幼儿教师教育网,为您提供优质的幼儿相关资讯

三角形面积教学设计教案

发布时间:2024-03-01 三角形教学设计教案 教学设计教案

三角形面积教学设计教案汇总。

教案课件是老师教学工作的起始环节,也是上好课的先决条件,每位老师应该设计好自己的教案课件。 新教师要花费更多的时间和心思来完善教案和课件。经过认真挑选编辑为您呈现了这篇精选的“三角形面积教学设计教案”,希望这些技巧能够帮助你在工作中更好的与人沟通!

三角形面积教学设计教案【篇1】

教学目标:

1、使学生理解和掌握三角形面积计算的公式,能够应用公式计算三角形的面积

2、经历探索三角形面积计算方法的过程,培养学生抽象概括的能力

3、在解决实际问题的过程中体验数学与生活的联系

教学重点:

探索并掌握三角形面积计算公式,能正确计算三角形的面积。

教学难点:

理解三角形面积是同底(长)等高(宽)的平行四边形面积的一半。

教学关键:

让学生经历操作、合作交流、归纳发现和抽象公式的过程。

教具准备:

三组三角形(直角三角形,锐角三角形,钝角三角形)

学具准备:

每个小组至少准备完全一样的直角三角形、锐角三角形、钝角三角形各两个

教学过程:

一、创设情境,揭示课题

复习:平行四边形的面积公式。

大家都是少先队员吗?是少先队员就要佩戴红领巾,那你有没有观察过你所戴的红领巾是什么形状的呢?(三角形)那你有办法计算出它的面积吗?今天就让我们来学习“三角形的面积”(板书课题)

(屏幕出示红领巾图)

二、动手操作,自主探究

此时在黑板上呈现出提前准备好的三角形教具,并贴在黑板上。(将三角形的高和底分别表在图上)

将任意一组三角形(大小相等)发给学生,

提问:上节课,我们把平行四边形转化成长方形来探索平行四边形面积的`计算公式的。大家猜一猜:能不能把三角形也转化成已学过的图形来求面积呢?

讨论并试着回答问题:

(1)三角形的面积与转化后的图形的面积有什么关系?

(与()有关,有什么关系?

(3)利用转化的图形,你能找到计算三角形面积的方法吗?

2、分组实验,合作学习。

(1)提出操作和探究要求。

让学生拿出课前准备的一种类型三角形(各两个)小动手拼一拼、摆一摆或剪拼。

问题:①用两个完全一样的三角形摆拼,能拼出什么图形?

②拼出的图形与原来三角形有什么联系?

显示一个作好高的三角形,移出一个与它同样大小的三角形,再把这个三角形旋转、移动,和下一个三角形拼成一个平行四边形。

展示:(用两个完全一样的三角形摆拼)

(两锐角三角形)(两钝角三角形)(两直角三角形)(两等腰直角三角形)

用旋转平移的方法将三角形转化成各种已学过的图形。

〈1〉通过实验,你们发现了什么?

引导学生得出:只要是两个完全一样的三角形都能拼成一个平行四边形

〈2〉谁能说说,每个三角形的面积与拼成的平行四边形的面积有什么关系?

〈3〉拼成的平行四边形是三角形面积的二倍。

〈4〉每个三角形的面积是拼成的平行四边形的面积的一半。

[设计意图:通过请学生帮助老师解困惑,加深学生对三角形面积计算公式含义的理解:“底×高”表示用两个完全一样的三角形拼成的平行四边形的面积;因为三角形的面积是拼成平行四边形面积的一半,所以要“÷归纳公式

(1)讨论:

a、三角形的底和高与平行四边形的底和高有什么关系?

b、怎样求三角形的面积?

c、你能根据实验结果,写出三角形的面积计算公式吗?

(2)归纳交流推导过程,说出字母公式。

根据学生回答板书:三角形的面积=底×高÷2

〈1〉底×高表示什么?

〈2〉为什么要除以2?

〈3〉如果用s表示三角形面积,用α和h分别表示三角形的底和高,那么你能用字母写出三角形的面积公式吗?

结合学生回答,教师板书s=ah÷2

4、进行爱国教育

师:同学们,你们知道吗?今天我们一动手起推导出的三角形的面积计算公式,很早以前,我们的祖先就已经发现了,请看大屏幕。看了这段话,你们有什么感受?(课本p

三、应用新知,解决问题

例2:红领巾的底是100cm,高是33cm,它的面积是多少平方厘米?

答:……

注意:你认为计算三角形的面积,什么地方容易出错?(强调“÷

独立完成p85做一做。

四、深化理解、应用拓展

1、课本86页的练习第1题。课件出示下图:

师:你认识这些道路交通警示标志吗?知道它们的具体含义吗?交通标志对于维护交通安全有着重要的意义和作用。请大家算一算,这个标志牌的面积大约是多少?(教育学生要遵守交通规则,注意交通安全,接着让学生口头列算式,不用计算。)

2、课本86页第2题:你能想办法计算出每个三角形的面积吗?。

师:要计算出每个三角形的面积,需要什么数据?要怎么做?

先让学生想,小组交流,再汇报,最后学生动手操作计算、评讲。

,求高。

师:求三角形的面积我们会算了,如果已知三角形的面积求

三角形的高你会算吗?(生讨论汇报,再计算、反馈。)

4、想一想,下面说法对不对?为什么?

((

三角形面积教学设计教案【篇2】

教学难点:

帮助学生认识到为什么要“÷2”

这课我会采用分组学习的方式,事先给每组一些操作材料,让大家在操作中交流,在交流中丰富感知,并逐步形成正确的认识。

我们已经学习过哪些平面图形的面积计算?请你用字母公式来说一说。

能说说这些公式是分别用什么方法得到的呢?

将刚才复习中的三种图形,利用课件的演示,添上一条对角线。

如图:

每个小方格表示1平方厘米,能说出涂色三角形的面积各是多少吗?

分别说给你的的同桌听一听,不仅要说清楚是多少面积更要说清楚你是怎么想的。

第2张图可用数方块的方法,数得8块,即8平方厘米;

其他的几个三角形用数的方法觉得有麻烦,有很多地方都不满1格,所以还是用大图形的面积,除以2来算,更为方便。

看来三角形的'面积,与它对应的平行四边形有密切的关系。

把附页上的三角形剪下来,看看与书上哪个三角形可以拼成平行四边形。

先拼,再求出拼成的平行四边形和每个三角形的面积,在小组里交流,填写书上的表格。

学生分组学习,填完表格之后,继续完成书上的讨论部分。鼓励同学之间质疑、解决。老师加强巡视指导。

全班交流,使学生清晰地认识到:

边形。三角形的面积应该等于这个平行四边形面积的一半;

(2)拼成的三角形和平行四边形的底和高都分别相等;

(3)三角形的面积是与它等底等高的平行四边形面积的一半,所以不能忘了“÷2”

S表示三角形的面积, a和h分别表示三角形的底和高,谁能用字母来表示上面的公式?

3、学生在小组交流的时候,可能会有不同的意见,比如就只用一个三角形,通过剪、拼,也可以得到一个平行四边形。

交流这种想法,指名说说这个三角形面积的计算方法:

这个三角形的面积就等于平行四边形的面积。平行四边形的底就是三角形的底,平行四边形的高是三角形高的一半,所以平行四边形的面积=底×(高÷2)

4、学生阅读第16页的“你知道吗?”,通过阅读,再与上面的方法做一比较。

师:这几种方法都正确地算出了三角形的面积。它们之间有什么相同的地方呢?

1、完成“练一练”

电脑分别演示这两题。在交流答案的时候,引导学生说清楚什么时候要“×2”,什么时候要“÷2”,为什么?以进一步加深对三角形面积公式与平行四边形面积公式之间联系的理解。

继续完成p.17想想做做的第1题。

2、完成“试一试”,算出这块三角形交通标志牌的面积。

在交流的时候,要给学生正确解答这类题书写格式的示范,培养学生规范地应用计算公式完成练习。

指名板演,讲评的时候注意发现学生练习中的问题。比如书写的格式、计算中的问题、“÷2”的遗漏、单位名称等,都要一一指出并纠正。

一个特例:第一张图画的是一个直角三角形,它的一组直角边就分别是它的底和高。

3、画一画,比一比:在方格图上画出面积是6平方厘米的三角形,你能有几种画法?

比如:

汇总学生的各种画法之后,指名说说自己在画的时候是怎么想的?通过交流,使学生进一步认识到“6平方厘米”先要考虑“12平方厘米”(对应的平行四边形面积),进而考虑只要底和高相乘得“12”就可以了;这样画出的三角形虽然形状各不相同,但面积都是6平方厘米。

四、全课总结:

这节课我们学习的是三角形面积的计算,说说你知道了哪些具体的知识?怎么得到这些知识的?

三角形面积教学设计教案【篇3】

一、教学内容:人教版小学五年级上册教科书P91内容及P92内容。

二、学习目标:

知识与技能:探索并掌握三角形的面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。

过程与方法:使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,从而发展学生的空间观念和初步的推理能力。

情感态度与价值观:让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。

三、教学重难点:

教学重点:探究并掌握三角形的面积计算公式,能正确计算三角形的面积。

教学难点:理解三角形面积计算公式的推导过程。

四、教学准备:

课件、三角形纸片、剪刀等。

五、教学过程:

一、复习引入

亲爱的同学们,我们既熟悉,又让我们感到神秘的数学丰富着我们对世界的认识,数学中的数,让我们对生活中的事物的有了量的认识,而形则描绘出了我们美丽世界中物的形状。

让我们一起回忆一下,我们学过哪些图形的面积?它们是如何计算的?

其中平行四边形的面积是我们上节课学习的。谁来说说我们是怎样推导出平行四边形面积的计算公式的?

通过割补等方法把求新学习的平行四边形的面积转化为求已学过的图形的面积?回想一下平行四边形的面积和它的什么有关?它的面积公式是?S=ah

今天就让我们一起来学习这些平面图形中的三角形的面积。谁来说说我们都学过有关三角形的哪些知识?一起回顾一下三角形的底和高。猜一猜它的面积可能跟什么有关呢?我们能否也通过把它也转化成我们学过的图形来研究呢,让我们一起探究它的面积吧。

二、新课探究

请同学们通过操作手中的图形(拼一拼、折一折或者剪拼的方法,看是否把它也转化成我们学过的图形,进而得到三角形的面积公式?)看是否能求出三角形的面积计算公式。

请先看操作要求。

操作要求:

1.前后两排4人小组开展活动,先商讨怎么操作可以求出三角形的面积。

2.按照商讨的方案,动手操作,验证商讨方案。

3.根据操作过程,组内说清楚怎么操作的,怎么得到三角形的面积计算方法。

现在请带着这样几个问题开始操作吧。

问题:

1.你们用两个怎样的三角形拼图?能拼出什么图形?

2.拼出的图形的面积你会算吗?

3.拼出的图形与原来的三角形有什么联系?

请各小组选派一名同学来说一说。

让学生按照问题去说,一边说一边指着图形。

现在的长方形的长和原来的三角形的底有什么关系?现在的长方形的长和原来的三角形的高又有怎样的关系?初步给学生建立长方形和三角形中长和底相等,宽和高相等。

拼成的平行四边形的底和原来的三角形底有什么关系?平行四边形的高和三角形的高又有怎样的关系?引导学生感受平行四边形和三角形是等底等高的。

拼成的平行四边形的底和原来的三角形底有什么关系?平行四边形的高和三角形的高又有怎样的关系?引导学生感受平行四边形和三角形是等底等高的。再次让学生感受拼成的平行四边形和三角形底和高之间的关系。

拼成的正方形的边长和原来的三角形的底有什么关系?现在的正方形的另外一条边长和原来的三角形的高又有怎样的关系?初步给学生建立长方形和三角形中一条边长和底相等,另外一条边长和高相等。

同学们那你们现在能得出三角形的面积计算公式吗?

大家有说三角形的面积公式为底×高÷2,也有人说为长×宽÷2,还有人说是边长×边长÷2,同学们你们觉得用哪个更合适呢?

这里长方形、正方形和平行四边形之间是什么关系?是的,它们是特殊的平行四边形,所以三角形的面积公式应该是底×高÷2,用字母表示为:S=ah÷2。

同学们现在你们知道三角形的面积该怎么计算了吗?

那现在老师考考大家。

三、巩固练习

请同学们认真审题,仔细计算,这个三角形的底和高分别是几?它的面积应该怎么算?看看谁算得又对又快。

同学们你们看,这是代表我们是少先队员的红领巾,它是什么形状?那它的面积你会计算吗?大家快速计算。

同学们真棒,会计算红领巾的面积了。

看来大家掌握地还不错,那同学们老师再考考大家一点简单的。

二.我会填

(1)、一块三角形草地,底边是3.6米,高是5米,它的面积是多少平方米?

(2)、一个三角形的面积是16平方厘米,与它等底等高的平行四边形的面积是()平方厘米。

三.我是小法官。(对的打“?”,错的打“×”)

(1)两个直角三角形一定可以拼成一个长方形。

(2)两个三角形的面积相等,形状一定也相同。

(3)一个三角形的底不变,高扩大到原来的3倍,面积也扩大到原来的3倍。

同学通过刚才的练习,你认为在求三角形的面积时需要注意什么呢?

四、课堂小姐

同学们,通过这节课的学习你有什么收获?

同学们如果只有一个三角形,你能通过什么方法求出它的面积公式呢?老师这里还有一些方法,你们想知道吗?大家请看。

同学们你们看一个问题可以用不同的方法去解决,老师希望同学们以后碰到问题,也可以勤思考,用不同的方法去解决。

今天的课就上到这,同学们再见。

六、布置作业:数学课本第93页习题。

七、板书设计:三角形的面积

学生作品展示

三角形的面积公式:S=ah÷2

教学反思:在本节课教学中,刚开始引入回顾平行四边形学生都很积极地参与其中,对于新课内容在讲的过程中,在小组探讨的过程中,学生大部分都积极地参与到讨论中,在结论展示的过程中,因为第一个孩子对分发的图形是什么有点不清楚,所以在讲述中出现了问题,孩子也一下紧张起来,后面的讲述就有点少,对于等底等高的渗透地不够深入,后期练习中需要加强。

三角形面积教学设计教案【篇4】

教材简析:

“三角形的面积”是一节常见的课,一般的做法是在由学生拼组后直接推导出三角形的面积计算公式。本设计最大的特点是改革了这一常见的做法,在拼组后,通过对三角形与拼成的平行四边形之间的联系的探究,指导学生直接利用这种关系尝试计算三角形的面积,在积累了一定的感性认识后,再引导学生归纳、总结三角形的面积计算公式,更能为学生所接受。

教学内容:

苏教版标准实验教科书《数学》五年级上册P15~P16的内容,三角形的面积。

教学目标:

1、探索并掌握三角形的计算面积公式,能应用公式正确计算三角形的面积;

2、使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力;

3、让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。

教学重、难点:

重点是探索并掌握三角形的面积公式,能正确计算三角形的面积。难点是理解三角形面积公式的推导过程和公式的含义。

教、学具准备:

CAI课件、红领巾、每个小组准备相同的直角三角形、锐角三角形、钝角三角形各两个。

教学过程:

一、创设情境、导入新课

1、提出问题。

师:(出示一条红领巾)同学们,这是一条红领巾。它是什么形状的?那你们会计算三角形的面积吗?

2、揭示课题。

师:那我们今天就一起来研究怎样计算“三角形的面积”?(板书课题:三角形的面积)

二、操作“转化”,推导公式

1、寻找思路。

师:是的',我们还不会计算三角形的面积。那同学们想一想,开始我们同样不会计算平行四边形的面积,后来我们通过什么方法推导出了平行四边形的面积计算公式的呢?

师:对,我们用“割补”的方法把平行四边形“转化”(板书:转化)成了一个长方形,这样推导出了平行四边形的面积计算公式。那同学们,我们能不能把三角形也“转化”成我们已经学过的图形,从而推导出三角形的面积计算公式呢?

师:大家想想,怎样“转化”呢?可不可以用“割补”的方法呢?

[应变预设:同学们根据已有的经验,一般会认为可以用这种方法,教师可以选择一种方法实际“割补”,让学生明白这种方法不好,需要寻找更好的方法。]

2、动手“转化”。

师:看来用“割补”方法很难“转化”。那我们可不可以用拼一拼的方法来“转化”呢?老师为每个小组的同学都准备了两个完全一样的三角形,请大家拼一拼,看看能不能把三角形“转化”成一个我们已经学过的图形。开始吧。

小组合作拼组图形,教师巡视指导。

[应变预设:可能有些同学不会拼组,教师可指导他们用旋转、平移等方法,把两个完全一样的三角形拼成一个平行四边形或一个长方形。]

师:拼好了吗?用这种拼一拼的方法能不能把三角形“转化”成已经学过的图形呢?谁来说一说,你们用这种方法把三角形“转化”成了什么图形?

[应变预设:一般情况下学生会拼出如下几种形状,老师选择其中三个图形贴到黑板上。]

师:同学们,为什么有些小组拼成了一个平行四边形,有的小组却拼成了一个长方形呢?你们想想,这是什么原因呢?

[评析:引导学生观察三角形的不同类别,弄清拼成不同形状的原因。]

3、尝试计算。

师:同学们真棒,大家都发现,用两个完全相同的三角形可以拼成一个平行四边形或一个长方形。现在请同学们看图1.

师:这个平行四边形就是由两个完全相同的三角形拼成的,它的底和高分别是多少?那么,其中一个三角形的底和高又分别是多少呢?

[评析:引导学生说出拼成的平行四边形和原来的三角形等底等高,为推导三角形的面积计算公式作铺垫。]

师:知道了平行四边形的底和高,你们能求出所拼成的平行四边形的面积吗?算一算吧。

师:算完了吗?它的面积是多大?[小学教学/设计/网]

师:我们知道,这个平行四边形是用两个完全一样的三角形拼成的,平行四边形的面积是20平方厘米,那这个绿色三角形的面积是多大呢?想一想,小组同学商量商量吧。

[应变预设:在设法求三角形的面积时,可能有部分同学不明白三角形的面积和平行四边形面积之间的关系,不会计算。这时教师应引导学生明确每个三角形的面积是拼成的平行四边形面积的一半,计算三角形的面积可用平行四边形的面积除以2得出。]

三角形面积教学设计教案【篇5】

说教材:

今天我说课的内容是苏教版第9册的“三角形面积的计算”。

在学这课之前,学生已经有的知识基础有:长方形、正方形、平行四边形的面积计算;一些简单多边形的特征等。学习方法方面的基础有:在学习习近平行四边形面积计算的时候,学生已经初步感受了可以用剪拼、平移、旋转等操作活动,使图形等积变形。事实上,在学这课之前,部分学生对三角形面积计算的公式并不是一无所知,但那只是一种机械记忆,知道公式,说不清所以来。

说教法、学法:

这课我会采用分组学习的方式,事先给每组一些操作材料,让大家在操作中交流,在交流中丰富感知,并逐步形成正确的认识。

教学目标:

1、使学生经历操作、观察、填表、讨论、归纳等数学活动,探索并掌握三角形的面积公式,能正确计算三角形的面积,并应用公式解决简单的实际问题。

2、使学生进一步体会转化方法的价值,培养学生应用已有知识解决新问题的能力,发展学生的空间观念和初步的推理能力。

教学重点:

三角形面积教学设计教案【篇6】

教学目标

1.理解三角形面积公式的推导过程,正确运用三角形面积计算公式进行计算。

2.培养学生观察能力、动手操作能力和类推迁移的能力。

3.培养学生勤于思考,积极探索的学习精神。

教学重点

理解三角形面积计算公式,正确计算三角形的面积。

教学难点

理解三角形面积公式的推导过程。

教学过程

一、复习铺垫。

(一)教师提问:我们学过了哪些平面图形的面积?计算这些图形面积的公式是什么?[趣祝福 wWW.zFW152.cOm]

教师:今天我们一起研究三角形的面积(板书课题)

(二)共同回忆平行四边形面积的计算公式的推导过程。

二、指导探索

(一)数方格面积。

1.用数方格的方法求出第69页三个三角形的面积。(小组内分工合作)

2.演示课件:拼摆图形

3.评价一下以上用数方格方法求出三角形面积。

(二)推导三角形面积计算公式。

1.拿出手里的平行四边形,想办法剪成两个三角形,并比较它们的大小。

2.启发提问:你能否依照平行四边形面积的方法把三角形转化成已学过的图形,再计

算面积呢?

3.用两个完全一样的直角三角形拼。

(1)教师参与学生拼摆,个别加以指导

(2)演示课件:拼摆图形

(3)讨论

①两个完全一样的直角三角形拼成一个大三角形(第三种拼法)能帮助我们推导出

三角形面积公式吗?为什么?

②观察拼成的长方形和平行四边形,每个直角三角形的面积与拼成的平行四边形

的面积有什么关系?

4.用两个完全一样的锐角三角形拼。

(1)组织学生利用手里的学具试拼。(指名演示)

(2)演示课件:拼摆图形(突出旋转、平移)

教师提问:每个三角形的面积与拼成的平行四边形的面积有什么关系?

5.用两个完全一样的钝角三角形来拼。

(1)由学生独立完成。

(2)演示课件:拼摆图形

6.讨论:

(1)两个完全相同的三角形都可以转化成什么图形?

(2)每个三角形的面积与拼成的平行四边形的面积有什么关系?

(3)三角形面积的计算公式是什么?

(4)如果用S表示三角形面积,用a和h表示三角形的底和高,那么三角形面积的计算公式可以写成什么?

(三)教学例1.

例1.一种零件有一面是三角形,三角形的底是5.6厘米,高是4厘米。这个三角形的面积是多少平方厘米?

1.由学生独立解答。

2.订正答案(教师板书)

5.642=11.2(平方厘米)

答:这个三角形的面积是11.2平方厘米。

三、质疑调节

(一)总结这一节课的收获,并提出自己的问题。

(二)教师提问:

(1)要求三角形面积需要知道哪两个已知条件?

(2)求三角形面积为什么要除以2?

(3)把三角形转化成已学过的图形,还有别的方法吗?

(演示课件:三角形剪拼法)

四、反馈练习

(一)下面平行四边形的面积是12平方厘米,求画斜线的三角形的面积。

(二)计算下面每个三角形的面积。

1.底是4.2米,高是2米;

2.底是3分米,高是1.3分米;

3.底是1.8米,高是。1.2米;

五、板书设计

教案点评:

本节课的主要特点是:1、重视知识形成的过程,注意引导学生积极参与教学过程,突出了以学生为主体,老师为主导的教学指导思想。2、注意渗透转化的思维方法和平移的思想,抓住新旧知识的衔接点和新知的生长点,形成良好的认知结构,同时培养了学生的逻辑思维能力。

探究活动

三角形面积计算公式

活动目的

1.掌握三角形面积公式的推导过程。

2.培养学生主动探究知识的能力。

活动准备

若干张长方形和三角形白纸。

活动过程

1.引导学生以长方形的一条边为三角形的底,画一个最大的三角形,观察三角形面积与长方形面积的关系。

2.引导学生用两个同样的三角形沿着其中一个三角形的高剪开,拼成一个长方形,观察三角形面积与长方形面积的关系。

3.启发学生将三角形折成两个长方形,并观察三角形面积与长方形面积的关系。

4.分小组讨论这种方法与新课所学三角形面积公式推导过程的异同点。

三角形面积教学设计教案【篇7】

教学内容:课本第77页的例题,练习十八的第5-12题

教学要求:1、使学生比较熟练地应用三角形面积的计算公式计算三角形的面积。

2、能应用公式解答有关的实际应用问题。

3、养成良好的审题,检验的习惯,提高正确率。

教学重点:能比较熟练地应用公式计算三角形的面积,解答有关的实际应用问题。

教学过程:

一、复习

1、三角形的面积计算公式是什么?为什么公式中有一个2?

2、有关计算的错因分析:

下面的结答,问题出在哪里?

一个三角形,底是1.8米,高是1.2米,求它的面积。

解一:1.81.2=16(平方米)

解二:1.81.22=2.16(平方米)

3、导入新课:掌握了计算公式,我们就可以着手解决许多有关的实际应用问题。(板书课题:三角形面积的计算)

二、新授

1、例题教学

(1)读题后,让学生尝试练习,并指定两名学生板演,再集体订正。

(2)注意2这一环节是否有人失误。

2、应用练习

完成课本第80页第8题的填表计算,把它化为4小题来处理,解答完成后填空。

教师简评:求图形的面积,首先应确定所求的是什么图形,其次考虑运用什么公式计算。

三、巩固练习

1、课本第80页的第7题。

先独立思考,再交流。

议一议:(1)这所有的以涂色三角形底边为底,顶点落在对面那条平行线上的两个三角形的面积与涂色三角形面积有什么关系?为什么存在这种关系?

(2)再画出一个与之等面积的三角形,只要怎么取顶点就可以了?

(3)你能联想到什么?

2、练习十八第5、6、9、10题(做在课作本上)

⑼一块三角形的玻璃,量得它的底是12.5分米,高是7.8分米。这块玻璃的面积是多少?如果每平方分米玻璃的价钱是0.9元,买这块玻璃要用多少钱?

⑽右图是人民医院包扎用的三角巾。现在有一块长18米,宽0.9米的白布,

可以做多少块三角巾?

(1)学生独立作业,教师巡视,作个别辅导,并及时反馈。

(2)提取典型错例,进行评讲。

(3)第10题有下列各种解法,哪些是对的,哪些有毛病?

解一、140.9(0.90.9)

解二、140.9(0.90.92)

解三、140.9(0.90.9)2

解四、140.9(0.90.9)2

学生充分议后,教师简评:(作全课总结)

板书设计:

三角形面积的计算

教后感:

4、实际测量在地面上测量距离第课时总第课时

三角形面积教学设计教案【篇8】

指导思想:

积极配合莱州市、沙河镇在效率课堂研究月推出的一课多研活动,旨在强化数学课堂教学改革,实施课堂高效研究交流,系统化理论,进一步熟悉课堂教学结构,对课堂和谐高效教学进行再思考。

全体数学教研小组成员集中听评四年级数学课一节,集中研讨方案,进行个人反思修改,然后由教研组提出评课建议,进行一课多研的课例研究。

教学目标:

1、通过观察、操作认识三角形面积计算公式,并能正确计算相应图形的面积;了解三角形面积的计算方法。

2、经历探索三角形面积计算公式的过程,培养观察、比较、推理和概括能力,渗透转化思想,发展空间观念。

3、运用计算公式解决简单的实际问题。在解决问题的过程中,感受数学和现实生活的密切联系,体会学数学、用数学的乐趣。

教学重点:

理解并掌握三角形面积的计算公式。

教学难点:

理解三角形面积计算公式的推导过程。

教学过程:

一、直接引入

师:同学们,你知道我们每天都佩戴着鲜艳的红领巾是什么形状的?(三角形),怎样计算三角形的面积呢?这节课我们就一起来研究三角形的计算方法(板书课题)

二、探究新知

1、复习平行四边形面积的求法

师:回忆一下,平行四边形面积计算公式是什么?是怎么推导的?

师:我们是先把平行四边形转化成长方形,运用学过的长方形面积的计算公式,找到平行四边形与长方形之间的联系,推导出了平行四边形面积的计算公式,今天这节课,我们继续用转化的数学思想来探索三角形的面积怎样计算。

2、第一次操作实践

师:好,那怎样把三角形转化成我们所学过的图形呢?请同学们拿出学具袋里的各种三角形,两人一组想一想,拼一拼。(教师巡回指导)

3、交流反馈

师:同学们都拼好了,谁来说说你是怎样拼的?

生:我用两个直角三角形拼成了一个平行四边形。

师:我这也有两个直角三角形,可是拼不成,为什么?你有什么发现?

生:要用完全相同的三角形来拼。

师:你拼时怎么知道是两个完全相同的三角形呢?

生:把两个三角形重合就知道了。

师:对,要用两个完全相同的三角形来拼。

师:还有不同的拼法吗?

生:我用两个完全相同的锐角三角形拼成了一个平行四边形。

生:我用两个完全相同的钝角三角形也拼成了一个平行四边形。

师:看看这几种拼法它们有什么共同点呢?认真观察,同桌互相说说。

4、第二次操作实践

师:下面我们再次合作,根据你们转化的图形,找到它们之间的联系,推导出三角形面积的计算公式。(生讨论交流)

师:谁来说说你是怎样推导的?

