数学必修3教案
发布时间:2024-03-29 数学必修教案 必修教案数学必修3教案锦集。
俗话说,凡事预则立,不预则废。幼儿园的老师都希望自己讲的课学生们爱听,能学习的更好,所以,很多老师会准备好教案方便教学,教案可以帮助学生更好地进入课堂环境中来。那么一篇好的幼儿园教案要怎么才能写好呢?小编特地花时间为你收集并编辑了数学必修3教案锦集,欢迎分享给你的朋友!
数学必修3教案【篇1】
这种表示方法比较简明,抽象,且能看到三者之间的关系.除此之外,映射的一般表示方法为 ,从这个符号中也能看到映射是由三部分构成的整体,这对后面认识函数是三件事构成的整体是非常有帮助的.
(3)对于学生层次较高的学校可以在给出定义后让学生根据自己的理解举出映射的例子,教师也给出一些映射的例子,让学生从中发现映射的特点,并用自己的语言描述出来,最后教师加以概括,再从中引出一一映射概念;对于学生层次较低的学校,则可以由教师给出一些例子让学生观察,教师引导学生发现映射的特点,一起概括.最后再让学生举例,并逐步增加要求向一一映射靠拢, 引出一一映射概念.
(4)关于求象和原象的问题,应在计算的过程中总结方法,特别是求原象的方法是解方程或方程组,还可以通过方程组解的不同情况(有唯一解,无解或有无数解)加深对映射的认识.
(5)在教学方法上可以采用启发,讨论的形式,让学生在实例中去观察,比较,启发学生寻找共性,共同讨论映射的特点,共同举例,计算,最后进行小结,教师要起到点拨和深化的作用.
教学设计方案2。1 映射教学目标(1)了解映射的概念,象与原象及一一映射的概念.(2)在概念形成过程中,培养学生的观察,分析对比,归纳的能力.(3)通过映射概念的学习,逐步提高学生的探究能力.教学重点难点::映射概念的形成与认识.教学用具:实物投影仪教学方法:数学教案-映射,标签:高一数学必修3教案,高一数学必修1教案,启发讨论式教学过程():一、引入在初中,我们已经初步探讨了函数的定义并研究了几类简单的常见函数.在高中,将利用前面集合有关知识,利用映射的观点给出函数的定义.那么映射是什么呢?这就是我们今天要详细的概念.二、新课在前一章集合的初步知识中,我们学习了元素与集合及集合与集合之间的关系,而映射是重点研究两个集合的元素与元素之间的对应关系.这要先从我们熟悉的对应说起(用投影仪打出一些对应关系,共6个)我们今天要研究的是一类特殊的对应,特殊在什么地方呢?提问1:在这些对应中有哪些是让A中元素就对应B中唯一一个元素?让学生仔细观察后由学生回答,对有争议的,或漏选,多选的可详细说明理由进行讨论.最后得出(1),(2),(5),(6)是符合条件的(用投影仪将这几个集中在一起)提问2:能用自己的语言描述一下这几个对应的共性吗?经过师生共同推敲,将映射的定义引出.(主体内容由学生完成,教师做必要的补充)(板书)一.映射1.定义:一般地,设 两个集合,如果按照某种对应法则 ,对于集合 中的任何一个元素,在集合 中都有唯一的元素和它对应,那么这样的对应(包括集合 及 到 的对应法则)叫做集合 到集合 的映射,记作 .定义给出之后,教师应及时强调映射是特殊的对应,故是三部分构成的一个整体,从映射的符号表示中也可看出这一点,它的特殊之处在于元素与元素之间的对应必须作到“任一对唯一”,同时指出具有对应关系的元素即 中元素 对应 中元素 ,则 叫 的象, 叫 的原象.(板书)2.象与原象可以用前面的例子具体说明谁是谁的象,谁是谁的原象.提问3:下面请同学根据自己对映射的理解举几个映射的例子,看对映射是否真正认识了.(开始时只要是映射即可,之后可逐步提高要求,如集合是无限集,或生活中的例子等)由学生自己评判.之后教师再给出几个(主要是补充学生举例类型的不足)(1) , , , .(2) .(3) 除以3的余数.(4) {高一1班同学}, {入学是数学考试成绩}, 对自己的考试成绩.在学生作出判断之后,引导学生发现映射的性质(教师适当提出研究方向由学生说,再由老师概括)(板书)3.对概念的认识(1) 与 是不同的,即 与 上有序的.(2)象的集合是集合B的子集.(3)集合A,B可以是数集,也可以是点集或其它集合.在刚才研究的基础上,教师再提出(2)和(4)有什么共性,能否把它描述出来,如果学生不能找出共性,教师可再给出几个例子,(用投影仪打出)如:(1)(2) {数轴上的点}, 实数与数轴上相应的点对应.(3) {中国,日本,韩国}, {北京,东京,汉城}, 相应国家的首都.引导学生在元素之间的对应关系和元素个数上找共性,由学生提出两点共性集合A中不同的元素对集合B中不同的元素;②B中所有元素都有原象.那么满足以上条件的映射又是一种特殊的映射,称之为一一映射.(板书)4.一一映射(1)定义:设A,B是两个集合, 是集合A到集合B的映射,如果在这个映射下 对于集合A中的不同元素,在集合B中又不同的象,而且B中每一个元素都有原象,那么这个映射叫做A到B上的一一映射.给出定义后,可再返回到刚才的例子,让学生比较它与映射的区别,从而进一步明确“一一”的含义.然后再安排一个例题.例1 下列各表表示集合A(元素a)到集合B(元素b)的一个映射,判断这些映射是不是A到B上的一一映射.其中只有第三个表可以表示一一映射,由此例点明一一映射的特点数学教案-映射,标签:高一数学必修3教案,高一数学必修1教案,(板书)(2)特点:两个集合间元素是一对一的关系,不同的对的也一定是不同的(元素个数相同);集合B与象集C是相等的集合.对于映射我们现在了解了它的定义及特殊的映射一一映射,除此之外对于映射还要求能求出指定元素的象与原象.(板书)5.求象与原象.例2 (1)从R到 的映射 ,则R中的—1在 中的象是_____; 中的4在R中的原象是_____.(2)在给定的映射 下,则点 在 下的象是_____, 点 在 下的原象是______.(3) 是集合A到集合B的映射, ,则A 中 元素 的象是_____,B中象0的原象是______, B中象—6的原象是______.由学生先回答第(1)小题,之后让学生自己总结一下,应用什么方法求象和原象,学生找到方法后,再在方法的指导下求解另外两题,若出现问题,教师予以点评,最后小结求象用代入法,求原象用解方程或解方程组.注意:所解的方程解的情况可能有多种如有唯一解,也可能无解,可能有无数解,这与映射的定义也是相吻合的.但如果是一一映射,则方程一定有唯一解.三、小结1.映射是特殊的对应2.一一映射是特殊的映射.3.掌握求象与原象的方法.四、作业:略五、板书设计探究活动(1) {整数}, {偶数}, ,试问 与 中的元素个数哪个多?为什么?如果我们建立一个由 到 的映射对应法则 乘以2,那么这个映射是一一映射吗?答案:两个集合中的元素一样多,它们之间可以形成一一映射.(2)设 , ,问最多可以建立多少种集合 到集合 的不同映射?若将集合 改为 呢?结论是什么?如果将集合 改为 ,结论怎样?若集合 改为 , 改为 ,结论怎样?从以上问题中,你能归纳出什么结论吗?依此结论,若集合A中含有 个元素,集合B中含有 个元素,那么最多可以建立多少种集合 到集合 的不同映射?答案:若集合A含有m个元素,集合B含有n个元素,则不同的映射 有 个.
数学必修3教案【篇2】
预习课本P103~105,思考并完成以下问题
(1)怎样定义向量的数量积?向量的数量积与向量数乘相同吗?
(2)向量b在a方向上的投影怎么计算?数量积的几何意义是什么?
(3)向量数量积的性质有哪些?
(4)向量数量积的运算律有哪些?
[新知初探]
1.向量的数量积的定义
(1)两个非零向量的数量积:
已知条件向量a,b是非零向量,它们的夹角为θ
定义a与b的数量积(或内积)是数量|a||b|cosθ
记法a·b=|a||b|cosθ
(2)零向量与任一向量的数量积:
规定:零向量与任一向量的数量积均为0.
[点睛](1)两向量的数量积,其结果是数量,而不是向量,它的值等于两向量的模与两向量夹角余弦值的乘积,其符号由夹角的余弦值来决定.
(2)两个向量的数量积记作a·b,千万不能写成a×b的形式.
2.向量的数量积的几何意义
(1)投影的概念:
①向量b在a的方向上的投影为|b|cosθ.
②向量a在b的方向上的投影为|a|cosθ.
(2)数量积的几何意义:
数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积.
[点睛](1)b在a方向上的投影为|b|cosθ(θ是a与b的夹角),也可以写成a·b|a|.
(2)投影是一个数量,不是向量,其值可为正,可为负,也可为零.
3.向量数量积的性质
设a与b都是非零向量,θ为a与b的夹角.
(1)a⊥b?a·b=0.
(2)当a与b同向时,a·b=|a||b|,
当a与b反向时,a·b=-|a||b|.
(3)a·a=|a|2或|a|=a·a=a2.
(4)cosθ=a·b|a||b|.
(5)|a·b|≤|a||b|.
[点睛]对于性质(1),可以用来解决有关垂直的问题,即若要证明某两个向量垂直,只需判定它们的数量积为0;若两个非零向量的数量积为0,则它们互相垂直.
4.向量数量积的运算律
(1)a·b=b·a(交换律).
(2)(λa)·b=λ(a·b)=a·(λb)(结合律).
(3)(a+b)·c=a·c+b·c(分配律).
[点睛](1)向量的数量积不满足消去律:若a,b,c均为非零向量,且a·c=b·c,但得不到a=b.
(2)(a·b)·c≠a·(b·c),因为a·b,b·c是数量积,是实数,不是向量,所以(a·b)·c与向量c共线,a·(b·c)与向量a共线,因此,(a·b)·c=a·(b·c)在一般情况下不成立.
[小试身手]
1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)
(1)两个向量的数量积仍然是向量.
(2)若a·b=b·c,则一定有a=c.()
(3)若a,b反向,则a·b=-|a||b|.()
(4)若a·b=0,则a⊥b.()
答案:(1)×(2)×(3)√(4)×
2.若|a|=2,|b|=12,a与b的夹角为60°,则a·b=()
A.2B.12
C.1D.14
答案:B
3.已知|a|=10,|b|=12,且(3a)·15b=-36,则a与b的夹角为()
A.60°B.120°
C.135°D.150°
答案:B
4.已知a,b的夹角为θ,|a|=2,|b|=3.
(1)若θ=135°,则a·b=________;
(2)若a∥b,则a·b=________;
(3)若a⊥b,则a·b=________.
答案:(1)-32(2)6或-6(3)0
向量数量积的运算
[典例](1)已知向量a与b的夹角为120°,且|a|=4,|b|=2,求:①a·b;②(a+b)·
(a-2b).
(2)如图,正三角形ABC的边长为2,=c,=a,=b,求a·b+b·c+c·a.
[解](1)①由已知得a·b=|a||b|cosθ=4×2×cos120°=-4.
②(a+b)·(a-2b)=a2-a·b-2b2=16-(-4)-2×4=12.
(2)∵|a|=|b|=|c|=2,且a与b,b与c,c与a的夹角均为120°,
∴a·b+b·c+c·a=2×2×cos120°×3=-3.
向量数量积的求法
(1)求两个向量的数量积,首先确定两个向量的模及向量的夹角,其中准确求出两向量的夹角是求数量积的关键.
(2)根据数量积的运算律,向量的加、减与数量积的混合运算类似于多项式的乘法
运算.
[活学活用]
已知|a|=3,|b|=4,a与b的夹角为120°,求:
(1)a·b;(2)a2-b2;
(3)(2a-b)·(a+3b).
解:(1)a·b=|a||b|cos120°=3×4×-12=-6.
(2)a2-b2=|a|2-|b|2=32-42=-7.
(3)(2a-b)·(a+3b)=2a2+5a·b-3b2
=2|a|2+5|a||b|·cos120°-3|b|2
=2×32+5×3×4×-12-3×42=-60.
与向量的模有关的问题
[典例](1)(浙江高考)已知e1,e2是平面单位向量,且e1·e2=12.若平面向量b满足b·e1=b·e2=1,则|b|=________.
(2)已知向量a,b的夹角为45°,且|a|=1,|2a-b|=10,则|b|=________.
[解析](1)令e1与e2的夹角为θ,
∴e1·e2=|e1|·|e2|cosθ=cosθ=12.
又0°≤θ≤180°,∴θ=60°.
∵b·(e1-e2)=0,
∴b与e1,e2的夹角均为30°,
∴b·e1=|b||e1|cos30°=1,
从而|b|=1cos30°=233.
(2)∵a,b的夹角为45°,|a|=1,
∴a·b=|a||b|cos45°=22|b|,
|2a-b|2=4-4×22|b|+|b|2=10,∴|b|=32.
[答案](1)233(2)32
求向量的模的常见思路及方法
(1)求模问题一般转化为求模的平方,与向量数量积联系,并灵活应用a2=|a|2,勿忘记开方.
(2)a·a=a2=|a|2或|a|=a2,可以实现实数运算与向量运算的相互转化.
[活学活用]
已知向量a,b满足|a|=|b|=5,且a与b的夹角为60°,求|a+b|,|a-b|,|2a+b|.
解:∵|a+b|2=(a+b)2=(a+b)(a+b)
=|a|2+|b|2+2a·b=25+25+2|a||b|cos60°
=50+2×5×5×12=75,
∴|a+b|=53.
∵|a-b|2=(a-b)2=(a-b)(a-b)
=|a|2+|b|2-2a·b
=|a|2+|b|2-2|a||b|cos60°=25,
∴|a-b|=5.
∵|2a+b|2=(2a+b)(2a+b)
=4|a|2+|b|2+4a·b
=4|a|2+|b|2+4|a||b|cos60°=175,
∴|2a+b|=57.
两个向量的夹角和垂直
题点一:求两向量的夹角
1.(重庆高考)已知非零向量a,b满足|b|=4|a|,且a⊥(2a+b),则a与b的夹角为()
A.π3B.π2
C.2π3D.5π6
解析:选C∵a⊥(2a+b),∴a·(2a+b)=0,
∴2|a|2+a·b=0,
即2|a|2+|a||b|cos〈a,b〉=0.
∵|b|=4|a|,∴2|a|2+4|a|2cos〈a,b〉=0,
∴cos〈a,b〉=-12,∴〈a,b〉=2π3.
题点二:证明两向量垂直
2.已知向量a,b不共线,且|2a+b|=|a+2b|,求证:(a+b)⊥(a-b).
证明:∵|2a+b|=|a+2b|,
∴(2a+b)2=(a+2b)2.
即4a2+4a·b+b2=a2+4a·b+4b2,
∴a2=b2.
∴(a+b)·(a-b)=a2-b2=0.
又a与b不共线,a+b≠0,a-b≠0,
∴(a+b)⊥(a-b).
题点三:利用夹角和垂直求参数
3.已知a⊥b,|a|=2,|b|=3且向量3a+2b与ka-b互相垂直,则k的值为()
A.-32B.32
C.±32D.1
解析:选B∵3a+2b与ka-b互相垂直,
∴(3a+2b)·(ka-b)=0,
∴3ka2+(2k-3)a·b-2b2=0.
∵a⊥b,∴a·b=0,
又|a|=2,|b|=3,
∴12k-18=0,k=32.
求向量a与b夹角的思路
(1)求向量夹角的关键是计算a·b及|a||b|,在此基础上结合数量积的定义或性质计算cosθ=a·b|a||b|,最后借助θ∈[0,π],求出θ的值.
(2)在个别含有|a|,|b|与a·b的等量关系式中,常利用消元思想计算cosθ的值.
层级一学业水平达标
1.已知向量a,b满足|a|=1,|b|=4,且a·b=2,则a与b的夹角θ为()
A.π6B.π4
C.π3D.π2
解析:选C由题意,知a·b=|a||b|cosθ=4cosθ=2,又0≤θ≤π,所以θ=π3.
2.已知|b|=3,a在b方向上的投影为32,则a·b等于()
A.3B.92
C.2D.12
解析:选B设a与b的夹角为θ.∵|a|cosθ=32,
∴a·b=|a||b|cosθ=3×32=92.
3.已知|a|=|b|=1,a与b的夹角是90°,c=2a+3b,d=ka-4b,c与d垂直,则k的值为()
A.-6B.6
C.3D.-3
解析:选B∵c·d=0,
∴(2a+3b)·(ka-4b)=0,
∴2ka2-8a·b+3ka·b-12b2=0,
∴2k=12,∴k=6.
4.已知a,b满足|a|=4,|b|=3,夹角为60°,则|a+b|=()
A.37B.13
C.37D.13
解析:选C|a+b|=?a+b?2=a2+2a·b+b2
=42+2×4×3cos60°+32=37.
5.在四边形ABCD中,=,且·=0,则四边形ABCD是()
A.矩形B.菱形
C.直角梯形D.等腰梯形
解析:选B∵=,即一组对边平行且相等,·=0,即对角线互相垂直,∴四边形ABCD为菱形.
6.给出以下命题:
①若a≠0,则对任一非零向量b都有a·b≠0;
②若a·b=0,则a与b中至少有一个为0;
③a与b是两个单位向量,则a2=b2.
其中,正确命题的序号是________.
解析:上述三个命题中只有③正确,因为|a|=|b|=1,所以a2=|a|2=1,b2=|b|2=1,故a2=b2.当非零向量a,b垂直时,有a·b=0,显然①②错误.
答案:③
7.设e1,e2是两个单位向量,它们的夹角为60°,则(2e1-e2)·(-3e1+2e2)=________.
解析:(2e1-e2)·(-3e1+2e2)=-6e21+7e1·e2-2e22=-6+7×cos60°-2=-92.
答案:-92
8.若|a|=1,|b|=2,c=a+b,且c⊥a,则向量a与b的夹角为________.
解析:∵c⊥a,∴c·a=0,
∴(a+b)·a=0,即a2+a·b=0.
∵|a|=1,|b|=2,∴1+2cos〈a,b〉=0,
∴cos〈a,b〉=-12.
又∵0°≤〈a,b〉≤180°,∴〈a,b〉=120°.
