度等物理量的关系。通过乘方运算,我们可以得出精确的物理量计算结果,从而帮助科学家们更好地理解和研究物理现象。同样地,在化学、生物学等科学领域,乘方也有着重要的应用。通过乘方运算,我们可以计算反应速率、浓度等化学参数,以及遗传概率、生物能量等生物学参数,为科学研究提供了有力的工具。
综上所述,乘方是数学中一个重要而又有趣的概念。乘方课件作为教学中常用的工具,能够向学生介绍和展示乘方的概念、性质和应用。乘方具有许多有趣的性质,如指数乘法法则、零次方和负次方的特殊性质,这些性质帮助我们更好地理解和应用乘方。此外,乘方还有许多实际的应用,如在几何学中计算面积和体积,在科学研究中计算物理量、化学参数和生物参数等。通过乘方课件的学习,我们能够加深对乘方的认识,提高乘方的应用能力,并将其应用于实际问题的解决中。
乘方课件【篇5】
数学教案-幂的乘方与积的乘方(二)
一、教学目标1.进一步理解积的乘方的运算性质,准确掌握积的乘方的运算性质,熟练应用这一性质进行有关计算.
2.通过推导性质进一步训练学生的抽象思维能力,通过完成例2,培养学生综合运用知识的能力.
3.培养实事求是、严谨、认真、务实的学习态度.
4.渗透数学公式的结构美、和谐美.
二、学法引导
1.教学方法:引导发现法、探究法、讲练法.
2.学生学法:本节主要学习幂的乘方性质和积的乘方性质,到现在为止,我们共学习了益的三个运算性质.幂的三个运算性质是整式乘法的基础,也是整式乘法的主要依据,进行幂的运算,关键是熟练掌握幂的三个运算性质,深刻理解每种运算的意义,避免互相混淆,有时逆用幂的三个运算性质,还可简化运算.
三、重点、难点、疑点及解决办法
(-)重点
准确掌握积的乘方的运算性质.
(二)难点
用数学语言概括运算性质.
(三)解决办法
增强对三种运算性质的'理解,并运用对比的方法强化训练以达到准确地区分.
四、课时安排
一课时.
五、教具学具准备
投影仪或电脑、自制胶片.
六、师生互动活动设计
1.通过一组绦习,以达到复习同底数幂的乘法、益的乘方这两个性质的目的,让学生互问互答.
2.推导积的乘方的公式,在推导过程中让学生说出每一步的理由,以便于学生对公式的准确理解.
3.通过举例来说明积的乘方性质应如何正确使用,师生共练以达到熟练掌握.
4.多种题型的设计,让学生能从不同的角度全面准确地理解和运用该性质.
七、教学步骤
(-)明确目标
本节课重点学习积的乘方的运算性质及其较灵活地运用.
(二)整体感知
通过对积的乘方运算性质的推导,加深对该性质的理解.掌握该性质的关键仍在于正确判断使用公式的条件.
(三)教学过程()
1.创设情境,复习导入
前面我们学习了同底数幂的乘法、幂的乘方这两个寨的运算性质,请同学们通过完成一组练习,来回顾一下这两个性质:
填空:
(1) (2)
(3) (4)
学生活动:4个学生说出答案,同桌同学给予判断.
【教法说明】通过完成本练习,进一步巩固、理解同底数幂的乘法,幂的乘方,同时也为顺利完成本节例2做个铺垫.
2.探索新知,讲授新课
我们知道 表示 个 相乘,那么
表示什么呢?(注意: 中 具有广泛性)
学生回答时,教师板书.
这又根据什么呢?(学生回答乘法交换律、结合律)
也就是
请同学们回答 、、、的结果怎样?那么 ( 是正整数)如何计算呢?
;____________个
运用了________律和________律
________个 ________个
学生活动:学生完成填空.
( 是正整数)
刚才我们计算的 、是什么运算?(答:乘方运算)什么的乘方?(积的乘方)
通过刚才的推导,我们已经得到了积的乘方的运算性质.
请同学们用文字叙述的形式把它概括出来.
学生活动:学生总结,并要求同桌相互交流,互相纠正补充.达成一致后,举手回答,其他学生思考,准备更正或补充.
【教法说明】通过学生自己概括总结,既培养了学生的参与意识,又训练了他们归纳及口头表达能力.
教师根据学生的概括给予肯定或否定,纠正后板书.
积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.
运算形式 运算方法 运算结果
提出问题:这个性质对于三个或三个以上因式的积的乘方适用吗?如
学生活动:在运算的基础上给出答案.
( 是正整数)
【教法说明】通过教师有意识的引导,让学生在现有知识的基础上开动脑筋、积极思考,这是理解性质、推导性质的关键,教师在对学生回答给予肯定后板书.
3.尝试反馈,巩固知识
例1 计算:
(1) (2)
(3) (4)
学生活动:每一题目均由学生说出完整的解题过程.
解:(1)原式
(2)原式
(3)原式
(4)原式
【教法说明】对例1的处理,要充分调动学生的参与意识,训练学生运用已有知识去解决新问题的能力,同时,在学生“说”,教师“写”的过程中,教师可随时发现并及时纠正学生解题中出现的问题,如(1)(2)(4)小题中“-”号的处理,并强调解题程序以及幂的乘方性质的运用,同时提出把 着做一个数进行运算.
练习一
(1)计算:(回答)
① ② ③ ④
(2)计算:
① ②
③ ④
(3)下面的计算对不对?如果不对,应怎样改正?
① ② ③
学生活动:第(1)题由4个学生口答,同桌或其他学生给予判断.
第(2)题在练习本上完成,同桌或前后桌互阅,教师抽查.
第(3)题由学生回答.
【教法说明】通过第(1)题可检查学生对性质掌握的熟练程度.第(2)题学生互阅主要是让学生相互交流,培养学生的参与意识.若出现问题由同学指出,有时比老师指出效果要好.第(3)题中的错误是学生应用性质时易出现的,所以在学生回答时,教师对每个问题都应予以强调.
4.综合尝试,巩固知识
例2 计算:
(1)
(2)
学生活动:学生分成两组,每组各做一题,各派一个学生板演.
【教法说明】
学生已具备综合运用性质的能力,让学生尝试解题,目的是训练学生分析问题的能力.分组练习,不仅能激发学生的兴趣,同时也可培养学生的集体荣誉感.学生对知识的印象会更深刻.
5.反复练习,加深印象
练习二
计算:
(1)
(2)
学生活动:学生在练习本上完成,找两个学生板演.
【教法说明】此时学生已能准确运用幂的三种运算性质进行计算,但在计算过程中还会出现各种问题,所以在学生板演时,师生共同订正,可减少不必要的错误出现.
6.变式训练,培养能力
练习三
填空:
(1) (2)
(3) (4)
(5)
学生活动:四人一组研究,讨论得出结果,然后由小组代表说出答案.
【教法说明】此组题主要是训练学生的逆向思维和发散思维,提高学生的应变能力.
(四)总结、扩展
这节课我们学习了积的乘方的运算性质,请同学们谈一下你对本节课学习的体会.
学生活动:谈这节课的主要内容或注意问题等等.
【教法说明】课堂归纳总结由学生来说,可以使学生上课听讲精神集中,还可以训练学生归纳总结的能力.
八、布置作业
P101 A组 4,5.
参考答案
4.(1) (2) (3) (4)
(5) (6)
5.解:(1)原式
(2)原式
乘方课件【篇6】
教学目标
1.知道乘方运算与乘法运算的关系,会进行有理数的乘方运算;
2.知道底数、指数和幂的概念,会求有理数的正整数指数幂;
3.会用科学记数法表示较大的数。
教学重点
1.有理数乘方的意义,求有理数的正整数指数幂;
2.用科学记数法表示较大的数。
教学难点
有理数乘方结果(幂)的符号的确定。
教学过程(教师)
问题引入
手工拉面是我国的传统面食。制作时,拉面师傅将一团和好的面,揉搓成1根长条后,手握两端用力拉长,然后将长条对折,再拉长,再对折(每次对折称为一扣),如此反复操作,连续拉扣若干次后便成了许多细细的面条。你能算出拉扣6次后共有多少根面条吗?
乘方的有关概念
试一试:
将一张报纸对折再对折……直到无法对折为止。你对折了多少次?请用算式表示你对折出来的报纸的层数。
你还能举出类似的实例吗?
有理数的乘方:同步练习
1.对于式子(-3)6与-36,下列说法中,正确的是()
A.它们的意义相同
B.它们的结果相同
C.它们的意义不同,结果相等
D.它们的意义不同,结果也不相等
2.下列叙述中:
①正数与它的绝对值互为相反数;
②非负数与它的绝对值的差为0;
③-1的立方与它的平方互为相反数;
④±1的倒数与它的平方相等。其中正确的个数有()
A.1B.2C.3D.4
乘方课件【篇7】
一、教材分析:有理数的乘方是人教版七年级上册数学第一章的内容,在有了小学平方、立方基础之上,让学生通过探究学会乘方的意义和概念,熟练掌握有理数乘方的运算。有理数的乘方是一种特殊(积中的每一个因数都相同)的乘法。乘方贯穿初中数学的始终,对整个初中学习十分重要。通过这一节课的学习,培养学生的探索精神和观察、分析、归纳能力,并向学生渗透细心的重要性,使学生充分体会数学与现实生活的紧密联系,渗透数学的简洁美、神奇美。
二、教学目标:
(一)知识技能目标:
1、正确理解乘方、幂、指数、底数等概念。
2、感悟探索乘方的意义,会书写乘方算式,确定乘方的结果的符号。
3、能快速、准确地进行有理数的乘方运算。
(二)过程与方法:
1、通过对乘方意义的探索,培养学生观察、比较、分析、归纳及概括能力。
2、通过乘方运算的运用,培养学生的逻辑思维能力。
(三)情感目标
1、通过创设问题情境,激发学生学习数学的兴趣。通过乘方的故事,向学生展示数学与生活的紧密联系,数学源于生活,高于生活。
2、向学生渗透探索、归纳的数学思想及数学的简洁美。
3、培养学生协作精神,体验数学的探索与创造的快乐。
三、教学重点:正确理解乘方的意义,掌握乘方的运算方法。
四、教学难点:有理数乘方运算中符号的确定。
五、教学方法:
(1)创设问题情境,从生活实践入手,体现生活中的数学。
(2)探索归纳,学生总结结论。
(3)精讲多练,提高学生运用知识的能力。
(4)运用闯关比赛形式,激发学生的学习兴趣,及时反馈提高。
六、设计思想:通过人体细胞分裂创设问题情境,激发学生的学习兴趣,对新知识的探究,以生活中的实例拉面和珠穆朗玛问题作为探究内容,使学生感悟生活中的数学,体现数学与现实生活的密切关系,自然地将学生的思维带入到整个教学过程中来。学生通过观察、探究、思考及与同学们交流合作,充分调动他们的学习积极性,参与到课堂教学中,进一步提高学生的逻辑推理能力与抽象概括能力。对新知的运用采用精讲多练的形式,把课堂交给学生,使他们在练习中发现问题,解决问题,从而实现知识掌握与运用形成能力。为了及时反馈信息,设计了课堂检测以闯关比赛形式,激发学生的参与意识,提高学生应用知识的能力,最后结合作业与数学故事《阿凡提》,向学生渗透数学文化,展示数学的神奇美。
七、教学过程:
(一)回顾思考
回顾有理数的乘法法则,思考边长为5的正方形的面积是,棱长为5的立方体的体积是。
设计题图:从学生已有基础入手,循序渐进,为探究新知做好铺垫。
(二)情境引入
1个细胞30分钟后分裂成2个,经过5小时,这种细胞由1个能分裂成多少个?
要想解决此题,通过今天的学习就能做到,下面我们一起来学习有理数的乘方。
板书课题:有理数的乘方
设计意图:(1)以人体自身结构特点创设问题情境,设置疑问,激发学生的学习兴趣。
(2)让学生产生惊奇,进而激发他们的求知欲,迫切欲揭开乘方运算的神秘面纱。
(三)观察发现:启发引导,探索规律,得出概念。
形式记作读作
a a
a×a
a×a×a
a×a×a×a
a×a×…×a
观察其中都含有哪些运算,这些式子的因数有什么特点?
乘方的定义及有关概念:(新知归纳)
1、乘方的定义:求n个相同因数的乘积的运算叫做乘方,乘方的结果叫做幂。
2、乘方的表示法:
读作:a的n次方或a的n次幂,也读作a的平方,也读作a的立方。
(四)学以致用
例1(1)(-3)×(-3)×(-3)×(-3)×(-3)可以记为____
(2)在(-3)2中,底数是____,指数是____。
(3)在-32中,底数是____,指数是____。
议一议:-32与(-3)2有什么不同?结果相等吗?然后要求学生指出它们的区别。
例2:计算
分析:①先引导学生分别指出它们的底数和指数;(找)
②按照乘方的定义将它化为熟悉的乘法运算;(化)
③运用乘法法则运算。(算)
老师引导(1)小题,归纳步骤;学生尝试自己动手求解其他几个,最后师生共同评析完善。
注意:(1)负数的乘方,在书写时一定要把整个负数(连同符号),用小括号括起来。这也是辨认底数的方法
(2)分数的乘方,在书写的时一定要把整个分数用小括号括起来。
(五)探索交流
例3计算:
(1)102,103,104,105,;
(2)(-10)2,(-10)3,(-10)4(-10)5 。
观察例3的结果,你能发现什么规律小组讨论
1。正数的任何次幂都是正数;
负数的奇次幂是负数,
负数的偶次幂是正数
2。 10n等于1后面加n个0
(六)小结练习
乘方是求n个相同因数a的积的运算
运算加减乘除乘方
结果和差积商幂
注意:
(1)乘方与加、减、乘、除一样是一种运算
(2)幂是乘方运算的结果,如和、差一样
测评练习:
1、写出下列各幂的底数与指数:
(1)在74中,底数是___,指数____;
(2)在a4中,底数是___,指数是____;
(3)在(—6)5中,底数是___,指数是______;
(4)在—25中,底数是____,指数是____;
根据上面练习的表你觉得幂的符号与底数指数有关吗?你发现有什么变化规律吗?
2、如果:x2=64,x是几?x3=64,x是几?
3、(-1)n当n偶数时,结果为___
当n奇数时,结果为___
(—1)20xx-(-1)20xx=___
注意:①对于乘方运算,先要学生确定幂的符号,再运算。
②对于1和—1的正整数次幂的运用加以强调。
设计意图:
(1)解题过程规范化,面向全体,照顾中下学生。
(2)加深巩固概念,理解乘方的意义,熟练地进行乘方运算体会成功的感觉。
考考你:一个数的平方为144,这个数是________
一个数的平方是0,这个数是________
一个数的平方为它本身,这个数是_______
一个数的立方为它本身,这个数是________
设计意图:
(1)让学生通过比较加深理解,掌握乘方的意义。
(2)让学生通过练习讨论并争执后理解乘方的各个概念,培养学生思维的严谨性。
(3)通过闯关及时反馈,培养学生的竞争意识。
(七)生活与数学
1、你喜欢吃拉面吗?拉面馆的师傅,用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条拉成了许多细的面条。
这样捏合到第_______次后可拉出256根面条。
2、珠穆朗玛峰是世界的'最高峰,它的海拔高度是8848米。把一张足够大的厚度为0.1毫米的纸,连续对折30次的厚度能超过珠穆朗玛峰。这是真的吗?
设计意图:选取生活实例,展示数学与现实生活的紧密联系。
(八)乘方的故事
1、巴衣老爷说:你能每天给我10元钱,一共给我20年吗?阿凡提说:尊敬的巴衣老爷,如果你能第一天给我1毛钱,第二天给我2毛钱,第三天给我4毛钱,以此类推,一直给20天,那我就答应你的要求!巴衣老爷眼珠子一转说:那好吧!亲爱的同学们:你知道阿凡提和巴衣老爷谁得到的钱多?
2、有一个长工到一个财主家去做工,他和财主商定:“第一天给一分钱,第二天给两分钱,以后每天是前一天的平方。”财主答应了,到月底(30天)后,你猜一猜:财主会给长工多少钱?
设计意图:及时巩固所学内容,通过数学故事,渗透数学文化,展示数学的神奇美。
八、教学评价与反思
本节课的教学设计是以人教版教材和新课程标准为依据,结合农村地区学生的实际情况,总体上采取教师创设问题学生合作交流与自主探索师生概括明晰的教学思路,整个教学过程环环相扣,层层深入,以问题为线索,启发学生思考和探索,这样的设计符合农村地区学生的认知规律,使学生易于接受。
教学开始,提出问题,借助多媒体手段,引发学生积极思考,并归结出答案,由答案的表现形式再给学生提出问题,激发学生的求知欲望,在教师的启发诱导下自然过度到新知的学习,接着层层设问,引出乘方以及与乘方有关的概念,采用归纳类比的方法把新旧知识联系起来,既有利于复习巩固旧知识,又有利于新知的理解和掌握。
成功之处:
成功之一:用学生刚学过的生物学中人体细胞分裂创设了一个有趣的问题情境。一下就贴近了学生的心灵,激起了同学们强烈的的求知欲望。
成功之二:以拉面的故事进一步让学生感受乘方意义的实例,在计算过程中培养了学生的合作意识、观察能力与分析数据能力,同时体会数学来源于生活,增强学生学好数学的决心。
成功之三:学以致用环节。设计了一例一问题,一练习题组的形式,由简单基础题逐渐增难,循序渐进强化乘方意义的理解,书写、计算。成功实现的教学的基本目标。
成功之四:恰当使用了多媒体教学设备。在课件制作上考虑到初一学生的年龄特点,有效地吸引学生的注意力。多媒体设备的使用不仅大大地提高了课堂容量,而且还可以展示学生的作品(课堂练习的解答),及时纠正学生书面表达的错误,规范解题格式,改掉小学生重结果轻过程,解题格式不规范,解题步骤混乱等不良现象。同时也营造了宽松、和谐的课堂氛围、让学生充分发表自己的看法,及时给学生鼓励与肯定,消除学生由小学升入初中因环境变化而引起的心里障碍,激活学生的思维,保持学生参与课堂学习的积极性。
成功之五:随堂练习,巩固新知的环节循序渐进、层次分明。第一步:基础例题帮助学生正确寻找底数和指数,第二步提高练习,议一议,提高学生的能力,更好地理解乘方的意义,为下一节有理数的混合运算做好准备。第三步:测评练习极好的活跃了课堂氛围,增强的学生的竞争意识。
成功之六:参透了传统的数学文化,将古今知识奇闻妙趣有机结合在一起,拓展了学生的视野,开阔了学生的思维,让学生领略了古今中外数学的神奇、简洁。
不足之处
不足之一:“探究新知:启发引导,探索规律,得出概念”环节中,没有安排学生动手亲自操作,对学生感受能力会不太深刻。
不足之二:对学生情况不够熟悉。因为本节课是初一学生入学后一个月进行的,所以我对各个学生具体情况谅解不够深入,但是课后仔细想来,做好中小学数学教学的衔接工作不仅仅是教学内容设计上的衔接,而应该是多方位的衔接,其中就包括教师应尽快了解、熟悉学生,这样可以帮助消除学生刚升入初中的许多不适应。
不足之三:回顾思考比较生硬,不够艺术化,教学尽量更加生动形象。
乘方课件【篇8】
教学目标:
通过现实背景理解有理数乘方的意义,能进行有理数乘方的运算.
已知一个数,会求出它的正整数指数幂,渗透转化思想.
培养学生观察、归纳能力,以及思考问题、解决问题的能力,切实提高学生的运算能力.
教学重点:正确理解乘方的意义,能利用乘方运算法则进行有理数乘方运算.
教学难点:准确理解底数、指数和幂三个概念,并能进行求幂的运算.