生汇报

师板书:三角形的面积=底高2

师:仔细观察所拼成的平行四边形的底与三角形的底,所拼成的平行四边形的高与三角形的高看看有什么发现?

师:我们把这种相等的关系叫等底等高。

师:那么三角形的底乘以三角形的高求出的是什么?

生:与三角形等底等高的平行四边形的面积。

师:为什么除以2呢?

生:因为三角形的面积是与它等底等高的平行四边形面积的一半,所以要除以2。

师:无论什么样的三角形,它的面积都可以转化成平行四边形的面积来计算,所以我们得到三角形的面积公式=底高2

师:谁能用字母表示三角形的面积公式

板书s=ah2

三、运用公式,解决问题

师:利用三角形面积公式,我们可以方便地解决一些实际问题了!老师这里有一条红领巾,求它的面积,你需要知道什么条件?你能估测一下这条底边有多长吗?

师:它的高是33厘米,你能计算出它的面积吗?

在练习本上算一算

学生打开书32页,在书中画一画

师:你画出了几个面积相等的三角形?如果给你足够的时间你能画出多少个这样的三角形?

生:无数个

师:通过画这样的三角形,你发现了什么?

生:三角形的面积与底和高有关,与形状无关。

四、总结收获

这节课我们运用转化的思想,通过拼摆把三角形转化成与它等底等高的平行四边形,推导出三角形面积公式,大家还有不明白的地方吗?实际上我们还可以运用剪拼或折叠的方法来推导三角形面积公式,课下同学们可以动手试一试。

师:同学们,这节课你最大的收获是什么?

生:我学会了三角形的面积怎样计算。

生:我学会了用转化的方法推导三角形的面积计算公式。

师:下节课我们继续运用转化的思想探究梯形面积的计算方法。

教学评课:

纵观本节课教学,教师教学思路清晰,运用了自主探究,合作交流,亲身实践的学习方式。课前导语可以创设情境,揭示课题,进一步激发孩子的求知欲。在设计教学环节时注意了学生已有知识基础,但缺乏对经验背景的引导,按照学生的认知规律组织教学,上课时应该先复习了平行四边形面积的推导过程,然后让学生探究三角形面积的计算方法,这样,教师根据学生已有的知识以旧引新,衔接自如。

三角形面积教学设计教案【篇9】

一、设计理念

我总的教学设想是以现代教学理论为指导,引导学生开展操作、讨论、交流、观察、归纳、分析等活动进行探索和实现问题的解决。在本节教学中我有意识地引导学生进行探究型学习是我的基本出发点,我注重渗透“转化”思想,坚持以“学生的发展为本”,并充分发挥多媒体技术的作用,变静为动,从多个角度去推导三角形的面积公式,为学生提供生动、形象的观察材料,激发学生的学习兴趣,增强学生学习的主动性,从而完成新知建构,达到培养学生能力的目的

二、教材和学情分析

三角形面积的计算,是在学生掌握了长方形、正方形的面积的基础上安排的,并且在这之前学生已经学习了平行四边形面积的计算。 所以若想使学生理解掌握好三角形面积公式,必须以平行四边形的面积、长正方形的面积以及三角形的底和高的相关知识为基础,运用迁移和转化的思想,使三角形面积的计算公式这一新知识纳入到学生原有知识体系中。三角形面积计算同时也是梯形面积公式推导的前提和基础。

三、教学目标和重难点

(一)教学目标

1、引导学生经历三角形面积计算的探索过程,准确理解三角形面积的计算公式。

2、能够运用所学知识解决简单的实际问题;感受数学就在身边。

3、在探索学习过程中,培养学生多角度地思考问题,渗透转化思想;使学生获得良好的情感体验。

(二)教学重难点:

重点:引导学生参与三角形面积计算公式推导的全过程。

难点:引导学生在实践过程中发现图形之间的内在联系与推导说理。

四、教法和学法

(一)教法

1、实验法。根据学生心理发展的规律,学生通过自己动手操作学习新知识,比听教师讲解新知识记忆更加深刻,兴趣更加浓厚。因此,在教学三角形面积计算公式推导过程时,让学生动手操作、讨论、交流汇报,体现了以学生为主体,教师为主导的教学原则。

2、多媒体辅助教学。在教学三角形面积计算的过程中,采用多媒体课件可以激发学生的学习兴趣,使学生准确地理解三角形的面积公式,并会运用公式进行三角形面积的计算。

3、发展迁移法。运用迁移规律,注意从旧到新、引导学生在整理旧知的基础上学习新知,体现“温故知新”的教学思想。

(二)学法

根据本课可操作性的特点,以及学生为主体,教师为主导的教学原则,在学法指导上应以学生动手操作为主,配以小组合作学习法,讨论法进行自主探究式学习。

五、教学过程

(一)借助信息技术,创设了一个工厂加工红领巾和流动红旗的生活情境,激发学生的学习兴趣。

(二)合作探究、解决问题

给学生充分的时间,让学生自己去探索求三角形面积的方法。

(三)汇报交流

借助多媒体信息技术突出重点,突破难点。(把抽象的知识具体化;把静止的知识动态化;拓展时空,发展能力)

根据学生的汇报演示:演示转化成平行四边形的过程,两个完全一样的锐角三角形通过“旋转、平移”可以拼成一个平行四边形;同样的方法,两个直角三角形、钝角三角形也能拼成一个平行四边形。接着引导学生发现平行四边形与原来三角形之间的关系,通过对媒体辅助演示,使学生发现平行四边形的底等于原来三角形的底,平行四边形的高等于原来三角形的高,以及三角形的面积等于所拼成的平行四边形的面积的一半,平行四边形的面积等于底乘高,那么三角形的面积就等于底乘高除以二。

根据学生的汇报,演示直角三角形转化乘长方形、正方形的过程,是学生发现每个三角形与长正方形的关系,从而也能推出三角形的面积等于底乘高除以二。

后面的三种方法是学有余力的同学所能想出来的,对想出来的同学给予充分的肯定。

演示三个内角折向底边,折成两个完全重合的长方形,这两个长方形的面积等于三角形的面积,长方形的长是三角形底的一半,高是三角形高的一半,那么三角形的面积等于长方形的面积乘2,也就是三角形的地的一半乘高的一半再乘二,推出三角形的面积等于底乘高除以二。

演示剪拼成平行四边形或长方形的过程,并引导学生发现剪拼成平行四边形、长方形与原来三角形之间的关系,从而引导得出三角形的面积公式

演示在三角形的外面添加辅助线,以三角形的底为长,三角形的高为宽,在三角形的外面画一个长方形,引导学生观察发现三角形的面积等于这个长方形的面积的一半,也能推导出三角形的面积公式。

(四)总结归纳

1、概括得出三角形的面积公式并用字母表示公式

2、巩固练习:让学生体会求三角形面积时高和底的对应性。

3、解决生活中的实际问题(回归生活,回归课前的生活情境)

(五)拓展延伸

1、应用多媒体信息技术让学生感受同底等高的三角形不管形状怎样变化,面积相等。

2、课外知识:应用多媒体信息技术让学生了解三角形面积的历史,使学生感受数学的魅力。

大约在20xx年前,我国数学名著《九章算术》吕的方田章就论述了平面图形面积的算法。书中说:“方田术曰,广从*步数相乘得积步。”其中“方田”是指长方形田地,“广”和“从”是指长和宽,也就是说:长方形面积=长×宽。还说:“圭田术曰,半广以乘正从。”就是说:三角形面积=底×高÷2。

六、教学反思

运用多媒体信息技术手段辅助教学,可以使教学形象生动,学生感知鲜明,印象深刻,可以使抽象的知识具体化、形象化;通过多媒体手段创设问题情景,反映图形运动变化,改变教学内容呈现方式和学生学的方式,促使学生主动探究;利用多媒体技术手段,为学生提供积极探索问题的情景,学生可以利用它来做“数学实验”,在问题解决过程中获得真正的数学体验,加深对三角形面积的深层理解,积累丰富的数学体验,拓宽学生思维的角度和学习的时间与空间。

yJS21.com更多精选幼儿园教案阅读

三角形的面积课件教案5篇


古人云,工欲善其事,必先利其器。作为幼儿园老师的我们的课堂上能更好的发挥教学效果,优秀的教案能帮老师们更好的解决学习上的问题,教案可以让上课自己轻松的同时,学生也更好的消化课堂内容。我们要如何写好一份值得称赞的幼儿园教案呢?以下由小编收集整理的《三角形的面积课件教案5篇》,仅供参考,欢迎大家阅读本文。

三角形的面积课件教案(篇1)

一、说教材:

本课是义务教育课程标准实验教科书数学五年级(上册)第84页至85页的教学内容。三角形的面积计算是学生在掌握了它的特征的基础上学习的,它是进一步学习圆面积和立体图形表面积的基础知识之一。因此,体验和感知三角形面积计算的探索过程,掌握三角形面积计算公式,是学生后继学习的重要基本技能和基础知识。教材的编排是在学生已经学习了长方形、平行四边形的面积的基础上学习的。教学内容引导学生动手把两个完全一样的三角形拼成平行四边形来计算面积,培养学生的动手操作能力和思维能力。

二、说教学目标:

基于以上对教材的认识,按照新课程理念,我制定了以下的教学目标:

1、理解三角形面积公式的推导过程,正确运用三角形面积计算公式进行计算。

2、培养学生观察能力、动手操作能力和类推迁移的能力。

3、培养学生勤于思考,积极探索的学习精神。

三、说教学重点、难点:

重点是理解三角形面积计算的推导过程,会根据公式进行计算。难点是理解三角形面积公式的推导过程。

四、说教法学法:

“动手实践、自主探究与合作交流”是学生学习数学的重要方式。因此,在本课的教学采用:

1、实验法

学生通过自己动手操作学习新知识比听教师讲解新知识记忆更加深刻,兴趣更加浓厚。因此,在教学三角形面积计算公式推导过程时,让学生动手操作、讨论,体现了以学生为主体,教师为主导的教学原则。

2、课件演示,配合启发。

学生动手实验,交流汇报之后,再看课件演示,教师给予点拨,使学生更直观,更形象地理解三角形面积的计算方法。

五、说教学过程:

(一)创设情境,引入探索。

1、谈话导入:植树节快到了,我们学校要进行一些绿化、美化,看,这是块平行四边形的空地,你们能先求出它的面积吗?现在要把这块地平均分成两份,一半种月季,一半种菊花,如何分?你能算其中一块花坛的面积吗?请同学们猜想三角形的面积是怎样算的?(设计意图:渗透几何图形之间联系,为新知识的学习作好铺垫。)

2、揭示课题

板书课题:三角形的面积

(二)自主探索,合作交流

导入:下面让我们一起来验证我们的猜想是否正确,请同学们拿出学具,用两个完全一样的三角形拼已经学过的平面图形。

1、推导三角形面积计算公式

(1)小组合作,动手拼摆。(说明:学生准备直角、钝角和锐角三角形各两个,且两个直角、两个钝角和两个锐角三角形的形状分别完全一样。设计意图:教师为学生提供一个开放的空间,让学生亲身经历自主探索的过程。创设了一个问题情景,让学生在发现问题,解决问题之中感悟出“完全一样的三角形”是拼摆的前提,通过学生亲手拼摆,最大限度地发挥学生学习的主体性,也有助于“用两个形状完全一样的三角形拼出了一个平行四边形”等概念的建立。)

(2)小组代表汇报实验成果,并演示拼摆的操作过程,说明拼摆的方法。教师鼓励学生充分、大胆地发言,说出自己在操作中的发现,对学生的发现给予肯定。(设计意图:让学生汇报实验成果,教师给予表扬肯定,使学生体验学习成功的喜悦,设置“我的发现”这一开放性的问题,培养学生发散思维的能力。)

(3)课件演示三角形拼摆成平行四边形的过程。(设计意图:先让学生自由做实验,有利于学生在操作过程中自由发挥,而不束缚学生的想象力和思维能力。学生汇报实验成果之后,再观看课件演示,这就更形象、更直观,更生动的展现了图形拼摆的过程,有利于学生形象思维能力的培养。)

(4)总结归纳计算公式。

问题:两个完全一样的三角形可以拼成什么图形?

每个三角形的面积与拼成图形的面积有什么关系?

这个平行四边形的底等于三角形的什么?

这个平行四边形的高等于三角形的什么?

三角形的面积公式是怎样的?

学生借助手中的图形讨论问题。

小组代表汇报讨论学习成果。

教师结合课件补充,帮助学生解决问题。(设计意图:让学生亲自讨论、交流中发现三角形的底、高和面积与所拼成的平行四边形的底、高和面积的关系,帮助学生对三角形面积公式的推导。培养学生的合作学习意识。)

(5)回顾推导过程(用自己的语言来填空)。

用两个完全一样的三角形可以拼成 ,三角形的面积是它面积的

三角形的面积公式为 用字母表示为 。

(设计意图:加深学生对三角形面积公式推导过程的理解。)

2、公式的运用

(1)解决例1:利用公式,计算一下佩戴的`红领巾,它的面积是多少?

(2)让学生阅读书本85页的“你知道吗?”。并让学生说说有什么感想?(设计意图:让学生自主解决例1,巩固学生对基本知识的掌握。阅读“你知道吗?”让学生了解我国的数学文化,渗透爱国、爱学习的思想品德教育,激发学习热情。)

(三)实践运用,拓展创新

1、基本题的练习。

基本题的练习设计是遵循学生的认知规律,注意梯度性。学生独立计算,教师指名学生上黑板板演。判断题要求学生做出正确的判断后并说出理由。(设计意图:基本题的设计,巩固了学生对基本知识的掌握,明白计算三角形的面积必须要找准对应的底和高,同时感受到数学与生活之间联系。)

2、拓展题的练习。设计有一定的开放性,重点突出“等底等高”的关系,有利于学生学习主体性的提高。)

(四)归纳总结,回顾全课

同学们,这节课经过大家亲自实验,归纳推导出了三角形面积计算的公式,真了不起!但请大家仔细想想,这节课,你们还有什么问题吗?(设计意图:一堂课的学习,不能让学生产生错觉,认为把本节课所有的问题都解决了,教师要注重培养学生的问题意识,学生产生了疑问,才会积极地去探究。)

六、说板书设计

三角形面积的计算

三角形的面积 =平行四边形面积÷2

三角形的面积 = 底×高÷2

S = ah÷2

例1:s=ah÷2

=100×33÷2

=3300÷2

=1650(cm2)

答:它的面积是1650平方厘米。

三角形的面积课件教案(篇2)

教学内容:三角形的面积第84-85页

教学目标:

1、经历三角形面积计算公式的探索过程,理解三角形的面积计算公式。

2、通过操作和对图形的观察、比较,发展学生的空间观念。使学生知道转化的思考方法在研究三角形的面积时的运用,培养学生的分析、综合、抽象、概括和运用转化方法解决实际问题的能力。

3、培养学生的创新意识和合作精神。

教学重点:

理解三角形面积计算公式,正确计算三角形的面积.

教学难点:

在转化中发现内在联系及推导说理。

学具准备:

每个学生准备三种类型三角形(每种类型准备2个完全一样的)和一个平行四边形。红领巾等。

教学过程

复习导入:

1、复习:想一想,平行四边形的面积怎样计算?这个公式是怎么推导出来的?

指名说一说,师可再现推导过程。

2、导入:出示红领巾,它是什么图形?它的面积该怎么计算?揭示课题。

二、探究三角形的面积公式.

1.启发提问:你能否依照平行四边形面积的方法把三角形转化成已学过的图形,再计算面积呢?

2.用两个完全一样的直角三角形拼.

(1)教师参与学生拼摆,个别加以指导

(2)演示课件:拼摆图形

(3)讨论

①两个完全一样的直角三角形拼成一个大三角形能帮助我们推导出三角形面积公式吗?为什么?

②观察拼成的长方形和平行四边形,每个直角三角形的面积与拼成的平行 四边形的面积有什么关系?

3.用两个完全一样的锐角三角形拼.

(1)组织学生利用手里的学具试拼.(指名演示)

(2)演示课件:拼摆图形(突出旋转、平移)

教师提问:每个三角形的面积与拼成的平行四边形的面积有什么关系?

4.用两个完全一样的钝角三角形来拼.

(1)由学生独立完成.

(2)演示课件:拼摆图形

5.讨论:

(1)两个完全相同的三角形都可以转化成什么图形?

(2)每个三角形的面积与拼成的平行四边形的面积有什么关系?

(3)三角形面积的计算公式是什么?

6、引导学生明确:

①两个完全一样的三角形都可以拼成一个平行四边形。

②每个三角形的面积等于拼成的平行四边形面积的一半。(同时板书)

③这个平行四边形的底等于三角形的底。(同时板书)

④这个平行四边形的高等于三角形的高。(同时板书)

(3)三角形面积的计算公式是怎样推导出来的?为什么要加上“除以2”?(强化理解推导过程)

板书:三角形面积=底×高÷2

(4)如果用S表示三角形面积,用a和h表示三角形的底和高,那么三角形面积的计算公式可以写成什么?

7.教学例1

红领巾的底是100cm,高33cm,它的面积是多少平方厘米?

1.由学生独立解答.

2.订正答案(教师板书)

三、总结:

(一)总结这一节课的收获,并提出自己的问题.

(二)教师提问:要求三角形面积需要知道哪两个已知条件?求三角形面积为什么要除以2?

四、反馈练习

计算下面每个三角形的面积.

1.底是4.2米,高是2米;

2.底是3分米,高是1.3分米;

(三) 判断

一个三角形的底和高是4厘米,它的面积就是16平方厘米。( ) 2、等底等高的两个三角形,面积一定相等。 ( )

3、两个三角形一定可以拼成一个平行四边形。 ( )

4、三角形的底是3分米,高是20厘米,它的面积是30平方厘米。( )

板书设计

三角形的面积

平行四边形的面积=底×高,

三角形面积=拼成的平行四边形的一半, 100×33÷2=1650(cm)

三角形面积=底×高÷2

S=ah÷2

三角形的面积课件教案(篇3)

教学目标:

1、使学生掌握三角形面积的计算公式,会运用公式计算三角形的面积。

2、通过图形的割补,剪拼,渗透图形变换等教学手段,培养学生的操作能力,空间想象能力和逻辑思维能力。

教学重点:

掌握三角形面积的计算公式,会运用公式计算三角形的面积。

教学难点:

理解三角形面积计算公式的推导方法。

教学关键:

引导学生理解三角形面积计算公式中除以2的意义。

本节课,我根据五年级学生的知识面较广,学习自觉性较强的特点,采用尝试教学法、实验法、练习法等教学方法进行教学。让学生带着教师提出的问题在旧知识的基础上,通过自学课本,利用学具独立作业,互相讨论和巩固练习,去尝试解决问题,教师再根据学生尝试练习中的难点和教材的重点加以讲解和点拔,充分发挥学生的主体作用和教师的主导作用,有利于培养学生的探索精神和操作能力。教学时,我按导入新课、揭示课题、推导公式、实际应用、巩固练习、课堂总结这六个环节进行。

一、导入新课

新课的导入是为了引导学生迅速进入学习状态的行为方式。好的导入,可以点燃学生思维的火花,活跃学生的思维。我采用实物直观法导入新课,先引导学生观察少先队大队旗,说出大队旗的长是120厘米,宽是90厘米,让学生利用旧知识计算大队旗的面积和归纳长方形面积计算公式。再出示红领巾,引导学生说出要计算红领巾的面积,就是求三角形面积,从而发挥知识的迁移作用,激发学生强烈的求知欲望和浓厚的学习兴趣,使学生进入一个良好的学习境界,为整个教学过程创造良好的开端。

二、揭求课题

我按照学生的心理特征,运用了激趣法揭示课题,以引起学生的注意和兴趣,调动学生的学习积极性,起承上启下、开宗明义的作用。我先直接板书课题“三角形面积的计算”,再提出问题“这节课要学习哪些内容?”让学生互相讨论,说出三个问题。(1)三角形面积的计算公式是什么?(2)三角形面积的计算公式是怎样推导的?(3)怎样运用公式计算三角形的面积?这样,巧妙地让学生自己提出本课的学习目标,把目标变成自身学习的需要,使学生由“要我学数学”变成“我要学数学”。

三、推导公式

公式的推导过程是学生知识的形成过程。我根据学生的认知规律让学生有目的、有步骤地动眼观察,动脑思考,动手操作,动口讲述,以实验法推导三角形面积的计算公式。教学时,分四步进行。(1)引导猜想:我让学生按照课本75页的方法,用方格纸数出三角形的面积,引导学生观察三角形的底是多少厘米?宽是多少厘米?底和高的长度与面积之间有什么联系?让学生通过观察分析,得出三角形底是6厘米,高是4厘米,面积是12平方厘米(图1),

底6厘米高4厘米面积12平方厘米

图1

接着引导学生猜想三角形面积是底和高乘积的一半。

(2)尝试操作:

当学生心理上产生疑问,迫切地需要教师的讲解和验证时,教师要求学生回忆平行四边形面积计算公式是怎样推导的?学生一边说,我一边把平行四边形变成长方形的推导方法演示出来(沿平行四边形的高剪出一个三角形,把剪下的三角形拼到另一边,变成一个长方形,如图2)。

图2

以唤起学

生的回忆,促进知识的迁移。然后再要求学生模仿平行四边形面积公式推导的方法,把三角形转换成其他图形,并拿出课前准备的长方形学具,量出长方形的长与宽是多少?(长10厘米,宽6厘米),计算出它的面积是10×6=60平方厘米,再沿着长方形的对角线剪开,分成两个大小形状相同的三角形,算出一个三角形的面积是10×6÷2=30平方厘米(如下图)。学生清楚地看

出这个三角形是原来长方形的一半。使学生沿着形象思维到抽象思维发展的规律去理解三角形面积计算公式的推导。接着让学生拿出平行四边形纸片,量出它的底和高分别是10厘米、6厘米,用10×6计算出平行四边形的面积是60平方厘米,然后沿着平行四边形的对角线剪开,可以分成两个大小形状相同的三角形,用10×6÷2算出一个三角形的面积是30厘米。学生再一次看出这个三角形是原来平行四边形的一半,而且观察出平行四边形的底和高与剪开的三角形的底和高是一致的,攻破教学的难点。(3)归纳公式:通过两个实验,学生纷纷讨论,并归纳出三角形面积计算公式是底×高÷2,用字母表示写作S=ah÷2,并点明求三角形的面积必须要知道三角形的底和高,计算三角形的面积时把底和高相乘后不能忘记除以2,让学生的知识更系统完善。(4)看书质疑:学生通过自己实验操作已水到渠成地得出结论后,我再让学生认真阅读课本75页至77页的内容,比较与自己推导的方法有什么异同,突出说明课本是用“合”的方法验证公式,而我们是用“分”的方法来验证公式的,两种方法均把三角形变换成长方形或平行四边形来推导,都能尝试成功。之后,留一点时间让学生提出疑问,我再进行针对性的释疑,创造亲切和谐的课堂气氛,使学生有疑敢问,进一步把教师的主导作用,学生的主体作用,教科书的示范作用及学生之间的互补作用有机地结合起来,提高了课堂效率。

四、实际应用

学生推导出三角形面积计算公式后,我便出示一道同课本例题相仿的尝试题:一条红领巾的底是100厘米,高是32厘米,它的面积是多少?让学生独立解答,分别叫好、中、差三类学生板演,我进行巡堂检查,了解信息反馈,去发现所估计出现的两种情况:(1)100×32÷2=1600平方厘米;(2)100×32=3200平方厘米,并按反馈信息组织学生讨论和讲解,强调应用三角形面积计算公式时把底和高相乘后不要忘记除以2,否则会计算了长方形或平行四边形的面积,以确保学生系统地掌握知识。

五、巩固练习

练习是学生掌握知识,形成技能的必要途径,是检查教学目标落实情况的重要手段。为了提高练习的效率,我合理地设计了三道练习题。

第1题:计算下列图形的面积。这是课本77页做一做的题目,属单一性练习,用于巩固新知识。

第2题:平行四边形的面积12平方厘米,求涂色的三角形的面积。

这是课本78页练习十八的题目,属综合性练习,既复习了三角形面积公式与平行四边形面积公式的关系,又进一步巩固三角形面积计算,防止学生照样画葫芦。

第3题:计算少先队中队旗的面积,看谁的解法最简便?这题属创造性练习题,既能激发学生学习兴趣,又能促进学生的散发思维。

六、课堂总结

总结是课堂教学的重要环节,可以使学生更进一步明确具体的教学任务,抓住要点内容,形成系统的知识。我让学生联系本课初提出的学生目标,总结本课所学内容,得出:(1)三角形面积计算公式是底×高÷2;(2)三角形的底和高决定以后,三角形的面积也就决定了;(3)计算时把底和高相乘后不要忘记除以2。这样,通过疏理、归纳,起到画龙点睛的作用,使整节课的安排善始善终。

三角形的面积课件教案(篇4)

教学内容:

《现代小学数学》第九册第31~35页,三角形面积的计算。

教学目标:

一、了解三角形面积计算公式的推导过程,掌握求三角形面积的计算方法。

二、能运用三角形面积计算公式进行有关的计算。

三、渗透对立统一的辩证思想。

教学过程:

一、复习引入。

1.准备练习:你会计算这些图形的面积吗?这些图形的面积在计算时,同哪些因素有关?

出示:

2.提问:图(4)是一个什么图形?你会计算它的面积吗?猜一猜,三角形的面积同哪些因素有关?

3.揭题:大家猜得究竟对不对,下面我们就一起来探求“三角形面积的计算”方法。(出示课题)

【设计意图:通过“猜”,引导学生从新旧知识的联系中,大胆地提出假设,为新课展开做好铺垫,同时激发学生急于想验证假设的认知欲望。】

二、新课展开。

(一)实践活动。

1.让学生拿出已准备好的如下一套图形。(同桌合作)

(1)测量各平行四边形(含长方形)的底和高,算出面积,并填入表格内。

(2)找出与平行四边形等底等高的三角形,将相应的编号填入表格内。

(3)分组讨论:

①各三角形的面积是多少?请填入表格内。

②三角形的面积怎样计算?

(4)汇报、交流,初步得出三角形面积计算方法。

【设计意图:通过实践活动,让学生自己研究问题、分析问题,初步得出三角形面积的计算方法,从而突出了学生的主体地位,既让学生主动参与知识的获取过程,又从找对应关系中,渗透了对应关系的教学。】

2.验证。

(1)拿出如右图的三角形,要求剪一刀或两刀,拼成一个与原三角形面积相等的平行四边形。

数学课堂教学参谋

(2)汇报、交流:学生有几种剪拼法,就交流几种。如:

6×4÷2 6×(4÷2)

=12(平方厘米) =12(平方厘米)

6×4÷2 6÷2×4

=12(平方厘米) =12(平方厘米)

【设计意图:通过验证,培养学生科学的态度,同时从启发学生应用不同的剪拼法中,培养学生的发散思维。】

(二)归纳、小结。

1.从上面的实践活动中,你能说出求三角形面积的计算公式吗?三角形的面积同哪些因素有关?证明“三角形面积=底×高÷2”。(板书:三角形面积=底×高÷2)

2.如果用s表示三角形的面积,a和h分别表示三角形的底和高,那么三角形的面积公式可以怎么写?(板书: s= ah÷2)

(三)应用。

例 一块三角形钢板,底是8米,高是2.5米,它的面积是多少?

学生试做后,反馈、评讲。

【设计意图:通过试做例题,让学生及时把发现的三角形面积计算方法应用于实践,同时起到及时巩固作用。】

三、巩固练习。

(一)基本练习。

1.口算出每个三角形的面积。

①底8米,高7米 ②底5分米,高12分米③a:4厘米,h:2.5厘米 ④a:20分米,h:5.4分米

2.课本35页第②题,看图填写答案。(每一格代表1平方厘米)

这些三角形的高都是____厘米,底都是____厘米。

这些三角形的面积都是:□×□÷2=□(平方厘米)。

3.先量一量,标出图形的长度后,再计算各三角形的面积。

【设计意图:通过三道基本练习,进一步促进全体学生掌握三角形面积的计算方法,尤其是第3道题,使学生进一步明确要求三角形面积,需要知道三角形的底和高。】

(二)分层练习。

a组学生:做选择题。

①求右图面积的算式是( )。

a.9×4÷2 b.15×4÷2

c.15×9÷2 d.15×4

②求右图面积的算式是( )。

a.5.2×3.5÷2

b.5.2×4.1÷2

c.4.1×3.5 d.4.1×3.5÷2

③求下图面积的算式是( )。

a.25×20 b.18×25

c.18×20 d.18×20÷2

b组学生:做课本第15页第

②题:在格子图上画面积都是12平方厘米的三角形(每一小格表示1平方厘米),并在表中分别填上所有三角形的底和高。(图、表见课本。略)

c组学生:先求出下面三个三角形abc、bcd、bce的面积。再比较一下,它们的面积相等吗?为什么?