答案:120°
9.已知e1与e2是两个夹角为60°的单位向量,a=2e1+e2,b=2e2-3e1,求a与b的
夹角.
解:因为|e1|=|e2|=1,
所以e1·e2=1×1×cos60°=12,
|a|2=(2e1+e2)2=4+1+4e1·e2=7,故|a|=7,
|b|2=(2e2-3e1)2=4+9-12e1·e2=7,故|b|=7,
且a·b=-6e21+2e22+e1·e2=-6+2+12=-72,
所以cos〈a,b〉=a·b|a|·|b|=-727×7=-12,
所以a与b的夹角为120°.
10.已知|a|=2|b|=2,且向量a在向量b方向上的投影为-1.
(1)求a与b的夹角θ;
(2)求(a-2b)·b;
(3)当λ为何值时,向量λa+b与向量a-3b互相垂直?
解:(1)∵|a|=2|b|=2,
∴|a|=2,|b|=1.
又a在b方向上的投影为|a|cosθ=-1,
∴a·b=|a||b|cosθ=-1.
∴cosθ=-12,∴θ=2π3.
(2)(a-2b)·b=a·b-2b2=-1-2=-3.
(3)∵λa+b与a-3b互相垂直,
∴(λa+b)·(a-3b)=λa2-3λa·b+b·a-3b2
=4λ+3λ-1-3=7λ-4=0,∴λ=47.
层级二应试能力达标
1.已知|a|=2,|b|=1,且a与b的夹角为π3,则向量m=a-4b的模为()
A.2B.23
C.6D.12
解析:选B|m|2=|a-4b|2=a2-8a·b+16b2=4-8×2×1×12+16=12,所以|m|=23.
2.在Rt△ABC中,C=90°,AC=4,则·等于()
A.-16B.-8
C.8D.16
解析:选D法一:因为cosA=ACAB,故·=||·||cosA=||2=16,故选D.
法二:在上的投影为||cosA=||,故·=|cosA=||2=16,故选D.
3.已知向量a,b满足|a|=1,|b|=2,且a在b方向上的投影与b在a方向上的投影相等,则|a-b|=()
A.1B.3
C.5D.3
解析:选C由于投影相等,故有|a|cos〈a,b〉=|b|cos〈a,b〉,因为|a|=1,|b|
=2,所以cos〈a,b〉=0,即a⊥b,则|a-b|=|a|2+|b|2-2a·b=5.
4.如图,在边长为2的菱形ABCD中,∠BAD=60°,E为BC的中点,则·=()
A.-3B.0
C.-1D.1
解析:选C·=AB―→+12AD―→·(-)
=12·-||2+12||2
=12×2×2×cos60°-22+12×22=-1.
5.设向量a,b,c满足a+b+c=0,(a-b)⊥c,a⊥b,若|a|=1,则|a|2+|b|2+|c|2的值是________.
解析:法一:由a+b+c=0得c=-a-b.
又(a-b)·c=0,∴(a-b)·(-a-b)=0,即a2=b2.
则c2=(a+b)2=a2+b2+2a·b=a2+b2=2,
∴|a|2+|b|2+|c|2=4.
法二:如图,作==a,
=b,则=c.
∵a⊥b,∴AB⊥BC,
又∵a-b=-=,
(a-b)⊥c,∴CD⊥CA,
所以△ABC是等腰直角三角形,
∵|a|=1,∴|b|=1,|c|=2,∴|a|2+|b|2+|c|2=4.
答案:4
6.已知向量a,b的夹角为45°,且|a|=4,12a+b·(2a-3b)=12,则|b|=________;b在a方向上的投影等于________.
解析:12a+b·(2a-3b)=a2+12a·b-3b2=12,即3|b|2-2|b|-4=0,解得|b|=2(舍负),b在a方向上的投影是|b|cos45°=2×22=1.
答案:21
7.已知非零向量a,b,满足|a|=1,(a-b)·(a+b)=12,且a·b=12.
(1)求向量a,b的夹角;(2)求|a-b|.
解:(1)∵(a-b)·(a+b)=12,
∴a2-b2=12,
即|a|2-|b|2=12.
又|a|=1,
∴|b|=22.
∵a·b=12,
∴|a|·|b|cosθ=12,
∴cosθ=22,
∴向量a,b的夹角为45°.
(2)∵|a-b|2=(a-b)2
=|a|2-2|a||b|cosθ+|b|2=12,
∴|a-b|=22.
8.设两个向量e1,e2,满足|e1|=2,|e2|=1,e1与e2的夹角为π3,若向量2te1+7e2与e1+te2的夹角为钝角,求实数t的取值范围.
解:由向量2te1+7e2与e1+te2的夹角为钝角,
得?2te1+7e2?·?e1+te2?|2te1+7e2|·|e1+te2|
(2te1+7e2)·(e1+te2)
2t2+15t+7
当夹角为π时,也有(2te1+7e2)·(e1+te2)
但此时夹角不是钝角,
设2te1+7e2=λ(e1+te2),λ
2t=λ,7=λt,λ
∴所求实数t的取值范围是
-7,-142∪-142,-12.
数学必修3教案【篇3】
教学目的:(1)了解集合之间的包含、相等关系的含义;
(2)理解子集、真子集的概念;
(3)能利用Venn图表达集合间的关系;
(4)了解与空集的含义。
教学重点:子集与空集的概念;用Venn图表达集合间的关系。 教学难点:弄清元素与子集 、属于与包含之间的区别;
教学过程:
四、 引入课题
1、 复习元素与集合的关系——属于与不属于的关系,填以下空白:(1)0 N;(2
;(3)-1.5 R
2、 类比实数的大小关系,如5
布课题)
五、 新课教学
A={1,2,3},B={1,2,3,4}
集合A是集合B的部分元素构成的集合,我们说集合B包含集合A;
如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集(subset)。
记作:A?B(或B?A)
读作:A包含于(is contained in)B,或B包含(contains)A (一) 集合与集合之间的“包含”关系;
当集合A不包含于集合B时,记作
B
用Venn图表示两个集合间的“包含”关系 A?B(或B?A)
(二) 集合与集合之间的 “相等”关系;
A?B且B?A,则A?B中的元素是一样的,因此A?B
?A?B即 A?B?? B?A?
结论:
任何一个集合是它本身的子集
(三) 真子集的概念
若集合A?B,存在元素x?B且x?A,则称集合A是集合B的真子集(proper subset)。
记作:A B(或B A)
读作:A真包含于B(或B真包含A)
(四) 空集的概念
(实例引入空集概念)
不含有任何元素的集合称为空集(empty set),记作:? 规定: 空集是任何集合的子集,是任何非空集合的真子集。
(五) 结论:1A?A ○2A?B,且B?C,则A?C ○
(六) 例题
(1)写出集合{a,b}的所有的子集,并指出其中哪些是它的真子集。
(2)化简集合A={x|x-3>2},B={x|x?5},并表示A、B的关系;
(七) 归纳小结,强化思想
两个集合之间的基本关系只有“包含”与“相等”两种,可类比两个实数间的大小关系,同时还要注意区别“属于”与“包含”两种关系及其表示方法;
1 已知集合A?{x|a?x?5},B?{x|x≥2},且满足A?B,求实数a的○
取值范围。
2 设集合A?{○四边形},B?{平行四边形},C?{矩形},
D?{正方形},试用Venn图表示它们之间的关系。
数学必修3教案【篇4】
学习目标
1. 结合已学过的数学实例,了解归纳推理的含义;2. 能利用归纳进行简单的推理,体会并认识归纳推理在数学发现中的作用。
2. 结合已学过的数学实例,了解类比推理的含义;
3. 能利用类比进行简单的推理,体会并认识合情推理在数学发现中的作用。
学习过程
一、课前准备
问题3:因为三角形的内角和是 ,四边形的内角和是 ,五边形的内角和是
……所以n边形的内角和是
新知1:从以上事例可一发现:
叫做合情推理。归纳推理和类比推理是数学中常用的合情推理。
新知2:类比推理就是根据两类不同事物之间具有
推测其中一类事物具有与另一类事物 的性质的推理。
简言之,类比推理是由 的推理。
新知3归纳推理就是根据一些事物的 ,推出该类事物的
的推理。 归纳是 的过程
例子:哥德巴赫猜想:
观察 6=3+3, 8=5+3, 10=5+5, 12=5+7, 14=7+7,
16=13+3, 18=11+7, 20=13+7, ……,
50=13+37, ……, 100=3+97,
猜想:
归纳推理的一般步骤
1 通过观察个别情况发现某些相同的性质。
2 从已知的相同性质中推出一个明确表达的一般性命题(猜想)。
※ 典型例题
例1用推理的形式表示等差数列1,3,5,7……2n-1,……的前n项和Sn的归纳过程。
变式1 观察下列等式:1+3=4= ,
1+3+5=9= ,
1+3+5+7=16= ,
1+3+5+7+9=25= ,
……
你能猜想到一个怎样的结论?
变式2观察下列等式:1=1
1+8=9,
1+8+27=36,
1+8+27+64=100,
……
你能猜想到一个怎样的结论?
例2设 计算 的值,同时作出归纳推理,并用n=40验证猜想是否正确。
变式:(1)已知数列 的第一项 ,且 ,试归纳出这个数列的通项公式
例3:找出圆与球的相似之处,并用圆的性质类比球的有关性质。
圆的概念和性质 球的类似概念和性质
圆的周长
圆的面积
圆心与弦(非直径)中点的连线垂直于弦
与圆心距离相等的弦长相等,
※ 动手试试
1. 观察圆周上n个点之间所连的弦,发现两个点可以连一条弦,3个点可以连3条弦,4个点可以连6条弦,5个点可以连10条弦,由此可以归纳出什么规律?
2 如果一条直线和两条平行线中的一条相交,则必和另一条相交。
3 如果两条直线同时垂直于第三条直线,则这两条直线互相平行。
三、总结提升
※ 学习小结
1.归纳推理的定义。
2. 归纳推理的一般步骤:①通过观察个别情况发现某些相同的性质;②从已知的相同性质中推出一个明确表述的一般性命题(猜想).
3. 合情推理仅是“合乎情理”的推理,它得到的结论不一定真,但合情推理常常帮我们猜测和发现新的规律,为我们提供证明的思路和方法
数学必修3教案【篇5】
教学内容解析
本节课是苏教版教材必修2中第一章第二节的内容,属于新授概念原理课。其中直线与平面垂直的概念及判定定理的形成是教学重点。
直线与平面垂直在本节中的位置。线面垂直是在学生掌握了线在面内,线面平行之后紧接着研究的线面相交位置关系中的特例。在线面平行中,我们研究了定义、判定定理以及性质定理,为本节课提供了研究内容和研究方法上的范式。线面垂直是线线垂直的拓展,又是面面垂直的基础,且后续内容。例如,空间的角和距离等又都使用它来定义,在本章中起着承上启下的作用。
通过本节课的学习研究,可进一步完善学生的知识结构,更好地培养学生观察发现、空间想象及推理能力,体会由特殊到一般、类比、归纳、猜想、化归等数学思想方法。因此,学习这部分知识有着非常重要的意义。
教学目标设置
(图形语言、符号语言来表示定义和判定定理。
(2)掌握线线垂直与线面垂直之间的相互转化关系,从而体会降维化归的思想。
(3)在定义及定理的探究活动中,发展学生合情推理能力与演绎推理的能力。
(图形思考问题的过程,进一步发展空间观念。
学生学情分析
1.学生已有的认知基础
学生能够感知生活中有大量的线面垂直关系,已经掌握了线线垂直与线面平行的相关知识,从而具备了研究空间位置关系的经验,也体会了立体几何中化归的数学思想方法。
2.达成目标所需要的认知基础
要达成本节课的目标,这些已有的知识和经验基础不可或缺,除此之外,还需要整体上把握本节课的研究内容、方法和途径,能运用类比、化归等数学思想,同时还需要具备较好地观察发现、空间想象、合情推理、抽象概括等能力,以及独立思考、合作交流、反思质疑等良好的数学学习习惯。
学生情况:学生大部分基础薄弱,自主学习能力差.进入高一,虽然能领悟一些基本的数学思想与方法,但还没有形成完整及严谨的数学思维习惯,对问题的探究能力也有待培养。
3.教学难点及突破策略
教学难点:
(1)运用类比及化归等数学思想方法来研究直线与平面垂直的定义,突破对“任意”的生成和理解。
(归纳、理解直线与平面垂直判定定理,突破“无限”与“有限”的转化。
突破策略:
(1)启发学生明确研究的内容与方法,从总体上认识研究的目标与手段。
(操作确认、思辨论证的过程形成线面垂直的定义和判定定理。
数学必修3教案【篇6】
教学目标
1.数列求和的综合应用
教学重难点
2.数列求和的综合应用
教学过程
典例分析
3.数列{an}的前n项和Sn=n2-7n-8,
(1)求{an}的通项公式
(2)求{|an|}的前n项和Tn
4.等差数列{an}的公差为,S100=145,则a1+a3 + a5 + …+a99=
5.已知方程(x2-2x+m)(x2-2x+n)=0的四个根组成一个首项为的等差数列,则|m-n|=
6.数列{an}是等差数列,且a1=2,a1+a2+a3=12
(1)求{an}的通项公式
(2)令bn=anxn ,求数列{bn}前n项和公式
7.四数中前三个数成等比数列,后三个数成等差数列,首末两项之和为21,中间两项之和为18,求此四个数
8.在等差数列{an}中,a1=20,前n项和为Sn,且S10= S15,求当n为何值时,Sn有最大值,并求出它的最大值
.已知数列{an},an∈N,Sn= (an+2)2
(1)求证{an}是等差数列
(2)若bn= an-30 ,求数列{bn}前n项的最小值
0.已知f(x)=x2 -2(n+1)x+ n2+5n-7 (n∈N)
(1)设f(x)的图象的顶点的横坐标构成数列{an},求证数列{an}是等差数列
(2设f(x)的图象的顶点到x轴的距离构成数列{dn},求数列{dn}的前n项和sn.
11 .购买一件售价为5000元的商品,采用分期付款的办法,每期付款数相同,购买后1个月第1次付款,再过1个月第2次付款,如此下去,共付款5次后还清,如果按月利率0.8%,每月利息按复利计算(上月利息要计入下月本金),那么每期应付款多少?(精确到1元)
12 .某商品在最近100天内的价格f(t)与时间t的
函数关系式是f(t)=
销售量g(t)与时间t的函数关系是
g(t)= -t/3 +109/3 (0≤t≤100)
求这种商品的日销售额的最大值
注:对于分段函数型的应用题,应注意对变量x的取值区间的讨论;求函数的最大值,应分别求出函数在各段中的最大值,通过比较,确定最大值。
高中数学学习方法技巧总结
基础很重要,保持耐心多巩固
要学好数学,最关键的是要有一个好的基础。只有打牢数学基础,才能够把高中数学好,同样只有打好基础,才能够数学取得高分。打好基础是最关键的!比如:建一栋大楼,如果地基不稳,不管大楼有多么豪华,都只是华而不实。
想学好数学,对数学感兴趣
其实学好数学最好的办法就是发自内心由衷的想要学习,渴望学习,才能体会到从学习中所收获的乐趣。自己的成就感提升,对于学习数学的积极性也就提高了,觉得数学并没有那么难,就愿意去多接触了。
多做题反复做,有题感
其实学好数学办法就是要大量做题,反复去做,题做多了就知道哪些方面需要自己去加强学习,还有就是同样做数学题做多了就会有题感。有些题,它的类型都是一样的,题做多了之后,即使你不会做,你也会找到一些解题的思路和技巧。
高中数学学习方法总结
一)、课内重视听讲,课后及时复习。
新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,应尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。
二)、适当多做题,养成良好的解题习惯。
要想学好数学,多做题是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的.精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。
三)、调整心态,正确对待考试。
首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。
在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。
由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。
数学必修3教案【篇7】
高中必修2课文《离骚》教学实录
一、导入文本
(播放电影片段)
师 影片中的主人公是谁?
生 (齐声)屈原
( 字幕屈原)
师 大家对屈原了解多少?给大家介绍一下
生 屈原,战国末期楚国人,杰出的政治家和爱国诗人。名平,字原。他出身于楚国贵族,与怀王同祖。屈原学识渊博,对天文、地理、礼乐制度以及周以前各代的治乱兴衰等都很熟悉,善外交辞令。在政治上他推崇“美政”,认为只有圣君贤相才能把国家治理好 ,有强烈的忧国忧民、忠君致治的思想。他曾任左徒,辅佐怀王,
参与议论国事及应对宾客,起草宪令及变法,对外参加合纵派与秦斗争,两度出使齐国。因受小人陷害,他两次被流放,最后投汨罗江而死,以明忠贞爱国之怀。
师 非常好,他介绍的非常全面,屈原的代表作是什么呢?
生 (齐声)《离骚》
师 那么“离骚”是什么意思呢?
生 (充满 疑惑)
师 离通“罹”,遭遇;骚:忧愁。“离骚”即作者遭遇忧愁而写成的诗句。
全诗372句,是屈原的思想结晶,是他政治失败后用血和泪写成的一篇扣人心弦的抒发忧国之思的作品。
《离骚》是我国古代最长的抒情诗。本文选自《楚辞》。(投影)
“楚辞”是战国时期兴起于楚国的一种诗歌样式,是以屈原以及宋玉的作品为主体的诗歌总集。其中最有代表性的就是本文《离骚》, 因此后人又把“楚辞”的体裁称为“骚体”。
《离骚》与《诗经》在文学史上并称“风骚”,是中国古典诗歌的两大源头,对后世有着深远的影响。
屈原为什么作《离骚》呢?
生 苦闷 忧愁
生 不得志
生 被流放了
师 都可以,
司马迁《史记屈原贾生列传》是这样说的:
屈平疾王听之不聪也,谗谄之蔽明也,邪曲之害公也,方正之不容也,故忧愁幽思而作《离骚》。
屈平之作《离骚》盖自怨生也。
二、合作探究
下面让我们走进《离骚》,走近屈原的内心世界。请同学们默读速读全文,总体了解文章内容。
(2分钟后)
师 对文章,大家有了初步的了解,文章比较晦涩难懂。下面请按照我们的学习小组结合课下的注释疏通文意,不明白的可在组内讨论解决,最后再有难点可有小组长提出。
(全班七个小组进行了热烈的讨论)
师 (通过讨论,同学们提出了以下几个问题)
1.“民生”在本文是个疑点,应该说既是屈原的人生之义,又是人民生活之义。既哀叹自己人生的艰难,又深深同情更广大的人民。
2.鸷鸟之不群中的.“之”的用法是取消句子的独立性,是助词。
3.集芙蓉以为裳中的应读chang二声。古代此字指下衣。
师 《离骚》好读易懂吗?
