幼儿教师教育网,为您提供优质的幼儿相关资讯

梯形面积教案

发布时间:2024-02-23 梯形面积教案 梯形教案

梯形面积教案精华15篇。

栏目小编为您推荐一篇题目为“梯形面积教案”的优秀文章值得一读。教案课件是老师上课中很重要的一个课件,就需要老师用心去设计好教案课件了。教案是让学生更好地理解学科知识和发展全面能力的有效手段。我们希望这些技巧能够为您提供一些有用的洞察!

梯形面积教案(篇1)

教学目的:

1、掌握梯形的面积计算公式,能正确地计算梯形的面积。

2、通过操作和对图形的观察、比较,发展学生的空间观念,使学生进一步认识转化的思考方法在研究梯形面积时的运用,进一步培养学生的分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。

教学重点:

正确地进行梯形面积的计算。

教学难点:

梯形面积公式的推导。

教学准备:

投影、小黑板、若干个梯形图片(其中有两个完全一样的。

教学过程:

一、导入新课

1、提问:我们学习过哪几种平面图形的面积计算?计算公式分别是什么?

2、你能说出平行四边形的面积公式是如何推导的吗?三角形的面积公式呢?

3、创设情境:

投影显示:

启发谈话:同学们能依照平行四边形和三角形面积的方法,把梯形也转化成已学过的图形,计算出它的面积吗?(板书课题)

二、新课展开

1、操作探索

⑴拼一拼,让学生拿出自己准备的两个完全一样的梯形动手拼一拼。

提问:你拼成了什么图形,怎样拼的?演示一遍。

⑵看一看,观察拼成的平行四边形。

提问:你发现拼成的平行四边形和梯形之间的关系了吗?

出示小黑板:

拼成的平行四边形的底等于(),平行四边形的高等于(),每个梯形的面积等于拼成的平行四边形面积的()。

⑶想一想:梯形的面积怎样计算?

学生讨论,指名回答,师板书。

梯形的面积=(上底+下底)×高÷2

师:(上底+下底)表示什么?为什么要除以2?

⑷做一做:计算“前面出示的梯形”的面积。

2、扩散思维

师:如果我们手中只有一个梯形,你们能不能自己动脑想出别的计算方法推导它的公式?下面小组讨论。分组汇报:

生1:做对角线,把梯形分割成两个三角形,如下图⑴:

生2:从上底的一个顶点做另一腰的平行线,把梯形分割成一个平行四边形和一个三角形。如上图⑵。

生3:从上底的两个顶点作下底的垂线,把梯形分割成一个长方形和两个三角形,如上图⑶。

师:同学们真聪明,想出了好多种方法,推导出了梯形的面积计算公式,但不管采取何种方法都可以得出梯形的面积是“上底与下底的和乘以高再除以2。”

3、抽象概括

师:如果用s表示梯形的面积,用a、b和h分别表示梯形的上、下底和高,那么梯形的面积你会表示吗?

生:s=(a+b)h÷2

4、反馈练习

完成课本p81做一做(一人板演)

三、应用深化

出示例子:一条新挖的渠道,横截面是梯形,渠口宽2.8米,渠底宽1.4米,渠深1.2米,它的横截面的面积是多少平方米?

解释:举例说明“横截面”的含义。学生尝试计算:

(2.8+1.4)×1.2÷2

=4.2×1.2÷2

=5.04÷2

=2.52(平方米)

答:它的横截面的面积是2.52平方米。

2、反馈练习:完成p82第1题

四、巩固练习:p82第2题

五、全课小结

六、作业:p82第3、4题

教学后记:

实践操作是儿童智力活动的源泉,在教学中我以实践操作为切入点,使抽象的概念具体化,积极推动学生的思维发展。让学生拼一拼、看一看、想一想、做一做,获得感性材料,为概括出新概念、总结新方法打下基础。

在教学是我注重了对学生的创新精神和实践能力的培养,真正体现学生是学习的主人。

梯形面积教案(篇2)

教学目标

1.理解梯形面积公式的推导过程,会应用公式正确计算梯形的面积。

2.培养学生合作学习的能力。

3.继续渗透旋转、平移的数学思想。

教学重点

理解并掌握梯形面积公式的计算方法。

教学难点

理解梯形面积公式的推导过程。

教学过程

一、复习旧知

(一)求出下面图形的面积。

(二)回忆三角形面积公式推导过程(演示课件:拼摆三角形)

二、设疑引入

教师出示一个梯形和一个三角形(已标出底和高)。这个梯形比三角形的面积大还

是小?相差多少呢?要想得到准确地结果该怎么办?

板书课题:梯形面积的计算

三、指导探索

(一)梯形面积公式的推导。

1.小组合作推导公式。

教师谈话:利用手里的学具,仿照求三角形面积的方法推导梯形面积的计算公式。

提纲:

(1)用两个完全一样的梯形可以拼成一个________________形。

(2)这个平行四边形的底等于____________________,高等于___________________.

(3)每个梯形的面积等于拼成的平行四边形面积的____________________.

(4)梯形的面积=____________________________.

2.演示课件:拼摆梯形

3.概括总结、归纳公式。

教师提问:

(1)(上底+下底)高求的是什么?

(2)为什么要除以2?

教师板书:

梯形面积=(上底+下底)高2

(二)教学例1.

例1.一条新挖的渠道,横截面是梯形,渠口宽2.8米,渠底宽1.4米,渠深1.2米。它

的横截面的面积是多少平方米?

1.教师提问:已知什么?求什么?怎样解答?

2.列式解答

(2.8+1.4)1.22

=4.21.22

=2.52(平方米)

答:它的横截面的面积是2.52平方米。

四、巩固练习

(一)计算下面梯形的面积。

(二)动手测量学具(梯形)的相关数据,并计算梯形学具的面积。

(三)下面是一座水电站拦河坝的横截面图,求它的面积。

五、质疑总结。

(一)师生共同回忆这节课所学习的内容。

教师提问:求梯形的面积为什么要除以2?

求梯形面积需知哪些条件?

(二)引导学生质疑,组织学生解题。

六、板书设计

教案点评:

几何知识教学的一个重要任务是培养学生的空间想象力,发展学生的空间观念。本节课在设计中有以下几个特点:1、突出了学生的主体作用,人人动手操作。2、新旧知识联系紧密,运用旧知推导新知,符合学生的认知规律。

梯形面积教案(篇3)

教学目标: 1.使学生经历梯形面积计算方法的探索过程,感受转化的数学思想。

2.使学生理解梯形面积的计算方法,能正确地计算梯形的面积。

3.培养学生的观察、比较、分析以及动手操作的能力,发展学生的空间观念。

教学重点: 理解梯形面积的计算方法,正确计算梯形的面积。

一.复习引入。

1.同学们已经掌握了平行四边形和三角形面积的计算。现在我就想考考同学到底掌握得怎么样?谁能够快速准确地说出这些图形的面积呢?

你能说你的这个方法是怎么得出来的吗?(沿着平行四边形的一条高剪开,再把它从一边移动另一边,这样就拼成了一个长方形。)

你能说你的这个方法是怎么得出来的吗?(将一个一模一样的三角形沿一个顶点旋转180?,再沿边平移上去,这样就拼成了一个平行四边形。)

5.出示转化过程并小结:我们是把平行四边形、三角形分别转化成长方形、平行四边形这些我们已经学过的图形来计算出它们的面积的!

二.新课传授。

(一)面积计算方法的推导过程。

1.今天我还带来了另外一个图形,谁能告诉我这是什么图形?(出示梯形)

2.提出质疑揭示课题:今天我们就一起来研究梯形面积的计算(板书),我们是否可以仿照平行四边形和三角形的方法,把梯形也转化成已学过的图形来计算它的面积呢?请同学们拿出准备好的梯形和剪刀,看看你能不能通过剪一剪、拼一拼把梯形也转化成我们已经学过的图形呢?

请学生说出自己的想法和拼法。(将一个一模一样的梯形沿一个顶点旋转180?,再沿腰平移上去,这样就拼成了一个平行四边形。)

现在我们来看一看拼成的图形与原来的梯形有些什么样的关系?(拼成的平行四边形的底是原来梯形的上底与下底的和,高没有变,面积是梯形的两倍。)

请学生说出自己的想法和拼法。(将梯形上底和下底对折,再沿折线剪开,将上面的一半沿腰上的中点旋转180?,这样就拼成了一个平行四边形。)

现在我们来看一看拼成的图形与原来的梯形有些什么样的关系?(拼成的平行四边形的底是原来梯形的上底与下底的和,高是原来梯形面积的一半,面积没有变。)

请学生说出自己的想法和拼法。(沿梯形一腰中点和对角顶点对折,再折线剪开,将上面的一半沿腰上的中点旋转180?,这样就拼成了一个三角形。)

现在我们来看一看拼成的图形与原来的梯形有些什么样的关系?(拼成的三角形的底是原来梯形的上底与下底的和,高是没有变,面积也没有变。)

4.我们用很多方法计算出了梯形的面积,但是在实际生活中,有许多东西象钢板等等是不能这样剪开来拼拼的,所以我们就需要知道计算梯形的面积规律。请同学以小组的形式讨论一下,你能从你的方法中得出什么计算的规律吗?

5.你是怎么得出这个规律的?

梯形面积教案(篇4)

小学数学说课稿:《梯形面积的计算》说课稿

《梯形面积的计算》说课稿

各位评委老师:大家好!

我说课的内容是苏教版国标本小学数学九册第二单元多边形面积的计算第三课时梯形的面积计算内容。

一、说教材

1、教学地位分析

梯形的面积计算是小学数学图形与几何知识领域的一个重要内容,本节课的教学是在掌握平行四边形的面积的基础上进行教学的。孩子已经熟练地掌握平行四边形的面积计算方法,知道两个完全相同的三角形可以拼成一个平行四边形,将三角形的面积转化为一个等底等高的平行四边形的面积来进行计算。利用孩子已有的知识经验,应用转化的策略,将梯形转化为一个平行四边形,从而推导出它的面积计算公式,计算的它的面积。教学中向学生渗透了迁移类推的数学思想和转化策略,提高他们的动手操作能力、创新能力和思维空间能力。为学生将要理解和掌握新知识奠定基础。

2、教材思路分析

按照复习引新,动手操作、推导公式,巩固与应用,建立知识联系顺序组织内容的;例题的讲解突出通过孩子动手操作、讨论,经历知识形成的过程;练习安排了5个层次。

3、确定教学目标

基于对苏教版以上教材的分析,根据新课标的理念和中年级学生的年龄特点、认知规律,我预设了以下教学目标:

(1)知识与技能方面:通过本节课的学习,使孩子能够理解梯形面积计算公式的推导过程,掌握梯形面积的计算方法;使孩子能够熟练地应用梯形的面积计算公式计算梯形的面积,解决生活中的相关问题;

(2)能力培养方面:在公式的推到活动中,培养学生的推理能力、分析能力和实践能力。

(3)情感态度价值观方面:在学习活动中,让学生体会数学与生活的密切联系,形成合作交往意识;感受数学在自己身边,激发学习兴趣;发展数学素养。

4、重、难点分析

本课的教学重点:

梯形面积算公式的推导过程;

应用梯形的面积计算公式计算梯形的面积,解决生活中的相关问题;

教学难点:

理解在计算梯形面积时,为什么要“除以2”

二、说教法

根据本课教学内容的特点和学生的思维特点,我选择了直观演示法、引导发现法、小组合作等方法进行教学,应用演绎推理。充分发挥老师的主导作用,调动学生的能动性,引导他们去发现问题、分析问题、解决问题、获取知识,从而训练思维、培养能力。

直观演示法:让孩子在教具中直观地表示出拼成的平行四边形与梯形的关系;

小组合作、活动探究法:引导学生动手操作用同样的梯形去拼平行四边形,合作交流,相互启发

运用演绎推理:探讨出拼成的平行四边形与梯形的关系后,运用演绎推理,实行归纳概括……获得结论。

组织变式,有层次练习,增加体验,应用知识解决问题。

对比分析法:通过对比一组高相等、上底与下底和相等的梯形面积,通过演绎推理可以把三角形看成上底为“0”的梯形,平行四边形可以看成上底上底、下底相等的梯形。

三、说学法

教学时,我发挥学生的主体作用,充分调动学生的各种感官参与学习,诱发其内在的学习需要和学习潜力,独立主动地探究知识,使他们不仅学会,而且会学。把学生的求知欲由潜在状态诱发为活动状态,借以培养学生主动探索的精神。在此基础上,通过学生的观察、比较、分析,培养学生的演绎推理能力。

采用小组讨论、同桌交流等方法各抒己见,让每一位学生都有展示自己的机会,以学生为中心,努力为学生营造一个轻松、愉快的课堂学习氛围。

四、说教学过程

为了有效地达成以上教学目标,突破重点与难点,体现新课标倡导自主学习方式,我设计以下几个环节来组织学生开展探究活动。

第一环节:复习,导入新课

从我们学过哪些平面图形?会计算它的面积吗?入手,计算这些图形的面积,复习三角形面积的计算的推导方法,为下面的新课教学做好准备,这是本节课新知的最近发展区。同时出示梯形,计算它的面积,很多孩子不会计算,产生学习新知的需要。

第二个环节:动手操作,探究公式

梯形面积教案(篇5)

教材分析

1.这部分内容的教学是在学习了平行四边形和三角形面积计算的基础上进行的。与前两节一样,教材先通过小轿车车窗玻璃是梯形的这样一个生活实例引入梯形面积计算。然后通过学生动手实验探索出面积计算公式,最后用字母表示出梯形的面积计算公式。

2.本节课的核心内容是使学生运用转化成已学过图形的方法去推导梯形面积计算公式。只有学好本节课,才能真正使学生理解和掌握梯形的面积的计算方法,从而应用于生活实践中。

学情分析

1.本班学生喜欢动手操作、合作交流。

2.学生经过平行四边形和三角形面积公式的推导,已经知道要把梯形转化为学过的图形进行推导。前面平行四边形和三角形转化的方法不同,平行四边形主要是用割补的方法,而三角形主要用拼摆的方法。本课要求用学过的方法去推导,没有指明具体的方法。在学生操作实验前,可以先回忆一下前面运用过的两种方法,在此基础上放手让学生自己去做。

3.梯形面积计算公式推导有多种方法,教材显示了三种方法。第一种方法比较容易推导和理解,第二和第三种方法因为涉及乘除法运算定律、性质和等式变形,学生的推导会有困难。

教学目标

1.知识与技能:

使学生在探索活动中深刻体验和感悟梯形面积计算公式的推导过程。

2.过程与方法:

通过动手操作,观察,比较,发展学生的空间观念,在动手操作的活动中,逐步培养学生归纳、推理和语言表达的能力。

3.情感态度与价值观:

激发学生学习数学的兴趣,学会学习数学的'方法,并通过小组合作,培养学生的团队精神。

教学重点和难点

教学重点:

理解梯形面积计算公式的推导,并能正确运用梯形面积的计算公式进行计算。

教学难点:

运用不同的方法推导出梯形的面积公式。

梯形面积教案(篇6)

一、复习准备。

1、出示平行四边形图。

2、提问:这是什么图形?知道底和高会求面积吗?如果剪去这个平行四边形的一角,剩下的会得到什么图形呢?哪个图形的面积你会直接计算?梯形的面积该怎样计算呢?

3、揭题。

二、新授。

1、出示梯形图。

(1)提问:这是什么图形?说说梯形各部分的名称。提示:求梯形的面积能不能像推导三角形面积计算公式一样,把它转化成已经学过的图形,计算它的面积?

(2)操作实验。

反馈:你拼成了什么图形?指名拼一拼。

指导拼法。

①重合。

②旋转。哪个梯形旋转?一般可以怎样移动一个梯形?旋转到两下底成一条直线为止。

③平移。

思考:通过重合、旋转、平移的方法将两个完全一样的梯形拼成了一个平行四边形,每个梯形的面积与拼成的平行四边形的面积有什么关系?反过来还可以怎么说?

2、出示直角梯形图。

(1)两个完全一样的直角梯形又能拼成一个怎样的图形,动手拼一拼。

(2)提问:拼成了什么图形?平行四边形与梯形有什么关系?

(3)观察:每个直角梯形的面积与拼成的长方形的面积有什么关系?

小结:两个完全一样的梯形经过重合、旋转、平移的方法可以拼成一个平行四边形或长方形,并且每个梯形的面积是拼成的平行四边形或长方形的一半。

3、观察拼成的平行四边形。

思考:(1)比较梯形的上底下底与拼成的平行四边形的底有什么关系?

(2)比较梯形的高与拼成的平行四边形的高有什么关系?

同桌讨论完成填空。

4、填表。

(1)提问:是不是所有的完全一样的两个梯形都能拼成平行四边形呢?拿出梯形用同样的方法拼一拼,并把数据填入表中。

(2)从实验中你有什么发现?说说怎样求梯形的面积?

5、教学字母公式。

提示:可以将梯形转化成平行四边形来推导它的面积计算公式,还可以将它转化成别的图形来推导它的面积计算公式。课后思考。

三、应用。

1、应用公式求梯形面积必须知道什么?知道梯形的上底、下底和高怎样求出梯形的面积?

2、学习例题。

3、完成“练一练”。

4、拓展。

四、总结。

1、这节课学习了什么内容?是将梯形转化成什么图形来学习它的面积计算公式的?

2、通过什么方法转化的?

3、梯形的面积计算公式是什么?应用公式时要注意什么?为什么要除以2?

五、板书。

梯形面积的计算

平行四边形的面积=底×高

梯形的面积=(上底+下底)×高2

S=(a+b)h2

梯形面积教案(篇7)

教学目标

1、理解、掌握梯形面积的计算公式,并能运用公式正确计算梯形的面积。

2、发展学生的空间观念。培养抽象、概括和解决实际问题的能力。

3、掌握转化的思想和方法,进一步明白事物之间是相互联系的,可以相互转化的。

重点难点

重点:掌握梯形面积的计算公式。

难点:理解梯形面积公式的推导过程。

教具学具

多媒体课件。每人准备两个完全一样的梯形。(有等腰、直角、一般梯形)

教学过程

一、导入

1、师:同学们,之前我们学过的平行四边形和三角形的面积是如何计算的?

生:平行四边形的面积=底×高,也就是S=ah。

三角形的'面积=底×高÷2,也就是S=ah÷2。

2、指名让学生说出平行四边形、三角形的面积公式的推导过程。

3、师:根据前面的学习,我们把要研究的图形转化成已学过的平面图形,就能找到所求图形面积的计算方法,今天我们要研究的梯形的面积,可以怎样转化呢?下面我们就来实践操作一下吧。

二、探究

1、师:请同学们拿出准备好的梯形,这些梯形有什么特点?

生:各种梯形,每种两个。

提出要求:(1)选择自己喜欢的梯形把它拼成我们学过的图形。

(2)想一想,拼成怎样的图形,是利用怎样的方法拼成的?

(3)它们的高与梯形的高有怎样的关系?它们的底与梯形的上、下底有怎样的关系?它们的面积与梯形的面积有着怎样的联系?

2、学生先独立思考,后小组交流。

教师巡视指导,引导学生把转化前后的图形各部分之间的关系找准。

3、师:(出示课件)现在画面展示的是两个完全相同的梯形重叠在一起,哪个小组能说一说刚才你们将其拼成了什么图形?是怎样拼的?

各小组推选1人向全班汇报过程与结果。(教师逐一配以课件演示)

三、汇报

四、总结

师:学完这节课,你收获了什么呢?跟大家说说吧!

学生讨论。

老师小结:通过本节课的学习,同学们经历了梯形的转化过程,推导出梯形的面积计算公式,能灵活运用知识解决问题。

梯形面积教案(篇8)

《梯形面积计算》教学设计

教学目标: 1.使学生经历梯形面积计算方法的探索过程,感受转化的数学思想。

2.使学生理解梯形面积的计算方法,能正确地计算梯形的面积。3.培养学生的观察、比较、分析以及动手操作的能力,发展学生的空间观念。

教学重点: 理解梯形面积的计算方法,正确计算梯形的面积。教学难点: 梯形面积计算方法的推导过程。教学准备: 多媒体课件 教学过程

一.复习引入。

1.谈话:我们学过哪些图形的面积计算? 2.指名学生回答

3.在推导平行四边形和三角形面积公式是一般怎样做? 二.新课传授。

(一)面积计算方法的推导过程。

1.今天我还带来了另外一个图形,谁能告诉我这是什么图形?(出示梯形)

你怎么知道它是梯形?(只有一组对边平行)

2.提出质疑揭示课题:今天我们就一起来研究梯形面积的计算(板书),我们是否可以仿照平行四边形和三角形的方法,把梯形也

转化成已学过的图形来计算它的面积呢?请同学们拿出准备好的梯形和剪刀,看看你能不能通过剪一剪、拼一拼把梯形也转化成我们已经学过的图形呢?

3.学生动手操作,分别展示成果。

(1)请学生说出自己的想法和拼法。(将一个一模一样的梯形沿一个顶点旋转180o,再沿腰平移上去,这样就拼成了一个平行四边形。)

现在我们来看一看拼成的图形与原来的梯形有些什么样的关系?(拼成的平行四边形的底是原来梯形的上底与下底的和,高没有变,面积是梯形的两倍。)

(2)请学生说出自己的想法和拼法。(将梯形上底和下底对折,再沿折线剪开,将上面的一半沿腰上的中点旋转180o,这样就拼成了一个平行四边形。)

现在我们来看一看拼成的图形与原来的梯形有些什么样的关系?(拼成的平行四边形的底是原来梯形的上底与下底的和,高是原来梯形面积的一半,面积没有变。)

(3)请学生说出自己的想法和拼法。(沿梯形一腰中点和对角顶点对折,再折线剪开,将上面的一半沿腰上的中点旋转180o,这样就拼成了一个三角形。)

现在我们来看一看拼成的图形与原来的梯形有些什么样的关系?(拼成的三角形的底是原来梯形的上底与下底的和,高是没有变,面积也没有变。)

4.我们用很多方法计算出了梯形的面积,但是在实际生活中,有许多东西象钢板等等是不能这样剪开来拼拼的,所以我们就需要知道计算梯形的面积规律。请同学以小组的形式讨论一下,你能从你的方法中得出什么计算的规律吗?

5.你是怎么得出这个规律的?

6.揭示规律并板书:梯形面积=(上底+下底)×高÷2 你们能不能告诉我如果我要求一个梯形的面积要知道写什么条件呢?(上底、下底、高)

现在我用s表示梯形的面积,分别用a、b、h表示上底、下底和高,你能用这些字母表示梯形面积的计算方法吗?(s=(a+b)h÷2)

7.经过刚才的学习,我们了解了梯形面积计算的一个方法,那么我想请同学们帮我解决这样一个问题(出示例1):一个零件,横截面是梯形。上底是14厘米,下底是26厘米,高是8厘米。它的横截面的面积是多少平方厘米?

三.巩固练习。

1.找出梯形的上底、下底和高并计算面积。(单位:厘米)2.量出自己准备的梯形的上底、下底、高,求出它的面积。从这个梯形上剪下一个最大的三角形,怎么剪?剩下的图形面积是多少?为什么?

四、课堂总结。

1.这节课你学到了什么? 2.你还有什么样的问题吗?

梯形面积教案(篇9)

一、说教材

梯形的面积一课是在学生认识了梯形的特征,掌握了长方形、正方形、平行四边形和三角形面积计算公式的基础上进行教学的,因此教材没有安排数方格的方法求梯形的面积,而是直接给出一个梯形,引导学生思考,怎样仿照求平行四边形、三角形面积的方法,把梯形转化成我们已经学过的图形来计算它的面积,让学生在主动参与探索的过程中,发现并掌握梯形的面积计算方法,让学生在教学的再创造过程中实现对新知识的意义构建,解决新问题,获得新发展。

课标要求学生在学习梯形的面积时,要在已有知识的基础上,经历探索梯形面积计算方法的过程,并能运用面积计算公式解决生活中一些简单问题,并在探索图形面积的计算方法中,获得探索学习的经验。

二、说学情

学生在学习“平行四边形的面积计算”和“三角形的面积计算”后,所掌握的不仅仅是面积计算的公式,在知识学习过程中,学生更获得了数学的转化思想,教师的重要任务在于通过各种方法手段让学生有效的实施正迁移。设计本课时,教师突破了传统教学中只进行“拼合转化”的思想束缚,大胆的让学生合作学习、动手转化、作品展示,结合电教媒体的使用,理清学生的思路,通过学生的自主活动,完成知识的构建。

三、根据以上分析我拟定本节课教学目标及重难点如下:

(一)教学目标

1、在实际情境中,认识计算梯形面积的必要性。

2、让学生通过动手操作、实验观察等方法,自主探索并掌握梯形的面积公式,经历推导梯形面积公式的过程。

3、让学生会用面积公式计算梯形的面积,并能解决一些简单的实际问题。

4、体会数学与生活的联系,培养学生热爱数学的兴趣。

(二)教学重难点

本节课教学重点是在自主探索中,经历推导梯形面积公式的过程,难点是能运用梯形的面积计算公式解决相关的实际问题。

四、说教学流程

(一)复习旧知、导入新课

本节课教学中,我首先出示了课中主题图这一生活情境,让学生感受计算梯形面积的必要性,接着出示平行四边形,三角形面积公式的推导转化过程,让学生通过复习,从而唤起学生的已有经验,为沟通新旧知识的联系,奠定基础。

(二)动手实践、合作探究

“转化”是数学学习和研究的一种重要思想方法,在这一单元的学习中一直发挥着积极的作用。所以本节课继续以图形内在联系为线索,以未知转化为已知的基本方法开展学习。有了平行四边形和三角形面积计算公式的推导基础,梯形面积计算公式的探究,学生自然会想到要把梯形转化为学过的图形进行推导。具体怎样转化,转化成什么图形,全部放手让学生自主探索。学生拿出准备好的梯形分小组进行操作活动,他们借助前面学习平行四边形、三角形面积公式的“转化图形、寻找等量、推导公式”三步曲的学习方法,通过小组合作共同探究出梯形的面积公式,亲身经历了知识的形成过程,弄清知识的来龙去脉,不仅自主学习能力得到了培养,又感受到了成功的喜悦。

运用转化的方法推导梯形的面积计算公式,可以有多种途径和方法,课堂上我并没有把学生的思维限制在一种固定或简单的途径或方法上,而是鼓励学生从不同的角度去思考探索梯形的面积计算公式,并配以白板和课件的直观演示酌情介绍了几种不同的推导方法,拓宽了学生的思路。

(三)运用新知、解决问题

通过不同的练习,巩固拓展已学知识,让学生再次体验梯形面积公式在生活中的运用及重要性,感悟数学与生活的联系,培养了学生灵活运用所学知识解决实际问题的能力。

(四)课堂回顾,归纳总结

学生对所学知识进行系统化、条理化整理的过程,不仅促进学生掌握了知识、领悟了方法,还培养了学生的语言表达能力,归纳概括能力,关注了学生情感的体验。

梯形面积教案(篇10)

《梯形面积》教学设计 旬阳县麻坪镇中心学校

杨汝鹏

教学内容:人教版小学数学五年级上册第95至96页。教学目标:

1、在理解的基础上掌握梯形面积计算公式的推导,并能运用公式正确计算梯形的面积。

2、通过动手操作、观察、比较,发展学生空间观念。培养学生分析、综合、抽象、概括和解决实际问题的能力。

3、掌握“转化”的思想和方法,进一步明白事物之间是相互联系,可以转化的。

教学重点:梯形面积计算公式的推导和运用。教学难点:理解梯形面积公式的推导过程。学具准备:学生每人准备一个梯形纸片 教学过程:

一、导入新课

1、平行四边形、三角形的面积公式是什么?

2、出示梯形,引导学生认识梯形的上底、下底、高,总结出梯形的定义。

3、提问:我们在生活中见过有哪些图形是梯形。

4、教师导语:我们已经学会了计算长方形、正方形、平行四边形、三角形的面积计算方法,大家回忆回忆三角形的面积公式是怎样推导出来的?