【设计意图:通过分层练习,使 a、b、c三层的学生在数学思维、数学能力方面均有提高,以体现因材施教的原则。】

四、课堂小结。

这节课研究了哪些内容?三角形面积计算方法是什么,你是怎么研究出来的?

【设计意图:通过提问,不仅回顾了所学知识,而且总结了所研究的方法,真正体现出不仅要授之以“鱼”,更要导之以“渔”。】

五、布置作业。(略)

(此文获“第二届全国小学课堂教学征文大赛”一等奖)

三角形的面积课件教案(篇5)

教学内容:人教版义务教育课程标准实验教材小学数学五年级上册第84~85页。

教学目标:

1、经历三角形面积计算公式的探索过程,理解三角形的面积计算公式。

2、通过操作和对图形的观察、比较,发展学生的空间观念。使学生知道转化的思考方法在研究三角形的面积时的运用,培养学生的分析、综合、抽象、概括和运用转化方法解决实际问题的能力。

3、培养学生的创新意识和合作精神。

教学重点:三角形面积计算公式的推导过程

教学难点:在转化中发现内在联系及推导说理。

教、学具准备:多媒体课件,红领巾,学具(两个完全相同的锐角三角形、直角三角形、钝角三角形、任意三角形若干个)。工具(直尺、剪刀)。

设计思路:

本节课有以下几个特点:

1、利用远程教育资源,通过多媒体课件复习旧知,激发学生的学习兴趣。在复习旧知时,单凭教师枯燥的提问,很难调动学生的兴趣。教学一开始,我利用远程教育资源,恰当地运用多媒体课件,直观动态地将旧知识展示在学生面前,以感染学生,为学习新知识作好铺垫。

2、利用远程教育资源,通过多媒体课件突出重点,化解难点。本节课的重点是探索三角形面积计算公式的推导,如果只有教师的讲解、演示,很难使学生真正理解、掌握新知。因此,在教学中,我力求打破传统教学以传授知识为中心的弊端,精心设计以学生为主体的实践活动,充分利用远程教育资源,发挥多媒体的功能,通过“变色”、“闪烁”、“声音”等手段突出重点,解决难点,加深学生对新知识的理解,激活学生的创造思维,掌握学习方法,培养学生的学习能力。真正发挥学生的主体作用,体现新课程的理念。

教学过程

一、创境引新

1、同学们,你们还记得怎样计算平行四边形的面积吗?(点击课件)

这个公式是怎样推导出来的呢?

电脑动态演示割拼的转化过程。

形成板书:

转化 找关系 推导

学生看大屏幕,

口答:s=ah

学生口述平行四边形面积公式的推导过程。

2、老师这里有一样东西,你想知道吗?(出示红领巾)红领巾是什么形状的?要知道做这条红领巾需要用多大的布,该怎么办?

三角形的面积该怎样计算呢?这节课老师和大家一起研究、探索这个问题。(板书课题)

生可能会说:求出它的面积。

二、自主探索

合作交流1、谈话启思。

我们能不能利用前面学过的方法来探究三角形的面积呢?想一想,用任意两个三角形可以拼成什么图形,下面同学们利用桌上的学具拼一拼、摆一摆,看一看,能拼成什么图形?

2、操作探索。

(1)四人小组合作进行操作、探索。

(2)小组汇报、交流、展示。

学生可能会拼出以下图形:

(3)课件演示拼出的各种图形。

(4)设疑:

这些图形中哪些图形的面积你会计算?

通过操作,谁能告诉老师,什么样的两个三角形能拼成平行四边形?

你能不能很快的把两个完全相同的三角形拼成平行四边形。

老师有一种方法,能很快的将两个完全相同的三角形拼成平行四边形,想学吗?

电脑演示转化的动态过程。

(5)找关系。

师:拼成的平行四边形与原三角形有什么关系?

课件出示:

a.拼得的平行四边形的底与原三角形的底有什么关系?

b.拼得的平行四边形的高与原三角形的高有什么关系?

c.其中一个三角形的面积与拼得的平行四边形的面积有什么关系?

(6)汇报

在学生回答的基础上师用电脑演示。

(7)尝试推导说理。

师:根据你们的发现,你能推导出三角形的面积计算公式吗?

在学生的汇报中形成板书:

三角形的面积=平行四边形的面积÷2

底 × 高

= 底× 高÷2

师:如果用s表示面积,a、h分别表示三角形的底和高,用字母怎样表示公式?

完善板书:s=ah÷2

学生口答:长方形、平行四边形。

生:两个完全一样的三角形能拼成平行四边形。

学生操作,感到不是很容易。

学生观看转化过程。

尝试旋转、平移的方法。

小组讨论交流。

小组派代表发言。

学生讨论后回答,并说说自己是怎样推导的?

学生发言。

学生齐说:s=ah÷2

3、探究用一个三角形进行割补转化推导。

师:我们在推导平行四边形的面积公式时,运用了割补法,你能不能运用割补法将一个三角形转化成平行四边形?

师:下面我们来观察电脑上是怎样操作的?(点击课件)

师:同学们若有兴趣,课后可以继续探索不同的割补方法。

小组合作探究,

汇报交流。

学生观看运用割补法将一个三角形转化成平行四边形过程。

三、实践应用

拓展提高

1、(出示红领巾)这下你会计算这条红领巾的面积吗?计算它的面积要知道什么条件?

你能估计一下它的底有多长吗?(课件出示红领巾)

一条红领巾的面积是多少平方厘米?

2、看图计算面积。

3、你认识这些道路交通标志吗?谁来说说。

(课件出示)

师:我们学校处在交通繁忙的三*路口,车辆较多。为了同学们的安全,交警叔叔想用铁皮做这样两个标志牌,(点击课件)

你来帮他们算算需要多少铁皮?

4、判断。

(1)、一个三角形的底和高是4厘米,它的面积就是16平方厘米。()

(2)、等底等高的两个三角形,面积一定相等。()

(3)、两个三角形一定可以拼成一个平行四边形。()

(4)、三角形的底是3分米,高是20厘米,它的面积是30平方厘米。()

5、课下请同学们找一个三角形的实物进行测量,计算出它的面积。

学生估计底的长度。

学生独立完成,一人板演。做完后集体订正。

学生口述列式。

通过图3知道要用对应的底和高计算面积。

学生说说自己认识交通标志。

学生独立完成,然后交流。可能出现下面两种方法。

方法一:s=ah÷2

=7.8×9÷2

=35.1

35.1×2=70.2(平方分米)

方法二:s=ah

=7.8×9

=70.2(平方分米)

学生判断,并说明理由。

四、评价体验

通过这节课的学习,你一定有话想对同学们说,你最想说什么?(点击课件)

学生之间互相评价。

教学反思:

1、利用远程教育资源,创设教学情景。

利用远程教育资源,创设情景,能生动直观地将教学信息再现于学生的感官。教学情景创设的好,能调动学生的好奇心,又能为学生提供生动逼真、丰富多彩的教学资源,为学生营造一个色彩缤纷,声像同步,能动能静的教学情景,提高学生的学习兴趣,能做到事半功倍的效果。三角形的面积计算是在完全认识了三角形的特征及掌握了长方形、正方形、平行四边形面积计算的基础上学习的,其推导方法与平行四边形面积计算公式的推导方法有相似之处。因此,我利用远程教育资源网搜索并下载有关平行四边形面积公式的课件,通过多媒体展示给学生。这样即吸引了学生的注意力,又激发了学生探索新知识的欲望,同时又使学生明确了探索目标与方向。

2、利用远程教育资源,引导学生自主探索,参与知识的形成过程。

数学知识只有通过学生亲身主动的参与,自主探索,才能转化为学生自己的知识。本节课,在探索新知的过程中,我让学生利用学具,以小组合作的形式,通过拼一拼、一摆、移一移等方法将两个三角形拼成各种图形。在此基础上,让学生发现只有两个完全相同的三角形才能拼成平行四边形,但学生不会用旋转、拼移的方法。这时,我恰当的运用多媒体课件动画演示,将两个完全相同三角形通过旋转、平移,能很快的拼成一个平行四边形,这样非常直观形象的展示转化过程,学生在好奇的氛围中掌握旋转、平移的方法。渗透了转化的数学思想。并再次观看多媒体课件,发现拼成的平行四边形与原三角形的内在联系,从而推导出三角形的面积计算公式。有效的突破教学难点,帮助学生深刻理解新知识,达到了事半功倍的效果提高教学效率。

割补法是学习几何知识很重要的方法。在推导平行四边行面积计算公式时,学生已初步掌握了割补法。本节课中,当学生用旋转、平移的方法推导出三角形的面积公式后,我又设计让学生运用割补法,将一个三角形转化成平行四边形,来推导三角形的面积公式。这一环节由于学生的能力和知识水平有限,对于割补法有一定的困难,因此,我充分运用多媒体课件动画,直观地展现几种割补方法,以拓展学生的思维能力,提高学生的推理能力。

3、利用远程教育资源,提高学生应用新知识的能力。

练习的设计除了注重趣味性和层次性外,更注重现实性。本节课的练习除了围绕重点设计基本练习巩固新知识外,还设计了培养学生创新意识及实践能力的练习题。为了节约教学时间,调动学生学习的积极性,运用多媒体课件展示练习题是必不可少的。因此我设计了让学生认识道路交通警示标志,并计算两块相同标志牌面积的课件,学生在练习过程中,既发散了学生的思维,又对学生进行了交通安全教育。

总之,利用远程教育资源,,对学生主体性发展、思维能力的培养具有独特的优势,教学中教师适时运用多媒体辅助教学,创设丰富的情景,调动学生多种感官参与教学过程,发挥了最佳的教学效应,从而激励学生去探索、去发现、去创造。

三角形面积课件教案合集11篇


每位教师都需在授课前准备好自己的教案和课件,因此我们的老师都需要认真地进行编写。通过对教案和课件的优化,教学任务可以更加精细化,那么好的教案课件应该是怎样的呢?在进行整理后,幼儿教师教育网小编向大家推荐了一篇名为“三角形面积课件教案”的文章,供大家参考。欢迎大家来阅读!

三角形面积课件教案【篇1】

教学内容:

人教版义务教育课程标准实验教科书《数学》五年级上册P84~P85的内容,三角形的面积。

教学目标:

1、探索并掌握三角形的计算面积公式,能应用公式正确计算三角形的面积;

2、使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力;

3、让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。

教学重、难点:

重点是探索并掌握三角形的面积公式,能正确计算三角形的面积。难点是理解三角形面积公式的推导过程和公式的含义。

教、学具准备:

CAI课件、红领巾、每个小组准备相同的直角三角形、锐角三角形、钝角三角形各两个。

教学过程:

一、创设情境、导入新课

1、提出问题。

师:(出示一条红领巾)同学们,这是一条红领巾。它是什么形状的?那你们会计算三角形的面积吗?

2、揭示课题。

师:那我们今天就一起来研究怎样计算“三角形的面积”?(板书课题:三角形的面积)

二、操作“转化”,推导公式

1、寻找思路。

师:是的,我们还不会计算三角形的面积。那同学们想一想,开始我们同样不会计算平行四边形的面积,后来我们通过什么方法推导出了平行四边形的面积计算公式的呢?

师:对,我们用“割补”的方法把平行四边形“转化”(板书:转化)成了一个长方形,这样推导出了平行四边形的面积计算公式。那同学们,我们能不能把三角形也“转化”成我们已经学过的图形,从而推导出三角形的面积计算公式呢?

师:大家想想,怎样“转化”呢?可不可以用“割补”的方法呢?

2、动手“转化”。

师:看来用“割补”方法很难“转化”。那我们可不可以用拼一拼的方法来“转化”呢?老师为每个小组的同学都准备了两个完全一样的三角形,请大家拼一拼,看看能不能把三角形“转化”成一个我们已经学过的图形。开始吧。

小组合作拼组图形,教师巡视指导。

师:拼好了吗?用这种拼一拼的方法能不能把三角形“转化”成已经学过的图形呢?谁来说一说,你们用这种方法把三角形“转化”成了什么图形?

图1图2图3

师:同学们,为什么有些小组拼成了一个平行四边形,有的小组却拼成了一个长方形呢?你们想想,这是什么原因呢?

[评析:引导学生观察三角形的不同类别,弄清拼成不同形状的原因。]

3、尝试计算。

师:同学们真棒,大家都发现,用两个完全相同的三角形可以拼成一个平行四边形或一个长方形。现在请同学们看图1。(教师在图1中标示数据,如下图)

师:这个平行四边形就是由两个完全相同的三角形拼成的`,它的底和高分别是多少?那么,其中一个三角形的底和高又分别是多少呢?

[评析:引导学生说出拼成的平行四边形和原来的三角形等底等高,为推导三角形的面积计算公式作铺垫。]

师:知道了平行四边形的底和高,你们能求出所拼成的平行四边形的面积吗?算一算吧。

师:算完了吗?它的面积是多大?

师:我们知道,这个平行四边形是用两个完全一样的三角形拼成的,平行四边形的面积是20平方厘米,那这个绿色三角形的面积是多大呢?想一想,小组同学商量商量吧。

师:同学们太了不起了,开动脑筋,已经算出了这个绿色三角形的面积。

师:现在请同学们看屏幕,(课件出示,如下图)你们会计算屏幕上这个蓝色三角形的面积吗?算一算。

师:同学们,你们太棒了!又计算出了一个三角形的面积。再看屏幕,(课件出示,如下图)你们还能计算这个三角形的面积吗?

[评析:由清晰的由两个完全相同的三角形拼成的平行四边形,到由一实一虚的两个完全相同的三角形拼成的平行四边形,再到一个独立的三角形,面积计算逐步深入,层层推进,引导学生经历了由具象到抽象的过程,思维含量非常丰富。]

4、推导公式。

师:同学们,刚才大家已经尝试着求出了三个三角形的面积,大家都算得很好。那么现在你们能把三角形的面积计算公式写下来吗?先写一写,同桌同学再商量商量吧。

5、理解公式。

师:同学们,老师有点不明白,为什么你们写这个公式时用三角形的底乘高呢?“底×高”表示什么意思呢?为什么还要“÷2”呢?

[评析:通过请学生帮助老师解困惑,加深学生对三角形面积计算公式含义的理解:“底×高”表示用两个完全一样的三角形拼成的平行四边形的面积;因为三角形的面积是拼成平行四边形面积的一半,所以要“÷2”。这样既突破了教学难点,更加深了学生对三角形面积计算公式的理解。]

6、用字母表示三角形的面积公式。

师:同学们,如果用a表示三角形的底,h表示三角形的高,S表示三角形的面积,你们会不会用字母表示三角形的面积公式呢?请写一写吧。

[评析:拼一拼、算一算、说一说、写一写……不知不觉中,同学们自己推导出了三角形的面积计算公式。学生自然地成为了学习的主人。]

师:同学们,你们知道吗?今天我们一动手起推导出的三角形的面积计算公式,很早以前,我们的祖先就已经发现了,请看大屏幕。(课件出示如下图,课本P85页的数学常识。)

三角形面积课件教案【篇2】

教学目标:

1、使学生掌握三角形面积的计算公式,会运用公式计算三角形的面积。

2、通过图形的割补,剪拼,渗透图形变换等教学手段,培养学生的操作能力,空间想象能力和逻辑思维能力。

教学重点:

掌握三角形面积的计算公式,会运用公式计算三角形的面积。

教学难点:

理解三角形面积计算公式的推导方法。

教学关键:

引导学生理解三角形面积计算公式中除以2的意义。

本节课,我根据五年级学生的知识面较广,学习自觉性较强的特点,采用尝试教学法、实验法、练习法等教学方法进行教学。让学生带着教师提出的问题在旧知识的基础上,通过自学课本,利用学具独立作业,互相讨论和巩固练习,去尝试解决问题,教师再根据学生尝试练习中的难点和教材的重点加以讲解和点拔,充分发挥学生的主体作用和教师的主导作用,有利于培养学生的探索精神和操作能力。教学时,我按导入新课、揭示课题、推导公式、实际应用、巩固练习、课堂总结这六个环节进行。

一、导入新课

新课的导入是为了引导学生迅速进入学习状态的行为方式。好的导入,可以点燃学生思维的火花,活跃学生的思维。我采用实物直观法导入新课,先引导学生观察少先队大队旗,说出大队旗的长是120厘米,宽是90厘米,让学生利用旧知识计算大队旗的面积和归纳长方形面积计算公式。再出示红领巾,引导学生说出要计算红领巾的面积,就是求三角形面积,从而发挥知识的迁移作用,激发学生强烈的求知欲望和浓厚的学习兴趣,使学生进入一个良好的学习境界,为整个教学过程创造良好的开端。

二、揭求课题

我按照学生的心理特征,运用了激趣法揭示课题,以引起学生的注意和兴趣,调动学生的学习积极性,起承上启下、开宗明义的作用。我先直接板书课题“三角形面积的计算”,再提出问题“这节课要学习哪些内容?”让学生互相讨论,说出三个问题。(1)三角形面积的计算公式是什么?(2)三角形面积的计算公式是怎样推导的?(3)怎样运用公式计算三角形的面积?这样,巧妙地让学生自己提出本课的学习目标,把目标变成自身学习的需要,使学生由“要我学数学”变成“我要学数学”。

三、推导公式

公式的推导过程是学生知识的形成过程。我根据学生的认知规律让学生有目的、有步骤地动眼观察,动脑思考,动手操作,动口讲述,以实验法推导三角形面积的计算公式。教学时,分四步进行。(1)引导猜想:我让学生按照课本75页的方法,用方格纸数出三角形的面积,引导学生观察三角形的底是多少厘米?宽是多少厘米?底和高的长度与面积之间有什么联系?让学生通过观察分析,得出三角形底是6厘米,高是4厘米,面积是12平方厘米(图1),

底6厘米高4厘米面积12平方厘米

图1

接着引导学生猜想三角形面积是底和高乘积的一半。

(2)尝试操作:

当学生心理上产生疑问,迫切地需要教师的讲解和验证时,教师要求学生回忆平行四边形面积计算公式是怎样推导的?学生一边说,我一边把平行四边形变成长方形的推导方法演示出来(沿平行四边形的高剪出一个三角形,把剪下的三角形拼到另一边,变成一个长方形,如图2)。

图2

以唤起学

生的回忆,促进知识的迁移。然后再要求学生模仿平行四边形面积公式推导的方法,把三角形转换成其他图形,并拿出课前准备的长方形学具,量出长方形的长与宽是多少?(长10厘米,宽6厘米),计算出它的面积是10×6=60平方厘米,再沿着长方形的对角线剪开,分成两个大小形状相同的三角形,算出一个三角形的面积是10×6÷2=30平方厘米(如下图)。学生清楚地看

出这个三角形是原来长方形的一半。使学生沿着形象思维到抽象思维发展的规律去理解三角形面积计算公式的推导。接着让学生拿出平行四边形纸片,量出它的底和高分别是10厘米、6厘米,用10×6计算出平行四边形的面积是60平方厘米,然后沿着平行四边形的对角线剪开,可以分成两个大小形状相同的三角形,用10×6÷2算出一个三角形的面积是30厘米。学生再一次看出这个三角形是原来平行四边形的一半,而且观察出平行四边形的底和高与剪开的三角形的底和高是一致的,攻破教学的难点。(3)归纳公式:通过两个实验,学生纷纷讨论,并归纳出三角形面积计算公式是底×高÷2,用字母表示写作S=ah÷2,并点明求三角形的面积必须要知道三角形的底和高,计算三角形的面积时把底和高相乘后不能忘记除以2,让学生的知识更系统完善。(4)看书质疑:学生通过自己实验操作已水到渠成地得出结论后,我再让学生认真阅读课本75页至77页的内容,比较与自己推导的方法有什么异同,突出说明课本是用“合”的方法验证公式,而我们是用“分”的方法来验证公式的,两种方法均把三角形变换成长方形或平行四边形来推导,都能尝试成功。之后,留一点时间让学生提出疑问,我再进行针对性的释疑,创造亲切和谐的课堂气氛,使学生有疑敢问,进一步把教师的主导作用,学生的主体作用,教科书的示范作用及学生之间的互补作用有机地结合起来,提高了课堂效率。

四、实际应用

学生推导出三角形面积计算公式后,我便出示一道同课本例题相仿的尝试题:一条红领巾的底是100厘米,高是32厘米,它的面积是多少?让学生独立解答,分别叫好、中、差三类学生板演,我进行巡堂检查,了解信息反馈,去发现所估计出现的两种情况:(1)100×32÷2=1600平方厘米;(2)100×32=3200平方厘米,并按反馈信息组织学生讨论和讲解,强调应用三角形面积计算公式时把底和高相乘后不要忘记除以2,否则会计算了长方形或平行四边形的面积,以确保学生系统地掌握知识。

五、巩固练习

练习是学生掌握知识,形成技能的必要途径,是检查教学目标落实情况的重要手段。为了提高练习的效率,我合理地设计了三道练习题。

第1题:计算下列图形的面积。这是课本77页做一做的题目,属单一性练习,用于巩固新知识。

第2题:平行四边形的面积12平方厘米,求涂色的三角形的面积。

这是课本78页练习十八的题目,属综合性练习,既复习了三角形面积公式与平行四边形面积公式的关系,又进一步巩固三角形面积计算,防止学生照样画葫芦。

第3题:计算少先队中队旗的面积,看谁的解法最简便?这题属创造性练习题,既能激发学生学习兴趣,又能促进学生的散发思维。

六、课堂总结

总结是课堂教学的重要环节,可以使学生更进一步明确具体的教学任务,抓住要点内容,形成系统的知识。我让学生联系本课初提出的学生目标,总结本课所学内容,得出:(1)三角形面积计算公式是底×高÷2;(2)三角形的底和高决定以后,三角形的面积也就决定了;(3)计算时把底和高相乘后不要忘记除以2。这样,通过疏理、归纳,起到画龙点睛的作用,使整节课的安排善始善终。

三角形面积课件教案【篇3】

教学目标:

1、引导学生用多种方法推导三角形面积的计算公式,理解长方形、平行四边形和三角形之间的内在联系。

2、通过操作使学生进一步学习用转化的思想方法解决新问题。

3、理解三角形的面积与形状无关,与底和高有关,会运用面积公式求三角形面积。

4、引导学生积极探索解决问题的策略,发展动手操作、观察、分析、推理、概括等多种能力,并培养学生的创新意识。

教学重点:理解并掌握三角形面积的计算公式。

教学难点:理解三角形面积的推导过程。

教法与学法:教法:演示讲解、指导实践。

学法:小组合作、动手操作。

教学准备:三角形卡片、多媒体课件

教学过程:

一、情境引入

师:同学们,我们每天都佩戴着鲜艳的红领巾,高高兴兴地来到学校学习新的知识,那你知道做一条红领巾需要多少布料呢?(不知道)我们佩戴的红领巾是什么形状的?(三角形),怎样计算三角形的面积呢?这节课我们就一起来研究三角形的计算方法(板书课题)

通过情境的创设,给学生提供现实的问题情境,使学生产生解决问题的欲望,积极主动地参与到学习活动之中。

二、探究新知

1、复习平行四边形面积的求法

师:回忆一下,平行四边形面积计算公式是什么?是怎么推导的?

师:我们是先把平行四边形转化成长方形,运用学过的长方形面积的计算公式,找到平行四边形与长方形之间的联系,推导出了平行四边形面积的计算公式,今天这节课,我们继续用转化的数学思想来探索三角形的面积怎样计算。

抓住新旧知识的生长点进行复习,检验学生对已有知识的掌握情况和转化思想的理解情况,建立起新旧知识的联系,为学习新知做好铺垫。

2、第一次操作实践

师:好,那怎样把三角形转化成我们所学过的图形呢?请同学们拿出学具袋里的各种三角形,两人一组想一想,拼一拼。(教师巡回指导)

3、交流反馈

师:同学们都拼好了,谁来说说你是怎样拼的?

生:我用两个直角三角形拼成了一个平行四边形。

师:我这也有两个直角三角形,可是拼不成,为什么?你有什么发现?

生:要用完全相同的三角形来拼。

师:你拼时怎么知道是两个完全相同的三角形呢?

生:把两个三角形重合就知道了。

师:对,要用两个完全相同的三角形来拼。

师:还有不同的拼法吗?

生:我用两个完全相同的锐角三角形拼成了一个平行四边形。

生:我用两个完全相同的钝角三角形也拼成了一个平行四边形。

(学生汇报并且交流拼法,明确用两个完全一样的三角形能拼成一个平行四边形。)

师:看看这几种拼法它们有什么共同点呢?认真观察,同桌互相说说。

4、第二次操作实践

师:说的真好,刚才同学们把两个形状完全一样的三角形通过拼组,转化成了平行四边形,也就把三角形面积的计算和我们刚学过的平行四过形面积计算联系起来了,下面我们再次合作,根据你们转化的图形,找到它们之间的联系,推导出三角形面积的计算公式。(生讨论交流)

放手让学生自己通过前面的拼摆操作,探索三角形与拼成的长方形,平行四边形或正方形之间的内在联系,能够使学生更好地理解三角形面积公式的推导过程。

师:谁来说说你是怎样推导的?

生汇报

师板书:三角形的面积=底×高÷2

师:你们的发现太棒了!下面请同学再仔细观察所拼成的平行四边形的底与三角形的底,所拼成的平行四边形的高与三角形的高看看有什么发现?

师:我们把这种相等的关系叫等底等高。

师:那么三角形的底乘以三角形的高求出的是什么?

生:与三角形等底等高的平行四边形的面积。

师:为什么除以2呢?

生:因为三角形的面积是与它等底等高的平行四边形面积的一半,所以要除以2。

师:大家同意吗?无论什么样的三角形,它的面积都可以转化成平行四边形的面积来计算,所以我们得到三角形的面积公式=底×高÷2

师:谁能用字母表示三角形的面积公式

师板书s=ah÷2(生齐读)

三、运用公式,解决问题

(1)师:利用三角形面积公式,我们可以方便地解决一些实际问题了!老师这里有一条红领巾,求它的面积,你需要知道什么条件?你能估测一下这条底边有多长吗?(100厘米)

师:(出示课件)它的高是33厘米,你能计算出它的面积吗?

在练习本上算一算

〔设计意图〕在解决实际问题中巩固新知,培养学生学数学、用数学的思想,感受数学的价值。

(2)我们经常见到类似的标志的标志牌(课件出示),你知道这个标志牌的面积吗?谁口算一下。

3×4÷2=6(平方分米)

2.5×4.8÷2=6(平方分米)

师:都是这样做的吗?为什么不用2.5分米?

如果这条底边是4.8分米(课件出示)还可以怎样列式。(2.5×4.8÷2)

师:通过这道题的解答,你明白了什么?

〔设计意图〕通过解决实际生活,提升学生思考能力,培养学生认真观察的能力。

(3)你认识下面的这些道路交通警示标志吗?

向右急转弯 注意危险 减速慢行 注意行人

师:我们学校的上下两个路口在放学时经常交通混乱,为了改变这种状况,交警队准备用铁皮制作四块这样警示牌,你能算出需要多少铁皮吗?(课件)

学生试算

〔设计意图〕这道练习的设计,既巩固了数学知识又自然地渗透了安全教育。

(4)小精灵也给大家带来了问题,请大家看屏幕

师:下图中哪两个三角形的面积相等?你还能画出和它们面积相等的三角形吗?

学生打开书87页,在书中画一画

师:你画出了几个面积相等的三角形?如果给你足够的时间你能画出多少个这样的三角形?

生:无数个

师:通过画这样的三角形,你发现了什么?