生 不好读 太难懂了
师 这样的文章需要反复地读要找出规律才能品出其中的韵味。下面大家
听听濮存昕读的,听听有什么特点?
(多媒体放录音)
你对《离骚》的语言有什么感受?
生 美(齐声答)
师 韵律感很强 屈原是通过什么手法做到的呢?
生 用对偶修辞,整首诗整齐而节奏鲜明。
生 用了很多叠音词。
生 大量用“兮”字。使诗歌的调子回荡顿挫,婉转动人。
师 “兮”是有浓厚的楚国地方色彩的语气词,它在诗句中的位置不同,作用也不尽一样。用在句中,表语音的延长;用在句间,表语意未竟,待下句补充;用在句尾,表感叹意味。,
“兮”均用在句间,表示语意未完,等待下句补充。
生 押韵,不过不太明显。
师 《离骚》是隔句用韵的,如:“固时俗之工巧兮,佰规矩而改错;背绳
墨以追曲兮,竞周容以为度”错和度是韵脚。
此外,还有节拍的使用上,每句基本上都是三个节拍,如:民生--各有--所
乐兮,余独--好修--以为常 宁--溘死--以流亡兮,余--不忍--为此态也。(投影文字)
师 好,同学们自由大声读文章,体会一下离骚的韵律美与音乐美。
(5分钟后)
师 下面大家齐读全文。
(而后男女分开再读两遍,最后再让个别普通话较好的同学读)
师 好,大家都应该这样读。今天我们通过诵读初步感受了离骚韵律美音乐
美,疏通了文意。下节课我们将走进离骚走近屈原的内心世界,感受离骚的内在意蕴。
作业:1背诵全诗
2结合注释和我们的讨论,翻译全文。
(下课)
第二课时
三、共同探究
师 我们先检查背诵,进行比赛。
(先检查个别学生背诵,而后全班七个小组各推出一名同学进行比赛,看谁背得最准确最流畅。同学们都很积极踊跃。基础较好的同学能流利的背下来。
(8分钟后)
师 大部分同学背的很好,没有背过的要继续努力,下面我们一同探究屈原的内心世界,看课文首句“长太息以掩涕兮,哀民生之多艰”,这句话表达了屈原什么养的思想感情呢?
生 哀伤 难过 痛苦
师 很好,为什么呢?
生 被流放了
生 不受楚王信任了。
师 用原文的话回答
生 既替余以蕙纕兮,又申之以揽茝。
师 为什么被贬黜(投影两字)?因佩戴和采集香草吗?
生 不是(齐声答)
生 灵修之浩荡。 (投影灵修浩荡)
生 众女嫉余之蛾眉,谣诼谓余以善淫。(投影众女嫉余)
生 时俗之工巧,偭规矩而改错。(投影世俗工巧)
师 君王荒淫。小人进谗言,世俗投机取巧,还有“余不忍为此态也,鸷鸟之不群”正如屈原所说“举世混浊而我独清,众人皆醉而我独醒”,他不愿苟且不愿和小人同流合污。面对此种处境,屈原表达出了什么样的情感呢?
生 亦余心之所善兮,虽九死其犹未悔。
生 伏清白以死直兮,固前圣之所厚。
生 体解吾犹未变兮,岂余心之可惩。
师 很好 屈原在这几句话中都谈到了死,不管是九死,还是体解。我们都
知道屈原是投江而死,屈原是不是因为这些而自杀呢?
生 不是,屈原是因为楚国国都被秦攻破而万念俱灰才以身殉国的。
师 此时的屈原虽然很痛苦忧伤但是还是恨之深爱之切。面对这样的政治环境,屈原怎么做的呢?
(齐读三四段)
生 将要回去,“悔相道之不察兮,延伫乎吾将反”。
生 “回朕车以复路兮,及行迷之未远。”趁着迷路不远回归家园。
生 “步余马於兰皋兮,驰椒丘且焉止息。”
生 “进不入以离尤兮,退将复修吾初服。”修养自我
师 这些思想和晋代的陶渊明回归田园的精神一样吗?大家讨论一下
(同学们展开了激烈的讨论)
生 一样的 都是厌倦了官场生活而归隐的
生 不一样,陶渊明是彻底的厌倦了污浊的官场而回归田园的,他是毅然决然的,而屈原则对楚王还抱有幻想,依恋着楚国,热爱着楚国,希望有一天楚王能够悔悟。
师 都有道理,可谓仁者见仁智者见智。为了表明自己的高洁屈原还怎么做的呢?
生 制芰荷以为衣兮,集芙蓉以为裳。
生 余冠之岌岌兮,长余佩之陆离
生 佩缤纷其繁饰兮,芳菲菲其弥章
师 这些打扮可谓特立独行,与众不同。屈原正是通过这种方式表明自的
高洁与永不向小人屈服的决心。是知识分子坚守自我的第一生呐喊。
师 纵观全文,一个越来越清晰的艺术形象向我们走来,一个越来越鲜明
的艺术形象呈现在我们的脑海里,本文塑造了一个什么样的抒情主人公呢?
生 他英俊潇洒,他有着突出的外部形象的特征。很多屈原的画像即使不
写上“屈原”二字,我们也可以一眼认出是屈原,
生 他 具有鲜明的思想性格。
他 是一位进步的政治改革家,主张法治,主张举贤授能。
他 主张美政,重视人民的利益和人民的作用
他 追求真理,坚强不屈。
师 这个形象,是中华民族精神的集中体现,两千多年来给了无数仁人志
士以品格与行为的示范,也给了他们以力量。
师 文章塑造了一个如此生动鲜明感人的艺术形象,运用了什么艺术手法
呢?
生 运用了比喻手法。
生 运用象征,芙蓉香草象征高洁的品性。
生 运用了对偶的修辞手法,
生 夸张,想象等等。yJs21.COm
师 (投影总结)
1.大量运用了比喻手法。如以采摘香草喻加强自身修养,佩戴香草喻保持修洁等。
2.运用了不少香花、香草的名称来象征性地表现政治的、思想意识方面的
比较抽象的概念,不仅使作品含蓄,长于韵味,而且从直觉上增加了作品的色彩
美。
3.运用了对偶的修辞手法,而且形式多姿多彩,在错落中见整齐,在整齐
中又富于变化。如“高余冠之岌岌兮,长余佩之陆离”“忽反顾以游目兮,将往观乎四荒”等,将“兮”字去掉,对偶之工与唐宋律诗对仗无异。上两例属于在一个完整诗句里,上下句构成对偶。“固时俗之工巧兮,偭规矩而改错。背绳墨以追曲兮,竞周容以为度。”这一例是两个完整诗句的上、下句构成对偶。“屈心而抑志兮,忍尤而攘诟。”这一例是上、下句内部各自构成对偶,上、下句之间也构成对偶。
“楚辞体”语言华丽丰富多彩灵活多变,通过学习《离骚》,我们领略了此文体的巨大魅力,丰富了我们的五彩人生,感受到了屈原的九死未悔的问伟大的爱国主义精神。他的这种精神值得我们学习。最后我们再次感受一下《离骚》的魅力。
(全班齐读全文)
(布置作业)学习了《离骚》,认识了屈原,你一定有很多感慨,对屈原遭遇与投江有很多看法,有许多话想对屈原说。请以“屈原,我想对你说”为话题写一篇五百字的小作文表达你的观点。
(下课)
数学必修3教案【篇8】
三、在细胞质中,除了细胞器外,还有呈胶质状态的细胞质基质。
细胞质:包括细胞器和细胞质基质。
四、电子显微镜下看到的是亚显微结构,普通显微镜下看到显微结构。
光镜能看到:细胞质,线粒体,叶绿体,液泡,细胞壁。
实验:用高倍显微镜观察叶绿体和线粒体。
健那绿染液是将活细胞中线粒体染色的专一性染料,可以使活细胞中的线粒体呈现蓝绿色。
材料:新鲜的藓类的叶(叶片薄,直接观察)。
菠菜叶稍带叶肉的下表皮(上表皮起保护作用,几乎无叶绿体;下表皮海绵组织,有气孔保卫细胞,有叶绿体)。
五、分泌蛋白的合成和运输。
有些蛋白质是在细胞内合成后,分泌到细胞外起作用,这类蛋白叫分泌蛋白。如消化酶(催化作用)、抗体(免疫)和一部分激素(信息传递)。
核糖体内质网高尔基体细胞膜。
(合成肽链)(加工成蛋白质)(进一步加工)(囊泡与细胞膜融合,蛋白质释放)。
分泌蛋白从合成至分泌到细胞外利用到的细胞器?
答:核糖体、内质网、高尔基体、线粒体。
分泌蛋白从合成至分泌到细胞外利用到的结构?
核糖体、内质网、高尔基体、线粒体、细胞核、囊泡、细胞膜。
六、生物膜系统。
1、概念:细胞膜、核膜,各种细胞器的膜共同组成的生物膜系统。
2、作用:使细胞具有稳定内部环境物质运输、能量转换、信息传递;为各种酶提供大量附着位点,是许多生化反应的场所;把各种细胞器分隔开,保证生命活动高效、有序进行。
3、内质网膜内连核膜外连细胞膜还和线粒体膜直接相连。
经过囊泡与高尔基体膜间接相连。
数学必修3教案【篇9】
高一数学必修二提纲
1:一般式:Ax+By+C=0(A、B不同时为0)适用于所有直线
K=-A/B,b=-C/B
A1/A2=B1/B2≠C1/C2←→两直线平行
A1/A2=B1/B2=C1/C2←→两直线重合
横截距a=-C/A
纵截距b=-C/B
2:点斜式:y-y0=k(x-x0)适用于不垂直于x轴的直线
表示斜率为k,且过(x0,y0)的直线
3:截距式:x/a+y/b=1适用于不过原点或不垂直于x轴、y轴的直线
表示与x轴、y轴相交,且x轴截距为a,y轴截距为b的直线
4:斜截式:y=kx+b适用于不垂直于x轴的直线
表示斜率为k且y轴截距为b的直线
5:两点式:适用于不垂直于x轴、y轴的直线
表示过(x1,y1)和(x2,y2)的直线
(y-y1)/(y2-y1)=(x-x1)/(x2-x1)(x1≠x2,y1≠y2)
6:交点式:f1(x,y)x+f2(x,y)=0适用于任何直线
表示过直线f1(x,y)=0与直线f2(x,y)=0的交点的直线
7:点平式:f(x,y)-f(x0,y0)=0适用于任何直线
表示过点(x0,y0)且与直线f(x,y)=0平行的直线
8:法线式:x·cosα+ysinα-p=0适用于不平行于坐标轴的直线
过原点向直线做一条的垂线段,该垂线段所在直线的倾斜角为α,p是该线段的长度
9:点向式:(x-x0)/u=(y-y0)/v(u≠0,v≠0)适用于任何直线
表示过点(x0,y0)且方向向量为(u,v)的直线
10:法向式:a(x-x0)+b(y-y0)=0适用于任何直线
表示过点(x0,y0)且与向量(a,b)垂直的直线
11:点到直线距离
点P(x0,y0)到直线Ι:Ax+By+C=0的距离
d=|Ax0+By0+C|/√A2+B2
两平行线之间距离
若两平行直线的方程分别为:
Ax+By+C1=OAx+By+C2=0则
这两条平行直线间的距离d为:
d=丨C1-C2丨/√(A2+B2)
12:各种不同形式的直线方程的局限性:
(1)点斜式和斜截式都不能表示斜率不存在的直线;
(2)两点式不能表示与坐标轴平行的直线;
(3)截距式不能表示与坐标轴平行或过原点的直线;
(4)直线方程的一般式中系数A、B不能同时为零。
13:位置关系
若直线L1:A1x+B1y+C1=0与直线L2:A2x+B2y+C2=0
1.当A1B2-A2B1≠0时,相交
2.A1/A2=B1/B2≠C1/C2,平行
3.A1/A2=B1/B2=C1/C2,重合
4.A1A2+B1B2=0,垂直
高中数学快速解题法
方法1、在解题的过程中,是一个思维的过程。一些基本的、常见的问题,前人已经总结出了一些基本的解题思路和常用的解题程序,只要顺着这些解题的思路,就可以很容易的找到习题的答案。
方法2、做一道题目时,最重要的就是审题。审题的第一步就是读题。读题时要慢,一边读、一边思考,要特别注意每一句话的内在含义,并从中找出隐含条件。很多人并没有养成这种习惯,结果常常会在做题的时候漏掉一些信息,所以在解题的时候要特别注意审题。
方法3、在做了一定数量的习题后,就会对所涉及到的知识、解题方法有比较清晰的了解。这个时候就需要将这些知识进行归纳总结,以便以后的解题思路更加清晰,达到举一反三的效果,这样做数学题的速度就会大大提升了。
方法4、做题只是学习过程中的一部分,所以不能为了解题而解题。解题时,脑海中的概念越清晰、对公式、定理越熟悉,解题的速度就越快。所以在解题时,应该先回归课本,熟悉基本内容,理解其正确的含义,接着再做后面的练习。
方法5、有些题目,尤其是几何体,一定要学会画图。画图是一个把抽象思维变成形象思维的过程,会大大降低解题的难度。很多题目,只要分析图画出来之后,其中的关系就会变得一目了然。所以学会画图,对于提高解题速度非常重要。
方法6、人对事物的认知总是会有一个从易到难的过程,简单的问题做多了,概念清晰了,对解题的步骤熟悉了,解题时就会形成跳跃思维,解题的速度也会大大的提高。所以在学习时,要根据自己的能力,去解那些看似简单,却比较重要的习题,来不断提高解题速度和解题能力。随着速度和能力的提高,在逐渐的去增加难度,就会事半功倍了。
方法7、习惯很重要,很多同学做题速度慢就是平时做作业的时候习惯了拖延时间,从而导致了不好的解题习惯。所以想要提高做题速度,就要先改变拖沓的习惯。比较有效的方法是限时答题,在平常做作业的时候,给自己规定一个时间,先不管正确率,首先要保证在规定时间内完成数学作业,然后在去改正错误。时间长了之后,自然会改正拖延时间的坏毛病。
学好数学的建议
学数学没有捷径,只能踏踏实实做题,把每一种类型题都做会了,那么数学才有可能学好。在高中,没有必要去买数学辅导资料,只要把教材看透了,就能学好数学。课本怎么看?老师讲课之前看,看完例题做课后习题,把教材提前学会了。上课干什么?老师讲课还需认真听,然后再理解一遍,把定理、公式、定义等都背下来。当然,数学书不止看一遍,当做题不会时,还需要翻阅,当考试前也可以复习课本,平时还可以去看。
数学光看书还远远不够,做题才是根本。课后练习册、数学卷子每道题都要认真去做,遇到不会的题目想方设法去解,实在做不出来了划重点,等课上重点去听,课下自己再重新做一遍,隔几天再拿出来做一遍。
上数学课也是要做笔记的,做笔记能够让你复习时思路更清晰,看书时重点更明确,而且一些重要的东西书上往往没有,只有在笔记上才会有所体现,所以笔记要好好整理。但是,做笔记不能影响听课效果,如果跟不上可以课后借同学的抄。
Yjs21.Com更多幼儿园教案扩展阅读
2024数学必修3教案
每天,我们的老师都会努力地按时按质地撰写教案课件,因为教案课件是他们工作的一部分。教案是为了将教育教学管理科学化和规范化,因此在写教案课件时需要注意哪些方面呢?请您阅读关于“数学必修3教案”的内容,并且如果您认为这个网页对您有帮助,请将它加入收藏夹!
数学必修3教案【篇1】
1.点的位置表示:
(1)先取一个点O作为基准点,称为原点.取定这个基准点之后,任何一个点P的位置就由O到P的向量 唯一表示. 称为点P的位置向量,它表示的是点P相对于点O的位置.
(2)在平面上取定两个相互垂直的单位向量e1,e2作为基,则 可唯一地分解为 =xe1+ye2的形式,其中x,y是一对实数.(x,y)就是向量 的坐标,坐标唯一 地表示了向量 ,从而也唯一地表示了点P.
2.向量的坐标:
向量的坐标等于它的终点坐标减去起点坐标.
3.基本公式:
(1)前提条件:A(x1,y1),B(x2,y2)为平面直角坐标系中的两点,M(x,y)为线段AB的中点.
(2)公式:
①两点之间的距离公式|AB|=(x2-x1)2+(y2-y1)2.
②中点坐标公式
4.定比分点坐标
设A,B是两个不同的点,如果点P在直线AB上且 =λ ,则称λ为点P分有向线段 所成的比.
注意:当P在线段AB之间时, , 方向相同,比值λ>0.我们也允许点P在线段AB之外,此时 , 方向相反,比值λ
定比分点坐标公式:已知两点A(x1,y1),B(x2,y2),点P(x,y)分 所成的比为λ.则x=x1+λx21+λ,y=y1+λy21+λ.
重心的坐标:三角形重心的坐标等于三个顶点相应坐标的算术平 均值,即x1+x2+x33,y1+y2+y33.
一、中点坐标公式的运用
【例1】已知 ABCD的两个顶点坐标分别为A(4,2),B(5,7),对角线的交点为E(-3,4),求另外两个顶点C,D的坐标.
平行四边形的对角线互相平分,交点为两个相对顶点的中点,利用中点公式求.
解:设C(x1,y1),D(x2,y2).
∵E为AC的中点,
∴-3=x1+42,4=y1+22.
解得x1=-10,y1=6.
又∵E为BD的中点,
∴-3=5+x22,4=7+y22.
解得x2=-11,y2=1.
∴C的坐标为(-10,6),D点的坐标为(-11,1).
若M(x,y)是A(a,b)与B(c,d)的中点,则x=a+c2,y=b+d2.也可理解为A关于M的对称点为B,若求B,则可用变形公式c=2x-a,d=2y-b.
1-1已知矩形ABCD的两个顶点坐标是A(-1,3),B(-2,4),若它的对角线交点M在x轴上,求另外两个顶点C,D的坐标.