教学过程设计:
(一)创设情境,导入新课
提问并引导学生回答:在小学里我们学过一个数的平方和立方是如何定义的?怎样表示?
a·a记作a2,读作a的平方(或a的2次方),即a2=a·a;a·a·a记作a3,读作a的立方(或a的3次方),即a3=a·a·(分别是边长为a的正方形的面积与棱长为a的正方体的体积)
(多媒体演示细胞分裂过程)某种细胞,每过30分钟便由1个分裂成2个,经过5小时,这种细胞由1个分裂成多少个?
1个细胞30分钟分裂成2个,1个小时后分裂成2×2个,小时后分裂成2×2×2个,…,5小时后要分裂10次,分裂成个,为了简便可将记作
(二)合作交流,解读探究
一般地,n个相同的因数a相乘,即,记作an,读作a的n次方.
求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在an中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可读作a的n次幂.
说明:(1)举例94来说明概念及读法.
(2)一个数可以看作这个数本身的一次方,通常省略指数1不写.
(3)因为an就是n个a相乘,所以可以利用有理数的乘法运算来进行有理数的乘方运算.
(4)乘方是一种运算,幂是乘方运算的结果.
(三)应用迁移,巩固提高
【例1】(1)(-4)3;(2)(-2)4;(3)
点拨:(1)计算时仍然是要先确定符号,再确定绝对值.
(2)注意(-2)4与-24的区别.
根据有理数的乘法法则得出有理数乘方的符号规律:
负数的奇次幂是负数,负数的偶次幂是正数;
正数的任何次幂都是正数,0的任何正整数次幂都是
【例2】计算:
(1)()3;(2)(-)3;
(3)(-)4; (4)-;
(5)-22×(-3)2; (6)-22+(-3)
(四)总结反思,拓展升华
引导学生作知识小结:理解有理数乘方的意义,运用有理数乘方运算法则进行有理数乘方的运算,熟知底数、指数和幂三个基本概念.
教师扩展:有理数的乘方就是几个相同因数积的运算,可以运用有理数乘方法则进行符号的确定和幂的求值.
乘方的含义:(1)表示一种运算;(2)表示运算的结果.乘方的读法:(1)当an表示运算时,读作a的n次方;(2)当an表示运算结果时,读作a的n次幂.
乘方的符号法则:(1)正数的任何次幂都是正数;(2)零的任何正整数次幂都是零;(3)负数的偶次幂是正数,奇次幂是负数.注意(-a)n与-an及()n与的区别和联系.
(五)课堂跟踪反馈
课本P42练习第1、2题.
补充练习
(1)在(-2)6中,指数为,底数为.?
(2)在-26中,指数为,底数为.?
(3)若a2=16,则
(4)平方等于本身的数是,立方等于本身的数是.?
(5)下列说法中正确的是()
平方得9的数是3
平方得-9的数是-3
一个数的平方只能是正数
一个数的平方不能是负数
(6)下列各组数中,不相等的是()
(-3)2与-32 (-3)2与32
(-2)3与-23 |2|3与|-23|
(7)下列各式中计算不正确的是()
(-1)20XX=-1
(-1)2n=1(n为正整数)
(-1)2n+1=-1(n为正整数)
(8)下列各数表示正数的是()
|a+1| (a-1)2
(-a)
乘方课件【篇9】
乘方课件的标题吸引了我的注意,对于数学这门学科,我一直觉得它是有趣且充满挑战的。乘方是数学中的一个重要概念,被广泛应用在各个领域中,如科学、工程、经济等。它能够描述和解决很多复杂的问题,因此在数学课程中也被广泛探讨。本文将从乘方的概念、性质、运算规则以及一些实际应用等方面进行详细介绍。
我们来理解乘方的概念。乘方是指将一个数乘以自身再乘以自身...n次的操作。在数学符号中,我们通常使用上标来表示乘方。例如,2的3次方用2³来表示,读作“2的3次方”。在这个例子中,2是底数,3是指数,乘方运算结果为8。乘方运算可以将简单的数字转化成非常巨大或非常小的数值,因此它在科学和工程领域中具有重要的应用价值。
我们来了解乘方的一些性质。乘方的结果总是大于等于0,除非底数为0且指数为0的特殊情况。当底数为0,指数为0时,0的0次方是没有明确定义的。乘方具有交换律和结合律。即,a的b次方乘以a的c次方等于a的b加c次方,同时a的b次方和a的c次方的乘积等于a的b乘以c次方。另外,乘方运算也遵循分配律,即a乘以(b加c)的d次方等于将a的b次方与a的c次方的乘积再进行d次乘方运算。
乘方还具有一些特殊的运算规则。当指数为0时,任何非零数的0次方都等于1。当底数为1时,任何数的任意次方都等于1。当底数为-1时,偶数次方等于1,奇数次方等于-1。当底数为正数时,指数为分数的乘方可以进行开方运算,例如2的1/2次方等于根号2。当底数为负数时,指数为分数的乘方运算需要考虑底数的绝对值是否有定义。
乘方还具有许多实际的应用。在科学领域中,乘方常常用来描述物理量之间的关系。例如,牛顿第二定律F=ma中,力F与质量m和加速度a之间的关系可以用乘方来表示。同样,在工程领域中,乘方可以用来计算电阻、电容、频率等物理量。在经济学中,乘方可以用来计算复利和指数增长等问题。乘方还在计算机科学、统计学和生物学等学科中有着广泛的应用。
小编认为,乘方作为数学中的一个重要概念,在我们日常生活和各个科学领域中都具有广泛的应用。通过乘方的概念、性质、运算规则和实际应用的介绍,我们可以更加深入地理解这一概念的内涵和意义。希望通过这篇文章对乘方的学习能够给读者带来一定的启发和帮助,让大家对数学的学习更加感兴趣和自信。
乘方课件【篇10】
教学建议
一、知识结构
二、重点、难点分析
本节教学的重点是幂的乘方与积的乘方法则的理解与掌握,难点是法则的灵活运用.
1.幂的乘方
幂的乘方,底数不变,指数相乘,即
( 都是正整数)
幂的乘方
的推导是根据乘方的意义和同底数幂的乘法性质.
幂的乘方不能和同底数幂的乘法相混淆,例如不能把 的结果错误地写成 ,也不能把 的计算结果写成 .
幂的乘方是变乘方为(底数不变,指数相乘的)乘法,如 ;而同底数幂的乘法是变(同底数的幂)乘为(幂指数)加,如 .
2.积和乘方
积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.即
( 为正整数).
三个或三个以上的积的乘方,也具有这一性质.例如:
3.不要把幂的乘方性质与同底数幂的乘法性质混淆.幂的乘方运算,是转化为指数的乘法运算(底数不变);同底数幂的乘法,是转化为指数的加法运算(底数不变).
4.同底数幂的乘法、幂的乘方、积的乘方的三个运算性质是整式乘法的基础,也是整式乘法的主要依据.对三个性质的数学表达式和语言表述,不仅要记住,更重要的是理解.在这三个幂的运算中,要防止符号错误:例如, ;还要防止运算性质发生混淆: 等等.
三、教法建议
1.幂的乘方导出的根据是乘方的意义和同底数幂的乘法性质.教学时,也要注意导出这一性质的过程.可先以具体指数为例,明确幕的乘方的意义,导出性质,如
对于从指数连加得到指数相乘,要根据学生情况多作一些说明.以 为例,再一次说明
可以写成 .这一点是导出幂的乘方性质的关键,务必使学生真正理解.在此基础上再导出性质.
2.使学生要严格区分同底数幂乘法性质与幂的乘方性质的不同,不能混淆.具体讲解可从下面两点来说明:
(1)牢记不同的运算要使用不同的性质,运算的意义决定了运算的性质.
(2)记清幂的运算与指数运算的关系:
(同底)幂相乘→指数相加(“乘”变“加”,降一级运算);
幂乘方→指数相乘(“乘方”变“乘法”,降一级运算).
了解到有关幂的两个重要性质都有“使原运算仅降一级运算”的规律,可使自己更好掌握有关性质.
3.在教学的各个环节中,注意启发学生,不仅掌握法则,还要明确为什么.三种运算法则全讲完之后,学生最易产生法则间的混淆,为了解决这个问题除叫学生熟记法则之外,在学生回答问题和写作业时,注意解题步骤,或及时发现问题,说明出现问题的原因;要注意防止两个错误:
(1)(-2xy)4=-24x4y4.
(2)(x+y)3=x3+y3.
乘方课件【篇11】
一、教材分析
1、教材的地位与作用:
有理数乘方是有理数的一种基本运算。从教材编排的结构上看,共需四个课时,本课为第一课时,是在学生学习加、减、乘、除运算的基础上来学习的,它既是有理数乘法的推广与延续,又是后面继续学习有理数混合运算、科学记数法和开方的基础,起到承前启后、铺路架桥的作用。
2、教学目标:
根据新课标的要求及七年级学生的认知水平,我将制定本节课的教学目标如下:
⑴、知识与技能:
让学生理解并掌握有理数的乘方,幂,底数,指数的概念及意义;能够正确进行有理数的乘方运算。
⑵、过程与方法:
在生动的情景中让学生获得有理数乘方的初步体验;培养学生观察、分析、归纳、概括的能力;经历从乘法到乘方的推导过程,从中感受转化的数学思想。
⑶、情感、态度和价值观:
让学生通过观察、推理,归纳出有理数乘方的符号法则,增进学生学好数学的自信心;让学生经历知识的拓展过程,培养学生的探究能力与动手操作能力,体会与他人合作交流的重要性。
3、教学重点与难点:
有理数乘方的意义及运算是本节课的教学重点,而有理数乘方中幂,指数,底数的概念及其相互间关系的理解是本节课的教学难点。
二、教法学法
1、学情分析:
在知识掌握方面,由于学生刚学完有理数的加、减、乘、除运算,对许多概念、法则的理解不一定很深刻,容易造成知识的遗忘与混淆。所以在本节课的学习中应全面系统的加以讲述。
在知识障碍方面,学生对有理数乘方中相关概念的理解及其符号规律的推导、应用方面可能会有模糊现象。所以在本节课的教学中应予以简单明白,深入浅出的分析。
在学生特征方面:由于七年级学生具有好动、好问、好奇的心理特征。所以在教学中应抓住学生这一特征,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终在课堂上;另一方面要创造条件与机会,让学生发表见解,发挥学生学习的主动性。
2、教学策略:
根据本节课的教学目标,教材内容并结合七年级学生的理解能力和思维特征。我将以多媒体为教学平台,采用启发式教学法与师生互动式教学模式。通过精心设计的问题与活动,不断创造思维兴奋点,让学生在学习过程中亲自动手操作,探索结论。教给学生多观察、勤动手、大胆猜、肯钻研的研讨式学习方法,使学生在动脑、动手、动口的过程中获得充足的体验与发展,从而调动起学生的学习主动性与积极性。
三、教学过程
1、设置游戏,引入新课:
首先借助多媒体及课前准备好的硬纸片让全体学生共同做两个折纸游戏。
游戏一是把面积为1的长方形硬纸片沿中间对折,使两边能够完全重合。引导学生思考:如此折叠五次后所得长方形的面积是多少?得出算式:××××;
游戏二是让学生把长方形纸片对折后再沿折痕剪开,将得到的`所有纸片重合放置后再对折、剪开。如此操作五次之后共有多少张硬纸片?得出算式:2×2×2×2×2;
最后引导学生思考这两个算式的特点,引入新课。
这个环节通过学生动手操作,使其从直观上理解了乘方运算的特点,并为后续学习起到了导航作用。
2、合作交流,探索新知:
先让学生分组讨论下面算式特点:①××××,②2×2×2×2×2,③(-3)×(-3)×(-3)×(-3),④(-0.3)×(-0.3)×(-0.3)
接着让学生思考正方形面积与边长a的关系,正方体体积与棱长a的关系,得出:a·a=a,a·a·a=a。然后让学生类比出上面四个算式的记法与读法,最后引导学生猜想:a·a·……·a的结果,总结出幂、底数与指数的概念。
n个a这个环节的设计意图是让学生从游戏结果出发,通过正方形面积与正方体体积的表示方法,类比出乘方的表示形式,总结出相关概念。既体现了学生思维的过程,又渗透了转化思想。
3、迁移训练,总结规律:
在这个环节中,我首先要求学生把算式①﹙-4﹚×﹙-4﹚×﹙-4﹚,②﹙-2﹚×﹙-2﹚×﹙-2﹚×﹙-2﹚,③﹙-﹚×﹙-﹚×﹙-﹚,④﹙-﹚×﹙-﹚写成乘方的形式,并说出其底数和指数分别是多少?接着评析例1,结合例1的解题结果,总结出负数的幂的正负的规律。然后启发学生思考将例1各题的底数换为正数或0,结果会怎么样呢?在学生练习讨论的基础上总结出有理数乘方的符号规律。即:负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何正整数次幂都是0。最后结合例2,要求学生掌握计算器的用法,并运用计算器完成课本上的练习,进一步理解有理数乘方的符号规律。
本环节的设计意图是通过变换例1的条件让学生加以练习,进而归纳出结论。有利于调动学生学习的兴趣,使其初步接触到数学的奇妙,提高其积极性与主动性。
4、应用新知,尝试练习:
本环节我主要设计了两组练习,第一组练习是以运用符号规律为目的,让学生通过计算﹙-2﹚、-2、﹙﹚,进一步掌握有理数乘方符号规律的运用方法,并使其在对比﹙-2﹚与-2,﹙﹚与的基础上总结出:当底数为负数和分数时,一定要用括号把底数括起来。
第二组练习是以乘方的实际应用和综合应用为目的而设计的,共两个习题。希望借助第一题帮助学生学会运用所学的乘方知识解决实际问题,促使其树立一个学数学、用数学的思想。而第二题则是乘方与有理数大小比较的综合应用,可帮助学生提高数学分析能力和综合解题能力。
5、归纳小结,形成体系:
首先鼓励学生畅所欲言的总结本节课的收获与体会;然后帮助学生自主建构知识体系;接着布置本节课的课内与课外作业;最后说一下本节课的板书设计。
Yjs21.Com更多幼师资料扩展阅读
小书包课件模板十一篇
老师在开学前需要把教案课件准备好,每个人都要计划自己的教案课件了。形成切实可行的教案有助于教师掌握教学进度,如何写出让自己满意教案课件?幼儿教师教育网的编辑精心挑选为大家整理出了最新的“小书包课件”供大家参考,欲了解更多信息请继续往下阅读!
小书包课件 篇1
目标:1、认识书包的结构和作用,区别书包的异同点,发展幼儿的观察力和思维能力。
2、能用清楚、连贯的语言,大胆表达自己的认识,发展幼儿口语表达能力及认真倾听的习惯。
3、敢于想像大胆表现,发展幼儿的创造力。
准备:1、自备书包每人一只,2、纸、彩笔每人一份
重点:幼儿观察力
方法:1、让幼儿对书包有一定的认识,2、分组讨论,放手让幼儿自己去寻找,观察同伴间书包的异同。3、老师适时指导。
难点:根据零散的讲述进行归纳
方法:1、让幼儿大胆讲述2、老师提示3、鼓励幼儿学习归纳
过程;一、提问导入课题
师:小朋友们马上要上小学了,小学生每天上学必须带什么?
(幼儿可以说出各种文具用品,)
师:这些文具都放在哪里?书包
二、发现书包的不同特点
师:每个小朋友都有自己的书包,你们的书包都是一样的吗?有什么不同?
1、活动以分组形式进行,让幼儿互相观察、议论、发现书包的不同之处。(老师巡视,适当提示幼儿)
2、集中交流:首先幼儿代表小组发言,,说说本组发现的书包不同之处,再请小朋友补充自己的发现。
3、引导幼儿归纳书包在形状、结构、颜色、图案等方面的不同点。
三、发现书包的相同点
师:你们的书包有这么多不同的地方,有没有相同的地方呢?
1、分组讨论,互相观察、议论、说说本组书包的共同特点。
2、集中交流:首先幼儿代表小组发言,,说说本组发现的书包相同之处,再请小朋友补充自己的发现。
3、引导幼儿归纳书包在结构和作用上的共同点。
四、为自己设计一个最理想的书包。
师:书包是我们最亲密的朋友,今天我们看了这么多不同的书包,你们能不能为自己设计一个更美丽,用起来更方便的书包?
1、幼儿互相议论,启发,说说自己想设计一个什么样的书包,教师倾听并适当引导。
2、幼儿设计绘画,教师注意观察,根据不同情况给予适宜的指导。
小书包课件 篇2
《小书包》教学设计
指教人:朱丽娟
教学目标:
1、通过图画对照、归类识字等方法,认识书、包等9个生字和包字头、单人旁、竹字头3个偏旁。会写书、本字。
2、知道学习用品的名称,了解它们的用处。
3、爱护文具,整理书包。
教学重点:掌握常见的学习用品的名称。
教学难点:了解文具是学习的伙伴,知道爱惜文具,会整理文具。课时准备:第一课时
教学准备:多媒体课件,生字卡片,小书包 教学过程:
一、猜谜激趣,导入新课
师:你们喜欢才谜语吗?这节我们先来猜一个谜语。(课件出示)
1、导入课题出示卡片《小书包》(1)学习“书”字,师:我们用拆分的方法,可以把“书”字分成三部分:由横折、横折钩组成了一个楼梯的形状,还有一个竖和一个点。然后编小口诀记住“书”字:书是小阶梯,一竖到顶点。
(2)写“书”字
师:第一笔横折略小,第二笔横折钩略宽,竖要直,点不能碰到横折。
(3)学习“包”字 师:观察“包”字,介绍“包”字的偏旁——包字头。你还在哪些字中看到过这个偏旁?(预设“句”)
设计意图:以谜语导入增强学生的学习情趣,调动学生学习的积极性。在教学中指导学生学会新的识字方法,使学生在很短的时间内记住生字。音、形的组合。
2、游戏:找书包里的宝贝(橡皮、尺子、作业本、铅笔、笔袋、转笔刀)
3、出示6个词语
师:请同学自由读课文中的6个词语,喊喊他们的名字。
二、学习生字词语
1、学习“橡皮”指名读准拼音 橡皮有什么作用?
2、学习“尺子”指名读准拼音 尺子有什么作业?
师:贴卡片,读准翘舌音和轻声音,尺字谁有好办法记住它(尸加一捺尺尺尺)这些文具当中还有哪个个字可以用加一加的方法来记?(木加一横本本本)
3、写“本”字
师:横要写得平直,竖与竖中线重合要写端正,撇要舒展,最后一笔短横不能碰到撇和捺。
4、学习“作业本”指名读准平舌音,学习单人旁,说作业本的作用
师:贴卡片,作和昨的对比,用换偏旁的方法记住作,编口诀:地上竖着二和八记住业
5、学习“铅笔”“笔袋”指名读准拼音 说铅笔的作业
师:竹字头是竹子的变形。出示毛笔的图片。毛笔的上面是竹管,下面是毛。根据结构,组成了我们今天学习的“笔”字。“笔”是会意字。
6、学习“转笔刀”指名读翘舌音
说转笔刀的作用
师:出示刀——力,刀有力哪里不一样?用形近字的方法记住刀
设计意图:这一环节采用了很多的识字方法,教师领着学生去探索一些新的识字方法,比如拆部件、编口诀、换偏旁、形近字等方法,使学生快速的掌握生字。
7、《课间操》
三、运用游戏,复习巩固
1、摘苹果,课件出示
师:老师上课很口渴了,你们能不能把这些苹果摘下来送给老师吃呢?
2、捡水果,课件出示
师:老师想把这些各种各样的水果送给同学们,你们想要吗?
3、青蛙捉虫,课件出示
师:棉花宝宝生病了,身上长了许多蚜虫,青蛙来了。咱们来当当小青蛙帮帮这些棉花宝宝,好吗?