生:三角形的面积与底和高有关,与形状无关。

让学生通过思考、讨论、揭示“等底等高的三角形,它们的面积相等”这一规律。

四、总结收获

这节课我们运用转化的思想,通过拼摆把三角形转化成与它等底等高的平行四边形,推导出三角形面积公式,大家还有不明白的地方吗?实际上我们还可以运用剪拼或折叠的方法来推导三角形面积公式(课件演示)课下同学们可以动手试一试。

师:同学们,这节课你最大的收获是什么?

生:我学会了三角形的面积怎样计算。

生:我学会了用转化的方法推导三角形的面积计算公式。

师:下节课我们继续运用转化的思想探究梯形面积的计算方法。

通过反思和总结,能使学生建构的知识框架更加清晰、明了,使学生不仅掌握了知识,而且也掌握了学习方法。

三角形面积课件教案【篇4】

《三角形面积》说课稿范文

作为一位无私奉献的人民教师,可能需要进行说课稿编写工作,说课稿有助于提高教师理论素养和驾驭教材的能力。优秀的说课稿都具备一些什么特点呢?以下是小编帮大家整理的《三角形面积》说课稿范文,欢迎大家借鉴与参考,希望对大家有所帮助。

一、说教材:

本课题是人教版五年级上册第五单元一课时的教学内容。三角形的面积计算是学生在掌握了它的特征的基础上学习的,它是进一步学习圆面积和立体图形表面积的基础知识之一。因此,体验和感知三角形面积计算的探索过程,掌握三角形面积计算公式,是学生后继学习的重要基本技能和基础知识。教材的编排是在学生已经学习了长方形、平行四边形的面积的基础上学习的。

二、说教学目标:

1、知识与技能

(1)使学生经历三角形面积计算公式的探索过程,理解三角形面积计算的公式。让学生亲身经历三角形面积公式探索与获得的过程,而不是要教师直接把三角形面积计算的方法讲明给学生,让学生处于接受的状态。这样设计,符合了新课程学生的现代学习观。

(2)通过多种学习活动,培养学生动手操作的能力,和学生的'抽象、概括、推理能力,培养学生的合作意识和探索精神。

(3)培养学生应用所学知识解决生活实际问题的能力。

2、过程与方法

使学生经历操作、观察、讨论、归纳等数学学习活动,通过图形的拼摆,割补、折叠来渗透图形转化的数学思想,在探索学习和解决实际问题的过程中体验数学与生活的联系。

3、情感、态度与价值观

让学生在探索活动中获得积极、愉悦的情感体验,进一步培养学生学习数学的兴趣。

三、说教学重点、难点:

重点是理解三角形面积计算的推导过程,会根据公式进行计算。难点是理解三角形的底、高和面积与拼合而成的平行四边形的底、高和面积之间的关系。

四、说教法学法:

“动手实践、自主探究与合作交流”是学生学习数学的重要方式。因此,在本课的教学采用:

1、实验法

学生通过自己动手操作学习新知识比听教师讲解新知识记忆更加深刻,兴趣更加浓厚。因此,在教学三角形面积计算公式推导过程时,让学生动手操作、讨论,体现了以学生为主体,教师为主导的教学原则。

2、课件演示,配合启发。

学生动手实验,交流汇报之后,再看课件演示,教师给予点拨,使学生更直观,更形象地理解三角形面积的计算方法。

五、说教学过程:

(一)创设生活情境,揭示课题

请学生回忆并指名学生说明上节课同学们推导平行四边形面积计算的过程。以解决生活中高庙公园一长方形地为出发点,园林师傅想分成相同的两半,如何去分提出问题,揭示课题。板书课题:三角形的面积(设计意图:有学生熟悉的知识并继续渗透转化的数学思想,即:把平行四边形转化成长方形来计算面积,为新知识的学习作好铺垫。对于表达不清楚、不完整的同学,教师显示课件,启发其完整的表达,并给予鼓励。)

(二)探索新知

出示问题:怎样把三角形的转化成我们学过的图形呢?

1、小组合作,动手拼摆,(说明:学生准备直角、钝角和锐角三角形各两个,且两个直角、两个钝角和两个锐角三角形的形状分别完全一样。设计意图:教师为学生提供一个开放的空间,让学生亲身经历自主探索的过程。创设了一个问题情景,让学生在发现问题,解决问题之中感悟出“形状完全一样的三角形”是拼摆的前提,通过学生亲手拼摆,最大限度地发挥学生学习的主体性,也有助于“用两个形状完全一样的三角形拼出了一个平行四边形”等概念的建立。)

2、小组代表汇报实验成果,并演示拼摆的操作过程,说明拼摆的方法。“我的发现”这一栏教师要鼓励学生充分、大胆地发言,说出自己在操作中的发现,教师给予鼓励。(设计意图:让学生汇报实验成果,教师给予表扬肯定,使学生体验学习成功的喜悦,设置“我的发现”这一开放性的问题,培养学生发散思维的能力。)

3、课件演示三角形拼摆成平行四边形的过程。(设计意图:先让学生动手拼摆,再播放课件演示这一顺序必须把握好。先让学生自由做实验,有利于学生在操作过程中自由发挥,而不束缚学生的想象力和思维能力。学生汇报实验成果之后,再观看课件演示,这就更形象、更直观,更生动的展现了图形拼摆的过程,有利于学生形象思维能力的培养。)

4、小组合做,讨论问题

问题:两个完全一样的三角形可以拼成?

每个三角形的面积等于?这个平行四边形的底等于?这个平行四边形的高等于?三角形的面积公式是?学生借助手中的图形讨论问题。小组代表汇报讨论学习成果。

(设计意图:让学生亲自讨论、交流中发现三角形的底、高和面积与所拼成的平行四边形的底、高和面积的关系,帮助学生对三角形面积公式的推导。培养学生的合作学习意识。)

(三)巩固拓展

1、课件出示解决红领巾面积的练习。

学生独立计算,教师指名学生上黑板板演。

课件演示规范的板演过程。(设计意图:基本题的设计,巩固了学生对基本知识的掌握。渗透对估算的学习)

2、出在同一三角形中底对应的高的练习来解决问题。

3、以生活为例交通警示牌进行安全教育,计算面积。

(四)全课总结

同学们,这节课经过大家亲自实验,归纳推导出了三角形面积计算的公式,真了不起!但请大家仔细想想,这节课,你们还有什么问题吗?(设计意图:一堂课的学习,不能让学生产生错觉,认为把本节课所有的问题都解决了,教师要注重培养学生的问题意识,学生产生了疑问,才会积极地去探究。)

这节课我们学习的是三角形面积的计算,说说你都获得了哪些知识?

三角形面积课件教案【篇5】

教学内容:

《现代小学数学》第九册第31~35页,三角形面积的计算。

教学目标:

一、了解三角形面积计算公式的推导过程,掌握求三角形面积的计算方法。

二、能运用三角形面积计算公式进行有关的计算。

三、渗透对立统一的辩证思想。

教学过程:

一、复习引入。

1.准备练习:你会计算这些图形的面积吗?这些图形的面积在计算时,同哪些因素有关?

出示:

2.提问:图(4)是一个什么图形?你会计算它的面积吗?猜一猜,三角形的面积同哪些因素有关?

3.揭题:大家猜得究竟对不对,下面我们就一起来探求“三角形面积的计算”方法。(出示课题)

【设计意图:通过“猜”,引导学生从新旧知识的联系中,大胆地提出假设,为新课展开做好铺垫,同时激发学生急于想验证假设的认知欲望。】

二、新课展开。

(一)实践活动。

1.让学生拿出已准备好的如下一套图形。(同桌合作)

(1)测量各平行四边形(含长方形)的底和高,算出面积,并填入表格内。

(2)找出与平行四边形等底等高的三角形,将相应的编号填入表格内。

(3)分组讨论:

①各三角形的面积是多少?请填入表格内。

②三角形的面积怎样计算?

(4)汇报、交流,初步得出三角形面积计算方法。

【设计意图:通过实践活动,让学生自己研究问题、分析问题,初步得出三角形面积的计算方法,从而突出了学生的主体地位,既让学生主动参与知识的获取过程,又从找对应关系中,渗透了对应关系的教学。】

2.验证。

(1)拿出如右图的三角形,要求剪一刀或两刀,拼成一个与原三角形面积相等的平行四边形。

数学课堂教学参谋

(2)汇报、交流:学生有几种剪拼法,就交流几种。如:

6×4÷2 6×(4÷2)

=12(平方厘米) =12(平方厘米)

6×4÷2 6÷2×4

=12(平方厘米) =12(平方厘米)

【设计意图:通过验证,培养学生科学的态度,同时从启发学生应用不同的剪拼法中,培养学生的发散思维。】

(二)归纳、小结。

1.从上面的实践活动中,你能说出求三角形面积的计算公式吗?三角形的面积同哪些因素有关?证明“三角形面积=底×高÷2”。(板书:三角形面积=底×高÷2)

2.如果用s表示三角形的面积,a和h分别表示三角形的底和高,那么三角形的面积公式可以怎么写?(板书: s= ah÷2)

(三)应用。

例 一块三角形钢板,底是8米,高是2.5米,它的面积是多少?

学生试做后,反馈、评讲。

【设计意图:通过试做例题,让学生及时把发现的三角形面积计算方法应用于实践,同时起到及时巩固作用。】

三、巩固练习。

(一)基本练习。

1.口算出每个三角形的面积。

①底8米,高7米 ②底5分米,高12分米③a:4厘米,h:2.5厘米 ④a:20分米,h:5.4分米

2.课本35页第②题,看图填写答案。(每一格代表1平方厘米)

这些三角形的高都是____厘米,底都是____厘米。

这些三角形的面积都是:□×□÷2=□(平方厘米)。

3.先量一量,标出图形的长度后,再计算各三角形的面积。

【设计意图:通过三道基本练习,进一步促进全体学生掌握三角形面积的计算方法,尤其是第3道题,使学生进一步明确要求三角形面积,需要知道三角形的底和高。】

(二)分层练习。

a组学生:做选择题。

①求右图面积的算式是( )。

a.9×4÷2 b.15×4÷2

c.15×9÷2 d.15×4

②求右图面积的算式是( )。

a.5.2×3.5÷2

b.5.2×4.1÷2

c.4.1×3.5 d.4.1×3.5÷2

③求下图面积的算式是( )。

a.25×20 b.18×25

c.18×20 d.18×20÷2

b组学生:做课本第15页第

②题:在格子图上画面积都是12平方厘米的三角形(每一小格表示1平方厘米),并在表中分别填上所有三角形的底和高。(图、表见课本。略)

c组学生:先求出下面三个三角形abc、bcd、bce的面积。再比较一下,它们的面积相等吗?为什么?

【设计意图:通过分层练习,使 a、b、c三层的学生在数学思维、数学能力方面均有提高,以体现因材施教的原则。】

四、课堂小结。

这节课研究了哪些内容?三角形面积计算方法是什么,你是怎么研究出来的?

【设计意图:通过提问,不仅回顾了所学知识,而且总结了所研究的方法,真正体现出不仅要授之以“鱼”,更要导之以“渔”。】

五、布置作业。(略)

(此文获“第二届全国小学课堂教学征文大赛”一等奖)

三角形面积课件教案【篇6】

一、说教材:

本课题是人教版五年级上册第五单元一课时的教学内容。三角形的面积计算是学生在掌握了它的特征的基础上学习的,它是进一步学习圆面积和立体图形表面积的基础知识之一。因此,体验和感知三角形面积计算的探索过程,掌握三角形面积计算公式,是学生后继学习的重要基本技能和基础知识。教材的编排是在学生已经学习了长方形、平行四边形的面积的基础上学习的。教学内容引导学生动手把两个完全一样的三角形拼成平行四边形来计算面积,培养学生的动手操作能力和思维能力。

二、说教学目标:

基于以上对教材的认识,按照新课程理念,我制定了以下的教学目标:

1、知识与技能

(1)使学生经历三角形面积计算公式的探索过程,理解三角形面积计算的公式。(说明:这里强调“过程”,即:让学生亲身经历三角形面积公式探索与获得的过程,而不是要教师直接把三角形面积计算的方法讲明给学生,让学生处于接受的状态。这样设计,符合了新课程学生的现代学习观。)

(2)通过多种学习活动,培养学生的抽象、概括和推理能力,培养学生的合作意识和探索精神。

(3)培养学生应用所学知识解决问题的能力。

2、过程与方法

使学生经历操作、观察、讨论、归纳等数学学习活动,通过图形的拼摆,渗透图形转化的数学思想,在探索学习和解决实际问题的过程中体验数学与生活的联系。

3、情感、态度与价值观

让学生在探索活动中获得积极、愉悦的情感体验,进一步培养学生学习数学的兴趣。

三、说教学重点、难点:

重点是理解三角形面积计算的推导过程,会根据公式进行计算。难点是理解三角形的底、高和面积与拼合而成的平行四边形的底、高和面积之间的关系。

四、说教法学法:

“动手实践、自主探究与合作交流”是学生学习数学的重要方式。因此,在本课的教学采用:

1、实验法

学生通过自己动手操作学习新知识比听教师讲解新知识记忆更加深刻,兴趣更加浓厚。因此,在教学三角形面积计算公式推导过程时,让学生动手操作、讨论,体现了以学生为主体,教师为主导的教学原则。

2、课件演示,配合启发。

学生动手实验,交流汇报之后,再看课件演示,教师给予点拨,使学生更直观,更形象地理解三角形面积的计算方法。

五、说教学过程:

(一)复习引入,揭示课题

1、请学生回忆并指名学生说明上节课同学们推导平行四边形面积计算的过程。(设计意图:要求学生完整地说明平行四边形面积公式的推导过程,锻炼学生的语言表达能力。并继续渗透转化的数学思想,即:把平行四边形转化成长方形来计算面积,为新知识的学习作好铺垫。对于表达不清楚、不完整的同学,教师显示课件,启发其完整的表达,并给予鼓励。)

2、揭示课题

板书课题:三角形的面积

(二)探索新知

出示问题:怎样把三角形的转化成我们学过的图形呢?

1、小组合作,动手拼摆,填写实验报告单。(说明:学生准备直角、钝角和锐角三角形各两个,且两个直角、两个钝角和两个锐角三角形的形状分别完全一样。设计意图:教师为学生提供一个开放的空间,让学生亲身经历自主探索的过程。创设了一个问题情景,让学生在发现问题,解决问题之中感悟出“形状完全一样的三角形”是拼摆的前提,通过学生亲手拼摆,最大限度地发挥学生学习的主体性,也有助于“用两个形状完全一样的三角形拼出了一个平行四边形”等概念的建立。)

2、小组代表汇报实验成果,并演示拼摆的操作过程,说明拼摆的方法。“我的发现”这一栏教师要鼓励学生充分、大胆地发言,说出自己在操作中的发现,教师给予鼓励。(设计意图:让学生汇报实验成果,教师给予表扬肯定,使学生体验学习成功的喜悦,设置“我的发现”这一开放性的问题,培养学生发散思维的能力。)

3、课件演示三角形拼摆成平行四边形的过程。(设计意图:先让学生动手拼摆,再播放课件演示这一顺序必须把握好。先让学生自由做实验,有利于学生在操作过程中自由发挥,而不束缚学生的想象力和思维能力。学生汇报实验成果之后,再观看课件演示,这就更形象、更直观,更生动的展现了图形拼摆的过程,有利于学生形象思维能力的培养。)

4、小组合做,讨论问题(课件出示问题)。

问题:两个完全一样的三角形可以拼成?

每个三角形的面积等于?

这个平行四边形的底等于?

这个平行四边形的高等于?

三角形的面积公式是?

学生借助手中的图形讨论问题。

小组代表汇报讨论学习成果。

教师结合课件补充,帮助学生解决问题。(设计意图:让学生亲自讨论、交流中发现三角形的底、高和面积与所拼成的平行四边形的底、高和面积的关系,帮助学生对三角形面积公式的推导。培养学生的合作学习意识。)

(三)巩固拓展

1、课件出示两道基本题的练习。

学生独立计算,教师指名学生上黑板板演。

课件演示规范的板演过程。(设计意图:基本题的设计,巩固了学生对基本知识的掌握。)

2、课件出示两道拓展题的练习。(判断题,可以组织学生小组讨论完成。“解决问题”有一定的开放性,学生可以自由选择三角板,实际动手量出三角板的底和高,再计算面积,有利于培养学生的动手能力,有利于学生学习主体性的提到。)

(四)全课总结

同学们,这节课经过大家亲自实验,归纳推导出了三角形面积计算的公式,真了不起!但请大家仔细想想,这节课,你们还有什么问题吗?(设计意图:一堂课的学习,不能让学生产生错觉,认为把本节课所有的问题都解决了,教师要注重培养学生的问题意识,学生产生了疑问,才会积极地去探究。)

六、说板书设计

三角形的面积

三角形的面积=底高÷2

字母表示:s=ah÷2

三角形面积课件教案【篇7】

教学内容:第75页及练习十八1-4题

教学要求:

1、理解三角形面积公式的推导过程,并能正确地运用公式计算三角形的面积。

2、通过教学培养学生分析、推理能力和实际操作能力,发展学生的空间观念。

3、在指导操作过程中,引导学生运用转化的方法探索规律。

教学重点:三角形面积计算公式的推导。

教学难点:理解公式中除以2的道理。

教具:准备三种类型的三角形,每种2个完全一样,投影片若干。

学具:完全相同的两个直角三角形、两个锐角三角形、两个钝角三角形。

教学过程:

一、复习铺垫

1、提问:谁能说说长方形、平行四边形的面积计算公式是怎样的?

2、(幻灯出示)口答:计算图形面积

二、导入新课

幻灯出示一个三角形

提问:它是一个什么图形?

它的底和高分别是多少?

它的面积怎样算呢?板书课题:三角形面积的计算。

三、讲授新课

(一)、用数方格的方法计算三角形的面积。

幻灯出示课本第75页上面的图,教师说明不够一格的都按半格算。让学生说出它们的底和高各是多少?面积是多少?

得出用数方格的方法计算三角形的面积不准确,又很麻烦。

质疑:怎样计算三角形的面积呢?

(二)、通过操作总结三角形的面积计算公式。

1、从直角三角形推导。

我们能不能把三角形转化成已经学过的图形,再进行计算面积呢?

(1)让学生动手拼,教师将学生拼出的图形一一展示出来。

(2)这些图形中哪些图形的面积你们会算?

(3)每个直角三角形的面积与拼成的长方形和平行四边形的面积有什么关系?

教师重述:每个直角三角形的面积是拼成的长方形或平行四边形面积的一半。

2、从锐角三角形推导。

(1)让学生试拼,可以相互讨论。

(2)教师指导,突出旋转和平移。

(3)每个锐角三角形的面积与拼成的平行四边形的面积有什么关系?

教师强调:每个锐角三角形的面积是拼成的平行四边形面积的一半。

3、从钝角三角形推导。

(1)学生操作。

(2)每个钝角三角形的面积与拼成的平行四边形的面积有什么关系?

4、归纳总结规律。

通过以上实验可以看出:两个完全一样的三角形,不论是直角三角形、锐角三角形、钝角三角形都可以拼成一个平行四边形。大家想想:

(1)这个平行四边形的底与三角形的底是什么关系?高又怎么样?

(2)这个平行四边形的面积和三角形的面积有什么关系?

得出:三角形的面积=底×高÷2

(3)如果用S表示三角形面积,用a和h分别表示三角形的底和高,那么三角形的面积计算公式用字母怎么表示呢?

板书:S=ah÷2

(三)、运用面积公式计算三角形的面积。

1、出示数方格求面积图:谁能用公式计算方格图上的三个三角形的面积?三个三角形的面积为什么都相等?

2、出示例题让学生试做。

说一说计算三角形面积为什么要除以2?

3、看书质疑。

4、做一做书本第77页

四、课堂小结

提问:1、这节课我们主要研究什么?

2、求三角形的面积有几种方法?哪一种求面积的方法更方便,更准确?

3、要求三角形面积必须知道什么?怎样求?

五、巩固练习

练习十八1、3(1)

六、课堂练习

三角形面积课件教案【篇8】

教学内容:人教版义务教育课程标准实验教材小学数学五年级上册第84~85页。

教学目标:

1、经历三角形面积计算公式的探索过程,理解三角形的面积计算公式。

2、通过操作和对图形的观察、比较,发展学生的空间观念。使学生知道转化的思考方法在研究三角形的面积时的运用,培养学生的分析、综合、抽象、概括和运用转化方法解决实际问题的能力。

3、培养学生的创新意识和合作精神。

教学重点:三角形面积计算公式的推导过程

教学难点:在转化中发现内在联系及推导说理。

教、学具准备:多媒体课件,红领巾,学具(两个完全相同的锐角三角形、直角三角形、钝角三角形、任意三角形若干个)。工具(直尺、剪刀)。

设计思路:

本节课有以下几个特点:

1、利用远程教育资源,通过多媒体课件复习旧知,激发学生的学习兴趣。在复习旧知时,单凭教师枯燥的提问,很难调动学生的兴趣。教学一开始,我利用远程教育资源,恰当地运用多媒体课件,直观动态地将旧知识展示在学生面前,以感染学生,为学习新知识作好铺垫。

2、利用远程教育资源,通过多媒体课件突出重点,化解难点。本节课的重点是探索三角形面积计算公式的推导,如果只有教师的讲解、演示,很难使学生真正理解、掌握新知。因此,在教学中,我力求打破传统教学以传授知识为中心的弊端,精心设计以学生为主体的实践活动,充分利用远程教育资源,发挥多媒体的功能,通过“变色”、“闪烁”、“声音”等手段突出重点,解决难点,加深学生对新知识的理解,激活学生的创造思维,掌握学习方法,培养学生的学习能力。真正发挥学生的主体作用,体现新课程的理念。

教学过程

一、创境引新

1、同学们,你们还记得怎样计算平行四边形的面积吗?(点击课件)

这个公式是怎样推导出来的呢?

电脑动态演示割拼的转化过程。

形成板书:

转化 找关系 推导

学生看大屏幕,

口答:s=ah

学生口述平行四边形面积公式的推导过程。

2、老师这里有一样东西,你想知道吗?(出示红领巾)红领巾是什么形状的?要知道做这条红领巾需要用多大的布,该怎么办?

三角形的面积该怎样计算呢?这节课老师和大家一起研究、探索这个问题。(板书课题)

生可能会说:求出它的面积。

二、自主探索

合作交流1、谈话启思。

我们能不能利用前面学过的方法来探究三角形的面积呢?想一想,用任意两个三角形可以拼成什么图形,下面同学们利用桌上的学具拼一拼、摆一摆,看一看,能拼成什么图形?

2、操作探索。

(1)四人小组合作进行操作、探索。

(2)小组汇报、交流、展示。

学生可能会拼出以下图形:

(3)课件演示拼出的各种图形。

(4)设疑:

这些图形中哪些图形的面积你会计算?

通过操作,谁能告诉老师,什么样的两个三角形能拼成平行四边形?

你能不能很快的把两个完全相同的三角形拼成平行四边形。

老师有一种方法,能很快的将两个完全相同的三角形拼成平行四边形,想学吗?

电脑演示转化的动态过程。

(5)找关系。

师:拼成的平行四边形与原三角形有什么关系?

课件出示:

a.拼得的平行四边形的底与原三角形的底有什么关系?

b.拼得的平行四边形的高与原三角形的高有什么关系?

c.其中一个三角形的面积与拼得的平行四边形的面积有什么关系?

(6)汇报

在学生回答的基础上师用电脑演示。

(7)尝试推导说理。

师:根据你们的发现,你能推导出三角形的面积计算公式吗?

在学生的汇报中形成板书:

三角形的面积=平行四边形的面积÷2

底 × 高

= 底× 高÷2

师:如果用s表示面积,a、h分别表示三角形的底和高,用字母怎样表示公式?

完善板书:s=ah÷2

学生口答:长方形、平行四边形。

生:两个完全一样的三角形能拼成平行四边形。

学生操作,感到不是很容易。

学生观看转化过程。

尝试旋转、平移的方法。

小组讨论交流。

小组派代表发言。

学生讨论后回答,并说说自己是怎样推导的?

学生发言。

学生齐说:s=ah÷2

3、探究用一个三角形进行割补转化推导。

师:我们在推导平行四边形的面积公式时,运用了割补法,你能不能运用割补法将一个三角形转化成平行四边形?

师:下面我们来观察电脑上是怎样操作的?(点击课件)

师:同学们若有兴趣,课后可以继续探索不同的割补方法。

小组合作探究,

汇报交流。

学生观看运用割补法将一个三角形转化成平行四边形过程。

三、实践应用

拓展提高

1、(出示红领巾)这下你会计算这条红领巾的面积吗?计算它的面积要知道什么条件?

你能估计一下它的底有多长吗?(课件出示红领巾)

一条红领巾的面积是多少平方厘米?

2、看图计算面积。

3、你认识这些道路交通标志吗?谁来说说。

(课件出示)

师:我们学校处在交通繁忙的三*路口,车辆较多。为了同学们的安全,交警叔叔想用铁皮做这样两个标志牌,(点击课件)

你来帮他们算算需要多少铁皮?

4、判断。

(1)、一个三角形的底和高是4厘米,它的面积就是16平方厘米。()

(2)、等底等高的两个三角形,面积一定相等。()

(3)、两个三角形一定可以拼成一个平行四边形。()

(4)、三角形的底是3分米,高是20厘米,它的面积是30平方厘米。()

5、课下请同学们找一个三角形的实物进行测量,计算出它的面积。

学生估计底的长度。

学生独立完成,一人板演。做完后集体订正。

学生口述列式。

通过图3知道要用对应的底和高计算面积。

学生说说自己认识交通标志。

学生独立完成,然后交流。可能出现下面两种方法。

方法一:s=ah÷2

=7.8×9÷2

=35.1

35.1×2=70.2(平方分米)

方法二:s=ah

=7.8×9

=70.2(平方分米)

学生判断,并说明理由。

四、评价体验

通过这节课的学习,你一定有话想对同学们说,你最想说什么?(点击课件)

学生之间互相评价。

教学反思:

1、利用远程教育资源,创设教学情景。

利用远程教育资源,创设情景,能生动直观地将教学信息再现于学生的感官。教学情景创设的好,能调动学生的好奇心,又能为学生提供生动逼真、丰富多彩的教学资源,为学生营造一个色彩缤纷,声像同步,能动能静的教学情景,提高学生的学习兴趣,能做到事半功倍的效果。三角形的面积计算是在完全认识了三角形的特征及掌握了长方形、正方形、平行四边形面积计算的基础上学习的,其推导方法与平行四边形面积计算公式的推导方法有相似之处。因此,我利用远程教育资源网搜索并下载有关平行四边形面积公式的课件,通过多媒体展示给学生。这样即吸引了学生的注意力,又激发了学生探索新知识的欲望,同时又使学生明确了探索目标与方向。

2、利用远程教育资源,引导学生自主探索,参与知识的形成过程。

数学知识只有通过学生亲身主动的参与,自主探索,才能转化为学生自己的知识。本节课,在探索新知的过程中,我让学生利用学具,以小组合作的形式,通过拼一拼、一摆、移一移等方法将两个三角形拼成各种图形。在此基础上,让学生发现只有两个完全相同的三角形才能拼成平行四边形,但学生不会用旋转、拼移的方法。这时,我恰当的运用多媒体课件动画演示,将两个完全相同三角形通过旋转、平移,能很快的拼成一个平行四边形,这样非常直观形象的展示转化过程,学生在好奇的氛围中掌握旋转、平移的方法。渗透了转化的数学思想。并再次观看多媒体课件,发现拼成的平行四边形与原三角形的内在联系,从而推导出三角形的面积计算公式。有效的突破教学难点,帮助学生深刻理解新知识,达到了事半功倍的效果提高教学效率。

割补法是学习几何知识很重要的方法。在推导平行四边行面积计算公式时,学生已初步掌握了割补法。本节课中,当学生用旋转、平移的方法推导出三角形的面积公式后,我又设计让学生运用割补法,将一个三角形转化成平行四边形,来推导三角形的面积公式。这一环节由于学生的能力和知识水平有限,对于割补法有一定的困难,因此,我充分运用多媒体课件动画,直观地展现几种割补方法,以拓展学生的思维能力,提高学生的推理能力。

3、利用远程教育资源,提高学生应用新知识的能力。

练习的设计除了注重趣味性和层次性外,更注重现实性。本节课的练习除了围绕重点设计基本练习巩固新知识外,还设计了培养学生创新意识及实践能力的练习题。为了节约教学时间,调动学生学习的积极性,运用多媒体课件展示练习题是必不可少的。因此我设计了让学生认识道路交通警示标志,并计算两块相同标志牌面积的课件,学生在练习过程中,既发散了学生的思维,又对学生进行了交通安全教育。

总之,利用远程教育资源,,对学生主体性发展、思维能力的培养具有独特的优势,教学中教师适时运用多媒体辅助教学,创设丰富的情景,调动学生多种感官参与教学过程,发挥了最佳的教学效应,从而激励学生去探索、去发现、去创造。

三角形面积课件教案【篇9】

教学目标:

1、引导学生用多种方法推导三角形面积的计算公式,理解长方形、平行四边形和三角形之间的内在联系。

2、通过操作使学生进一步学习用转化的思想方法解决新问题。

3、理解三角形的面积与形状无关,与底和高有关,会运用面积公式求三角形面积。

4、引导学生积极探索解决问题的策略,发展动手操作、观察、分析、推理、概括等多种能力,并培养学生的创新意识。

教学重点:

理解并掌握三角形面积的计算公式。

教学难点:

理解三角形面积的推导过程。

教法与学法:

教法:演示讲解、指导实践。

学法:小组合作、动手操作。

教学准备:

三角形卡片、多媒体课件

教学过程:

一、情境引入

师:同学们,我们每天都佩戴着鲜艳的红领巾,高高兴兴地来到学校学习新的知识,那你知道做一条红领巾需要多少布料呢?(不知道)我们佩戴的红领巾是什么形状的?(三角形),怎样计算三角形的面积呢?这节课我们就一起来研究三角形的计算方法(板书课题)

[设计意图]通过情境的创设,给学生提供现实的问题情境,使学生产生解决问题的欲望,积极主动地参与到学习活动之中。

二、探究新知

1、平行四边形面积的求法

师:回忆一下,平行四边形面积计算公式是什么?是怎么推导的?