5、那么我们能不能也想办法推导出梯形面积的计算公式呢?(板书:梯形的面积)

二、新课展开

第一层次,推导公式

1、操作学具

(1)启发学生思考:你能仿照求三角形面积计算公式的推导办法,把梯形也转化成已学过的图形计算出它的面积吗?

(2)学生预设:

方法一:把两个完全一样的梯形拼成一个平行四边形; 方法二:把一个梯形分成两个三角形;

方法三:把一个梯形分成一个平行四边形和一个三角形。„„

(3)学生拿出两个完全一样的梯形,剪一剪,拼一拼,教师巡回观察指导。

师:刚才同学们用自己的方法将梯形转化成我们学过的图形,利用这些方法都可以推导出梯形的面积计算公式。下面我们先选择其中的一种方法来共同推导梯形的面积。

(4)教师带领学生共同操作:拿两个完全一样的梯形,先重合,再按住梯形右下角的顶点,使一个梯形逆时针旋转180度,使梯形上、下底成一条直线,然后把第一个梯形的左边沿着第二个梯形的右边平行移动,直到成为一个平行四边形为止。

2、观察思考

(1)教师提出问题引导学生观察。(同时播放幻灯片)

① 用两个完全一样的梯形可以拼成一个平行四边形。这个平行四边形的底和高与梯形的底和高有什么关系?

②每个梯形的面积与拼成的平形四边形的面积有什么关系?

(2)反馈交流,推导公式。

①学生回答上述问题。

②师生共同总结梯形面积的计算公式。

板书:梯形的面积=(上底+下底)×高÷2 问:梯形的面积公式中“(上底+下底)×高”求的是什么?

为什么要除以2?

(3)在小组内尝试上面另外几种不同的转化方法,如何推导出梯形的面积公式。(可根据教学实际时间情况灵活处理)

方法一:梯形的面积=上底×高÷2+下底×高÷2

=(上底+下底)×高÷2 方法二:梯形的面积=平行四边形面积+三角形面积

=上底×高+三角形的底×高÷2

=(2个梯形上底+三角形底)×高÷2

=梯形上底×高÷2+(梯形上底×高÷2+三角形底×高÷2)

=梯形上底×高÷2+(梯形上底+三角形底)×高÷2

梯形下底

=(梯形上底+梯形下底)×高÷2

④字母表示公式。教师叙述:如果有S表示梯形的面积,用a、b和h分别表示梯形的上底、下底和高,怎样用字母表示梯形面积的计算公式呢?

学生回答后,教师板书:“S=(a+b)h÷2”。

第二层次,公式应用。

(1)出示课本第96页的例题。同学们知道我国最大的水电站是哪个吗?下面是水电站大坝的横截面图,教师指导学生理解“横截面”。

(2)学生尝试解答。

(3)展示台出示例题的解答,反馈矫正。

(4)完成例题下面的“做一做”。强调计算时不要忘记除以2。

三、巩固练习

用幻灯片出示。(见幻灯片)

四、全课小结。(略)板书设计: 梯形的面积计算

平行四边形的面积=底×高

例3 S=(a+b)h÷2 梯形的面积=(上底+下底)×高÷2

=(36+120)×135÷2

S=(a+b)h÷2

=156×135÷2

=10530(平方米)

梯形面积教案(篇11)

“梯形面积计算”教学设计

吉林油田松江小学 吴孟东

教学内容

义务教育课程标准实验教科书,数学第九册第五单元“多边形的面积”。教学内容分析

由于上述学习过程中学生已经通过操作、实验、探索等积累了探讨平行四边形,三角形面积计算公式的基本方法与策略(即剪、移、转、拼等),并初步领悟了“新旧转化”的数学思想方法。这些都为学生自主探究、探索“梯形面积计算”这一新的学习任务创造了必要的条件,同时也为进一步学习圆面积和立体图形表面积计算打下了良好的基础。教学对象分析

五年级的学生,正处于由中向高年级过渡时期,其认识水平和思维能力亦正处于进一步发展和日趋成熟的时期。通过这一部分内容的学习,可进一步发展学生的空间观念,加强学生对图形特征及各种图形之间内在联系的认识,同时可促使他们的抽象概括等逻辑思维能力的发展和提高。教学目标

1.利用迁移规律和“转化”的数学思想,引导学生通过小组合作探索推导出梯形面积计算公式,并能正确运用公式解决生活中的数学问题;

2.通过小组合作学习,培养学生团结协作、勇于创新的精神; 3.培养学生动手操作能力和观察能力,以及利用已有知识和经验解决新问题的能力;

4.渗透“变”与“不变“的辩证唯物主义观点教育。教学重点:对梯形面积公式的理解。教学难点:梯形面积计算公式的推导过程。

教具、学具准备:多媒体课件、梯形若干、直尺、剪刀。教学过程

一、复习旧知

师:大家一起读一下屏幕上的两个公式(平行四边形面积公式和三角形面积公式),这两个公式是怎么推导出来的呢?谁能选择其中一个讲给大家听一听?下面老师再和大家一起回顾一下这两种图形面积公式的推导过程。

(设计意图:为学生学习新的知识做下铺垫,一方面回忆有关知识,为探索梯形面积的计算方法做了准备;另一方面突出“转化“思想的重要性,并提示学生在研究梯形时可以怎样考虑。降低一些学生的学习难度,使学生明确学习目标。)

二、情境创设

师:大家都喜欢看喜洋洋与灰太狼这部动画片吧?现在,喜洋洋的好朋友们被灰太狼关进了密室里,要想进入这个密室救出伙伴们可不是一件容易的事。这密室的门上有一道题,只有算对了的人,才能进去。瞧!(出示一个梯形,标出底和高,说出各部分名称)这是一

道求梯形面积的题,这回可把喜洋洋难住了,责怪自己上课的时候不认真听讲。同学们,你们愿意帮助喜洋洋救出他的伙伴吗?(生:愿意!)三:探究新知

1.操作:请大家利用手中的梯形,通过剪、拼等方法,把梯形转化成我们学过的图形,并找到图形之间的联系,推导出梯形面积计算公式。请马上动手试一试。

2.学生展示:(要求学生说清楚用的是哪种梯形剪拼的,拼出了我们学过的哪些图形)。

(1)两个完全一样的一般梯形拼成一个平行四边形:(2)两个完全一样的等腰梯形拼成一个平行四边形;

(3)将一个梯形从中点处裁开,将裁开的两部分拼成一个平行四边形;

(4)在一个梯形的中点处,画一条平行于上、下底的线段,延长上、下底,通过中线画一个平行四边形;如图:

师:观察剪拼成的平行四边形,你发现剪拼成的平行四边形和梯形之间有什么关系?

填空:拼成的平行四边形的底等于(),平行四边形的高等于()。师:还有哪些剪拼的方法吗?

(5)两个完全一样的直角梯形拼成一个长方形;

填空:拼成的长方形的底等于(),平行四边形的高等于()。(6)将梯形的下底延长,在上底的一顶点向下底引一条线段,使之

成为一个三角形,如图:填空:拼成的三角形的底等于(),三角形的高等于()。

师:那你认为梯形的面积该怎样计算呢?学生归纳公式:(上底+下底)表示什么?(上底+下底)×高表示什么?为什么要除以2? 3.总结:不管采取何种拼剪方法,得出的梯形面积是“上底加下底乘以高再除以2”。(再次验证了知识之间是相互联系的。)4.师:我们现在能帮助喜洋洋救出他的好伙伴了吧!(求密室门上梯形的面积)。

5.追问:想一想,计算梯形面积必须要知道哪些条件? 四:梯度训练 1.判断:

(1)两个完全一样的梯形可以拼成一个平行四边形。()(2)平行四边形的面积是梯形面积的2倍。()

2.一条新挖的渠道,横截面是梯形,渠口宽2.8米,渠底宽1.4米,渠深1.2米.它的横截面的面积是多少平方米?

3.用篱笆围成一块梯形菜地,一侧靠墙。篱笆长30米,这块菜地的面积是多少?

(设计意图:将自己推导的公式运用到生活中,让学生学会应用知识解决生活中的数学问题。进一步理解公式,并学会熟练运用公式。)五:课堂小结:今天你有哪些收获? 六:板书设计:

梯形面积的计算

梯形面积=(上底+下底)×高÷2

S=(a+b)h÷2

梯形面积教案(篇12)

【教材分析】

1、教学内容:五年制小学数学第七册《梯形面积的计算》。

2、教材简析:梯形面积的计算是在学习了平行四边形、三角形面积的基础上教学的。学生学好这部分内容,既发展了空间观念,又培养了运用旧知识解决新问题的能力,更为今后学习几何知识奠定了基础。

【教学目标】

知识教学:掌握梯形面积公式,理解推导过程。

能力训练:通过操作、观察、比较,发展学生的空间观念,培养学生的创新意识和实践能力。

素质培养:渗透旋转和平移的思想,让学生在拼剪中感受数学知识的内在美,培养团队合作意识。

【教学重点难点】

教学重点:理解梯形面积公式,掌握计算方法。

教学难点:通过图形的转化推导面积公式。

【教学准备】

教具准备:电教多媒体、实物投影。

学具准备:各种梯形卡片若干、小刀、胶水。

【教学教法】

这节课主要本着“以学生发展为本,以活动为主线,以创新为主导”的思想。主要教法有引导法、直观演示法和讨论法等。在教学策略上,把梯形面积公式的推导化为学生“拼、剪、画、说“的活动,通过小组活动、操作实践等手段借助多媒体的演示,帮助学生理解知识点,使抽象的知识变得直观形象,给学生一个创新的空间。变“讲堂”为“学堂”,从而从根本上打破传统的教学方法,建构一种新型的现代教育模式。

【教学学法】

在教学中注重指导学生的自主学习,把学习的钥匙交给学生,在传授知识的同时,授以科学的思维方法,这节课学生主要采用以下两种学法进行探究学习:

1、小组合作学习的方法,运用这种方法,便于培养学生的参与合作精神。例如,让学生寻求梯形面积的计算方法,看谁想出的办法多,学生在组内合作交流,互相可以得到启发,共同理清思路。

2、迁移尝试法:在教学过程中引导学生模仿平行四边形、三角形的面积公式的推导,运用转化的方法推出梯形面积计算公式。学生在模仿、迁移、推导的过程中,学会学习、学会思考,真正成为学习的主人。

【教学程序】

本节课属于几何知识中公式推导教学。根据内容特点和学生学习数学的心理特点,教学程序可分为五大环节:

第一环节:创设情境导入。

联系学生熟悉的例子,创设一个能激起学生认知冲突的问题情境,让学生计算一个上底3厘米、下底5厘米,高4厘米的梯形彩纸的面积。这时大多数学生会束手无策,就在学生产生认知冲突时导入课题:同学们,这就是我们今天要研究的内容“梯形面积的计算”。精心设计好这个开端,很自然地把学生带入新知的学习环节。这样既激发了学生探索新知的欲望,又使学生明确了探索目标与方向。

第二环节:搭建脚手架,激活思维。

这一环节主要是针对学生求梯形面积时遇到的困难而设计的。这样一来就为学生解决新问题做了认知上的铺垫。这一环节共分两步进行:第一步操作铺垫;第二步再现旧知。

第三环节:自主探索,合作交流。

建构主义学说认为:学习是学习者主体主动建构的过程。在这一环节的学习中,要充分相信学生,并为之提供主动建构的过程,从而使“有意义学习”的实现成为可能。这一环节也分两步进行:第一步,让学生拿出课前准备好的各种梯形,鼓励学生操作,寻找梯形面积的计算方法,让学生拼拼剪剪中实现转换,比一比哪一组同学想出的办法多。第二步,交流验证是学生在小组间相互交流,展示不同的思考方法。除了这些方法外,可能还有其它的方法,那么学生汇报时要充分肯定他们的推理与计算。学生在交流与展示中相互得到启发,这样学生就经历了一个学习再创造的过程,使学生创新思维得到更好的发展,也就可以收到“保底不封顶”的效果。

第四环节:点拨归纳、解决问题。

学生经过自主探索合作交流,有的悟出了梯形面积公式,但不一定讲得清道理,有的学生在公式的理解上存在障碍,基本处于“悱”、“愤”状态。这时应抓住时机,引导学生梳理思路找出最简便的解题方法,接着就重点演示两个完全一样的梯形拼成一个平行四边形,让学生观察原梯形和所拼图形之间有什么关系?师生共同推导出梯形面积的计算公式,并用字母表示出来,这时候计算公式的得出,也就水到渠成了。接着让学生看书质疑,理解公式。最后进行课堂小结:同学们,通过这节课的学习,你有什么收获?你还想出什么问题,这样学生头脑中形成一个完整的知识体系。

第五环节:综合练习、拓展延伸。

练习是理解知识、掌握知识、形成技能的基本途径,为使不同层次的学生都得到不同程度的发展,我设计了以下几个层次的练习:

1、自命题练习:学生自己出题自己解答,并进行自评互评。这样摆脱了由老师出题,学生依次解答,一贯做法。老师只在关键的地方加以点拨、引导。这样设计,学生不但感兴趣,而且这个出题与解题的过程,更加深了学生对知识的理解与巩固。

2、巩固练习:先让学生以抢答形式练习,直接用公式求面积,再让学生以小组为单位,完成一道实践与计算相结合的综合性题目。

3、对学有余力的学生设计一道思考题,供他们解答。这些练习紧扣教学重点,既有层次,又有梯度,提高了解决问题的能力,增强了学生学好知识的自信心。

梯形面积教案(篇13)

教学内容:教科书第80~81页的内容,完成第81页上”做一做“和练习十九的第1~4题。

教学目的:

1、使学生在理解的基础上掌握梯形面积的计算公式,能够正确地计算梯形的面积。

2、使学生通过操作和对图形的观察、比较,发展学生的空间观念,使学生进一步认识转化的思考方法在研究梯形面积时的运用,进一步培养学生的分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。

教具准备:

1、小黑板上画下面复习题中的两个三角形图和教科书第80页上面的插图。

2、用厚纸做两个完全一样的梯形,其中一个梯形涂成红色。

3、学生将教科书第147页上面的两个梯形剪下来。

教学过程:

一、复习。

出示三角形图。

问:三角形的面积怎样求?

这个三角形的面积是多少?

三角形的面积计算公式我们是怎样推导出来的?

怎样用两个完全一样的三角形拼出一个平行四边形?(让一个学生到黑板前拼一拼。教师再边说边演示用两个完全一样的三角形拼成一个平行四边形的过程)

师:前面我们学习了平行四边形面积和三角形面积的计算,下面我们继续学习梯形面积的计算。(板书:梯形面积的计算)

二、新课。

1.教学梯形面积的计算公式。

出示教科书第80页上面的梯形图。

问:这个图形是什么形?(梯形)

师:今天我们要学习梯形面积的计算。刚才我们回忆了三角形面积计算公式的推导过程。

问:谁能依照三角形面积公式的推导过程,把梯形也转化成已学过的图形?(让学生拿出准备好的两个完全一样的梯形,每人都拼一拼,摆一摆。然后让一个学生到黑板前摆一摆。)

教师拿出两个完全一样的梯形(一个涂成红色),边说边演示:先把两个梯形重叠,把红色的梯形放在上面,以梯形右下角的顶点为中心,把红色的梯形旋转180度,再把红色的梯形的左边沿着白色的梯形的右边向上移动,使红色梯形的上底和白色梯形的下底同在三条直线上。然后,再带学生一起拼摆。

问:两个完全一样的梯形,经过旋转、平移,两个梯形组成了一个新的图形,是什么形?(平行四边形)

两个完全一样的梯形拼成了一个平行四边形,这个平行四边形的面积和其中一个梯形的面积有什么关系?(梯形的面积是平行四边形面积的一半)

平行四边形的底等于什么?(等于梯形的上底、下底之和)

平行四边形的高和梯形的高有什么关系?(相等)

平行四边形的面积怎样算?(它的底等于3+5=8,高是4,所以平行四边形的面积是32平方厘米)

一个梯形的面积怎样算?(提示学生回答,

教师板书:(3+5)×4÷2

=8×4÷2

=32÷2

=16(平方厘米)

师:下面我们一起来梯形的面积计算公式。刚才我们已经看到梯形的面积是平行四边形面积的一半,平行四边形的面积是怎样算的?(底×高)

问:在这里平行四边形的底是什么?(是梯形的上底和下底之和)

平行四边形的高是什么?(就是梯形的高)

板书:

平行四边形的面积=(上底+下底)×高

梯形的面积=(上底+下底)×高÷2

如果用S表示梯形的面积,用a、b、h分别表示梯形的上底、下底和高,那么梯形的面积计算公式就是:

S=(a+b)×h÷2

问:为什么梯形面积的计算公式中要除以2?(提问学生重申说明:我们学习梯形面积的计算方法,是把梯形转化成了一个平行四边形。而由两个梯形组成的平行四边形的底正是梯形的上底加下底之和,平行四边形的高和梯形的高相等,所以平行四边形的面积就等于上底加下底再乘以高,梯形的面积就等于上底加下底的和乘以高再除以2。)

2.应用出的梯形面积公式计算梯形面积。

(1)出示第81页例题。

指名读题,教师出示水渠的教具,再指出它的横截面,让学生看清它的横截面是一个梯形。再让学生看书。

问:这个梯形的上底是多少?下底呢?

这个梯形的高是多少?

梯形的面积计算公式是什么?怎样列式计算?(学生口述,教师板书)

(2)完成教科书第81页”做一做“中的题目。学生独立计算(说明:四边形中互相平行的一组对边,就分别是梯形的上底和下底。

三、巩固练习。

练习十九第1、2题。

四、作业。

练习十九第3、4题。

课后:

梯形面积教案(篇14)

教学目标:

1、在理解的基础上掌握梯形面积计算公式的推导,并能运用公式正确计算梯形的面积。

2、通过动手操作、观察、比较,发展学生空间观念。培养学生分析、综合、抽象、概括和解决实际问题的能力。

3、掌握“转化”的思想和方法,进一步明白事物之间是相互联系,可以转化的。

教学重点:

梯形面积计算公式的推导和运用。

教学难点:

理解梯形面积公式的推导过程。

教学过程:

一、导入新课

1、平行四边形、三角形的面积公式是什么?它们的面积公式是怎样推导得到的?学生回答后,指名学生操作演示转化的方法。

2、出示梯形,让学生说出它的上底、下底各是多少厘米,并画出它的高。

3、教师导语:我们已经学会了计算长方形、正方形、平行四边形、三角形的面积计算方法,生活中还有很多物体面的形状是梯形,(出示一辆汽车侧面图)如汽车玻璃就是梯形的,那梯形的面积又该如何计算呢?我们已学会了用转化的方法推导三角形面积的计算公式,那怎样计算梯形的面积呢?这节课我们就来解决这个问题。(板书课题,梯形面积的计算)

二、新课展开

第一层次,推导公式

(1)猜想:

让学生先猜测一下梯形的面积可能和哪些量相关。

(2)操作学具

①启发学生思考:你能仿照求三角形面积计算公式的推导办法,把梯形也转化成已学过的图形计算出它的面积吗?

②学生拿出两个完全一样的梯形,拼一拼,教师巡回观察指导。

③指名学生操作演示。

学生预设:

方法一:把两个完全一样的梯形拼成一个平行四边形;

方法二:把一个梯形分成两个三角形;

方法三:把一个梯形分成一个平行四边形和一个三角形。

……

师:刚才同学们用自己的方法将梯形转化成我们学过的图形,利用这些方法都可以推导出梯形的面积计算公式。下面我们先选择其中的一种方法来共同推导梯形的面积。

④教师带领学生共同操作:拿两个完全一样的梯形,先重合,再按住梯形右下角的顶点,使一个梯形逆时针旋转180度,使梯形上、下底成一条走线,然后把第一个梯形的左边沿着第二个梯形的右边平行移动,直到成为一个平行四边形为止。

(2)观察思考

①教师提出问题引导学生观察。

a.用两个完全一样的梯形可以拼成一个平行四边形。这个平行四边形的底和高与梯形的底和高有什么关系?

b.每个梯形的面积与拼成的平形四边形的面积有什么关系?

(3)反馈交流,推导公式。

①学生回答上述问题。

②师生共同总结梯形面积的计算公式。

板书:梯形的面积=(上底+下底)×高÷2

问:梯形的面积公式中“(上底+下底)×高”求的是什么?

为什么要除以2?

③在小组内尝试上面另外几种不同的转化方法,如何推导出梯形的面积公式。

方法一:梯形的面积=上底×高÷2+下底×高÷2

=(上底+下底)×高÷2

方法二:梯形的面积=平行四边形面积+三角形面积

=上底×高+三角形的底×高÷2

=(2个梯形上底+三角形底)×高÷2

=(梯形上底+梯形下底)×高÷2

④字母表示公式。教师叙述:如果有S表示梯形的面积,用a、b和h分别表示梯形的上底、下底和高,怎样用字母表示梯形面积的计算公式呢?

学生回答后,教师板书:“S=(a+b)h÷2”。

第二层次,公式应用。

(1)出示课本第89页的例题。同学们知道我国最大的水电站是哪个吗?下面是水电站大坝的横截面图,教师指导学生理解“横截面”。

(2)学生尝试解答。

(3)展示台出示例题的解答,反馈矫正。

(4)完成例题下面的“做一做”。强调计算时不要忘记除以2。

三、巩固练习

(1)完成练习十七第1、2和3题。

(2)讨论完成练习十七第4和6题。

四、全课小结。(略)

板书设计:

梯形的面积计算

平行四边形的面积=底×高例3S=(a+b)h÷2

梯形的面积=(上底+下底)×高÷2=(36+120)×135÷2

S=(a+b)h÷2=156×135÷2

=10530(平方米)

梯形面积教案(篇15)

一、学情分析

学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。学生在知识、能力、情感、态度等方面存在着一定的差异,他们原有知识能力结构的不同导致他们对数学问题的理解也不同,从而出现解决问题的策略的个性化和多样化。

因此本节课在探索梯形面积的计算公式时,老师为学生提供一个充足的自主学习空间,启发学生利用自己已有知识和经验,自主进行探究活动,进而感受学数学的价值,并获得成功的体验,产生积极学习的动力。

二、教材分析

"梯形的面积计算"是在学生学习了长方形、平行四边形及三角形的面积计算后安排的教学内容。由于在上述学习过程中,学生已通过操作、实验、探索等积累了探讨平面图形面积计算公式的基本方法与策略(即剪、移、转、拼等),并初步领悟了"新旧转化"的数学思想方法,这些都为学生自主研究、探索"梯形的面积计算"这一新的学习任务创造了必要的条件,为他们实现个体意义上的数学"再创造"打下了良好的基础。

三、教学目标设计

1.使学生理解并掌握梯形的面积计算公式,能正确地应用公式进行计算。

2.通过动手操作使学生经历公式的推导过程,培养学生的'迁移类推能力和抽象 概括能力,将转化策略的教学融入到学生 的“拼 、剪、画、说”活动中,使学生领悟转 化思想,感受事物之间是密切联系的,使 学生能应用所学知识解决实际问题,发展学生的空间观念。

3.引导学生运用转化的思想探索知识的变化规律,培养学生分析 问题和解决问题的能力,通过演示和操作,让学生在拼 剪中感受数学知识的内在美,培养团队合作意识。

四、教学重点难点

教学重点:

1.理解并掌握梯形的面积计算公式。

2.运用梯形的面积计算公式解决问题。

教学难点:

梯形面积公式的推导过程。

五、教学过程设计

(一)导课

1、我们都学过哪些图形的面积?

2 有两个小朋友因求图形的面积需要我们的帮忙。

3、梯形的面积公式是什么呢?(板书课题)

(二)新知

1、你还记得平行四边形、三角形面积公式吗?它们是怎么推导出来的?

2、你能用我们学过的转化思想推导梯形的面积计算公式吗?

3、学生动手操作

4、学生展示自己的方法。

5、分析转化后的图形与梯形的关系,推导出梯形的面积公式。

梯形的面积=(上底+下底)×高÷2

6、用字母表示。

S = (a+b) h÷2

(三)应用知识

1、口答练习运用公式。

2、运用公式解决实际问题。(学生自己解答例3)

3、提升练习

(四)课堂总结

1、通过这节课,你有什么收获?

2、课后研究:梯形面积和三角形面积之间的关系?

Yjs21.coM更多幼儿园教案延伸读

梯形的面积教案精选9篇


教案课件是我们老师工作的一部分,每个老师对于写教案课件都不陌生。老师要按照教案课件来实施上课。编辑为您准备了一些有关此话题的内容,希望本文能够帮助到大家!

梯形的面积教案 篇1

尊敬的各位领导、各位评委:

大家好!今天我说课的内容是《梯形面积的计算》。我将从以下几个方面进行说课:1、说教材2、说教学策略及教法3、说学法4、说教学程序5、说板书设计。

一、说教材

1、教学内容:人教版六年制小学数学第九册88页的内容《梯形面积的计算》。

2、教材简析:梯形面积的计算是在学习了平行四边形、三角形面积的基础上教学的。学生学好这部分内容,既发展了空间观念,又培养了运用旧知识解决新问题的能力,更为今后学习几何知识奠定了基础。

3、教学目标:

(1)知识教学:掌握梯形面积公式,理解推导过程。

(2)能力训练:通过操作、观察、比较,发展学生的空间观念,培养学生的创新意识和实践能力。

(3)素质培养:渗透旋转和平移的思想,让学生在拼剪中感受数学知识的内在美,培养团队合作意识。

4、教学重点:理解梯形面积公式,掌握计算方法。

5、教学难点:通过图形的转化推导面积公式。

6、教学关键:借助图形之间的转化,沟通知识间的联系,合理使用多媒体,促进学生独立推导出面积公式。

7、教具准备:电教多媒体、实物投影。

学具准备:各种梯形卡片若干、小刀、胶水。

二、说教学策略及教法

这节课主要本着“以学生发展为本,以活动为主线,以创新为主导”的思想。主要教法有引导法、直观演示法和讨论法等。在教学策略上,把梯形面积公式的推导化为学生“拼、剪、画、说“的活动,通过小组活动、操作实践等手段借助多媒体的演示,帮助学生理解知识点,使抽象的知识变得直观形象,给学生一个创新的空间。变“讲堂”为“学堂”,从而从根本上打破传统的教学方法,建构一种新型的现代教育模式。

三、说学法

在教学中注重指导学生的自主学习,把学习的钥匙交给学生,在传授知识的同时,授以科学的思维方法,这节课学生主要采用以下两种学法进行探究学习:1、小组合作学习的方法,运用这种方法,便于培养学生的参与合作精神。例如,让学生寻求梯形面积的计算方法,看谁想出的办法多,学生在组内合作交流,互相可以得到启发,共同理清思路。2、迁移尝试法:在教学过程中引导学生模仿平行四边形、三角形的面积公式的推导,运用转化的方法推出梯形面积计算公式。学生在模仿、迁移、推导的过程中,学会学习、学会思考,真正成为学习的主人。

四、说教学程序

本节课属于几何知识中公式推导教学。根据内容特点和学生学习数学的心理特点,教学程序可分为五大环节:

第一环节:创设情境导入,联系学生熟悉的例子,创设一个能激起学生认知冲突的问题情境,让学生计算一个上底3厘米、下底5厘米,高4厘米的梯形彩纸的面积。这时大多数学生会束手无策,就在学生产生认知冲突时导入课题:“同学们,这就是我们今天要研究的内容《梯形面积的计算》”。精心设计好这个开端,很自然地把学生带入新知的学习环节。这样既激发了学生探索新知的欲望,又使学生明确了探索目标与方向。

第二环节:搭建脚手架,激活思维。这一环节主要是针对学生求梯形面积时遇到的困难而设计的。这样一来就为学生解决新问题做了认知上的铺垫。这一环节共分两步进行:第一步操作铺垫;第二步再现旧知。操作铺垫是先让学生将两个完全一样的梯形任意摆成各种各样的图形,然后再要求学生摆成一个学过的图形:如长方形、平行四边形等。“好动”是孩子的天性,图形的拼摆操作能激起学生的学习兴趣。通过对两个完全一样的梯形能拼成一个平行四边形的操作验证,丰富了学生的感性认识,积累了丰富的表象,使学生独立思考,自由探索有了基础;第二步再现旧知,先让学生说一说平行四边形、三角形面积公式是什么?面积公式的推导过程又是怎样?再用多媒体演示,揭示图形的转化方法,为梯形面积公式的推导提供内在的类比推理。接着问学生:回顾了平行四边形和三角形面积公式的推导过程,你受到了什么启发?这时安排学生进行小组讨论、交流,让学生从中感悟到用转化的方法可以解决新问题,从而对学生的学法做了有力地指导,使学生更好地自己把握自己学习的活动。

第三环节:自主探索,合作交流。建构主义学说认为:学习是学习者主体主动建构的过程。在这一环节的学习中,要充分相信学生,并为之提供主动建构的过程,从而使“有意义学习”的实现成为可能。这一环节也分两步进行:第一步,让学生拿出课前准备好的各种梯形,鼓励学生操作,寻找梯形面积的计算方法,让学生拼拼剪剪中实现转换,比一比哪一组同学想出的办法多。由于刚才提出的问题比较大,答案不唯一,这样整个课堂就完全放开了,让学生自己去找。这时学生就开始动手操作了,剪得剪,拼得拼,教师在这个时候,会积极参与小组的讨论之中,并引导组织好学生的学习活动,使学生变被动学习为主动学习,真正把课堂还给学生,使学生成为课堂的主人,学习的主体;第二步,交流验证是学生在小组间相互交流,展示不同的思考方法。除了这些方法外,可能还有其它的方法,那么学生汇报时要充分肯定他们的推理与计算。学生在交流与展示中相互得到启发,这样学生就经历了一个学习再创造的过程,使学生创新思维得到更好的发展,也就可以收到“保底不封顶”的效果。

第四环节:点拨归纳、解决问题。学生经过自主探索合作交流,有的悟出了梯形面积公式,但不一定讲得清道理,有的学生在公式的理解上存在障碍,基本处于似懂非懂状态。这时应抓住时机,引导学生梳理思路找出最简便的解题方法,接着就重点演示两个完全一样的梯形拼成一个平行四边形,让学生观察原梯形和所拼图形之间有什么关系?师生共同推导出梯形面积的计算公式,并用字母表示出来,这时候计算公式的得出,也就水到渠成了。接着让学生看书质疑,理解公式。最后进行课堂小结:同学们,通过这节课的学习,你有什么收获?你还想出什么问题,这样学生头脑中形成一个完整的知识体系。

第五环节:综合练习、拓展延伸。练习是理解知识、掌握知识、形成技能的基本途径,为使不同层次的学生都得到不同程度的发展,我设计了以下几个层次的练习:

1、自命题练习:学生自己出题自己解答,并进行自评互评。这样摆脱了由老师出题,学生依次解答的一贯做法。老师只在关键的地方加以点拨、引导。这样设计,学生不但感兴趣,而且这个出题与解题的过程,更加深了学生对知识的理解与巩固。

2、巩固练习:先让学生以抢答形式练习,直接用公式求面积,再让学生以小组为单位,完成一道实践与计算相结合的综合性题目。

3、对学有余力的学生设计一道思考题,供他们解答。这些练习紧扣教学重点,既有层次,又有梯度,提高了解决问题的能力,增强了学生学好知识的自信心。

五、说板书设计

梯形的面积

梯形的面积=(上底+下底)×高÷2

S梯形=(a+b)×h÷2

这样的设计既体现了教学内容的系统性和完整性,又做到了重点突出。

我的说课完毕,谢谢大家!