设计意图:主要是利用一些游戏巩固所学的生字,先用词语的形式出现,再到单个的字,由易到难。如果单个的字都能认识,那么生字就过关了。
四、总结
1、说一说
师:这些文具每天默默的在为我们服务,我们的学习离不开它们,在平时我们应该怎样对待我们的文具?
2、关于爱护文具的儿歌
五、作业
六、板书设计
8、小书包
橡皮
尺子
作业本 铅笔
笔袋
转笔刀
小书包课件 篇3
一、教学效果:
1、猜谜语,激发兴趣。开课时,以学生喜欢的猜谜语的形式引出小书包里的文具等学习用品,这样从学生的生活实际入手,学生不仅认识这些学习用具,而且也给了学生一个启示――在游戏中可以识字,为学生理解课文内容作好铺垫。
2、教给方法,多样识字。《语文课程标准》指出:第一学段要求学生喜欢学习汉字,有主动识字、写字的愿望。一年级的孩子还没有自主识字的能力,为了给孩子们识字的意识,培养学生识字的良好习惯,在本课识字教学中,我针对不同类型、不同特征的生字,结合学生的生活实际,巧妙创设各种有趣的情境,充分调动学生的多种感官参与学习活动,教给学生各种识字的方法,如利用象形文字识记了“刀”,利用图片,借助会意字原理识记了“笔”,编儿歌口诀记住了“书”,偏旁加一加,认识了“包”。
三、不足之处:
1、低年级的写字教学也是重点之一,但由于前面有些环节时间有些浪费,在引导学生观察笔顺、结构,然后范写,再让学生描红临写,展示评价的过程时有些仓促,没能很好地注意全班学生的写字情况。
2、生字巩固环节,让学生组词,只注意了生字放在前面或者后面一种情况,没有拓展开去。让学生知道组词时,生字既可以放在前面,也可以放在后面。
四、改进措施:
由于本课的内容与孩子们的学习生活息息相关,“小书包拎起来”后,孩子们的话匣子也被打开,在提及“常见的文具有哪些?”“同学们各自拥有哪些文具?”“这些文具各有什么用?”等问题时,孩子们都跃跃欲试,课堂氛围很好。孩子们学习的主动性与积极性被调动起来了。
小书包课件 篇4
一.教学目标
1、通过图画对照、归类识字等方法,认识书包等11个生字,认识包字头单人旁、竹字头3个偏旁。会写早、书5个字。
2、能正确朗读课文。知道学习用品的名称,了解它们的用处。
3、爱护文具,学着自己摆放文具,整理书包。
二.教学重难点
正确朗读课文,掌握常见学习用品的名称,认识书包等11个生字,认识包字头、单人旁、竹字头3个偏旁。
三.教学过程
(一)猜谜导入新课
1、导语:孩子们,上课之前我们先来猜一个谜语,看看谁猜得又快又准。
2、出示谜语,学生猜谜:带子长长身体方,书本文具里面装。它是我们的好朋友,天天伴我来上学。
3、出示谜底,板书课题:是啊,就是书包(师板书课题)。今天这节课我们就要和小书包一起来学习。
4、齐读课题,认读书包:
(1)指读课题,学生齐读课题。
(2)认读书包:要求先拼读拼音,说一说读这个音节应该注意什么。
5、师:看看书包里装了什么呢?
师;老师这有一个书包,请一个同学把里边的物品都拿出来,边拿边出示带拼音的词语,书包就是把所有的学习用品都包在里面。
二、初读感知、识记生字
(一)认读生字,识记生字(带图片词语)
1、过渡:在这首儿歌里,有6个词语,看书自己读一读,下面请小朋友们领着大家读一遍,老师把拼音去掉,你还会读吗?全班一起读黑板词语。开火车读。
2、认读单个生字:
(1)黑板出示生字,学生同桌互相读生字,交流识字方法。
(2)全班齐读生字,一个读两遍。
(3)你用什么好方法记住哪个字?识记生字的方法:加一加,减一减,换一换,反义词,组词等等,当学生说出第一个加一加的字时,顺势归类,把所有的加一加的生字都放在一行。随机认识单人旁、竹字头。重点认识竹字头。
三、生字再现、巩固记忆
师:孩子,这些字宝宝你都认会了吗这些生字都认会了,儿歌就会读的更好听,我们一起试试吧,注意节奏,停顿。交流识字方法。
四.教师示范、指导书写
过渡:同学们已经和书包里的小居民交上朋友了,那你们想不想把它的名字写下来?现在就让我们一起写一写吧。首先,我们把书字送回家。
1、第一笔横折略小,第二笔横折钩略宽,竖要直,点不碰到横折(1)生书空。(2)生在田字格先描红,再书写。
2、早送回家,注意横要写的平直,要写端正,日要写的扁一点。
3、再读课文,边读课文边用笔划出我的小书包藏着哪些宝贝?
教师引言:同学们学生字学得非常好,现在让我们再来读一读。老师有几句话想叮嘱书包:上课的时候应该怎么做,下课的时候应该怎么做。出示课文后半部分。
师:这些文具默默的为我们奉献,我们应该怎么对待它呢?引导学生说一说。
师:说一说你是怎样整理书包的。教师建议学生用先......接着......然后......最后......这样的句式来说话。边说边做。
五、总结全文。这节课我们学会自己整理书包,收拾自己的书桌面。课下小朋友用先...然后...最后...说一说整理书包的过程。
小书包课件 篇5
活动设计意图与思路(教育理论依据):
我要上小学是我班最近刚开展的主题。随着毕业时间的临近,组织幼儿参观了小学,孩子们自然转向了读小学的话题。为此,我们召开家长会,让家长带着孩子一起去买书包、学习用品等,并带到幼儿园里来,开展了主题我要上小学了。学习活动小书包我结合了教材上的主题:我和书包做朋友和书包里的朋友。每一个孩子的书包都有它的来历,我就让他们自主地交流,在交流中体现家长对孩子的期望,激发他们入小学的欲望。书包的识别、书包的整理都是孩子最有益的经验,孩子通过观察了解各种书包的外形,用他们特殊的方式辨别自己的书包。在整理书包的过程中,以动制静,充分让孩子动手操作,并把自己整理的方法和同伴一起交流分享。当即时生成一些问题,如书包里是不可以放玩具和零食的等等,我觉得很有价值,就进行点拨,让孩子充分的交流、讨论,丰富他们的经验。在活动中,幼儿进一步感受到背上小书包的神气,激发上小学的愿望。
活动内容与要求:
观察、讨论书包的外形、特征等,尝试正确使用小书包。
有入小学的愿望。
活动重点:观察、讨论书包的外形、特征等,尝试正确使用小书包。
活动难点:有入小学的愿望。
活动准备:
1、每个幼儿准备书包一个;
2、幼儿参观小学的照片若干;
3、区角活动的渗透。在区角中投放各种小学里要使用的文具,让幼儿写写字,整理整理书包。
教学课时:一课时(30分钟)
活动过程:
激发兴趣:
师:我们离幼儿园毕业已经进入倒计时了,还有几天啊?
师:再过34天我们就要毕业,做一个真正的小学生了。我们做小学生要准备些什么呢?(买新衣服,买书包等)啊!今天你们都带来了自己的书包。
交流讨论:
1、师:你的书包是怎么来的?(幼儿交流)师小结:吴老师知道了你们的书包有送的,也有和爸爸妈妈一起去买的。他们希望你们以后做个好学生,戴红领巾。
2、互相交流讨论书包的外形、特点等师:那你的书包是什么样的?我们找个好朋友介绍一下吧!
(1)和同伴交流书包的外形、特点
(2)个别介绍
3、师提问:如果班级里的2只书包一样,你怎样来识别呢
4、师提问:你的小书包里放些什么呢?
(1)上小学可不可以拿玩具?
(2)书包里可以放点心零食吗?让幼儿充分讨论师小结:原来书包里也是一个小世界,所有的学习用品都可以放在里面,现在让我们把书包里的东西一样一样拿出来,看谁整理的又快又好。
三、幼儿操作:
1、幼儿尝试整理书包
2、个别幼儿介绍师:你是怎么样整理的?
师:你为什么要这样放?
师小结:哦,原来书包里的每一样东西都要放在各自的地方,这样我们拿的时候就很方便了,很快就能找到。
四、活动延伸:
1、和小学生做朋友,和哥哥姐姐一起再一次整理书包,观察书包里有没有缺少学习用品?如果缺少,交流少了什么?为什么不能少?
2、整理铅笔盒。看看铅笔盒的文具,用用、试试,了解他们的使用方法。
小书包课件 篇6
1.使学生在具体活动中体验分类标准的多样性,根据不同的分类标准可以有不同的分类方法.
2.初步使学生养成有条理整理事物的习惯.
上节课我们学习了有关分类的知识,今天我们分组进行一个比赛好不好?
1.小组代表到老师这里抽题.(要求每行不是同类的,把它圈起来.)
4.各组展示自己抽到的题,并说明自己组选择答案的理由.
老师让同学们拿出自己的书包,动手实践,看谁用最短时间把自己书包整理好.
让学生到前面来,并说你是怎样整理的,为什么这样整理.
听完成同学们各自发言之后,引导同学们互相讨论,你认为用哪种方法好,使用起来更方便.
1.所有的书放在一起,所有的本放在一起,分两类.
2.分学科分.
3.大本书、小本书、大本、小本.
(四)教师小结:分类在同一标准下,分类的结果是确定的;通过实践操作,我们发现在
不同的标准下分类的结果是多样的.
1.至少找到两种不同分类方法.
2.同伴互动.
3.汇报.可以按大小分类,按形状分类,两种分类方法.
1.小组选题制定标准讨论分类.
2.小组汇报展示分类方法,其他小组补充、评价.
3.老师评价各组活动并贴聪明星,进行鼓励.
引导学生谈本节课的收获,通过学生自己语言把自己的思考说出来,巩固本节知识,进一步体会分类方法多样性.
本节课内容是一个实践操作性很强,教学内容具有开放性活动课,老师根据低年级学生学习特点,好胜心强,喜欢动手操作这一特征,设计多个游戏竞赛项目,和动手操作实践活动,引导每一个学生始终参与学习的全过程。通过自己的体验和同伴互动,达到对知识理解和掌握,在这一过程中学生的主体性得到充分尊重,留给学生充分的思维空间,有利于学生多角度思考问题和多种方法解决实际问题能力的发展,教师在课后引导学生在家长帮助下尝试进行多种分类,促进这种能力的提高与巩固。
小书包课件 篇7
教学目标:
1、正确、流利的读通课文。有一定的感情朗读课文。
2、用多种方法引导学生随文认识生字词。会根据读音给多音字“行”组词。
3、感知”猫头鹰和小兔子能自己抓紧时间,小闹钟没有帮上忙”的课文内容;小熊在小闹钟的帮助下改掉了睡懒觉的坏习惯。从而让学生树立时间观念。
4、初步了解“”的不同用法。
2、随文认识生字词。会根据读音给多音字“行”组词,指导书写3个生字。
3、感知猫头鹰和小兔子能自己抓紧时间,小闹钟没有帮上忙;小熊在小闹钟的帮助下改掉了睡懒觉的坏习惯。从而让学生树立时间意识。
教学难点:
1、感知猫头鹰和小兔子能自己抓紧时间,小闹钟没有帮上忙;小熊在小闹钟的帮助下改掉了睡懒觉的坏习惯。从而让学生树立时间意识。
2、初步了解“”的不同用法。
目标简析:
这一课的目标主要围绕本期教研课题《如何有效地落实随文识字》来制定。这课生字词较多,如:“鹰、闹、经、劲、咱”这些生字的字音较难读正确,在随文认识了生字的基础下。指导学生正确、流利的读通课文。在读中去感悟猫头鹰和小兔子能自己抓紧时间,小熊在小闹钟的帮助下,改掉了睡懒觉的坏习惯。
教具准备:
生字卡片,词语卡片、多媒体课件、作息时间表、小黑板。
1、 谜语导入。
2、 齐读课题。(学习“闹”字,注意闹字是发的.鼻音“n”;“钟”学生可以根据偏旁来了解钟是金属做的。)
3、 再次齐读课题。
一、 整体感知课文内容。
3、 齐读课文。
二、 学习课文,了解内容。
3、小闹钟找了那些朋友?请找一找小动物的名字。(在找动物名字时,学习“鹰、兔、熊)
4、学习二自然段。(在学文的同时学习生字词:抓、完成、任务、体会猫头鹰会抓紧时间。)
5、学习三自然段。(随文识字:一瞧、已经、院子,了解什么作息时间表,从而感知小兔子也会抓紧时间。)
6、学习四自然段。(随文识字:改掉、使劲在读中感悟在小闹钟的帮助下,小熊改掉了睡懒觉的坏习惯。)
猫头鹰抓紧时间抓老鼠,完成了任务。小兔子会抓紧时间照着作息时间表做早操!小熊在小闹钟的帮助下也学会了抓紧时间。那我们也应该——(学会:抓紧时间)
猫头鹰 晚上抓老鼠,完成了任务。
小兔 6点15分做早操。
小书包课件 篇8
一、复习巩固,激趣导入
1.导言:同学们,我们每个人都有一个好朋友,每天它陪我们一起上学。放学之后它陪我们一起回家。它帮我们带好了学习用品。它就是我们的——小书包。(板书课文题目)
2.复习词语。
(1)认读字卡。
(2)扩词练习。出示“尺、本、刀”。给这三个字组两个词。最好不重复。
设计意图:此环节的设计是为了激发学生的学习兴趣,同时把过去学过的知识与新知识联系起来,起到以旧带新的作用,并促进课内外知识的贯通。
二、学习韵文,随文识字
1.教师范读韵文,对学生提出听的要求:认真听准字音,注意停顿。
(1)学生自由练习读韵文。
(2)指名朗读,随机评价指导。
(3)小组内互读韵文。
(4)对照生字表在韵文中画出生字或自己不理解的词。(生字用“圆圈”画出来,在不理解的词下面画“横线”。)
2.说一说:这篇小韵文一共有几句话?每句话都说了什么?
(1)学习第一句话。
①“宝贝”指什么?为什么称为“宝贝”?
②指导朗读。
(2)学习第二句话。
①这句话讲了什么?
②学习“课”字。“课”是左右结构的字,上课要用语言来交流,所以是“言字旁”。
③这些是小书包里“宝贝”的代表,其实还有好多“宝贝”,我们没有说出来。你们能用书包里的其他宝贝来替换这句话吗?(给学生创造发挥的空间,引导学生畅所欲言。)
(3)学习第三句话。
①这句话说了什么?
②“静悄悄”是什么意思?(形容非常安静没有声响)那一般在什么时候会是“静悄悄”的?
预设:夜里静悄悄。大山里静悄悄。大人没回家,家里静悄悄。站队时要静悄悄。
③指导朗读。
(4)学习第四句话。
①学习“早”字。出示图片,体会日出的时候就是早晨。用“加一加”的方法识记“早”字。
②学习“校”字。“校”是左右结构的字,是形声字。
③这句话讲了什么?
④指导朗读。
3.齐读韵文。
4.做课间操。
设计意图:通过随文识字激发学生识字、阅读的兴趣,让学生兴致勃勃地交流识字方法,采取多种方法朗读来调动学生学习的积极性,引导学生大胆创编体会用语文的乐趣,实现教学目标。
三、实践操作,有序表达
1.教师引言:小书包是我们的好朋友,书包里的学习用品是我们的好宝贝。你们会使用这些宝贝吗?
2.说一说怎样削铅笔。引导学生用上节课学过的“先……接着……然后……最后……”的句式来说话。
3.小组合作说一说怎样在桌面上摆放学习用品。引导学生用方位词。我把( )放在( )的( )边。
4.汇报展示摆放的结果。
设计意图:创造情境可以帮助学生进行口语表达的训练。帮助学生树立想说、能说、抢着说的意识,促使学生成为真正的学习的主人、语言文字的使用者。
四、指导写字,认真细致
1.学习书写“早”字。
(1)引导学生观察“早”字在田字格中的大概位置。“日”字的字形略扁。“十”字的横要写在横中线上。
(2)教师范写,请同学们注意笔顺,一边看一边说笔画的名称:竖、横折、横、横、横、竖。
(3)学生练习书写。教师巡视指导,提醒学生注意书写的姿势。
2.学习书写“书”字。
(1)引导学生观察“书”字在田字格中的位置。“书”字的横折钩的“横”写在横中线上,左边略低,右边略高,竖写在竖中线上。
(2)教师范写,请同学们注意笔顺,一边看一边说笔画的名称,讲解书写规则:从上到下。
(3)学生练习书写。教师巡视指导,提醒学生注意书写的姿势。
设计意图:引导学生仔细观察字的每一笔每一画在田字格里的位置,讲解起笔、收笔和笔画的轻重、长短以及占格等情况,这样,学生的第一印象会比较深刻。教师示范和学生反复练习结合起来,才会写出美观大方的字来。
五、布置作业
1.读两遍课文。新学的生字读3遍。
2.自己整理书包,收拾自己的书桌面。和家长介绍自己是怎样摆放的。
设计意图:巩固识记生字,引导学生整体回顾学习的内容。培养学生在生活中自理、自主,与家人分享学习的快乐,营造良好的家庭教育氛围。
小书包课件 篇9
教学名称:小青蛙
教学目标:
1.学会6个生字和有生字组成的新词,认识新部首“虫”字旁。
2、能说出插图的内容,不读错字。
3、正确地朗读课文,不读错字。
4、理解课文
教学重难点:
重点:掌握生字词。
难点:理解课文内容,懂得青蛙是庄稼的好朋友,教育学生要保护青蛙。
教学准备:放大的图片4张,纸折的青蛙。
教学过程:
第一课时 1.猜谜语。
小小游泳家,说话呱呱呱,小时有尾没有脚,长大有脚没尾巴。猜一猜,这是什么小动物? 2.板书:小青蛙。
3.你喜欢青蛙吗?为什么?他有什么特点?
4.课文中的小青蛙是一只什么样的小青蛙?读读课文我们就知道了。
二、指导观察插图,初读课文。
1.学生自由朗读课文,预习时圈出生字。2.先看图分段读课文。
1.读第一自然段,共两句,用叙述的语气读。再引导学生按照顺序仔细看图,说说自己看懂了什么。然后教师提问:小青蛙有哪两个家?它在水里怎么样?
句式训练:用“游来游去”练习说话
3.第第二自然段。读后让学生看图,思考:小青蛙白天在干什么?夜里在干什么?懂得“忙着”的意思就是就是一刻也不偷懒,一刻也不停歇。‘呱呱’是指小青蛙的叫声,歌声。让学生懂得,小青蛙白天为庄稼捉了害虫,保护了庄稼,很高兴。所以,它在月光下不由自主地唱起来。
4.朗读课文。练习按逗号、句号的停顿朗读,指导学生做课后作业。先让学生静听每句话,边听边想句子是说小青蛙什么的,再一段一段地背,最后练习背诵课文。
第二课时
一、复习
青蛙 回答 捉回家 放学
为什么
等
爱妈妈
二、学习课文
1.教师范读课文,同学们想想课文讲了什么事。板书:
捉
放
2.全班自由读,数数这首小诗一共几句话(三句话)。
3.指明分别读这三句话,其余的同学想想每句话告诉我们什么? 4.以小组为单位合作学习。5.小组汇报,汇报先读句子,再说意思,其余的小组给予补充。(第一句写我爱小青蛙,所以捉了一只带回家)
板书: 捉
.师:如果你就是那只青蛙,你被捉走了,你会想些什么?会说些什么?(启发学生想象)老师贴图“难过的小青蛙”师:妈妈看到后是怎样对我说的?另一组汇报第二句,教师板书:
劝
放
教师质疑:这句话有没有不懂的地方?帮助学生理解“劝”的意思。妈妈的心情怎么样?谁能把这句话读好?指导朗读:让学生看板书试背钱两句话。学生齐读第三句,想一想这句话告诉我们什么(这句话告诉我们妈妈让我放小青蛙的原因)。你知道妈妈让我们放小青蛙的原因吗
板书:
笑
爱
让学生谈谈什么叫“爱”。启发学生想想妈妈是怎么爱自己的,再结合课文理解妈妈的话。(一个“笑”字可以看出,妈妈爱我,喜欢我)指导朗读这句话。
6.启发想象。听了妈妈的话,你会怎么想,怎样做?课文中并没有告诉我们,你能补充完整吗? 出示练习:听妈妈的话,我_____________________.教师:老师被你们的行动打动了,你们真是一群可爱的孩子,此时小青蛙也回到了妈妈身边,它一定会感谢你们的。
出示图片“快乐的青蛙”,放音乐《小青蛙快回家》。7.小青蛙终于回到了妈妈身边,我们都替它感到高兴,现在,我们一起带着感情把这首诗齐读一遍。这么好的一首诗,你愿意把它背下来吗?