解:如图,设点M,C,D的坐标分别为(x0,0),(x1,y1),(x2,y2),依题意得
0=y1+32 y1=-3;
0=y2+42 y2=-4;
x0=x1-12 x1=2x0+1;
x0=x2-22 x2=2x0+2.
又∵|AB|2+|BC|2=|AC|2,
∴(-1+2)2+(3-4)2+(-2-2x0-1)2+(4+3)2=(-1-2x0-1)2+(3+3)2.
整理得x0=-5,∴x1=-9,x2=-8
∴点C,D的坐标分别为(-9,-3),(-8,-4).
二、距离公式的运用
【例2】已知△ABC三个顶点的坐标分别为A(4,1),B(-3,2),C(0,5),则△ABC的周长为().
A.42 B.82 C.122 D.162
利用两点间的距离公式直接求解,然后求和.
解析:∵ A(4,1),B(-3,2),C(0,5),
∴|AB|=(-3-4)2+(2-1)2=50=52,
|BC|=[0-(-3)]2+(5-2)2=18=32,
| AC|=(0-4)2+(5-1)2=32=42.
∴△ABC的周长为|AB|+|BC|+|AC|
=52+32+42
=122.
答案:C
(1)熟练掌握两点 间的距离公式,并能灵活运 用.
(2)注意公式的结构特征.若y2=y1,|AB|=(x2-x1)2=|x2-x1|就是数轴上的两点间距离公式.
数学必修3教案【篇2】
教学目标:
1、知识目标:使学生理解指数函数的定义,初步掌握指数函数的图像和性质。
2、能力目标:通过定义的引入,图像特征的观察、发现过程使学生懂得理论与实践的辩证关系,适时渗透分类讨论的数学思想,培养学生的探索发现能力和分析问题、解决问题的能力。
3、情感目标:通过学生的参与过程,培养他们手脑并用、多思勤练的良好学习习惯和勇于探索、锲而不舍的治学精神。
教学重点、难点:
1、重点:指数函数的图像和性质
2、难点:底数a的变化对函数性质的影响,突破难点的关键是利用多媒体动感显示,通过颜色的区别,加深其感性认识。
教学方法:引导——发现教学法、比较法、讨论法
教学过程:
一、事例引入
T:上节课我们学习了指数的运算性质,今天我们来学习与指数有关的函数。什么是函数?
S:——————
T:主要是体现两个变量的关系。我们来考虑一个与医学有关的例子:大家对“非典”应该并不陌生,它与其它的传染病一样,有一定的潜伏期,这段时间里病原体在机体内不断地繁殖,病原体的繁殖方式有很多种,分裂就是其中的一种。我们来看一种球菌的分裂过程:
C:动画演示(某种球菌分裂时,由1分裂成2个,2个分裂成4个,——。一个这样的球菌分裂x次后,得到的球菌的个数y与x的函数关系式是:y=2x)
S,T:(讨论)这是球菌个数y关于分裂次数x的函数,该函数是什么样的形式(指数形式),
从函数特征分析:底数2是一个不等于1的正数,是常量,而指数x却是变量,我们称这种函数为指数函数——点题。
二、指数函数的定义
C:定义:函数y=ax(a>0且a≠1)叫做指数函数,x∈R.。
问题1:为何要规定a>0且a≠1?
S:(讨论)
C:(1)当a
就没有意义;
(2)当a=0时,ax有时会没有意义,如x=—2时,
(3)当a=1时,函数值y恒等于1,没有研究的必要。
巩固练习1:
下列函数哪一项是指数函数()
A、y=x2B、y=2x2C、y=2xD、y=—2x
数学必修3教案【篇3】
【教学目标】
一、知识与技能
1、掌握等差数列前n项和公式;
2、体会等差数列前n项和公式的推导过程;
3、会简单运用等差数列前n项和公式。
二、过程与方法
1. 通过对等差数列前n项和公式的推导,体会倒序相加求和的思想方法;
2、 通过公式的'运用体会方程的思想。
三、情感态度与价值观
结合具体模型,将教材知识和实际生活联系起来,使学生感受数学的实用性,有效激发学习兴趣,并通过对等差数列求和历史的了解,渗透数学史和数学文化。
【教学重点】
等差数列前n项和公式的推导和应用。
【教学难点】
在等差数列前n项和公式的推导过程中体会倒序相加的思想方法。
【重点、难点解决策略】
本课在设计上采用了由特殊到一般、从具体到抽象的教学策略。利用数形结合、类比归纳的思想,层层深入,通过学生自主探究、分析、整理出推导公式的思路,同时,借助多媒体的直观演示,帮助学生理解,师生互动、讲练结合,从而突出重点、突破教学难点。
【教学用具】
多媒体软件,电脑
【教学过程】
一、明确数列前n项和的定义,确定本节课中心任务:
本节课我们来学习《等差数列的前n项和》,那么什么叫数列的前n项和呢,对于数列{an}:a1,a2,a3,…,an,…我们称a1+a2+a3+…+an为数列{an}的前n项和,用sn表示,记sn=a1+a2+a3+…+an,
如S1 =a1, S7 =a1+a2+a3+……+a7,下面我们来共同探究如何求等差数列的前n项和。
二、问题牵引,探究发现
问题1:(播放媒体资料情景引入)印度泰姬陵世界七大奇迹之一。传说陵寝中有一个三角形图案,以相同大小的圆宝石镶饰而成,共有100层(见图),奢靡之程度,可见一斑。你知道这个图案一共花了多少圆宝石吗?
即: S100=1+2+3+······+100=?
著名数学家高斯小时候就会算,闻名于世;那么小高斯是如何快速地得出答案的呢?请同学们思考高斯方法的特点,适合类型和方法本质。
特点: 首项与末项的和: 1+100=101,
第2项与倒数第2项的和: 2+99 =101,
第3项与倒数第3项的和: 3+98 =101,
· · · · · ·
第50项与倒数第50项的和: 50+51=101,
于是所求的和是: 101×50=5050。
1+2+3+ ······ +100= 101×50 = 5050
同学们讨论后总结发言:等差数列项数为偶数相加时首尾配对,变不同数的加法运算为相同数的乘法运算大大提高效率。高斯的方法很妙,如果等差数列的项数为奇数时怎么办呢?
探索与发现1:假如让你计算从第一层到第21层的珠宝数,高斯的首尾配对法行吗?
即计算S21=1+2+3+ ······ +21的值,在这个过程中让学生发现当项数为奇数时,首尾配对出现了问题,通过动画演示引导帮助学生思考解决问题的办法,为引出倒序相加法做铺垫。
把“全等三角形”倒置,与原图构成平行四边形。平行四边形中的每行宝石的个数均为21个,共21行。有什么启发?
1+ 2 + 3 + …… +20 +21
21 + 20 + 19 + …… + 2 +1
S21=1+2+3+…+21=(21+1)×21÷2=231
这个方法也很好,那么项数为偶数这个方法还行吗?
探索与发现2:第5层到12层一共有多少颗圆宝石?
学生探究的同时通过动画演示帮助学生思考刚才的方法是否同样可行?请同学们自主探究一下(老师演示动画帮助学生)
S8=5+6+7+8+9+10+11+12=
【设计意图】进一步引导学生探究项数为偶数的等差数列求和时倒序相加是否可行。从而得出倒序相加法适合任意项数的等差数列求和,最终确立倒序相加的思想和方法!
好,这样我们就找到了一个好方法——倒序相加法!现在来试一试如何求下面这个等差数列的前n项和?
问题2:等差数列1,2,3,…,n, … 的前n项和怎么求呢?
解:(根据前面的学习,请学生自主思考独立完成)
【设计意图】强化倒序相加法的理解和运用,为更一般的等差数列求和打下基础。
至此同学们已经掌握了倒序相加法,相信大家可以推导更一般的等差数列前n项和公式了。
问题3:对于一般的等差数列{an}首项为a1,公差为d,如何推导它的前n项和sn公式呢?
即求 =a1+a2+a3+……+an=
∴(1)+(2)可得:2
∴
公式变形:将代入可得:
【设计意图】学生在前面的探究基础上水到渠成顺理成章很快就可以推导出一般等差数列的前n项和公式,从而完成本节课的中心任务。在这个过程中放手让学生自主推导,同时也复习等差数列的通项公式和基本性质。
三、公式的认识与理解:
1、根据前面的推导可知等差数列求和的两个公式为:
(公式一)
(公式二)
探究: 1、(1)相同点: 都需知道a1与n;
(2)不同点: 第一个还需知道an ,第二个还需知道d;
(3)明确若a1,d,n,an中已知三个量就可求Sn。
2、两个公式共涉及a1, d, n, an,Sn五个量,“知三”可“求二”。
2、探索与发现3:等差数列前n项和公式与梯形面积公式有什么联系?
用梯形面积公式记忆等差数列前 n 项和公式,这里对图形进行了割、补两种处理,对应着等差数列 n 项和的两个公式。,请学生联想思考总结来有助于记忆。
【设计意图】帮助学生类比联想,拓展思维,增加兴趣,强化记忆
四、公式应用、讲练结合
1、练一练:
有了两个公式,请同学们来练一练,看谁做的快做的对!
根据下列各题中的条件,求相应的等差数列{an}的Sn :
(1)a1=5,an=95,n=10
解:500
(2)a1=100,d=-2,n=50
解:
【设计意图】熟悉并强化公式的理解和应用,进一步巩固“知三求二”。
下面我们来看两个例题:
2、例题1:
2000年11月14日教育部下发了>。某市据此提出了实施“校校通”工程的总目标:从2001年起用10年时间,在全市中小学建成不同标准的校园网。 据测算,2001年该市用于“校校通”工程的经费为500万元。为了保证工程的顺利实施,计划每年投入的资金都比上一年增加50万元。那么从2001年起的未来10年内,该市在“校校通”工程中的总投入是多少?
解:设从2001年起第n年投入的资金为an,根据题意,数列{an}是一个等差数列,其中 a1=500, d=50
那么,到2010年(n=10),投入的资金总额为
答: 从2001年起的未来10年内,该市在“校校通”工程中的总投入是7250万元。
【设计意图】让学生体会数列知识在生活中的应用及简单的数学建模思想方法。
3、例题2:
已知一个等差数列{an}的前10项的和是310,前20项的和是1220,由这些条件可以确定这个等差数列的前n项和的公式吗?
解:
法1:由题意知
,
代入公式得:
解得,
法2:由题意知
,
代入公式得:
,
即,
②①得,,故
由得故
【设计意图】掌握并能灵活应用公式并体会方程的思想方法。
4、反馈达标:
练习一:在等差数列{an}中,a1=20, an=54,sn =999,求n.
解:由解n=27
练习2: 已知{an}为等差数列,,求公差。
解:由公式得
即d=2
【设计意图】进一强化求和公式的灵活应用及化归的思想(化归到首项和公差这两个基本元)。
五、归纳总结 分享收获:(活跃课堂气氛,鼓励学生大胆发言,培养总结和表达能力)
1、倒序相加法求和的思想及应用;
2、等差数列前n项和公式的推导过程;
3、掌握等差数列的两个求和公式,;
4、前n项和公式的灵活应用及方程的思想。
…………
六、作业布置:
(一)书面作业:
1、已知等差数列{an},其中d=2,n=15, an =-10,求a1及sn。
2、在a,b之间插入10个数,使它们同这两个数成等差数列,求这10个数的和。
(二)课后思考:
思考:等差数列的前n项和公式的推导方法除了倒序相加法还有没有其它方法呢?
【设计意图】通过布置书面作业巩固所学知识及方法,同时通过布置课后思考题来延伸知识拓展思维。
附:板书设计
等差数列的前n项和
1、数列前n项和的定义:
2、等差数列前n项和公式的推导:
3、公式的认识与理解:
公式一:
公式二:
四:例题及解答:
议练活动:
数学必修3教案【篇4】
一、教材分析
函数作为初等数学的核心内容,贯穿于整个初等数学体系之中。函数这一章在高中数学中,起着承上启下的作用,它是对初中函数概念的承接与深化。在初中,只停留在具体的几个简单类型的函数上,把函数看成变量之间的依赖关系,而高中阶段不仅把函数看成变量之间的依赖关系,更是从“变量说”到“对应说”,这是对函数本质特征的进一步认识,也是学生认识上的一次飞跃。这一章内容渗透了函数的思想,集合的思想以及数学建模的思想等内容,这些内容的学习,无疑对学生今后的学习起着深刻的影响。
本节《函数的概念》是函数这一章的起始课。概念是数学的基础,只有对概念做到深刻理解,才能正确灵活地加以应用。本课从集合间的对应来描绘函数概念,起到了上承集合,下引函数的作用。也为进一步学习函数这一章的其它内容提供了方法和依据。
二、重难点分析
根据对上述对教材的分析及新课程标准的要求,确定函数的概念既是本节课的重点,也应该是本章的难点。
三、学情分析
1、有利因素:一方面学生在初中已经学习了变量观点下的函数定义,并具体研究了几类最简单的函数,对函数已经有了一定的感性认识;另一方面在本书第一章学生已经学习了集合的概念,这为学习函数的现代定义打下了基础。
2、不利因素:函数在初中虽已讲过,不过较为肤浅,本课主要是从两个集合间对应来描绘函数概念,是一个抽象过程,要求学生的抽象、分析、概括的能力比较高,学生学起来有一定的难度。
四、目标分析
1、理解函数的概念,会用函数的定义判断函数,会求一些最基本的函数的定义域、值域。
2、通过对实际问题分析、抽象与概括,培养学生抽象、概括、归纳知识以及逻辑思维、建模等方面的能力。
3、通过对函数概念形成的探究过程,培养学生发现问题,探索问题,不断超越的创新品质。
五、教法学法
本节课的教学以学生为主体、教师是数学课堂活动的组织者、引导者和参与者,我一方面精心设计问题情景,引导学生主动探索。另一方面,依据本节为概念学习的特点,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与,通过不断探究、发现,在师生互动、生生互动中,让学习过程成为学生心灵愉悦的主动认知过程。
学法方面,学生通过对新旧两种函数定义的对比,在集合论的观点下初步建构出函数的概念。在理解函数概念的基础上,建构出函数的定义域、值域的概念,并初步掌握它们的求法。
高一必修二数学教案41、教材(教学内容)
本课时主要研究任意角三角函数的定义。三角函数是一类重要的基本初等函数,是描述周期性现象的重要数学模型,本课时的内容具有承前启后的重要作用:承前是因为可以用函数的定义来抽象和规范三角函数的定义,同时也可以类比研究函数的模式和方法来研究三角函数;启后是指定义了三角函数之后,就可以进一步研究三角函数的性质及图象特征,并体会三角函数在解决具有周期性变化规律问题中的作用,从而更深入地领会数学在其它领域中的重要应用、
2、设计理念
本堂课采用“问题解决”教学模式,在课堂上既充分发挥学生的主体作用,又体现了教师的引导作用。整堂课先通过问题引导学生梳理已有的知识结构,展开合理的联想,提出整堂课要解决的中心问题:圆周运动等具周期性规律运动可以建立函数模型来刻画吗?从而引导学生带着问题阅读和钻研教材,引发认知冲突,再通过问题引导学生改造或重构已有的认知结构,并运用类比方法,形成“任意角三角函数的定义”这一新的概念,最后通过例题与练习,将任意角三角函数的定义,内化为学生新的认识结构,从而达成教学目标、
3、教学目标
知识与技能目标:形成并掌握任意角三角函数的定义,并学会运用这一定义,解决相关问题、
过程与方法目标:体会数学建模思想、类比思想和化归思想在数学新概念形成中的重要作用、
情感态度与价值观目标:引导学生学会阅读数学教材,学会发现和欣赏数学的理性之美、
4、重点难点
重点:任意角三角函数的定义、
难点:任意角三角函数这一概念的理解(函数模型的建立)、类比与化归思想的渗透、
5、学情分析
学生已有的认知结构:函数的概念、平面直角坐标系的概念、任意角和弧度制的相关概念、以直角三角形为载体的锐角三角函数的概念、在教学过程中,需要先将学生的以直角三角形为载体的锐角三角函数的概念改造为以象限角为载体的锐角三角函数,并形成以角的终边与单位园的交点的坐标来表示的锐角三角函数的概念,再拓展到任意角的三角函数的定义,从而使学生形成新的认知结构、
6、教法分析
“问题解决”教学法,是以问题为主线,引导和驱动学生的思维和学习活动,并通过问题,引导学生的质疑和讨论,充分展示学生的思维过程,最后在解决问题的过程中形成新的认知结构、这种教学模式能较好地体现课堂上老师的主导作用,也能充分发挥课堂上学生的主体作用、
7、学法分析
本课时先通过“阅读”学习法,引导学生改造已有的认知结构,再通过类比学习法引导学生形成“任意角的三角函数的定义”,最后引导学生运用类比学习法,来研究三角函数一些基本性质和符号问题,从而使学生形成新的认识结构,达成教学目标。
数学必修3教案【篇5】
一、教材分析
1.教学内容
本节课内容教材共分两课时进行,这是第一课时,该课时主要学习函数的单调性的的概念,依据函数图象判断函数的单调性和应用定义证明函数的单调性。
2.教材的地位和作用
函数单调性是高中数学中相当重要的一个基础知识点,是研究和讨论初等函数有关性质的基础。掌握本节内容不仅为今后的函数学习打下理论基础,还有利于培养学生的抽象思维能力,及分析问题和解决问题的能力。
3.教材的重点﹑难点﹑关键
教学重点:函数单调性的概念和判断某些函数单调性的方法。明确单调性是一个局部概念.
教学难点:领会函数单调性的实质与应用,明确单调性是一个局部的概念。
教学关键:从学生的学习心理和认知结构出发,讲清楚概念的形成过程.
4.学情分析
高一学生正处于以感性思维为主的年龄阶段,而且思维逐步地从感性思维过渡到理性思维,并由此向逻辑思维发展,但学生思维不成熟、不严密、意志力薄弱,故而整个教学环节总是创设恰当的问题情境,引导学生积极思考,培养他们的逻辑思维能力。从学生的认知结构来看,他们只能根据函数的图象观察出“随着自变量的增大函数值增大”等变化趋势,所以在教学中要充分利用好函数图象的直观性,发挥好多媒体教学的优势;由于学生在概念的掌握上缺少系统性、严谨性,在教学中注意加强.