梯形的面积教案 篇2

一、说教材

1、教学地位分析

梯形的面积计算是小学数学图形与几何知识领域的一个重要内容,本节课的教学是在掌握平行四边形的面积的基础上进行教学的。孩子已经熟练地掌握平行四边形的面积计算方法,知道两个完全相同的三角形可以拼成一个平行四边形,将三角形的面积转化为一个等底等高的平行四边形的面积来进行计算。利用孩子已有的知识经验,应用转化的策略,将梯形转化为一个平行四边形,从而推导出它的面积计算公式,计算的它的面积。教学中向学生渗透了迁移类推的数学思想和转化策略,提高他们的动手操作能力、创新能力和思维空间能力。为学生将要理解和掌握新知识奠定基础。

2、教材思路分析

按照复习引新,动手操作、推导公式,巩固与应用,建立知识联系顺序组织内容的;例题的讲解突出通过孩子动手操作、讨论,经历知识形成的过程;练习安排了5个层次。

3、确定教学目标

基于对苏教版以上教材的分析,根据新课标的理念和中年级学生的年龄特点、认知规律,我预设了以下教学目标:

(1)知识与技能方面:通过本节课的学习,使孩子能够理解梯形面积计算公式的推导过程,掌握梯形面积的计算方法;使孩子能够熟练地应用梯形的面积计算公式计算梯形的面积,解决生活中的相关问题;

(2)能力培养方面:在公式的推到活动中,培养学生的推理能力、分析能力和实践能力。

(3)情感态度价值观方面:在学习活动中,让学生体会数学与生活的密切联系,形成合作交往意识;感受数学在自己身边,激发学习兴趣;发展数学素养。

4、重、难点分析

本课的教学重点:

梯形面积算公式的推导过程;

应用梯形的面积计算公式计算梯形的面积,解决生活中的相关问题;

教学难点:

理解在计算梯形面积时,为什么要“除以2”

二、说教法

根据本课教学内容的特点和学生的思维特点,我选择了直观演示法、引导发现法、小组合作等方法进行教学,应用演绎推理。充分发挥老师的主导作用,调动学生的能动性,引导他们去发现问题、分析问题、解决问题、获取知识,从而训练思维、培养能力。

直观演示法:让孩子在教具中直观地表示出拼成的平行四边形与梯形的关系;

小组合作、活动探究法:引导学生动手操作用同样的梯形去拼平行四边形,合作交流,相互启发

运用演绎推理:探讨出拼成的平行四边形与梯形的关系后,运用演绎推理,实行归纳概括……获得结论。

组织变式,有层次练习,增加体验,应用知识解决问题。

对比分析法:通过对比一组高相等、上底与下底和相等的梯形面积,通过演绎推理可以把三角形看成上底为“0”的梯形,平行四边形可以看成上底上底、下底相等的梯形。

三、说学法

教学时,我发挥学生的主体作用,充分调动学生的各种感官参与学习,诱发其内在的学习需要和学习潜力,独立主动地探究知识,使他们不仅学会,而且会学。把学生的求知欲由潜在状态诱发为活动状态,借以培养学生主动探索的精神。在此基础上,通过学生的观察、比较、分析,培养学生的演绎推理能力。

采用小组讨论、同桌交流等方法各抒己见,让每一位学生都有展示自己的机会,以学生为中心,努力为学生营造一个轻松、愉快的课堂学习氛围。

四、说教学过程

为了有效地达成以上教学目标,突破重点与难点,体现新课标倡导自主学习方式,我设计以下几个环节来组织学生开展探究活动。

第一环节:复习,导入新课

从我们学过哪些平面图形?会计算它的面积吗?入手,计算这些图形的面积,复习三角形面积的计算的推导方法,为下面的新课教学做好准备,这是本节课新知的最近发展区。同时出示梯形,计算它的面积,很多孩子不会计算,产生学习新知的需要。

第二个环节:动手操作,探究公式

首先再现旧知,先让学生说一说三角形面积公式的推导过程是怎样?为梯形面积公式的推导提供内在的类比推理。接着问学生:三角形面积公式的推导过程,你受到了什么启发?这时安排学生进行小组讨论、交流,让学生从中感悟到用转化的方法可以解决新问题,从而对学生的学法做了有力地指导,使学生更好地自己把握自己学习的活动。

为贯彻“学习是学习者主体主动建构的过程”这一理念,在这一环节的学习中,要充分相信学生,并为之提供主动建构的过程,从而使“有意义学习”的实现成为可能。自主探究公式这一环节也分两步进行:第一步,让学生拿出课前准备好的各种梯形,鼓励学生操作,寻找梯形面积的计算方法,让学生拼拼剪剪中实现转换。这样整个课堂就完全放开了,让学生自己去找;第二步(结合课件4以及教具梯形,在梯形上画一画,课件出示,数形结合表示两者之间的关系,适时板书)观察表格,你能发现梯形和拼成的平行四边形之间的联系吗?交流验证是学生在小组间相互交流,展示不同的思考方法。学生汇报时要充分肯定他们的推理与计算。学生在交流与展示中相互得到启发,这样学生就经历了一个学习再创造的过程,使学生创新思维得到更好的发展。在这的同时借助多媒体的演示课件,和教师准备的模具动手操作,帮助学生理解图形的转化,数形结合,使抽象的知识变得直观形象,给学生一个创新的空间。

学生经过自主探索合作交流,有的悟出了梯形面积公式,但不一定讲得清道理,有的学生在公式的理解上存在障碍,这时就要我们教师点拨。这时应抓住时机,引导学生梳理思路找出最简便的解题方法,结合板书与平行四边形的面积计算方法,应用演绎推理?师生共同推导出梯形面积的计算公式,并用字母表示出来,这时候计算公式的得出,也就水到渠成了。孩子理解了梯形的面积计算公式,就让他说一说,既是巩固新知,又在帮助孩子深化理解

第三个环节:运用知识,深化认识。

练习是理解知识、掌握知识、形成技能的基本途径,为使不同层次的学生都得到不同程度的发展,我设计了以下几个层次的练习:

巩固练习:

(1)直接用公式求面积

(2)先让学生计算出大坝的横截面的面积,再进行思想教育。让学生认识数学与生活是紧密联系的。

发展与综合性练习

(1)下面图中那几个梯形的面积相等?为什么?体会两底之和相等、高相等的梯形面积相等,并为后面的教学做铺垫;

(2)数学家波利亚曾说:“数学教师的责任是近其可能地来发展学生解决问题的能力。”算出梯形麦田的面积和小麦的吨数,增加实际应用的色彩,体验数学学习的有用性。

用发展的眼光看三角形、梯形、平行四边形

通过孩子的计算,应用数形结合的方法,通过讨论与演绎推理可以把三角形看成上底为“0”的梯形,平行四边形可以看成上底上底、下底相等的梯形。

五、说板书设计

在教学的过程中逐步形成,这样的设计体现了教学内容的系统性和完整性,又做到了重点突出,板书的结构便于演绎推理得出计算公式。

梯形的面积计算

拼成的平行四边形面积=底×高÷2

梯形面积=(上底+下底)×高÷2

S=(a+b)h÷2

六、说教学感受

在本课的的学习中,我紧扣生活实际,从学生已有的知识基础出发,让学生感受到学习的现实意义,有效开展探究活动,引导学生主动沟通已有知识内在联系,帮助学生更好地掌握知识,形成技能,培养素质。

很荣幸能参加今天的说课活动,真诚地希望能得到各位老师的帮助和指导!谢谢!

梯形的面积教案 篇3

一、学情分析

学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。学生在知识、能力、情感、态度等方面存在着一定的差异,他们原有知识能力结构的不同导致他们对数学问题的理解也不同,从而出现解决问题的策略的个性化和多样化。

因此本节课在探索梯形面积的计算公式时,老师为学生提供一个充足的自主学习空间,启发学生利用自己已有知识和经验,自主进行探究活动,进而感受学数学的价值,并获得成功的体验,产生积极学习的动力。

二、教材分析

"梯形的面积计算"是在学生学习了长方形、平行四边形及三角形的面积计算后安排的教学内容。由于在上述学习过程中,学生已通过操作、实验、探索等积累了探讨平面图形面积计算公式的基本方法与策略(即剪、移、转、拼等),并初步领悟了"新旧转化"的数学思想方法,这些都为学生自主研究、探索"梯形的面积计算"这一新的学习任务创造了必要的条件,为他们实现个体意义上的数学"再创造"打下了良好的基础。

三、教学目标设计

1.使学生理解并掌握梯形的面积计算公式,能正确地应用公式进行计算。

2.通过动手操作使学生经历公式的推导过程,培养学生的'迁移类推能力和抽象 概括能力,将转化策略的教学融入到学生 的“拼 、剪、画、说”活动中,使学生领悟转 化思想,感受事物之间是密切联系的,使 学生能应用所学知识解决实际问题,发展学生的空间观念。

3.引导学生运用转化的思想探索知识的变化规律,培养学生分析 问题和解决问题的能力,通过演示和操作,让学生在拼 剪中感受数学知识的内在美,培养团队合作意识。

四、教学重点难点

教学重点:

1.理解并掌握梯形的面积计算公式。

2.运用梯形的面积计算公式解决问题。

教学难点:

梯形面积公式的推导过程。

五、教学过程设计

(一)导课

1、我们都学过哪些图形的面积?

2 有两个小朋友因求图形的面积需要我们的帮忙。

3、梯形的面积公式是什么呢?(板书课题)

(二)新知

1、你还记得平行四边形、三角形面积公式吗?它们是怎么推导出来的?

2、你能用我们学过的转化思想推导梯形的面积计算公式吗?

3、学生动手操作

4、学生展示自己的方法。

5、分析转化后的图形与梯形的关系,推导出梯形的面积公式。

梯形的面积=(上底+下底)×高÷2

6、用字母表示。

S = (a+b) h÷2

(三)应用知识

1、口答练习运用公式。

2、运用公式解决实际问题。(学生自己解答例3)

3、提升练习

(四)课堂总结

1、通过这节课,你有什么收获?

2、课后研究:梯形面积和三角形面积之间的关系?

梯形的面积教案 篇4

一、学情分析

学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。学生在知识、能力、情感、态度等方面存在着一定的差异,他们原有知识能力结构的不同导致他们对数学问题的理解也不同,从而出现解决问题的策略的个性化和多样化。

因此本节课在探索梯形面积的计算公式时,老师为学生提供一个充足的自主学习空间,启发学生利用自己已有知识和经验,自主进行探究活动,进而感受学数学的价值,并获得成功的体验,产生积极学习的动力。

二、教材分析

"梯形的面积计算"是在学生学习了长方形、平行四边形及三角形的面积计算后安排的教学内容。由于在上述学习过程中,学生已通过操作、实验、探索等积累了探讨平面图形面积计算公式的基本方法与策略(即剪、移、转、拼等),并初步领悟了"新旧转化"的数学思想方法,这些都为学生自主研究、探索"梯形的面积计算"这一新的学习任务创造了必要的条件,为他们实现个体意义上的数学"再创造"打下了良好的基础。

三、教学目标设计

1.使学生理解并掌握梯形的面积计算公式,能正确地应用公式进行计算。

2.通过动手操作使学生经历公式的推导过程,培养学生的迁移类推能力和抽象概括能力,将转化策略的教学融入到学生的“拼、剪、画、说”活动中,使学生领悟转化思想,感受事物之间是密切联系的,使学生能应用所学知识解决实际问题,发展学生的空间观念。

3.引导学生运用转化的思想探索知识的变化规律,培养学生分析问题和解决问题的能力,通过演示和操作,让学生在拼剪中感受数学知识的内在美,培养团队合作意识。

四、教学重点难点

教学重点

1.理解并掌握梯形的面积计算公式。

2.运用梯形的面积计算公式解决问题。

教学难点

梯形面积公式的推导过程。

五、教学策略设计

我在导学"梯形的面积计算"时,并没有沿袭以往的教学思路,而是立足于学生已有的数学现实与经验,以此为出发点,通过引导学生经历"发现问题--作出假设--进行验证--实践应用"的"再创造"过程,让学生在数学的"再创造"过程中实现对新知的意义建构,解决新问题,获得新发展。

六、教学过程设计

教学环节一

一、汇报预习的成果

(预习单)

1、你还记得平行四边形、三角形面积公式吗?它们是怎么推导出来的?

2、对于梯形,你们已经知道了什么?

3、利用你手中的梯形,动手折折、剪剪、拼拼,你还能发现什么?

4、如何推导梯形的面积计算公式?谈谈你的想法。

学生汇报前三个:

生1:我发现任何梯形都可以分成两个三角形。

生2:我发现任何梯形都可以分成一个三角形和一个平行四边形。

师:善于观察,勇于实践,大家才会有如此丰富的发现。这节课,我们将在此基础上进一步研究"梯形的面积计算"。

(揭示课题)

设计意图

引导自由操作,有利于学生在较为轻松的状态下激活原有的"数学活动经验",为随后有目的的尝试、实验和验证作好铺垫。

教学环节二

二、"假设--实验--验证",引导学生体验数学知识"再创造"的过程。

师:汇报预习单第4个问题。如何推导梯形的面积计算公式?谈谈你的初步设想。

(学生分组交流。教师深入学生中倾听,并作必要的启发和引导)

生6:能不能像推导平行四边形面积公式那样,通过剪拼,将梯形也转化成已经学过的平面图形,如长方形、平行四边形或三角形,然后再来推导?

生7:可不可以像三角形那样,先合拼成一个大平行四边形,然后来推导?

生8:看看梯形的面积与已经学过的长方形、三角形及平行四边形等有什么联系,根据它们间的联系进行推导。

设计意图

交流对问题的初步设想,是准确把握学生已有数学现实的关键,也是实现"再创造"的开始。这对教师如何引导学生进行随后的"再创造"活动起着重要的作用。

教学环节

三、应用知识,自主探究

师:同学们是不是都有自己的想法了,想不想马上动手试试?

(学生独立或合作尝试转化。教师深入学生群体,听取意见,并对有困难的学生作必要的提示和启发)

教学环节四

设计意图

对数学材料实现"再创造",这不仅需要学生的独立思维,同时也需要组员间的相互启发以及教师的及时点拨与引导。也是上述教学过程中学生的"合作尝试"及教师的"个别指导"的意义。

四、汇报展示

师:不少同学已经成功地对自己的假设进行了验证,请向大家展示你们的研究思路与成果。

生1:我们组将两个完全一样的梯形拼合成一个平行四边形(见图1)。平行四边形的底相当于梯形上、下底的和,平行四边形的高相当于梯形的高。梯形的面积是拼成的平行四边形面积的一半,也即"梯形的面积=(上底+下底)×高÷2"。

师:能设法将新问题转化成已经学过的问题来解决,这本身就是一种创造。那么在这些方法中,你最欣赏哪一种,就请你借助手中的学具再次完成这一转化与推导过程,并在小组里进行交流。

设计意图:

引导学生及时交流,展示他们个性化的研究思路与成果,激发了他们成功的学习体验和进一步深入研究的积极愿望。

教学环节

五、在实践应用中拓展、延续数学知识的"再创造"。

师:(出示例题)请大家选择适合自己的面积计算公式求出梯形的面积。

(出示基本练习)测量数据,并计算出这些梯形的面积。

设计意图:

学生自由测量、计算并交流方法,教师对学生的学习过程作出即时评价和指导,鼓励学生对问题的不同理解及方法。

六、作业设计

师:学校决定在操场东侧宽10米的长方形空地上建造一些形状各异的梯形花坛。如果请你来设计,你觉得怎样设计比较合理?画出设计图,并预算出每一个花坛的占地面积。

(学生自由结合,分组进行构思、设计,并就占地面积进行计算与交流)

实践性练习又一次激发了学生"再创造"的热情,并为他们创造性地解决问题提供了机会,为提升他们的实践能力和创新品质营造了广阔的空间。

七、板书设计

梯形的面积

梯形的面积=(上底+下底)×高÷2转化

S梯形=(a+b)×h÷2(学生的方法展示)

八、预设效果

本堂课就学生来说的会在一次次思考和动手操作的过程中体会数学学习的乐趣。

九、课外知识的准备

了解多种转化的方法。

梯形的面积教案 篇5

教学目的:

1、掌握梯形的面积计算公式,能正确地计算梯形的面积。

2、通过操作和对图形的观察、比较,发展学生的空间观念,使学生进一步认识转化的思考方法在研究梯形面积时的运用,进一步培养学生的分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。

教学重点:

正确地进行梯形面积的计算。

教学难点:

梯形面积公式的推导。

教学准备:

投影、小黑板、若干个梯形图片(其中有两个完全一样的。

教学过程:

一、导入新课

1、提问:我们学习过哪几种平面图形的面积计算?计算公式分别是什么?

2、你能说出平行四边形的面积公式是如何推导的吗?三角形的面积公式呢?

3、创设情境:

投影显示:

启发谈话:同学们能依照平行四边形和三角形面积的方法,把梯形也转化成已学过的图形,计算出它的面积吗?(板书课题)

二、新课展开

1、操作探索

⑴拼一拼,让学生拿出自己准备的两个完全一样的梯形动手拼一拼。

提问:你拼成了什么图形,怎样拼的?演示一遍。

⑵看一看,观察拼成的平行四边形。

提问:你发现拼成的平行四边形和梯形之间的关系了吗?

出示小黑板:

拼成的平行四边形的底等于(),平行四边形的高等于(),每个梯形的面积等于拼成的平行四边形面积的()。

⑶想一想:梯形的面积怎样计算?

学生讨论,指名回答,师板书。

梯形的面积=(上底+下底)×高÷2

师:(上底+下底)表示什么?为什么要除以2?

⑷做一做:计算“前面出示的梯形”的面积。

2、扩散思维

师:如果我们手中只有一个梯形,你们能不能自己动脑想出别的计算方法推导它的公式?下面小组讨论。分组汇报:

生1:做对角线,把梯形分割成两个三角形,如下图⑴:

生2:从上底的一个顶点做另一腰的平行线,把梯形分割成一个平行四边形和一个三角形。如上图⑵。

生3:从上底的两个顶点作下底的垂线,把梯形分割成一个长方形和两个三角形,如上图⑶。

师:同学们真聪明,想出了好多种方法,推导出了梯形的面积计算公式,但不管采取何种方法都可以得出梯形的面积是“上底与下底的和乘以高再除以2。”

3、抽象概括

师:如果用s表示梯形的面积,用a、b和h分别表示梯形的上、下底和高,那么梯形的面积你会表示吗?

生:s=(a+b)h÷2

4、反馈练习

完成课本p81做一做(一人板演)

三、应用深化

出示例子:一条新挖的渠道,横截面是梯形,渠口宽2.8米,渠底宽1.4米,渠深1.2米,它的横截面的面积是多少平方米?

解释:举例说明“横截面”的含义。学生尝试计算:

(2.8+1.4)×1.2÷2

=4.2×1.2÷2

=5.04÷2

=2.52(平方米)

答:它的横截面的面积是2.52平方米。

2、反馈练习:完成p82第1题

四、巩固练习:p82第2题

五、全课小结

六、作业:p82第3、4题

教学后记:

实践操作是儿童智力活动的源泉,在教学中我以实践操作为切入点,使抽象的概念具体化,积极推动学生的思维发展。让学生拼一拼、看一看、想一想、做一做,获得感性材料,为概括出新概念、总结新方法打下基础。

在教学是我注重了对学生的创新精神和实践能力的培养,真正体现学生是学习的主人。

梯形的面积教案 篇6

教学内容:

人教版小学数学教材五年级上册第95页主题图、96页例3、第96页做一做,

教学目标:

1、知识与技能:通过观察、猜想、操作等数学活动,推导出梯形的面积计算公式。发展空间观念和推理能力渗透转化的数学思想方法。并能进一步体会利用转化的方法解决问题

2、过程与方法:能正确地应用公式计算梯形的面积,并能解决生活中一些简单的实际问题。

3、情感态度与价值观:让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲,陶冶情操。培养学生探索精神和合作精神,获得数学学习的乐趣。

教学重点:

掌握梯形面积的计算公式,并会用公式解决实际问题。

教学难点:

理解梯形面积公式推导方法的多样化,体会转化的思想。

考点分析:

会用梯形面积公式解决实际问题。

教学方法:

游戏引入新知讲授巩固总结练习提高

教学用具:

课件、多组两个完全相同的梯形。

教学过程:

一、提出问题(课件出示教材第95页的主题图)。

教师:同学们在图中发现了什么?

教师:车窗玻璃的形状是梯形。怎样求出它的面积呢?

二、通过旧知迁移引出新课。

教师:同学们还记得平行四边形和三角形的面积怎么求吗?

1、指名能说出平行四边形面积公式及三角形面积公式。并能简要说出面积公式推导过程。

2、课件出示平行四边形面积、及三角形面积公式推导的过程,教师揭示转化方法:拼合法、割补法

3、教师:前面我们学习了平行四边形的面积,又学习了三角形的面积,请同学们想一想,我们能用学过的方法推导出梯形的面积计算公式吗?

三、揭示课题;

根据学生的回答,引出新课,梯形的面积。

板书课题--梯形的面积。

四、新知探究

1、师:根据前面的学习,我们把要研究的图形转化成已学过的平面图形,就能找到求图形面积的计算方法,今天我们要研究的梯形面积,可以怎样转化呢?下面我们就来实践操作一下吧。

2、请同学们打开学具袋,看看里面的梯形有什么特点?

梯形的面积教案 篇7

今天我说课的内容是:

一、说教材

1、说教材的地位和作用

《梯形的面积》是人教版五年级数学上册第五单元的一个课时。这节课,是在学生认识了梯形特征,经历、探索了平行四边形、三角形的面积计算的推导方法,并形成了一定空间观念的基础上进行教学的。因此,教材中没有安排数方格的方法求梯形的面积,而直接给出一个梯形,引导学生想,怎样仿照求三角形面积的方法把梯形转化为已学过的图形来计算它的面积。让学生在自主参与探索的过程中,发现并掌握梯形的面积计算的方法,让学生在数学的再创造过程中实现对新知的意义建构,解决新问题,获得新发展。

2、说教学目标、重点、难点

根据本节课的教学内容和五年级学生的认知规律,本课的教学目标确定为:

知识与技能:在实际情境中,认识计算梯形面积的必要性。能运用梯形面积的计算公式,解决相应的实际问题。

过程与方法:培养学生学会发现知识之间的规律,加强学生动手操作能力和观察能力。在自主探索和小组合作探索的活动中,经历推导梯形面积公式的过程。

情感态度价值观:在探索梯形面积计算方法的过程中,获得探索问题成功的体验。

教学重点: 理解并掌握梯形面积计算公式,正确计算梯形的面积。

教学难点: 梯形面积计算方法的推导过程。

二、说学生

由于学生学习了平行四边形、三角形的面积计算方法,初步理解了平移、旋转的思想,具备了初步的归纳、对比和推理的数学活动经验,对梯形面积公式的推导,有一定的启发。学生受思维定势的影响,很容易就会利用两个完全相同的梯形转化成平行四边形的面积推导出梯形的面积公式,而用一个梯形推导出梯形的面积公式对有的学生来说,会有一定的难度。另外,由于班额人数较多,因此在合作中给教师的指导带来了一定的困难。

三、说教学策略

根据教学的三维目标,结合几何形体教学的特点,我采用以下的教学方法:

1、知识的迁移法:在教学活动中,充分尊重学生已有的知识与生活经验,引导学生进行观察、比较、分析、概括,培养学生的逻辑思维能力。

2、采用“小组活动,合作探究的教学方法”。

在教学中,组织学生开展探索性的数学活动,注重知识发现和探索过程;体现变知识的接受过程为科学的探究过程,利用学生的合作探究能力,引导学生自主学习。

3、采用直观教学法。

在教学中运用直观演示,来突出教学重点,从而启发学生思维,帮助学生突破学习的难点。

通过本节课的教学,使学生学会以旧引新,学法迁移进行学习,培养学生的自学能力和探索精神,提高学生自主发现问题,分析问题,解决问题的能力。

四、说教学实施过程

基于上述认识与理解,我对梯形的面积教学流程作了如下设计:

第一环节:创设情境,导入新课

上课开始,根据我班现有的实际情况设计了这样的情境:“我们班同学喜欢听故事吗?”学生上五年级以来,最感兴趣的就是爱听故事。于是,我通过讲曹冲称象的故事,让学生悟出转化法来解决梯形的面积。由此,很自然的导入本节课。让学生认识到求梯形面积的必要性,同时也激发起了学生积极的学习情感。

第二环节:动手操作,探究新知

新课程标准强调:“教学要从学生已有的经验出发,让学生亲身经历知识的学习过程”。所以,在教学中,我设计了让学生自己去探求推导梯形面积的计算方法的活动。因为学生学过了三角形面积的推导,所以很容易就会想到用两个完全相同的梯形拼成平行四边形推导面积公式的途径。最后,再用课件直观展示出梯形面积的推导方法,加深学生的理解。

梯形的面积教案 篇8

一、说教材

1、教材分析

《梯形面积的计算》是人教版小学数学第九册第五单元多边形面积计算中较为重要的教学内容。它是在学生学习了平行四边形和三角形面积计算的基础上进行教学的。梯形面积的计算是这部分内容的基础和重中之重,学生只有掌握了这部分内容,才能正确地运用它解决实际问题。

2、学生分析

对于梯形,学生在生活中已有一定的认识,如何激活学生的相关经验,适时进行数学化,让学生经历实际操作、合作交流、归纳发现和抽象公式的过程,是本课教学的关键。

3、教学目标

(1)知识与技能:探索并掌握梯形的面积公式,能正确计算梯形的面积,并能应用公式解决简单的实际问题。

(2)过程与方法:使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。

(3)情感、态度、价值观:让学生在探索活动中获得成功的体验,进一步培养学生学习数学的兴趣。

4、重点:探索并掌握梯形的面积公式,能正确计算梯形的面积。

难点:理解梯形面积公式的推导过程;理解梯形面积公式中为什么要除以2的道理。

二、说教法

《数学课程标准》强调从学生的生活经验和已有的知识背景出发,为学生提供充分的从事数学活动和交流的机会,促使他们在自主探索的过程中真正理解和掌握基本的数学知识、数学思想和方法,同时获得广泛的数学活动经验。本节课我在教学中主要体现以下的教学方法:

1、加强知识之间的联系,根据图形面积计算之间的内在联系安排教学顺序,以促进知识的迁移和学习能力的提高。以图形内在联系为线索,以未知向已知转化为基本方法开展学习。

2、体现动手操作、合作学习的学习方式,让学生经历自主探索的过程。梯形面积公式的推导采用让学生动手实验,先将图形转化为已经学过的图形,再通过合作学习的方式,探索转化后的图形与原来图形的联系,发现梯形的面积计算公式这样一个过程,同时按照学习的先后顺序,探索的要求逐步提高。

3、注意练习的探索性,形式多样化,以促进学生对计算公式的理解和灵活运用。

三、说学法

1、重视动手操作与实验。本单元面积公式的推导都是建立在学生数、剪、拼、摆的操作活动之上的,所以操作是本单元教学的重要环节。教师既要做好引导,又要注意不要包办代替,一定要学生在独立思考和合作交流的基础上进行操作,通过实际操作活动,发展学生的空间观念,培养动手操作能力。

2、引导学生探究,渗透“转化”思想。

3、注意培养学生用多种策略解决问题的意识和能力。教师注意不要把学生的思维限制在一种固定或简单的途径或方法上,要尊重学生的想法,鼓励学生从不同的途径和角度去思考和探索解决问题。

四、说教学流程

(一)复习引入

师:我们已经学过平行四边形和三角形的面积计算,请大家回忆一下:平行四边形的面积公式是什么?三角形的面积公式是什么?