8.指导背诵,学生自由背诵,再填空。
我爱(),提了一只(),妈妈见了(),()放了它,我们妈妈()妈妈()放回它:青蛙妈妈(),等它()。指明背诵,介绍方法。
(三)总结全文。
同学们,听说你们在课文收据了有关青蛙的资料,大家拿出来分享吧。
作业。背诵课文
小书包课件 篇10
我喜欢的小书包我有一个又美丽又懂事的小书包,我给她取了个名字叫:乖乖。她的形状像长方形,外面有着粉红色的皮肤,里面黑油油的,共有4层。外面还有樱桃小丸子和她姐姐的`图片,姐姐名叫‘小玉’,妹妹名收‘小丸子’。姐姐读6年级了,小丸子读三年级了。告诉你们吧,我有许许多的小书包,但是我最喜欢的书包是乖乖。一次,上语文课时,我开了小差,这时,正在认真听课的书包乖乖发现了,她严厉地对我说:“姐姐,你又开小差了,再不认真听课,我就告诉你妈妈去。难道你忘记了,在家里,你妈妈问你问题,你不知道的结果。”我急忙转过身来,妈妈那严肃的样子在我面前一闪,马上朝小书包乖乖摇了摇头,摆摆手,马上向老师望去,专心致志的听起课来。下课了,刚才老师讲的知识,我牢牢固固地记住了,一个字也忘不了。2005年的2月6日那天,书包乖乖一本正经地对我说:“姐姐,我这几天想回书包城堡过年!”听了这句话,我发抖了,想着想着:哎,我真舍不得我的又可爱、又美丽、又懂事的书包乖乖,可是没关系,过了这个寒假,她一定还会回到我的身边。我一边盼望着,一边伤心、勉强地答应了。小书包作文400字
小书包课件 篇11
活动目标:
1、认识几种学习用品,知道其名称、用途和使用的方法。
2、学习整理书包,保持整洁。
3、懂得爱惜学习用品。
4、培养幼儿思考问题、解决问题的能力及快速应答能力。
5、愿意交流,清楚明白地表达自己的想法。
活动准备:
1、图片:开心的书包形象和痛苦的书包形象。
2、请家长为孩子准备一只小书包、简单的学习用品(铅笔盒,包括铅笔、尺子、刨笔刀、橡皮等,田字格、米字格、拼音练习本)。
3、配套磁带或CD。
活动过程:
1、幼儿背着书包进教室,体会做小学生的骄傲。
2、观察书包,认识简单的学习用品。
(1)出示自己的书包,互相观察书包,说出它们的异同。
(2)出示铅笔盒,认识其中的物品和使用方法,互相观察,说出其数量和特点。
(3)出示各种本子,初步知道什么是田字格、米字格、拼音练习本,学会写上自己的名字。
3、出示图片,讨论为什么它们会有不同的表情,猜想它们的主人是怎样对待自己的书包的,使幼儿懂得要爱惜学习用品。
4、学习整理书包。
(1)学习解书包扣和关书包扣。
(2)整理铅笔盒:学习用刨笔刀卷铅笔,将铅笔、橡皮等合理摆放。
(3)整理书包:让幼儿自己试着将多个本子和铅笔盒整齐地摆放进书包。互相检查书包的整理情况。
5、欣赏儿歌《小书包》。
反思活动:
就孩子们上学遇到的迫切需求,从幼儿的心理特点出发,来尝试解决问题的办法,在做一做中,孩子们手、脑、眼和各种感官并用,看好朋友怎样进书包。在变一变中,孩子们提高了整理书包的速度,在查一查中,同伴进行合作,给予评价。在背一背中体会了获得劳动成果的喜悦。目标完成较好。
不足的是:应该有延伸活动,让幼儿回家后把自己的本领给家里人表演,再给你的好朋友或者弟弟妹妹表演,还有再设置区域角,让幼儿进行整理书包的比赛,这些是需要改进的。
两位数乘两位数课件模板12篇
关于“两位数乘两位数课件”我们为您整理出以下的知识点,希望您能多多浏览我们的网站。学生们在课堂上有一个生动有趣的学习体验,这离不开老师辛勤准备的教案。因此,老师编写教案绝不能随意对待。编写完整的教案是提高教师教育教学能力的关键。
两位数乘两位数课件【篇1】
教学目标:
知识与技能:
通过探索口算方法的过程,学会口算整十、整百数乘整十数及两位数乘整十、整百数(每位乘积不满十)。
过程与方法:
培养学生认真观察,正确计算的习惯,能正确、熟练地口算整十、整百数乘整十数及两位数乘整十、整百数。
情感态度与价值观:
培养学生口算的能力和认真口算的习惯。
教学重难点:
学会口算整十、整百数乘整十数及两位数乘整十、整百数(每位乘积不满十)。
教具准备:
课件
教学过程:
一、复习学过的口算方法
1、口算下面各题。
30×4 50×5 300×1
40×4 400×9 300×3
12×4 43×2 33×3
23×13 11×7 15×5
2、说一说30×4、300×9的口算方法。
二、快乐体验,探索新知
1、例题1
(1)运用课件呈现邮递员送报纸、送信的情景。
(2)用自己的话描述画面的内容,想一想可以提什么问题。
(3)教师:大家刚才提了很多问题,那如果邮递员工作了10天,他要送多少份报纸?如果工作了30天呢?
出示例题1:邮递员平均每天送300份报纸,工作了10天,要送多少份报纸?工作了30天要送多少份报纸?
2、研究口算的方法。
(1)请学生独立思考并列出算式:
300×10 300×30
(2)小组讨论:怎样想出得数?
(3)各组代表向全班汇报本组的各种口算方法。
小结:整百数乘整十数,口算是采用把整百整十数0前面的数相乘,再看这两个因数一共有几个0,再在所得的积后面添上几个0,这一种方法最为简便。
3、出示例题1的后半题:邮递员平均每天送60封信,工作了10天,要送多少封信?工作了30天要送多少封信?
学生独立列式并口算出正确的结果,教师讲评时要学生说一说你是怎样算的。
小结:整十数乘整十数,口算是采用把整十数0前面的数相乘,再看这两个因数一共有几个0,再在所得的'积后面添上几个0。
4、练一练:完成教科书第58页的做一做
先由学生独立口算,然后集体订正。
讲评时提问:80×10你是怎样算的,说一说口算过程
12×200你是怎样算的,说一说口算过程
三、巩固运用
1、学以致用
80×10=60×20=50×40=24×10=
700×20=90×90=40×80=10×200=
2、火眼金睛
下面计算正确吗?
(1)40×50=200
(2)30×40=700
3、游戏。
贴出香蕉摘下来。最后,比一比哪一组摘的香蕉多。
4、小试牛刀
让学生独立完成。在学生完成后,请几位说一说这一道题解题过程和结果。
5、教材第42页的做一做
四、课堂总结
本节课你有什么收获?还有什么问题吗?
五、课堂作业
练习十四第2、3题。
两位数乘两位数课件【篇2】
一、教学目标
知识与技能目标:掌握两位数乘两位数乘法的计算方法,理解算理。过程与方法目标:通过自主探索、合作交流的方式,学习两位数乘两位数乘法的计算方法,运用数形结合的方法,帮助学生理解算理。
情感态度与价值观的目标:让学生经历发现两位数乘两位数的计算方法的全过程,体验算法的多样化,培养学生的探索精神。
二、教学重点、难点
本节课的教学重点是:掌握两位数乘两位数笔算乘法的计算方法,理解算理。教学难点是:理解两位数乘两位数笔算乘法的算理。
三、学习准备
课件、学习单、实物展台
四、教学过程
(一)、预习自学
师:同学们,你们已经预习了老师下发的自主学习单,谁能来为大家展示自主预习单上的第一题?
师:你能具体说说你的方法吗?计算的地方你会提醒大家注意什么呢?学生会强调竖式写法,相同数位对齐,从个位开始乘起,用第二个因数依次与第一个因数每一位上的数相乘。
师:43×2积十位上的8是怎么来的?8为什么写在十位上?预设:8是十位上的4乘2得来的,表示8个十,所以写在十位上。这是原来我们所学旧知识,这节课我们继续学习乘法,(板书:两位数笔算乘法),两位数乘两位数的笔算乘法。
(二)小组合作
1、出示例题
提醒学生读题要完整,先读已知条件再读问题,注意把情境说出来。该怎么列式呢?14×12=
师:原来我们只学过一位数乘多位数的乘法,没学过两位数乘两位数的乘法。想一想该怎么计算呢?下面给同学5分钟的时间自己想一想该怎么计算,写在导学案中,看看谁的办法多。
1、同伴交流前面自学的内容,完善答案。
2、准备小组汇报。
给大家3分钟的时间小组交流计算方法,看看哪组的办法最多。
自主探索、小组交流的方式探索出两位数乘法的计算方法,通过画点子图,采用数形结合的方法帮助学生理解算理。
(三)交流展示
(一)小组展示,彰显风采小组展示:
预设1:利用拆分思想,转化成口算
将12拆成10+2,先算14×2=28,再算14×10=140,最后140+28=168.
预设2:将14拆成10和4,10×12=140,4×12=48,140+28=168预设3:利用拆分思想,转化成一位数乘法。
12÷2=6,先算14×2=28,再算28×6=168预设4:运用竖式。直接将14×12的竖式写出来。预设5:运用连加,真的用14个12相加求结果。
预设6:直接数点子图。一个一个去数一共有多少点子,从而求出答案。如果只出示到这里,老师要提示:他是数点子的个数,同学们想想有没有更快的数点子的方法。从而推出第6
预设7:圈画点子图,先圈出10行,一行14个,10行就是140,再加上剩下的2行,有28个点子,然后把这两部分加在一起。
1、学生纠正、补充、质疑
2、教师精讲、点拨、评价
回顾一下看看同学们的`方法,老师点评,划分为3种思想:
①采用拆分的办法,将新知识转化成已经学过的旧知识,用口算就能解决。
板书:转化、口算
②利用竖式解决,板书:竖式
③利用点子图,板书:图形
3、比较哪种方法简单
我们数学讲究简便,同学们看看哪种方法最简单?为什么呢?预设:竖式最简单,竖式一步就能算出来,还容易看明白。
师总结:当我们算较大的数时更能体现竖式的优越性。
4、沟通口算、竖式计算和点子图之间的关心
师:请同学们观察竖式计算还和哪种算法的计算方法一样?
预设:竖式和口算第一种算法和点子图的算理是一样的。
5、师讲解三者的异同。
对着竖式和点子图点拨:每一部分表示什么。
通过小组交流,师生共同补充的方式,完善学生的答案,在交流中增加对算法的理解。以同学给同学讲解的方式,锻炼学生的表达能力和与人沟通的能力,培养他们的自信心和对数学学习的兴趣。
四、达标延伸
1、用竖式计算。
(1)33×31=(2)43×12=(3)11×22=(4)23×13=
2、解决问题。
一本书有300页,如果每天读22页,2周能读完吗?如果每天读40页,7天能读完吗?
两位数乘两位数课件【篇3】
教学内容
教科书第68页例2、例3。
教学目标
1崩斫饬轿皇减两位数的算理,掌握两位数减两位数的计算方法,会竖式计算两位数减两位数的减法,能所学知识解决生活中的简单问题。
2碧剿鞑煌的算法,继续培养学生的创新和探索发现能力。
3比醚生体验到探索发现的乐趣,获得积极的情感体验。
教学重点
理解两位数减两位数的算理,掌握两位数减两位数的计算方法,会竖式计算两位数减两位数的减法。
教学准备
教师准备
每组学生准备第68页的数位图和小圆片。
教学过程
一、复习引入
教师:我们在前面学习过两位数减一位数和两位数减整十数,下面请同学们你们掌握的计算方法算一算。43-5=47-2=51-6=22-4=43-30=47-20=78-40=42-30=
学生独立完成后,抽学生说一说自己是怎样算的,重点要求学生说出相同数位上的数对齐相减。
教师:我们在学习两位数减整十数和两位数减一位数时,要求相同数位上的数对齐相减,这节课我们学习两位数减两位数的减法,看我们原来掌握的计算方法在两位数减两位数的减法中适不适。
板书课题。
二、教学新课
1苯萄2
出示第68页的情景图。
教师:从图中知道些什么?
引导学生说出从图中知道左面有39个茶杯,右面有25个茶杯盖。
教师:茶杯和茶杯盖是一一对应的吗?
教师:求还差多少个茶杯盖,应该怎样列式?
教师:为什么要这样列式?
引导学生说出这是两个数量进行比较,把39个茶杯分成两个部分,一部分是和茶杯盖同样多的茶杯,另一部分是比茶杯盖多的茶杯,39-25就是减去和茶杯盖同样多的茶杯,剩下的就是比茶杯盖多的茶杯,也就是还差的茶杯盖。
教师:怎样计算39-25呢?我们在数位图上摆一摆小圆片。谁告诉我,先摆哪个数?然后怎么办?
引导学生说出摆39-25时,先要摆出39,再从十位和个位上分别分掉25。
教师:为什么要强调在十位上和个位上分别去掉25呢?同学们还是采什么方法来计算39-25的呢?
引导学生说出还是相同数位上的数相减的方法来计算的。
教师:同学们小圆片算一算。
学生小组小圆片拼摆计算39-25,教师作必要的
指导。学生算完后抽一组的学生在
上来摆一摆,一边摆一边说自己的计算过程,全班集体订正。
教师:如果不摆小圆片,你怎样计算39-25?让学生说出没有小圆片,可以口算或竖式来计算。
教师:把你们的小圆片收起来,大家从刚才两种算法中选一种来自己计算。
学生计算,教师作必要的指导。
教师:有选择口算计算的学生吗?说一说你是怎样算的。
指导学生指着算式说把39分成30和9,30-20=10,9-5=4,10+4=14。
教师:你认为在口算39-25时,要注意什么问题?能给同学们提个醒吗?
指导学生说出在口算时,要注意十位对着十位上的数减,个位对着个位上的数减。
教师:也就是说要相同数位上的数对齐相减,这是口算的同学提醒我们注意的。有竖式计算的同学吗?到黑板上来介绍一下你的算法。
让学生在黑板上边板书边讲解自己的算法。
教师:减法竖式的写法和加法是不是相同的呢?它们哪些地方相同?哪些地方不同呢?
让学生理解减法竖式的写法和加法很多地方都是相同的,都要先在上面写出第一个,也就是被减数,然后在第二排相同数位上的数对
齐写出减数,在减数的左边写上减号,最后相同数位上的数对齐相减。不同的是加法要写加号,而减法写减号;加法是对齐数位相加,减法是对齐数位相减。
教师:你认为在竖式计算两位数减两位数时,要注意些什么呢?
指导学生说出要注意相同数位上的数对齐相减。
教师:同学们再一次说到了相同数位上的数对齐相减,看来这个计算法则非常重要,不管摆小圆的方法算,还是口算,还是竖式计算,都要遵守这条规定,教师把这条规定写下来。教师板书。
教师:这样我们就算出还差14个茶杯盖。下面请同学们同样的方法计算出79-33和97-26,要求79-33口算,97-26竖式计算。
学生独立计算后,抽学生汇报。口算要求说己的口算过程;竖式计算的在
上展示出学生的竖式的同时,要求学生说一说自己的算法。
全班集体订正。
2苯萄3
出示第68页例3图。
教师:刚才我们学习了两位数减两位数的计算方法,下面我们这种方法来解决生活中的简单问题。这是两辆汽车,它们的座位是不一样的,你能算出小客车比大客车少多少个座位吗?
学生计算后,抽学生的作业在
上展出,让学生说一说自己的算法,在学生说算法的过程中教师作如下的追问。
教师:为什么要45-23呢?让学生说出因为这是两辆汽车的座位数进行比较,把大客车的座位数分成两个部分,一部分是和小客车的座位数同样多的座位数,另一部分就是比小客车多的座位数,所以要45-23。
教师:你什么方法计算45-23的呢?计算时要注意些什么?
要求学生明白不管是口算还是竖式计算,都要注意相同数位上的数对齐相减。
三、巩固练习
出示第69页课堂活动第1题第二横排的题目。
教师:同学们看一看这两幅小圆图,看图列出算式并口算出结果。
学生口算后填算式。
抽一个学生的作业在
上展出,全班集体订正。
教师:请同学们竖式计算43-42,56-33。
学生计算后,抽一个学生的作业在
上展出,全班集体订正。
四、课堂
教师:这节课学习了什么内容?从中你知道了些什么?计算两位数减两位数的算式时要注意些什么?
五、课堂作业
第70,71页练习九第4,5,6题。
两位数乘两位数课件【篇4】
一、教材分析
今天我说课的内容是冀教版《数学》二年级下册第50~51页口算两位数加、减两位数。口算两位数加减两位数是100以内口算的继续,是在100以内口算和笔算基础上教学的。掌握这部分口算,不仅在实际中有用,而且是以后学习笔算的基础。为了使计算教学不再枯萎、抽象,教材选择了服装店购物的事例,创设生动有趣的情境,发现数学问题并解决问题,并辅以多媒体教学手段,给整节课赋以活力生机。这部分内容编排上有如下特点:
1、联系学生生活实际,为新知识的学习提供丰富的现实背景。
2、重视学生已有的知识和经验,注意体现算法的多样化。提倡学生个性化的学习,变学方法为主动的建构方法。
3、重视学生个性化口算方法的交流,使学生获得成功的学习体验。
二、学情分析
在此之前,学生已经学习了100以内的加减法、加减混合运算的运算顺序,认识了1000以内的数。两位数加、减两位数的笔算方法学生已经掌握了。本节课主要让学生掌握两位数加、减两位数的口算方法,形成一定的口算技能。
三、教学目标
根据教材,结合学生的年龄特征,以及新课标的有关理念,本节课的教学目标确定如下:
1.使学生初步掌握两位数加、减两位数的口算方法,能正确地进行口算.
2.初步培养学生思维的灵活性和类推能力.
3.初步培养学生良好的学习习惯和独立的思考的精神.
四、教学重难点:
教学重点:掌握两位数加两位数的口算方法。
教学难点:正确地口算有进位的两位数加两位数。
以上是我对教材的分析,具体教学过程阐述如下:
五、教学过程:
(一)、复习旧知,新课导入
1.用两位数加、减整十数或一位数.
26+30 48+20 49-20 56+3 28-9
2.连加、连减.
52+30+7 57-30-5
55+30+6 75-40-8
72+10+7 86-20-7
教师谈话导入
师:两位数加、减两位数的习题,我们已经学过笔算的方法,今天, 们要学习口算,比一比看谁算得又对又快.
设计意图:唤醒学生已有的知识,自然地过渡到新知识的学习中。
(二)、探究新知.
1、出示教材第50页情境图,学生仔细观察。教师提问:你看到了哪些数学信息?