二、目标分析
(一)知识目标:
1.知识目标:理解函数单调性的概念,掌握判断一些简单函数的单调性的方法;了解函数单调区间的概念,并能根据函数图象说出函数的单调区间。
2.能力目标:通过证明函数的单调性的学习,使学生体验和理解从特殊到一般的数学归纳推理思维方式,培养学生的观察能力,分析归纳能力,领会数学的归纳转化的思想方法,增加学生的知识联系,增强学生对知识的主动构建的能力。
3.情感目标:让学生积极参与观察、分析、探索等课堂教学的双边活动,在掌握知识的过程中体会成功的喜悦,以此激发求知__。领会用运动变化的观点去观察分析事物的方法。通过渗透数形结合的数学思想,对学生进行辨证唯物主义的思想教育。
(二)过程与方法
培养学生严密的逻辑思维能力以及用运动变化、数形结合、分类讨论的方法去分析和处理问题,以提高学生的思维品质,通过函数的单调性的学习,掌握自变量和因变量的关系。通过多媒体手段激发学生学习兴趣,培养学生发现问题、分析问题和解题的逻辑推理能力。
三、教法与学法
1.教学方法
在教学中,要注重展开探索过程,充分利用好函数图象的直观性、发挥多媒体教学的优势。本节课采用问答式教学法、探究式教学法进行教学,教师在课堂中只起着主导作用,让学生在教师的提问中自觉的发现新知,探究新知,并且加入激励性的语言以提高学生的积极性,提高学生参与知识形成的全过程。
2.学习方法
自我探索、自我思考总结、归纳,自我感悟,合作交流,成为本节课学生学习的主要方式。
四、过程分析
本节课的教学过程包括:问题情景,函数单调性的定义引入,增函数、减函数的定义,例题分析与巩固练习,回顾总结和课外作业六个板块。这里分别就其过程和设计意图作一一分析。
(一)问题情景:
为了激发学生的学习兴趣,本节课借助多媒体设计了多个生活背景问题,并就图表和图象所提供的信息,提出一系列问题和学生交流,激发学生的学习兴趣和求知__,为学习函数的单调性做好铺垫。(祥见课件)
新课程理念认为:情境应贯穿课堂教学的始终。本节课所创设的生活情境,让学生亲近数学,感受到数学就在他们的周围,强化学生的感性认识,从而达到学生对数学的理解。让学生在课堂的一开始就感受到数学就在我们身边,让学生学会用数学的眼光去关注生活。
(二)函数单调性的定义引入
1.几何画板动画演示,请学生认真观察,并回答问题:通过学生已学过的函数y=2x+4,,的图象的动态形式形象出x、y间的变化关系,使学生对函数单调性有感性认识。,进行比较,分析其变化趋势。并探讨、回答以下问题:
问题1、观察下列函数图象,从左向右看图象的变化趋势?
问题2:你能明确说出“图象呈上升趋势”的意思吗?
通过学生的交流、探讨、总结,得到单调性的“通俗定义”:
从在某一区间内当x的值增大时,函数值y也增大,到图象在该区间内呈上升趋势再到如何用x与f(x)来描述上升的图象?
通过问题逐步向抽象的定义靠拢,将图形语言转化为数学符号语言。几何画板的灵活使用,数形有机结合,引导学生从图形语言到数学符号语言的翻译变得轻松。
设计意图:通过学生熟悉的知识引入新课题,有利于激发学生的学习兴趣和学习热情,同时也可以培养学生观察、猜想、归纳的思维能力和创新意识,增强学生自主学习、独立思考,由学会向会学的转化,形成良好的思维品质。通过学生已学过的一次y=2x+4,,的图象的动态形式形象地反映出x、y间的变化关系,使学生对函数单调性有感性认识。从学生的原有认知结构入手,探讨单调性的概念,符合“最近发展区的理论”要求。从图形、直观认识入手,研究单调性的概念,其本身就是研究、学习数学的一种方法,符合新课程的理念。
(三)增函数、减函数的定义
在前面的基础上,让学生讨论归纳:如何使用数学语言来准确描述函数的单调性?在学生回答的基础上,给出增函数的概念,同时要求学生讨论概念中的关键词和注意点。
定义中的“当x1x2时,都有f(x1)
注意:(1)函数的单调性也叫函数的增减性;
(2)注意区间上所取两点x1,x2的任意性;
(3)函数的单调性是对某个区间而言的,它是一个局部概念。
让学生自已尝试写出减函数概念,由两名学生板演。提出单调区间的概念。
设计意图:通过给出函数单调性的严格定义,目的是为了让学生更准确地把握概念,理解函数的单调性其实也叫做函数的增减性,它是对某个区间而言的,它是一个局部概念,同时明确判定函数在某个区间上的单调性的一般步骤。这样处理,同时也是让学生感悟、体验学习数学感念的方法,提高其个性品质。
(四)例题分析
在理解概念的基础上,让学生总结判别函数单调性的方法:图象法和定义法。
2.例2.证明函数在区间(-∞,+∞)上是减函数。
在本题的解决过程中,要求学生对照定义进行分析,明确本题要解决什么?定义要求是什么?怎样去思考?通过自己的解决,总结证明单调性问题的一般方法。
变式一:函数f(x)=-3x+b在R上是减函数吗?为什么?
变式二:函数f(x)=kx+b(k
变式三:函数f(x)=kx+b(k
错误:实质上并没有证明,而是使用了所要证明的结论
例题设计意图:在理解概念的基础上,让学生总结判别函数单调性的方法:图象法和定义法。例1是教材中例题,它的解决强化学生应用数形结合的思想方法解题的意识,进一步加深对概念的理解,同时也是依托具体问题,对单调区间这一概念的再认识;要了解函数在某一区间上是否具有单调性,从图上进行观察是一种常用而又粗略的方法。严格地说,它需要根据单调函数的定义进行证明。例2是教材练习题改编,通过师生共同总结,得出使用定义证明的一般步骤:任取—作差(变形)—定号—下结论,通过例2的解决是学生初步掌握运用概念进行简单论证的基本方法,强化证题的规范性训练,从而提高学生的推理论证能力。例3是教材例2抽象出的数学问题。目的是进一步强化解题的规范性,提高逻辑推理能力,同时让学生学会一些常见的变形方法。
(五)巩固与探究
1.教材p36练习2,3
2.探究:二次函数的单调性有什么规律?
(几何画板演示,学生探究)本问题作为机动题。时间不允许时,就为课后思考题。
设计意图:通过观察图象,对函数是否具有某种性质作出一种猜想,然后通过推理的办法,证明这种猜想的正确性,是发现和解决问题的一种常用数学方法。
通过课堂练习加深学生对概念的理解,进一步熟悉证明或判断函数单调性的方法和步骤,达到巩固,消化新知的目的。同时强化解题步骤,形成并提高解题能力。对练习的思考,让学生学会反思、学会总结。
(六)回顾总结
通过师生互动,回顾本节课的概念、方法。本节课我们学习了函数单调性的知识,同学们要切记:单调性是对某个区间而言的,同时在理解定义的基础上,要掌握证明函数单调性的方法步骤,正确进行判断和证明。
设计意图:通过小结突出本节课的重点,并让学生对所学知识的结构有一个清晰的认识,学会一些解决问题的思想与方法,体会数学的和谐美。
(七)课外作业
1.教材p43习题1.3A组1(单调区间),2(证明单调性);
2.判断并证明函数在上的单调性。
3.数学日记:谈谈你本节课中的收获或者困惑,整理你认为本节课中的最重要的知识和方法。
设计意图:通过作业1、2进一步巩固本节课所学的增、减函数的概念,强化基本技能训练和解题规范化的训练,并且以此作为学生对本结内容各项目标落实的评价。新课标要求:不同的学生学习不同的数学,在数学上获得不同的发展。作业3这种新型的作业形式是其很好的体现。
(七)板书设计(见ppt)
五、评价分析
有效的概念教学是建立在学生已有知识结构基础上,,因此在教学设计过程中注意了:第一.教要按照学的法子来教;第二在学生已有知识结构和新概念间寻找“最近发展区”;第三.强化了重探究、重交流、重过程的课改理念。让学生经历“创设情境——探究概念——注重反思——拓展应用——归纳总结”的活动过程,体验了参与数学知识的发生、发展过程,培养“用数学”的意识和能力,成为积极主动的建构者。
本节课围绕教学重点,针对教学目标,以多媒体技术为依托,展现知识的发生和形成过程,使学生始终处于问题探索研究状态之中,__引趣,并注重数学科学研究方法的学习,是顺应新课改要求的,是研究性教学的一次有益尝试。
高中数学有效的学习方法
一、勤看书,学研究。
有些“自我感觉良好”的学生,常轻视课本中基础知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,重“量”轻“质”,陷入题海,到正规作业或考试中不是演算出错就是中途“卡壳”,变成事倍功半。因此,同学们从高一开始,增强自己从课本入手进行研究的意识:预习,复习。可以把每条定理、每道例题都当作习题,认真地重证、重解,并适当加些批注(如数学符号在不同范畴的含义,不同领域之间的关系),举个例子:x+y=0可以是二元一次方程,写成y=-x又可看成一次函数。特别是可以通过对典型例题的讲解分析,最后抽象出解决这类问题的数学思想和方法,并做好书面的解题后的反思,总结出解题的一般规律和特殊规律,以便推广和灵活运用。另外,希望你们要尽可能独立解题,因为求解过程,也是培养分析问题和解决问题能力的一个过程,同时更是一个研究过程。
二、注重课堂,记好笔记。
首先,在课堂教学中培养好的听课习惯是很重要的。听当然是主要的,听能使注意力集中,注意积极思考、分析问题,要把老师讲的关键性部分听懂、听会。提高数学能力,锻炼自己的思维,主要也是通过课堂来提高,要充分利用好课堂这块阵地,学习数学的过程是活的,在随着教学过程的发展而变化,尤其是当老师注重能力教学的时候,教材是反映不出来的。数学能力是随着知识的发生而同时形成的,无论是形成一个概念,掌握一条法则,会做一个习题,都应该从不同的能力角度来培养和提高。课堂上通过老师的教学,理解所学内容在教材中的地位,弄清与前后知识的联系等,只有把握住教材,才能掌握学习的主动。
其次,听的时候不能光听,为了往后复习,应适当地有目的性的记好笔记,领会课上老师的主要精神与意图。科学的记笔记可以提45钟课堂效果。
再次,如果数学课没有一定的速度,那是一种无效学习。慢腾腾的学习是训练不出思维速度,训练不出思维的敏捷性,是培养不出数学能力的,这就要求在数学学习中一定要有节奏(有目的进行训练),这样久而久之,思维的敏捷性和数学能力会逐步提高。
最后,在数学课堂中,老师一般少不了提问与板演,有时还伴随着问题讨论,因此可以听到许多的信息,这些问题是很有价值的。对于那些典型问题,带有普遍性的问题都必须及时解决,不能把问题的结症遗留下来,甚至沉淀下来,有价值的问题要及时抓住,遗留问题要有针对性地补,注重实效。
三、做好作业,讲究规范。
在课堂、课外练习中培养良好的作业习惯也很有必要。在作业中不但做得整齐、清洁,培养一种美感,还要有条理,这是培养逻辑能力的一条有效途径,必须独立完成。同时可以培养一种独立思考和解题正确的责任感。在作业时要提倡效率,应该十分钟完成的作业,不拖到半小时完成,疲疲惫惫的作业习惯使思维松散、精力不集中,这对培养数学能力是有害而无益的。抓数学学习习惯必须从高一年级主动抓起,无论从年龄增长的心理特征上讲,还是从学习的不同阶段的要求上讲都应该进行学习习惯的培养。
四、写好总结,把握规律。
一个人不断接受新知识,不断遭遇挫折产生疑问,不断地总结,才有不断地提高。"不会总结的同学,他的能力就不会提高,挫折经验是成功的基石。"自然界适者生存的生物进化过程便是的例证。学习要经常总结规律,目的就是为了更一步的发展。通过与老师、同学平时的接触交流,逐步总结出一般性的学习步骤,它包括:制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面,简单概括为四个环节(预习、上课、整理、作业)和一个步骤(复习总结)。每一个环节都有较深刻的内容,带有较强的目的性、针对性,要落实到位。坚持“两先两后一小结”(先预习后听课,先复习后做作业,写好每个单元的总结)的学习习惯。善于归纳总结知识间的联系。
学习数学并非我做题就可以取得好的成绩,而是要将精力花在归纳总结上。特别对课本或课堂上出现的例题,只要善于总结,就可以了解这一小节数学内容有哪几种题型,每种题目的一般解法和思路是什么,从而提高运用所学知识分析解题的能力。同时,每学完一个单元,要建立本单元的知识框架,将本章的主要思路、推理方法及运用技巧等转变成自己的实际技能。
五、注重反思,提升能力
学习要注重反思,练好悟性。老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵外延,分析重点难点,突出思想方法,而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是忙于赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背,也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。数学学科必须培养运算能力、逻辑思维能力、空间想象力以及运用所学知识分析问题、解决问题的重任,它的特点是具有高度的抽象性、逻辑性与广泛的适用性,对能力的要求较高。数学能力只有在数学思想方法不断地运用反思中才能培养和提高。数学内容的巨变和学习方法的落后,在学习高中数学的过程中,肯定会遇到不少困难和问题,同学们要有克服困难的勇气和信心,胜不骄,败不馁,千万不能让问题堆积如山,形成恶性循环,而是要在老师的引导下,寻求解决问题的办法,培养分析问题,解决问题的能力,这就是的悟性。
学会发现问题,并重视质疑在学习中常看到成绩好的同学,总是有很多问题问老师。提出疑问不仅是发现真知的起点,而且是发明创造的开端。提高学习成绩的过程就是发现,提出并解决疑问的过程。大胆向老师质疑,不是笨的反映,而是在追求真知、积极进取的表现。在听课中,不但要“知其然”,还要“知其所以然”,这样疑问也就在不断产生,再加以分析思考使问题得以解决,学习也就得到了长进。
高中数学考试的技巧
总体原则
1、先做简单题,后做难题。
2、遇到较难的大题,把所有跟该题有关的知识点都写出来,要知道数学讲究步骤分。
3、若是证明题,万一不会,可以先写出已知条件,再写出要证明的最后一步,再一步一步往上推,中间步骤随便写点。(使用于粗心的教师,但我们不提倡,重点是要平时学好)。
一、整体把握、抓大放小
拿到试卷后可以先快速浏览一下所有题目,根据积累的考试经验,大致估计一下每部分应该分配的时间。对于能够很快做出来的.题目,一定要拿到应得的分数。
二、确定每部分的答题时间
1、考试时占用了很多时间却一点也没有做出来的题目。对于这类题目,你以后考试时就应该尽量减少时间,或者放弃,等以后学习进阶了再尝试着做。
2、考试时花了过多的时间才做出来的题目。对于这类题目,你以后平时做题时要尽量加快速度,或者通过“反复训练”等提高反应速度,这样,你下次考试时能用较少的时间做出来。
三、碰到难题时
1、你可以先用“直觉”最快的找到解题思路;
2、如果“直觉”不管用,你可以联想以前做过的类似的题目,从而找到解题思路;
3、如果这样也不行,你可以猜测一下这道题目可能涉及到的知识点和解题技巧。
4、对于花了一定时间仍然不能做出来的题目,要勇于放弃。
四、卷面整洁、字迹清楚、注意小节
做到卷面整洁、字迹清楚,把标点、符号、解题步骤等小的地方尽量做好,不要丢掉应得的每一分。
数学必修4教案范文
教案课件是老师上课的重要部分,准备教案课件的时刻到来了。 对于新老师来说,教案课件的准备是提高课堂生动性。以下是我们为大家准备的一些“数学必修4教案”方面的资料,为了方便查看请将此页加入到书签列表!
数学必修4教案【篇1】
高中数学必修3教学反思
邵
营
必修3是高中数学比较特殊的一部分内容,既增添了新内容——算法,老内容统计和概率的内容和安排也发生了一些变化。下面就自己的教学过程谈一谈对必修3的体会与反思。
1、第一章的教学主要还是要把握好教学要求,围绕程序框图这一核心,以具体案例为载体,使学生在解决具体问题的过程中,学会基本逻辑结构和算法语句的用法,从中体会算法的思想,提高逻辑思维能力,不必要搞太难的算法设计,因为在其它章节中,算法思想也是要渗透的,学生有较多的机会接触算法问题.至于高中数学引入算法的理由,我体会还是在于算法思想所体现的很强的逻辑性对提高学生逻辑思维能力的作用,而不在于学会多少程序语言或程序设计.所以还是应该关注算法的“数学味”.
2、在第二章的教学中,感到学生虽然知道各种统计量(平均数、标准差、回归方程等)的计算方法,但理解其中蕴涵的统计思想却很难,不能自觉的形成统计观念和概率思维.因此,在统计教学中,要更多地关注在“计算”后,让学生对结果的含义作出解释.实际上,课本在这方面是有示范的.例如,在讲完“众数、中位数、平均数”后,课本有一个关于某企业职工工资待遇的“探究”栏目,还配了某市公路项目投资数据的利用方面的练习等,在教学中可让学生对这些问题开展讨论,并让他们举一些类似的问题.通过讨论,学生认识企业老总利用数据设置的陷阱在哪里,应当如何理解和使用数据特征等.