学生回答问题后,教师用多媒体展示平行四边形、三角形面积的推导过程,从而使学生进一步认识用割补法和拼摆法可以把一些图形转化成已学过的图形。

师出示一辆小汽车的图片,让学生说一说车窗的玻璃是什么形状,接着让学生找一找生活中哪些物体上能找到梯形,并设问:怎样计算这些梯形面积?

引入本课教学并板书课题。梯形的面积

(二)自主探究,解决问题。

1、让学生拿出课前准备的学具,动脑筋想办法推导梯形面积的计算公式,并与同桌交流想法。教师巡视,个别交流、辅导,注意发现不同的推导方法。

(三)拓展延伸,深化提高

师:谁能说说梯形的面积公式是什么?你是怎样推导出这个公式的?

指名汇报,注意让学生汇报不同的推导方法。

学生可能汇报以下三种推导方法,教师应予以肯定。

方法一:(拼的方法)两个一样的梯形拼成一个平行四边形。得出结论:梯形的面积=(上底+下底)×高÷2

方法二:(剪的方法)把一个梯形剪成两个三角形。得出同样的结论。

方法三:(剪的方法)把一个梯形剪成一个平行四边形和一个三角形得出同样的结论。

全班交流时,如果学生还能提供其他推导方法,只要合理,教师都应予以肯定和鼓励。

师:用字母表示公式S=(a+b)×h÷2

(四)、作业设计

1、先量出图中有关数据,再计算图形面积。

2、解决问题

(1)一个零件的横截面是梯形,上底是8厘米,下底是12厘米,高是4厘米,这个零件横截面的面积是多少平方方厘米?

(2)、一块白菜块的形状是梯形,它的上底是12米,下底是10米,高是15米,如果平均每平方米种白菜12棵,这块地里一共可以种白菜多少棵?

(五)、全课总结。

本课主要让学生用学过的方法试着推导出梯形的面积公式以及利用梯形的面积公式解决实际生活中一些简单的问题。

梯形的面积教案 篇9

今天我说课的题目是《梯形面积计算》 ,下面我从说教材、说学情、说教学理念、说教法、说学法、说教学准备、说教学流程、说板书设计几个方面对本课的教学进行一下阐述:

一、说教材。

《梯形面积计算》是义务教育标准实验教材小学数学苏教版五年级上册第二单元第三课时 的内容,在课本19页至20页。这部分教学内容在《数学课程标准》中属于“(空间与图形)”领域的知识。经过前面的学习,学生已经认识了梯形特征,学会了学会平行四边形、三角形面积的计算,并形成一定空间观念的基础上进行教学的

,教材注意创设情景,从学生已有的知识和经验出发,适时的提出如何计算梯形面积的问题,并引导学生探究和发现,同时启发学生学生想,怎样仿照求三角形面积的方法把梯形转化为已学过的图形来计算它的面积,使学生进一步学习用转化的方法思考。教材中的插图给出了转化的操作过程,同时继续渗透旋转和平移的思想,以便于学生理解。在操作的基础上,引导学生自己来总结梯形面积的计算公式,通过概括总结,提高学生的思维水平。进而再利用字母表述出新学的计算公式,以提高学生的抽象概括能力。最后通过例题进一步说明怎样应用梯形面积的计算公式来解决实际问题,并进行相应的练习。学好这部分知识有助于学生理解梯形面积计算的推导过程掌握梯形面积算,也是为今后进一步学习较复杂的组合图形的面积计算知识打下坚实的基础。

根据这一部分教学内容在教材中的地位与作用,结合教材以及学生的年龄特点,我制定以下教学目标:

⒈ 知识与技能目标:让学生联系实际和利用生活经验,通过观察、操作、对比等学习活动,认识 图形之间的内在联系,理解并掌握梯形面积的计算公式,并能运用所学知识解决问题。

⒉ 过程与方法目标:在探究过程中,培养学生合作意识,动手实践能力;提高学生的应用意识,培养学生的自主探究能力。

⒊ 情感态度与价值观目标:使学生在自主参与活动的过程中,进一步体验学习成功带来的快乐,体验知识的形成过程,实现自主发展。

本课的教学重点是:理解并掌握梯形的面积计算公式 教学难点是:梯形面积公式的推导过程。

二、说学情

五年级的学生生动活泼、富有好胜心理,并且大部分学生已养成良好的学习习惯,能在课堂上大胆地表达自己的见解。因此,在这节课中我设计了多种活动,大胆地放手让学生自主探究、合作交流,充分发挥学生的主体作用。从而使学生轻松学到知识。

三、说教学理念:

课堂教学首先是情感成长的过程,然后才是知识成长的过程。

学生的学习过程是一个主动构建、动态形成的过程,教师要激活学生的原有经验,激发学生的学习热情,让学生在经历、体验和运用中真正感悟新知。

数学学习过程理应成为学生享受教师服务的过程。 基于以上教学理念,我在教学中遵循“引导探究学习,促进主动发展”的新教改思路。力求体现教学中的主动学习原则、最佳动机原则、阶段性渐进原则和直观性原则。

四、说教法:

根据教学内容的特点,为了更好地突出重点、突破难点,按照学生的认知规律,遵循教师为主导、学生为主体、训练为主线的指导思想。我在教学中采用以情景教学法、观察发现法为主,以多媒体演示法为辅的教学方法。在教学中我注意创设情景,设计启发性思考问题,引导学生思考。并适时运用电教媒体化静为动,让学生更直观地学到知识,从而激发学生探究知识的欲望,使学生始终处于主动探究问题的积极状态,培养学生的思维能力。

五、说学法

⒈ 根据自主性和差异性原则,让学生在探究学习的过程中,自主参与知识的发生、发展和形成过程,使学生掌握知识。达到人人学数学的目的。

⒉ 改变学生的学习方式,让学生合作学习,培养学生的合作意识。给学生充足的空间,开展探究性学习,让他们进行独立思考,并与同伴交流,亲身经历提出问题、解决问题的过程,为学生创设一个轻松愉快的学习环境,易于学生积极主动获得新知并体会学习的乐趣。

六,说教学准备:

教师准备:根据教材内容自制的多媒体课件以及课前方格纸剪的几组完全一样的梯形、直尺等教具。学生以小组为单位准备几组完全一样的梯形学具。

七,说教学流程:

为了突出教学重点、突破教学难点,达到已定的教学目标,我安排了以下四个教学环节,即:

创设情景,提出问题——尝试探究,解决问题——多层训练,深化知识——质疑总结,反思评价。

每个环节的具体教学设计如下:

第一环节:创设情景,提出问题。

首先,我播放根据教材内容自制多媒体图片,引出课本主题图。接着引导学生认真观察,提出与有关的数学问题。教师指出本课要重点研究的几个问题是:梯形面积计算公式的推导及运用,以及在生活中的运用。

[本环节的设计意图:精彩的开头,不仅能使学生很快由抵制状态进入兴奋状态,还能使学生把知识的学习当成自我需要,使教学任务顺利完成。在这个环节中,我从学生喜闻乐见的图片引入,更接近学生生活,更能让学生接受,从而激发学生深厚的学习兴趣和求知欲望,快速的进入学习高潮。

第二环节:复习旧知,铺垫诱导

复习求平行四边形和三角形的面积。要求学生回忆三角形面积计算公式的推导过程。通过复习提问,从而唤起学生的回忆,为沟通新旧知识的联系,奠定基础。

复习梯形的特征。拿出梯形的图形,回忆梯形的特征(上底,下底,高,面积)。

第三环节:尝试探究,解决问题。

本环节我设计了以下几个教学活动。

1、诱发猜想,主动探索

启发学生运用已学的知识,大胆提出猜测,激发学生的探索新知的欲望。给出一般梯形(上底,下底,高),老师提出疑问:你们如何去求梯形面积。精心设计好这个开端,很自然地把学生带入新知的学习环节。这样既激发了学生探索新知的欲望,又使学生明确了探索目标与方向。

生:打算仿照求三角形面积的`办法,把梯形转化成已学过的图形,再计算梯形的面积。

生:仿照求三角形面积的办法,用两个相同的梯形合成一个平行四边形,再计算梯形的面积。

2、验证猜想,体验成功

根据猜想,给出多个相同或不同的梯形模具和记录表,小组合作动手操作,并让不同的验证方法在实物投影仪上加以演示,使学生感受“两个完全一样的梯形都可以拼成一个平行四边形”,同时并叙述梯形与转化后图形之间的关系。

平行四边形的底=梯形的 上底+下底 平行四边形的高=梯形的 高

4、抽象概括,总结提高 学生经过自主探索合作交流,有的感悟出了梯形面积公式,但不一定讲得清道理,有的学生在公式的理解上存在障碍,基本处于“悱”、“愤”状态。这时应抓住时机,引导学生梳理思路找出最简便的解题方法,接着就重点演示两个完全一样的梯形拼成一个平行四边形,让学生观察原梯形和所拼图形之间有什么关系?师生共同推导出梯形面积的计算公式,并用字母表示出来,这时候计算公式的得出,也就水到渠成了

根据平行四边形面积=底 × 高 所以两个相等梯形面积=平行四边形的面积

因此一个梯形面积=平行四边形面积的一半

3、加深感受,完善结构

学生对一般梯形的面积推导已经有了深刻认识,但对梯形的知识结构还不够完善。这时老师就应继续引导学生对知识的深化。提出问题:是否任意梯形面积都可用这个公式计算呢?出示不同的等腰梯形,直角梯形的模具,让学生小组动手实验,自己研究,分析,记录。感知“任意两个完全一样的梯形都可以拼成一个平行四边形,并且任意的梯形面积=(上底+下底)×高÷2,并引导学生用字母表示公式,。字母表示:S=(a+b)h÷2

[本环节的设计意图是:《数学课程标准》指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者”。根据这一教学理念,在本环节中,我前后组织学生进行了几次自主探究活动,让学生在保持高度学习热情和探究欲望的活动过程中,始终以愉悦的心情,亲身经历和体验知识的形成过程。培养学生的探究能力、分析思维能力,激发他们的创新意识、参与意识;让学生在体验成功的同时也掌握和体会数学的学习方法。让学生在探究活动中,实现自主体验,获得自主发展。]

第四环节:多层训练,深化知识。

本环节我依据教学目标和学生在学习中存在的问题,设计有针对性、层次分明的练习题组(基本题、变式题、拓展题、开放题)。让学生在解决这些问题的过程中,进一步理解、巩固新知,训练思维的灵活性、敏捷性、创造性,使学生的创新精神和实践能力得到进一步提高。

[本环节的设计意图是:通过各种形式的练习,进一步提高学生学习兴趣,使学生的认知结构更加完善。同时强化本课的教学重点,突破教学难点。]

第五环节:质疑总结,反思评价。

这一环节,我提出以下几个问题: ⑴ 今天你学会了什么?⑵ 你有什么收获? ⑶ 你有什么感想?⑷ 你要提醒大家注意什么?⑸ 你还有什么疑惑?⑹ 你感觉自己今天表现如何?你感觉你组内的其他同学表现如何?

让学生以小组为单位,每位学生充分发言,交流学习所得。在评价方面:先让学生自评,接着让学生互评,最后教师表扬全班学生,以增强学生的自信心和荣誉感,使他们更加热爱数学。

[本环节的设计意图是:通过交流学习所得,增强学生学习数学知识的信心,培养学生敢于质疑、勇于创新的精神。]

八、说板书设计。

科学的板书设计往往对学生全面理解学习内容,提高学习效率,起到事半功倍的作用。本课的板书设计包括:

梯形面积计算

平行四边形面积= 底 × 高

/\

(上底+下底)×高÷2

梯形的面积=(上底+下底)×高÷2

S=(a+b)h÷2 这样的板书设计既条理清楚、简单明了、一目了然;同时又突出了本课的教学重点,对学生的学习起到帮助作用。

以上是我对梯形面积计算这部分知识的分析与教学设计。由于时间短促,有很多不当之处,希望各位评委老师多加批评指正,我的说课到此结束。谢谢大家!

梯形面积教案集合七篇


经过细心筛选,幼儿教师教育网为大家准备了一篇名为“梯形面积教案”的文章。学生们能够在有趣生动的课堂上学习,这离不开老师们辛勤准备的教案和课件。编写每一份教案课件需要大家的认真投入。教案是教师对教学内容深刻理解和准确把握的体现。如果您需要,希望我的经验和知识能够帮助您解决一些问题!

梯形面积教案【篇1】

教学内容:

人教版小学数学教材五年级上册第95页主题图、96页例3、第96页做一做,

教学目标:

1、知识与技能:通过观察、猜想、操作等数学活动,推导出梯形的面积计算公式。发展空间观念和推理能力渗透转化的数学思想方法。并能进一步体会利用转化的方法解决问题

2、过程与方法:能正确地应用公式计算梯形的面积,并能解决生活中一些简单的实际问题。

3、情感态度与价值观:让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲,陶冶情操。培养学生探索精神和合作精神,获得数学学习的乐趣。

教学重点:

掌握梯形面积的计算公式,并会用公式解决实际问题。

教学难点:

理解梯形面积公式推导方法的多样化,体会转化的思想。

考点分析:

会用梯形面积公式解决实际问题。

教学方法:

游戏引入新知讲授巩固总结练习提高

教学用具:

课件、多组两个完全相同的梯形。

教学过程:

一、提出问题(课件出示教材第95页的主题图)。

教师:同学们在图中发现了什么?

教师:车窗玻璃的形状是梯形。怎样求出它的面积呢?

二、通过旧知迁移引出新课。

教师:同学们还记得平行四边形和三角形的面积怎么求吗?

1、指名能说出平行四边形面积公式及三角形面积公式。并能简要说出面积公式推导过程。

2、课件出示平行四边形面积、及三角形面积公式推导的过程,教师揭示转化方法:拼合法、割补法

3、教师:前面我们学习了平行四边形的面积,又学习了三角形的面积,请同学们想一想,我们能用学过的方法推导出梯形的面积计算公式吗?

三、揭示课题;

根据学生的回答,引出新课,梯形的面积。

板书课题--梯形的面积。

四、新知探究

1、师:根据前面的学习,我们把要研究的图形转化成已学过的平面图形,就能找到求图形面积的计算方法,今天我们要研究的梯形面积,可以怎样转化呢?下面我们就来实践操作一下吧。

2、请同学们打开学具袋,看看里面的梯形有什么特点?

梯形面积教案【篇2】

教学设计

蒲场镇大溪小学 杨文勇

教学目标:

1.理解、掌握梯形面积的计算公式,并能运用公式正确计算梯形的面积。

2.发展学生空间观念。培养抽象、概括和解决实际问题的能力。3.掌握“转化”的思想和方法,进一步明白事物之间是相互联系,可以转化的。

教学重点:理解、掌握梯形面积的计算公式。教学难点:理解梯形面积公式的推导过程。教学过程: 1.导入新课

(1)投影出示一个三角形,提问:

这是一个三角形,怎样求它的面积?三角形面积计算公式是怎样推导得到的?学生回答后,指名学生操作演示转化的方法。(2)展示台出示梯形,让学生说出它的上底、下底和各是多少厘米。(3)教师导语:我们已学会了用转化的方法推导三角形面积的计算公式,那怎样计算梯形的面积呢?这节课我们就来解决这个问题。(板书课题,梯形面积的计算)2.新课展开 第一层次,推导公式(1)操作学具 ①启发学生思考:你能仿照求三角形面积的办法,把梯形也转化成已学过的图形,计算出它的面积吗?

②学生拿出两个完全一样的梯形,拼一拼,教师巡回观察指导。③指名学生操作演示。

④教师带领学生共同操作:梯形(重叠)旋转平移平形四边形。(2)观察思考

①教师提出问题引导学生观察。

a.用两个完全一样的梯形可以拼成一个平行四边形。这个平行四边形的底和高与梯形的底和高有什么关系?

b.每个梯形的面积与拼成的平形四边形的面积有什么关系?(3)反馈交流,推导公式。①学生回答上述问题。

②师生共同总结梯形面积的计算公式。板书:梯形的面积=(上底+下底)×高÷2 ③字母表示公式。教师叙述:如果有S表示梯形的面积,用a、b和h分别表示梯形的上底、下底和高,怎样用字母表示梯形面积的计算公式呢?

学生回答后,教师板书:“S=(a+b)h÷2”。第二层次,深化认识。

(1)启发学生回忆平行四边形面积公式的推导方法。①提问:想一想平行四边形面积公式是怎样推导得到的? ②学生回答,教师在展示台再现平行四边形面积公式的推导方法。(2)引导操作。

①学习习近平行四边形面积时,我们用割补的方法把平行四边形转化成长方形。能否仿照求平行四边形面积的方法,把一个梯形转化成已学过的图形,推导梯形面积的计算公式呢? ②学生动手操作、探究、讨论,教师作适当指导。(3)信息反馈,扩展思路。

说一说你是怎样割补的?教师展示各种割补方法。第三层次,公式应用。

(1)出示课本第89页的例题,教师指导学生理解“横截面”。(2)学生尝试解答。

(3)展示台出示例题的解答,反馈矫正。(4)完成例题下面的“做一做”。3.巩固练习

(1)完成练习十七第1、2和3题。(2)讨论完成练习十七第4和6题。4.全课小结。(略)

说课稿

蒲场镇大溪小学 杨文勇

一、教学内容

义务教育六年制小学数学第九册P74~75页“梯形面积的计算”第一课时。

二、教材分析

梯形面积的计算是小学阶段培养学生空间观念的一个重要内容。本节课是在学生学习了面积的含义、梯形的图形特征和长方形、正方形、平行四边形、三角形面积计算以及学生理解三角形面积计算公式的推导过程,即把两个完全一样的三角形通过旋转、平移,组合成一个平行四边形的基础上进行教学的。学习梯形面积的计算,将为学习丈量土地、计算组合图形的面积、计算梯坝土石方等知识做准备。

根据以上教材分析,依据《数学课程标准》和学生学习的实际水平,我确定本课时的“三维”目标、教学重点、难点,关键如下:

“三维”目标:

1、知识目标:使学生掌握梯形的面积公式,能利用公式正确计算梯形的面积。

2、能力目标:通过学生动手操作、观察,发展他们的空间观念,提高他们逻辑思维能力和抽象概括能力。

3、情感目标:通过图形的旋转、平移,使学生感受到几何图形的组合美,提高学生学习兴趣,进一步促进良好学习习惯的形成。

教学重点:梯形面积公式的推导和应用。教学难点:梯形面积公式的推导。教学关键:让学生通过观察、发现梯形的上、下底与所拼成的平行四边形的关系。

三、教学方法

本节课采用“自主—合作—探究—发现—应用”的模式,坚持启发式,主要以观察法、操作法、讨论法进行教学,从学生已有的经验出发,通过动手操作、讨论等活动把抽象思维过程具体化、形象化。让每个学生充分动手、动口、动脑,积极主动进行探究性学习,促进“三维”目标的达成。

教具:平行四边形一个,完全一样的三角形、梯形各三个,水渠模型。

学具:两个完全一样的三角形、梯形。

四、教学设计

(一)复习

为了唤起学生已有的认知结构,实现知识的正迁移。我设置了3道复习题,第一题口答:已知底和高的平行四边形和三角形求面积;第二题操作:要求边操作边叙述把两个完全一样的三角形拼成一个平行四边形的方法,目的是为了使学生回忆定点、旋转、平移 的操作技能;第三题,说出梯形的各部分名称,使学生正确分清梯形的各部分名称,发展学生的空间观念。

(二)导入新课 采用启发谈话,揭示并板书课题:梯形面积的计算。让学生明确这节课的学习任务和目标,有效地启发和调动学生强烈的求知欲望,激发学生主动参与和探索知识的心向。

(三)进行新课

这是课堂教学的中心环节,在教师的有效指导下,学生多种感官并用,通过操作、观察、讨论、归纳,主动参与学习过程。在掌握知识的同时,发展智力、培养各种能力,提高学生的综合素质。

1、创设操作情境,以动启思

首先,让学生自学课本P74前三自然段。其次,让学生动手拼摆手中两个完全一样的梯形。最后,指名边摆边说步骤,即把两个完全一样的梯形,通过定点、旋转、平移把它们转化为一个平行四边形。

2、创设问题情境,以疑导思

引导学生观察拼组后的平行四边形,让学生思考以下问题:(1)梯形面积和所拼成的平行四边形面积有什么关系?(2)要求这个梯形的面积,只要知道什么的面积就可以?这样设计为学生思考指导方向,同时为综合概括梯形的面积公式积累了感性材料。

3、创设讨论情境,以辩促思

让学生分组讨论,教师适时指导,讨论时扣住知识的关键,也就是梯形上、下底的和平行四边形的底,梯形的高正好是平行四边形的高,梯形的面积正好是平行四边形面积的一半。这样,既抓住重点,又使学生明确了知识间的联系,促进主动发展,培养合作精神和合作能力。

4、创设演讲情境,以说理思

让小组代表汇报推导过程,概括出梯形面积的计算公式:梯形的面积=(上底+下底)×高÷2,再抽象成字母公式:

S=(a+b)h÷2

(四)巩固练习

1、出示例1,生尝试练习后校对、讲评。

2、完成课本P75做一做。

3、完成课本P76页2、3。

通过练习,加深学生对知识的理解,掌握数学知识,形成技能,提高学生应用所学知识解决实际问题的能力和创新能力。

(五)课堂小结

这节课你学会了什么?让学生回忆拼摆方法、梯形面积公式的推导过程和公式,构建新的知识体系。

(六)布置作业

坚持因材施教的原则,作业设置了必做题P76页

1、选做题:想一想能不能用其他方法推导出梯形的面积公式。说课稿

蒲场镇大溪小学 杨文勇

在经历了平行四边形和三角形的面积计算公式推导过程的体验基础上,教学这部分内容时,我放手让学生自主探究新知,并引导学生从不同途径验证,学生参与的积极性高,课堂生动活泼,效果显著。具体情况如下:

一、提出问题,激发兴趣

我先出示了一个梯形,引导学生简要复习梯形的基本特征和各部分的名称,然后直接抛出探究任务:梯形的面积是怎样计算的呢?你能用学过的方法把梯形转化成学过的图形,从而推导出梯形的面积公式吗?

学生对具有挑战性的问题还是有很高的兴趣的,所以马上就自发组合成探究小组。

二、注重合作,促进交流

学生在前面学习的经验基础上,最容易想到的是模仿三角形的面积公式的推导方法进行转化,所以很快从书上的129页找到了两个完全一样的梯形开始做起来。

这时,我提醒他们:“小组的同学可以相互配合呀!每人做一组,然后一起讨论:梯形的上底、下底、高与拼成的图形各部分之间有什么联系?这样就容易发现梯形的面积公式了!”

学生很轻松地完成了探究任务,自豪写在脸上。因为是自己探究完成得出的结论,所以他们有话可说,我就让学生充分交流,让他们多说,并引导他们说准确,说具体,还建议他们利用学具进行演示,整个过程中学生都感受着成功。

三、思维拓展,能力提升

新课的探究活动进行到这里,似乎该结束了,可我却抓住这时学生探究的热情继续拓展:你们能试着用其他方法推导出梯形面积公式吗?

开始时,学生显得毫无头绪,我偶然发现一个学生在折手中的梯形,就不失时机地提醒他:“你看你把梯形分成两个部分了,你能分别表示出两个部分的面积吗?”学生兴趣盎然。很快就表示出两个三角形的面积,即:上底×高÷2、下底×高÷2,于是引导学生把两个算式加起来,从而推导出梯形面积公式便成为可能,因为学生在四年级时已经学过类似的乘法分配率的知识,所以可以看出大多数学生还是理解了。

很多学生是理解了把梯形分成两个三角形来推导梯形面积计算公式的,而受此启发,又有学生把梯形分成一个平行四边形和一个三角形,此时,教室里自发地形成讨论小组作进一步的推理论证,教学活动到这时达到一个高潮。由于这节课花了较多的时间带领学生们探究梯形面积公式的推导过程,特别是从不同的视角给学生提供了更多的探究机会,使教学活动不局限于课本,不拘泥于教材,给学生更多的思维拓展空间,学生的学习积极性得到了提升,但教学中没有更多的时间去进行巩固练习了。遗憾吗?不,我觉得这样经常把探究活动更深入地开展下去的教学更有利于学生的思维训练,更有利于学生的长远发展,因为我认为:学生学习的过程比结果应该更重要一些。

梯形面积教案【篇3】

教学目标:

1、使学生经历猜想、验证、发现的科学研究过程,探索并发现梯形面积的计算方法,能正确计算梯形的面积,并应用公式解决相关的实际问题。

2、培养学生观察、推理、归纳能力,体会转化思想的价值。

3、让学生进一步积累解决问题的经验,增长新图形面积研究的策略意识,获得成功体验,提高学习自信心。

教学重点、难点:探索并掌握梯形的面积计算方法。

教学准备:教师准备多媒体课件一套,学生剪下6个梯形。

教学过程:

一、认知准备:知识、策略,双管齐下

谈话:同学们,前面我们已经学习了哪些图形的面积计算?我们是怎样找到它们的计算方法的?用一个词概括就是(转化)

出示梯形图,

提问:这是什么图形?