师:我们是先把平行四边形转化成长方形,运用学过的长方形面积的计算公式,找到平行四边形与长方形之间的联系,推导出了平行四边形面积的计算公式,今天这节课,我们继续用转化的数学思想来探索三角形的面积怎样计算。

2、第一次操作实践

师:好,那怎样把三角形转化成我们所学过的图形呢?请同学们拿出学具袋里的各种三角形,两人一组想一想,拼一拼。(教师巡回指导)

3、交流反馈

师:同学们都拼好了,谁来说说你是怎样拼的?

生:我用两个直角三角形拼成了一个平行四边形。

师:我这也有两个直角三角形,可是拼不成,为什么?你有什么发现?

生:要用完全相同的三角形来拼。

师:你拼时怎么知道是两个完全相同的三角形呢?

生:把两个三角形重合就知道了。

师:对,要用两个完全相同的三角形来拼。

师:还有不同的拼法吗?

生:我用两个完全相同的锐角三角形拼成了一个平行四边形。

生:我用两个完全相同的钝角三角形也拼成了一个平行四边形。

师:看看这几种拼法它们有什么共同点呢?认真观察,同桌互相说说。

4、第二次操作实践

师:说的真好,刚才同学们把两个形状完全一样的三角形通过拼组,转化成了平行四边形,也就把三角形面积的计算和我们刚学过的平行四过形面积计算联系起来了,下面我们再次合作,根据你们转化的图形,找到它们之间的联系,推导出三角形面积的计算公式。(生讨论交流)

师:谁来说说你是怎样推导的?

生汇报

师板书:三角形的面积=底×高÷2

师:你们的发现太棒了!下面请同学再仔细观察所拼成的平行四边形的底与三角形的底,所拼成的平行四边形的高与三角形的高看看有什么发现?

师:我们把这种相等的关系叫等底等高。

师:那么三角形的底乘以三角形的高求出的是什么?

生:与三角形等底等高的平行四边形的面积。

师:为什么除以2呢?

生:因为三角形的面积是与它等底等高的平行四边形面积的一半,所以要除以2。

师:大家同意吗?无论什么样的三角形,它的面积都可以转化成平行四边形的面积来计算,所以我们得到三角形的面积公式=底×高÷2

师:谁能用字母表示三角形的`面积公式

师板书s=ah÷2(生齐读)

三、运用公式,解决问题

(1)师:利用三角形面积公式,我们可以方便地解决一些实际问题了!老师这里有一条红领巾,求它的面积,你需要知道什么条件?你能估测一下这条底边有多长吗?(100厘米)

师:(出示课件)它的高是33厘米,你能计算出它的面积吗?

在练习本上算一算

3×4÷2=6(平方分米)

2.5×4.8÷2=6(平方分米)

师:都是这样做的吗?为什么不用2.5分米?

如果这条底边是4.8分米(课件出示)还可以怎样列式。(2.5×4.8÷2)

师:通过这道题的解答,你明白了什么?

师:我们学校的上下两个路口在放学时经常交通混乱,为了改变这种状况,交警队准备用铁皮制作四块这样警示牌,你能算出需要多少铁皮吗?(课件)

学生试算

〔设计意图〕这道练习的设计,既巩固了数学知识又自然地渗透了安全教育。

(3)小精灵也给大家带来了问题,请大家看屏幕

师:下图中哪两个三角形的面积相等?你还能画出和它们面积相等的三角形吗?

三角形面积课件教案【篇10】

说学习内容

这个内容是在第八册认识了三角形,学会计算长方形的面积以及刚学习了平行四边形面积的基础上进行教学的,同时,与平行四边形、梯形的面积联系在一起,为以后学习圆面积和复合图形的面积计算起到铺垫作用。运用拼摆、旋转、平移的方法把两个完全一样的直角、锐角和钝角三角形分别变换成长方形或平行四边形,得出三角形的面积等于长方形或平行四边形面积的一半,然后归纳出三角形面积计算公式。

说学习目标:

1、理解三角形面积公式的推导过。

2、正确运用三角形面积计算公式进行计算。

3、应用公式解决简单的实际问题。

学习重点:理解三角形的面积计算公式,正确计算三角形的面积。

学习难点:理解三角形的面积公式的推导过程。

根据以上的教学目标、教学重、难点,我准备采用以下教学方法进行教学:

1、发展迁移原则。运用迁移规律,引导学生在整理旧知的基础上学习新知。

2、加强学生动手操作。在学生拼摆实验的基础上,通过课件演示,采取旋转、平移的方法,将两个完全一样的三角形拼成平行四边形,加深学生对三角形面积公式来源的体验和理解。

学习方法上我侧重以下几点:

1、学会以旧引新,掌握运用知识迁移、学法迁移进行学习的方法。

2、操作实验法。学生自己动手用两个完全相同的三角形拼摆出自己学过的图形,弄清三角形面积与平行四边形面积的关系。

3、学习讨论法。在操作实验的基础上,讨论三角形的底和高与拼成的平行四边形的底和高的关系,从而总结出三角形面积的计算公式。

针对上述内容的需要,我设计了如下的教学程序:

说学习过程

一、激趣定标

(一)激趣导入

1、出示平行四边形(1)平行四边形的面积公式。(板书:平行四边形面积=底×高)

(2)一个平行四边形底是2厘米,高是1.5厘米,求它的面积。

2、既然平行四边形都可以利用公式计算的方法,求它们的面积,三角形面积可以怎样计算呢?(揭示课题:三角形面积的计算)

教师:今天我们一起研究“三角形的面积”(板书)

(二)学习目标

1、理解三角形面积公式的推导过。

2、正确运用三角形面积计算公式进行计算。

3、应用公式解决简单的实际问题。

说自学互动(适时点拨)

(一)推导三角形面积计算公式、

1、用两个完全一样的直角三角形拼、

(1)教师参与学生拼摆,个别加以指导

(2)学生演示拼摆图形

(3)讨论

①两个完全一样的直角三角形拼成一个大三角形能帮助我们推导出三角形面积公式吗?为什么?

②观察拼成的长方形和平行四边形,每个直角三角形的面积与拼成的平行四边形的面积有什么关系?

2、用两个完全一样的锐角三角形拼、

(1)组织学生利用手里的学具试拼、(指名演示)

(2)学生演示拼摆图形(突出旋转、平移)

教师提问:每个三角形的面积与拼成的平行四边形的面积有什么关系?

3、用两个完全一样的钝角三角形来拼、

(1)由学生独立完成、

(2)学生演示拼摆图形

4、巧问质疑

(1)两个完全相同的三角形都可以转化成什么图形?

(2)每个三角形的面积与拼成的平行四边形的面积有什么关系?

(3)三角形面积的计算公式是什么?

5、引导学生明确:

①两个完全一样的三角形都可以拼成一个平行四边形。

②每个三角形的面积等于拼成的平行四边形面积的一半。(同时板书)

③这个平行四边形的底等于三角形的底。(同时板书)

④这个平行四边形的高等于三角形的高。(同时板书)

(3)三角形面积的计算公式是怎样推导出来的?为什么要加上“除以2”?(强化理解推导过程)

板书:三角形面积=底×高÷2

(4)如果用S表示三角形面积,用a和h表示三角形的底和高,那么三角形面积的计算公式可以写成什么?

(三)正确运用三角形面积计算公式进行计算

红领巾的底是100cm,高33cm,它的面积是多少平方厘米?

(1)由学生独立解答、

(2)订正答案(教师板书)

(四)应用公式解决简单的实际问题。

通过学生利用三角形的面积计算公式解决简单的实际问题,提高学生对三角形的面积计算公式的理解和解决简单的生活实际问题。

三、测评训练

通过测评训练,测评学生所学的新知识是否掌握,提高学生的计算能力和计算速度。

四、小结

同学们真棒,大家都发现,用两个完全相同的三角形可以拼成一个平行四边形或一个长方形。运用拼摆、旋转、平移的方法把两个完全一样的直角、锐角和钝角三角形分别变换成长方形或平行四边形,得出三角形的面积等于长方形或平行四边形面积的一半,然后归纳出三角形面积计算公式。

五、板书设计、

这样板书设计使学生一目了然,工整、简单、明白。

三角形面积课件教案【篇11】

一、教学目标:

1、使学生在探索活动中深刻体验和感悟三角形面积计算公式的推导过程。

2、在动手操作的活动中,逐步培养学生归纳、推理和语言表达的能力。

3、激发学生学习数学的兴趣,学会学习数学的方法,并通过小组合作,培养学生的团队精神。

二、教材分析:

三角形面积的计算方法是小学阶段学习几何知识的重要内容,也是学生今后学习的重要基础。《数学课程标准》中明确指出:利用方格纸或割补等方法,探索并掌握三角形、平行四边形和梯形的面积公式。为落实这一目标,这部分教材均是以探索活动的形式出现的,学生在学习三角形面积的计算方法之前,已经亲身经历了平行四边形面积计算公式的推导过程,当学生亲身经历了三角形面积计算公式的推导过程时,不仅可以借鉴前面“转化”的思想,而且为今后逐渐形成较强的探索能力打下较为扎实的基础。

三、学校及学生状况分析:

我校地处海淀区的二里沟试验学区,学生接触的教材是全新的,学生所受到的教育的理念也是全新的,随着互联网技术的逐渐普及和学生学习方法的不断积累,学生学习的渠道也是多方位的,多数学生的思维是灵活的、敏捷的。但是,由于学生个体的差异,使得已有知识基础、探索新知的快慢程度等也会出现差异。

四、教学设计:

(一)由谈话导入新课。

1、我们已经学过长方形、正方形、平行四边形面积的计算公式。

还记得它们的面积公式吗?(一人回答)

还记得正方形面积公式是怎样推导出来的吗?平行四边形面积呢?

小结:看来,我们所学习过的面积公式,都是在已经学习过的旧知识的基础上,转化推导出来的。

2。 谁知道三角形面积的计算公式?

老师调查一下:

①知道三角形面积计算公式的举手。(可能多)

②不知道三角形面积计算公式的举手。(可能不多)

③不但知道公式,而且还知道怎样推导出来的举手。(可能不多)

今天这节课我们就来亲身体验一下三角形面积计算公式的推导过程

[板书课题:三角形面积]

(二)探究活动。

根据你们前面的学习经验,猜一猜应怎样去探究三角形的面积?[板书:转化]

下面我们将按小组来探究三角形面积的计算公式。

1、介绍学具袋中的学具。

2、出示探究目标和建议

小组合作探究活动,三角形面积的计算公式是怎样推导出来的?

建议:边动手、边想、边说。

(1) 你把三角形转化成了你以前学过的什么图形?

(2)原来的三角形和转化后的图形有什么关系?

(3) 三角形面积的计算公式是什么? 为什么?

3、同学们自选学具,想一想就可以开始了……

(教师参与学生的活动,一方面帮助学生解决学习上的困难,另一方面为汇报选取针对性较强的素材。)

了解一下学生们探究了几种方法(至少保证每人找到一种方法)后,叫停。(此时注意发现不同方法)

4、汇报:请××同学展示自己的探究成果,在他说的时候,同学们要注意听,以便予以补充。(交流过程注意引发学生间的争论)

① 直接用两个完全一样的三角形拼成平行四边形推导……

② 用一个三角形折成长方形推导……

③ 将一个三角形用割补法推导……

(若学生用任意三角形,注意指导沿“中位线”剪开)

……

5、师生共同小结:同学们分别总结出直角、锐角、钝角三角形面积的计算公式,于是[随即板书] 三角形的面积=底×高÷2 s=a×h÷2

6、请同学再用自己喜欢的其中一种方法说说为什么?(扩大战果)

总起来说,不管同学们用一个三角形,还是用两个三角形;也不管是用拼摆的方法,还是用割补的方法,都是在想方设法将新知识转化为旧知识。可见,你们学习的时候很注重学习方法,而且“转化”的这种数学思想正在你的头脑里逐渐形成。

(三)巩固练习(机动)

我们来试着运用这个公式:

1 基本题 先问:要想求三角形的面积必须知道什么条件?再出示数据,然后计算。

2 基本题

3 基本题

(由2、3题解决“等底等高三角形面积相等”)

4 提高题 有一直角等腰三角形,它的斜边是10厘米,你会求它的面积吗?

(四)总结

说说你这节课的感受?

(重点总结心得体会或经验教训。)

五、教学反思:

新课标不仅对学生的认知发展水平提出了要求,同时也对学生学习过程、方法、情感、态度、价值观方面的发展也提出了要求。新理念注重学生的学,强调学生学习的过程与方法,这是引导学生学会学习的关键。

如果我们将数学公式的教学仅仅看成是一般数学知识的传授,那么它就是一个僵死的教条,只有发现了数学的思想方法和精神实质,才能演绎出生动结论。

这节课,我将知识目标定位为:使学生在探索活动中深刻体验和感悟三角形面积计算公式的推导过程。能力目标定位为:在动手操作的活动中,逐步培养学生归纳、推理和语言表达的能力。情感和意志目标定位为:激发学生学习数学的兴趣,学会学习数学的方法,并通过小组合作,培养学生的团队精神。

整节课是围绕着“通过学生发现三角形与已知图形的联系,自主探究三角形面积计算公式的推导过程,激发学生学习数学的兴趣,不断体验和感悟学习数学的方法,使学生学会学习”这个教学重点展开。并注意从每一个细微之处着手关心和爱护每一个孩子,比如揭示课题后,我便对学生进行调查:哪些同学知道三角形面积的计算公式;哪些同学不知道三角形面积的计算公式;再有就是有哪些同学不但知道三角形面积的计算公式,而且还知道公式是怎样推导出来的,目的是为了了解学生的知识基础,从而帮助他更好地完成学习的过程。他如果是第一种回答,我会表扬他,不但能在学校学到知识,而且还能通过上网、读书等渠道学到知识;他如果是第二种回答,我会告诉他,没关系,这是新知识,只要努力就能学会;他如果是第三种回答,我会鼓励他继续向更高的目标努力,总之,让不同的孩子尽自己的所能学不同的数学。

这节课学生在三角形面积计算公式的探究活动中是自主的、是开放的,让学生体验了“再创造”,本节课的最后一道练习题也是开放的,他让学生体验着数学的无穷魅力。

六、案例点评

本节课是在学生已掌握了长方形、正方形、平行四边形、三角形的面积计算的基础上进行教学的。教学这部分内容对于培养学生识别图形,解决日常生活中的简单实际问题,发展学生空间观念和初步的逻辑思维能力都有重要意义,也是进一步学习几何知识的基础。

教师设计让学生自主动手操作,目的是以“动”促“思”,让学生在动手过程中迸发出创造新思维的火花,同时调动学生多种感官参与学习生活动,激发学生的学习兴趣,适时进行小组合作,给学生提供了充分的自主学习的活动空间和广泛交流的机会,真正体现了学生的主体地位。

通过把学生的汇报和多媒体的演示相结合,进一步体验图形转化的过程。练习设计做到有层次、有坡度,难易适当。即从基本题入手过度到综合题,引申到思考题。其目的是让学生所学的知识在基础中得到巩固,在综合中得到沟通,在思考题中得到升华。如最后一题的设计,它留给学生更多的思考空间,学生可以在更大的范围内思考,更大程度地发挥学生的主体地位,训练了学生的发散思维。

三角形内角和教案汇总


“三角形内角和教案”教案课件是老师教学工作的起始环节,也是上好课的先决条件,每位老师应该设计好自己的教案课件。写好教案课件,可以避免重要内容被遗忘,大家是不是担心写不好教案课件?为满足你的需求,栏目小编特别编辑了“三角形内角和教案”,自信能够帮助你找到适合自己的内容!

三角形内角和教案 篇1

教学目标:

1.掌握三角形内角和定理及其推论;

2.弄清三角形按角的分类,会按角的大小对三角形进行分类;

3.通过对三角形分类的学习,使学生了解数学分类的基本思想,并会用方程思想去解决一些图形中求角的问题。

4.通过三角形内角和定理的证明,提高学生的逻辑思维能力,同时培养学生严谨的科学态

5.通过对定理及推论的分析与讨论,发展学生的求同和求异的思维能力,培养学生联系与转化的辩证思想。

把问题作为教学的出发点,创设问题情境,激发学生学习兴趣和求知欲,为发现新知识创造一个最佳的心理和认知环境。

问题1三角形三条边的关系我们已经明确了,而且利用上述关系解决了一些几何问题,那么三角形的三个内角有何关系呢?

问题2你能用几何推理来论证得到的关系吗?

对于问题1绝大多数学生都能回答出来(小学学过的),问题2学生会感到困难,因为这个证明需添加辅助线,这是同学们第一次接触的新知识―――“辅助线”。教师可以趁机告诉学生这节课将要学习的一个重要内容(板书课题)

新课引入的好坏在某种程度上关系到课堂教学的成败,本节课从旧知识切入,特别是从知识体系考虑引入,“学习了三角形边的关系,自然想到三角形角的关系怎样呢?”使学生感觉本节课学习的内容自然合理。

让学生剪一个三角形,并把它的三个内角分别剪下来,再拼成一个平面图形。这里教师设计了电脑动画显示具体情景。然后,围绕问题设计以下几个问题让学生思考,教师进行学法指导。

问题2此实验给我们一个什么启示?

问题3由图中AB与CD的关系,启发我们画一条什么样的线,作为解决问题的桥梁?

其中问题2是解决本题的关键,教师可引导学生分析。对于问题3学生经过思考会画出此线的。这里教师要重点讲解“辅助线”的有关知识。比如:为什么要画这条线?画这条线有什么作用?要让学生知道“辅助线”是以后解决几何问题有力的工具。它的作用在于充分利用条件;恰当转化条件;恰当转化结论;充分提示题目中各元素间的一些不明显的关系,达到化难为易解决问题的目的。

(2)通过类比“三角形按边分类”,三角形按角怎样分类呢?

学生回答后,电脑显示图表。

(3)三角形中三个内角之和为定值,那么对三角形的其它角还有哪些特殊的关系呢?问题1直角三角形中,直角与其它两个锐角有何关系?

问题2三角形一个外角与它不相邻的两个内角有何关系?

问题3三角形一个外角与其中的一个不相邻内角有何关系?

其中问题1学生很容易得出,提出问题2之后,先给出三角形外角的定义,然后让学生经过分析讨论,得出结论并书写证明过程。

这样安排的目的有三点:第一,理解定理之后的延伸――推论,培养学生良好的学习习惯。第二,模仿定理的证明书写格式,加强学生书写能力。第三,提高学生灵活运用所学知识的能力。

三角形内角和教案 篇2

教学内容:

教材第67页例6、“做一做”及教材第69页练习十六第1~3题。

教学目标:

1、通过动手操作,使学生理解并掌握三角形的内角和是180°的结论。

2、能运用三角形的内角和是180°这一结论,求三角形中未知角的度数。

3、培养学生动手动脑及分析推理能力。

重点难点:

掌握三角形的内角和是180°。

教学准备:

三角形卡片、量角器、直尺。

导学过程

一、复习

1、什么是平角?平角是多少度?

2、计算角的度数。

3、回忆三角形的相关知识。(出示直角三角形、锐角三角形、钝角三角形)

二、新知

(设计意图:让学生经历质疑验证结论这样的思维过程,真正整体感知三角形内角和的知识,真正验证了“实践出真知”的道理,这样的教学,将三角形内角和置于平面图形内角和的大背景中,拓展了三角形内角和的数学知识背景,渗透数学知识之间的联系,有效地避免了新知识的“横空出现”。同时,培养学生的综合素养)

1、读学卡的学习目标、任务目标,做到心里有数。

2、揭题:课件演示什么是三角形的内角和。

3、猜想:三角形的内角和是多少度。

4、验证:

(1)初证:用一副三角板说明直角三角形的内角和是180°。

(2)质疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。

(3)再证:请按学卡提示,拿出学具,选择自己喜欢的方式验证三角形的内角和是180°(师巡视)

(4)汇报结论(清楚明白的给小组加优秀10分)

5、结论:修改板书,把“?”去掉,写“是”。

6、追问:把两块三角板拼在一起,拼成的大三角形的内角和是多少?说明三角形无论大小它的内角和都是180°(课件演示)

7、看微课感知“伟大的发现”(设计意图:让学生感受自己所做的和帕斯卡发现三角形内角和是180°的过程是一样的,从而培养孩子的自信心和创造力。)

三、知识运用(课件出示练习题,生解答)

1、填空

(1)一个三角形,它的两个内角度数之和是110,第三个内角是()、

(2)一个直角三角形的一个锐角是50,则另一个锐角是()。

(3)等边三角形的3个内角都是()。

(4)一个等腰三角形,它的一个底角是50,那么它的顶角是()。

(5)一个等腰三角形的顶角是60,这个三角形也是()三角形。

2、判断

(1)一个三角形中最多有两个直角。()

(2)锐角三角形任意两个内角的和大于90。()

(3)有一个角是60的等腰三角形不一定是等边三角形。()

(4)三角形任意两个内角的和都大于第三个内角。()

(5)直角三角形中的两个锐角的和等于90。()

四、拓展探究

根据所学的知识,你能想办法求出四边形、五边形的内角和吗?

1、小组讨论。2、汇报结果。3、课件提示帮助理解。

五、自我评价根据学卡要求给自己评出“优”“良好”“合格”。

三角形内角和教案 篇3

《义务教育课程标准实验教科书数学(人教版)》四年级下册第五单元第85页

1、透过“量一量”,“算一算”,“拼一拼”,“折一折”的方法,让学生推理归纳出三角形内角和是180°,并能应用这一知识解决一些简单问题。

2、透过把三角形的内角和转化为平角进行探究实验,渗透“转化”的数学思想.

3、透过数学活动使学生获得成功的体验,增强自信心.培养学生的创新意识,探索精神和实践潜力.

多媒体课件、各类三角形、长方形、正方形、量角器、剪刀、固体胶、活动记录表等。

此刻正是春暖花开,万物复苏的季节。在这完美的日子里,我们相聚在那里,刘老师十分高兴认识大家,你看把蝴蝶也引来了。(课件)

师:请大家仔细观察,它把这条绳子围成了什么三角形?

师:请大家仔细想一想,这三个三角形在围的过程中什么变了?什么没变?

师:这节课我们一齐来研究三角形的内角和。(板书:三角形的内角和)

(师手拿一个三角形)这个三角形的内角在哪?谁来指给大家看。一个三角形有几个内角啊?

每人从学具筐中任选一个三角形,指出它的内角。

师:大家明白了什么是三角形的内角,那什么叫“内角和”呢?

(1)师拿一个锐角三角形问:大家猜一猜这个锐角三角形的内角和是多少度?有不同想法吗?

(2)直角三角形与钝角三角形同上。

(3)师:看来大家都认为三角形的内角和是180o,但这仅仅是我们的一种猜测,有了猜测就能够下结论了吗?我们还需要进一步的验证.

刘老师为每个小组准备了一个学具筐,里面有不同的学习材料,或许这些材料会对你有所启发,帮忙你想出好办法。每人此刻都认真的想一想,你打算怎样来验证三角形的内角和不是180o呢?

经过独立思考和动手操作,每人都有了自己的验证方法,先在小组内交流各自的验证方法。

师:来吧孩子们,该到全班交流的时候了.谁愿意先把自己的方法与大家一齐分享。

学生汇报测量结果。

师:刚才大家都认为三角形的内角和是180度,但量的结果有的是180度,有的不是180度,这是怎样原因呢?

师小结:看来采用测量的方法会有误差,学习数学要用这种严谨的态度来对待,咱们再看看别的方法。

请用撕拼方法的学生上台展示撕拼的过程。

师:你是怎样想到把三角形撕下来拼成一个平角来验证的呢?

师评价:你把本不在一齐的三个角,透过移动位置,把它转化成一个平角来验证,还用了转化的思想,你真了不起。

如果学生出现把两个完全相同的直角三角形拼成一个长方形来验证。

师追问:这种方法真的很简单,但它只能证明哪一类的三角形呢?

师:不同的方法,同样的精彩,大家发现了吗?无论是撕一撕、折一折、还是拼一拼,这些方法都有异曲同工之妙,那就是你们都用了转化的策略。我发现你们都有数学家的头脑,明白吗?数学家在证明这一猜想时,也用了转化的思想,一齐来看(看课件)

师:善于数学发现和思考使帕斯卡走上了成功的道路。这节课才10岁的我们也用自己的智慧发现了帕斯卡12岁时的数学发现,我们同样了不起,刘老师为大家感到骄傲。

明白了这个结论能够帮忙我们解决那些问题呢?

1、把两个小三角形拼成一个大三角形,大三角形的内角和是多少度?为什么?

师:当把两个三角形拼在一齐时,消失了两个内角,正好是180°,所以大三角形的内角和还是180度,如果把三角形分成两个小三角形呢?

在一个三角形ABC中,已知A45°,B85o,求с的度数。

在一个直角三角形中,已知с52o,求Α的度数。

爸爸给小红买了一个等腰三角形的风筝。它的一个底角是70°,它的顶角是多少度?

3、思考:

你能画出一个有两个直角或两个钝角的三角形吗?为什么?

这天我们收获的不仅仅仅是知识上的,还有情感上的,思想方法上的,还认识了一位了不起的科学家帕斯卡,因为他的好奇与不满足让我们记住了他。相信在座的每一位只要你拥有善于发现的眼睛,勤于思考的大脑,勇于实践的双手,将来某一天你也会像他一样伟大。

【总评】整节课刘老师透过巧妙的设计,让学生经历了观察、发现、猜测、验证、归纳、概括等数学活动,切实体现了新课程的核心理念“以学生为本,以学生的发展为本”。具体体此刻以下几个方面:

1、精心设计学习活动,让每一个学生经历知识构成的过程。刘老师为学生带给了丰富的结构化的学习材料,有各类的三角形、相同的三角形等,促使学生人人动手、人人思考,引导学生在独立思考的基础上进行合作与交流。在这一过程中发展学生的动手操作潜力、推理归纳潜力,实现学生对知识的主动建构。

2、立足长远,注重长效,不仅仅关注知识和潜力目标的落实,更注重数学思想方法的渗透。在验证三角形内角和是180度的过程中,教师有意识地引导学生认识到撕拼的验证方法其实是把三角形的内角和转化成了平角,使学生对“转化”的数学思想有所感悟;在对测量的结果出现不同答案的交流过程中,使学生认识到测量时会出现误差,从而培养学生严谨的、科学的学习态度和探究精神。

3、遵循教材,不唯教材。本节课上,刘老师延伸了教材,介绍了科学验证三角形内角和的方法以及这一结论的发现者帕斯卡的故事,拓宽了学生的知识面,把学生的学习置于更广阔的数学文化背景中,激起了学生对数学的强烈兴趣,激发了学生用心向上的学习情感。

整节课的学习资料,突出了数学学科的实质,抓住了数学的本质,使学生在动手“做”数学的过程中寻求成功,在成功中享受快乐,在快乐中不断超越,在超越中体验成长.