3、概率的教学,离开了具体案例寸步难行,要让学生在具体案例中体验概率有关问题的情景,在案例中发现问题、解决问题,亲身体验案例情景,以激发兴趣。在实际教学中一方面要尽量创设情境,采用案例教学的基本方式展开教学,通过大量的具体案例来帮助学生理解;另一方面要设计一些活动,让学生经历统计的全过程,在学生合作学过程中,学生既要独立思考,自主探索,又要在解决实际问题中与别人合作、交流。例如:在教学《确定事件与不确定事件》中,让学生通过一系列的案例理解概念。太阳从东边升起,抛起的篮球会下降等等一定会发生的事件就是可能事件,太阳从西边升起,公鸡下蛋等一定不会发生的事件就是不可能事件。让学生在具体案例中体验概念。
2013年10月
数学必修4教案【篇2】
教学目标1.了解映射的概念,象与原象的概念,和一一映射的概念.(1)明确映射是特殊的对应即由集合 ,集合 和对应法则f三者构成的一个整体,知道映射的特殊之处在于必须是多对一和一对一的对应;(2)能准确使用数学符号表示映射, 把握映射与一一映射的区别;(3)会求给定映射的指定元素的象与原象,了解求象与原象的方法.2.在概念形成过程中,培养学生的观察,比较和归纳的能力.3.通过映射概念的学习,逐步提高学生对知识的探究能力.教学建议教材分析(1)知识结构映射是一种特殊的对应,一一映射又是一种特殊的映射,而且函数也是特殊的映射,它们之间的关系可以通过下图表示出来,如图:由此我们可从集合的包含关系中帮助我们把握相关概念间的区别与联系.(2)重点,难点分析本节的教学重点和难点是映射和一一映射概念的形成与认识.①映射的概念是比较抽象的概念,它是在初中所学对应的基础上发展而来.教学中应特别强调对应集合 中的唯一这点要求的理解;映射是学生在初中所学的对应的基础上学习的,对应本身就是由三部分构成的整体,包括集 合A和集合B及对应法则f,由于法则的不同,对应可分为一对一,多对一,一对多和多对多. 其中只有一对一和多对一的能构成映射,由此可以看到映射必是“对B中之唯一”,而只要是对应就必须保证让A中之任一与B中元素相对应,所以满足一对一和多对一的对应就能体现出“任一对唯一”.②而一一映射又在映射的基础上增加新的要求,决定了它在学习中是比较困难的.教法建议牐牐1)在映射概念引入时,可先从学生熟悉的对应入手, 选择一些具体的生活例子,然后再举一些数学例子,分为一对多、多对一、多对一、一对一四种情况,让学生认真观察,比较,再引导学生发现其中一对一和多对一的对应是映射,逐步归纳概括出映射的'基本特征,让学生的认识从感性认识到理性认识.(2)在刚开始学习映射时,为了能让学生看清映射的构成,可以选择用图形表示映射,在集合的选择上可选择能用列举法表示的有限集,法则尽量用语言描述,这样的表示方法让学生可以比较直观的认识映射,而后再选择用抽象的数学符号表示映射,比如:
数学必修4教案【篇3】
1.2解三角形应用举例 第三课时
一、教学目标
1、能够运用正弦定理、余弦定理等知识和方法解决一些有关计算角度的实际问题
2、通过综合训练强化学生的相应能力,让学生有效、积极、主动地参与到探究问题的过程中来,逐步让学生自主发现规律,举一反三。
3、培养学生提出问题、正确分析问题、独立解决问题的能力,并激发学生的探索精神。
二、教学重点、难点
重点:能根据正弦定理、余弦定理的特点找到已知条件和所求角的关系 难点:灵活运用正弦定理和余弦定理解关于角度的问题
三、教学过程 Ⅰ.课题导入 [创设情境] 提问:前面我们学习了如何测量距离和高度,这些实际上都可转化已知三角形的一些边和角求其余边的问题。然而在实际的航海生活中,人们又会遇到新的问题,在浩瀚无垠的海面上如何确保轮船不迷失方向,保持一定的航速和航向呢?今天我们接着探讨这方面的测量问题。Ⅱ.讲授新课 [范例讲解] 例
1、如图,一艘海轮从A出发,沿北偏东75的方向航行67.5 n mile后到达海岛B,然后从B出发,沿北偏东32的方向航行54.0 n mile后达到海岛C.如果下次航行直接从A出发到达C,此船应该沿怎样的方向航行,需要航行多少距离?(角度精确到0.1,距离精确到0.01n mile)
学生看图思考并讲述解题思路
分析:首先根据三角形的内角和定理求出AC边所对的角ABC,即可用余弦定理算出AC边,再根据正弦定理算出AC边和AB边的夹角CAB。
解:在ABC中,ABC=180-75+ 32=137,根据余弦定理,AC=AB2BC22ABBCcosABC =67.5254.02267.554.0cos137 ≈113.15 54.0sin137根据正弦定理,BC = AC sinCAB = BCsinABC = ≈0.3255,113.15ACsinCABsinABC
所以 CAB =19.0, 75-CAB =56.0
答:此船应该沿北偏东56.1的方向航行,需要航行113.15n mile 例
2、在某点B处测得建筑物AE的顶端A的仰角为,沿BE方向前进30m,至点C处测得顶端A的仰角为2,再继续前进103m至D点,测得顶端A的仰角为4,求的大小和建筑物AE的高。
解法一:(用正弦定理求解)由已知可得在ACD中,AC=BC=30,AD=DC=103,ADC =180-4,103=sin230。因为 sin4=2sin2cos2 sin(1804)cos2= 3,得 2=30 =15,在RtADE中,AE=ADsin60=15 2答:所求角为15,建筑物高度为15m 解法二:(设方程来求解)设DE= x,AE=h 在 RtACE中,(103+ x)2 + h2=302 在 RtADE中,x2+h2=(103)
2两式相减,得x=53,h=15 在 RtACE中,tan2=
h103x=32=30,=15
答:所求角为15,建筑物高度为15m 解法三:(用倍角公式求解)设建筑物高为AE=8,由题意,得
BAC=,CAD=2,AC = BC =30m , AD = CD =103m 在RtACE中,sin2=
x4------① 在RtADE中,sin4=,----② 301033,2=30,=15,AE=ADsin60=15 2 ②① 得 cos2=答:所求角为15,建筑物高度为15m 例
3、某巡逻艇在A处发现北偏东45相距9海里的C处有一艘走私船,正沿南偏东75的方向以10海里/小时的速度向我海岸行驶,巡逻艇立即以14海里/小时的速度沿着直线方向追去,问巡逻艇应该沿什么方向去追?需要多少时间才追赶上该走私船?
师:你能根据题意画出方位图?教师启发学生做图建立数学模型
分析:这道题的关键是计算出三角形的各边,即需要引入时间这个参变量。
解:如图,设该巡逻艇沿AB方向经过x小时后在B处追上走私船,则CB=10x, AB=14x,AC=9, ACB=75+45=120
(14x)2= 92+(10x)2-2910xcos120 39化简得32x2-30x-27=0,即x=,或x=-(舍去)
216所以BC = 10x =15,AB =14x =21, BCsin12015353又因为sinBAC === AB21421,BAC =3813,或BAC =14147(钝角不合题意,舍去)3813+45=8313
答:巡逻艇应该沿北偏东8313方向去追,经过1.4小时才追赶上该走私船。评注:在求解三角形中,我们可以根据正弦函数的定义得到两个解,但作为有关现实生活的应用题,必须检验上述所求的解是否符合实际意义,从而得出实际问题的解 Ⅲ.课堂练习
课本第16页练习 Ⅳ.课时小结
解三角形的应用题时,通常会遇到两种情况:
(1)已知量与未知量全部集中在一个三角形中,依次利用正弦定理或余弦定理解之。
(2)已知量与未知量涉及两个或几个三角形,这时需要选择条件足够的三角形优先研究,再逐步在其余的三角形中求出问题的解。
Ⅴ.课后作业
《习案》作业六
数学必修4教案【篇4】
用坐标法解决几何问题的步骤:
第二步:通过代数运算,解决代数问题;
第三步:将代数运算结果“翻译”成几何结论、
重点与难点:直线与圆的方程的应用、
问 题设计意图师生活动
生:回顾,说出自己的看法、
2、解决直线与圆的位置关系,你将采用什么方法?
生:回顾、思考、讨论、交流,得到解决问题的方法、
问 题设计意图师生活动
3、阅读并思考教科书上的例4,你将选择什么方 法解决例4的'问题
生:自 学例4,并完成练习题1、2、
生:建立适当的直角坐标系, 探求解决问题的方法、
8、小结:
(1)利用“坐标法”解决问对知识进行归纳概括,体会利 师:指导 学生完成练习题、
生:阅读教科书的例3,并完成第
问 题设计意图师生活动
题的需要准备什么工作?
(2)如何建立直角坐标系,才能易于解决平面几何问题?
(3)你认为学好“坐标法”解决问题的关键是什么?
数学必修4教案【篇5】
2、初步运用力的平行四边形法则求解共点力的合力;。
3、会用作图法求解两个共点力的合力;并能判断其合力随夹角的变化情况,掌握合力的变化范围。
能力目标。
1、能够通过实验演示归纳出互成角度的两个共点力的合成遵循平行四边形定则;。
2、培养学生动手操作能力;。
情感目标。
培养学生的物理思维能力和科学研究的态度。
教学建议。
教学重点难点分析。
1、本课的重点是通过实验归纳出力的平行四边形法则,这同时也是本章的重点.
2、对物体进行简单的受力分析、通过作图法确定合力是本章的难点;。
教法建议。
一、共点力概念讲解的教法建议。
关于共点力的概念讲解时需要强调不仅作用在物体的同一点的力是共点力,力的作用线相交于一点的也叫共点力.注意平行力于共点力的区分(关于平行力的合成请参考扩展资料中的“平行力的合成与分解”),教师讲解示例中要避开这例问题.
二、关于矢量合成讲解的教法建议。
本课的重点是通过实验归纳出力的平行四边形法则,这同时也是本章的重点.由于学生刚开始接触矢量的运算方法,在讲解中需要从学生能够感知和理解的日常现象和规律出发,理解合力的概念,从实验现象总结出力的合成规律,由于矢量的运算法则是矢量概念的核心内容,又是学习物理学的基础,对于初上高中的学生来说,是一个大的飞跃,因此教学时,教师需要注意规范性,但是不必操之过急,通过一定数量的题目强化学生对平行四边形定则的认识.
由于力的合成与分解的基础首先是对物体进行受力分析,在前面力的知识学习中,学生已经对单个力的分析过程有了比较清晰的认识,在知识的整合过程中,教师可以通过练习做好规范演示.
三、关于作图法求解几个共点力合力的教法建议。
1、在讲解用作图法求解共点力合力时,可以在复习力的图示法基础上,让学生加深矢量概念的理解,同时掌握矢量的计算法则.
2、注意图示画法的规范性,在本节可以配合学生自主实验进行教学.
第四节力的合成与分解。
高中数学必修一备课教案范文(集锦六篇)
作为一名教师,通常会被要求编写教案,教案是备课向课堂教学转化的关节点。如何把教案做到重点突出呢?以下是小编收集整理的高中数学教案,欢迎大家借鉴与参考,希望对大家有所帮助。
高中数学必修一备课教案范文 篇1
一、教学目标
知识与技能:
理解任意角的概念(包括正角、负角、零角)与区间角的概念。
过程与方法:
会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写。
情感态度与价值观:
1、提高学生的推理能力;
2、培养学生应用意识。
二、教学重点、难点:
教学重点:
任意角概念的理解;区间角的.集合的书写。
教学难点:
终边相同角的集合的表示;区间角的集合的书写。
三、教学过程
(一)导入新课
回顾角的定义
①角的第一种定义是有公共端点的两条射线组成的图形叫做角。
②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。
(二)教学新课
1、角的有关概念:
①角的定义:
角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。
②角的名称:
注意:
⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”;
⑵零角的终边与始边重合,如果α是零角α =0°;
⑶角的概念经过推广后,已包括正角、负角和零角。
⑤练习:请说出角α、β、γ各是多少度?
2、象限角的概念:
定义:若将角顶点与原点重合,角的始边与x轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角。
高中数学必修一备课教案范文 篇2
教学目标
(1)使学生正确理解组合的意义,正确区分排列、组合问题;
(2)使学生掌握组合数的计算公式;
(3)通过学习组合知识,让学生掌握类比的学习方法,并提高学生分析问题和解决问题的能力;
教学重点难点
重点是组合的定义、组合数及组合数的公式;
难点是解组合的应用题.
教学过程设计
(-)导入新课
(教师活动)提出下列思考问题,打出字幕.
[字幕]一条铁路线上有6个火车站,(1)需准备多少种不同的普通客车票?(2)有多少种不同票价的普通客车票?上面问题中,哪一问是排列问题?哪一问是组合问题?
(学生活动)讨论并回答.
答案提示:(1)排列;(2)组合.
[评述]问题(1)是从6个火车站中任选两个,并按一定的顺序排列,要求出排法的种数,属于排列问题;(2)是从6个火车站中任选两个并成一组,两站无顺序关系,要求出不同的组数,属于组合问题.这节课着重研究组合问题.
设计意图:组合与排列所研究的问题几乎是平行的上面设计的问题目的是从排列知识中发现并提出新的问题.
(二)新课讲授
[提出问题 创设情境]
(教师活动)指导学生带着问题阅读课文.
[字幕]1.排列的定义是什么?
2.举例说明一个组合是什么?
3.一个组合与一个排列有何区别?
(学生活动)阅读回答.
(教师活动)对照课文,逐一评析.
设计意图:激活学生的思维,使其将所学的知识迁移过渡,并尽快适应新的环境.
【归纳概括 建立新知】
(教师活动)承接上述问题的回答,展示下面知识.
[字幕]模型:从 个不同元素中取出 个元素并成一组,叫做从 个不同元素中取出 个元素的一个组合.如前面思考题:6个火车站中甲站→乙站和乙站→甲站是票价相同的车票,是从6个元素中取出2个元素的一个组合.
组合数:从 个不同元素中取出 个元素的所有组合的个数,称之,用符号 表示,如从6个元素中取出2个元素的组合数为 .
[评述]区分一个排列与一个组合的关键是:该问题是否与顺序有关,当取出元素后,若改变一下顺序,就得到一种新的取法,则是排列问题;若改变顺序,仍得原来的取法,就是组合问题.
(学生活动)倾听、思索、记录.
(教师活动)提出思考问题.
[投影] 与 的关系如何?
(师生活动)共同探讨.求从 个不同元素中取出 个元素的排列数 ,可分为以下两步:
第1步,先求出从这 个不同元素中取出 个元素的组合数为 ;
第2步,求每一个组合中 个元素的全排列数为 .根据分步计数原理,得到
[字幕]公式1:
公式2:
(学生活动)验算 ,即一条铁路上6个火车站有15种不同的票价的普通客车票.
设计意图:本着以认识概念为起点,以问题为主线,以培养能力为核心的宗旨,逐步展示知识的形成过程,使学生思维层层被激活、逐渐深入到问题当中去.
【例题示范 探求方法】
(教师活动)打出字幕,给出示范,指导训练.
[字幕]例1 列举从4个元素 中任取2个元素的所有组合.
例2 计算:(1) ;(2) .
(学生活动)板演、示范.
(教师活动)讲评并指出用两种方法计算例2的第2小题.
[字幕]例3 已知 ,求 的所有值.
(学生活动)思考分析.
解 首先,根据组合的定义,有
①
其次,由原不等式转化为
即
解得 ②
综合①、②,得 ,即
[点评]这是组合数公式的应用,关键是公式的选择.
设计意图:例题教学循序渐进,让学生巩固知识,强化公式的应用,从而培养学生的综合分析能力.
【反馈练习 学会应用】
(教师活动)给出练习,学生解答,教师点评.
[课堂练习]课本P99练习第2,5,6题.
[补充练习]
[字幕]1.计算:
2.已知 ,求 .
(学生活动)板演、解答.
设计意图:课堂教学体现以学生为本,让全体学生参与训练,深刻揭示排列数公式的结构、特征及应用.
(三)小结
(师生活动)共同小结.
本节主要内容有
1.组合概念.
2.组合数计算的两个公式.
(四)布置作业
1.课本作业:习题10 3第1(1)、(4),3题.
2.思考题:某学习小组有8个同学,从男生中选2人,女生中选1人参加数学、物理、化学三种学科竞赛,要求每科均有1人参加,共有180种不同的选法,那么该小组中,男、女同学各有多少人?
3.研究性题:
在 的 边上除顶点 外有 5个点,在 边上有 4个点,由这些点(包括 )能组成多少个四边形?能组成多少个三角形?
(五)课后点评
在学习了排列知识的基础上,本节课引进了组合概念,并推导出组合数公式,同时调控进行训练,从而培养学生分析问题、解决问题的能力.
高中数学必修一备课教案范文 篇3
重点难点教学:
1.正确理解映射的概念;
2.函数相等的两个条件;
3.求函数的定义域和值域。
一.教学过程:
1. 使学生熟练掌握函数的概念和映射的定义;
2. 使学生能够根据已知条件求出函数的定义域和值域; 3. 使学生掌握函数的三种表示方法。
二.教学内容:
1.函数的定义
设A、B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数()fx和它对应,那么称:fAB?为从集合A到集合B的一个函数(function),记作:
(),yf_A
其中,x叫自变量,x的取值范围A叫作定义域(domain),与x的值对应的y值叫函数值,函数值的集合{()|}f_A?叫值域(range)。显然,值域是集合B的子集。
注意:
① “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;
②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.
2.构成函数的三要素 定义域、对应关系和值域。
3、映射的定义
设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意
一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从 集合A到集合B的一个映射。
4. 区间及写法:
设a、b是两个实数,且a
(1) 满足不等式axb??的实数x的集合叫做闭区间,表示为[a,b];
(2) 满足不等式axb??的实数x的集合叫做开区间,表示为(a,b);
5.函数的三种表示方法 ①解析法 ②列表法 ③图像法
高中数学必修一备课教案范文 篇4
教学目标:
(1)了解坐标法和解析几何的意义,了解解析几何的基本问题。
(2)进一步理解曲线的方程和方程的曲线。
(3)初步掌握求曲线方程的方法。
(4)通过本节内容的教学,培养学生分析问题和转化的能力。
教学重点、难点:
求曲线的方程。
教学用具:
计算机。
教学方法:
启发引导法,讨论法。
教学过程:
【引入】
1、提问:什么是曲线的方程和方程的曲线。
学生思考并回答。教师强调。
2、坐标法和解析几何的意义、基本问题。
对于一个几何问题,在建立坐标系的基础上,用坐标表示点;用方程表示曲线,通过研究方程的性质间接地来研究曲线的性质,这一研究几何问题的方法称为坐标法,这门科学称为解析几何。解析几何的两大基本问题就是:
(1)根据已知条件,求出表示平面曲线的方程。
(2)通过方程,研究平面曲线的性质。
事实上,在前边所学的直线方程的理论中也有这样两个基本问题。而且要先研究如何求出曲线方程,再研究如何用方程研究曲线。本节课就初步研究曲线方程的求法。
【问题】
如何根据已知条件,求出曲线的方程。
【实例分析】
例1:设、两点的坐标是、(3,7),求线段的垂直平分线的方程。
首先由学生分析:根据直线方程的知识,运用点斜式即可解决。
解法一:易求线段的中点坐标为(1,3),
由斜率关系可求得l的斜率为
于是有
即l的方程为
①
分析、引导:上述问题是我们早就学过的,用点斜式就可解决。可是,你们是否想过①恰好就是所求的吗?或者说①就是直线的方程?根据是什么,有证明吗?