关于梯形,你已经知道了些什么?

那么,关于梯形,你还想知道些什么?

提问:是啊,梯形的面积该怎样计算呢?你有办法来找出梯形面积的计算方法吗?同桌商量一下。(板书课题:梯形的面积)

组织班内交流,根据学生回答相机板书。(板书:梯形转化成旧图形?)

[设计意图:梯形的面积是在平行四边形和三角形面积之后教学的,因此,迁移是本课设计的核心。课始从知识和策略两方面为学生迁移旧知、探索新知作好铺垫:其一、回忆梯形的相关知识;其二、回忆两种图形的面积公式推导过程并适当提炼转化思想。这样的准备,紧扣新知,直指要害,为学生留下了广阔的探索空间,简洁而有效。]

二、探索公式:猜想、验证、发现

1、动手操作,尝试转化

提问:你们是怎么想到用转化的方法来寻找梯形的面积呢?

师:你们真会动脑筋,能根据前面的学习方法提出这样的猜想(板书:猜想),可这个想法能实现吗?还得怎么办?(板书:验证)

小组活动:挑选梯形尝试转化。

交流,演示,多媒体出示拼成的三种情况。

明确:任何两个一样的梯形都能拼成一个平行四边形(板书),猜想得到证实。

2、讨论关系

师:仔细观察一下,拼成的平行四边形与每个梯形有怎样的关系?

出示讨论题,同桌商量,交流汇报,最后同桌再互相说一说。

[设计意图:学生之前已亲历了平行四边形和三角形面积公式的探索过程,对转化思想在推导平面图形面积公式中的作用已有了较深的感受,也积累了一些转化的经验(剪移拼和转移拼)和观察的经验(从底、高、面积三方面找关系)。因此,今天的转化梯形和寻找关系早已成了学生跳一跳可以摘到的果子!放手让学生自主解决,正是尊重学生数学现实的务实之举,如此创设出的较大探索空间亦有利于激发学生的创造性。]

3、应用关系,体验方法

在3个拼成平行四边形中的梯形上标出上底、下底、高的数据。

师:如果知道了梯形的上底、下底、高,你能利用刚才发现的关系计算出这个梯形的面积吗?

学生任选一个梯形独立求出它的面积。

交流汇报:

(6+10)42

(3+7)32

(3+6)62

谈话:老师发现同学们求梯形面积用的方法竟然完全一样!谁来告诉我,你们这部分算的是什么啊?(划出(6+10))再乘上4呢?

提问:我明白了,这里算的是拼成平行四边形的面积(板书)

那为什么还要除以2呀?

4、想象延伸,发现方法

出示独立的梯形(标有数据)

提问:你能求出这个梯形的面积吗?

学生在草稿本上写下算式。

提问:(3+5)4算的是什么?

你能想象出拼成的平行四边形的样子吗?用手书空画一画。

为什么要除以2?

归纳:现在你知道该怎样计算梯形的面积了吗?

根据学生回答板书:发现(上底+下底)高2

[设计意图:一般的教学,在找出拼成平行四边形和梯形的关系后,就利用这3条关系通过适当的板书顺理成章地推导梯形的面积公式了。但事实是,这看似顺理成章的几句推导之词,其中却是浓缩了一系列的逻辑推理,甚至还融合了等量代换的思想。因此,直接利用关系推导公式对学生来说是有相当的思维难度的,课后我对部分学生的调查也证实了这一点,很多学生感觉晕晕乎乎就得出了公式,对推理的过程仅停留在几句顺口溜的字面上,真正能说清楚地没几个。那么,该如何才能让学生真正体悟到公式得出过程呢?我增设了计算一环:让学生观察拼合图,利用发现的关系计算拼成平行四边形中梯形的面积。这一计算面积的过程能促使学生主动的应用关系寻求计算方法,加深对3条关系的理解;同时,计算的过程其实正是原来抽象推理的外显和物化,这样通过计算这一形式就把纯推理巧妙地加以直观化,给学生理解公式架起了一座思维的桥梁。最后通过适当的说理、想象、归纳,梯形面积公式的得出就瓜熟蒂落了。]

5、回顾过程,感受策略

师:同学们,经过大家共同的努力,我们终于找到了梯形面积的计算方法,就是(生齐说)。我们再一起回顾一下刚才的探索之旅:根据平行四边形和三角形的面积方法的寻找过程,我们大胆的猜测:

三、应用公式:紧扣主线,不拘一格,技能与发散并重

1、直接应用,熟练公式

学生独立完成练一练第2题。

2、活用公式,体会梯形公式的实质

(1)梯形的上下底的和是12厘米,高是4厘米,求它的面积。

(2)练一练第1题

3、应用公式解决生活中的实际问题

完成试一试。

四、全课总结

师:今天你有什么收获?

梯形面积教案【篇4】

《梯形面积的计算》教学设计

教学目标

(1)知识目标:使学生理解掌握梯形面积计算公式,能正确地计算面积,并运用到生活中。

(2)能力目标:培养学生迁移、类推能力,并发展学生的空间观念;培养学生合作学习的能力,提高综合、抽象、概括能力;同时渗透“重合、旋转、平移”等数学思想。

(3)情感目标:培养学生善于动脑的良好学习习惯和对数学的学习兴趣,培养他们敢于探索、勇于创新的意识。教学重点

梯形面积的计算,关键是把数学知识与生活紧密地联系,利用梯形面积的计算公式解决实际生活问题。教学难点

梯形面积的计算公式的推导,关键是运用学生操作拼图和课件所提供的直观形象的动态变化过程调动学生积极性,探索、归纳公式。教学设计

一、复习

1、请同学们回忆一下,我们已经认识了哪些平面图形?你会计算这些图形的面积吗?

2、梯形的面积你们会计算吗?想知道怎样计算吗?(引出课题:梯形面积的计算)

二、推导

1、同学们还记得三角形的面积公式是怎样推导的吗?共同回忆,电脑演示。

2、你能仿照三角形面积公式的推导方法,把梯形也转化成已 学过的图形,得出它的面积计算公式吗?用课前准备的梯形,拼拼看吧。(自主学习)

3、你是怎样拼摆的?与小组同学交流。(合作学习)每组选出代表,为大家演示。师电脑演示。

4、观察拼成的图形你有什么发现呢?请大家分组研究研究。交流后完成填空(书中推导过程)。

5、回顾拼摆过程,计算拼成的平行四边形的面积,再计算其中一个梯形的面积。(师板演)。

6、我们已经会求梯形的面积了,你能总结出梯形面积的计算公式吗?

梯形的面积=(上底+下底)×高÷2 求梯形的面积为什么要除以2?(指名回答)

7、梯形的面积公式也可以用字母表示。

S=(a+b)h÷2

你能用梯形的面积公式计算吗?试一试,出示课件。

三、应用

1、运用梯形的面积公式我们来解决生活中的实际问题。课件出示例题。

指名读题,理解“横截面”。演示渠口宽就是梯形的上底,渠底宽就是梯形的下底,渠深就是梯形的高,明确求横截面的面积就是求这个梯形的面积。

2、学生试做后集体订正。

四、练习

1、判断:检验推导过程,要求说明理由。

2、练一练:明确为什么除以2。

3、智力闯关:

第一关:求拦河坝横截面的面积,生独立解答。

第二关:求飞机两侧机翼的面积,用不同的方法解答。

第三关:求圆木的根数,明确这道题是根据什么算的。

第四关:求梯形鱼塘的高,通过课件演示,利用推导过程,帮助学生分析。

五、总结

1、这节课我们学习了什么?你有哪些收获?

2、质疑:你还有什么不懂的问题吗?

3、自己推导出梯形的面积公式高兴吗?经常动手操作、动脑分析,你会有更大的收获。

六、作业

1、个人作业:量出你手中梯形的上、下底和高,并求出它的面积。

2、小组作业;如果你手中只有一个梯形,请你剪一剪,拼一 拼,把它转化成已学过的图形,重新推导出梯形面积的计算公式。《梯形面积的计算》教学反思 新课标的基本理念就是要让学生“人人学有价值的数学”,强调“教学要从学生已有的经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,激发学生的学习积极性,向学生提供充分从事数学活动的机会,让他们积极主动地探索、解决数学问题,发现数学规律、获得数学经验;而教师只是学生学习的组织者、引导者和合作者,在全面参与和了解学生的学习过程中起着对学生进行积极的评价,关注他们的学习方法,学习水平和情感态度,促使学生向着预定的目标发展的作用。本节课我注重学生学习方法的教学,主要是利用课件演示,启发调动学生多种感官的参与:动脑、动手、动口。

1、根据学生的认知特点和注意力特点,整合课程资源,使课件演示基本贯穿整个课堂,使一些抽象的数学知识变成学生看得见,摸得着的知识。既是对学生思维的启发,又是对学生条理的整理。使学生在数学学习活动中相互合作,主动探索,推导出梯形的面积计算公式并运用公式进行计算。同时不完全依赖电脑,如让学生亲自动手拼摆,突破难点。通过课件完成例题,解决生活中的面积计算,练习有层次、有梯度、有趣味,突出重点,这样既发展了学生的个性,又培养了学生的创新精神。

2、与教法相结合,以旧引新,新知、旧知有机的融为一体,通过动手操作,对课件的直观演示进行观察、比较、推理、得出结论,从而提高学生分析问题,解决问题的能力及口头表达能力。

3、在推导梯形面积计算公式时,我放手让学生从自己的思维实际出发,给学生充分的思考时间,对问题进行独立探索、讨论、交流,学生充分展示自己或正确或错误的思维过程。在合作交流中互相启发,共同发展。在此过程中,我只是组织者、指导者,起到了帮助和促进的作用,充分发挥学生的主动性和积极性,最终达到使学生有效的实现对梯形面积公式的理解的目的。

4、不足之处:

练习题的设计缺少难度,学生很轻松就完成了,尤其是优等生,没有吃饱。如果将作业题中的第二题放到练习题中,这样既提高了难度,满足优等生的需求,又让学生体验到了灵活多样的解题方法,效果会更好。

梯形面积教案【篇5】

教学内容:p.21练习四

教学目标:

1,使学生进一步熟悉梯形面积的计算公式,熟练地计算不同梯形的面积.

2,培养灵活利用公式解决实际问题的能力.

3,培养学生良好的合作探究意识.

教学重点:进一步掌握梯形面积的概念,能较熟练掌握梯形面积的计算方法.

教学过程:

一,画图(图:一直角)

问:你看到什么两条边上分别标上长度:4厘米,2厘米

你能联想到什么图形面积是多少

(1)长方形,长是4厘米,宽是2厘米.面积:42=8平方厘米

(2)三角形,底4厘米,高2厘米,面积:422=4平方厘米

(3)梯形,补充算式(4+3)22,指名画完该图形.

关注细节:(1)在计算时,最后的单位名称不要漏写

(2)画图时,要把关键长度的数据标出来.

(3)题目中,最后问题带的要写答句.

二,检查预习作业:

1,看图计算梯形的面积.要让学生明确互相平行的两条边分别为上底和下底,并不是上面的边和下面的边;确定了上底和下底之后再确定高.

2,学生有困难的题:用58米长的篱笆,在靠墙的地方围一块菜地(图略),这块菜地的面积是多少平方米

先指名说说梯形的面积,师板书.

对照公式,找已知条件和所缺条件.

明确:还缺上底和下底的和,通常可以用上底加下底,但这题中要用三条边的长度减去高.

算式:(58-10)102=240平方米

三,完成书上的练习四:

1,用两个完全一样的梯形拼成一个平行四边形.已知每个梯形的面积是24平方分米,拼成的三边形的面积是多少平方分米

指名读题,比画该题.学生列式交流.

2,下面图中哪几个梯形的面积相等为什么

观察,问:这些梯形有什么共同点(高相等)

利用这个特点,你觉得可以怎么找面积相等的梯形为什么

(方法一:分别算出四个梯形的面积.

方法二:只要看上底与下底的和是否相等.)

学生数一数,算一算,交流最后结果.

3,量出下面每个梯形的上底,下底和高,算出它们的面积.

学生独立完成后交流.

4,银苏号滑翔机模型的尾翼是由两个完全相同的梯形组成的,它的面积是多少

观察图后说说自己准备怎么算

交流方法:方法一,梯形面积乘2.方法二,移动后得到一个平行四边形,算平行四边形的面积.

5,第5题,学生读题后解决.讲评时要注意(1)计算方法的指导;(2)单位的转换.

6,第6题,学生独立完成并校对.

梯形面积教案【篇6】

教学目标: 1.使学生经历梯形面积计算方法的探索过程,感受转化的数学思想。

2.使学生理解梯形面积的计算方法,能正确地计算梯形的面积。

3.培养学生的观察、比较、分析以及动手操作的能力,发展学生的空间观念。

教学重点: 理解梯形面积的计算方法,正确计算梯形的面积。

一.复习引入。

1.同学们已经掌握了平行四边形和三角形面积的计算。现在我就想考考同学到底掌握得怎么样?谁能够快速准确地说出这些图形的面积呢?

你能说你的这个方法是怎么得出来的吗?(沿着平行四边形的一条高剪开,再把它从一边移动另一边,这样就拼成了一个长方形。)

你能说你的这个方法是怎么得出来的吗?(将一个一模一样的三角形沿一个顶点旋转180?,再沿边平移上去,这样就拼成了一个平行四边形。)

5.出示转化过程并小结:我们是把平行四边形、三角形分别转化成长方形、平行四边形这些我们已经学过的图形来计算出它们的面积的!

二.新课传授。

(一)面积计算方法的推导过程。

1.今天我还带来了另外一个图形,谁能告诉我这是什么图形?(出示梯形)

2.提出质疑揭示课题:今天我们就一起来研究梯形面积的计算(板书),我们是否可以仿照平行四边形和三角形的方法,把梯形也转化成已学过的图形来计算它的面积呢?请同学们拿出准备好的梯形和剪刀,看看你能不能通过剪一剪、拼一拼把梯形也转化成我们已经学过的图形呢?

请学生说出自己的想法和拼法。(将一个一模一样的梯形沿一个顶点旋转180?,再沿腰平移上去,这样就拼成了一个平行四边形。)

现在我们来看一看拼成的图形与原来的梯形有些什么样的关系?(拼成的平行四边形的底是原来梯形的上底与下底的和,高没有变,面积是梯形的两倍。)

请学生说出自己的想法和拼法。(将梯形上底和下底对折,再沿折线剪开,将上面的一半沿腰上的中点旋转180?,这样就拼成了一个平行四边形。)

现在我们来看一看拼成的图形与原来的梯形有些什么样的关系?(拼成的平行四边形的底是原来梯形的上底与下底的和,高是原来梯形面积的一半,面积没有变。)

请学生说出自己的想法和拼法。(沿梯形一腰中点和对角顶点对折,再折线剪开,将上面的一半沿腰上的中点旋转180?,这样就拼成了一个三角形。)

现在我们来看一看拼成的图形与原来的梯形有些什么样的关系?(拼成的三角形的底是原来梯形的上底与下底的和,高是没有变,面积也没有变。)

4.我们用很多方法计算出了梯形的面积,但是在实际生活中,有许多东西象钢板等等是不能这样剪开来拼拼的,所以我们就需要知道计算梯形的面积规律。请同学以小组的形式讨论一下,你能从你的方法中得出什么计算的规律吗?

5.你是怎么得出这个规律的?

梯形面积教案【篇7】

学习目标:

1、通过观察、操作、猜测、填表、讨论等方法探索并掌握梯形面积的计算方法,通过迁移前面学法,自主探究梯形上下底、高与平行四边形的底、高之间的关系,能正确计算梯形的面积,应用公式解决相关的实际问题。

2、培养观察、推理、归纳能力,体会转化思想的价值。

3、进一步积累解决问题的经验,增长新图形面积研究的策略意识,获得成功体验,提高学习自信心。

学习重点:

探索并掌握梯形的面积计算方法。

学习难点:

理解梯形推导公式过程中梯形上、下底与平行四边形的底之间的关系。

■先学提纲(另见《补充习题》、《当堂反馈》相关练习,有记号标明)

1、按算式画出相应的图形,说说自己是怎么想的?

说说梯形的基本特征及各部分名称。

■学情预判:学生在探索并掌握梯形的面积计算方法上可能会困惑不解,要加强引道。

■后教预设:充分利用图形的可视化特性,进行教学,让学生自己得出结论。

(2)小组交流:

你认为拼成一个平行四边形所需要的两个梯形有什么特点?

测量数据计算拼成的平行四边形的面积和一个梯形的面积并填表。

(3)如何计算一个梯形的面积?

从表中可以看出梯形与拼成的平行四边形还有怎样的关系?(小组交流)

得出以下结论:

这两个的梯形,无论是直角梯形、等腰梯形、还是一般的梯形,都可以拼

所以梯形的面积=

1、试一试:一块梯形的麦田,上底是36米,下底是54米,高是40米。求这块麦田的面积。

一个梯形的面积与整个平行四边形的面积有什么关系?

四、总结回顾:

通过今天的学习,你有什么收获?想要提醒大家注意什么?

梯形面积课件教案2000字


每位教师都需要精心编写教案和制作课件,以便上好每一堂课。只有教案课件准备得越充分,课堂氛围才会更加活跃和愉悦。你是否正在为如何编写好的教案课件而发愁呢?别担心,编辑为您准备了一些相关内容,欢迎与您的朋友一起分享!

梯形面积课件教案 篇1

小学数学说课稿:《梯形面积的计算》说课稿

《梯形面积的计算》说课稿

各位评委老师:大家好!

我说课的内容是苏教版国标本小学数学九册第二单元多边形面积的计算第三课时梯形的面积计算内容。

一、说教材

1、教学地位分析

梯形的面积计算是小学数学图形与几何知识领域的一个重要内容,本节课的教学是在掌握平行四边形的面积的基础上进行教学的。孩子已经熟练地掌握平行四边形的面积计算方法,知道两个完全相同的三角形可以拼成一个平行四边形,将三角形的面积转化为一个等底等高的平行四边形的面积来进行计算。利用孩子已有的知识经验,应用转化的策略,将梯形转化为一个平行四边形,从而推导出它的面积计算公式,计算的它的面积。教学中向学生渗透了迁移类推的数学思想和转化策略,提高他们的动手操作能力、创新能力和思维空间能力。为学生将要理解和掌握新知识奠定基础。

2、教材思路分析

按照复习引新,动手操作、推导公式,巩固与应用,建立知识联系顺序组织内容的;例题的讲解突出通过孩子动手操作、讨论,经历知识形成的过程;练习安排了5个层次。

3、确定教学目标

基于对苏教版以上教材的分析,根据新课标的理念和中年级学生的年龄特点、认知规律,我预设了以下教学目标:

(1)知识与技能方面:通过本节课的学习,使孩子能够理解梯形面积计算公式的推导过程,掌握梯形面积的计算方法;使孩子能够熟练地应用梯形的面积计算公式计算梯形的面积,解决生活中的相关问题;

(2)能力培养方面:在公式的推到活动中,培养学生的推理能力、分析能力和实践能力。

(3)情感态度价值观方面:在学习活动中,让学生体会数学与生活的密切联系,形成合作交往意识;感受数学在自己身边,激发学习兴趣;发展数学素养。

4、重、难点分析

本课的教学重点:

梯形面积算公式的推导过程;

应用梯形的面积计算公式计算梯形的面积,解决生活中的相关问题;

教学难点:

理解在计算梯形面积时,为什么要“除以2”

二、说教法

根据本课教学内容的特点和学生的思维特点,我选择了直观演示法、引导发现法、小组合作等方法进行教学,应用演绎推理。充分发挥老师的主导作用,调动学生的能动性,引导他们去发现问题、分析问题、解决问题、获取知识,从而训练思维、培养能力。

直观演示法:让孩子在教具中直观地表示出拼成的平行四边形与梯形的关系;

小组合作、活动探究法:引导学生动手操作用同样的梯形去拼平行四边形,合作交流,相互启发

运用演绎推理:探讨出拼成的平行四边形与梯形的关系后,运用演绎推理,实行归纳概括……获得结论。

组织变式,有层次练习,增加体验,应用知识解决问题。

对比分析法:通过对比一组高相等、上底与下底和相等的梯形面积,通过演绎推理可以把三角形看成上底为“0”的梯形,平行四边形可以看成上底上底、下底相等的梯形。

三、说学法

教学时,我发挥学生的主体作用,充分调动学生的各种感官参与学习,诱发其内在的学习需要和学习潜力,独立主动地探究知识,使他们不仅学会,而且会学。把学生的求知欲由潜在状态诱发为活动状态,借以培养学生主动探索的精神。在此基础上,通过学生的观察、比较、分析,培养学生的演绎推理能力。

采用小组讨论、同桌交流等方法各抒己见,让每一位学生都有展示自己的机会,以学生为中心,努力为学生营造一个轻松、愉快的课堂学习氛围。

四、说教学过程

为了有效地达成以上教学目标,突破重点与难点,体现新课标倡导自主学习方式,我设计以下几个环节来组织学生开展探究活动。

第一环节:复习,导入新课

从我们学过哪些平面图形?会计算它的面积吗?入手,计算这些图形的面积,复习三角形面积的计算的推导方法,为下面的新课教学做好准备,这是本节课新知的最近发展区。同时出示梯形,计算它的面积,很多孩子不会计算,产生学习新知的需要。

第二个环节:动手操作,探究公式

梯形面积课件教案 篇2

教学目标:

1、在理解的基础上掌握梯形面积计算公式的推导,并能运用公式正确计算梯形的面积。

2、通过动手操作、观察、比较,发展学生空间观念。培养学生分析、综合、抽象、概括和解决实际问题的能力。

3、掌握“转化”的思想和方法,进一步明白事物之间是相互联系,可以转化的。

教学重点:

梯形面积计算公式的推导和运用。

教学难点:

理解梯形面积公式的推导过程。

教学过程:

一、导入新课

1、平行四边形、三角形的面积公式是什么?它们的面积公式是怎样推导得到的?学生回答后,指名学生操作演示转化的方法。

2、出示梯形,让学生说出它的上底、下底各是多少厘米,并画出它的高。

3、教师导语:我们已经学会了计算长方形、正方形、平行四边形、三角形的面积计算方法,生活中还有很多物体面的形状是梯形,(出示一辆汽车侧面图)如汽车玻璃就是梯形的,那梯形的面积又该如何计算呢?我们已学会了用转化的方法推导三角形面积的计算公式,那怎样计算梯形的面积呢?这节课我们就来解决这个问题。(板书课题,梯形面积的计算)

二、新课展开

第一层次,推导公式

(1)猜想:

让学生先猜测一下梯形的面积可能和哪些量相关。

(2)操作学具

①启发学生思考:你能仿照求三角形面积计算公式的推导办法,把梯形也转化成已学过的图形计算出它的面积吗?

②学生拿出两个完全一样的梯形,拼一拼,教师巡回观察指导。

③指名学生操作演示。

学生预设:

方法一:把两个完全一样的梯形拼成一个平行四边形;

方法二:把一个梯形分成两个三角形;

方法三:把一个梯形分成一个平行四边形和一个三角形。

……

师:刚才同学们用自己的方法将梯形转化成我们学过的图形,利用这些方法都可以推导出梯形的面积计算公式。下面我们先选择其中的一种方法来共同推导梯形的面积。

④教师带领学生共同操作:拿两个完全一样的梯形,先重合,再按住梯形右下角的顶点,使一个梯形逆时针旋转180度,使梯形上、下底成一条走线,然后把第一个梯形的左边沿着第二个梯形的右边平行移动,直到成为一个平行四边形为止。

(2)观察思考

①教师提出问题引导学生观察。

a.用两个完全一样的梯形可以拼成一个平行四边形。这个平行四边形的底和高与梯形的底和高有什么关系?

b.每个梯形的面积与拼成的平形四边形的面积有什么关系?

(3)反馈交流,推导公式。

①学生回答上述问题。

②师生共同总结梯形面积的计算公式。

板书:梯形的面积=(上底+下底)×高÷2

问:梯形的面积公式中“(上底+下底)×高”求的是什么?

为什么要除以2?

③在小组内尝试上面另外几种不同的转化方法,如何推导出梯形的面积公式。

方法一:梯形的面积=上底×高÷2+下底×高÷2

=(上底+下底)×高÷2

方法二:梯形的面积=平行四边形面积+三角形面积

=上底×高+三角形的底×高÷2

=(2个梯形上底+三角形底)×高÷2

=(梯形上底+梯形下底)×高÷2

④字母表示公式。教师叙述:如果有S表示梯形的面积,用a、b和h分别表示梯形的上底、下底和高,怎样用字母表示梯形面积的计算公式呢?

学生回答后,教师板书:“S=(a+b)h÷2”。

第二层次,公式应用。

(1)出示课本第89页的例题。同学们知道我国最大的水电站是哪个吗?下面是水电站大坝的横截面图,教师指导学生理解“横截面”。

(2)学生尝试解答。

(3)展示台出示例题的解答,反馈矫正。

(4)完成例题下面的“做一做”。强调计算时不要忘记除以2。

三、巩固练习

(1)完成练习十七第1、2和3题。

(2)讨论完成练习十七第4和6题。

四、全课小结。(略)

板书设计:

梯形的面积计算

平行四边形的面积=底×高例3S=(a+b)h÷2

梯形的面积=(上底+下底)×高÷2=(36+120)×135÷2

S=(a+b)h÷2=156×135÷2

=10530(平方米)

梯形面积课件教案 篇3

一、学情分析

学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。学生在知识、能力、情感、态度等方面存在着一定的差异,他们原有知识能力结构的不同导致他们对数学问题的理解也不同,从而出现解决问题的策略的个性化和多样化。

因此本节课在探索梯形面积的计算公式时,老师为学生提供一个充足的自主学习空间,启发学生利用自己已有知识和经验,自主进行探究活动,进而感受学数学的价值,并获得成功的体验,产生积极学习的动力。

二、教材分析

"梯形的面积计算"是在学生学习了长方形、平行四边形及三角形的面积计算后安排的教学内容。由于在上述学习过程中,学生已通过操作、实验、探索等积累了探讨平面图形面积计算公式的基本方法与策略(即剪、移、转、拼等),并初步领悟了"新旧转化"的数学思想方法,这些都为学生自主研究、探索"梯形的面积计算"这一新的学习任务创造了必要的条件,为他们实现个体意义上的数学"再创造"打下了良好的基础。

三、教学目标设计

1.使学生理解并掌握梯形的面积计算公式,能正确地应用公式进行计算。

2.通过动手操作使学生经历公式的推导过程,培养学生的迁移类推能力和抽象概括能力,将转化策略的教学融入到学生的“拼、剪、画、说”活动中,使学生领悟转化思想,感受事物之间是密切联系的,使学生能应用所学知识解决实际问题,发展学生的空间观念。

3.引导学生运用转化的思想探索知识的变化规律,培养学生分析问题和解决问题的能力,通过演示和操作,让学生在拼剪中感受数学知识的内在美,培养团队合作意识。

四、教学重点难点

教学重点

1.理解并掌握梯形的面积计算公式。

2.运用梯形的面积计算公式解决问题。

教学难点

梯形面积公式的推导过程。

五、教学策略设计

我在导学"梯形的面积计算"时,并没有沿袭以往的教学思路,而是立足于学生已有的数学现实与经验,以此为出发点,通过引导学生经历"发现问题--作出假设--进行验证--实践应用"的"再创造"过程,让学生在数学的"再创造"过程中实现对新知的意义建构,解决新问题,获得新发展。

六、教学过程设计

教学环节一

一、汇报预习的成果

(预习单)

1、你还记得平行四边形、三角形面积公式吗?它们是怎么推导出来的?

2、对于梯形,你们已经知道了什么?

3、利用你手中的梯形,动手折折、剪剪、拼拼,你还能发现什么?