这是平时生活中的场景,让学生解决生活中的问题,调动了学生学习的积极性。
2、学习问题(1)。先出示问题(1):买一件半袖衫和一个书包要花多少元?
师生共同列出算式54+28。教师提问:不用竖式计算谁能很快算出结果?学生讨论后纷纷发表自己的见解,给了学生充足的时间发表自己的见解,以此让学生体会算法的多样化。同时教师板书不同的口算方法:
方法一.
50+20=70 (元) 4+8=12(元) 70+12=82(元)
方法二.
54+20=74(元) 74+8=82(元)
方法三.
54+30=84(元) 84-2=82(元)
……
学生还可能有其它算法,只要合理,教师就要给于鼓励。
紧接着教师总结:上面几种算法都是正确的.哪种算法最适合自己就可以用哪种方法,自己最理解的方法就是最好的方法.需要注意的是记住先进行计算的结果,再进行第二步计算.
最后,做了相应的练习题:先独立写出结果,再在小组内交流自己的计算方法.
28+37 34+32 36+42 37+25
32+46 54+38 45+19 15+65
3、学习问题(2)。此环节的设计和“学习问题(1)”环节的设计一样,这样让学生学得更轻松。具体如下:
(1).出示问题(2):一件半袖衫比一个书包贵多少元?
教师:你能不能自己列式并试着口算出来呢?
(2)、全班交流算法
方法一:
54-20=34(元) 34-8=26(元)
方法二:
54-8=46(元) 46-20=26(元)
方法三:
54-30=24(元) 24+2=26(元)
……
学生还可能有其它算法,只要合理,教师就要给于鼓励。
(3).练一练
36-20= 52-10= 34-23= 98-76=
36-24= 52-18= 90-25= 42-39=
(三)巩固应用。此环节主要以完成教材上的练习为主,教材练习题的设计难易结合,既有计算题也有解决问题,这样让学生不会感觉枯燥。
(四)归纳总结.
师:在进行两位数加两位数,两位数减两位数时,方法是多种多样的,只要自己认为好的就是最佳的计算方法.计算时要细心认真.
(五)说板书。我的设计既简单明了,又体现本节课重难点。设计如下:
口算两位数加、减两位数
54+28=82(元)
方法一.
50+20=70 (元) 4+8=12(元) 70+12=82(元)
方法二.
54+20=74(元) 74+8=82(元)
方法三.
54+30=84(元) 84-2=82(元)
54-28=26(元)
方法一:
54-20=34(元) 34-8=26(元)
方法二:
54-8=46(元) 46-20=26(元)
方法三:
54-30=24(元) 24+2=26(元)
两位数乘两位数课件【篇5】
教学目标:
1、在具体情境中,进一步体会加法的意义,感受数学与生活的联系。
2、探索并掌握两位数加两位数(不进位)的计算方法,并能正确进行计算,体会算法多样化。
3、在用计数器、小棒解释结果的过程中学习用竖式计算的方法,拓宽数的计算的认识渠道。
4、培养学生提出问题、解决问题的意识和能力。
教学重点:
1、两位数加两位数(不进位)的计算方法
2、学习用竖式计算两位数加两位数(不进位)的方法。
教学难点:
用竖式计算两位数加两位数(不进位)的方法。
教具准备:
实物投影、教学挂图、气球图片、三角形学具图片、计数器、小棒。
学具准备:
计数器、小棒。
教学过程:
一、谈话导入激发兴趣
同学们,我们上周五一起去挖蛤蜊,玩的开心吗?老师给同学们录像了呢,你想看吗?(录像)
师:同学们的收获课真多呀,在对话中,蹭着许多数学信息,你找到了吗?
生1:小红捉了12只虾,小林捉了26只虾
生2:小文捉了11只螃蟹,小丽捉了23只
师:同学们找到这么多数学信息,你能根据这些数学信息提出什么数学问题?
一共捉了多少只虾?一共捉了多少只螃蟹?……
二、自主探究解决问题
1、口算
师:我们这节课解决这两个问题,其他的问题我们留在问题口袋当中以后再来解决。
师:我们先来看第一题,谁来列式?你为什么这样列式?
会算吗?怎样算的?
生1:2+6=8,10+20=30,12+26=38。
生2:26+10=3636+2=38
2、动手操作
师:同学们用口算得出26+12=38,算的对吗?我们可以用手中的学具来验证一下。首先自己来摆,然后先祖之间互相交流。
(小组交流)
师:谁来把你们小组的方法展示一下?
摆小棒
先摆出26,是由2个十和6个一组成,再摆出12根小棒,是由1个十和2个一组成。先把单根的小棒合起来,有8根,再把整捆的合起来一共是3捆,所以12加26得38。
师:说的真好,那些同学也是这样摆的?再来说一说。(课件演示摆小棒)
师:除了摆小棒的方法,还可以使用计数器,谁想到这里来拨一拨?
拨计数器
先在计数器上拨出26,再在十位上拨上1个珠子,表示加上1个10,在个位上拨上2个珠子,表示加上2个1。和起来就是38。
师:谁还会说?(课件演示拨计数器)
3、竖式计算
师:今天老师介绍一种新的方法,用竖式计算。既然是竖式计算,那肯定是竖着写的,写错了没关系,大胆的在答题纸上写一写吧!
师:同学们太聪明了,自己就写出了你的竖式,谁写的最正确呢?来看看老师是怎么写的。请你一起来书空。
师:你会写了吗?来说一说吧,(课件演示)谁写对了?请你在下面再写一个正对的竖式吧!
师:我们今天一起学习了100以内两位数加法(不进位)的口算和笔算,谁能说一说,我们在写用竖式计算的时候,要注意哪些问题?
(用竖式计算,相同数位要对齐)多说
及时练习
帮助小兔子找萝卜
27+11=41+35=用喜欢的方法计算
当堂达标:
课本自主练习2题。
课堂:想一想,这节课同学们学会了什么?
作业布置:
必做题:65页自主练习1、2、3、4、5题。
选做题:66页7,8,9题及67页的聪明小屋。
板书设计:
12+26=38(只)
12
+26
38
两位数乘两位数课件【篇6】
教学内容:
人教版三年级下册数学第63页例1及“做一做”
教材分析:
本课是在学习了笔算多位数乘一位数的基础上进行教学的,本单元的笔算乘法分两个层次编排。先出现不进位的,突出乘的顺序及部分积的书写位置,帮助学生理解笔算的算理。两位数乘两位数的笔算是本单元的教学重点。因为,学生掌握了两位数乘两位数的计算方法,不仅可以解决与之有关的实际问题,还为学习多位数四则混合运算打下基础。而且,为学生解决生活中遇到的.因数是更多位数的乘法问题,奠定了基础。因此在计算体系中具有相当重要的地位。
教学目标:
1.使学生进一步理解乘法的意义,在弄清用两位数乘两位数算理的基础上,掌握两位数乘两位数的笔算方法和书写格式,并能正确地进行计算。
2.在探索计算方法和解决实际问题的过程中体会新旧知识的联系,培养迁移类推的能力和解决实际问题的能力。
3.培养学生书写工整、认真计算的学习习惯和善于思考的学习精神。
教学重点:
掌握笔算方法并正确计算。
教学难点:
解决乘的顺序和第二部分积的书写位置。
教具准备:
课件
教学过程:
一、复习铺垫——启动数学列车
1.口算。
13×2= 34×2= 24×2=
13×10= 34×20= 24×10=
2.笔算。
23×3=
二、探究新知——进入数学乐园
1.出示课本63页例1的情境图:小红和妈妈来到书店买书。
(1)学生观察:从图上你知道了什么数学信息?
(2)那小红遇到了什么问题?她会在思考呢?
(3)要算一共付多少钱,该怎么列式呢?(24×12)为什么用乘法计算?
(4)(师指算式)这是一道几位数乘几位数的算式?
2.揭示课题:(两位数乘两位数)
3.那24×12大约是多少,你会不会估算?(指名学生说估算)
生估:大约是有200
师:还有比200更接近的吗?
生:240
师:那24×12的准确得数,比240更大,还是更小呢?
生:小
师追问:你怎么知道的?
生:因为24×10=240,还有24×2=48,所以24×12的得数比240大。
师:说得真好!现在我们就来算算24×12的准确得数,好不好?
生:好
师:好的,请在课堂练习本上写出你的计算过程.
师巡视,收集算法.
4.全班交流,整理算法
投影出示:略
师:先出示问:这是什么方法?(口算)我请这位同学说说你是怎样想的?
师:再出示问:这是什么方法?(竖式)这位同学做对了吗?(没有)那它这里有做对的地方吗?还要再算什么?
师:最后出示,我们再来看看这种方法,做对了吗?哪里又出现问题了呢?
(生说:第二步是24×10=240,不是24×1=24)
说得真不错,掌声送给他.
5.教学笔算:
好!下面我们就是学习两位数乘两位数的笔算.(板书:笔算)
师板演竖式
师:我们先算什么?(24×2)
师:再算什么?(24×10
师:最后算什么?(240+48
6、指导看书,发现问题
同学们说得真不错,下面请你们打开课本第63页,请看例题中的笔算,你发现了什么?
生:240的0可以不写。
师:说得真好!师把0擦掉。为什么这个0可以不写呢?(强调:因为1个十乘24得24个十,所以为了简便,这个0可以不写)
师板书:(1个十乘24得24个十)
师:这个0不出现的时,我们该怎么列竖式呢?咱们一起来看看吧!(课件演示)
学生跟着一起做。
师:同学们,现在你们会做了吗?
好,下面我们就来练一练吧!
(老师出一题让学生练)
7.小结两位数乘两位数的笔算方法
师:好,下面谁来说说笔算两位数乘两位数要注意什么?
(1)相同数位要对齐;
(2)用第二个因数各个数位上的数依次去乘第一个因数;用哪一位上的数去乘,积的末位就写在那一位的下面;
(3)把两次乘得的积加起来。
三、巩固提升——畅游数学乐园
1.计算密码:2小题
2.老虎森林:老虎每秒跑32米,21秒跑多少米?
3.游戏:计算比赛。(学习卡1)
4.(学习卡2)
四、回顾反思
这节课你学到了什么?
附:板书设计
两位数乘两位数
笔算
2 4 × 1 2 =288(元)
2 4
× 1 2
4 8 …… 2 4 × 2的积
2 4 0 …… 2 4 × 1 0的积
2 8 8 …… 1个十乘24得24个十
两位数乘两位数课件【篇7】
教学内容:第59页例2练习十四第7、8题
教学目标:
1、使学生能结合具体情境,在积极参与和讨论合作学习的过程中进行乘法的估算,会说明估算的思路。
2、能运用所学知识解决日常生活中简单的实际问题。
3、给学生创设主动探索估算知识的空间,培养估算意识,提高估算能力。
教学重点:探索乘法估算的方法,学会乘法估算。
教学难点:探索乘法估算的方法,学会乘法估算。
教学准备:课件
教学过程:
一、复习旧知:
1、口算下面各题:
40×1060×20xx×40300×70200×80
12×400240×2130×330×311×50
2、求下面各数的近似数:
321887955842
3、下列竖式,你能估算各题的结果吗?你是怎么想的?
18×453×789×5
22×837×371×6
二、探究新知:
1、出示第59页例2情境图
引导学生观察:情境图中提供了有关教室的哪些信息?小明同学提出了什么问题?
2、教学例2:“350名同学来听课,能坐得下吗?”你能根据图中提供的信息解决这个问题吗?试试看。
3、探讨估算方法。
(1)请学生思考、交流解决问题的方法。引出算式:
18×2222×18
(2)小组讨论:怎样估算得数?
(3)各组代表向全班汇报本组的各种估算方法。
方法一:18≈20xx≈20xx×20=400(个)
方法二:18≈20xx×20=440(个)
方法三:22≈20xx×20=360(个)
(4)小结:估算时,先把两位数看成最接近它的整十数,然后再进行计算。
揭示课题:乘法估算
3、尝试解决问题:第59页做一做:
①看清题意,独立完成
②选择自己喜欢的方法算。
说一说你是怎么估算的。
三、巩固练习
1、完成练习十四的第7题:
引导学生观察图,说说你从图中得到什么信息?
①人人动手独立完成,将估算结果写在本子上。
②同桌交流,说说估算的方法。
③指名学生板演,说说你的估算方法,集体讲评。
2、练习十四第8题:
(1)小组合作学习,理解题意。
说说从“学生们已经种了93棵树苗”中,你可得到什么信息?
“已经种了的93棵树苗是几行?”这块地有几个93呢?
(2)人人动口在小组交流估算方法。
(3)请个别同学全班交流。
四、课堂总结:通过这节课的学习,你有什么收获?
五、布置作业:《课堂作业本》第29页
板书设计:乘法估算
22×18≈
方法一:18≈20xx≈20xx×20=400(个)能坐下
方法二:18≈20xx×20=440(个)能坐下
方法三:22≈20xx×20=360(个)能坐下
教学反思:在数次估算教学中本课是最成功最自然的一课。两位数乘法的口算难度,为学生自然产生了估算的需要。尽管也有学生尝试口算但是复杂,自然引入估算。学生呈现的方法如同例题中的3种。其中最先想到的'就是2个因数都估成相近的整十数。乘法的估算,让学生根据不同的题目进行不同的估算方法。如只是对算式进行估算,学生选择自己喜欢的方法进行估算,如果在解决问题中,就让学生选择能解决问题的估算方法,老师更应该清醒的认识在估算教学中既要交流估算方法的多样化,更注重培养学生选择最优的估算策略解决生活问题的实际能力。在解决练习十四第8题时,学生出来较多的方法,如下:
一、93除以3先求出每行有31棵,再估算12行有多少棵。
二、93除以3用估算,得出每行大约有30棵,再12行约多少棵。
三、3行93棵,12行里有4个3行,也就是4个93,93乘4估算出结果。学生都能对自己的方法进行说明,不错。
作业反馈:学生都能正确地掌握乘法估算的方法,并且部分学生能认识到少估了多少,或多估了多少。在作业中进行估算时约等号符号的书写经常忘记,写成等号。
两位数乘两位数课件【篇8】
教学内容:
人教版《义务教育课程标准实验教科书数学》三年级下册第63---64页的内容。教学目标:
1、让学生经历探索两位数乘两位数的计算方法的过程,初步掌握笔算方法,理解算理与方法。
2、学生通过自主探索、合作交流,体验计算方法的多样化,并能进行自主优化。
3、在探索算法与解决问题过程中,增强相互交流的意识,体验成功的喜悦,体会数学在生活中的应用价值。教学重点:
在理解算理基础上掌握两位数乘两位数的笔算方法。教学难点:
理解乘的顺序以及第二部分积的书写方法 教学过程:
一、口算热身。
老师这里有一组口算题,谁敢在没有见到题目之前就把手举起来。请同学来口答,其他同学与老师一同判断正误。
12×20= 12×3= 11×5= 11×30= 24×10= 24×2= 你能说一说24×2=48的各部分名称吗?
二、情境引入
1、谈话:同学们今天是几月几日啊?(4月22日)你知道今天是什么特殊的日子吗?老师来告诉你们,今天是世界地球日(出示世界地球日图标)。世界地球日即每年的4月22日,是一项世界性的环境保护活动。说到环境保护你认为我们应该怎么做呢?(多种树、不乱扔垃圾??)对,我们可以做的事很多,每年这天我们平湖二小的红领巾小队都会到街头去清扫垃圾和卫生死角。在一次整脏治乱活动中我们红领巾小队12人平均每人捡到垃圾23件。
课件出示:在一次整脏治乱活动中我们红领巾小队12人平均每人捡到垃圾23件。
师:从这句话中,你都知道了什么数学信息?你能提出什么问题呢? 生:一共捡到多少件垃圾?
这个问题你会列式解决吗?同学们,你们以前学过这样的'计算吗?
2、引出新知:
今天我们大家就一起来研究像这样的两位数乘两位数。(出示课题:两位数乘两位数)
请同学们估算一下,大约捡了多少件?(学生各自汇报估算结果和方法)估一估,23×12约是多少?
怎样才能知道谁估算的钱数最接近准确数呢?这就需要我们准确计算出23×12的得数,三:算法探究
1、自主探索算法:
同学们,你能想办法算出23×12的得数吗?想想看,看谁能用自己的方法进行计算,想好了写在练习纸上。开始吧!教师进行巡视指导。
2、小组交流:
你刚才是怎样算的?能不能让你小组的同学也明白你的算法?请互相说一说。
3、全班汇报:(结合情景理解算理)哪一个小组愿意来说一说你的方法? 预计学生可能会出现下列当中的几类方法:(1)连加:23+23+?+23=276(12个24相加)
(2)分步:23×2=46(件)23×10=230(件)230+46=276(件)(板书)
引导:你能给大家解释一下每一步算式表示什么意思?(3)竖式大致选择以下四种:
① 2 3 ② 2 3 ③ 2 3 ④ 2 3 × 1 2 × 1 2 × 1 2 × 1 2 4 6 2 4 6 4 6 4 6 2 3 2 3 0 2 3 7 2 2 7 6 2 7 6 黑板上展示了几位同学的写法,请大家认真观察、仔细思考,你觉得哪种方法是正确的?为什么?这几位同学一定是在哪儿出现了小错误,我们一起来帮助他们找一找。鼓励学生找出:①对位错误,十位上的1和23相乘,得到的是23个十,3应该写在十位上,②没有按照一定的顺序乘,漏乘了一位。
我们再来看这两种(③④)方法,他们有什么不同?由于十位上的1与23相乘,得到的是23个十,3在十位上,已经明确了3代表的是30,所以个位上的0我们可以写成虚0,或者不写,这样书写起来会更简便。
下面谁能带着大家回忆一下笔算的计算过程。学生说,教师用彩色标注。关注口算与笔算的相同点,进一步理解算理。
下面请同学们认真观察口算方法和笔算方法,他们之间有什么联系吗?画箭头,并结合说明46是23与2的乘积,23个十是10与23的乘积,个位上的0不写。【教师板演】。
正因为横式和竖式有着相同的地方,所以我们小学笔算的基本方法是列竖式计算。
好,现在我们已经知道红领巾小队一共捡了276件垃圾,同学们估算的大致范围与实际计算结果相符,笔算结束后我们要记得填好横式结果。[完成板书:23×12=276(件)]。
地球是我们共同的家园,保护地球是我们每一个人的责任,希望我们都为建设我们美好的家园出一份力。
改错:请写对了的同学,自己再说一说计算过程,有错的同学一边说运算顺序一边把错误的地方改回来。
4、初步优化
对比一下这几种方法,你最欣赏哪一种方法?为什么?
5、变式练习:
下面就请用你喜欢的方法来算一道题。出示:23×13=
问:同学们今天我们认识的竖式,与以前认识的两位数乘两一位数的竖式计算有什么不同?是不是每一道两位数乘两位数都可以用竖式计算呢?计算时你认为应该注意些什么?你觉得计算时,哪一步是关键啊?
先用第二个因数的个位去乘第一个因数的每一位,乘得的积的末位与个位对齐。再用第二个因数的十位去乘第一个因数的每一位, 乘得的积的末位与十位对齐。然后把两次乘得的积加起来。
四:巩固练习
1、填空:笔算两位数乘两位数时,先用第二个因数的()去乘第一个因数的(),乘得的积的末位与()对齐。再用第二个因数的()
去乘第一个因数的(), 乘得的积的末位与()对齐;然后把两次乘得的积()。
2、完成竖式
学习了“两位数乘两位数”的笔算,我们的同学也做了几道题目,可是遇到了困难,你能接着完成吗?
出示(1)2 3(2)1 2 × 2 1 × 4 4 2 3 4 8 问:两个48一样吗?
我们班的一些同学在做题时出现了一些错误你能帮他指出来吗?