(通过教师引导,是学生意识到这是以前没有解决的问题,应该证明,证明的依据就是定义中的两条)。
证明:(1)曲线上的点的坐标都是这个方程的解。
设是线段的垂直平分线上任意一点,则
即
将上式两边平方,整理得
这说明点的坐标是方程的解。
(2)以这个方程的解为坐标的点都是曲线上的点。
设点的坐标是方程①的任意一解,则
到、的距离分别为
所以,即点在直线上。
综合(1)、(2),①是所求直线的方程。
至此,证明完毕。回顾上述内容我们会发现一个有趣的现象:在证明(1)曲线上的点的坐标都是这个方程的解中,设是线段的垂直平分线上任意一点,最后得到式子,如果去掉脚标,这不就是所求方程吗?可见,这个证明过程就表明一种求解过程,下面试试看:
解法二:设是线段的垂直平分线上任意一点,也就是点属于集合
由两点间的距离公式,点所适合的条件可表示为
将上式两边平方,整理得
果然成功,当然也不要忘了证明,即验证两条是否都满足。显然,求解过程就说明第一条是正确的(从这一点看,解法二也比解法一优越一些);至于第二条上边已证。
这样我们就有两种求解方程的方法,而且解法二不借助直线方程的理论,又非常自然,还体现了曲线方程定义中点集与对应的思想。因此是个好方法。
让我们用这个方法试解如下问题:
例2:点与两条互相垂直的直线的距离的积是常数求点的轨迹方程。
分析:这是一个纯粹的几何问题,连坐标系都没有。所以首先要建立坐标系,显然用已知中两条互相垂直的直线作坐标轴,建立直角坐标系。然后仿照例1中的解法进行求解。
求解过程略。
【概括总结】通过学生讨论,师生共同总结:
分析上面两个例题的求解过程,我们总结一下求解曲线方程的大体步骤:
首先应有坐标系;其次设曲线上任意一点;然后写出表示曲线的点集;再代入坐标;最后整理出方程,并证明或修正。说得更准确一点就是:
(1)建立适当的坐标系,用有序实数对例如表示曲线上任意一点的坐标;
(2)写出适合条件的点的集合
;
(3)用坐标表示条件,列出方程;
(4)化方程为最简形式;
(5)证明以化简后的方程的解为坐标的点都是曲线上的点。
一般情况下,求解过程已表明曲线上的点的坐标都是方程的解;如果求解过程中的转化都是等价的,那么逆推回去就说明以方程的解为坐标的点都是曲线上的点。所以,通常情况下证明可省略,不过特殊情况要说明。
上述五个步骤可简记为:建系设点;写出集合;列方程;化简;修正。
下面再看一个问题:
例3:已知一条曲线在轴的上方,它上面的每一点到点的距离减去它到轴的距离的差都是2,求这条曲线的方程。
【动画演示】用几何画板演示曲线生成的过程和形状,在运动变化的过程中寻找关系。
解:设点是曲线上任意一点,轴,垂足是(如图2),那么点属于集合
由距离公式,点适合的条件可表示为
①
将①式移项后再两边平方,得
化简得
由题意,曲线在轴的上方,所以,虽然原点的坐标(0,0)是这个方程的解,但不属于已知曲线,所以曲线的方程应为,它是关于轴对称的抛物线,但不包括抛物线的顶点,如图2中所示。
【练习巩固】
题目:在正三角形内有一动点,已知到三个顶点的距离分别为、、,且有,求点轨迹方程。
分析、略解:首先应建立坐标系,以正三角形一边所在的直线为一个坐标轴,这条边的垂直平分线为另一个轴,建立直角坐标系比较简单,如图3所示。设、的坐标为、,则的坐标为,的坐标为。
根据条件,代入坐标可得
化简得
①
由于题目中要求点在三角形内,所以,在结合①式可进一步求出、的范围,最后曲线方程可表示为
【小结】师生共同总结:
(1)解析几何研究研究问题的方法是什么?
(2)如何求曲线的方程?
(3)请对求解曲线方程的五个步骤进行评价。各步骤的作用,哪步重要,哪步应注意什么?
【作业】课本第72页练习1,2,3;
高中数学必修一备课教案范文 篇5
教学目标:
1、知识目标:使学生理解指数函数的定义,初步掌握指数函数的图像和性质。
2、能力目标:通过定义的引入,图像特征的观察、发现过程使学生懂得理论与实践 的辩证关系,适时渗透分类讨论的数学思想,培养学生的探索发现能力和分析问题、解决问题的能力。
3、情感目标:通过学生的参与过程,培养他们手脑并用、多思勤练的良好学习习惯和勇于探索、锲而不舍的治学精神。
教学重点、难点:
1、 重点:指数函数的图像和性质
2、 难点:底数 a 的变化对函数性质的影响,突破难点的关键是利用多媒体动感显示,通过颜色的区别,加深其感性认识。
教学方法:
引导——发现教学法、比较法、讨论法
教学过程:
一、事例引入
T:上节课我们学习了指数的运算性质,今天我们来学习与指数有关的.函数。什么是函数?
S: --------
T:主要是体现两个变量的关系。我们来考虑一个与医学有关的例子:大家对“非典”应该并不陌生,它与其它的传染病一样,有一定的潜伏期,这段时间里病原体在机体内不断地繁殖,病原体的繁殖方式有很多种,分裂就是其中的一种。我们来看一种球菌的分裂过程:
C:动画演示(某种球菌分裂时,由1分裂成2个,2个分裂成4个,------。一个这样的球菌分裂x次后,得到的球菌的个数y与x的函数关系式是: y = 2 x )
S,T:(讨论) 这是球菌个数 y 关于分裂次数 x 的函数,该函数是什么样的形式(指数形式),
从 函数特征分析:底数 2 是一个不等于 1 的正数,是常量,而指数 x 却是变量,我们称这种函数为指数函数——点题。
二、指数函数的定义
C:定义: 函数 y = a x (a>0且a≠1)叫做指数函数, x∈R.。
问题 1:为何要规定 a > 0 且 a ≠1?
S:(讨论)
C: (1)当 a
就没有意义;
(2)当 a=0时,a x 有时会没有意义,如x= - 2时,
(3)当 a = 1 时, 函数值 y 恒等于1,没有研究的必要。
巩固练习1:
下列函数哪一项是指数函数( )
A、 y=x 2 B、y=2x 2 C、y= 2 x D、y= -2 x
高中数学必修一备课教案范文 篇6
一、教学目标
1.知识与技能
(1)掌握画三视图的基本技能
(2)丰富学生的空间想象力
2.过程与方法
主要通过学生自己的亲身实践,动手作图,体会三视图的作用。
3.情感态度与价值观
(1)提高学生空间想象力
(2)体会三视图的作用
二、教学重点、难点
重点:画出简单组合体的三视图
难点:识别三视图所表示的空间几何体
三、学法与教学用具
1.学法:观察、动手实践、讨论、类比
2.教学用具:实物模型、三角板
四、教学思路
(一)创设情景,揭开课题
“横看成岭侧看成峰”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体,这堂课我们主要学习空间几何体的三视图。
在初中,我们已经学习了正方体、长方体、圆柱、圆锥、球的三视图(正视图、侧视图、俯视图),你能画出空间几何体的三视图吗?
(二)实践动手作图
1.讲台上放球、长方体实物,要求学生画出它们的三视图,教师巡视,学生画完后可交流结果并讨论;
2.教师引导学生用类比方法画出简单组合体的三视图
(1)画出球放在长方体上的三视图
(2)画出矿泉水瓶(实物放在桌面上)的三视图
学生画完后,可把自己的作品展示并与同学交流,总结自己的作图心得。
作三视图之前应当细心观察,认识了它的基本结构特征后,再动手作图。
3.三视图与几何体之间的相互转化。
(1)投影出示图片(课本P10,图1.2-3)
请同学们思考图中的三视图表示的几何体是什么?
(2)你能画出圆台的三视图吗?
(3)三视图对于认识空间几何体有何作用?你有何体会?
教师巡视指导,解答学生在学习中遇到的困难,然后让学生发表对上述问题的看法。
4.请同学们画出1.2-4中其他物体表示的.空间几何体的三视图,并与其他同学交流。
(三)巩固练习
课本P12练习1、2P18习题1.2A组1
(四)归纳整理
请学生回顾发表如何作好空间几何体的三视图
(五)课外练习
1.自己动手制作一个底面是正方形,侧面是全等的三角形的棱锥模型,并画出它的三视图。
2.自己制作一个上、下底面都是相似的正三角形,侧面是全等的等腰梯形的棱台模型,并画出它的三视图。
2024高中教案数学必修一
光阴如水,我们的教学工作又将翻开新的一页,现在的你想必不是在做教学计划,就是在准备做教学计划吧。但是教学计划要写什么内容才能让人眼前一亮呢?以下是小编为大家整理的2024年高一数学教学计划(精选8篇),欢迎大家借鉴与参考,希望对大家有所帮助。
2024高中教案数学必修一 篇1
一、教材分析
1、教材的地位与作用
模拟方法是北师大版必修3第三章概率第3节,也是必修3最后一节,本节内容是在学习了古典概型的基础上,用模拟方法估计一些用古典概型解决不了的实际问题的概率,使学生初步体会几何概型的意义;而模拟试验是培养学生动手能力、小组合作能力、和试验分析能力的好素材。
2、教学重点与难点
教学重点:借助模拟方法来估计某些事件发生的概率;
几何概型的概念及应用
体会随机模拟中的统计思想:用样本估计总体。
教学难点:设计和操作一些模拟试验,对从试验中得出的数据进行统计、分析;
应用随机数解决各种实际问题。
二、教学目标:
1、知识目标:使学生了解模拟方法估计概率的实际应用,初步体会几何概型的意义;并能够运用模拟方法估计概率。
2、能力目标:培养学生实践能力、协调能力、创新意识和处理数据能力以及应用数学意识。
3、情感目标:鼓励学生动手试验,探索、发现规律并解决实际问题,激发学生学习的兴趣。
三、过程分析
1、创设良好的学习情境,激发学生学习的欲望
从学生的生活经验和已有知识背景出发,提出用学过知识不能解决的问题:房间的纱窗破了一个小洞,随机向纱窗投一粒小石子,估计小石子从小洞穿过的概率。能用古典概型解决吗?为什么?从而引起认知矛盾,激发学生学习、探究的兴趣。
2、以实验和问题引导学习活动,使学生经历“数学化”、“再创造”的过程
通过两个实验:
(1)取一个矩形,在面积为四分之一的部分画上阴影,随机地向矩形中撒一把豆子(我们数100粒),统计落在阴影内的豆子数与落在矩形内的总豆子数,观察它们有怎样的比例关系?
(2)反过来,取一个已知长和宽的矩形,随机地向矩形中撒一把豆子,统计落在阴影内的豆子数与落在矩形内的总豆子数,你能根据豆子数得到什么结论?
让学生分组合作,利用课前准备的材料进行试验、讨论、分析,使学生主动进入探究状态,充分调动学生学习积极性,使他们感受到探讨数学问题的乐趣,培养学生与他人合作交流的能力以及团队精神。根据各小组试验结果,提出问题,引导学生进行猜想,得出结论:
使学生了解结论产生的背景,轻易地理解了这个结论,并培养学生数据分析能力、抽象概括能力。让他们感觉到数学定理、结论其实离他们很近,增强学生学习的动力和信心。
3、类比迁移,注重数学与实际联系,发展学生应用意识和能力
(1)求不规则图形面积
如图,曲线y=-x2+1与x轴,y轴围成区域A,
如何求阴影部分面积?
通过把不规则图形放在规则的、
易求面积的图形中,利用模拟方法
求不规则图形面积,在解决问题时
学生提出了借助不同图形,教师要
引导学生用最佳图形。让学生把不熟
悉的问题转化为熟悉的问题情
境,引导学生利用已有知识解决新
的问题,培养学识知识应用、类比迁移的能力。
本例通过介绍用计算机产生随机数来模拟,使学生了解现代信息技术的应用,了解另一种模拟方法。
(2)估计圆周率π的值
让学生设计模拟试验,估计圆周率π的值,培养学生应用数学的意识,使学习过程成为学生的再创造过程。达到本课的目标,使学生了解模拟方法估计概率的实际应用,能够运用模拟方法估计概率。通过设计和操作模拟试验,对得出数据进行统计、分析,解决本课难点。让学生体验数学的发现和创造过程,发展他们的创新意识。同时通过对介绍古代数学家祖冲之,对学生进行爱国主义教育,培养学生爱国情操。
(3)几何概型概率计算方法
①通过问题:如果正方形面积不变,但形状改变,所得比例发生变化吗?
引出几何概型的概念、特点和计算公式
把试验的结论上升到理论,使学生的认识有一个从试验到理论的升华,使学生掌握基本概念,并运用理论解决问题,使学生的认识有一个质的飞跃
②例:如图,在墙上挂着一块边长为16cm的正方形木板,上面画了小、中、大三个同心圆,半径分别为2cm、4cm、6cm,某人站在3m处向此板投镖,设投镖击中线上或没有
投中木板时都不算,可重投。
问:
(1)投中大圆内的概率是多少?
(2)投中小圆和中圆形成的圆环的概率是多少?
配套习题是知识的直接运用,有助于学生巩固新学的知识,使学生掌握基本知识和技能。
③通过介绍本章开篇中“蒲丰投针”问题,利用计算机动态显示投针试验,使学生对此试验有初步了解,开阔学生视野,体现数学的文化价值,留给学生课后探究的空间。
4、通过实际问题:小明家的晚报在下午5:30~6:30之间的任何一个时间随机地被送到,小明一家人在下午6:00~7:00之间的任何一个时间随机地开始晚餐。
(1)你认为晚报在晚餐开始之前被送到和在晚餐开始之后被送到哪一种可能性更大?
(2)晚报在晚餐开始之前被送到的概率是多少?
引导学生利用转盘设计试验,并分组进行试验,鼓励学生自主探索与合作交流,培养学生创新意识,并使学生了解模拟形式的多样化,并通过模拟进一步熟悉试验的操作,提高动手能力和小组协调能力。通过问题拓展,介绍用理论解决的方法,激起学生再探究的欲望,留给学生课后思考的空间。
4、课堂小结
由学生总结本节课所学习的主要内容,让学生对所学内容有全面、系统的认识。
四、教法、学法分析
本节课是在采用信息技术和数学知识整合的基础上从生活实际中提炼数学素材,使学生在熟悉的背景下、在认知冲突中展开学习,通过试验活动的开展,使学生在试验、探究活动中获取原始数据,进而通过数与形的类比,在老师的引导、启发下感悟出模拟的数学结论,通过结论的运用提升为数学模型并加以应用,它实现了学生在学习过程中对知识的探究、发现的创作经历,调动了学生学习的积极性和主动性,同学们在亲身经历知识结论的探究中获得了对数学价值的新认识。
五、评价分析
本课是使学生通过试验掌握用模拟方法估计概率,主要是用分组合作试验、探究方法研究数学知识,因此评价时更注重探究和解决问题的全过程,鼓励学生的探索精神,引导学生对问题的正确分析与思考,关注学生提出问题、参与解决问题的全过程,关注学生的创新精神和实践能力。
2024高中教案数学必修一 篇2
一、教材分析
函数的单调性是函数的重要性质。从知识的网络结构上看,函数的单调性既是函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性等内容的基础,在研究各种具体函数的性质和应用、解决各种问题中都有着广泛的应用。函数单调性概念的建立过程中蕴涵诸多数学思想方法,对于进一步探索、研究函数的其他性质有很强的启发与示范作用。
根据函数单调性在整个教材内容中的地位与作用,本节课教学应实现如下教学目标:
知识与技能使学生理解函数单调性的概念,初步掌握判别函数单调性的方法;
过程与方法引导学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简单的问题;使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力。
情感态度与价值观在函数单调性的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。
根据上述教学目标,本节课的教学重点是函数单调性的概念形成和初步运用。虽然高一学生已经有一定的抽象思维能力,但函数单调性概念对他们来说还是比较抽象的。因此,本节课的学习难点是函数单调性的概念形成。
二、教法学法
为了实现本节课的教学目标,在教法上我采取了
1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性。
2、在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念。
3、在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达。
在学法上我重视了:
1、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的质的飞跃。
2、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力。
三、教学过程
函数单调性的概念产生和形成是本节课的难点,为了突破这一难点,在教学设计上采用了下列四个环节。
(一)创设情境,提出问题
(问题情境)(播放中央电视台天气预报的音乐)。如图为某地区2006年元旦这一天24小时内的气温变化图,观察这张气温变化图:
[教师活动]引导学生观察图象,提出问题:
问题1:说出气温在哪些时段内是逐步升高的或下降的?
问题2:怎样用数学语言刻画上述时段内“随着时间的增大气温逐渐升高”这一特征?
[设计意图]问题是数学的心脏,问题是学生思维的开始,问题是学生兴趣的开始。这里,通过两个问题,引发学生的进一步学习的好奇心。
(二)探究发现建构概念
[学生活动]对于问题1,学生容易给出答案。问题2对学生来说较为抽象,不易回答。
[教师活动]为了引导学生解决问题2,先让学生观察图象,通过具体情形,例如,“t1=8时,f(t1)=1,t2=10时,f(t2)=4”这一情形进行描述。引导学生回答:对于自变量8
在学生对于单调增函数的特征有一定直观认识时,进一步提出:
问题3:对于任意的t1、t2∈[4,16]时,当t1
[学生活动]通过观察图象、进行实验(计算机)正反对比,发现数量关系,由具体到抽象,由模糊到清晰逐步归纳、概括、抽象出单调增函数概念的本质属性,并尝试用符号语言进行初步的表述。
[教师活动]为了获得单调增函数概念,对于不同学生的表述进行分析、归类,引导学生得出关键词“区间内”、“任意”、“当时,都有”。告诉他们“把满足这些条件的函数称之为单调增函数”,之后由他们集体给出单调增函数概念的数学表述。提出:
问题4:类比单调增函数概念,你能给出单调减函数的概念吗?