4、如何推导梯形的面积计算公式?谈谈你的想法。

学生汇报前三个:

生1:我发现任何梯形都可以分成两个三角形。

生2:我发现任何梯形都可以分成一个三角形和一个平行四边形。

师:善于观察,勇于实践,大家才会有如此丰富的发现。这节课,我们将在此基础上进一步研究"梯形的面积计算"。

(揭示课题)

设计意图

引导自由操作,有利于学生在较为轻松的状态下激活原有的"数学活动经验",为随后有目的的尝试、实验和验证作好铺垫。

教学环节二

二、"假设--实验--验证",引导学生体验数学知识"再创造"的过程。

师:汇报预习单第4个问题。如何推导梯形的面积计算公式?谈谈你的初步设想。

(学生分组交流。教师深入学生中倾听,并作必要的启发和引导)

生6:能不能像推导平行四边形面积公式那样,通过剪拼,将梯形也转化成已经学过的平面图形,如长方形、平行四边形或三角形,然后再来推导?

生7:可不可以像三角形那样,先合拼成一个大平行四边形,然后来推导?

生8:看看梯形的面积与已经学过的长方形、三角形及平行四边形等有什么联系,根据它们间的联系进行推导。

设计意图

交流对问题的初步设想,是准确把握学生已有数学现实的关键,也是实现"再创造"的开始。这对教师如何引导学生进行随后的"再创造"活动起着重要的作用。

教学环节

三、应用知识,自主探究

师:同学们是不是都有自己的想法了,想不想马上动手试试?

(学生独立或合作尝试转化。教师深入学生群体,听取意见,并对有困难的学生作必要的提示和启发)

教学环节四

设计意图

对数学材料实现"再创造",这不仅需要学生的独立思维,同时也需要组员间的相互启发以及教师的及时点拨与引导。也是上述教学过程中学生的"合作尝试"及教师的"个别指导"的意义。

四、汇报展示

师:不少同学已经成功地对自己的假设进行了验证,请向大家展示你们的研究思路与成果。

生1:我们组将两个完全一样的梯形拼合成一个平行四边形(见图1)。平行四边形的底相当于梯形上、下底的和,平行四边形的高相当于梯形的高。梯形的面积是拼成的平行四边形面积的一半,也即"梯形的面积=(上底+下底)×高÷2"。

师:能设法将新问题转化成已经学过的问题来解决,这本身就是一种创造。那么在这些方法中,你最欣赏哪一种,就请你借助手中的学具再次完成这一转化与推导过程,并在小组里进行交流。

设计意图:

引导学生及时交流,展示他们个性化的研究思路与成果,激发了他们成功的学习体验和进一步深入研究的积极愿望。

教学环节

五、在实践应用中拓展、延续数学知识的"再创造"。

师:(出示例题)请大家选择适合自己的面积计算公式求出梯形的面积。

(出示基本练习)测量数据,并计算出这些梯形的面积。

设计意图:

学生自由测量、计算并交流方法,教师对学生的学习过程作出即时评价和指导,鼓励学生对问题的不同理解及方法。

六、作业设计

师:学校决定在操场东侧宽10米的长方形空地上建造一些形状各异的梯形花坛。如果请你来设计,你觉得怎样设计比较合理?画出设计图,并预算出每一个花坛的占地面积。

(学生自由结合,分组进行构思、设计,并就占地面积进行计算与交流)

实践性练习又一次激发了学生"再创造"的热情,并为他们创造性地解决问题提供了机会,为提升他们的实践能力和创新品质营造了广阔的空间。

七、板书设计

梯形的面积

梯形的面积=(上底+下底)×高÷2转化

S梯形=(a+b)×h÷2(学生的方法展示)

八、预设效果

本堂课就学生来说的会在一次次思考和动手操作的过程中体会数学学习的乐趣。

九、课外知识的准备

了解多种转化的方法。

梯形面积课件教案 篇4

一、说教材

1、说课内容:《梯形面积的计算》,这一课内容是在学生学会计算平行四边形、三角形面积的基础上进行教学的。

2、教学目标:

认知目标:使学生理解梯形面积计算公式,能正确计算梯形面积。

能力目标:通过操作观察比较发展学生的空间观念,学生经历梯形面积公式的探索过程,进一步感受转化的数学思想,进一步培养学生的观察、分析、概括、推理和解决实际问题的能力,

情感目标:让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲,陶冶情操。培养学生探索精神和合作精神。

3、教学重、难点:

重点:使学生掌握梯形面积的计算公式。

难点:理解梯形面积计算公式的推导过程。

二、说教法与学法

1、根据几何图形教学的特点,我采用了以下几点教法:

①充分发挥学生的主体性,让学生通过课堂讨论、相互合作、实际操作等方式,自主探索、自主学习,使学生在完成任务的过程中不知不觉实现知识的迁移和融合;

②有目的地运用知识迁移的规律,引导学生进行观察、比较、分析、概括,培养学生的逻辑思维能力。

2、通过本节课的教学,使学生掌握一些基本的学法:

①让学生学会以旧引新,掌握并运用知识迁移进行学习的方法;

②让学生学会自主发现问题,分析问题,解决问题的方法。

三、说教学过程

新课程的基本理念就是要让学生“人人学有价值的数学”,强调“教学要从学生已有的经验出发,让学生亲身经历将实际问题抽象成数学模型,并进行解释与应用的过程,激发学生的学习积极性,向学生提供充分从事数学活动的机会,让他们积极主动地探索、解决数学问题。所以本课在教学思路上淡化教师教的痕迹,突出学生学的过程。从而充分体现了学生是学习的主人,教师只是学生学习的组织者、引导者与合作者。根据本课教学内容、学生的实际认知水平和新课程理念的指导下,本课的教学设计如下:

(一)、创设情境,引出问题。

1、课件出示“神七”发射实况

2、谈话引出课题

梯形的面积如何计算?引出学习的内容。〈这个环节的设计主要是通过创设“神七”发射的情境,在学习新课之前激发学生的学习兴趣,让学生怀着由好奇引起的理智上的震动进入认知活动方面的探索。〉

(二)、自主探究,合作交流

1、直接切入主题:对于梯形的面积你们打算怎样找到它的计算方法?(让学生说说自己的思路——把梯形转化为我们学过的图形。)

〈这一环节的设置意在激活学生思维,为学生提供创新机会,让学生主动参与,培养他们从小树立探寻知识的意识的良好学习习惯,变“要我学”为“我要学”,也为新课的展开起好前奏。〉

2、动手操作前让学生先对梯形进行分类。(可分为:一般梯形、等腰梯形和直角梯形)

3、自主探究,合作学习

学生小组讨论,动手操作。〈教师可有意识地参加到小组中去合作、辅导〉

4、分小组展示汇报,教师深化点拔。

教师板演推导过程。

5、引导学生用字母表示公式:s=(a+b)×h÷2

6、应用公式,尝试计算梯形面积(出示一个基本图形让学生计算)

〈这一环节意在通过让学生拼一拼、看一看、想一想、做一做,让学生主动参与到数学活动中,亲自去体验,让学生运用自己已有的知识,大胆提出假想,共同探讨,互相验证,更强烈地激发学生探究学习的兴趣,更全面、更方便地揭示新旧知识之间的联系。这种让学生在活动中发现、活动中体验、活动中发散、活动中发展的过程,真真正正地体现了以人的发展为本的教育理念。〉

梯形面积课件教案 篇5

今天我说课的题目是《梯形面积计算》 ,下面我从说教材、说学情、说教学理念、说教法、说学法、说教学准备、说教学流程、说板书设计几个方面对本课的教学进行一下阐述:

一、说教材。

《梯形面积计算》是义务教育标准实验教材小学数学苏教版五年级上册第二单元第三课时 的内容,在课本19页至20页。这部分教学内容在《数学课程标准》中属于“(空间与图形)”领域的知识。经过前面的学习,学生已经认识了梯形特征,学会了学会平行四边形、三角形面积的计算,并形成一定空间观念的基础上进行教学的

,教材注意创设情景,从学生已有的知识和经验出发,适时的提出如何计算梯形面积的问题,并引导学生探究和发现,同时启发学生学生想,怎样仿照求三角形面积的方法把梯形转化为已学过的图形来计算它的面积,使学生进一步学习用转化的方法思考。教材中的插图给出了转化的操作过程,同时继续渗透旋转和平移的思想,以便于学生理解。在操作的基础上,引导学生自己来总结梯形面积的计算公式,通过概括总结,提高学生的思维水平。进而再利用字母表述出新学的计算公式,以提高学生的抽象概括能力。最后通过例题进一步说明怎样应用梯形面积的计算公式来解决实际问题,并进行相应的练习。学好这部分知识有助于学生理解梯形面积计算的推导过程掌握梯形面积算,也是为今后进一步学习较复杂的组合图形的面积计算知识打下坚实的基础。

根据这一部分教学内容在教材中的地位与作用,结合教材以及学生的年龄特点,我制定以下教学目标:

⒈ 知识与技能目标:让学生联系实际和利用生活经验,通过观察、操作、对比等学习活动,认识 图形之间的内在联系,理解并掌握梯形面积的计算公式,并能运用所学知识解决问题。

⒉ 过程与方法目标:在探究过程中,培养学生合作意识,动手实践能力;提高学生的应用意识,培养学生的自主探究能力。

⒊ 情感态度与价值观目标:使学生在自主参与活动的过程中,进一步体验学习成功带来的快乐,体验知识的形成过程,实现自主发展。

本课的教学重点是:理解并掌握梯形的面积计算公式 教学难点是:梯形面积公式的推导过程。

二、说学情

五年级的学生生动活泼、富有好胜心理,并且大部分学生已养成良好的学习习惯,能在课堂上大胆地表达自己的见解。因此,在这节课中我设计了多种活动,大胆地放手让学生自主探究、合作交流,充分发挥学生的主体作用。从而使学生轻松学到知识。

三、说教学理念:

课堂教学首先是情感成长的过程,然后才是知识成长的过程。

学生的学习过程是一个主动构建、动态形成的过程,教师要激活学生的原有经验,激发学生的学习热情,让学生在经历、体验和运用中真正感悟新知。

数学学习过程理应成为学生享受教师服务的过程。 基于以上教学理念,我在教学中遵循“引导探究学习,促进主动发展”的新教改思路。力求体现教学中的主动学习原则、最佳动机原则、阶段性渐进原则和直观性原则。

四、说教法:

根据教学内容的特点,为了更好地突出重点、突破难点,按照学生的认知规律,遵循教师为主导、学生为主体、训练为主线的指导思想。我在教学中采用以情景教学法、观察发现法为主,以多媒体演示法为辅的教学方法。在教学中我注意创设情景,设计启发性思考问题,引导学生思考。并适时运用电教媒体化静为动,让学生更直观地学到知识,从而激发学生探究知识的欲望,使学生始终处于主动探究问题的积极状态,培养学生的思维能力。

五、说学法

⒈ 根据自主性和差异性原则,让学生在探究学习的过程中,自主参与知识的发生、发展和形成过程,使学生掌握知识。达到人人学数学的目的。

⒉ 改变学生的学习方式,让学生合作学习,培养学生的合作意识。给学生充足的空间,开展探究性学习,让他们进行独立思考,并与同伴交流,亲身经历提出问题、解决问题的过程,为学生创设一个轻松愉快的学习环境,易于学生积极主动获得新知并体会学习的乐趣。

六,说教学准备:

教师准备:根据教材内容自制的多媒体课件以及课前方格纸剪的几组完全一样的梯形、直尺等教具。学生以小组为单位准备几组完全一样的梯形学具。

七,说教学流程:

为了突出教学重点、突破教学难点,达到已定的教学目标,我安排了以下四个教学环节,即:

创设情景,提出问题——尝试探究,解决问题——多层训练,深化知识——质疑总结,反思评价。

每个环节的具体教学设计如下:

第一环节:创设情景,提出问题。

首先,我播放根据教材内容自制多媒体图片,引出课本主题图。接着引导学生认真观察,提出与有关的数学问题。教师指出本课要重点研究的几个问题是:梯形面积计算公式的推导及运用,以及在生活中的运用。

[本环节的设计意图:精彩的开头,不仅能使学生很快由抵制状态进入兴奋状态,还能使学生把知识的学习当成自我需要,使教学任务顺利完成。在这个环节中,我从学生喜闻乐见的图片引入,更接近学生生活,更能让学生接受,从而激发学生深厚的学习兴趣和求知欲望,快速的进入学习高潮。

第二环节:复习旧知,铺垫诱导

复习求平行四边形和三角形的面积。要求学生回忆三角形面积计算公式的推导过程。通过复习提问,从而唤起学生的回忆,为沟通新旧知识的联系,奠定基础。

复习梯形的特征。拿出梯形的图形,回忆梯形的特征(上底,下底,高,面积)。

第三环节:尝试探究,解决问题。

本环节我设计了以下几个教学活动。

1、诱发猜想,主动探索

启发学生运用已学的知识,大胆提出猜测,激发学生的探索新知的欲望。给出一般梯形(上底,下底,高),老师提出疑问:你们如何去求梯形面积。精心设计好这个开端,很自然地把学生带入新知的学习环节。这样既激发了学生探索新知的欲望,又使学生明确了探索目标与方向。

生:打算仿照求三角形面积的`办法,把梯形转化成已学过的图形,再计算梯形的面积。

生:仿照求三角形面积的办法,用两个相同的梯形合成一个平行四边形,再计算梯形的面积。

2、验证猜想,体验成功

根据猜想,给出多个相同或不同的梯形模具和记录表,小组合作动手操作,并让不同的验证方法在实物投影仪上加以演示,使学生感受“两个完全一样的梯形都可以拼成一个平行四边形”,同时并叙述梯形与转化后图形之间的关系。

平行四边形的底=梯形的 上底+下底 平行四边形的高=梯形的 高

4、抽象概括,总结提高 学生经过自主探索合作交流,有的感悟出了梯形面积公式,但不一定讲得清道理,有的学生在公式的理解上存在障碍,基本处于“悱”、“愤”状态。这时应抓住时机,引导学生梳理思路找出最简便的解题方法,接着就重点演示两个完全一样的梯形拼成一个平行四边形,让学生观察原梯形和所拼图形之间有什么关系?师生共同推导出梯形面积的计算公式,并用字母表示出来,这时候计算公式的得出,也就水到渠成了

根据平行四边形面积=底 × 高 所以两个相等梯形面积=平行四边形的面积

因此一个梯形面积=平行四边形面积的一半

3、加深感受,完善结构

学生对一般梯形的面积推导已经有了深刻认识,但对梯形的知识结构还不够完善。这时老师就应继续引导学生对知识的深化。提出问题:是否任意梯形面积都可用这个公式计算呢?出示不同的等腰梯形,直角梯形的模具,让学生小组动手实验,自己研究,分析,记录。感知“任意两个完全一样的梯形都可以拼成一个平行四边形,并且任意的梯形面积=(上底+下底)×高÷2,并引导学生用字母表示公式,。字母表示:S=(a+b)h÷2

[本环节的设计意图是:《数学课程标准》指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者”。根据这一教学理念,在本环节中,我前后组织学生进行了几次自主探究活动,让学生在保持高度学习热情和探究欲望的活动过程中,始终以愉悦的心情,亲身经历和体验知识的形成过程。培养学生的探究能力、分析思维能力,激发他们的创新意识、参与意识;让学生在体验成功的同时也掌握和体会数学的学习方法。让学生在探究活动中,实现自主体验,获得自主发展。]

第四环节:多层训练,深化知识。

本环节我依据教学目标和学生在学习中存在的问题,设计有针对性、层次分明的练习题组(基本题、变式题、拓展题、开放题)。让学生在解决这些问题的过程中,进一步理解、巩固新知,训练思维的灵活性、敏捷性、创造性,使学生的创新精神和实践能力得到进一步提高。

[本环节的设计意图是:通过各种形式的练习,进一步提高学生学习兴趣,使学生的认知结构更加完善。同时强化本课的教学重点,突破教学难点。]

第五环节:质疑总结,反思评价。

这一环节,我提出以下几个问题: ⑴ 今天你学会了什么?⑵ 你有什么收获? ⑶ 你有什么感想?⑷ 你要提醒大家注意什么?⑸ 你还有什么疑惑?⑹ 你感觉自己今天表现如何?你感觉你组内的其他同学表现如何?

让学生以小组为单位,每位学生充分发言,交流学习所得。在评价方面:先让学生自评,接着让学生互评,最后教师表扬全班学生,以增强学生的自信心和荣誉感,使他们更加热爱数学。

[本环节的设计意图是:通过交流学习所得,增强学生学习数学知识的信心,培养学生敢于质疑、勇于创新的精神。]

八、说板书设计。

科学的板书设计往往对学生全面理解学习内容,提高学习效率,起到事半功倍的作用。本课的板书设计包括:

梯形面积计算

平行四边形面积= 底 × 高

/\

(上底+下底)×高÷2

梯形的面积=(上底+下底)×高÷2

S=(a+b)h÷2 这样的板书设计既条理清楚、简单明了、一目了然;同时又突出了本课的教学重点,对学生的学习起到帮助作用。

以上是我对梯形面积计算这部分知识的分析与教学设计。由于时间短促,有很多不当之处,希望各位评委老师多加批评指正,我的说课到此结束。谢谢大家!

梯形面积课件教案 篇6

一、教材分析:

1.关于大纲对几何知识的教学要求。大纲指出:“几何初步知识的教学要充分利用和创造各种条件,引导学生通过对物体、模型等的观察、测量、拼摆、画图、制作、实验等活动,掌握形体的基本特征和面积、体积的计算方法,并注意在实践中应用,以利于培养初步的空间观念。”

2.关于本课知识在整个学段,在本册教材知识体系中的地位、作用。本课知识是对前面所学的长方形、正方形、平行四边形和三角形面积知识的发展、巩固和应用,梯形的面积是小学阶段的几何知识的重要内容,为后面的组合图形的求积知识以及进一步学习立体几何知识做好铺垫。学习梯形的面积能够较好地培养学生运用知识解决实际问题的本领,培养学生的思维能力和空间观念,提高学生的数学素质。

3.关于教材的编排意图:

(1)本课教学的知识点是掌握梯形的面积计算公式,运用公式解决实际问题。

(2)本课知识在编排时是按照知识的内在的逻辑顺序和学生的认知顺序进行有序编排的。第九册中的几何初步知识是在学生学过直线和线段、角和垂线、平行线、长方形和正方形的周长和面积的基础上进行讲解的,而梯形的面积计算是在学生学习了梯形的概念、特征及平行四边形、三角形的面积之后进行的,尤其是在学习过三角形的面积之后,学生对用两个完全一样的图形拼成一个新的已学过的图形的计算方法已初步掌握,这为本课学习求梯形面积的思想方法打下了基础,所以教学时一定要放手指导学生根据旧知识自己发现规律,在掌握运用规律的同时发展学生的思维。

4.关于教学目标:

(1)使学生理解梯形面积计算公式的来源,能够运用公式正确地计算梯形的面积,并会计算一些简单的有关梯形面积的实际问题。

(2)初步培养学生的逻辑思维能力和空间观念。

(3)结合教材教育学生,梯形面积计算在实际中有广泛的应用,要认真学好这些知识,以后更好地为社会服务。同时通过梯形面积公式的推导,渗透辩证唯物主义思想,使学生初步懂得用运动、变化的观点来观察事物。

5.关于教学重点:掌握和应用梯形面积的计算公式。

6.关于教学难点:梯形面积计算公式的推导。

二、教学指导思想及教法、学法设计:

(一)教学的指导思想和教改意图

1.充分体现现代素质教育的指导思想,把数学学习过程变为数学活动过程,让学生去主动探索发现数学知识的形成过程,以体现素质教育的精神和数学教学的新观念,改变传统的以传授法为主的教学方法,提高学生的数学素质。

2.充分体现以教师为主导,以学生为主体,以训练为主线的指导思想。让学生在教师有目的地指导下亲自摆一摆、拼一拼、剪一剪、想一想、看一看,通过动手、动口、动脑、动耳,调动学生学习数学的积极性,在整个教学过程中注意训练学生的数学心理素质,加深数学知识的印象,提高学习效率。

3.充分体现练好双基、发展智力、培养能力的指导思想。在练好基础知识,形成基本技能的基础上,适时渗透迁移、转化的数学思想方法和思考策略,对数学知识进行抽象概括、分析综合、比较推理,提高学生的初步逻辑思维能力和空间观念。

(二)教法、学法设计

1.运用电教、实物演示、操作等直观教学手段进行教学。利用投影仪显示图形的合并、分化过程,将两个完全一样的梯形拼成一个平行四边形,再将一个平行四边形切分成两个完全一样的梯形,培养学生的分析、综合能力。让学生在剪拼图形的实践活动中感知梯形面积的推导过程。

2.巧妙地创设探究问题的情景。在导入新课时,通过拼图游戏的形式让学生自己去操作发现“将两个完全一样的梯形拼成一个平行四边形”的数学思想方法,在教学过程中把学生的积极性调动起来,投身于数学规律的探索之中。

3.运用迁移规律学习数学新知。平行四边形和三角形的面积公式知识是学习本课的知识基础,教学中必须充分利用这两个基础知识以及学习三角形面积公式的推导方法,培养学生运用旧知识学习新知识的能力,有效地进行知识的正迁移。

4.运用尝试教学法。①在探索梯形面积公式时,进行尝试;②学习例3时进行尝试。

5.运用化归的思维方法学习本课知识。化归法就是将当前有待解决的问题,经过转化,归结为已经解决或容易解决的问题。本课教学中,先把梯形的面积转化为求平行四边形面积的一半,计算平行四边形面积时,又把平行四边形的底和高转化为梯形的上底和下底和梯形的高,从而推导出梯形面积的计算公式,这样可以紧紧抓住新旧知识的连接点和分化点,使学生形成良好的认知结构。

6.讲练结合,及时进行反馈、矫正。在新授过程中依靠学生的实践活动来探索规律;揭示公式之后,立即学习例3巩固新知;在巩固练习中,设计有坡度的题目检测学生的学习情况,当堂完成,及时反馈,培养学生正确的技能和思维能力。

(三)教具、学具准备:投影仪及若干制好的图片,铅笔刀、粉笔。学生自制若干梯形图片、一个平行四边形图片、一个一平方厘米的小正方形图片、剪刀一把。

三、教学过程:

根据以上的教材分析、教学的指导思想及教学设计,本课按以下几个教学步骤进行教学:

(一)复习铺垫,准备迁移。(约3分钟)

首先投影出示一组平行四边形图形,并复习平行四边形公式,板书:平行四边形面积=底×高。然后投影出示一组三角形图形,并复习它的面积计算公式,板书:三角形的面积=底×高÷2。再投影出示一组包括一般梯形、直角梯形、等腰梯形的各种梯形,提问这是什么图形?怎样判断它们是梯形,指出它们的底和高。这一过程为知识的迁移做好铺垫准备工作。

(二)游戏导入,激趣引新。(约4分钟)

先让学生用准备好的若干梯形纸片拼图,并有目的地选择几个图形在投影中显示,如图:

(岗亭)(轮船)(台灯)(飞机)

然后让学生用准备好的1平方厘米的小正方形图片分别在图中的各种梯形中“铺”方格,提问能否很快准确数出究竟有多少个1平方厘米的小方格。

在此基础上,教师巧妙提问:“能不能把两个完全一样的梯形拼成我们熟悉的图形,来探索梯形面积的计算方法呢?”此时,教师用彩笔将图中两个完全一样的梯形圈起来,学生定会受到三角形面积公式推导方法的启发,积极动手拼图。这一过程可以较好地创设探究问题的情景,使学生的思维处于愤悱状态。

(三)操作思考,探索规律。(约12分钟)

第一步:学生在自己座位上动手操作,将游戏拼图中两个完全一样的梯形拼成一个平行四边形或长方形或正方形。

第二步:将学生操作过程反映在投影上,观察双片投影演示:先显示两个完全一样的梯形;再抽移转动图片,拼成一个平行四边形。然后出示思考题。

①原来是几个什么图形?拼成一个什么图形?

②拼成的平行四边形的底和高与梯形的上、下底及高有什么关系?

提问板书:平行四边形的底=梯形上底+梯形下底

平行四边形的高=梯形的高

③拼成的平行四边形的面积和梯形的面积有什么关系?提问后板书:梯形的面积=平行四边形的面积÷2

第三步是学生再观察教师将一个平行四边形切分成两个完全一样的梯形。然后教师指导学生将自带的平行四边形也剪成两个完全一样的梯形,思考:

①把平行四边形剪开后得到什么图形?

②剪出的梯形上底、下底、高与平行四边形的底、高有什么关系?

③剪出的一个梯形面积与平行四边形面积有什么关系?

第四步是判断推理、得出规律。提问根据板书和操作,你认为梯形面积怎么求:

根据提问板书:

梯形面积=平行四边形面积÷2=底×高÷2(平行四边形)

=(上底+下底)×高÷2(梯形)

第五步是将梯形的面积公式与三角形的面积公式加以对比,强调“÷2”的道理。

第六步是看书进一步验证自己推导公式的思考方法是否正确。

这一过程通过“拼”和“剪”的两个实践活动,培养学生的分析、综合能力,并适时进行转化,沟通新旧知识的联系,通过看、听、动、思等活动充分感知公式的推导过程。加深对公式中“上底+下底”和“÷2”的理解。

(四)学习例题,运用规律。(约5分钟)

先提问要求梯形的面积必须知道什么条件,同时告诉学生梯形面积公式在生产实践中有广泛的应用,我们要学好它,为祖国建设服务,然后出示例3,读题后教师用铅笔刀垂直切下一支粉笔,告诉学生小刀切后出现的图形叫做“横截面”,最后让学生独立尝试解题,计算后看书对照。

这一过程是教育学生梯形面积公式在实际中有着广泛的应用,再让学生尝试运用公式进行解题,理解并运用公式。

(五)及时练习,反馈巩固。(设计课堂检测,约8分钟)

第一题是基本题,一个梯形的上底是5米,下底是8米,高是6米,面积是平方米。让学生对照条件将数字带入公式进行计算。

第2题指出拼图游戏中的一个梯形的上、下底和高的长度,口头列式求它的面积,这样照应开头。

第3题是对各种不同类型的、变式的梯形进行口头列式求出面积。

第4题是课本第71页第3题,看图中堤坝中的数字进行列式解答。

第5题是选择填空(如下图)。目的在于让学生正确地找出图中的上底、下底和高,求出面积。

题目是:正确的求积算式①(15+8)×4÷2

是()②(15+8)×10÷2

③(4+10)×15÷2

④(4+10)×8÷2

第6题是设计一条发展智能的提高题给学生练习,培养学生的思维能力。题目是:将三个边长是5厘米的正方形连接横放,后锯掉两边正方形的一个角,形成一个梯形(如图),求梯形的面积。

这一过程设计的目的是通过不同层次的练习,巩固本课所学知识,提高学生运用公式解决问题的能力,发展学生的思维。前面1、2、3题是口头回答,第4题完整解答,第5题进行讨论解答,第6题是智能发展题,一部分学生可以在课外完成。

(六)完成课堂作业,进行课堂总结。(约8分钟)

课堂作业是练习二十第1题三条题目,课后完成练习二十第2题。

课堂总结提问:1.今天我们学习了什么知识?

2.梯形面积公式中为什么要“除以2”?它与三角形面积公式有什么相同点和不同点?

这一过程设计的目的是让学生独立进行课内作业,当堂完成,检测课堂教学效果,及时娇正。课堂总结加深对所学知识的印象,并进一步理解公式中“除以2”的道理。

附:板书设计:

梯形的面积

平行四边形面积=底×高

平行四边形的底=梯形的上底+梯形的下底

三角形面积=底×高÷2平行四边形的高=梯形的高

梯形面积=平行四边形面积÷2

=底×高÷2

=(上底+下底)×高÷2

梯形面积课件教案 篇7

教学目标:

1、通过学习,学生理解、掌握梯形面积的计算公式,并会运用。

2、学生在梯形面积计算公式的推导过程中,发展空间观念,领悟转化思想,感受事物之间是密切联系的。

3、学生在探究中思考,在思考中发展,在发展中快乐,体验到数学是有趣的、有用的、是美的,激起学习数学的兴趣和自觉性。

教学重难点:

理解并掌握梯形面积的计算公式,并能运用公式解决简单的实际问题。

让学生利用已有知识和学习方法自主探究,发现并掌握梯形的面积计算方法。

教学片断实录:

师:同学们喜欢什么体育运动?喜欢篮球吗?(课件出示篮球场地)

你们知道这一处是什么区域吗?(课件点击闪动)

生:这是3秒钟限制区,是限制对方队员在这个区域内停留不能超过3秒钟。

师:它是什么形?