三角形内角和教案 篇4

《三角形的内角和是180°》教学设计

教学思路:

由在数学王国里,锐角、直角、钝角三角形内角和大小的争论,引出什么是内角与内角和,并开始讨论内角和的大小。引导学生经历对三个内角的度量,剪拼,折叠等方法的探索,引导学生推测出三角形的内角和是180°。

学生通过度量的方法得出三角形的内角和大约是180°(存在误差),为了让结论更具说服力,再引导学生通过剪拼等的方法发现:各类三角形的三个内角都可以拼成一个平角。再利用课件演示进一步验证,由此获得三角形的内角和是180°的结论。

这一系列活动潜移默化地向学生渗透了“转化”数学思想,培养学生科学试验的态度,培养学生的统计观念。接着向学生渗透数学文化。最后让学生运用结论解决实际问题,练习的安排上,注意练习层次,共安排三个层次,逐步加深。整堂课让学生通过小组合作学习,经历探究知识的过程,明白解决问题策略的多样化。培养学生的空间观念,发展合情推理能力和初步的演绎推理能力,让学生体验数学学习的快乐。

教学目标:

1、知识技能目标:

(1)理解和掌握三角形的内角和是180°;

(2)运用三角形的内角和知识解决实际问题和拓展性问题;

2、能力技能目标:

(1)通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的和等于180°。

(2)知道三角形两个角的度数,能求出第三个角的度数。

(3)发展学生动手操作、观察比较和抽象概括的能力。

3、情感与态度目标:

让学生体验数学活动的探索乐趣,通过教学中的活动体会数学的转化思想。教学重难点

重点:理解掌握三角形的内角和是180°。

难点:运用三角形的内角和知识解决实际问题。教具、学具准备:

教具:教学课件、硬纸片制作的各种三角形、三角尺。学具:直角三角形、锐角三角形和钝角三角形各一个,量角器、两个三角板。

教学过程:

一、创设情境 生成问题

(一)课件出示三角形争吵图

在数学王国里住着很多平面图形。一天三角形兄弟忽然吵了起来,直角三角形说我的个头最大所以我的内角和一定最大,钝角三角形说我有一个钝角所以我的内角和一定比你们的大,只有锐角三角形很没自信的说:难道只有我的内角和最小?

(二)猜想什么是三角形的内角和

师:他们三个在比什么呀?什么是三角形的内角?什么是三角形的内角和?

课件演示三角形的内角(内角和)

二、探索交流 解决问题

(一)探究猜想内角和的度数

师:同学们来当小裁判,评一评他们三个谁的内角和最大?不过怎样才能知道三角形的内角和呢?

生:用量角器进行度量。

师:四人小组合作,用手中的量角器量出三个不同三角形的内角和。通过小组合作后交流,汇报。

生回答。(回答可能不一样。)

师:同学们通过刚才的汇报你有什么想说的吗?

生:我发现内角和的度数不一样。

师:是啊,什么原因呢?

生:可能是量的时候出现了差错。

师:是的,在度量时由于测量的误差很容易导致最后的结果出现差错,但你们有没有发现,这些数据都是在180°左右哦。(引导学生推测出三角形的内角和可能都是180°。)同学们要想当好一个裁判除了要公平公正还要有足够的证据,怎样才能让他们三个心服口服?你有办法来验证三角形的内角和是180度吗?

板书课题:三角形的内角和

(二)讨论验证方法

以小组为单位来想一想我们可以怎么样来验证?

小组活动后汇报,老师要提醒学生在撕角之前做好三角形各个角的标记,以防拼错。(可写上1,2,3)

(三)动手验证

生活动,师巡视

(四)汇报

师:哪个小组来汇报你们的验证方法和验证结论?

组1:我们用的是撕的方法,把锐角三角形的三个角都撕下来,然后拼在一起就拼成了一个平角。结论是锐角三角形的内角和是180度。

师:这个小组很厉害,运用了平角的知识来验证的。哪个小组也用了这种撕拼的方法?

组2:我们也是用撕拼的方法验证了钝角三角形的内角和是180度。

组3:我们用这种撕拼的方法验证直角三角形的内角和也是180度。

哪个小组的同学最想上来展示一下你们的研究成果?

师:同学们做得很好,看来用撕拼的方法验证了三角形的内角和确实是180度。老师也尝试用你们的方法来验证一下直角三角形的内角和,不过我不像你们那么简单粗暴,我喜欢温柔的——剪拼,同学们想不想看?

(动画演示剪拼验证过程)

边演示边解说。

见证奇迹的时刻到了,你发现了什么?

师:嗯,很独特的方法,不但验证了三角形的内角和是180度,还知道了直角三角形的两个锐角之和是90度。

课件演示独特折法

同学们还有不同的验证方法吗?

组:我们用的是折一折的方法,把锐角三角形的三个内角向里折,也拼成了一个平角,结论:锐角三角形的内角和是180度。

组::我们用的是折一折的方法,把钝角三角形的三个内角向里折,也拼成了一个平角,结论:钝角三角形的内角和是180度。

出示:普通折法

师:还有不同折法吗?

组:我们还可以这样折,把直角三角形的内角向里折。把直角三角形的两个锐角转化成一个直角。这样验证出:直角三角形的内角和是180度。

师:刚才有几个小组完成的很快所以老师又送了他们几个长方形。看到长方形你们想到了什么?你们能根据手里的长方形想出其他方法验证三角形的内角和是180度吗?

组:我们认为一个长方形的内角和是360度,把他沿着对角线撕开就得到了两个完全一样的直角三角形,360除以2等于180度。结论直角三角形的内角和是180度。

师提出一个疑问:是不是两个完全一样的三角形都能拼成一个长方形?

课件演示长方形推理法。

师:刚才我们用已知的长方形的内角和验证了直角三角形的内角和是180度。

看来当我们遇见一个新问题时可以联想一下以前学过的知识,这样新问题就会很快解决,这种转化法是学习数学的一种很重要的方法希望同学们以后大胆应用。

小结:通过咱们刚才量一量,折一折,撕一撕等方法的验证可以得出一个什么样的共同结论,(全班小结:三角形的内角和是180度)师板书:三角形的内角和是180.师:现在你对这个结论还有丝毫的质疑吗?好,就让我们用自信而骄傲的语调读出我们的验证结论。

三、巩固应用 内化提高

同学们你们能用这个新知识来解决问题吗?那现在我们一同来闯关吧!

1、根据已知角的度数求出未知角的度数

(着重让学生说说自己的想法:从而总结出内角和减去已知角的度数就等于未知角的度数)

2、求等边三角形各内角的度数

3、已知直角三角形的一个锐角是40度求另一个锐角的度数(提示两种方法,90度减去40度等于50度)

4、放风筝:

同学们又是一年三月三风筝飞满天,想去放风筝吗?在放风筝之前老师需要同学们进行一次挑战敢吗?

一个等腰三角形的风筝一个底角是70度,求顶角的度数?

5、挑战极限:

同学们的挑战精神老师分佩服,老师也进行了一次挑战可是失败了,你能帮助老师吗?

根据三角形的内角和是180度的知识求出四、五边形的内角和是多少?

四、回顾整理反思提升

同学们通过这节的学习你有哪些收获?

三角形内角和教案 篇5

一堂成功的课不仅要熟悉教材,还需要我们充分的了解学生的特点。

本节课的授课对象是四年级的学生,从心理特征来说,他们对于新鲜的知识充满着好奇心和强烈的求知欲望,无意注意仍起着主要作用,有意注意正在发展。

从认知状况来说,学生在此之前已经学习了三角形有关的知识,对三角形的内角已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于三角形内角和都是180度的理解,学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。

三、说教学目标

根据新课程标准,教材特点、学生实际,我确定了如下三维教学目标。

【知识与技能】通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

【情感态度与价值观】在参与学习的过程中,感受数学的魅力,体验成功的喜悦,激发学习数学的兴趣。

根据学生现有的知识储备和知识点本身的难易程度,学生很难建构知识点之间的联系,这也确定了本节课的重点为三角形内角和定理,而三角形内角和定理推理的过程为本节课的难点。

新课程明确倡导动手实践,自主探索、合作交流的学习方式,教师不仅是知识的传授者,更是学生探究性、合作性学习活动的设计者,组织者和学生学习的伙伴。在教学过程中,我将采用创设情境,直观演示,观察,猜测,操作,思考,总结等方法,把学生带进开放的,富有挑战性的问题情景,让学生通过自己学习,合作学习,和交流等活动,获得知识与能力,掌握解决问题的方法,获得积极的情感体验。整个学习和探索活动,体现出开放性思维和多元思维并存的思维方式,教学生初步学会自主梳理知识,探索知识的方法,使他们亲历自主探究的过程。

首先是导入环节,我会多媒体课件播放有关三角形内角和情境视频:在图形的王国中,有一天,三角形家族里为“三角形内角和的大小”爆发了一场激烈的争吵。钝角三角形说“我的钝角大,我的内角和一定比你们的内角和大”。锐角三角形也不示弱“你虽然有一个钝角,可是其它两个角都很小,而我的三个角都不是很小,所以我的内角和比你大”。直角三角形说“别争了,我们的内角和是一样大的,因为三角形的内角和是180°”。

根据视频中三角形的对话,顺势引出题目——三角形的内角和。

设计意图:在这个环节中,多媒体课件展示有关三角形内角和的内容,激发学生深厚的学习兴趣和求知欲望,快速的进入学习高潮。

接下里是新课探究环节,在这一教学环节中,我首先让学生画几个不同类型的三角形。然后同桌互相量一量,算一算,三角形3个内角的和各是多少度?通过测量,学生可以发现三角形的内角和是180°。

接着我会提出一个问题是不是所有的三角形的内角和都是180°,如何进行验证你的结论呢?接下来我会让学生分小组讨论,针对学生出现的问题,我给予指导,讨论过后,请同学汇报,鼓励学生用自己的语言表达,无论学生回答的全面与否,都给予积极的评价,其他同学认真倾听后做出判断,进行补充,提高学生的注意力。

通过小组之间的讨论,引导学生采用剪拼的方法进行验证,先把一个三角形的三个角剪下来,再拼一拼,拼成一个平角。最后引导学生总结出三角形的内角和是180°。

此环节通过小组合作,体现以生为本的教学理念。既培养学生的推理能力,又锻炼学生的语言表达能力和沟通能力。

接下来进入巩固提高环节。本环节我依据教学目标和学生在学习中存在的问题,设计有针对性、层次分明的练习题组。让学生在解决这些问题的过程中,进一步理解、巩固新知,训练思维的灵活性、敏捷性、创造性,使学生的创新精神和实践能力得到进一步提高。

练习题组设计如下:

第二题把这两个完全一样的直角三角形拼组在一起,得到的新三角形的内角和是多少度?

设计意图:通过各种形式的练习,进一步提高学生学习兴趣,使学生的认知结构更加完善。同时强化本课的教学重点,突破教学难点。

在小结环节,我会引导学生同桌之间以“你问我答”的形式回顾本节课所学的主要内容,这节课你都学习了哪些内容?三角形内角和定理的推导过程体现了哪种数学思想方法?

这样设计的目的是让学生在回顾课堂经历的基础上,以相互交流、相互启发的方式总结自己的收获,教师通过概括性引导提升学生对三角形的内角和定理的认识

在作业环节,我会让学生利用本节课所学的知识,思考一下四边形的内角和是多少度?

这样设计的意图是学生在学习本节课内容的基础上,进一步对本节课的一个延伸,拓展学生的思维。

为了让学生对本节课的学习形成清晰的思路,同时还有利于学生系统性地记忆新知。我的板书设计如下。

三角形内角和教案 篇6

教学目的:

1、学生通过量、折、拼、剪、摆等操作学具活动,找到新旧知识之间的联系,主动掌握三角形内角和是180°,并运用所学知识解决问题。

2、让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。在应用三角形内角和知识解决问题的过程中促进学生数学思维发展。

3、让学生在探究数学的过程中体验发现的乐趣,增强学好数学的信心。

教学重点:

让学生探究猜想并验证三角形内角和等于180°。

教学难点:

理解所有三角形的内角之和都是180°。

教学准备:

不同类型的三角形纸片,剪刀,量角器。

教学过程:

一、复习旧知,提示课题

1、一个平角是多少度?1个平角等于几个直角?

2、长方形有什么特征?(生汇报:长方形对边相等,有4个角,4个角都是直角)

3、三角形按角分可分成几类?

4、引出内角的概念,我们把图形里面的角叫做内角。三角形有几个内角?三角形三个内角的度数和叫做三角形的内角和。今天我们一起来研究三角形的内角和。(板书课题:三角形的内角和)

设计意图:学生对数学知识的学习,在很多时候都是对已有数学知识的延伸和发展。本节课,我充分认识到学生已有知识对新知的铺垫和孕伏作用,设计了三道复习题,把角的度数,长方形的特征,三角形的分类这些原本零散的数学知识纳入到一个整体,让旧知的复习、新知的孕伏和引入有机的结合起来。

二、创设情境,大胆猜想

1、长方形的内角和是多少度?为什么?如果沿长方形的一条对角线剪开,长方形就变成了两个什么图形?

2、出示三个三角形,说一说分别属于哪一类?(板书:锐角三角形 直角三角形 钝角三角形),判断这三个三角形的内角和谁大?为什么?(板书:内角和)

3、你猜三角形的内角和是多少度?(板书:是180°)

设计意图:数学教学最为重要的是要培养学生对数学的感觉,给学生一双数学的眼睛,由于学生已经知道长方形的内角和是360°,抓住时机,要求学生猜一猜三角形的内角和是多少度,以此培养学生的探索精神和创新意识。

三、动手操作,探究验证。

1、小组合作。

同学们能够用什么方法来验证三角形的内角和是180°,请同学们小组合作,充分利用你们的学具进行验证,比一比哪些组的方法多而且又富有新意,开始!

2、汇报交流。

谁愿意来给大家介绍你们小组是用什么方法来验证三角形的内角和是180°的?

量一量:

生:我们小组的方法是用量角器测量出三个内角的度数,再求出它们的和。

师:你们的方法是分别测量三个内角的度数,那你们测量的三个内角的度数分别是多少?(生汇报时吩咐学生记录下来并算出内角和)你觉得这个小组的方法怎样?(抽生评价)这种方法可出现误差吗?为什么?(生回答)

师:能不能因此否定我们刚才的猜想呢?还有不同的方法吗?

折一折:

生:我们是通过折一折的方法得出结论的。(边说边演示)。我将直角三角形的两个锐角折向直角,三个顶点重合,我发现两个锐角正好组成了一个直角,再加上直角,它的内角和是180°,所以我得出结论:直角三角形的内角和是 180°。

生:我拿一个锐角三角形,把上面的角沿虚线横折,使它的点落到底边上,再将剩下的两个角横折过来,使三个角正好拼在一起,这三个角组成了一个平角,所以我得出结论:锐角三角形的内角和是 180°。

生:我拿一个钝角三角形,用同样的方法去折,发现钝角三角形的三个角也正好拼在一起组成一个平角,所以我得出结论:钝角三角形的内角和是 180°。

生:直角三角形的三个角也可以用同样的方法折拼成一个平角。

师:真是心灵手巧的孩子,让我们把掌声送给他们!动脑筋的同学真多,请你说。

拼一拼:

生:我发现两个直角三角形正好可以拼成一个长方形,长方形的四个角都是直角,所以,长方形的内角和是 360°。再除以2,就得到直角三角形的内角和是180°。

师:能从不同的角度去思考问题,你真棒!

剪一剪,摆一摆:

生:我们将每个三角形的三个角都剪下来,再把每个三角形的三个角的顶点重合,发现每个三角形的三个角都组成了一个平角,这就证明了三角形的内角和是180°。

师:你们只验证了三个三角形,为什么从中能得出“三角形的内角和是180°”的结论呢?

生:因为三角形按角分可以分为三类,钝角三角形,直角三角形和锐角三角形。我们已经通过各种的方法证明了这三种类型的三角形的内角和是180°,所以可以得出“三角形的内角和是180°”的结论。

师:说得真好,我们给他鼓掌。

师概括小结。:刚才同学们用量、折、拼、计算、推理、剪等这么多巧妙的方法得出,无论是什么样的三角形的内角和都是180°,(师手指课题)你们真不错,我为你们成功的学习表示衷心祝贺,让我们带着自豪的语气大声地读出“三角形的内角和是180°”。

设计意图:新课标注重学生三维目标的培养,在这里,我要求学生用自己的方法进行验证,把知识的学习与情感态度价值观的培养融为一体,无疑有效地培养了学生科学的态度。小组合作是课程改革所倡导的一种学习方式,本节课,我立足于学生的创新意识和实践能力的培养,把学习的时空还给学生,大胆地开展小组合作学习,使学生通过量、折、拼、剪、摆等操作学具活动主动掌握三角形内角和是180°,同时学生的发散思维也能得到有效培养。

四、实践应用,解决问题

1、那么同学们能不能根据三角形的内角和是180°求出三角形中任意一个角的度数,请完成书85页上“做一做”。

2、请完成书88页第9题

(提示:这一题只知道一个角的度数,另一个角是多少度,从哪看出来的?直角三角形中的一个锐角还可以怎样算?)

3、请完成书88页第10题

设计意图:“解决问题”,按学生的认知水平,是在感知、理解、掌握知识后,认知水平得已体现的最高层次。最后让学生运用结论解决实际问题,为学生把知识转化为能力起到积极的促进作用。

五、拓展延伸,活用新知

现在老师手中有一个三角形,我一刀把它剪成两个图形,你猜这两个会是什么图形,它们的内角和是多少度?

把刚才的四边形剪去一个角,得到一个五边形,它的内角和是多少度?

继续剪掉一个角,得到一个六边形,它的内角和是多少度?你发现有什么规律吗?

(学生猜测→动手操作→计算内角和→归纳多边形内角和计算公式)

六、课堂小结,内化知识

今天,你有什么收获?

板书设计:

锐角三角形

因为 直角三角形 内角和是180°

钝角三角形

所以 三角形的内角和是180°

三角形内角和教案 篇7

【教材分析】

《三角形内角和》是北师大版《数学》四年级下册的内容。是在学生学习了三角形的概念及特征之后进行的,它是掌握多边形内角和及其他实际问题的基础,因此,掌握“三角形的内角和是180度”这一规律具有重要意义。教材首先出示了两个三角形比内角和这一情境,让学生通过测量、折叠、拼凑等方法,发现三角形的内角和是180度。教材还安排了“试一试”,“练一练”的内容。已知三角形两个内角的度数,求出第三个角的度数。

【学生分析】

经过近四年的课改实验,孩子们已经有了一定的自主探究,合作交流的能力。他们喜欢在实践中感悟,在实践中发表自己的见解,对数学产生了浓厚的兴趣。1.知识方面:学生已经掌握了三角形的概念、分类,熟悉了钝角、直角、锐角、平角这些角的知识。2.能力方面:已具备了初步的动手操作能力和探究能力,并且能够进行简单的微机操作。

【学习目标】

知识目标:掌握三角形内角和是180度这一规律,并能实际应用。

能力目标: 培养学生主动探索、动手操作的能力。培养学生收集、整理、归纳信息的能力。使学生养成良好的合作习惯。

情感目标: 让学生体会几何图形内在的结构美。

【教学过程】

一、 情景激趣,质疑猜想。

播放动画片:在图形王国中,有一天三角形大家庭里为“三角形内角和的大小”爆发了一场激烈的争吵。

钝角三角形大声叫着:“我的钝角大,我的内角和一定比你们的内角和大。”锐角三角形也不示弱:“我的锐角虽然比钝角小,但我的内角和并不比你小。”直角三角形说:“别争了,三角形的内角和都是180°。我们的内角和是一样大的。”

师:想一想,什么是三角形的三个内角的和。

生:三角形的三个内角的度数和。

师:同学们刚才看了动画片你们知道谁说对了吗?不知道的话想一想,猜一猜谁说的对?

学生进行猜想,自由发言。

(设计意图:教师借助多媒体技术创设问题情境,架起数学学习与现实生活,抽象数学与具体问题之间的桥梁,激发了学生的学习兴趣。鼓励学生主动质疑猜想是培养学生学会学习的重要途径。)

二、自主探究,验证猜想

师:刚才大部分同学都猜直角三角形说的对。三角形的三个内角的和都是 180°,你能设法验证这个猜想吗?

生1:能。我量出三角形的三个内角和度数,加起来是否接近180°(量的时候可能会有些误差)。

生2:我把三角形的三个角剪下来拼一拼是否能拼成一个平角。

生3:我把三角形的三个角撕下来,拼一拼是否180°。

生4:我把三角形的三个角往里折,看一看这三个角是否折成一个平角。

……

师:上面你们说了不少的验证猜想的方法,请大家用准备好的材料用你喜欢的方法,动手验证自己的猜想吧!(学生把三角形的三个内角分别标上∠1、∠2、∠3,以免在剪拼时把内角搞混了。)

学生边实验边整理信息,完成实验报告单后,学习小组内进行交流讨论。

(设计意图:验证猜想为学生提供了“做数学”的机会,让每个学生围绕自己的猜想、决定自己的探索方向、选择自己的方法,量一量、剪一剪、撕一撕、拼一拼、折一折,让学生在操作中自主探究数学知识的产生发展过程。验证自己的猜想,鼓励学生用不同的方法进行验证,促进学生创新能力的发展。)

三、交流评价,归纳结论。

学生操作验证,完成实验报告单后,利用投影仪展示学生填写的实验报告单。

实验报告单

实验名称

三角形内角和

实验目的

探究三角形内角和是多少度。

实验材料

尺子

剪刀

量角器

锐角三角形纸片

直角三角形纸片

钝角三角形纸片

我的方法

我的发现

我的表现

自评

互评

学生在展示过程中,充分交流和讨论实验中各自使用的方法和发现,教师要对学生的闪光点及时进行表扬和鼓励。

师生共同归纳,得出结论:

三角形内角和等于180°

(设计意图:各学习小组汇报自己的验证过程,展示探究的成果。对学生探索发现的方法、策略进行总结归纳,集思广益,取长补短达到共识。在交流、归纳过程中,及时肯定其中的闪光点给予表扬和鼓励,使他们体验到成功的愉悦,促使他们获得更大的成功。)

四、分层练习,巩固创新。

①课件出示:

师:这个三角形是什么三角形?知道几个内角的度数?

生:直角三角形,知道一个角是30°,还有一个角是90°。∠A=90°-30°=60°。

师:根据今天所学的知识,谁能求出A的度数?大家自己试一试。

学生做完后反馈讲评时让学生说说自己的方法。

生1:用三角形内角的和(180°)减去30°再减去90°,算出∠A是60°。

∠A=180°-30°-90°=60°。

生2:先用30°加上90°得120°再用180°减去120°也可得∠A =60°。

②学生完成完成P29的第一题。

引导学生按照前面的方法独立完成,教师巡视,集体订正。

③猜一猜三角形的另外两个角可能各是多少度。

同桌同学互相说一说。(答案不唯一)

④小组操作探究活动。

让学生剪出几个不同的四边形,按表中所给的方法以做一做,并填一填。

方 法

四边形内角和

用量角器量出每个内角的度数,并相加。

把四边形四个角剪下来,拼在一起。

把四边形分为两个三角形。

填表后让学生想一想、互相说一说,四边形内角和是多少度?

(设计意图:引导学生将探究学习活动中所获得的结论经验和方法运用于探索解决简单的实际问题。组织学生参与具有趣味性、操作性和开放性的练习活动,让学生在巩固练习中培养动手能力、实践能力和创新思维。)

三角形内角和教案 篇8

教学目标:

1、通过测量、撕拼、折叠等探索活动,使学生发现三角形内角和的度数是180?

2、已知三角形两个角的度数,会求第三个角的度数。

3、培养学生动手实践,动脑思考的习惯。

教学重点:

了解三角形三个内角的度数。

教学难点:

理解三角形三个内角大小的关系。

教具学具准备:

课件三角形若干量角器剪刀。

教材与学生

教材创设了一个有趣的问题情境,通过对大小两个三角形内角和的大小比较来激发学生探索的兴趣。教材为了得到三角形内角和是180的结论安排了两个活动,通过学生测量,折叠,撕拼来找到答案。

学生在已有的会用量角器来度量一个角的度数的基础上,会首先想到这种方法。但测量的误差会导致测量不同,因此,学生会想到采取其他更好的办法,通过亲手实践,得出结论。

教学过程:

一、呈现真实状态。

师:今天我们来研究三角形内角和度数。这里有两个三角形,一个是大三角形,一个是小三角形(图略),到底哪一个三角形的内角和比较大呢?

学生各抒己见。

二、提出问题:

师;刚才我们观察三角形哪个内角和大,同学们有两种不同的猜想,可以肯定,必定有错下面我们来测量验证。

(1)以小组为单位请同学们拿出量角器,量一量,算一算图中大小两个三角形内角和度数,并做好记录,记录每个内角的度数。

(2)组内交流。

(3)全班交流。由小组汇报测出结果(三角形内角和)

(4)师小结:我们通过测量发现,每个三角形的内角和测出结果接近180。

意图:通过这一操作活动,激发学生的兴趣,让学生积极参与培养学生的动手操作能力]

三、自主探索、研究问题、归纳总结:

师引导提问:三角形的内角和会不会就是180呢?

(一)组内探索:

(1)以小组为单位探索更好的办法。

(2)以小组为单位边展示边汇报探索的过程与发现的结果。

(有的小组想不出来,可以安排小组和小组之间进行交流,目的是让学生通过实践发现结果,在探索中发现问题,在讨论中解决问题,是学生学习到良好的学习方法)

(3)把你没有想到的方法动手做一次

(使学生更直观地理解三角形的内角和是180的证明过程)

(4)根据学生的反馈情况教师进行操作演示。

(二)教师演示

撕拼法:

1、教师取出三角形教具,把三个角撕下来,拼在一起,

2、师:这三个内角放在一起你有什么发现?

生:发现三个内角拼成一个平角。

师:平角是多少度呢?说明什么?

生:180?说明三个内角和刚好等于180。

师:这种方法是不是适用各种三角形呢?

3、学生每人动手实践,看看是不是不同的三角形是否都有这个特点,也能拼出一个平角呢?

进行实验后,结果发现同样存在这一规律,三角形三个内角和是180。

折叠法:师:刚才我们通过测量发现三角形内角和接近180,那是因为测量的不那么精确,所以说“接近”,又通过撕拼方法发现三角形的三个内角刚好拼成一个平角,进一步说明三个内角和是180,现在再来演示另一种实验,再次证明我们的发现。

你们也来试一试好吗?

在学生完成这一实践后肯定这一发现

三角形三个内角和等于180?

意图:充分发挥了学生的主观能动性,让学生大胆去思考发言,把课堂交给学生,最后老师在演示达成共识,这样学生学到知识印象颇深,也理解最为透彻,提高课堂教学的效率

四、巩固练习,知识升华。

1、完成课本第28页的“试一试”第三题。

2、想一想:钝角三角形最多有几个钝角?为什么?

锐角三角形中的两个内角和能小于90吗?

3、有一个四边形,你能不用量角器而算出它的四个内角和吗?