最后完成单调性和单调区间概念的整体表述。
[设计意图]数学概念的形成来自解决实际问题和数学自身发展的需要。但概念的高度抽象,造成了难懂、难教和难学,这就需要让学生置身于符合自身实际的学习活动中去,从自己的经验和已有的知识基础出发,经历“数学化”、“再创造”的活动过程。刚升入高一的学生已经具备了一定的几何形象思维能力,但抽象思维能力不强。从日常的描述性语言概念升华到用数学符号语言精确刻画概念是本节课的难点。
(三)自我尝试运用概念
1.为了理解函数单调性的概念,及时地进行运用是十分必要的。
[教师活动]问题5:
(1)你能找出气温图中的单调区间吗?
(2)你能说出你学过的函数的单调区间吗?请举例说明。
[学生活动]对于(1),学生容易看出:气温图中分别有两个单调减区间和一个单调增区间。对于(2),学生容易举出具体函数如:f(x)=—2x+2,f(x)=x2+2x—3,f(x)=1/x,并画出函数的草图,根据函数的图象说出函数的单调区间。
[教师活动]利用实物投影仪,投影出学生画出的草图和标出的单调区间,并指出学生回答问题时可能出现的错误,如:在叙述函数的.单调区间时写成并集。
[设计意图]在学生已有认知结构的基础上提出新问题,使学生明了,过去所研究的函数的相关特征,就是现在所学的函数的单调性,从而加深对函数单调性概念的理解。
2.对于给定图象的函数,借助于图象,我们可以直观地判定函数的单调性,也能找到单调区间。而对于一般的函数,我们怎样去判定函数的单调性呢?
[教师活动]问题6:证明在区间(0,+∞)上是单调减函数。
[学生活动]学生相互讨论,尝试自主进行函数单调性的证明,可能会出现不知如何比较f(x1)与f(x2)的大小、不会正确表述、变形不到位或根本不会变形等困难。
[教师活动]教师深入学生中,与学生交流,了解学生思考问题的进展过程,投影学生的证明过程,纠正出现的错误,规范书写的格式。
[学生活动]学生自我归纳证明函数单调性的一般方法和操作流程:取值作差变形定号判断。
[设计意图]有效的数学学习过程,不能单纯的模仿与记忆,数学思想的领悟和学习过程更是如此。利用学生自己提出的问题,让学生在解题过程中亲身经历和实践体验,师生互动学习,生生合作交流,共同探究。
(四)回顾反思深化概念
[教师活动]给出一组题:
1、定义在R上的单调函数f(x)满足f(2)>f(1),那么函数f(x)是R上的单调增函数还是单调减函数?
2、若定义在R上的单调减函数f(x)满足f(1+a)
[学生活动]学生互相讨论,探求问题的解答和问题的解决过程,并通过问题,归纳总结本节课的内容和方法。
[设计意图]通过学生的主体参与,使学生深切体会到本节课的主要内容和思想方法,从而实现对函数单调性认识的再次深化。
[教师活动]作业布置:
(1)阅读课本P34-35例2
(2)书面作业:
必做:教材P431、7、11
选做:二次函数y=x2+bx+c在[0,+∞)是增函数,满足条件的实数的值唯一吗?
探究:函数y=x在定义域内是增函数,函数有两个单调减区间,由这两个基本函数构成的函数的单调性如何?请证明你得到的结论。
[设计意图]通过两方面的作业,使学生养成先看书,后做作业的习惯。基于函数单调性内容的特点及学生实际,对课后书面作业实施分层设置,安排基本练习题、巩固理解题和深化探究题三层。学生完成作业的形式为必做、选做和探究三种,使学生在完成必修教材基本学习任务的同时,拓展自主发展的空间,让每一个学生都得到符合自身实践的感悟,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展、合作探究的学习氛围的形成。
四、教学评价
学生学习的结果评价当然重要,但是更重要的是学生学习的过程评价。教师应当高度重视学生学习过程中的参与度、自信心、团队精神、合作意识、独立思考习惯的养成、数学发现的能力,以及学习的兴趣和成就感。学生熟悉的问题情境可以激发学生的学习兴趣,问题串的设计可以让更多的学生主动参与,师生对话可以实现师生合作,适度的研讨可以促进生生交流,以及团队精神,知识的生成和问题的解决可以让学生感受到成功的喜悦,缜密的思考可以培养学生独立思考的习惯。让学生在教师评价、学生评价以及自我评价的过程中体验知识的积累、探索能力的长进和思维品质的提高,为学生的可持续发展打下基础。
2024高中教案数学必修一 篇3
各位老师同学们,大家好!今天我说课的课题是“集合的概念”,本节内容选自高中数学必修1(人教版),下面我将主要从六个方面介绍我的教学方案。
一、教材分析:
教材的地位和作用:
集合是学习高中数学的重要工具之一,起着承前启后的作用。本小节首先从初中代数与几何涉及的集合实例人手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明。然后,介绍了集合的常用表示方法,包括列举法、描述法等,还给出了画图表示集合的例子。从教材我归纳出本节内容的教学重点和难点。
(一)教学重点:集合的基本概念和表示方法,集合元素的特征
(二)教学难点:运用集合的三种常用表示方法、列举法与描述法,正确表示一些简单的集合
二、教学目标:
(一)知识目标:
(1)使学生初步理解集合的概念,知道常用数集的概念及其记法;
(2)使学生初步了解“属于”关系的意义;
(3)使学生初步了解有限集、无限集、空集的意义
(二)能力目标:
(1)重视基础知识的教学、基本技能的训练和能力的培养;
(2)启发学生能够发现问题和提出问题,善于独立思考,学会分析问题和创造地解决问题;
(3)通过教师指导,发现知识结论,培养学生抽象概括能力和逻辑思维能力;
(三)德育目标:激发学生学习数学的兴趣和积极性,陶冶学生的情操,培养学生坚忍不拔的意志,实事求是的科学学习态度和勇于创新的精神。
三、学情分析:
针对现在的学生知识迁移能力差、计算能力差的特点,第一节课的内容不要求学生太多的计算,通过大量的举例让学生充分掌握集合的基础知识。
四、教法分析:
为了突出重点、突破难点,本节课主要采用观察、分析、类比、归纳的方法让学生参与学习,将学生置于主体位置,发挥学生的主观能动性,将知识的形成过程转化为学生亲自探索类比的过程,使学生获得发现的成就感。在这个过程中力求把握好以下几点:
(1)通过实例,让学生去发现规律。让学生在问题情景中,经历知识的形成和发展,力求使学生学会用类比的思想去看待问题。
(2)营造民主的教学氛围,使学生参与教学全过程。
(3)力求反馈的全面性、及时性,通过精心设计的提问,让学生的思维动起来,针对学生回答的问题,老师进行适当的点评。
(4)给学生思考的时间和空间,不急于把结果抛给学生,让学生自己去观察,分析,类比得出结果,提高学生的推理能力。
五、教学过程
(一)复习导入
(1)简介数集的发展,复习最大公约数和最小公倍数,质数与和数;
(2)教材中的章头引言;
(3)教材中例子(P4)。
(二)讲解新课
(1)集合的有关概念
(2) 常用集合及表示方法
(3)元素对于集合的隶属关系
(4)集合中元素的特性
(三)课堂练习
1下列各组对象能确定一个集合吗?
(1)所有很大的实数的集合 (不确定)
(2)好心的人的集合 (不确定)
(3){1,2,2,3,4,5} (有重复)
(4)所有直角三角形的集合 (是 的)
(5)高一(12)班全体同学的集合(是 的)
(6)参加2008年奥运会的中国代表团成员的集合(是 的)
2、教材P5练习1、2
六:总结
1.本节主要学习了集合的基本概念、表示符号;一些常用数集及其记法;集合的元素与集合之间的关系;以及集合元素具有的特征。
2.我们在进一步复习巩固集合有关概念的基础上,又学习了集合的表示方法和有限集、无限集、空集的概念,同学们要熟练掌握。
2024高中教案数学必修一 篇4
教学目标
1.使学生掌握的概念,图象和性质.
(1)能根据定义判断形如什么样的函数是,了解对底数的限制条件的合理性,明确的定义域.
(2)能在基本性质的指导下,用列表描点法画出的图象,能从数形两方面认识的性质.
(3)能利用的性质比较某些幂形数的大小,会利用的图象画出形如的图象.
2.通过对的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法.
3.通过对的研究,让学生认识到数学的应用价值,激发学生学习数学的兴趣.使学生善于从现实生活中数学的发现问题,解决问题.教学建议
教材分析
(1)是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以应重点研究.
(2)本节的教学重点是在理解定义的基础上掌握的图象和性质.难点是对底数在和时,函数值变化情况的区分.
(3)是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究.
教法建议
(1)关于的定义按照课本上说法它是一种形式定义即解析式的特征必须是的样子,不能有一点差异,诸如,等都不是.
(2)对底数的限制条件的理解与认识也是认识的重要内容.如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正了解它的由来.
关于图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象.
2024高中教案数学必修一 篇5
为了做好这学期的数学教学工作,结合学校二轮课改要求和“十六字方针”特作计划如下:
一、工作目标:
高一下学期的工作是第二册课本教学任务;
二、教法分析:
1、选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生“看个究竟”的冲动,以达到培养其兴趣的目的。
2、积极探索改革教学,把新课程标准的新思想、新理念和数学课堂教学的新思路、新设想结合起来,转变思想,积极探索,改革教学。爱因斯曾经说过:“兴趣是最好的老师。”激发学生的学习兴趣,是数学教学过程中提高质量的重要手段之一。
3、通过“观察”,“思考”,“探究”等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。
4、在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。
三、教学措施:
1、转变教师的教学方式转变学生的学习方式
教师要以新理念指导自己的教学工作,牢固树立学生是学习的主人,以平等、宽容的态度对待学生,在沟通和"对话"中实现师生的共同发展,努力建立互动的师生关系。本学期要继续以改变学生的学习方式为主,提倡探究性学习、参与性学习和实践性学习。
2、发挥备课组的集体作用
集体备课,教案要求统一。每次备课都有一个主题,然后集体讨论,补充完善。同时,根据各班的具体情况,适当进行调整,以适应学生的实际情况为标准,让学生学会并且掌握,不搞教条主义和形式主义。教案应体现知识体系、思维方法、训练应用,以及渗透运用等,要对重点、难点有分析和解决方法。
3、详细计划,保证练习质量
教学中用配备资料《创新设计》,要求学生按教学进度完成相应的习题,教师要提前向学生指出不做的题,以免影响学生的时间,每周的一份周测练习试卷,存在的普遍性问题要及时安排时间讲评。
4、加强辅导工作
对已经出现数学学习困难的学生,教师的个别辅导十分重要。教师教学中,要尽快掌握班上学生的数学学习情况,有针对性地进行辅导工作,既要注意照顾好班上优生层,更不能忽视班上的学困学生。
2024高中教案数学必修一 篇6
为圆满完成新高一的教学任务,使学生全面系统的掌握必修一到四的学习内 容,提高学生的数学素养,我们高一数学组秉承“高一决定高考,细节决定成败”的.思想,从初、高中衔接起认真分析学情,积极研讨,制定本学期教学计划如下:
一、学生基本状况:
(1)本年级共12个行政班,学生860人。在中考数学成绩满分120分的基础上,我级100分以上的人很少,相对来说90分以上属于高分,绝大多数90分以下;学生数学底子薄弱,学习环节不完整,学习习惯不科学;另外,班级差异大,层次多。我们要加强集体备课力度,夯实基础,培养学生良好的学习习惯。
(2)由于初高中分别实施课改教学,高中教学内容与初中所学衔接度远远不够,存在较大断层,我们需制定并学习衔接材料,并且在新授的同时适时补充一些内容,势必挤占新课的授课时间,时间紧任务重。我们要珍惜每一堂课,优化每一环节,提高学习效率,探索高效课堂。
(3)高一作为起始年级,作为从义务阶段迈入应试征程的适应阶段,学生有的是一份执着,期望值也较大。理想的期盼与学法的突变,难度的加强与惰性的生成等等矛盾冲突伴随着高一新生的成长,我们必须转变教学理念,并落实在课堂教学的各个环节,才能不负众望。
(4)刚刚进入高一的学生还停留在初中时的学习习惯和学习方法以及对数学学习的散漫认识上,我们要从学生的认识水平和实际能力出发,研究学生的心理特征,做好初三与高一的衔接工作,帮助学生解决好从初中到高中学习方法的过渡。从高一起就注意培养学生良好的数学思维方法,良好的学习态度和学习习惯,以适应高中领悟性的学习方法。
二、教学内容任务:
本学期完成数学人教A版《必修1》和《必修2》两册内容。
三、教学措施要求:
(1)注意研究学生,做好初、高中学习方法的衔接工作;加强自我学习,特别是两个纲领性文件——《国家普通高中数学课程标准教学要求》和《20xx年山东省高考数学科考试说明》的学习,吃透大纲,准确把握教学要求,提高教学效率,不做无用功。
(2)加强集体备课,发动全组同志,确定阶段主讲人,集思广益,讨论优化教学方案;各班级统一进度,分层要求,分层作业,分层考试;注意运用现代化教学手段辅助数学教学;注意运用多媒体、投影仪、电脑软件等现代化教学手段辅助教学,提高课堂效率,激发学生学习兴趣。
(3)着眼于基础知识与重点内容,集中精力打好基础,分项突破难点。充分重视基础知识、基本技能、基本方法的教学,为进一步的学习打好坚实的基础,切勿忙于过早的拔高,上难题。同时放眼高中教学全局,注意高考命题中的知识要求,能力要求及新趋势,这样统筹安排,循序渐进,使高一的数学教学与高中教学的全局有机结合。
(4)培养学生解答考题的能力,通过例题,从形式和内容两方面对所学知识进行能力方面的分析,引导学生了解、训练数学能力和培养数学素养。
(5)让学生通过单元考试,检测自己的实际应用能力,从而及时总结经验,找出不足,做好充分的准备。
(6)精心组织教学,保护学生学习数学的积极性,重视数学学习能力培养;抓好尖子生与后进生的辅导工作,提前展开数学分层培养和数学基础辅导。
2024高中教案数学必修一 篇7
一、设计理念
新课标指出:学生的数学学习活动不应只是接受、记忆、模仿、练习,教师应引导学生自主探究、合作学习、动手操作、阅读自学,应注重提升学生的数学思维能力,注重发展学生的数学应用意识。
二、教材分析
本节课选自人教版《普通高中课程标准实验教课书》必修1,第一章1.1.2集合间的基本关系。集合是数学的基本和重要语言之一,在数学以及其他的领域都有着广泛的应用,用集合及对应的语言来描述函数,是高中阶段的一个难点也是重点,因此集合语言作为一种研究工具,它的学习非常重要。本节内容主要是集合间基本关系的学习,重在让学生类比实数间的关系,来进行探究,同时培养学生用数学符号语言,图形语言进行交流的能力,让学生在直观的基础上,理解抽象的概念,同时它也是后续学习集合运算的知识储备,因此有着至关重要的作用。
三、学情分析
【年龄特点】:
假设本次的授课对象是普通高中高一学生,高一的学生求知欲强,精力旺盛,思维活跃,已经具备了一定的观察、分析、归纳能力,能够很好的配合教师开展教学活动。
【认知优点】
一方面学生已经学习了集合的概念,初步掌握了集合的三种表示法,对于本节课的学习有利一定的认知基础。
【学习难点】
但是,本节课这种类比实数关系研究集合间的关系,这种类比学习对于学生来说还有一定的难度。
四、教学目标
知识与技能:
1.理解子集、V图、真子集、空集的概念。
2.掌握用数学符号语言以及V图语言表示集合间的基本关系。
3.能够区分集合间的包含关系与元素与集合的属于关系。
过程与方法:
1.通过类比实数间的关系,研究集合间的关系,培养学生类比、观察、分析、归纳的能力。
2.培养学生用数学符号语言、图形语言进行交流的能力。
情感态度与价值观:
1.激发学生学习的兴趣,图形、符号所带来的魅力。
2.感悟数学知识间的联系,养成良好的思维习惯及数学品质。
五、教学重、难点
重点:集合间基本关系。
难点:类比实数间的关系研究集合间的关系。
六、教学手段
PPT辅助教学
七、教法、学法
教法:探究式教学、讲练式教学。
遵循“教师主导作用与学生主体地位相结合的”教学规律,引导学生自主探究,合作学习,在教学中引导学生类比实数间关系,来研究集合间的关系,降低了学生学习的难度,同时也激发了学生学习的兴趣,充分体现了以学生为本的教学思想。
学法:自主探究、类比学习、合作交流。
教师的“教”其本质是为了“不教”,教师除了让学生获得知识,提高解题能力,还应该让学生学会学习,乐于学习,充分体现“以学定教”的教学理念。通过引导学生类比学习,同学间的合作交流,让学生更好的学习集合的知识。
八、课型、课时
课型:新授课
课时:一课时
2024高中教案数学必修一 篇8
学习引导
一、自主学习
1. 阅读课本 练习止.
2. 回答问题
(1)课本内容分成几个层次?每个层次的中心内容是什么?
(2)层次间的联系是什么?
(3)对数函数的定义是什么?
(4)对数函数与指数函数有什么关系?
3. 完成 练习
4. 小结.
二、方法指导
1. 在学习对数函数时,同学们应从熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质.
2. 本节课的主线是对数函数是指数函数的反函数,所有的问题都应围绕着这条主线展开.同学们在学习时应该把两个函数进行类比,通过互为反函数的两个函数的关系由已知函数研究未知函数的性质
思考引导
一、提问题
1. 对数函数的自变量和函数分别在指数函数中是什么?
2.两个函数如果互为反函数,则他们的值域,定义域有什么关系?
3.是否所有的函数都有反函数?试举例说明.
二、变题目
1. 试求下列函数的反函数:
(1) ; (2) ;
(3) ; (4) .
2. 求下列函数的定义域:
(1) ; (2) ; (3) .
3. 已知 则 = ; 的定义域为 .
总结引导
1.对数函数的有关概念
(1)把函数 叫做对数函数, 叫做对数函数的底数;
(2)以10为底数的对数函数 为常用对数函数;
(3)以无理数 为底数的对数函数 为自然对数函数.
2. 反函数的概念
在指数函数 中, 是自变量, 是 的函数,其定义域是 ,值域是 ;在对数函数 中, 是自变量, 是 的函数,其定义域是 ,值域是 ,像这样的两个函数叫做互为反函数.
3. 与对数函数有关的定义域的求法:
4. 举例说明如何求反函数.
拓展引导
一、课外作业: 习题3-5 A组 1,2,3, B组1,
二、课外思考:
1. 求定义域: .
2. 求使函数 的函数值恒为负值的 的取值范围.