师:求这一区域的大小就是求。

生:梯形的面积

师:但是梯形面积的计算方法我们还没有学过,你猜想梯形的面积可能与什么有关?你想怎样推导出梯形面积的计算方法呢?

师:同学们都很有想法,那到底是不是像同学们想的那样呢?让我们来动手验证一下。

在动手操作之前,老师提出三点建议:

(1)想想能把梯形转化成学过的什么图形。

(2)根据转化图形与梯形的关系,推导出梯形面积计算的方法。

(3)填写好汇报单,比一比,哪个小组的动作快。

明白了吗?开始吧!

师:刚刚同学们把梯形转化成了多种图形!现在让我们请这几个小组的同学说说他们的想法。大家注意听,你们的意见相同吗?你还有补充吗?

汇报:平行四边形:两个怎样的梯形可以拼成一个平行四边形?他的叙述严密吗?有补充吗?听到了吗?他的叙述多严密啊!老师喜欢你用的这个词(板书):完全相同,你能解释一下什么叫完全相同吗?

你叙述的条理多清晰啊!语言真流畅!我们把掌声送给他!

还有的同学拼成的是长方形,让我们来看看他们是怎么拼的。

长方形:这个方法也很好。

正方形:正方形是特殊的长方形,那你们的推导的结果应当是一样的。是吗?

师:同学们,观察这些图形,无论长方形还是正方形,都是。再看,(移动图形)你发现什么了?

你很善于观察和总结!

过渡:看来,只要是两个完全相同的梯形,就能拼成一个。(板书)平行四边形的面积我们学过:(板书)

然后我们就可以根据两种图形间的联系来推导梯形的面积了。谁来帮老师梳理一下。

平行四边形的底就是梯形的。,平形四边形的高就是,所以梯形的面积为什么除以2?(用笔画)

刚才展示的都是拼组的方法,还有些同学只用一个梯形就完成了任务,他们用了分割的方法。你们都看懂了吗?请这个小组的同学来简单说说你们是怎么推导的。你们小组的方法真独特!方法不同,那你们推导的结论呢?

总结:同学们真爱动脑筋,(手势)想出了这么多不同的方法。但这些方法都有共同点。谁来说说?

预设A:都用了转化的思想

预设B:推导出的梯形面积公式都相同。

是不是这样啊?那大家就一起把我们用转化的方法推导出的梯形面积公式读一读吧!(课件)如果用字母表示你会吗?

在这个公式中,哪里应该引起我们注意呢?在计算的时候一定不要忘记。

梯形面积课件教案 篇8

一、说教材

1、说课内容:九年义务教育六年制第九册第三单元第3小节《梯形面积的计算》。这一课内容是在学生学会计算平行四边形、三角形面积的基础上进行教学的。

2、教学目标:

认知目标:使学生理解梯形面积计算公式,能正确地计算梯形面积。

能力目标:通过操作观察比较发展学生的空间观念,学生经历梯形面积公式的探索过程,进一步感受转化的数学思想,进一步培养学生的观察、分析、概括、推理和解决实际问题的能力,

情感目标:让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲,陶冶情操。培养学生探索精神和合作精神。

3、教学重、难点:

重点:理解梯形面积计算公式的推导,并能正确运用梯形面积的计算公式进行计算。

难点:运用不同的方法推导出梯形的面积公式。

二、说教法与学法

1、根据几何图形教学的特点,我采用了以下几点教法:

①充分发挥学生的主体性,让学生通过课堂讨论、相互合作、实际操作等方式,自主探索、自主学习,使学生在完成任务的过程中不知不觉实现知识的迁移和融合;

②有目的地运用知识迁移的规律,引导学生进行观察、比较、分析、概括,培养学生的逻辑思维能力。

2、通过本节课的教学,使学生掌握一些基本的学法:

①让学生学会以旧引新,掌握并运用知识迁移进行学习的方法;

②让学生学会自主发现问题,分析问题,解决问题的方法。

三、说教学过程

新课程的基本理念就是要让学生“人人学有价值的数学”,强调“教学要从学生已有的经验出发,让学生亲身经历将实际问题抽象成数学模型,并进行解释与应用的过程,激发学生的学习积极性,向学生提供充分从事数学活动的机会,让他们积极主动地探索、解决数学问题。所以本课在教学思路上淡化教师教的痕迹,突出学生学的过程。从而充分体现了学生是学习的主人,教师只是学生学习的组织者、引导者与合作者。根据本课教学内容、学生的实际认知水平和新课程理念的指导下,本课的教学设计如下:

(一)、复习旧知引出新课

1、回忆已经认识的平面图形。说说平形四边形和三角形面积的计算公式,并回想三角形面积的推导过程。

2、谈话引出课题

关于梯形你们想知道什么?(让学生说说自己的想法)

〈这个环节的设计主要是通过复习提问,从而唤起学生的回忆,为沟通新旧知识的联系,奠定基础。也就是为梯形面积的推导做好铺垫,并在学习新课之前激发学生的学习兴趣,让学生怀着由好奇引起的理智上的震动进入认知活动方面的探索。〉

(二)、讲授新课

1、直接切入主题:

对于梯形的面积你们打算怎样找到它的计算方法?(让学生说说自己的思路——把梯形转化为我们学过的图形。)

〈这一环节的设置意在激活学生思维,为学生提供创新机会,让学生主动参与,培养他们从小树立探寻知识的意识的良好学习习惯,变“要我学”为“我要学”,也为新课的展开起好前奏。〉

2、动手操作前让学生先对梯形进行分类。(可分为:一般梯形、等腰梯形和直角梯形)

3、研究建议:

①选择喜欢的梯形,按照“转化”的思路来研究。

②小组分工合作,考虑不同的转化方法。

4、自主探究,合作学习

学生小组讨论,动手操作。〈教师可有意识地参加到小组中去合作、辅导〉

5、分小组展示汇报,教师深化点拔。

指名说说自己是怎样做的。(边说边演示其过程)

〈两个完全一样的梯形拼成〉〈沿着高切割、拼摆〉〈沿着一条腰的中线切割、拼摆〉….

(上底+下底)×高÷2(上底+下底)÷2×高(上底+下底)×高÷2……

刚才同学们采用不同的割补、拼摆等方法,将梯形转化成平行四边形、长方形或三角形,发现了它们之间的关系,推导出了不同的面积公式,运用这些公式,我们都可以计算出梯形的面积。只不过,这些公式从形式上看略有不同,我们可以把它们整理成:

梯形的面积=(上底+下底)×高÷2

7、引导学生用字母表示公式:S=(a+b)×h÷2

8、应用公式,尝试计算梯形面积(出示一个基本图形让学生计算)

〈这一环节意在让学生主动参与到数学活动中,亲自去体验,让学生运用自己已有的知识,大胆提出假想,共同探讨,互相验证,更强烈地激发学生探究学习的兴趣,更全面、更方便地揭示新旧知识之间的联系。这种让学生在活动中发现、活动中体验、活动中发散、活动中发展的过程,真真正正地体现了以人的发展为本的教育理念。〉

(三)、深化巩固

1、学习例1

(1)、借助教具演示,理解“横截面”的含义。

(2)、弄清渠口、渠底、渠深各是梯形的什么?

(3)、学生尝试计算横截面积。

〈巩固新知是课堂教学中不可缺少的一个过程,这一环节是为了将学生的学习积极性再次推向高潮,能更好地运用公式计算梯形面积,从中培养了学生解决简单实际问题的能力。〉

(四)、总结,反思体验

回想这节课所学,说说自己有哪些收获?

〈这个环节主要是再次把学习的主动权交给学生,让学生在回忆过程中更清楚地认识到这节课到底学了什么,通过谈感想,谈收获,学生间互相补充,共同完善,有利于学生学习能力的培养,同时体验学习的乐趣和成功的快乐。〉

(五)、课外作业

练习十八第1——3题。

〈本课的作业体现了“课已终,趣犹存”这一特点。通过作业练习教师能从中得到反馈信息,能了解自己的教学效果,以促进教法的改进。〉

梯形面积课件教案 篇9

一、旧知链接:

1、两个()的三角形可以拼成一个平行四边形。

2、一个三角形的面积是4.8㎡,与它等底等高的平行四边形的面积是()。

二、课堂导入:

三、学习目标:

1、经历梯形面积的探究活动,体验割补法在探究中的应用。

2、掌握梯形面积计算公式,并能正确进行梯形面积的计算。

3、能运用梯形面积计算公式解决相关的实际问题。

重点:运用梯形面积计算公式解决相关的实际问题。

难点:梯形面积计算公式的推导。

四、自主探究,合作交流

学习新知一:自研课本第59页内容

问题1:推导梯形面积公式

方法一:拼摆法。拼摆两个完全相同的梯形,一个正着放,另一个倒过来放,拼成了一个()形。(按步骤画出图形,标明梯形的上底、下底和高)

我发现:拼成的平行四边形的底是梯形的,拼成的平行四边形的高是梯形的,拼成的平行四边形的面积是个梯形的面积。

方法二:割补法。沿着梯形两腰的中点剪开,把梯形分成两个小梯形,再把两个小梯形拼成一个平行四边形。(先按步骤画出图形,再标明梯形的上底、下底和高)

我发现:拼成的平行四边形的底是梯形的,拼成的平行四边形的高是梯形的,拼成的平行四边形的面积就是原梯形的面积。

归纳总结:梯形的面积=字母式:

问题2:图中梯形的面积是多少?(注意:列综合算式)

学习新知二:求梯形的高。

问题1:根据梯形的面积公式推导出已知梯形的上、下底及面积,

梯形的高=

问题2:一个梯形的上底是2cm,下底是10cm,面积是21c㎡。它的高是多少cm?

能力提升:1、已知梯形的下底、高及面积,你能推导出梯形的上底公式吗?

梯形的上底=

2、已知梯形的上底、高及面积,你能推导出梯形的下底公式吗?

梯形的下底=

五、实战演练,我最棒!(完成课本第60页的“练一练”第3题做书上,其余题做导学案上)

六、课堂总结,整理学案

梯形面积课件教案 篇10

一、说教材

1、说课内容:《梯形面积的计算》,这一课内容是在学生学会计算平行四边形、三角形面积的基础上进行教学的。

2、教学目标:

认知目标:使学生理解梯形面积计算公式,能正确计算梯形面积。

能力目标:通过操作观察比较发展学生的空间观念,学生经历梯形面积公式的探索过程,进一步感受转化的数学思想,进一步培养学生的观察、分析、概括、推理和解决实际问题的能力,

情感目标:让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲,陶冶情操。培养学生探索精神和合作精神。

3、教学重、难点:

重点:使学生掌握梯形面积的计算公式。

难点:理解梯形面积计算公式的推导过程。

二、说教法与学法

1、根据几何图形教学的特点,我采用了以下几点教法:

①充分发挥学生的主体性,让学生通过课堂讨论、相互合作、实际操作等方式,自主探索、自主学习,使学生在完成任务的过程中不知不觉实现知识的迁移和融合;

②有目的地运用知识迁移的规律,引导学生进行观察、比较、分析、概括,培养学生的逻辑思维能力。

2、通过本节课的教学,使学生掌握一些基本的学法:

①让学生学会以旧引新,掌握并运用知识迁移进行学习的方法;

②让学生学会自主发现问题,分析问题,解决问题的方法。

三、说教学过程

新课程的基本理念就是要让学生“人人学有价值的数学”,强调“教学要从学生已有的经验出发,让学生亲身经历将实际问题抽象成数学模型,并进行解释与应用的过程,激发学生的学习积极性,向学生提供充分从事数学活动的机会,让他们积极主动地探索、解决数学问题。所以本课在教学思路上淡化教师教的痕迹,突出学生学的过程。从而充分体现了学生是学习的主人,教师只是学生学习的组织者、引导者与合作者。根据本课教学内容、学生的实际认知水平和新课程理念的指导下,本课的教学设计如下:

(一)、创设情境,引出问题。

1、课件出示“神七”发射实况

2、谈话引出课题

梯形的面积如何计算?引出学习的内容。〈这个环节的设计主要是通过创设“神七”发射的情境,在学习新课之前激发学生的学习兴趣,让学生怀着由好奇引起的理智上的震动进入认知活动方面的探索。〉

(二)、自主探究,合作交流

1、直接切入主题:对于梯形的面积你们打算怎样找到它的计算方法?(让学生说说自己的思路——把梯形转化为我们学过的图形。)

〈这一环节的设置意在激活学生思维,为学生提供创新机会,让学生主动参与,培养他们从小树立探寻知识的意识的良好学习习惯,变“要我学”为“我要学”,也为新课的展开起好前奏。〉

2、动手操作前让学生先对梯形进行分类。(可分为:一般梯形、等腰梯形和直角梯形)

3、自主探究,合作学习

学生小组讨论,动手操作。〈教师可有意识地参加到小组中去合作、辅导〉

4、分小组展示汇报,教师深化点拔。

教师板演推导过程。

5、引导学生用字母表示公式:s=(a+b)×h÷2

6、应用公式,尝试计算梯形面积(出示一个基本图形让学生计算)

〈这一环节意在通过让学生拼一拼、看一看、想一想、做一做,让学生主动参与到数学活动中,亲自去体验,让学生运用自己已有的知识,大胆提出假想,共同探讨,互相验证,更强烈地激发学生探究学习的兴趣,更全面、更方便地揭示新旧知识之间的联系。这种让学生在活动中发现、活动中体验、活动中发散、活动中发展的过程,真真正正地体现了以人的发展为本的教育理念。〉

(三)、学以致用,解决问题

1、学习例3

(1)、借助教具演示,理解“横截面”的含义。

(2)、弄清渠口、渠底、渠深各是梯形的什么?

(3)、学生尝试计算横截面积。

〈巩固新知是课堂教学中不可缺少的一个过程,这一环节是为了将学生的学习积极性再次推向高潮,能更好地运用公式计算梯形面积,从中培养了学生解决简单实际问题的能力。〉

(四)、应用深化,巩固练习:

1、做一做:请两名学生板演。

2、课件出示练习题。

(通过练习,加深学生对知识的理解,掌握数学知识,形成技能,提高学生应用所学知识解决实际问题的能力和创新能力。)

(五)、总结,反思体验

回想这节课所学,说说自己有哪些收获?学生谈收获,谈学习方法,教师小结强调梯形面积公式的推导过程。

四、板书设计

板书的设计体现了教学内容的系统性和完整性,又做到了重点突出。

梯形面积课件教案 篇11

一、说教材

(一)内容分析:

小学数学教材中关于几何初步知识的安排特点是:梯形的认识,清楚了梯形的特征及底和高的概念。而本册教材中先安排了平行四边形的面积计算、三角形面积的计算的基础上,再安排学习梯形面积的计算。所以要使学生理解掌握好梯形面积的计算公式,必须以平行四边形的面积、三角形的面积、梯形的底和高为基础,运用迁移和同化理论,使梯形面积的计算公式这一新知识,纳入到原有的认知结构之中。

(二)教学目标:

1、通过学具的实际操作,学会用割补、拼凑的实验方法,运用学过的面积公式推导梯形的面积公式,并能运用梯形的面积公式解决简单的实际问题。

2、通过操作、观察、比较,渗透旋转、平移、转化的数学思想方法,培养学生的分析、综合、抽象和概括能力。

(三)教学重点:

发现、理解梯形的面积公式,并能正确运用。

(五)教学难点:

理解梯形面积公式的推导及推导过程。

教具:自制的课件,硬纸板做的平行四边形、梯形几个,剪刀。

学具:硬纸板做的梯形几个,剪刀,三角板,直尺。

为实现以上教学目标,突出重点,解决难点,充分发挥现代教育技术的作用,运用多媒体辅助教学,变静为动,融声、形、色为一体,为学生提供生动、形象、直观的观察材料,激发学生学习的积极性和主动性。

二、说教法

(根据以上的教学目标,教学重点和难点,我准备采用以下的教学方法进行教学)

1、发展迁移原则。运用迁移规律,注意从旧到新、引导学生在整理旧知的基础上学习新知,体现温故知新的教学思想。

2、大胆放手,以学生为主体的教学原则。针对几何知识教学的特点、本节课的教学内容以小学生以形象思维为主,我打算主要采用动手操作,自主探索,合作交流的学习方式,并运用计算机多媒体教学课件辅助教学,以激发学生的学习兴趣,调动学生的学习积极性。通过学生动手操作、观察、实验得出结论,体现了教学以学生为主体的教学原则。

3、反馈教学法。为了体现学生的主体性和创新性,在教学中,采用反馈教学法进行教学,给学生提供一个参与梯形面积公式形成和运用的机会,使学生不仅学会而且会学。

三、说学法(关于学生学习方法方面的指导方面,主要有:)

坚持发展为本,促进学生个性发展,并在时间和空间诸方面为学生提供发展的充分条件,以培养学生的实践能力、探索能力和创新精神为目标。在教学过程中,要注意引导学生怎样有序观察、怎样操作、怎样概括结论,通过一系列活动,培养学生动手、动口、动脑的能力,使学生的观察能力、操作能力、抽象概括能力逐步提高,教会学生学习。

四、说教学过程

针对上述内容的需要,可设计如下课堂教学环节:(一)迁移诱导,引入新课。(二)引导发现,探索创新。(三)分层训练,提高能力。(四)课堂总结,巩固新知。(下面我就分别从这四个方面说一说)

迁移诱导,引入新课。

迁移诱导,由已知到未知,即由旧知识引入新知识,为学生学习新知识创设情境,铺路搭桥,引导学生初步感知解决问题的途径进行类推,掌握新概念。这是教学抽象的数学知识的一种重要途径。三角形面积的计算这一内容,与长方形面积、平行四边形面积的计算有着密切的联系,适合用这一途径进行教学。

具体做法如下:

第一步,引旧设疑,提出问题.板演:一个平行四边形的底是40厘米,高是30厘米,面积是多少平方厘米?(学生反馈,应用计算机演示,以唤取学生对旧知识的`回忆。)

第二步,出示图形,复习旧知。出示准备好三角形纸片,提问:这是什么图形?什么叫三角形?谁能指出它的底和高?(底40厘米,高30厘米)

第三步:比较大小,产生悬念。比较黑板题中平行四边形和这个三角形的面积谁大谁小?它们是等底等高的,为什么面积不相等呢?通过第1、2两道题的复习,使学生清楚平行四边形的面积公式并清楚了三角形的概念及底和高的含义,为推导三角形的面积公式打下了扎实的基础。通过第3题的练习,产生悬念,引起学生学习三角形面积公式的动机与欲望,教师由此引出新课。对于等底等高的平行四边形和三角形的面积为什么相差这么大,必须科学的计算出它的面积,那么怎样计算三角形的面积呢?这节课我们就来研究这个问题。

梯形面积课件教案 篇12

一、说教材

1、教学地位分析

梯形的面积计算是小学数学图形与几何知识领域的一个重要内容,本节课的教学是在掌握平行四边形的面积的基础上进行教学的。孩子已经熟练地掌握平行四边形的面积计算方法,知道两个完全相同的三角形可以拼成一个平行四边形,将三角形的面积转化为一个等底等高的平行四边形的面积来进行计算。利用孩子已有的知识经验,应用转化的策略,将梯形转化为一个平行四边形,从而推导出它的面积计算公式,计算的它的面积。教学中向学生渗透了迁移类推的数学思想和转化策略,提高他们的动手操作能力、创新能力和思维空间能力。为学生将要理解和掌握新知识奠定基础。

2、教材思路分析

按照复习引新,动手操作、推导公式,巩固与应用,建立知识联系顺序组织内容的;例题的讲解突出通过孩子动手操作、讨论,经历知识形成的过程;练习安排了5个层次。

3、确定教学目标

基于对苏教版以上教材的分析,根据新课标的理念和中年级学生的年龄特点、认知规律,我预设了以下教学目标:

(1)知识与技能方面:通过本节课的学习,使孩子能够理解梯形面积计算公式的推导过程,掌握梯形面积的计算方法;使孩子能够熟练地应用梯形的面积计算公式计算梯形的面积,解决生活中的相关问题;

(2)能力培养方面:在公式的推到活动中,培养学生的推理能力、分析能力和实践能力。

(3)情感态度价值观方面:在学习活动中,让学生体会数学与生活的密切联系,形成合作交往意识;感受数学在自己身边,激发学习兴趣;发展数学素养。

4、重、难点分析

本课的教学重点:

梯形面积算公式的推导过程;

应用梯形的面积计算公式计算梯形的面积,解决生活中的相关问题;

教学难点:

理解在计算梯形面积时,为什么要“除以2”

二、说教法

根据本课教学内容的特点和学生的思维特点,我选择了直观演示法、引导发现法、小组合作等方法进行教学,应用演绎推理。充分发挥老师的主导作用,调动学生的能动性,引导他们去发现问题、分析问题、解决问题、获取知识,从而训练思维、培养能力。

直观演示法:让孩子在教具中直观地表示出拼成的平行四边形与梯形的关系;

小组合作、活动探究法:引导学生动手操作用同样的梯形去拼平行四边形,合作交流,相互启发

运用演绎推理:探讨出拼成的平行四边形与梯形的关系后,运用演绎推理,实行归纳概括……获得结论。

组织变式,有层次练习,增加体验,应用知识解决问题。

对比分析法:通过对比一组高相等、上底与下底和相等的梯形面积,通过演绎推理可以把三角形看成上底为“0”的梯形,平行四边形可以看成上底上底、下底相等的梯形。

三、说学法

教学时,我发挥学生的主体作用,充分调动学生的各种感官参与学习,诱发其内在的学习需要和学习潜力,独立主动地探究知识,使他们不仅学会,而且会学。把学生的求知欲由潜在状态诱发为活动状态,借以培养学生主动探索的精神。在此基础上,通过学生的观察、比较、分析,培养学生的演绎推理能力。

采用小组讨论、同桌交流等方法各抒己见,让每一位学生都有展示自己的机会,以学生为中心,努力为学生营造一个轻松、愉快的课堂学习氛围。

四、说教学过程

为了有效地达成以上教学目标,突破重点与难点,体现新课标倡导自主学习方式,我设计以下几个环节来组织学生开展探究活动。

第一环节:复习,导入新课

从我们学过哪些平面图形?会计算它的面积吗?入手,计算这些图形的面积,复习三角形面积的计算的推导方法,为下面的新课教学做好准备,这是本节课新知的最近发展区。同时出示梯形,计算它的面积,很多孩子不会计算,产生学习新知的需要。

第二个环节:动手操作,探究公式

首先再现旧知,先让学生说一说三角形面积公式的推导过程是怎样?为梯形面积公式的推导提供内在的类比推理。接着问学生:三角形面积公式的推导过程,你受到了什么启发?这时安排学生进行小组讨论、交流,让学生从中感悟到用转化的方法可以解决新问题,从而对学生的学法做了有力地指导,使学生更好地自己把握自己学习的活动。

为贯彻“学习是学习者主体主动建构的过程”这一理念,在这一环节的学习中,要充分相信学生,并为之提供主动建构的过程,从而使“有意义学习”的实现成为可能。自主探究公式这一环节也分两步进行:第一步,让学生拿出课前准备好的各种梯形,鼓励学生操作,寻找梯形面积的计算方法,让学生拼拼剪剪中实现转换。这样整个课堂就完全放开了,让学生自己去找;第二步(结合课件4以及教具梯形,在梯形上画一画,课件出示,数形结合表示两者之间的关系,适时板书)观察表格,你能发现梯形和拼成的平行四边形之间的联系吗?交流验证是学生在小组间相互交流,展示不同的思考方法。学生汇报时要充分肯定他们的推理与计算。学生在交流与展示中相互得到启发,这样学生就经历了一个学习再创造的过程,使学生创新思维得到更好的发展。在这的同时借助多媒体的演示课件,和教师准备的模具动手操作,帮助学生理解图形的转化,数形结合,使抽象的知识变得直观形象,给学生一个创新的空间。

学生经过自主探索合作交流,有的悟出了梯形面积公式,但不一定讲得清道理,有的学生在公式的理解上存在障碍,这时就要我们教师点拨。这时应抓住时机,引导学生梳理思路找出最简便的解题方法,结合板书与平行四边形的面积计算方法,应用演绎推理?师生共同推导出梯形面积的计算公式,并用字母表示出来,这时候计算公式的得出,也就水到渠成了。孩子理解了梯形的面积计算公式,就让他说一说,既是巩固新知,又在帮助孩子深化理解

第三个环节:运用知识,深化认识。

练习是理解知识、掌握知识、形成技能的基本途径,为使不同层次的学生都得到不同程度的发展,我设计了以下几个层次的练习:

巩固练习:

(1)直接用公式求面积

(2)先让学生计算出大坝的横截面的面积,再进行思想教育。让学生认识数学与生活是紧密联系的。

发展与综合性练习

(1)下面图中那几个梯形的面积相等?为什么?体会两底之和相等、高相等的梯形面积相等,并为后面的教学做铺垫;

(2)数学家波利亚曾说:“数学教师的责任是近其可能地来发展学生解决问题的能力。”算出梯形麦田的面积和小麦的吨数,增加实际应用的色彩,体验数学学习的有用性。

用发展的眼光看三角形、梯形、平行四边形

通过孩子的计算,应用数形结合的方法,通过讨论与演绎推理可以把三角形看成上底为“0”的梯形,平行四边形可以看成上底上底、下底相等的梯形。

五、说板书设计

在教学的过程中逐步形成,这样的设计体现了教学内容的系统性和完整性,又做到了重点突出,板书的结构便于演绎推理得出计算公式。

梯形的面积计算

拼成的平行四边形面积=底×高÷2

梯形面积=(上底+下底)×高÷2

S=(a+b)h÷2

六、说教学感受

在本课的的学习中,我紧扣生活实际,从学生已有的知识基础出发,让学生感受到学习的现实意义,有效开展探究活动,引导学生主动沟通已有知识内在联系,帮助学生更好地掌握知识,形成技能,培养素质。

很荣幸能参加今天的说课活动,真诚地希望能得到各位老师的帮助和指导!谢谢!

梯形的面积教案经典十三篇


从多个角度来看“梯形的面积教案”都有着引人深思的意义。老师在正式上课之前需要写好本学期教学教案课件,现在着手准备教案课件也不迟。制定好教案可以有效地促进学生吸收知识的数量和深度。请将本页加入收藏夹方便随时查阅和分享!

梯形的面积教案(篇1)

设计理念:

关注学生在数学活动中所表现出来的情感与态度,关注学生的需要,帮助学生认识自我,建立信心。数学活动是建立在学生的认知发展水平和已有的知识经验基础之上,教师应激发学生的学习积极性,帮助他们在自主探索和合作交流的过程中真正理解掌握基本的数学知识与技能、数学思想与方法,获得广泛的'数学活动经验。

教学目标:

1、观察梯形的特点,概括归纳出定义,并且知道各部分名称;通过动手操作找到等腰梯形的特征;并对所学四边形进行建构,能用集合图表示它们的关系。

2、培养学生的观察、归纳概括、动手操作实践能力和创新能力。

3、通过动手操作、讨论、归纳等活动获取新知,对知识进行建构,使其体验成功的喜悦。

教学重点:

经历探究的过程,获取新知,亲身经历知识的再现过程。

通过收集展示学生课前所画的各种四边形,并结合生活实例引入课题。

师:凭前面学习长方形、平行四边形的经验,你们想从哪些方面认识梯形呢?