意图:这样分层安排练习,注重培养学生的分析能力,同时也培养学生的思维能力和口头表达能力。

五、总结延伸

这节课同学们通过测量,发现了问题,然后运用撕拼,折叠两种方法验证自己的猜想,得出结论,这种学习方式很好,我们在今后的学习中还要用到,我们今天探究了三角形的一个秘密,其实它的秘密还很多,有兴趣的话,我们以后继续研究。课后反思:

当我设计这节课时,首先思考,学生面对这个新问题时会想到用那些方法来思考呢?很显然,学生根据三角形大的内角就大,是学生在探究时的真实想法,是一种合情推理,在探究过程中,怎样对待学生的这个错误呢?我没有简单地予以否定,迫不及待的帮助,而是引导学生否定错误猜想,寻找错误产生的原因,在这个过程中,教师启迪学生“转化”的思想求得突破,然后引导学生进行操作验证,从中得出结论,学生完整地经历探究的整个过程,不仅获得知识,还获得思想,充分发挥了学生的主观能动性,使他们轻松愉快的学习,提高了课堂效率。

三角形内角和教案 篇9

一、教学目标:

1、通过小组猜想、探索、验证三角形的内角和等于180°,并能运用知识解决简单问题。

2、经历三角形内角和的探究过程,体验“猜想——验证——应用”的学习模式。

3、通过各种实践活动,激发学习兴趣,体验学习成功感,并在教学中,感受数学与生活的密切联系。

二、教学重难点

教学重点:学生运用各种方法,探索三角形的内角和是180度这一知识的全过程

教学难点:运用三角形的内角和解决实际问题。

三、教具、学具准备:

课件、一副三角尺、几个三角形。学生准备一副三角尺。

四、教学过程:

一、创设情境 揭示课题。

师:猜谜语 形状似座山,稳定性能坚;三竿首尾连,学问不简单。(打一几何图形)生:三角形

师:前面我们已经认识三角形,谁能给大家介绍一下? 学生讲学过的三角形知识。分类

师:我们在讨论三角形知识的时候,三角形中的三个兄弟却吵了起来,想知道怎么回事吗?让我们一起去看看吧!

师:呦,瞧,三个兄弟在争论呢。(播放课件)它们在争论什么呀? 生:它们在争论谁的内角和大。

师:哦,原来如此。那么,你们知道什么是三角形的内角? 三角形的内角和又是指什么吗?(生:三角形的内角就是三角形里面的三个角。内角和就是三个内角的度数和。)

师:这个同学说得真好,(课件)我们把三角形里面的这三个角,就叫做三角形的内角,而这三个角的度数和,我们就称为三角形的内角和。

今天我们就来研究有关三角形内角和的知识。(板书课题)

二、探索交流,解决问

(一)、大胆猜想,产生分歧

师:理解了三角形的内角和,那请你们给评评理:这三个大小不一样的三角形,到底是谁的内角和大啊?(这位同学手举得最高,请你来说。)

生1:我认为是这样的,因为大三角形大,所以它的内角和更大。(哦,你是这样认为的,请坐。还有不同意见吗?这位同学很着急,好,你来。)

生2:我不同意,我认为两个三角形内角和的度数都是一样的。(很好,这是你的想法。还有同学想说,你来。)

生3:当然是大三角形的内角和大了。(你回答的声音真响亮。请坐)生4:我同意第二个同学的意见,两个三角形的内角和一样大。

师:现在出现了两种不同的意见,有的同学认为大三角形的内角和大,还有部分同学认为两个三角形的内角和的度数都是一样的。那么到底谁说得对呢?

(二)验证猜想,解决问题

师拿出两个三角尺,问:它们是什么三角形? 生:直角三角形。

师:请大家拿出自己的两个三角尺,同桌之间说说每一个三角尺上三个角的度数,并求出这两个直角三角形的内角和。(学生们能够很快求出每块三角尺的3个角的和都是180°)

师:你们算出来,这两个三角尺的内角和是多少度啊? 生齐:180°。

师:那„„其他三角形的内角和也是180°吗?(这位同学手举得真端正,你来说。)生1:其他三角形的内角和也是180°(好,还有谁想说?)生2:其他三角形的内角和不是180°

师:看来呀,大家都有不同的看法。我们学过三角形的分类,知道直角、锐角、钝角三角形可以代表所有的三角形。那下面就请同学们小组合作,从组里找出这

三类三角形,量一量每个三角形内角的度数,并求出它们的内角和,把结果填在表格里。(板书:测量)师:你们发现了什么?

生1:通过测量我们发现每个三角形的内角和都是180°。生2:不对,应该是180°左右,因为我们组算出来也有175°的。

师:噢!是呀,因为我们在测量时可能会出现一些误差,所以测量出的结果不是很准确,因此我们只能猜测三角形的内角和可能是180°。

师:那么,同学们能发挥你们的聪明才智,通过动手操作,想办法来验证自己的猜想吗?请同学们先独立思考一下,再在小组内把你的想法与同伴进行交流,然后每组选一种方法进行验证,看哪组最先发现其中的“奥秘”。(1)小组合作,讨论验证方法(2)汇报验证方法、结果。

师:谁愿意第一个向大家介绍你们组的验证方法?

组1:我们小组是用剪拼的方法(板书:剪拼),将三角形的三个角剪下来,拼成一个平角,得到三角形的内角和是180度。

师:上来展示给大家瞧一瞧。(投影仪)你们看这位同学多细心呀,为了方便、不混淆,在剪之前,他先给3个角标上了符号。

师:现在请同学们看大屏幕,老师在电脑里把刚才剪拼的过程重播一遍。你们看,成功了,3个角拼成了一个平角。可是,刚才剪拼的是一个锐角三角形,那还有直角三角形、钝角三角形呢,它们能不能拼成一个平角啊? 生齐:能!

师:好。那就是说,刚才这种剪拼的方法可以不用再一个角一个角来量,就能证明三角形的内角和是180°了。你们觉得这种方法好不好啊?那我们把掌声送给刚才这个小组。还有其他方法吗?

组2:我们小组是用折的方法(板书:折图),同样得到三角形的内角和是180度。(这个小组真了不起,竟能想出如此独特的方法,很有新意,非常好!)师:听起来有点抽象,请这位同学上来折给大家看看好不好呀?(投影仪展示)

(展示:3个角折成了一个平角。)

师:真是个手巧的孩子。不过呢,他刚才折的是一个直角三角形,那其他两类三角形呢,是不是也能折出平角呢,谁来告诉大家?

组3:可以,这三类三角形都能折出平角。(这一组探索数学的能力也真棒!)师小结:刚才同学们用量、剪、拼、折等方法证明了,无论是什么样的三角形,内角和都是1800,(板书:三角形的内角和是180°)现在让我们用自豪的、肯定的语气读出我们的发现:“三角形的内角和是1800”。师:(出示一个大三角形)它的内角和是多少度? 生:180 °

师:(出示一个很小的三角形)它呢? 生:180 °

师:一个三角形的内角和是180°,那两个同样的三角形拼成一个大三角形,它的内角和又是多少呢?

(生有的答360°,有的180 °。)

师:咦?有两种不同的声音哦。那到底哪一种是正确的呢?

师:(学生个个脸上露出疑问)大家可以在小组内拼一拼,并讨论讨论。(经过一翻激烈的讨论探究后,学生开始举手回答。)

生1:180°,因为两个三角形拼在一起,就变成了一个三角形了,每个三角形的内角和总是180°。(想一想,做一做,数学之门就被这组同学打开了,真棒!哈,还有同学要说,好,你再说。)

生2:我发现两个小三角形拼成一个大三角形,拼接在一起的两条边上的两个角没有了,就比原来两个三角形少180 °,所以大三角形的内角和还是180°,不是360°。

师:你分析问题这么透彻,老师真希望每节课都能听到你的发言。现在,老师把刚才这位同学说的用课件演示一遍,注意看哦。(课件演示)

师:好,这个问题解决了。那么,把大三角形平均分成两份。它的(指均分后的一个小三角形)内角和是多少度? 生齐:180°。

师:哈,看来已经骗不倒我们班的同学勒。答案还是180°,不是90°哦。师总结:所以说,三角形不论位置、大小、形状如何,它的内角和总是180°

三、巩固应用,内化提高

1、解决问题:

学会了知识,我们就要懂得去运用。下面,我们就根据三角形内角和的知识来解决一些相关的数学问题。(课件演示练习题)(1)在能组成三角形的三个角后面画“√”(2)判断下列说法对吗?(3)你能求出被遮住的角吗?(4)67页的做一做。(5)你会求下面图形的角吗?

四、回顾整理,反思提升

通过今天的学习,大家有什么收获?

拓展创新

小明不小心将镜框上的一块三角形玻璃摔成了两半,玻璃裂成了两块。一块只有原来的一个角,另一块有原来的两个角。他想重新买一块玻璃安上,小明非常聪明,只带了其中的一块到玻璃店去,就配到了和原来一模一样的玻璃了。你知道他带的是哪一块吗?

三角形内角和教案 篇10

探索与发现:三角形内角和

课型

新授课

设计说明

本节课是在学生已经掌握了钝角、锐角、直角、平角及三角形分类的基础上,让学生通过直观操作来认识和学习的。

1.重视知识的探究与发现。

在教学中,概念的形成没有直接给出,而是整节课都是在引导学生的实验操作、活动探究中进行。在探究活动中,不但重视知识的形成过程,而且注意留给学生充分进行主动探究和交流的空间,让学生归纳出三角形内角和等于180°。

2.重视学生的合作探究学习。

使学生能够积极主动地参与到数学活动中,能在实践中感知、发表自己的见解,学生感受到通过自己的努力取得成功所带来的满足感,同时也培养了学生的探究能力和创新能力。

课前准备

教师准备:PPT课件 量角器 直尺 三角尺

学生准备:量角器 三角尺

教学过程

一、常识导入。(3分钟)

1.介绍帕斯卡:早在300多年前有一个科学家,他在12岁时验证了任意三角形的内角和都是180°,他就是法国科学家、物理学家帕斯卡。

2.导入新课:这节课我们也来验证一下三角形的内角和。

1.倾听教师的介绍,了解帕斯卡。

2.明确本节课的学习内容。

1.填空。

(1)有一个角是钝角的三角形是( )三角形;有一个角是直角的三角形是( )三角形;三个角都是锐角的三角形是( )三角形。

(2)平角=( )°

直角=( )°

周角=( )°

二、合作交流,探究新知。(18分钟)

(一)量算法。

1.探究特殊三角形的内角和。

(1)出示一副三角尺,引导学生说一说各个角的度数。

(2)引导学生算一算它们的内角和各是多少度。

(3)引导学生得出结论。

2.探究一般三角形的内角和。

(1)引导学生猜一猜其他三角形的内角和是多少度。

(2)组织学生验证一般三角形的内角和是180°。

①引导学生量出每个内角的度数,再计算三个内角的和。

②引导学生分工合作,把结果填入记录表中。

③引导学生说说自己的发现。

(3)引导学生明确由于测量有误差,实际上三角形的内角和是180°。

(二)剪拼法。

1.组织学生用剪拼的方法求三角形的内角和。

2.引导学生总结发现。

3.课件演示,得出三角形的内角和是180°的结论。

(三)折拼法。

1.引导学生结合剪拼法尝试折拼法。

2.引导学生得出结论。

3.课件演示折拼法。

(一)1.(1)说出每个三角尺中各个角的度数。

①90°;60°;30°。

②90°;45°;45°。

(2)独立算出每个三角尺的内角和。

(3)得出结论:这两个三角尺的内角和都是180°。

2.(1)同桌之间互相说说自己的看法。

猜测:一种是内角和可能是180°,另一种是内角和一定是180°。

(2)小组合作进行探究,量一量,算一算,说一说。

三角形种类

每个内角

的度数

三个内

角的和

锐角三角形

65°

46°

68°

179°

钝角三角形

110°

25°

46°

181°

等腰三角形

70°

55°

55°

180°

等边三角形

60°

60°

60°

180°

通过观察发现:三角形的内角和都在180°左右。

(3)听老师讲解,明确三角形的内角和是180°。

(二)1.把一个三角形的三个内角剪下来,小组内拼合。在拼合过程中要注意:顶点重合,三个角拼合。

2.发现三角形的三个内角正好拼成了一个平角,也就是180°。

3.观看课件演示,明确三角形的三个内角拼成了一个平角,所以它的内角和是180°。

(三)1.动手折一折、拼一拼。

2.得出结论:三角形的三个内角拼在一起正好是一个平角,所以三角形的内角和是180°。

3.观看课件演示,再次明确三角形的内角和是180°。

2.算一算。

在一个直角三角形中,已知一个锐角是35°,另一个锐角是多少度?

3.在能组成三角形的三个角的后面画“√”。

(1)90°;20°;70°。 ( )

(2)100°;50°;50°。( )

(3)70°;70°;70°。( )

(4)80°;70°;30°。( )

4.猜一猜。

有一个三角形,其中一个角是20°,它可能是什么三角形?

5.已知∠1、∠2、∠3是三角形的三个内角,请你计算出每个三角形中∠1的度数。

(1)∠2=58° ∠3=48°

(2)∠2=∠3=70°

(3)∠1=∠2=∠3

三、巩固练习。(16分钟)

把正确答案的序号填在括号里。

1.把两个小三角形合成一个大三角形,这个大三角形的内角和是( )。

A.90° B.180° C.360°

2.一个三角形中有两个锐角,则第三个角( )。

A.也是锐角

B.一定是直角

C.一定是钝角

D.无法确定

小组合作,选一选,明确答案。

1.明确任何一个三角形的内角和都是180°,三角形的内角和与三角形的大小无关。

2.通过讨论,明确任何一个三角形都至少有两个锐角,所以无法确定。

6.如下图,在直角三角形中,已知∠2=30°,不计算,你知道∠1的度数吗?

四、课堂总结,拓展延伸。(3分钟)

1.总结本节课的学习内容。

2.布置课后作业。

谈自己本节课的收获。

全等三角形教案汇总


避免过分追求叙述严谨而影响学生对基本内容的理解,老师们经常开会研讨教案。在实际教学活动中,教案起着十分重要的作用。教案的内容应该从哪方面编写?幼儿教师教育网为此仔细地整理了以下内容《全等三角形教案》,欢迎大家参考阅读。

全等三角形教案 篇1

课程内容

边边边判定定理

选用教材

人教版数学八年级上册

授课人

崔志伟

授课章节

第十二章第二节

学 时

1

教学重点

掌握全等三角形的判定定理边边边,能运用该定理解决实际问题。

教学难点

探索三角形全等的条件,以及运用边边边定理画一角等于已知角

教学方法

学生合作探究法、教师讲解结合谈话法等综合教学方法

教学手段

黑板板书教学

课 堂 教 学 设 计

阶段

教学内容

导入部分

采用复习导入,教师首先提问学生回顾全等三角形的定义,以及全等三角形的性质。

学生在复习以上知识的条件下教师做出解释,上节课我们已经学习了三角形在满足三边对应相等,三角对应相等,则两三角形全等,那么在实际的运用过程中,需要这么多条件运用会很不方便,那么我们很容易想到,能不能简化条件,得出三角形全等呢?由此引出课题全等三角形的判定。

阶段

课堂教学设计

课程新授

教师让学生大胆想象,可以从一组对应关系相等开始探究,逐步上升到两组对应关系相等三组对应关系相等。

但是为了节约时间,可以让学生从两组开始,如若两组都不行,那一组肯定也不行,反之如若两组条件就足够了,再回头看看一组的情况。

接下来学生在教师的提问下思考二组对应条件的所有可能的情况,预设会有思考不全面的同学,教师即使揭示在一组边与一组角相等的情况下,边与角的关系可以为相邻,也有可能为相对。

学生在教师的提示下,探索发现满足两组对应关系相等的三角形不一定全等,由此可以断定一组对应关系相等也不能作为判定三角形全等的条件。接下来直接考虑三组对应相等关系的情况。

首先引导学生对三组对应关系相等进行分类。

预设学生部分可以全部考虑到,部分学生考虑不周到,这时教师可以请会的同学展示被同学忽略的情况即两组角与一组对边对应相等时,边可以为对边,也可以为邻边。

本节课将引导学生探索三边相等的情形,有了前面两组对应相等的经验,预设学生根据尺规作图可以画出三边等于已知三角形的三角形,接下来通过三角形全等的定义,让学生动手操作进行验证,发现可以完全重合,由此我们得到三组边对应相等的三角形全等。即SSS,教师解释S为英文边,side的首字母。

接下来请同学说出已知三角形与所作三角形之间存在的对应相等关系,预设学生可以很轻易说出。

由此教师揭示,实际上我们还学回了一个做角等于一只角的另外一种做法,即运用尺规作图画一角等于已知角。接下来,教师稍作解释,请学生探究讨论作图步骤。看谁的最简便。

学生探索过后,教师请学生回答自己的作图步骤,最后由教师板书最简易的作图步骤。

之后我将用练习的方式,加深同学对边边边判定定理的理解并加强应用能力。

作业

作业为书上的练习第二题,以及课后作业的第四题对应基础性练习即巩固性练习。

板书设计

采用归纳式的板书设计,主要板书两种即三种对应关系相等的种类,边边边判定定理的内容以及画一角等于已知角的步骤以及重要练习的过程。

小结

本结课内容比较多,主要体现在全等三角形判定的探索过程,为了节约时间,我选择让学生直接从两个条件开始探究,同时也不影响学生理解,教师主要以引导为主,学生自主探索学习。

全等三角形教案 篇2

〖教学目标〗

◆1、探索两个直角三角形全等的条件.

◆2、掌握两个直角三角形全等的条件(hl).

◆3、了解角平分线的性质:角的内部,到角两边距离相等的点,在角平分线上,及其简单应用.

〖教学重点与难点〗

◆教学重点:直角三角形全等的判定的方法“hl”.

◆教学难点:直角三角形判定方法的说理过程.

〖教学过程〗

一、创设情境,引入新课:

教师演示一等腰三角形,沿底边上高裁剪,让同学们观察两个三角形是否全等?

二、合作学习:

1.回顾:判定两个直角三角形全等已经有哪些方法?

2.有斜边和一条直角边对应相等的两个三角形全等吗?如何会全等,教师可启发引导学生一起利用画图,叠合方法探索说明两个直角三角形全等的判定方法,可充分让学生想象。不限定方法。

“斜边和一条直角边对应相等的两个直角三角形全等(hl)。”

教师归纳出方法后,要学生注意两点:

“hl”是仅适用于rt△的特殊方法。

三、应用新知,巩固概念

例:已知:p是∠aob内一点,pd⊥oa,pe ⊥ob,d,e分别是垂足,且pd=pe,则点p在∠aob的平分线上,请说明理由。

分析:引导猜想可能存在的rt△;构造两个全等的rt△;要说明p在∠aob的平分线上,只要说明∠dop=∠eop

小结:角平分线的又一个性质:(判定一个点是否在一个角的平分线上的方法)

角的内部,到角的两边距离相等的点,在这个角的平分线上。

四、学生练习,巩固提高

练一练:课本p82课内练习

五、小结回顾,反思提高

(1)你认为有没有其他的方法可以证明直角三角形全等(勾股定理)?

(2)你现在知道的有关角平分线的知识有哪些?

六、作业:

1.作业本2.82.课后作业

全等三角形教案 篇3

【教学目标】:

1、知识与技能:

1.三角形全等的条件:角边角、角角边.

2.三角形全等条件小结.

3.掌握三角形全等的“角边角”“角角边”条件.

4.能运用全等三角形的条件,解决简单的推理证明问题.

2、过程与方法:

1.经历探究全等三角形条件的过程,进一步体会操作、?归纳获得数学规律的过程.

2.掌握三角形全等的“角边角”“角角边”条件.

3.能运用全等三角形的条件,解决简单的推理证明问题.

3、情感态度与价值观:

通过画图、探究、归纳、交流,使学生获得一些研究问题的经验和方法,发展实践能力和创新精神

【教学情景导入】:

提出问题,创设情境

复习:

(1)三角形中已知三个元素,包括哪几种情况?

三个角、三个边、两边一角、两角一边.

(2)到目前为止,可以作为判别两三角形全等的方法有几种?各是什么?

三种:

①定义;

②SSS;

③SAS.

2.[师]在三角形中,已知三个元素的四种情况中,我们研究了三种,今天我们接着探究已知两角一边是否可以判断两三角形全等呢?

导入新课

[师]三角形中已知两角一边有几种可能?

[生]1.两角和它们的夹边.

2.两角和其中一角的对边.

做一做:

三角形的两个内角分别是60°和80°,它们的夹边为4cm,?你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?

学生活动:自己动手操作,然后与同伴交流,发现规律.

教师活动:检查指导,帮助有困难的同学.

活动结果展示:

以小组为单位将所得三角形重叠在一起,发现完全重合,这说明这些三角形全等.

提炼规律:两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”).

[师]我们刚才做的三角形是一个特殊三角形,随意画一个三角形ABC,?能不能作一个△A′B′C′,使∠A=∠A′、∠B=∠B′、AB=A′B′呢?

[生]能.

学生口述画法,教师进行多媒体课件演示,使学生加深对“ASA”的理解.

[生]①先用量角器量出∠A与∠B的度数,再用直尺量出AB的边长.

②画线段A′B′,使A′B′=AB.

③分别以A′、B′为顶点,A′B′为一边作∠DA′B′、∠EB′A,使∠D′AB=∠CAB,∠EB′A′=∠CBA.

④射线A′D与B′E交于一点,记为C′ 即可得到△A′B′C′.

将△A′B′C′与△ABC重叠,发现两三角形全等.

[师]

于是我们发现规律:

两角和它们的夹边对应相等的两三角形全等(可以简写成“角边角”或“ASA”).

这又是一个判定三角形全等的条件. [生]在一个三角形中两角确定,第三个角一定确定.我们是不是可以不作图,用“ASA”推出“两角和其中一角的对边对应相等的两三角形全等”呢?

[师]你提出的问题很好.温故而知新嘛,请同学们来验证这种想法.

【教学过程设计】:

如图,在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF,△ABC与△DEF全等吗?能利用角边角条件证明你的结论吗?

证明:∵∠A+∠B+∠C=∠D+∠E+∠F=180°

∠A=∠D,∠B=∠E

∴∠A+∠B=∠D+∠E

∴∠C=∠F

在△ABC和△DEF中

∴△ABC≌△DEF(ASA).

于是得规律:

两个角和其中一角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”).

[例]如下图,D在AB上,E在AC上,AB=AC,∠B=∠C.

求证:AD=AE.

[师生共析]AD和AE分别在△ADC和△AEB中,所以要证AD=AE,只需证明△ADC≌△AEB即可.

学生写出证明过程.

证明:在△ADC和△AEB中

所以△ADC≌△AEB(ASA)

所以AD=AE.

[师]到此为止,在三角形中已知三个条件探索三角形全等问题已全部结束.请同学们把三角形全等的判定方法做一个小结.

学生活动:自我回忆总结,然后小组讨论交流、补充.

有五种判定三角形全等的条件.

1.全等三角形的定义

2.边边边(SSS)

3.边角边(SAS)

4.角边角(ASA)

5.角角边(AAS)

推证两三角形全等,要学会联系思考其条件,找它们对应相等的元素,这样有利于获得解题途径.

练习:图中的两个三角形全等吗?请说明理由.

答案:图(1)中由“ASA”可证得△ACD≌△ACB.图(2)由“AAS”可证得△ACE≌△BDC.

【课堂作业】 1.如图,BO=OC,AO=DO,则△AOB与△DOC全等吗?

小亮的思考过程如下.

△AOB≌△DOC

2、已知△ABC和△A′B′C′,下列条件中,不能保证△ABC和△A′B′C?′全等的是( )

A.AB=A′B′ AC=A′C′ BC=B′C′

B.∠A=∠A′ ∠B=∠B′ AC=A′C′

C.AB=A′B′ AC=A′C′ ∠A=∠A′

D.AB=A′B′ BC=B′C′ ∠C=∠C′

3、要说明△ABC和△A′B′C′全等,已知条件为AB=A′B′,∠A=∠A′,不需要的条件为( )

A.∠B=∠B′ B.∠C=∠C′; C.AC=A′C′ D.BC=B′C′

4、要说明△ABC和△A′B′C′全等,已知∠A=∠A′,∠B=∠B′,则不需要的条件是( A.∠C=∠C′ B.AB=A′B′; C.AC=A′C′ D.BC=B′C′

5、两个三角形全等,那么下列说法错误的是( )

A.对应边上的三条高分别相等; B.对应边的三条中线分别相等

C.两个三角形的面积相等; D.两个三角形的任何线段相等

6、如图,已知∠A=∠D,AB=DE,AF=CD,BC=EF.

全等三角形教案 篇4

大家好!今天我说课的题目是《探索三角形全等的条件》(第一课时)。根据新课标的理念,对于本节课我将以教什么,怎样教,为什么这样教为思路,将从以下几方面加以说明。

一、教材分析

本节课是北师大版教科书七年级下册第五章第四节的内容。本节教学共分三个课时,本节课是第一课时,主要内容是探索三角形全等的条件(“SSS”)和三角形的稳定性。它是在学生学习了三角形的有关性质以及全等图形特征的基础上,进一步研究三角形全等的条件,它是学习三角形全等的其他判别方法的核心内容,也是初中数学的重要内容之一。

二、学情分析

由于初二的学生对几何的认识还很有限,根据学生已有的认知结构,这是第一次系统的学习三角形,本节课要创造条件和机会,让学生发表见解,充分发挥学生的主动性。

三、教学目标分析

根据学生已有的认知结构,以及教学内容的地位和作用,我拟定本节课的教学目标为:

(1)知识目标:掌握三角形全等的“边边边”条件并初步学会运用,了解三角形具有稳定性及其应用。

(2)能力目标:在学习过程中,让学生体验分类思想、有条理地思考、分析、表达,逐步培养学生的推理意识和能力。

(3)情感目标:让学生体会数学在生活中的作用,增强学生学习数学的兴趣。

四、重、难点分析

教学重点:经历探索三角形全等条件的过程,掌握三角形全等的“边边边”条件并初步学会运用其解决简单的问题。

教学难点:对三角形全等条件的分析以及探索思路的选择。

为突出重点:我安排了具有一定挑战性的练习题,以引导学生熟练的掌握三角形全等的“边边边”条件。

为突破难点:利用分类思想引导孩子通过画图、观察、比较、推理、交流,在条件由少到多的过程中逐步探索出最后结论。

五、教法、学法分析:

1、教法分析

根据本节课的教学特点和学生的实际情况,我主要采用“探索式教学”、“启导式教学”。

2、学法分析

本节课主要让学生采用动手实践,自主探索、合作交流的学习方法,充分发挥学生学习的主动性。

六、教学过程分析:

(一)创设情景,提出问题

1、展示玻璃打碎的情景。

2、提出以下问题:

(1)该如何配一块和原来一样的玻璃呢?

(2)两三角形全等需概念的所有条件都满足吗?如何尽可能的少呢?

设计意图:让学生在现实情景中回顾已学知识,经历将现实问题抽象成数学模型的过程同时提出问题让学生思索,诱发新知。

(二)交流讨论,探索新知

1、探索三角形全等至少需要几个条件,在学生对导学案的处理的基础上,我组织以下教学活动:

活动一:只给一个条件(一条边或一个角)借助多媒体演示,让学生观察下列三角形:

只给定一边时(多媒体出示不同的三角形):

只给定一个角时(多媒体出示不同的三角形):

然后引导学生通过比较,从而认识到:

只给出一个条件时,不能保证所画出的三角形一定全等.

设计意图:让学生从简单的情况入手,通过动手实践验证只满足一个条件时是不能画出两个三角形全等的,从而引出活动二。

活动二:

给出两个条件画三角形时,有几种可能的情况?每种情况下作出的三角形一定全等吗?分别按照下面的条件做一做(师提示).

①、三角形的一个内角为30°,一条边为3cm.

②、三角形的两个内角分别为30°和50°.

③、三角形的两条边分别为4cm、6cm.

对于活动二先让学生汇报(导学案)有几种情况,体会分类讨论的必要性,然后把学生分为三组,每组分别去解决其中的一个问题,再让各组学生展示学生所画的三角形,并交流解决的方法及获得的结论。

小组一:解决问题①、三角形的一个内角为30°,一条边为3厘米。

画出的三角形几乎都不一样。(多媒体演示)

结论:这三个三角形不全等。

小组二:解决问题②,三角形的两个内角分别是30°和50°,画的三角形形状一样,但大小不一样。(多媒体演示)

结论:这两个三角形不能重合,即不全等.

小组三:解决问题③、三角形的两边分别为4cm、6cm,所画出的三角形也不全等。

(多媒体演示)

师总结:只给出一个条件或两个条件时,都不能保证所画出的三角形一定全等.那么给出三个条件时,又怎样呢?

设计意图:让学生初步体会分类思想,有两个条件满足时两个三角形能否全等,应该如何去划分(两边、两角、一边一角)本环节也是为下一活动满足三个条件是两三角形是否全等做铺垫。

活动三:

接着提出以下问题:如果给出三个条件画三角形,你能说出有哪几种可能的情况?