3、我来判一判 3 3 1 3 2 2 2 × 1 2 ×1 1 ×1 2 ×1 4 8 6 3 1 3 4 8 8 4 3 3 1 2 2 1 2 9 3 3 1 3 0 8 师:学习了两位数乘两位数的笔算,接下来我们用笔算解决一些数学问题,好吗?
4、游戏:贴出写有算式的南瓜卡片。用语言描述菜园里收南瓜的情境,请同学们帮助菜农收南瓜。让学生自由选择卡片,算对的就收获了这个南瓜。
12×44 32×13 42×11 34×12 23×22 21×34 41×21 33×31
五、全课总结,交流收获
通过本节课的学习,你有什么收获?笔算乘法时要注意什么问题.? 板书: 两位数乘两位数笔算乘法(不进位)
红领巾小队一共捡了多少件垃圾?
× 1 2 = 276(件)2 3 × 1 2 4 6??2 3 × 2的积 2 3 ??2 3 × 1 0的积 2 7 6 答:一共捡了276件垃圾。
两位数乘两位数课件【篇9】
一、教学目标:
1.知识与技能目标:
(1)、进行两位数乘两位数的估算、计算、巧算的巩固练习。
(2)、通过引导,得出十位乘积等于个位乘积的两位数乘两位数的对称算式的乘积相等,并理解掌握此结论。
2.过程与方法目标:学生通过观察、猜想、验证、得出结论、提出质疑、完善结论,上孩子们经历一个完整的过程,体验到探究的乐趣,感受数学的魅力。
3.情感态度和价值观目标:学生在自主探究解决问题的过程中,体验成功的喜悦或失败的教训,体会数学在日常生活中的应用价值。
二、教学重难点
教学重点:让孩子们学会观察、学会思考、敢于质疑,培养探究意识。
教学难点:通过引导,得出十位乘积等于个位乘积的两位数乘两位数的对称算式的乘积相等,并理解掌握此结论。
三、教学方法
启发诱导法、讲授法、探究法
四、学习方法
练习法、探究法、小组交流法、观察法
五、教学过程:
(一)引入新课
师:同学们,今天的数学课,我们先从画画开始!
(老师在黑板上画出对称图形的一半)
师:如果老师画的是整个图形的一半,谁愿意帮老师画出图形的另一半?
(让学生补充完整)
师:同学们,这位同学画的对吗?是的,图形当中有这样的对称现象!其实,在我们的语言当中也有这样的对称现象。
(老师点击屏幕,出现——好人)
师:大家想象着:如果在好人的后面也存在着那么一条对称轴的话,根据读音对称应该是:(大家一块说)人好。(点击第二个)我爱你——你爱我
蓝天——天蓝,喜欢我——我欢喜,老师希望我们整节课都欢欢喜喜!好,上课!
(二)新课教学
同学们,你们知道吗,在我们学过的两位数乘两位数中也有这样的对称现象,我们今天就来复习两位数乘两位数(板书课题),让老师随手写几个两位数乘两位数的算式,好不好?
(老师出示21×36、41×28、36×42、96×46),老师写了几个算式,想一想,如果在这几个算式的后面也存在着一条对称轴,和它们对称的算式是什么?(提问)可见,在两位数乘两位数中,还真的有这样的对称现象,是不是?是!可是,老师觉得,我们就这样写出几个对称算式,也并没有什么了不起,如果我们能够发现,这每一组对称算式之间的一些秘密,那是不是就更棒了?如果我让你们去研究,那你们会试着研究什么问题呢?或者说,你们会有些什么猜想呢?有没有?你们有没有觉得这两个算式之间会有什么联系呢?
【设计意图:课始,老师利用对称算式引入,既使新知保持一种神秘感,又能让学生积极主动地投入学习活动之中。】
学生猜想:每组两对称算式的乘积是否相等?(老师复述)如果让你去研究,你就会研究它们的积是不是一样的,对不对?哦,我觉得这是个有价值的问题,我们可以去研究!
哎,我想问一问同学们,你们学过估算吗?对于这位同学提出的问题,我们可以先用估算来试试看!
生1:第一组算式,可以把21看作20,36×20=720;把63看作60,12×60=720,两道算式的得数相等。
生2:如果把21看作20、36看作40,20×40=800;把63看作60、12看作10,60×10=600,两道算式的得数不相等。
生3:我想把每个数都往小了估:如果把21看作20、36看作30,20×30=600;把63看作60、12看作10,60×10=600,两道算式的得数相等。
师:奇怪了!用估算方法算出来的每组两道算式的积有时相等,有时却不相等。那么,用估算方法能否判断每组算式的积是否相等呢?(不能)那可以用什么方法来判断呢?
生:笔算。
那同学们还等什么,拿出你手中的笔和纸,选择其中的一组,算一算,好吗?(学生练习)算好的。可以坐直,心里已经有结论的,我们先把笑藏在心里。
看到同学们都算的这样认真,我心里非常感动,同学们,我们只有准确的计算,才能得到正确的结论。
(学生交流计算结果)那通过我们的计算,你们能得出什么结论?
(如果孩子们得不出结论,让提出猜想的孩子复述他的猜想)
(学生得出结论)对称算式的乘积是相等的!(电脑呈现结论):
两位数乘两位数,两个“对称算式”的乘积相等。
(老师反问)同学们现在都相信这个结论吗?相信吗?我再问一问,有没有人怀疑这个结论的?要不,老师再写一个试一试,好不好?(老师又写了一个算式62×39),孩子们写出了对称算式,并通过计算,得出结论依然正确。
老师:现在还有没有怀疑的?看来同学们对这个结论已经深信不疑了。像刚才那样通过几个例子得出结论的方法叫做“不完全归纳法。”
(老师板书)对于“不完全归纳法”,有一个非常美丽的故事:那就是华罗庚爷爷讲给他的中学生听的,今天我也想把这个故事将给大家听,好不好?听完这个故事,我们再来说一说这个结论你是否相信,好吗?
故事是这样的:有一个主人买回了一只公鸡,第一天,主人给公鸡为了一把大米,第二天,主人仍然给公鸡为了一把大米,到了第三天,主人依旧给公鸡为一把大米,主人每天都给公鸡一把大米,连续给了九十九天,公鸡每天都会从主人那儿得到一把大米,此时,公鸡想:我每天都会从主人那儿得到一把大米,可是结果却不在美丽,到了第一百天,家里来了客人,公鸡没有再得到那把大米,而是被主人杀了。
好了,同学们,公鸡通过九十九天的得到的结论居然是错误的,是的,不完全归纳法,有时能得到正确的结论,而有时得到的结论却是错误的,后来人们把不完全归纳法得到错误结论的那一种情况戏称为“公鸡归纳法”。
师:好了,现在我想问一问大家:你们对这个结论还深信不疑的请坐直,有怀疑的请举手?
(大部分孩子都举手)怎么现在个个都怀疑了?为什么都怀疑了?如果你怀疑了,请说出你的理由!
(一个孩子举例说明14×16不等于61×41)
师:同学们,某某某不仅提出了质疑,而且他还在举例子,如果他举得例子是特殊的。你们试一试,看能不能找到一个反例!(同学们拿出笔试着举例)同学们,你们找到反例了吗?其实。我们只要找到一个反例,是不是就可以推翻刚才的结论,哎呀,我看到同学们兴奋地眼神了,如果你真找到反例了,你可以先和你的同桌交流交流了!我看到每个人都在交流,我让几个同学来和大家分享一下!
提问:(一个孩子举例)46×61不等于16×64。
师:我们都没有计算,只有他在计算,我想问一问大家,如果看到这组对称算式,你能否判断他们的乘积是否相等呢?你看的出吗?
我看到已经有同学举起了智慧的手!
(提问)这位同学的发言有值得我们学习的地方,他想到了估算,46×61他把这两个数都往小里估,把46估成40,61估成60,结果是2400,而16×64,把它们都往大里估,把16估成20,把64估成70,结果是1400,因为40×60=2400,20×70=1400显然这里不是等号,而是一个大于号,好了同学们,我知道大家很多同学都找到了反例,但是我们知道只需要一个反例,就可以说明这个结论是有问题的,那我现在问一问大家,你们失望吗?费了那么大劲找到的结论居然是错误的,什么不失望,为什么不失望?是的,我们并不失望,因为我们最起码通过自己的努力,证明了这个结论是有问题的!哎,我想现在有些同学的心里肯定有这样的疑问;为什么老师写的算式都符合这个规律,而同学们写的算式却不符合这个规律呢?难道老师写的算式里隐藏着什么秘密吗?有吗?
(小组之间进行讨论)我发现一些同学已经有想法了,难道老师写的算式里真有一些秘密呀?(学生交流发现的秘密)这位同学说:老师写的算式都符合十位上的数乘十位上的数等于个位上的数乘个位上的数,真的是这样吗?(老师同学一块验证)
师:那大家既然已经发现了这个秘密,那你们觉得我们这个结论该怎么改才能完善?(学生补充,老师总结)
得出结论:十位乘积等于个位乘积的两位数乘两位数的对称算式的乘积相等。
【设计意图:在“找到规律——怀疑规律——验证规律——否定规律——完善规律”过程中,学生不断肯定与否定自己的想法,不再轻信别人口中甚至于书中的答案,整个课堂充满了思辨的气息。学生学到的不仅仅是数学知识,更培养了有益于一生的思维品质;不仅激发了学生的探究欲望,而且培养了思维的灵活性。】
师:现在大家对于这个结论,你们怀疑吗?如果还有怀疑,怎么办?大家商量商量,再举例验证。
……
【设计意图:在这一过程中,老师的一个反问,又一次激发了学生的探索欲,让学生对不同的方法进行思考、交流。长此以往,数学的奥妙、数学的美就会深深扎根于学生的心里,学生怎会不喜欢学习数学呢?】
好了,同学们,思考是美丽的,看到同学们都能认真的思考。我很欣慰!我想,同学们心里可能都在想:这个结论到底正确与否?为什么会是这样?在乘法中怎么会有这么有趣的现象?在除法中、加法中、减法中是不是也有一些有趣的现象等待我们去发现?还有多少问题等待我们去探索、去研究,希望同学们在以后的数学学习中,都能带着这种精神,真正走进我们的数学世界!
两位数乘两位数课件【篇10】
一、说教材
本节课的教学内容是三年级上册教材第四单元“加和减”的第一课时,口算两位数加两位数(和不超过100)。在此之前,学生们已经学习了口算两位数加一位数、整十数,以及掌握了千以内笔算加法,这些知识都为本节课的教学打下了坚实的基础。同时,本节课的学习又为以后解决实际问题作了必要的铺垫。教材以学生自主尝试为主,让学生经历算法的发现过程,并在相互交流中,理解并掌握正确的口算方法。例题以学生们感兴趣的购买玩具为题材,以生活中到处可见的知识提出数学问题:
二、说教学目标
《标准》将数学课程的总体目标细分为四个方面:知识与技能、数学思考、解决问题、情感与态度。由此,本节课的教学目标可以这样的制定:
1、让学生经历探索两位数加两位数口算方法的过程,能口算和在100以内的两位数加两位数,以及进位的整百数加整百数。
2、让学生经历探索和交流解决实际问题的过程,感受解决问题的一些策略和方法,能运用所学的知识解决一些相应的实际问题。
3、使学生在学习数学的过程中,感受数学与日常生活的密切联系,体验数学的价值,增强应用数学的意识。
4、在数学活动中获得成功的体验,进一步增强学习数学的兴趣和信心,初步形成独立思考、探究问题的意识和习惯。
教学的重、难点:让学生掌握两位数加两位数的口算方法,能够正确的口算出结果。
三、说教法、学法
教学中,我采取创设情境,直观形象的教学方法。安排学生在一个熟悉的生活场景中,通过观察,抽象出题目中所蕴藏的数学信息,由这些信息而产生出相应的问题,从而激发其学习的兴趣,诱使其主动的投入到学习当中来。
新课程标准指出,“自主探索、合作交流也是一种重要的学习方式”。因此,本节课学生的学习方法采用自主探索、合作交流的学习方法。让学生成为学习的主人,经过讨论比较,互动合作的这样一个过程,让学生在探索和交流中解决实际问题。
四、说教学设计
1、创设情境,引入新课。
同学们,你们都喜欢玩具吗?今天啊,有两个小朋友自己去买玩具了,可他们在付钱的时候发现自己数学知识不够,不知道付多少钱,你们能帮他吗?(板书课题)
这一段的设计,可以培养学生的独立自主性,让小学生明白数学知识源于生活,又高于生活,最后又服务于生活。为了让孩子体会到数学知识与生活的关系。在言语上,我激发学生的积极性,让他们能够放开胆子,去尝试购买自己喜欢的东西。同时,还用两个小朋友购买东西产生的数学问题来引发学生求知欲望,顺利的引入新课的教学。
2、自主探索,合作交流
师:你们能口算出小男孩该付多少钱给这位阿姨吗?怎么列式,同学们分组讨论,把想好的方法跟同学们好好的说一说。指名问答,互相交流。反馈:通过交流学生可能得出以下算法(1)先算44+20=64,再算64+5=69;(2)先算44+5=49,再算49+20=69;(3)先算40+20=60,再算4+5=9,最后算60+9=69;(4)先算4+5=9,再算40+20=60,最后算60+9=69。只要方法正确、合理,教师要给予充分的肯定,及时的表扬对孩子们来说是非常重要的。对于孩子们来说,新课程要求算法多样化,算法的最优化。在这儿,让学生们互相讨论,比较出最优秀的口算方法,教师加以总结。
师:这位小妹妹该付多少钱呢?如何列式呢?师板书。你们还能口算出结果吗?大家分组讨论一下。反馈:通过交流学生可能得出以下算法(1)先算44+30=74,再算74+8=82;(2)先算44+8=52,再算52+30=82;(3)先算4+8=12,再算40+30=70,再算12+70=82。对每一位回答出答案的同学都要及时表扬。
3、对比分析,提高能力
比较两道算式的异同点。(小组讨论交流)
通过讨论得出:第一道算式相加时不需要进位,第二道算式相加时需要进位。对表现出色的小朋友进行表扬。
4、巩固练习,拓展提高
(1)、算一算、比一比。(“想想做做”第1、2题)
师:刚才同学们学的都那么好,现在我们小组间来个比赛,看哪个小组算的又快又好。
(2)、想一想、填一填。(“想想做做”第3题)
让学生根据要求在书上填写。并说说自己是怎样想的,怎样算的,为什么这样算?
(3)、比一比,算一算。(“想想做做”第4题)
(4)、估一估,算一算。(“想想做做”第5题)
(5)、解决实际问题。(“想想做做”第6、7题)
多媒出示第6题。
仔细看图,根据提出的从熊猫馆到老虎馆有哪几条路?你打算用什么办法解决这个问题?引导学生先估算,在估计以后,让学生在组内交流是怎么样想的,再算一算估计得对不对。
多媒出示第7题。
让学生弄清题中的条件和问题。
学生独立在书上列式计算。
小组交流,把自己分析思考的过程说给大家听听,同学间相互补充、相互评价。
5、评价鼓励,全课小结
小结:今天我们每一位同学都开动了脑筋,老师真为你们高兴。今天我们学习了什么?你学会了什么?
两位数乘两位数课件【篇11】
教学内容:
人教版小学三年级数学下册第63页内容。
教材分析:
这节课是在学生掌握了一位数乘多位数口算、笔算的基础上,学习探讨的。为了便于学生掌握笔算方法,教材把分步演算的过程呈现出来,然后再导入主课,使学生初步明确两位数乘两位数的计算方法。这一内容是本单元的教学重点,因为它体现了两位数乘法的基本算理和算法,掌握了它,多位数乘法就可以在此基础上迁移、类推。
学情分析:
这是一节计算课,学生学习有兴趣。学习前,学生会两位数乘一位数的笔算,会用估算的方法来解决问题。学生在口算的基础上,尝试体验两位数乘两位数(不进位)的计算过程。
教学目标:
1、让学生经历发现两位数乘两位数计算方法的.全过程,体验计算方法的多样化。
2、通过比较各种方法的优点和不足,寻找最佳方法,训练学生掌握优化策略的思想和方法。
3、学会两位数乘两位数的笔算方法。
重点难点:
重点:学会计算两位数乘两位数的乘法(不进位)。
难点:培养学生养成自主探索、合作交流(包括自我检查、互相改错)的良好习惯。
课前准备:
多媒体课件、小投影
教学过程:
一、创设情境,提出问题。
出示主题图。
1、你得到哪些信息?生汇报交流。
2、生理解题意,列式。
3、师:请你先帮他估一估,大约付多少钱?
学生回答,并评判每种估算值与准确值的大小比较。(三种方法)
4、怎样才能知道正确答案呢?
二、探索尝试,找寻方法。
1、用你学过的方法试一试。
(1)先独立思考,再汇报交流。学生评判优劣。
(2)学生多种方法中,师生共同优化出一种(拆数法):
24×10=240 24×2=48 240+48=288
2、尝试笔算24×12
今天我们来研究两位数乘两位数的笔算乘法。(板书课题)
(1)、尝试解决问题:你能列竖式计算出得数吗?试试看。
先独立思考,书写再练习本上,再小组交流。
(2)、全班汇报交流。
在投影仪中一一展示算式,学生评判对错,说出每一步的由来。
(3)、学生分组讨论:哪种方法比较简便?
3、研究笔算的方法:
抽学生口述你们知道每一步的意思,师板书,重点说算理。
学生讨论交流(特别乘得的积的第二行个位空位的道理。)
24 24
×12 ×12
4、小结笔算方法:学生交流汇报。
(1)计算方法是什么?(拆数法)
先( )和( )相乘,再( )和( )相乘,最后两个乘积相加。
(2)计算时要注意什么?
书写数位要对齐;乘法口诀准确;加法计算准确。
5、试一试:
32×12 41×21 13×31
(1)学生独立完成。
(2)投影仪展示,学生评判。
(3)师强调出现的问题。
三、巩固方法,实践应用
1、游戏:智闯马虎宫,找找开门密码(P63页“做一做”)
23×13 41×21 23×31 32×12 43×12 22×14
抽生板演,先自我检查,再其他学生上台评判对错,错误要改正。
2、森林医生:
针对学生易犯错误,判断对错,找出原因,并改正。
3、计算:P64页第1题。
学生独立完成,并自我检查。
投影仪展示作业,学生评判对错。
4、应用:P64页第3题。
学生独立完成,全班交流。四、归纳梳理,总接收获。
学习这节课,你有什么收获?还需要提醒大家什么?
五、板书设计:
两位数乘两位数(不进位)
24×10=240 24
24×2=48 ×12
240+48=288 4 8……2×24的积
2 4……10×24的积
2 8 8
两位数乘两位数课件【篇12】
一、教材:
1、教学内容及简析:
本课的教学内容是两位数乘两位数的笔算,它是学生在已经掌握了两位数乘一位数和两位数乘整十数的口算的基础上进一步学习的,为后面学习乘数数位是更多位的笔算乘法垫定基础。这部分内容是学生计算方面学习的重要转折点。
2、教学目标:
知识目标:经历探索两位数乘两位数笔算方法的过程,会笔算两位数乘两位数,会用交换乘数位置的方法验算乘法。
能力目标:培养观察力、探究能力、抽象概括能力。
情感目标:获得成功的体验,树立学习的信心。
3、教学重点、难点:
重点:掌握两位数乘两位数的笔算方法。
难点:理解乘的顺序及第二部分积的书写方法。
二、教法、学法:
针对这样的教学目标、教学重难点,在教法上,我个人认为,在教学中应当突出学生的主体地位,通过启发、引导、设疑等教学手段及方法进行教学。
在学法指导上,让学生掌握观察、比较、发现、交流、合作等学习方法。
三、教学设想:
课本中以订牛奶为情境,我进行了改编,以学生献爱心活动为研究题材,贴合学生实际,通过四个环节进行教学:创设情境,激发兴趣;自主探索,研究算法;巩固强化,拓展延伸。
(一)创设情境,以旧引新
在教学的导入环节,老师充分依据学生原有的知识和经验,从复习两位数乘一位数、两位数乘整十数,在此基础上,再引出两位数乘两位数。老师有意识提问:你想怎样学习新知识?让他们运用已有知识经验将难点转化,以旧知解决新问题,从而渗透数学学习的方法。
(二)自主探索,研究算法
1、渗透估算意识。教学过程中先让学生估算,再尝试用笔算,这样使估算、笔算有机结合。
2、计算方法的多样化到优化。计算教学,内容比较枯燥乏味。为激发学生的求知欲望,老师通过充分创设问题情境,多种方式体会两位数乘两位数的计算方法。学生可能出现3种情况,情况一:28×6×2;情况二:28×4×3;情况三:28×10+28×2。让学生从不同的角度、运用不同的策略去思考、探索计算的方法,通过比较认识到笔算方法的重要性,从而一起探索竖式计算的方法。
3、注重沟通,理解算理。在师生共同交流中引导学生理解把两位数乘两位数的计算分成三个部分,前面两部分都可以看成是两位数乘一位数、整十数,但着重让学生明确第二次计算的书写,第三部分,将两次计算的结果相加。竖式计算的算理与学生前面的方法是一致的,教师要注重沟通,让学生更好地理解算理,掌握每一步计算的意义。
4、归纳总结。两位数乘两位数的计算方法的叙述对三年级学生来说,有点困难,要求学生根据对算理的理解用自己的话来讲就行了,教师简要的板书为学生提供思考方向。
5、验证结果,提高效率。在笔算中,验算是最好的验证方法。因此,让学生交换48和12的位置再乘一遍,然后引导学生观察:你发现了什么?总结出乘法的验算方法。
(三)有效练习,巩固延伸
第一组安排的4题不同的练习,主要是让学生在理解的基础上从而进行独立的计算过程,第1题明确得数数字相同意义却是不同的,3、4两题的.计算都有向前一位进位的问题,拓展了例题的教学。
第2题纠错题,让学生进一步理解每一步计算的意义。
第3题解决问题部分的设计,是为了增加数学计算的趣味性,让学生觉得数学学习与生活的紧密联系。
第4题是开放性练习,也是提高了计算难度,有基础练习、有提高性的进位练习,自己出题时还有可能两次相乘都有进位。
练习中的习题从不进位到进位,主要是基于这样的考虑,因为对于学生来说,顺序方法都是一样的,进位的问题也是在多位数乘一位数中学过了,对于学生来说,不是新问题,但会感觉有点困难。当然,计算要达到一定的正确率和熟练程度,必须要相当的练习量。
最新一元二次方程课件(模板十三篇)
老师在上课前需要有教案课件,只要课前把教案课件写好就可以。 良好的教案和课件是提高教学质量和效益的保障。这份特别为您准备的“一元二次方程课件”一定可以让您心满意足,本网站所述内容仅供参考请勿过分依靠!
一元二次方程课件 篇1
用公式法解一元二次方程的说课稿范文
作为一位无私奉献的人民教师,往往需要进行说课稿编写工作,说课稿有利于教学水平的提高,有助于教研活动的开展。说课稿要怎么写呢?下面是小编帮大家整理的用公式法解一元二次方程的说课稿范文,希望能够帮助到大家。
今天我说课的内容是人教版九年级上册第22章《用公式法解一元二次方程》。我主要从教材分析、教法分析、过程分析、板书设计四个方面对本节课作如下说明。
一、教材分析
(一)教材的地位和作用
“一元二次方程的解法”是初中代数的方程中的一个重要内容之一,是在学完一元一次方程、因式分解、数的开方、以及前三种因式分解法、直接开方法、配方法解一元二次方程的基础上,掌握用求根公式解一元二次方程,是配方法和开平方两个知识的综合运用和升华。通过本节课的教学使学生明确配方法是解方程的通法,同时会根据题目选择合适的方法解一元二次方程。一元二次方程的解法也是今后学习二次函数和一元二次不等式的基础。
(二)教学目标
知识技能方面:理解一元二次方程求根公式的推导过程,会用公式法解一元二次方程。
数学思考方面:通过求根公式的推导过程进一步使学生熟练掌握配方法,培养学生数学推理的严密性和逻辑性以及由特殊到一般的数学思想。
解决问题方面:结合用公式法解一元二次方程的练习,培养学生快速准确的运算能力和运用公式解决实际问题的能力。
情感态度方面:让学生体验到所有的方程都可以用公式法解决,感受到公式的对称美、简洁美,渗透分类的思想;公式的引入培养学生寻求简便方法的探索精神和创新意识。
(三)教学重、难点
重点:掌握用公式法解一元二次方程的一般步骤;会熟练用公式法解一元二次方程。
难点:理解求根公式的推导过程和判别式
二、教学法分析
教法:本节课采用引导发现式的自主探究式与交流讨论结合的方法;在教学中由旧知识引导探究一般化问题的形式展开,利用学生已有的知识、多交流、主动参与到教学活动中来。
学法:让学生学会善于观察、分析讨论和分类归纳的方法,提出问题后,鼓励学生通过分析、探索、尝试解决问题的方法,铜锁亲自尝试,使学生的思维能力得到培养。
三、过程分析
本节课的教学设计成以下六个环节:复习导入、呈现问题、例题讲解、巩固练习、课时小结、布置作业。
1、复习引入:
这节课,我首先从旧知问题(1)用配方法解方程2x28x90的练习引入,问题(2)总结配方法的一般步骤(化一般方程、二次项系数为1、配方使左边为完全平方式、两边开方、求解)。
设计意图:让学生巩固昨天的知识,进一步熟练钥匙并为今天做学的内容解一般形式的一元二次方程做好铺垫,达到“温故而知新”。
2、问题呈现:
你能用配方法解一般形式的`一元二次方程吗?
此处由一个特殊的旧知引导学生推导出一般的结果,希望学生学会由特殊性到一般化的思想。为降低b2b24ac推导的难度,化简、移项、配方、变形由我和学生一起探究完成,到(x这步时,提出 )问题:
①此时可以直接开平方吗?
②等号右边的值需要满足什么条件?为什么?
③等号右边的值只跟哪个式子有关?
设计意图:师生共同完成前四步,这样与利于减轻学生的`思维负担,便于将主要精力放在后边公式的推导上。通过小组的讨论有利于发挥学生的互帮互助,借助小组的交流完善答案,关键让学生会对
掌握b24ac与方程有无实数根的关系,这里分类思想也是今后常用的一种数学思想,b24ac进行讨论,
应加以强化。
最终总结出:
当b24ac<0时,原方程无实数解。
当b24ac≥0时,原方程有实数解,
再进一步谈论:b24ac=0与b24ac>0时,两个解区别?
(b24ac=0时,两个相等的实数解,b24ac>0时,两个不等的实数解)
由此可知,方程有解还是无解是由b24ac决定,即b24ac是方程解的判别式。
同时,方程的解是可以将a、b、c的值带入公式x根公式”,利用它解一元二次方程叫做公式法。
3、例题讲解
例4:用公式法解下列方程
2x5x30 4x214x 2321x2x0 42
总结步骤:
1、把方程公成一般形式,并写出a,b,c的值。
2、求出b24ac的值
b3代入求根公式:x(a0,b24ac0) 2a
4、写出方程的解:x1= ,x2=
设计意图:规范解题格式,让学生体会数学课中的严谨的逻辑推理;体验并掌握公式法解一元二次方程的步骤,从中让学生领会到由特殊到一般,一般到特殊的辩证思想。
4、巩固练习
解下列一元二次方程:
①x2x60
②4x2x90
③x2100
设计意图:
(1)熟悉公式法,强化解题格式,
(2)及时发现错误及时解决。
例5:解方程:x(x1)(x2)
化简得12212x3x40 2
强调:
①当方程不是一般形式时,应先化成一般形式,再运用求根公式。
②你还能用其他方法解本例方程吗?
设计意图:明确一元二次方程解题方法的多样性,让学生在你观察分析题目后灵活合理的选择解题方法,培养学生的多样化思维,提高解题能力和解题的速度。
5、课时小结
(1)学生作知识总结:本节课通过配方法求解一般形式的一元二次方程的根,推出了一元二次方程的求根公式,并按照公式法的步骤解一元二次方程。
(2)我扩展:(方法归纳)求根公式是一元二次方程的专用公式,只有在确定方程是一元二次方程时才能使用,是常用而重要的一元二次方程的万能求根公式。
6、布置作业:面向全体学生,注重个体差异,加强作业的针对性,分层布置作业,适应新课标,让不同的学生各其所长,因材施教的要求,提高他们的学习的兴趣和自信心。
四、板书设计
教学评价
本节课内容较为单一,通过“层层设疑”、“复习回顾”等环节促进学生的思考和探究。
通过比较合理的问题设计巩固练习、小组讨论等形式给学生提供了充分的展示机会,强化了学生的运算能力,有利于学生掌握基本技能。
一元二次方程课件 篇2
一、出示学习目标:
1.继续感受用一元二次方程解决实际问题的过程;
2.通过自学探究掌握裁边分割问题。
1.阅读探究3并进行填空;
2.完成P48的思考并掌握裁边分割问题的特点;
3.在理解的基础上完成P48-49第8、9题(不精确,只留根号即可)。
探究3:要设计一本书的封面,封面长27cm,宽21cm,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上下边衬等宽,左右边衬等宽,应如何设计四周边衬的宽度(精确到0.1cm)?
分析:封面的长宽之比为27﹕21=9﹕7,中央矩形的长宽之比也应是9﹕7,则上下边衬与左右边衬的宽度之比是。9﹕7
设上、下边衬的宽均为9xcm,左、右边衬的宽均为7xcm,则:
由中下层学生口答书中填空,老师再给予补充。
9.如图,要设计一幅宽20m,长30m的图案,两横两竖宽度之比为3∶2,若使彩条面积是图案面积的四分之一,应怎样设计彩条的宽带?(讨论用多种方法列方程比较)
三、当堂训练:
1.如图,在一幅长90cm,宽40cm的风景画四周镶上一条宽度相同的金色纸边,制成一幅挂画.如果要求风景画的面积是整个挂画面积的72%,那么金边的宽应是多少?
2.要设计一个等腰梯形的花坛,上底长100m,下底长180m。上下底相距80m,在两腰中点连线出有一横向甬道,上下两底之见有两条纵向的甬道,各甬道宽度相等,甬道的面积是梯形面积的六分之一,甬道的宽应是多少?
一元二次方程课件 篇3
第一课时
教学内容
一元二次方程概念及一元二次方程一般式及有关概念.
教学目标
了解一元二次方程的概念;一般式ax2+bx+c=0(a≠0)及其派生的概念;应用一元二次方程概念解决一些简单题目.
1.通过设置问题,建立数学模型,模仿一元一次方程概念给一元二次方程下定义.
2.一元二次方程的一般形式及其有关概念.
3.解决一些概念性的题目.
4.态度、情感、价值观
4.通过生活学习数学,并用数学解决生活中的'问题来激发学生的学习热情.
重难点关键
1.重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.
2.难点关键:通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念.
教学过程
一、复习引入
学生活动:列方程.
问题(1)《九章算术》“勾股”章有一题:“今有户高多于广六尺八寸,两隅相去适一丈,问户高、广各几何?”
大意是说:已知长方形门的高比宽多6尺8寸,门的对角线长1丈,那么门的高和宽各是多少?
如果假设门的高为x尺,那么,这个门的宽为_______尺,根据题意,得________.
整理、化简,得:__________.
问题(2)如图,如果 ,那么点c叫做线段ab的黄金分割点.
如果假设ab=1,ac=x,那么bc=________,根据题意,得:________.
整理得:_________.
问题(3)有一面积为54m2的长方形,将它的一边剪短5m,另一边剪短2m,恰好变成一个正方形,那么这个正方形的边长是多少?
如果假设剪后的正方形边长为x,那么原来长方形长是________,宽是_____,根据题意,得:_______.
整理,得:________.
老师点评并分析如何建立一元二次方程的数学模型,并整理.
二、探索新知
学生活动:请口答下面问题.
(1)上面三个方程整理后含有几个未知数?
(2)按照整式中的多项式的规定,它们最高次数是几次?
(3)有等号吗?或与以前多项式一样只有式子?
老师点评:(1)都只含一个未知数x;(2)它们的最高次数都是2次的;(3)都有等号,是方程.
因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.
一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.
一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.
一元二次方程课件 篇4
教学目标
掌握二次函数y=ax2+bx+c的图象与x轴的交点个数与一元二次方程ax2+bx+c=0的解的情况之间的关系。
重点、难点:
二次函数y=ax2+bx+c的图象与一元二次方程ax2+bx+c=0的根之间关系的探索。
教学过程:
一、情境创设
一次函数y=x+2的图象与x轴的交点坐标
问题1.任意一次函数的图象与x轴有几个交点?
问题2.猜想二次函数图象与x轴可能会有几个交点?可以借助什么来研究?
二、探索活动
活动一观察
在直角坐标系中任意取三点A、B、C,测出它们的纵坐标,分别记作a、b、c,以a、b、c为系数绘制二次函数y=axb、c值后,观察交点数量变化情况。
活动二观察与探索
如图1,观察二次函数y=x2-x-6的图象,回答问题:
(1)图象与x轴的交点的坐标为A(,),B(,)
(2)当x=时,函数值y=0。
(3)求方程x2-x-6=0的解。
(4)方程x2-x-6=0的解和交点坐标有何关系?
活动三猜想和归纳
(1)你能说出函数y=ax2+bx+c的图象与x轴交点个数的其它情况吗?猜想交点个数和方程ax2+bx+c=0的根的个数有何关系。
(2)一元二次方程ax2+bx+c=0的根的个数由什么来判断?
这样我们可以把二次函数y=ax一元二次方程ax2+bx+c=0的实数根和根的判别式三者联系起来。
三、例题分析
例1.不画图象,判断下列函数与x轴交点情况。
(1)y=x2-10x+25
(2)y=3x2-4x+2
(3)y=-2x2+3x-1
例2.已知二次函数y=mx2+x-1
(1)当m为何值时,图象与x轴有两个交点
(2)当m为何值时,图象与x轴有一个交点?
(3)当m为何值时,图象与x轴无交点?
四、拓展练习
B。
(1)请写出方程ax2+bx+c=0的根
(2)列举一个二次函数,使其图象与x轴交于(1,0)和(4,0),且适合这个图象。
2.列举一个二次函数,使其图象开口向上,且与x轴交于(-2,0)和(1,0)
五、小结
这节课我们有哪些收获?
六、作业
求证:二次函数y=x2+ax+a-2的图象与x轴一定有两个不同的交点。
一元二次方程课件 篇5
《认识一元二次方程(1)》教学设计
教学内容
2.1一元二次方程
备课教师
申红敏
备课节次
1、知识技能:探索一元二次方程及其相关概念,能够辨别各项系数,能够从实际问题中抽象出方程知识。
教学目标
2、数学思考:在探索问题的过程中使学生感受到方程是刻画现实世界的一个模型,体会方程与实际生活的联系。
3、问题解决:通过用一元二次方程解决身边的问题,体会数学知识应用的价值。4、情感态度:提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用。
一元二次方程教案4
教学重难点
教学方法
教学准备
重点:一元二次方程的概念
难点:如何把实际问题转化为数学方程
教法:分层教学
学法:自主探究
合作交流
教师活动:一.情景导入
生成问题
1.单项式和多项式统称为整式.
2.含有未知数的等式叫做方程.
情
景
导
入
3.计算:(x+2)2=x2+4x+4;
(x-3)2=x2-6x+9.
4.计算:(5-2x)(8-2x)=4x2-26x+40.
学生活动:学生回顾旧知
设计意图:为新知学习奠定基础。
问题一:自学互研
生成能力
教师活动:先阅读教材P31“议一议”前面的内容,然后完成下合
作
互
助
探
究
新
知
面问题:
1.在第一个问题中,地毯的长可以表示为(8-2x)m,宽可以表示为(5-2x)m,由矩形的面积公式可以列出方程为(8-
2x)(5-2x)=18.
2.在第二个问题中,如果设五个连续整数中间的一个数为x,你又能列出怎样的方程呢?
答:设五个连续整数中间的一个数为x,由题得(x-2)2+(x-1)2+x2=(x+1)2+(x+2)2
个性思考
学生活动:自主探究问题,寻求等量关系。
目标达成:C类学生罗列自己的问题;
A类学生分析所提问题满足的条件,提出解答的方式;
B类学生列出相应的方程并整理。设计意图:
问题二:1.问题1:有一块矩形铁皮,长100cm,宽50cm.在它的四个角分别切去一个面积相同的正方形,然后将四周突出的部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积是3600cm2,那么铁皮各角应切去多大的正方形?
2.问题2:一个长为10米的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8米,如果梯子的顶端下滑1米,那么梯子的底端滑动多少米?
教师活动:组织学生审清题意后,小组交流。你能设出未知数,列出相应的方程吗?
学生活动:问题1由题意可列方程:(100-2x)(50-2x)=3600;
问题2由题意可列出方程(x+6)2+72=102. 教师活动:你能通过观察下列方程得到它们的共同特点吗?
(1)(100-2x)(50-2x)=3600[来源:Z|x]
(2)(x+6)2+72=102
学生活动:学生讨论
归纳结论:方程的等号两边都是整式,只含有一个未知数,且未知数的最高次数是2的方程叫做一元二次方程.
一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式:
ax2+bx+c=0(a、b、c为常数,a≠0) 这种形式叫做一元二次方程的一般形式.其中ax2是二次项,a是二次项的系数;bx是一次项,b是一次项系数;c是常数项.
目标达成:C类学生对于等量关系的发现是难点,但会识别一元二次方程。B类学生能判断方程的特点,A类学生审题、解设、化简做到无障碍。
设计意图:将一元二次方程渗透在实际问题中,教给学生用方程的模式解决问题的能力。
问题三:1、把方程(3x+2)2=4(x-3)2化成一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项.
2.从前有一天,一个醉汉拿着竹竿进屋,横拿竖拿都进不去,横着比门框宽4尺,竖着比门框高2尺,另一个醉汉教他沿着门的两个对角斜着拿竿,这个醉汉一试,不多不少刚好进去了.你知道竹竿有多长吗?请根据这一问题列出方程.
目标达成:问题(1)中学生对于化成一元二次方程的一般形式感觉困难不大,但写出它的二次项系数、一次项系数和常数项时,C类学生可能容易忽视符号,作为第一次学习,这是难免的。
问题(2),实际问题,可能有部分学生不能理解题意,B类学生不能很快列出相应的方程,教师要点拨。
设计意图:及时巩固一元二次方程的有关概念,巩固学生通过实际问题列出相应方程。
教师活动:典例讲解:关于x的方程mx2-3x=x2-mx+2是一元二次方程,m应满足什么条件?[]
分析:先把这个方程化为一般形式,只要二次项的系数不为0即可.
解:由mx2-3x=x2-mx+2得到(m-1)x2+(m-3)x-2=0,所以m-1≠0,即m≠1.所以关于x的方程mx2-3x=x2-mx+2是一元二次方程,m应满足m≠1.
学生活动:对应练习:
1.关于x的方程(a-1)x2+3x=0是一元二次方程,则a分
层
检
测
总
结
反
馈
的取值范围是a≠1.
2.已知方程(m+2)x2+(m+1)x-m=0,当m满足m=-2时,它是一元一次方程;当m满足m≠-2时,它是一元二次方程.