引导学生将要解决的问题转化为在三角形的3个角和3条边中取3个条件,有几种情况。让学生体会分类讨论的方法。本节课主要研究给出3个角和3条边的情况

2、探索三角形全等的条件:边、边、边

(1)已知一个三角形的三个内角分别为40°,60°,80°.你能画出这个三角形吗?把你画的三角形与同伴画的进行比较,它们一定全等吗?

(2)已知一个三角形的三条边分别为4cm、5cm和7cm,你能画出这个三角形吗?把你画的三角形与同伴画的进行比较,它们一定全等吗?

对于问题(1)鼓励学生去思考,只要学生能列举出反例即可,多媒体演示下图:

对于问题(2)先引导学生交流画法,多媒体演示画法,然后鼓励学生去画,并将所画的三角形剪切与同伴的是否重合。在此基础上教师提出:你能发现什么结论?你是如何获得的?若改变三角形三边的取值,你能得到同样的结论吗?

学生活动:几个同学一组画三角形,并将所画的三角形剪切,判断其能否重合,并总结所获得的结论。

师总结:三边对应相等的两个三角形全等,简写:“边边边”或“SSS”

设计意图:让学生运用用分类思想,通过动手实践,自主探究与合作交流的学习方式进行学习。在这里老师一方面引导学生动手去画,另一方面鼓励学生合作交流。通过合作交流激活学生思维,感受反例的作用,使学生在活动中归纳总结出结论,培养学生的语言表达能力。

(三)巩固新知,探索性质(多媒体展示)

1、如图,AB=CD,AC=BD,△ABC和△DCB是否全等?试说明理由。

2、如图,D、F是线段BC上的两点,AB=CE,AF=DE,要使△ABF≌△ECD,还需要条件

设计意图:安排具有一定挑战性的练习题,引导学生熟练掌握三角形全等的“边边边”条件,逐步培养学生的推理意识和能力。

以上是研究三角形全等的条件,下面我们一起来看一看三角形具有什么性质。

活动四:

取出课前用长度适当的硬纸条和大头针自制的三角形和四边形,并拉动它们。(多媒体演示,展示生活中的应用)

得出结论:三角形具有稳定性,四边形具有不稳定性。你能举出生活中的应用吗?

设计意图:让学生从身边的事物中学习数学、理解数学、应用数学、感受数学的魅力。使学生对数学的学习产生浓厚的兴趣。

(四)发散思维,强化新知

1、如图,AB=AC,BD=CD,H是BC的中点,指出图中全等三角形,它们全等的条件是什么?

2、四边形ABCD中,AB=CD,AD=BC。△ABC和△CDA是否全等?∠A=∠C吗?说明理由。

设计意图:教师创造条件让学生面对具有挑战性的问题,能够尝试独立解决,显现出个体的差异性。在此基础上,学生相互交流,取长补短,实现有差异发展,达到共同提高。

(五)师生小结,反思提高

通过本节课你学到了什么?发现了什么?有什么收获?还存在那些没有解决的问题?设计意图:帮助学生梳理知识内容,养成自我反思的习惯。

(六)布置作业,反馈新知

我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。使每个学生都能得到不同的发展。同时也为下一节课的学习做好铺垫。

全等三角形教案 篇5

一、教材分析

(一)、教材的地位与作用

HL定理是学生学习一般三角形全等的判定之后的一节内容,主要让学生通过对直角三角形全等的判定,让学生体会其特殊性,为学习等腰三角形的性质和直角三角形中30度的角所对的直角边与斜边的关系作铺垫。

(二)、教学目标

1、会已知直角三角形的一条直角边和斜边,作直角三角形

2、掌握直角三角形全等的判定方法----“HL”定理

3、能利用全等直角三角形的判定方法“HL”定理解决简单实际问题

4、经历探索直角三角形全等条件的过程,体会分析问题的方法。积累数学活动的经验。

(三)、教学重难点:

重点:直角三角形全等的判定方法

难点:运用全等直角三角形的判定方法“HL”解决问题

二、说教学方法:自主学习、合作讨论、交流展示

通过动手操作,在合作中交流,比较中共同发现判定直角三角形全等的另一种特殊方法“HL”,通过例题和练习巩固这种判定方法。

三、说教学过程

(一)、创设情境,引入新课

1、复习思考

(1)、判定两个三角形全等的方法

(2)、如图,Rt△ABC中,直角边是AC、BC,斜边是AB

设计意图:通过简单的复习帮助学生回顾旧知识,为本节课内容做铺垫。

2、新课引入(情境)

(课件显示)舞台背景的形状是两个直角三角形,工作人员想知道这两个直角三角形是否全等,但每个三角形都有一条直角边被花盆遮住无法测量。

(1)你能帮他想个办法吗?

方法一:测量斜边和一个对应的锐角.(AAS)

方法二:测量没遮住的一条直角边和一个对应的锐角.(ASA)或(AAS)

……

学生活动:能从已经学过的判定两个三角形全等的方法入手,相互交流。

教师活动:引导学生发现,对有困难的同学提供帮助。

设计意图:发挥学生的课堂主动性及参与课堂的积极性,由于问题不难,学生参与会比较广。

⑵如果他只带了一个卷尺,能完成这个任务吗?

设计意图:由于学生能用到的工具减少了,学生会进入沉思,自然而然会进入新知识的探索中,吊足学生的胃口,集中学生的注意力,学生乐于学习。

师:工作人员测量了每个三角形没有被遮住的直角边和斜边,发现它们分别对应相等,于是他就肯定“两个直角三角形是全等的”.你相信他的结论吗?

设计意图:教师提供方案,挑战学生已有的知识,激发学生知识的火花,使其迫不及待的想来发现新知识。

下面让我们一起来验证这个结论。

(二)、合作交流,探索新知

1、探究:如果两个直角三角形满足斜边和一条直角边对应相等,这两个直角三角形全等吗?

(1)动手试一试。利用尺规作一个RtΔABC,∠C=90°,AB=5cm,CB=3cm.

按照步骤做一做:

①作∠MCN=90°

②在射线CM上截取线段CB=3cm

③以B为圆心,5cm为半径画弧,交射线CM于点A;

④连接AB.△ABC就是所求作的三角形

学生活动:按老师的要求画出图形

教师活动:规范作图,及时解决学生作图时遇到的困难

设计意图:培养学生的动手操作能力

探索交流

(2)剪下这个三角形,和其他同学所作的三角形进行比较,它们能重合吗?

(3)交流之后,你发现了什么?

学生交流,发现。已知什么前提,满足什么条件,得到什么结论。

(4)归纳;由上面的画图和实验可以得到判定两个直角三角形全等的一个方法

定理:斜边和一直角边分别相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”)

(5)用数学语言表述上面的判定方法

∵∠B=∠E=90°

∴在Rt△ABC和Rt△DEF中

∴Rt△ABC≌Rt△DEF(HL)

教师规范板书,提醒学生规范书写。

(6)直角三角形是特殊的三角形,所以不仅有一般三角形判定全等的方法SAS、ASA、AAS、SSS还有直角三角形特殊的判定方法“HL”

设计意图:教师适时小结,能理顺学生的思路,从而形成学生自己的知识。

(7)练习:判断满足下列条件的两个三角形是否全等?为什么?

①一个锐角及这个锐角的对边对应相等的两个直角三角形.(全等,AAS)

②一个锐角及这个锐角相邻的直角边对应相等的两个直角三角形(全等,ASA)

③两直角边对应相等的两个直角三角形(全等,SAS)

④有两边对应相等的两个直角三角形.

分三种情况考虑:两个直角边对应相等,全等(SAS);一条直角边和斜边对应相等,全等(HL);一条直角边对应相等,第一个三角形的斜边与第二个三角形的直角边对应相等则不全等。

设计意图:趁热打铁,体会直角三角形全等的5种判定方法,练习④体现数学分类讨论思想,让学生进一步感受数学语言的严谨性及数学思维的严密性。

(三)、尝试应用,解决问题

例1、已知:如图∠BAC=∠CDB=90°,AC=DB求证:AB=DC

分析:要说明AB=DC,由于AB和DC分别在两个三角形中,只要他们所在的两个三角形全等就可以了,而这两个三角形是直角三角形,题目给了我们一条直角边相等,SAS、ASA、AAS、SSS都用不上,自然想到用HL定理来做,可还差一条斜边对应相等,经过观察发现,这两个三角形的斜边是公共边

证明:∵∠BAC=∠CDB=90°

∴△BAC,△CDB都是直角三角形

在Rt△BAC和Rt△CDB中

∵AC=DB

BC=CB

∴Rt△ABC≌Rt△DCB(HL)

∴AB=DC(全等三角形的对应边相等)

(四)、当堂检测,及时反馈

1、如图,AC=AD,∠C,∠D是直角,将上述条件标注在图中,

你能说明BC与BD相等吗?

2、如图,两根长度为10米的绳子,一端系在旗杆上,

另一端分别固定在地面两个木桩上,

两个木桩离旗杆底部的距离相等吗?请说明你的理由。

(五)、收获分享,感悟困惑

学生谈谈本节课的收获,以及还有哪些疑问。

一般三角形全等的判定方法有SAS,ASA,AAS,SSS

直角三角形全等的判定方法有SAS,ASA,AAS,SSS,外加HL

灵活运用各种方法证明直角三角形全等

(六)、课后作业,应用提高

课本109页练习1、2、3

板书设计

14.2.5两个直角三角形全等的判定

∵∠B=∠E=90°

∴在Rt△ABC和Rt△DEF中

∴Rt△ABC≌Rt△DEF(HL)

投影区

SAS、ASA、AAS、SSS

例证明:∵∠BAC=∠CDB=90°

∴△BAC,△CDB都是直角三角形

在Rt△BAC和Rt△CDB中

∵AC=DB

BC=CB

∴Rt△ABC≌Rt△DCB(HL)

∴AB=DC

全等三角形教案 篇6

各位评委:

今天我说课的题目是人教版数学八年级上册第十章第1节《全等三角形》。下面,我将从教材分析,教学方法与教材处理及教学过程等几个方面对本课的设计进行说明。

一、教学地位和作用

全等三角形是《三角形》这一章的主线,在知识结构上,等腰三角形,直角三角形,线段的垂直平分线,角的平分线等内容都要通过证明两个三角形全等来加以解决;在能力培养上,无论是逻辑思维能力,推理论证能力,还是分析问题解决问题的能力,都可在全等三角形的教学中得以培养和提高。因此,全等三角形的教学对全章乃至以后的学习都是至关重要的。为此,我在设计这节课的时候,以学生为主体,让他们全面地参与到学习过程中来,有意识地培养学生的创新意识和实践能力,增强他们学习的能力,让他们充分的掌握该知识点,同时尽量扩充他们的知识范畴。在教学中,采用的是“设疑——实验——发现——总结”的教学方法,并采用“变式练习”方法来提高学习效率。

二、教学的目标和要求:

1、知识目标:

(1)知道什么是全等三角形及全等三角形的对应元素;

(2)知道全等三角形的性质,能用符号正确地表示两个三角形全等;

(3)能熟练找出两个全等三角形的对应角,对应边。

2、能力目标:

(1)通过全等三角形有关概念的学习,提高学生数学概念的辨析能力;

(2)通过找出全等三角形的对应元素,培养学生的识图能力。

3、情感目标:

(1)通过感受全等三角形的对应美激发学生热爱科学勇于探索的精神;

(2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧。

三、教学重点:

1、能准确地在图形中识别出对应边,对应角;

2、全等三角形的性质和利用其基本性质进行一些简单的推理和计算。

(解决方法:利用动画的形式让学生直观的识别抽象的图形和知识点从而突出和掌握重点。)

四、教学难点:

能在全等变换中准确找到对应边,对应角。(在对应边,对应角的识别,查找中运用动画的展示,使学生能直观认识该知识点,化难为易,从而突破该难点)

五、教法与学法:

采用直观,类比的方法,以多媒体为手段辅助教学,引导学生预习教材内容,养成良好的自学习惯,启发学生发现问题,思考问题,培养学生的逻辑思维能力。逐步设疑,引导学生积极参与讨论,肯定成绩,使其具有成就感,提高他们学习的兴趣和学习的积极性。

多媒体,剪刀,直尺,硬纸,三角板

七、教学过程:

(一)复习导入方面

从复习全等图形方面入手,展示一些直观的图形,接着创设一个问题情境:如何翻新一个旧的三角形的纸样让学生动手画图,实验尝试,从而发现其实解决问题的关键是画一个全等的三角形,从而引出课题。通过以上的环节主要是提高学生数学概念的辨析能力和培养学生的动手实践能力。(此环节约用时5分钟)

(二)新课讲解方面

1、全等三角形的定义

通过动画的展示,引导学生观察,分析得出全等三角形的定义(先展示动画)。目的主要在于培养学生的观察分析能力。(此环节学生约用2分钟进行讨论分析)

2、全等三角形的性质

以动画的形式,介绍全等三角形的对应顶点,对应边,对应角,并引导学生通过观察分析全等三角形的对应边,对应角之间分别有怎样的关系,从而得出全等三角形的性质。在无形中培养了学生的图形识别能力和直观判断能力。(此环节约用时7分钟)

3、全等三角形的表示法

介绍全等符号,说明表示两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上。(此环节用时约2分钟)

4、议一议

方法:(1)小组活动,展示部分小组的解决方案

(2)动画展示解决方案

(3)知识点的扩充:动画展示全等三角形的变换识别中对应边,对应角的查找。

以上环节主要趋于培养学生的团结合作精神,认识团队的力量和开拓学生的思维,扩充学生的知识范畴。(此环节约用时8分钟)

(三)课堂练习(此环节约用时18分钟)

用多媒体课件逐一展示练习题目,让学生一一解答。主要是通过练习让学生巩固所学的知识并学会用所学的知识进行推理和解决实际问题。

(四)课堂小结(此环节约用时2分钟)

经过以上的教学环节,为了帮助学生系统的掌握所学的知识,达到预期的效果,在这一步骤中,我准备利用提问的形式,师生共同进行小结和归纳。

(五)作业布置(约用时1分钟)

(六)板书设置

全等三角形教案 篇7

教学目标

一、知识与技能

1、了解全等形和全等三角形的概念,掌握全等三角形的性质。

2、能正确表示两个全等三角形,能找出全等三角形的对应元素。

二、过程与方法

通过观察、拼图以及三角形的平移、旋转和翻折等活动,来感知两个三角形全等,以及全等三角形的性质。

三、情感态度与价值观

通过全等形和全等三角形的学习,认识和熟悉生活中的全等图形,认识生活和数学的关系,激发学生学习数学的兴趣。

教学重点

1、全等三角形的性质。

2、在通过观察、实际操作来感知全等形和全等三角形的基础上,形成理性认识,理解并掌握全等三角形的对应边相等,对应角相等。

教学难点

正确寻找全等三角形的对应元素

难点突破

通过拼图、对三角形进行平移、旋转、翻折等活动,让学生在动手操作的过程中,感知全等三角形图形变换中的对应元素的变化规律,以寻找全等三角形的对应点、对应边、对应角。

课前准备:

课件、三角形纸片

教学过程

一、出示学习目标

1、知道什么是全等形、全等三角形及全等三角形的对应元素。

2、知道全等三角形的性质,能用符号正确地表示两个三角形全等。

二、直观感知,导入新课

教师演示一些全等的图形的课件,让学生直观感知图片并寻找每组图片的特点。二、合作探究,学习新知

1.全等形

我们给这样的图形起个名称----全等形。[板书:全等形]

教师让学生们想生活中还有那些图形是全等形.

2.全等三角形及相关对应元素的定义

教师用多媒体动态演示两个能完全重合地三角形。定义全等三角形:能够完全重合的两个三角形,叫全等三角形。

[板书课题:12.1全等三角形]

2.全等三角形的对应元素及表示

把三角形平移、翻折、旋转后,什么发生了变化,什么没有变?

归纳:旋转前后的两个三角形,位置变化了,但形状大小都没有变,它们依然全等。

以多媒体上的图形为例,全等三角形中的对应元素

(1)对应的顶点(三个)---重合的顶点

(2)对应边(三条)---重合的边

(3)对应角(三个)---重合的角

归纳:方法一---全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;方法二:全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。

另外:有公共边的,公共边一定是对应边;有对顶角的,对顶角一定是对应角。

.用符号表示全等三角形

抽学生表示图一、图二、三的全等三角形。

3.全等三角形的性质

思考:全等三角形的对应边、对应角有什么关系?为什么?

归纳:全等三角形的对应边相等、对应角相等。

4.小组活动合作升华

学生分小组动手操作摆图形

小组合作完成位置不同的三角形,写出它们的对应边,对应角。强调其他小组学生说的时候,自己一定要注意倾听,能够分辨出对错来。

三、巩固练习

四、教师用多媒体展示习题,学生做巩固练习。

五、小结:本节课都学到了什么

六、作业:

必做题课本33页习题第1题、2题.

选做题课本第34页第6题。

全等三角形教案 篇8

各位老师:

你们好!今天我要为大家说的课题是《全等三角形的判定》

首先,我对本节教材进行一些分析:

一、教材分析(说教材):

1、教材所处的地位和作用:

这一节内容是初中《数学》人教版教材,八年级上册第十一章第二节的内容。在此之前学生已学习了全等三角形的定义、性质,对全等三角形有了一定的了解,这为过渡到本节的深入学习起着铺垫作用。本节内容是在本章内容中,占据重要的的地位,以及为其他学科和今后的几何学习打下基础。

2、教育教学目标:

根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:

(1)知识目标:

①对全等、对顶角、对应边、对应角的定义,能够熟练掌握,并达到更深一层的理解。

②能够利用尺规画出全等的三角形,学生具有一定的作图能力。

③掌握并理解三角形全等判定定理中的SSS和SAS。

④能够运用SSS和SAS判定定理判定三角形是否全等,利用三角形全等解决一些实际问题。⑤通过教学培养学生分析问题,读图分析,解决实际问题,培养学生运用知识的能力,培养学生加强理论联系实际的能力。

(3)情感目标:通过的师生共同摸索判断全等三角形全等的方法,激发学生学习兴趣。

3、重点、难点:①掌握并理解三角形全等的判定定理

②运用定理判定三角形全等,利用全等三角形解决实际的问题和几何题

二、教学策略(说教法)

1、教学手段:为了让学生充分理解和掌握三角形判定定理,突破难点,我在教学过程中,采用两探究引出定理,两个运用定理的例子,来进行教学。探究中主要用尺规作全等三角形的方法中引出全等三角形的条件,进而得出定理。这样学生就更容易理解和掌握定理。在用两个练习巩固知识。

2、教学方法及其理论依据:为了调动学生学习的积极性,充分体现课堂教学的主体性,我采用自学、议论、引导教学法,以学生为主体,老师为主导,引导学生运用观察、分析、概括的方法学习这部分内容,在整个教学过程当中,贯穿以学生为主体的原则,充分鼓励和表扬同学。

3、学情分析:(说学法)

(1)、八年级学生的思维已逐步从直观的形象思维为主向抽象的逻辑思维过渡,而且具备一定的信息收集的能力。

(2)、学生自主探索,思考问题,获取知识,掌握方法,真正成为学习的主体。

(3)、学生在在讨论学习中体验学习的快乐。讨论交流的友好氛围,让学生更有机会体验自己与他人的想法,从而掌握知识,发展技能,获得愉快的心理体验。

4、教学程序:(说教学过程)

(1)复习回顾上节课内容:

定义:能够完全重合的三角形叫做全等三角形,重合的边叫对应边,重合的角叫对应角。

性质:全等三角形对应边和对应角相等

三角形全等的性质让我们知道AB=A’B’ BC=B’C’ AC=A’C’∠A=∠A’ ∠B=∠B’ ∠C=∠C’,满足六个条件中这一部分,能确定△ABC≌△A’B’C’,先让学生画出△ABD,再让学生在画△A’B’C’过程中明白,确定一个条件或两个条件下不能确定两个三角形全等,通过适当时间的引导探究得出得出,当AB=A’B’ BC=B’C’ AC=A’C’时,只能画出一个A’B’C’满足条件,于是得出定理:三个对应边相等的两个三角形全等,简写成SSS。

(3)得出定理,我通过讲解简单的例题,让学生懂得定理SSS定理的运用。

(4)探究2:

得出:定理两边和它们的夹角对应相等的两个三角形全等,简写成SAS

(5)通过解决生活实例,讲解三角形全等的运用

(6)练习:在适当的时间过后给出参考答案,并进行简单的讲解。

(7)小结:通过本节课的学习,你有哪些收获?

(8)我的板书:我会把复习内容和这节课的定理用红色粉笔标明在左边,中间板书探究和例题的内容,右边板书练习的参考答案。

(9)布置作业:P15,第1,3题,预习P10—P12的内容。

全等三角形教案 篇9

一.说教材

全等三角形是八年级上册数学教材第十三章第一节的教学内容。本节课是“全等三角形”的开篇,也是进一步学习其它图形的基础之一。通过本章的学习,可以丰富和加深学生对已学图形的认识,同时为学习其它图形知识打好基础。

本节教材在编排上意在通过全等图案引入新课教学,在新课教学中又由直观演示图形的平移、翻折、旋转过渡,学生容易接受。根据课程标准,确定本节课的目标为:

(一)、教学目标:

1、知道什么是全等形,全等三角形以及全等三角形对应的元素;

2、能用符号正确地表示两个三角形全等;

3、能熟练地找出两个全等三角形的对应顶点、对应边、对应角;

4、知道全等三角形的性质,并能用其解决简单的问题,要求学生会确定全等三角形的对应元素及对全等三角形性质的理解;

5、通过感受全等三角形的对应美,培养学生热爱科学、勇于创新的精神和多方位审视问题的能力与技巧。

(二)、说教学重点、难点

重点:全等三角形的概念、性质

难点:找对应顶点、对应边和对应角

二、说教法

1、引导发现法

在教学过程中,有意创设诱人的知识情景,增加学生的好奇心、求知欲,产生自觉学习的内在动机,不断提高学生的智慧,发挥其潜力,促进学生的智能发展。

2、谈话法

在师生对话、问答的过程中,用谈话的方式引导学生积极思考、探索,从而使学生在师生之间的交流、同学之间的交流中获得知识。

三、说学法

1、通过接触身边环境中的数学信息,激发学生的学习兴趣,产生自觉学习的内在动机,引导学生踏上自主学习之路。

2、看听结合,形成表象。

3、手脑结合,自主探究。

四、教学流程设计

1、情景导入

课前展示背景为悉尼歌剧院的倒影的图片(目的引起学生们的兴趣:全等三角形和歌剧院有什么联系?)

展示我国某地一幅风景图片,通过学生对湖光山色的描绘(描绘的倒影是景致之一),使学生的思维很快处于兴奋状态,这样,引导学生积极思维,让学生们认识到全等图形就在我们身边,以利于培养学生的探索性思维能力,激发学生的求知欲。

2、探求新知

展示国旗和福娃的等图片,提出问题(同时使学生感知,我们的祖国在体育、经济等诸多方面都已跻身与世界强国之列,为自己是一个中国人而感到自豪、骄傲)

3、通过观察图形变换让学生感受完全重合的图形有很多,从而得出全等形的概念。

4、通过演示让学生体会出全等三角形的概念和对应顶点、对应边、对应角的概念以及全等三角形的性质,并以图形变换的形式在练习指出对应顶点、对应边、对应角,由此去理解“对应顶点写在对应的位置上”的含义。

5、通过学生对全等三角形的观察,合作交流,从而得出找全等三角形的对应边、对应角的方法。

6、小结提高

通过今天的学习,同学们有哪些收获?(由学生自我完成知识的体系,纳入已有的知识体系,逐步形成解决问题的技能和思想)

7、拓展与延伸(合作交流完成探究题)

8、板书设计

13.1全等三角形

1、全等三角形的概念

2、△abc≌△def

3、对应顶点、对应边.、对应角

4、全等三角形的性质

5、找对应元素的方法

20xx年10月18日

相关推荐

  • 三角形的面积课件教案5篇 古人云,工欲善其事,必先利其器。作为幼儿园老师的我们的课堂上能更好的发挥教学效果,优秀的教案能帮老师们更好的解决学习上的问题,教案可以让上课自己轻松的同时,学生也更好的消化课堂内容。我们要如何写好一份值得称赞的幼儿园教案呢?以下由小编收集整理的《三角形的面积课件教案5篇》,仅供参考,欢迎大家阅读本文...
    2023-06-21 阅读全文
  • 三角形面积课件教案合集11篇 每位教师都需在授课前准备好自己的教案和课件,因此我们的老师都需要认真地进行编写。通过对教案和课件的优化,教学任务可以更加精细化,那么好的教案课件应该是怎样的呢?在进行整理后,幼儿教师教育网小编向大家推荐了一篇名为“三角形面积课件教案”的文章,供大家参考。欢迎大家来阅读!...
    2023-05-28 阅读全文
  • 三角形内角和教案汇总 “三角形内角和教案”教案课件是老师教学工作的起始环节,也是上好课的先决条件,每位老师应该设计好自己的教案课件。写好教案课件,可以避免重要内容被遗忘,大家是不是担心写不好教案课件?为满足你的需求,栏目小编特别编辑了“三角形内角和教案”,自信能够帮助你找到适合自己的内容!...
    2023-11-10 阅读全文
  • 三角形的面积课件经典 三角形的面积课件 篇1一、说教材:1、说课内容:我说课的内容是人教版数学五年级上册第五单元《三角形的面积》。2、教材的地位及作用:三角形的面积计算是图形的面积(一)探索活动的第二课时,它是在学生掌握了长方形、正方形及平行四边形面积计算方法的基础上进行的。通过对这部分内容的教学,使学生理解...
    2024-12-03 阅读全文
  • 三角形教案汇总14篇 我们常说,机会是留给有准备的人。作为一幼儿园的老师,我们需要让小朋友们学到知识,优秀的教案能帮老师们更好的解决学习上的问题,有了教案,在上课时遇到各种教学问题都能够快速解决。你知道如何去写好一份优秀的幼儿园教案呢?有请阅读小编为你编辑的三角形教案汇总14篇,请收藏并分享给你的朋友们吧!1、知道三角形...
    2023-10-05 阅读全文

古人云,工欲善其事,必先利其器。作为幼儿园老师的我们的课堂上能更好的发挥教学效果,优秀的教案能帮老师们更好的解决学习上的问题,教案可以让上课自己轻松的同时,学生也更好的消化课堂内容。我们要如何写好一份值得称赞的幼儿园教案呢?以下由小编收集整理的《三角形的面积课件教案5篇》,仅供参考,欢迎大家阅读本文...

2023-06-21 阅读全文

每位教师都需在授课前准备好自己的教案和课件,因此我们的老师都需要认真地进行编写。通过对教案和课件的优化,教学任务可以更加精细化,那么好的教案课件应该是怎样的呢?在进行整理后,幼儿教师教育网小编向大家推荐了一篇名为“三角形面积课件教案”的文章,供大家参考。欢迎大家来阅读!...

2023-05-28 阅读全文

“三角形内角和教案”教案课件是老师教学工作的起始环节,也是上好课的先决条件,每位老师应该设计好自己的教案课件。写好教案课件,可以避免重要内容被遗忘,大家是不是担心写不好教案课件?为满足你的需求,栏目小编特别编辑了“三角形内角和教案”,自信能够帮助你找到适合自己的内容!...

2023-11-10 阅读全文

三角形的面积课件 篇1一、说教材:1、说课内容:我说课的内容是人教版数学五年级上册第五单元《三角形的面积》。2、教材的地位及作用:三角形的面积计算是图形的面积(一)探索活动的第二课时,它是在学生掌握了长方形、正方形及平行四边形面积计算方法的基础上进行的。通过对这部分内容的教学,使学生理解...

2024-12-03 阅读全文

我们常说,机会是留给有准备的人。作为一幼儿园的老师,我们需要让小朋友们学到知识,优秀的教案能帮老师们更好的解决学习上的问题,有了教案,在上课时遇到各种教学问题都能够快速解决。你知道如何去写好一份优秀的幼儿园教案呢?有请阅读小编为你编辑的三角形教案汇总14篇,请收藏并分享给你的朋友们吧!1、知道三角形...

2023-10-05 阅读全文
Baidu
map