3.(易错题)已知关于x的方程(m-2)x|m|+3x-4=0是一元二次方程,那么m的值是( C )[来源:学.科.网]
A.2 B.±2 C.-2 D.1
目标达成:要求全体学生会辨析一元二次方程的定义。
设计意图:体会知识的灵活性和掌握知识的深刻性。
必做题:
1.在下列方程中,是一元二次方程的有( A ) ①2x2-1=0;②ax2+bx+c=0;
122③(x+2)(x-3)=x-3;④2x-x=0.
A.1个 B.2个
C.3个
D.4个
2.把方程(x-)(x+)+(2x-1)2=0化成一元二次方程的一般形式为( A ) A. 5x2-4x-4=0
B.x2-5=0
22C. 5x-2x+1=0 D.5x-4x+6=0 选做题:
3.阅读材料,解答问题:
有一块长80cm,宽60cm的薄钢片,在四个角上截去四个相同的正方形,然后做成底面积为1500cm2的无盖盒子,想一想,应该怎样求出截去的小正方形的边长?问题:
2.1认识一元二次方程
一元二次方程:
相关概念:
习题练习:
布置作业
板书设计
教学反思
设计的基本思路:抓住重点和易错点,强化训练。
课堂模式设计为:课前检测(以题代纲,发现问题)------典例解析(综合应用,提高能力)-------当堂检测(强化训练,形成技能)。
实际课堂:只完成第一环节和第二环节,第三环节留为课后作业。
课后反馈效果:从反馈的课后作业看,学生基本上能掌握主要知识点。
老师们的评价:思路比较清晰,但容量不大,深度不够。
其实这一点自己在四班上课时,就已感觉到,而且比三班更糟糕,第二环节也没来得及进行,容量更小,难度更低。细细思考其中的原因,我分析到以下几点:第一,教师的设计没有充分考虑学情因素,更多的是从知识角度进行设计。第二,教师讲的太多,缺乏侧重点。第三,课堂节凑比较慢,尤其后半部分,太沉住气。第四,教学课时划分,不合适,可以将一元二次方程的概念和解法作为一课时,把根的.判别式和根与系数的关系作为一课时。第五,题目设计不到位,综合性不强。
仍然感到困惑的是,如何才能在有限的时间内,既能做到面面俱到,又能有所拔高?如何在备战中考中,不从应试的角度进行教学?备战中考本身是不是也是一种素质(尤其意志品质)的培养?
一元二次方程课件 篇6
1、已知方程 x2—ax—3a=0的一个根是6,则求a及另一个根的值。
2、有上题可知一元二次方程的系数与根有着密切的关系。其实我们已学过的求根公式也反映了根与系数的关系,这种关系比较复杂,是否有根简洁的关系?
3、有求根公式可知,一元二次方程ax2+bx+c=0(a≠0)的两根为x1= ,x2= 、观察两式左边,分母相同,分子是—b+√b 2—4ac与—b—√b 2—4ac。两根之间通过什么计算才能得到更简洁的关系?
解下列方程,并填写表格:
观察上面的表格,你能得到什么结论?
(1)关于x的方程 x2+px+q=0(p,q为常数,p2—4q≥0)的两根x1,x2与系数p,q之间有什么关系?
(2)关于x的方程ax2+bx+c=0(a≠0)的两根x1, x2与系数a,b,c之间又有何关系呢?你能证明你的猜想吗?
(1)关于x的方程x2+px+q=0(p,q为常数,p2—4q≥0)的两根x1,x2与系数p,q的关系是:x1+x2=—p, x1、 x2=q(注意:根与系数关系的前提条件是根的判别式必须大于或等于零。)
(2)形如的方程ax2+bx+c=0(a≠0),可以先将二次项系数化为1,再利用上面的结论。
例3:已知一元二次方程的两个根是—1和2,请你写出一个符合条件的方程、(你有几种方法?)
例4:已知方程 的一个根是 ,求另一根及k的值、
1、已知方程 的一个根是1,求另一根及m的值、
2、已知方程 的一个根为 ,求另一根及c的值、
1、已知关于x的方程 的一个根是另一个根的2倍,求m的值、
2、已知两数和为8,积为9,求这两个数、
3、 x2—2x+6=0的两根为x1,x2,则x1+x2=2,x1x2=6、是否正确?
1、根与系数的关系:
1、不解方程,写出下列方程的两根和与两根积。
2、 已知方程x2—3x+m=0的一个根为1,求另一根及m的值、
3、 已知方程x2+bx+6=0的一个根为—2求另一根及b的值、
一元二次方程课件 篇7
教学内容
一元二次方程概念及一元二次方程一般式及有关概念.
教学目标
了解一元二次方程的概念;一般式ax2+bx+c=0(a≠0)及其派生的概念;应用一元二次方程概念解决一些简单题目。
1.通过设置问题,建立数学模型,模仿一元一次方程概念给一元二次方程下定义。
2.一元二次方程的一般形式及其有关概念。
3.解决一些概念性的题目。
4.态度、情感、价值观
4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情。
重难点关键
1.重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题。
2.难点关键:通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念。
教学过程
一、复习引入
学生活动:列方程.
问题(1)《九章算术》“勾股”章有一题:“今有户高多于广六尺八寸,两隅相去适一丈,问户高、广各几何?”
大意是说:已知长方形门的高比宽多6尺8寸,门的对角线长1丈,那么门的高和宽各是多少?
如果假设门的高为x尺,那么,这个门的宽为_______尺,根据题意,得________.
整理、化简,得:__________.
问题(2)如图,如果 ,那么点C叫做线段AB的黄金分割点.
如果假设剪后的正方形边长为x,那么原来长方形长是________,宽是_____,根据题意,得:_______.
整理,得:________.
老师点评并分析如何建立一元二次方程的数学模型,并整理.
二、探索新知
学生活动:请口答下面问题.
(1)上面三个方程整理后含有几个未知数?
(2)按照整式中的多项式的规定,它们最高次数是几次?
(3)有等号吗?或与以前多项式一样只有式子?
老师点评:
(1)都只含一个未知数x;
(2)它们的最高次数都是2次的;
(3)都有等号,是方程.
因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.
一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.
一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.
例1.将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.
分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程(8-2x)(5-2x)=18必须运用整式运算进行整理,包括去括号、移项等.
解:去括号,得:
40-16x-10x+4x2=18
移项,得:4x2-26x+22=0
其中二次项系数为4,一次项系数为-26,常数项为22.
例2.(学生活动:请二至三位同学上台演练) 将方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.
分析:通过完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a≠0)的形式.
解:去括号,得:
x2+2x+1+x2-4=1
移项,合并得:2x2+2x-4=0
其中:二次项2x2,二次项系数2;一次项2x,一次项系数2;常数项-4.
三、巩固练习
教材P32 练习1、2
四、应用拓展
例3.求证:关于x的方程(2-8+17)x2+2x+1=0,不论取何值,该方程都是一元二次方程.
分析:要证明不论取何值,该方程都是一元二次方程,只要证明2-8+17≠0即可.
证明:2-8+17=(-4)2+1
∵(-4)2≥0
∴(-4)2+1>0,即(-4)2+1≠0
∴不论取何值,该方程都是一元二次方程.
五、归纳小结(学生总结,老师点评)
本节课要掌握:
(1)一元二次方程的概念;
(2)一元二次方程的一般形式ax2+bx+c=0(a≠0)和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用.
六、布置作业
一元二次方程课件 篇8
第一课时
一、教学目标
1.使学生会用列一元二次方程的方法解有关数与数字之间关系的应用题。
2.通过列方程解应用问题,进一步体会提高分析问题、解决问题的能力。
3.通过列方程解应用问题,进一步体会代数中方程的思想方法解应用问题的优越性。
二、重点·难点·疑点及解决办法
1.教学重点:会用列一元二次方程的方法解有关数与数字之间的关系的应用题。
2.教学难点:根据数与数字关系找等量关系。
3.教学疑点:学生对列一元二次方程解应用问题中检验步骤的理解。
4.解决办法:列方程解应用题,就是先把实际问题抽象为数学问题,然后由数学问题的解决而获得对实际问题的解决。列方程解应用题,最重要的是审题,审题是列方程的基础,而列方程是解题的关键,只有在透彻理解题意的基础上,才能恰当地设出未知数,准确找出已知量与未知量之间的等量关系,正确地列出方程。
三、教学过程
1.复习提问
(1)列方程解应用问题的步骤?
①审题,②设未知数,③列方程,④解方程,⑤答。
(2)两个连续奇数的表示方法是,(n表示整数)
2.例题讲解
例1 两个连续奇数的积是323,求这两个数。
分析:(1)两个连续奇数中较大的奇数与较小奇数之差为2,(2)设元(几种设法)a.设较小的奇数为x,则另一奇数为,b.设较小的奇数为,则另一奇数为;c.设较小的奇数为,则另一个奇数。
以上分析是在教师的引导下,学生回答,有三种设法,就有三种列法,找三位学生使用三种方法,然后进行比较、鉴别,选出最简单解法。
解法(一) 设较小奇数为x,另一个为,
据题意,得
整理后,得
解这个方程,得。
由得,由得,
答:这两个奇数是17,19或者-19,-17。
解法(二) 设较小的奇数为,则较大的奇数为。
据题意,得
整理后,得
解这个方程,得。
当时,
当时,。
答:两个奇数分别为17,19;或者-19,-17。
第 1 2 页
一元二次方程课件 篇9
一、复习旧知,类比新知
1、一元一次方程的概念
像这样的等号两边都是整式,只含有一个未知数(一元),并且未知数的次数是1(一次)的方程叫做一元一次方程
2、一般形式:
是常数且
设计意图:复习一元一次方程,让学生回忆起一元一次方程的概念,回忆起“项”及“系数”的概念,通过类比,让学生能更好的理解一元二次方程的概念。
二、生活情境,自主学习
(1)正方形桌面的面积是2m,设正方形桌面的边长是x m,可得方程
(2)矩形花圃一面靠墙,另外三面所围的栅栏的总长度是19米。如果花圃的面积是24m2,设花圃的宽是x m则花圃的长是m,可得方程
(3)一张面积是600cm2的长方形纸片,把它的一边剪短10cm,恰好得到一个正方形。设这个正方形的边长是x cm,可得方程
(4)长5米的梯子斜靠在墙上,梯子的底端与墙的距离比梯子的顶端到地面的距离多1m,设梯子的底端到墙面的距离是x m,可得方程
设计意图:因为数学来源与生活,所以以学生的实际生活背景为素材创设情景,易于被学生接受、感知。让学生从实际问题中提炼出数学问题,初步培养学生的空间概念和抽象能力。情景分析中学生自然会想到用方程来解决问题,但所列的方程不是以前学过的`,从而激发学生的求知欲望,顺利地进入新课。
三、探究学习:
1、概念得出
讨论交流:以上所列方程有哪些共同特征?
设计意图:英国一位著名的数学教育心理学家曾说:概念的教学要从大量实例出发,通过实例帮助完成定义,而不是教定义。让学生充分感受所列方程的特点,再通过类比的方法得到定义,从而达到真正理解定义的目的.
2、巩固概念
下列方程中那些是一元二次方程。
设计意图:
这组练习目的在于巩固学生对一元二次方程定义中3个特征的理解.题目的设置,目的在于进一步加深学生对定义的掌握,提高学生对变式的理解能力.此环节采取抢答的形式,提高学生学习数学的兴趣和积极性.
3、一元二次方程的一般形式:
设计意图:此环节让学生通过自主探究,类比一元一次方程一般形式,得出一元二次方程一般形式和项,系数的概念,从而达到真正理解并掌握的目的.
4.典型例题
例将下列方程化为一元二次方程的一般形式,并分别指出它们的二次项系数、一次项系数和常数项
设计意图:此题设置的目的在于加深学生对一般形式的理解。
5.巩固练习
把下列方程化成一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项
设计意图:此题设置的目的在于加深学生对一般形式的理解
6、拓展应用
(1)、若是关于x的一元二次方程,则()
p为任意实数B、p=0 C、p≠0 D、p=0或1
(2)、若关于x的方程mx-2x+1=2x(x-1)是一元二次方程,那么m的取值范围是
(3)、若方程是关于x的一元二次方程,则m的值为
设计意图:此题让学生进行思考,讨论,让学生进行讲解,教师作适当归纳,可留疑,让学生课下思考。此题需进行分类讨论,开拓学生思维,体现数学的严谨性。
7.课堂小结
设计意图:小结反思中,不同学生有不同的体会,要尊重学生的个体差异,激发学生主动参与意识,.为每个学生都创造了数学活动中获得活动经验的机会。
一元二次方程课件 篇10
1、教材所处的地位:此前学生已经学习了应用一元一次方程与二元一次方程组来解决实际问题。本节仍是进一步讨论如何建立和利用一元二次方程模型来解决实际问题,只是在问题中数量关系的复杂程度上又有了新的发展。
2、教学目标要求:
(1)能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型;
(2)能根据具体问题的实际意义,检验结果是否合理;
(3)经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述;
(4)通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用。
3、教学重点和难点:
重点:列一元二次方程解与面积有关问题的应用题。
难点:发现问题中的等量关系。
一元二次方程课件 篇11
一、教学目标
【知识与技能】
理解并掌握一元二次方程求根公式的推导过程,能正确、熟练地运用公式法解一元二次方程。
【过程与方法】
经历探究求根公式的过程,发展合情推理能力,提高运算能力并养成良好的运算习惯。
【情感、态度与价值观】
通过公式法解一元二次方程,感受解法的多样性,在学习活动中获取成功的体验。
二、教学重难点
【教学重点】
用公式法解一元二次方程。
【教学难点】
一元二次方程求根公式的推导。
三、教学过程
(一)引入新课
复习回顾:用配方法解一元二次方程。
配方,得
(四)小结作业
小结:引导学生做知识总结:本节课学习了什么叫公式法,怎样运用公式法解一元二次方程。如何判断一个方程是否有实数根?
作业:课后练习题,试着用多种方法解答。
四、板书设计
略
一元二次方程课件 篇12
有关一元二次方程的教学设计
教学任务分析
教学目标
知识技能
1、理解一元二次方程的概念。
2、掌握一元二次方程的一般形式,正确认识二次项系数、一次项系数及常数项。
教学思考
1、通过一元二次方程的引入,培养学生建模思想,归纳、分析问题及解决问题的能力。
2、通过一元二次方程概念的学习,培养学生对概念理解的完整性和深刻性。
3、由知识来源于实际,树立转化的思想,由设未知数、列方程向学生渗透方程的思想,从而进一步提高学生分析问题、解决问题的能力。
解决问题
在分析、揭示实际问题的数量关系并把实际问题转化为数学模型(一元二次方程)的过程中使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识。
情感态度
1、培养学生主动探究知识、自主学习和合作交流的意识。
2、激发学生学数学的兴趣,体会学数学的快乐,培养用数学的意识。
重点
一元二次方程的概念及一般形式。
难点
1、由实际问题向数学问题的.转化过程。
2、正确识别一般式中的“项”及“系数”。
教学流程安排
活动流程图
活动内容和目的
活动1
创设情境 引入新课
活动2
启发探究 获得新知
活动3
运用新知 体验成功
活动4
归纳小结 拓展提高
活动5
布置作业 分层落实
复习一元一次方程有关概念;通过实际问题引入新知。
通过类比一元一次方程的概念和一般形式,让学生获得一元二次方程的有关概念。
巩固训练,加深对一元二次方程有关概念的理解。
回顾梳理本节内容,拓展提高学生对知识的理解。
分层次布置作业,提高学生学习数学的兴趣。
一元二次方程课件 篇13
教学目标:
1、经历抽象一元二次方程概念的过程,进一步体会是刻画现实世界的有效数学模型
2、理解什么是一元二次方程及一元二次方程的一般形式。
3、能将一元二次方程转化为一般形式,正确识别二次项系数、一次项系数及常数项。
1、一元二次方程及其它有关的概念。
2、利用实际问题建立一元二次方程的数学模型。
1、建立一元二次方程实际问题的数学模型.
教学过程:
一、自主探索:(学生通过自学,经历思考、讨论、分析的过程,最终形成一元二次方程及其有关概念)
1、请认真完成课本P39—40议一议以上的内容;整理化简上述三个方程.。
2、你发现上述三个方程有什么共同特点?
你能把这些特点用一个方程概括出来吗?
你觉得理解这个概念要掌握哪几个要点?你还掌握了什么?
二、学以致用:(通过练习,加深学生对一元二次方程及其有关概念的理解与把握)
2、判断下列方程是不是关于x的一元二次方程,如果是,写出它的二次项系数、一次项系数和常数项。
(1)3-6x2=0(2)3x(x+2)=4(x-1)+7(3)(2x+3)2=(x+1)(4x-1)
3、若关于x的方程(k-3)x2+2x-1=0是一元二次方程,则k的值是多少?
4、关于x的方程(k2-1)x2+2(k+1)x+2k+2=0,在什么条件下它是一元二次方程?在什么条件下它是一元一次方程?
5、以-2、3、0三个数作为一个一元二次方程的系数和常数项,请你写出满足条件的不同的一元二次方程?
这节课你学到了什么?
1、下列方程中是一元二次方程的有A、1个B、2个 C、3个D、4个
(1)(2)(3)(4)(5)(6)2、将方程-5x2+1=6x化为一般形式为____________________.其二次项是_________,系数为_______,一次项系数为______,常数项为______。
3、关于x的方程(m2-4)x2+(m+2)x+2m+3=0,当m__________时,是一元二次方程;当m__________时,是一元一次方程.
1、已知关于的方程是一元二次方程,则为何值?
2、.当m为何值时,方程(m+1)x+1+27mx+5=0是关x于的一元二次方程?
3、关于的一元二次方程(m-1)x2+x+m2-1=0有一根为,则的值多少?
4、某校为了美化校园,准备在一块长32米,宽20米的长方形场地上修筑若干条道路,余下部分作草坪,并请全校同学参与设计,现在有两位学生各设计了一种方案(如图),根据两种设计方案各列出方程,求图中道路的宽分别是多少,使图(1),(2)的草坪面积为540米2.?
课比赛,这次的优质课采用市里要求的1/3模式,这对于我们来说具有一定的挑战性。所谓“1/3模式”,就是把课堂教学时间大致分为3个部分,1/3的时间个人自主学习,1/3的时间小组合作学习,1/3的`时间全班交流讨论。在1/3模式中,整个教学过程由教师和学生共同参与,每个环节1/3的时间只是大致的划分,可根据学习内容灵活安排。这就对教师提出了较高的要求。
首先要准备好学案。学案就是学生学习的依据。在学案里,教师要提出明确的学习要求。学习要求可包括以下方面:完成学习任务的时间、学习内容的范围、完成学习任务所要达到的程度、自主学习成果展现的形式等。这就要求教师要提前考虑周全,对于学生学习的要求要一次性提出,内容上有梯度。学生自主学习时,教师要深入学生当中,观察学生的学习状况,检查学习任务完成的情况,提供有针对性的指导和帮助教师对自主学习方法和途径的指导要适度,既要满足学生完成学习任务的需要,又不能挤占学生自主探究的空间
其次,学习氛围是合作学习成功的关键之一,教师要营造安全的心理环境、充裕的时空环境、热情的帮助环境、真诚的激励环境,只就要求教师在语言上也要有较高水平,会发动学生,会调动学生的积极性,让课堂气氛活跃起来,让学生充分发挥自己的水平。
再是,由于课堂上主要是以学生为主。这就要求教师尽量少讲,要充当好组织者、引导者、倾听者的角色,不要急于发表自己的观点,只要学生能讲的教师就不要讲,要避免因为教师呈现自己的观点而打破学生的讨论。学生说完的东西,如果没有问题,教师就不要重复。教师对学习内容要点的讲解要有的放矢,能起到画龙点睛的作用。要在学生原有的水平上进行提升,有助于学生加深对知识的理解。
我们只有在教学中不断的学习,不断的改进自己,才能保证我们的课堂很精彩,是名副其实的优质课。