师:那我们就按自己的想法先研究什么样的图形是梯形。

(学生已经学过平行四边形,对研究方法已有一定的掌握,这样教学以关注学生需求,教师可就着学生的思路进行教学,是教师跟着学生走,而不是教师拽着学生走,学生跟着教师跑。)

学生选择老师提供的研究材料(一组梯形的题卡、量角器、直尺等),先独立思考,再以小组汇总意见讨论。(学生以组讨论,教师巡视,引导学生参与到活动中去。)

(1)通过数一数、量一量等方法得知有四个角、四条边、四个顶点、一组对边平行,另一组对边不平行的图形是梯形。

梯形的面积教案(篇2)

教学目的:

1、使学生在理解的基础上掌握梯形面积的计算公式,能够正确的计算梯形的面积。

2、使学生通过操作和对图形的观察、比较,发展学生的空间观念,使学生进一步认识转化的思考方法在研究梯形面积时的运用,进一步培养学生分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。

教学重点、难点:

理解梯形面积计算公式的推导,并能应用公式正确的进行计算。

1、指名让学生说说平行四边形和三角形的面积公式,(课件出示公式)并讲讲怎样推导三角形的面积公式的。

师:前不久,我们学校开展“植树护绿”活动,四年级同学要在劳动实践基地的一块空地里种桃树,你们看看这块地的形状近似于那种平面图形呢?(课件显示图)

师:如果每棵桔树占地4平方米,那么这块地里能种多少棵桔树呢?(让学生思考一下)你认为应该先求什么?(指名说说,引入新课。)

(三)小组学习,解决问题。

师:梯形面积怎么计算呢?它是不是也有公式呢?下面就请同学们小组合作,想办法推导出梯形面积公式,看一下合作要求:(课件出示)

(3)比一比:转化成的图形的各部分跟梯形的各部分有什么关系?

(4)写一写:把梯形面积公式的推导过程写下来。学生分组讨论。

全班交流时,教师根据学生说的方法用课件演示转化及推导过程。

教师板书:梯形的面积=(上底+下底)×高÷2,并让学生讲讲为什么要“÷2”。)

师:如果用s表示梯形的面积,a表示梯形的上底,b表示梯形的下底,h表示梯形的高,梯形的面积计算公式用字母该怎样表示呢?(学生回答,教师板书:S=(a+b)h÷2)

师:梯形的面积公式推导出来了,我们就可以帮助四年级同学解决问题了。

课件出示:四年级同学要在一块梯形地里种树,如图,如果每棵树占地4平方米,那么这块地里能种多少棵树?

让学生独立计算,在集体订正。

师:同学们的表现都非常出色,你们帮助四年级同学解决了这个难题,我代表他们感谢你们。

(四)应用拓展,巩固知识。

a、课件出示:P75例1,指名读题,教师出示渠道模型说明“横截面”的意思,再由学生解答,完成后集体订正。

1)两个梯形能拼成一个平行四边形。

a、课件出示:

一个梯形的上底是9厘米,比下底短3厘米,高是1分米,它的面积是多少?小组计算,集体交流。

b、课件出示:

我们经常见到圆木,钢管等堆成如图的形状,通常用下面的算法求总根数:

想一想是什么道理,并算出图中圆木的总根数。

课件出示:用篱笆围成一块养鸡场(如图),一边靠墙,篱笆总长65米,求养鸡场的面积。

让学生讲讲这节课的收获,并布置作业。

有时间的话做“思考”

在下图的梯形中,剪下一个最大的.三角形,剩下的是什么图形?剩下的图形的面积是多少平方厘米?

梯形的面积教案(篇3)

第 1 课时:梯形面积的计算

教学内容:

第 19 页例 6 以及相应的试一试和练一练 教学目标:

1、知识与技能:使学生经历操作、观察、填表、讨论、归纳等数学活动,探索并掌握梯形的面积公式,能正确地计算梯形的面积,并应用公式解决实际问题。

2、过程与方法:使学生进一步体会转化方法的价值,培养学生应用已有知识解决新问题的能力,发展学生的空间观念和初步的推理能力。

教学重点:

理解并掌握梯形面积的计算公式 教学难点:

理解梯形面积公式的推导过程 教学过程:

一、复习导入:

1、回顾三角形面积公式的推导过程

2、导入:今天我们继续运用这种方法来研究梯形面积的计算。

二、探究新知:

1、教学例 6:(1)出示例 6:

师:用例 6 中提供的梯形拼成平行四边形。(注意:组内所选的梯形都要齐全)(2)小组交流:

你认为拼成一个平行四边形所需要的两个梯形有什么特点?

要使学生明确:用两个完全一样的梯形可以拼成一个平行四边形。(3)测量数据计算拼成的平行四边形的面积和一个梯形的面积并填表。师:如何计算一个梯形的面积?从表中可以看出梯形与拼成的平行四边形还有怎样的关

系?(小组交流)得出以下结论:

这两个完全一样的梯形,无论是直角梯形、等腰梯形、还是一般的梯形,都可以拼成一

个平行四边形。

这个平行四边形的底等于梯形的上底+ 下底 这个平行四边形的高等于梯形的高

因为每个梯形的面积等于拼成的平行四边形面积的 一半 所以梯形的面积 =(上底 + 下底)×高÷2 板书如下:

平行四边形的面积 =底×高2倍

梯形的面积一半=(上底 + 下底)× 高 ÷ 2(4)用字母表示三角形面积公式:S =(a +b)h ÷ 2

三、巩固练习:

1、完成试一试:

2、完成练一练:

(1)学生计算后提问:用上、下底的和乘高后,为什么还要除以 2 ?

(2)结合直观的图形或教具演示,简单介绍横截面的含义,再让学生结合公式进行计 算。

四、全课总结:

师:通过今天的学习有哪些收获? 板书设计: 转化

已学过的图形拼摆 梯形面积的计算新图形

因为平行四边形的面积=底×高2倍一半

所以梯形的面积=(上底 + 下底)× 高 ÷ 2 课后反思:

第 2 课时:梯形面积的计算练习课

教学内容:

完成第 21 页练习四 教学目标:

知识与技能:

使学生进一步熟悉梯形面积的计算公式,熟练地计算不同梯形的面积。教学过程: 练习四

一、第 2 题

让学生先在小组里说说怎样找出面积相等的梯形。由于这 4 个梯形的高相等,只要比较它们的商、下底的和是否相等。这几个梯形中,除左起第 3 个梯形之外,其余的面积都是相等的。

二、第 3 题

右图是直角梯形,可以通过讨论使学生明白:直角梯形中与上、下底垂直的那条腰的长度就是梯形的高。

三、第 5 题

说一说题中使用的单位是否统一,可以把“米”化成“分米” 单位进行计算。

四、第 6 题

要注意两个问题:

1、统一面积单位;

2、讲清楚数量关系。

先搞清楚水渠和拦水坝的横截面积分别是指图中的哪个部分,分别是什

么形状,图中标出的条件又有哪些。在此基础上,再让学生分别进行计算。

五、针对学生在学习过程中出现的问题适当的进行补充和强化。课后反思:

第3 课时:整理与练习

(一)教学内容:

1、系统地复习近平行四边形、三角形和梯形面积公式的推导过程。

2、完成第 223 题。教学目标:

知识与技能:

通过复习,加深学生对多边形面积计算公式的理解,进一步熟悉多边形面积的计算方法。复习过程:

一、复习三种图形面积计算公式:

先让学生在小组里说说各种图形面积计算公式及其推导过程,在整理出来。两种方法:

1、制表: S=ah÷2 S=ab S=ah

2、画图: S=(a+b)h÷2 S= aa

3、小组交流:

平行四边形、三角形和梯形面积公式的推导过程中有哪些相同之处?

二、练习与应用:

第1 题

先比较平行四边形与长方形,再比较三角形与平行四边形,最后比较梯形与平行四边形。随后通过推理,明确图形间的大小关系。

第 2、3 题

运用面积公式解决简单的实际问题 课后反思:

第 4 课时:整理与练习

(二)教学内容:

完成第 2311 题 教学目标: 知识与技能:

在系统复习的基础上通过练习加以巩固,使学生掌握多边形面积的计算公式,并能准确

熟练地加以运用,解决简单的实际问题。复习过程: 练习与应用:

第4 题

重点要指导与长方形面积相等的三角形和梯形的画法。其中,三角形的底与高的乘积应是 30;画梯形则应突出上、下底之和与高的乘积仍然等于 30,具体画法可以让学生自由选择。第5 题

练习学过的各种多边形的面积计算公式。可以结合练习让学生再说一说有关的攻势已达到巩固的目的。第7 题

有两种不同的算法:

(1)整体面积27 页 校园的绿化面积 教学目标:

1、知识与技能:引导学生综合应用学过的面积公式计算一些少复杂的图形面积。

2、过程与方法:在校园中进行一些实际的测量和计量,以提高学生应用数学知识和方法解决实际问题的能力。

教学过程:

一、想想算算:

1、出示右图,要求学生算出它的面积:(1)小组交流:你准备怎样计算?

(2)学生汇报:①可以看成一个长方形和一个梯形(3)任选一种方法进行计算:

二、巩固练习:

①求下面图形的面积: 6m

2m

15m ②从一个长方形中去掉一个梯形 3m

6m

2mm

2m

5m

10m

三、画一画:(第 27 页画画算算)

学校准备建一个新的花圃,在方格纸上划出花圃的形状并计算出面积。

四、实地测量:(第 27 页量量算算)

在校园里找出一块合适的空地,参照上面画出的形状进行实地测量。

五、板书设计:

校园的绿化面积

复杂的图形面积

———分割、平移———

简单的图形面积。课后反思:

梯形的面积教案(篇4)

学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。学生在知识、能力、情感、态度等方面存在着一定的差异,他们原有知识能力结构的不同导致他们对数学问题的理解也不同,从而出现解决问题的策略的个性化和多样化。

因此本节课在探索梯形面积的计算公式时,老师为学生提供一个充足的自主学习空间,启发学生利用自己已有知识和经验,自主进行探究活动,进而感受学数学的价值,并获得成功的体验,产生积极学习的动力。

“梯形的面积计算”是在学生学习了长方形、平行四边形及三角形的面积计算后安排的教学内容。由于在上述学习过程中,学生已通过操作、实验、探索等积累了探讨平面图形面积计算公式的基本方法与策略(即剪、移、转、拼等),并初步领悟了“新旧转化”的数学思想方法,这些都为学生自主研究、探索“梯形的面积计算”这一新的学习任务创造了必要的条件,为他们实现个体意义上的数学“再创造”打下了良好的基础。

1.使学生理解并掌握梯形的面积计算公式,能正确地应用公式进行计算。

2.通过动手操作使学生经历公式的推导过程,培养学生的迁移类推能力和抽象概括能力,将转化策略的教学融入到学生的“拼、剪、画、说”活动中,使学生领悟转化思想,感受事物之间是密切联系的,使学生能应用所学知识解决实际问题,发展学生的空间观念。

3.引导学生运用转化的思想探索知识的变化规律,培养学生分析问题和解决问题的能力,通过演示和操作,让学生在拼剪中感受数学知识的内在美,培养团队合作意识。

1.理解并掌握梯形的面积计算公式。

我在导学“梯形的面积计算”时,并没有沿袭以往的教学思路,而是立足于学生已有的数学现实与经验,以此为出发点,通过引导学生经历“发现问题--作出假设--进行验证--实践应用”的“再创造”过程,让学生在数学的“再创造”过程中实现对新知的意义建构,解决新问题,获得新发展。

(预习单)1、你还记得平行四边形、三角形面积公式吗?它们是怎么推导出来的?

2、对于梯形,你们已经知道了什么?

3、利用你手中的梯形,动手折折、剪剪、拼拼,你还能发现什么?

4、如何推导梯形的面积计算公式?谈谈你的.想法。

生2:我发现任何梯形都可以分成一个三角形和一个平行四边形。

师:善于观察,勇于实践,大家才会有如此丰富的发现。这节课,我们将在此基础上进一步研究“梯形的面积计算”。

引导自由操作,有利于学生在较为轻松的状态下激活原有的“数学活动经验”,为随后有目的的尝试、实验和验证作好铺垫。

二、“假设--实验--验证”,引导学生体验数学知识“再创造”的过程。

师:汇报预习单第4个问题。如何推导梯形的面积计算公式?谈谈你的初步设想。

生6:能不能像推导平行四边形面积公式那样,通过剪拼,将梯形也转化成已经学过的平面图形,如长方形、平行四边形或三角形,然后再来推导?

生7:可不可以像三角形那样,先合拼成一个大平行四边形,然后来推导?

生8:看看梯形的面积与已经学过的长方形、三角形及平行四边形等有什么联系,根据它们间的联系进行推导。

交流对问题的初步设想,是准确把握学生已有数学现实的关键,也是实现“再创造”的开始。这对教师如何引导学生进行随后的“再创造”活动起着重要的作用。

师:同学们是不是都有自己的想法了,想不想马上动手试试?

(学生独立或合作尝试转化。教师深入学生群体,听取意见,并对有困难的学生作必要的提示和启发)

对数学材料实现“再创造”,这不仅需要学生的独立思维,同时也需要组员间的相互启发以及教师的及时点拨与引导。也是上述教学过程中学生的“合作尝试”及教师的“个别指导”的意义。

师:不少同学已经成功地对自己的假设进行了验证,请向大家展示你们的研究思路与成果。

生1:我们组将两个完全一样的梯形拼合成一个平行四边形(见图1)。平行四边形的底相当于梯形上、下底的和,平行四边形的高相当于梯形的高。梯形的面积是拼成的平行四边形面积的一半,也即“梯形的面积=(上底+下底)×高÷2”。

师:能设法将新问题转化成已经学过的问题来解决,这本身就是一种创造。那么在这些方法中,你最欣赏哪一种,就请你借助手中的学具再次完成这一转化与推导过程,并在小组里进行交流。

设计意图:

引导学生及时交流,展示他们个性化的研究思路与成果,激发了他们成功的学习体验和进一步深入研究的积极愿望。

五、在实践应用中拓展、延续数学知识的“再创造”。

师:(出示例题)请大家选择适合自己的面积计算公式求出梯形的面积。

(出示基本练习)测量数据,并计算出这些梯形的面积。

设计意图:

学生自由测量、计算并交流方法,教师对学生的学习过程作出即时评价和指导,鼓励学生对问题的不同理解及方法。

师:学校决定在操场东侧宽10米的长方形空地上建造一些形状各异的梯形花坛。如果请你来设计,你觉得怎样设计比较合理?画出设计图,并预算出每一个花坛的占地面积。

(学生自由结合,分组进行构思、设计,并就占地面积进行计算与交流)

实践性练习又一次激发了学生“再创造”的热情,并为他们创造性地解决问题提供了机会,为提升他们的实践能力和创新品质营造了广阔的空间。

本堂课就学生来说的会在一次次思考和动手操作的过程中体会数学学习的乐趣。

了解多种转化的方法。

梯形的面积教案(篇5)

大家好,我说课的内容是北师大版小学数学五年级上册第二单元《图形的面积(一)》第6课时《梯形的面积》,梯形面积的计算是几何图形面积计算中的重要内容,同时也是学习组合图形面积的基础,在生活实际中有广泛的应用。

说教学目标和重难点

基于学生对梯形特征的认知,又刚刚获得平行四边形、三角形面积公式探索的成功体验,相信此时学生已经建立了良好的空间观念、能够熟稔地完成旋转、平移等操作活动,形成了初步的转化思想。所以教师不必让学生去数方格,直接运用转化思路求梯形的面积即可。

我制定教学目标如下:

1. (知识技能)通过动手操作活动,引导学生推导梯形面积公式,使学生能够正确地运用公式计算梯形面积。

2. (过程方法)利用图形的平移和旋转等操作演示,通过合作探索,推导并归纳出公式。

3. (情感态度)培养学生动手操作和逻辑思维能力,同时获得探索问题成功的体验。培养学生的空间观念。

教学重难点的确定依据为:一本课的教学目标。二学生的实际能力。教学重点为通过操作探索活动,掌握梯形的面积公式。巩固“转化”这一重要思想,并逐步形成习惯。正确地思路和良好的操作探索习惯在这里显得特别有价值,将成为漫漫数学长路中宝贵的财富。教学难点是经历梯形面积公式的推导过程。在高段数学教学中往往会阶段性的出现一些困难学生,所以我以预设的情境a为全班同学必须经历的过程,重复强调,多种感官刺激,去体验推导过程。

说教法学法

“纸上得来终究浅,绝知此事必躬行。”陆游道出了实践操作的意义所在。同时也依据教学内容特点、学生特点,我确定教法为:以学生为主体,引导他们在活动中相互合作,主动探索,操作验证。

学法和教法相结合,主要通过旧知迁移——操作探索——抽象概括——巩固提高过程,将新知旧知有机地结合在一起。

说教学过程

课前师生准备平行四边形、三角形、梯形卡片若干,剪刀、学生尺。小黑板出示两道拓展题。

本课教学分为五部分。

一、 复习导入

1.生说平行四边形、三角形面积计算公式。

2.生口述并演示推导过程。

3.生小结推导思路。

4.复习梯形各部分名称。

(设计意图:复习旧知、联系新知;强化转化的思想,为下面的探索活动做铺垫;复习梯形各部分名称,预防学困生在剪和拼等操作活动中,以及后面的运用公式计算时分不清底和腰。)

二、探索活动

1.示情境图,怎样计算堤坝横截面的面积?能否将它转化成我们所学过的图形?

2. 巡视,教师针对教材所列三种提示进行重难点指导。

a.转化后的图形和原梯形有什么关系?b.怎样计算转化后图形的面积,又如何得知梯形的面积。c.帮助学困生操作。

3.交流汇报。

个别学生汇报并演示,师将学生用两个完全一样的梯形拼成的平行四边形贴在黑板上。板书拼成平行四边形和梯形的关系,面积计算方法。

同桌之间互相演示过程,并口述拼成平行四边形和梯形的关系及面积计算方法。

教师指导有困难学生。

预设情境b同上供全班了解,但无需人人会做。

预设情境c做拓展项目。

(动手操作的实践活动,能够有效地组织全体学生参与到学习过程中去。这一环节同是应用“转化”的教学思想,又分为三个层次。三种预设逐步深入,针对不同层次的学生提出不同的要求,扩大了课堂教学容量,使教学内容有了深度。引导学生从多维的角度去观察、思考,用不同的方法进行转化,训练了学生分析推理等逻辑思维能力,进一步发展其空间想象力。交流汇报时教师对转化关键点的提问,强调了重点。对于预设情境a中的转化方法让不同能力的学生都来口述,同桌之间口述。这样教师能够快速了解学生对新知的掌握情况,快速发现问题、针对性的解决问题。同学之间的合作互助,也培养了他们的团队意识,不让一位同学掉队。边演示边口述,显性的语言表达引导隐性的有序思考。我是这样突破重点和难点的。)

三、总结归纳梯形面积公式

教师引导学生通过观察、思考、比较、讨论,发现上述三种计算面积方法的共性,并归纳出公式、用字母表示公式,使学生舔尝到成功的乐趣。这时教师的注意力应该不漏声色地转移到中等生、困难生身上,鼓励他们说公式,上黑板板书公式,树立其自信心。

四、练习应用公式

课堂练习是数学教学的主要环节之一,是学生形成技能、技巧,发展智力的有效方法,本节课设计了有梯度的几个练习。

1、2题属于基本练习,旨在巩固梯形面积公式。3题是综合练习,体现了等积变形,引导学生体会决定梯形面积的因素不是形状而是它的底和高。

五、小结提高

引导学生回忆刚才的面积计算过程,让他们感知到公式计算的方便性,为下面的发展性练习做铺垫。通过有一定难度的拓展题,培养学生思维的敏捷性和创造性。

最后开放式总结,培养了学生的发散思维及团队协作精神。学生通过回顾本堂课的收获,自我感悟、自我评价,培养其反思意识。使学生感受到通过努力而获得成功的喜悦,体验到数学的在生活中的实用性。从而使学生的情感、态度和价值观得到了提高。

以上内容就是范文为您提供的10篇《数学教案-梯形面积的计算》,希望可以对您的写作有一定的参考作用。

梯形的面积教案(篇6)

(北师大版)五年级数学上册教案 梯形的面积计算公式推导

教学设计理念:

培养学生的创新思维,在学生已有认知结构和经验的基础上,有计划地培养学生分析、综合、比较、概括、判断、推理等能力,提高学生思维的发展水平。教学设计:

一、创设情境,揭示课题

师:同学们,我们前面学习的平行四边形,三角形的面积公式是怎样推导出来的?

生:平行四边形垢面积是用割补法把它变成与它面积面积相等的长方形,由长长方形面积推导出平行四边形的面积计算公式。

生:三角形的面积是把两个完全相同的三角形拼成一个平行四边形,因为三角形的面积是这个平行四边形面积的一半,所以由此推导出三角形的面积计算公式。

生:三角形也可以用割补法把它拼成一个平行四边形,面积也是这个平行四边形的一半。师:同学们能不能用学过的这些方法,设计一种推导方案,推导出梯形的面积计算公式呢?

[评析:通过上面的教学揭示课题,提示学生可以把已学过的学习方法运用到新的学习情境中,激发了学生的学习动力,使学生有解决问题的兴趣与信心。]

二、学生操作实验,主动探究

让学生先自己设计推导方案,再汇报交流

生1:我把梯形分割成两个三角形,因为这两个三角形的高相等,所以一个三角形的面积是上底×高÷2,另一个三角形的面积是下底×高÷2,由此推导出梯形面积计算公式=上底×高÷2+下底×高÷2。

生2:我把梯形分割成一个平行四边形和一个三角形。因为平行四边形的面积是下底×高,三角形的面积是(下底--上底)×高÷2,所以梯形的面积计算公式=下底×高+(下底-上底)×高÷2。

生3:我把梯形分割成两个等高的小梯形,(把上面小的梯形倒过来和下面的梯形)拼成一个平行四边形,因为平行四边形的底就是梯形的上底和下底的和,高是原来的一半,所以梯形的面积计算公式=(下底+上底)×(高÷2)。

生4:我把两个相同的梯形拼成一个平行四边形,平行四边形的底就是梯形的上底和下底,高没有变,所以梯形的面积计算公式=(下底+上底)×高÷2 [评析:学生调动已有的知识和经验,通过操作,验证等活动,概括出一个计算程序,就是公式,教师为学生提供充分的机会,使学生在交流的过程中理解和掌握了数学知识与技能,数学思想与方法。]

三、比较分析,优化方法

师:同学们想出了这么多个推导方法,更重要的是掌握解决问题的方法,能把一个新问题转化成旧问题解决。这么多的推导方法中,哪些更容易理解、计算更简便呢?

经过学生充分讨论,汇总出下面方法: 1.梯形面积=下底+上底)×高÷2 2.梯形面积=(下底+上底)×(高÷2)。

师:这两个公式计算进更简便快捷,同学们可以用这两个公式来计算梯形的面积。

[评析;通过学生讨论、分析、比较、选择出最佳方法。在实际应用中,教师应提倡算法多样化,这样不至于抑制学生的灵感和创造。] 总评:

本节课,教师引导学生创造出性地学习,为学生提供广阔的空间,让他们自己选择解决问题的策略,设计解决问题的方案,学生通过实验操作、分析推理等活动,总结出解决问题的方法。其次,教师没有强制推行,硬性规定用书本上的公式计算,而是尊重学生的探究成果,创设了一定的情境,让学生讨论、分析、比较、亲身体验这些方法优化的过程,并从中选择出最简捷有效的方法,充分体现了尊重学生个性的新理念。

梯形的面积教案(篇7)

教学目标:

1、使学生理解掌握梯形面积公式的推导,并能运用公式正确的进行计算

2、通过引导学生操作和对图形的观察比较,发展学生的空间观念

3、使学生进一步认识转化的数学思想方法,发展分析综合抽象概括等思维能力

教学重点:理解并掌握梯形面积公式,并会利用公式计算

教学难点:梯形面积公式的推导过程

教具:梯形纸板若干

学具:剪刀、梯形纸板若干

教学过程

一、复习平等四边形、三角形面积公式和推导过程

出示一梯形

标出各部分名称

师:你会计算梯形的面积吗?生:会

求出梯形面积及为什么要用这一公式作为梯形面积公式

二、新课

拿出准备好的梯形纸板操作

师:试一试梯形能否转化以学会的计算面积的图形

可自己思考可小组共同操作并把你的结论记录下来

(生操作师参与其中)

汇报:边讲解边演示(可能会出现以下几种分法)

㈠、两个完全一样的梯形重合在一起经旋转和平移可拼成平行四边形

平行四边形=底高

一个梯形=(上底+下底)高2

㈡、只用一个梯形

①沿一条对角线可把一个梯形分成两个梯形

梯形面积=两个三角形面积之和

=下底高2+上底高2

②通过梯形上面一个顶点作梯形一腰平行线可分成一个平行四边形和一个三角形

S梯=平行四边形面积+三角面积

=上底高十(下底-上底)高2

③沿梯形上底两顶点作两条高分成一个长方形和两个三角形

④梯形上下底对折剪开?梯成平行四边形

S梯=(上底+下底)高2

S梯=中位线2高2

反过来

⑤梯形上下底对析,两底角间对折拼成一个长方形(两层)

S梯=(上底+下底)2(高2)2

⑥通过梯形右腰中点作一腰平行线,得右边一个小三角形,再以小三角形上顶点为中心旋转拼成一个平行四边形

S梯=(上底+下底)2高

⑦把梯形打开上顶点与右腰中点连接得一个小三角形把小三角形旋转成一个大三角形

S梯=(下底+上底)高2

同学们找出了这么多种方法,真的很不错,但你知道为什么选用S梯=(上底+下底)高2这个公式呢

拿一例说明S梯=下底高2+上底高2

利用乘法分配律也可以得到S=(上底+下底)高2

其它几个公式经过化简也可以得到这一公式,这个公式用字母怎样表示?

质疑:在操作中你遇到了什么困惑

小结:求梯形面积需什么条件

练习:1、求下面梯形面积(单位:厘米)

2、(如图):求梯形的高(单位:厘米)

3、猜:S梯=54平方厘米时上、下底高可能是多少厘米

4、一等腰梯形腰长8厘米,高6厘米,这梯形周长比腰多20厘米求梯形面积?

梯形的面积教案(篇8)

教学目标:

1、使学生经历梯形面积计算方法的探索过程,感受转化的数学思想。

2、使学生理解梯形面积的计算方法,能正确地计算梯形的面积。

3、培养学生的观察、比较、分析以及动手操作的能力,发展学生的空间观念。

教学重点:理解梯形面积的计算方法,正确计算梯形的面积。

一、复习引入。

1、同学们已经掌握了平行四边形和三角形面积的计算。现在我就想考考同学到底掌握得怎么样?谁能够快速准确地说出这些图形的面积呢?

方法二:(剪的方法)把一个梯形剪成两个三角形。得出同样的结论。

方法三:(剪的方法)把一个梯形剪成一个平行四边形和一个三角形得出同样的结论。

全班交流时,如果学生还能提供其他推导方法,只要合理,教师都应予以肯定和鼓励。

1、先量出图中有关数据,再计算图形面积。

(1)一个零件的横截面是梯形,上底是8厘米,下底是12厘米,高是4厘米,这个零件横截面的面积是多少平方方厘米?

(2)、一块白菜块的形状是梯形,它的上底是12米,下底是10米,高是15米,如果平均每平方米种白菜12棵,这块地里一共可以种白菜多少棵?

(五)、全课总结。

本课主要让学生用学过的方法试着推导出梯形的面积公式以及利用梯形的面积公式解决实际生活中一些简单的问题。

梯形的面积教案(篇9)

教学目标

(1)理解梯形面积公式的推导过程,会应用公式正确计算梯形的面积。

(2)培养学生合作学习的能力。

(3)继续渗透旋转、平移的数学思想。

教学建议

教材分析

梯形面积的计算是在学生学会梯形的特征以及学会计算平行四边形、三角形的面积的基础上进行教学的。这部分知识是将来进一步学习计算组合图形面积和圆的面积计算的基础。

本小节内容共分为两个层次。第一层是推导梯形面积的计算公式;第二层是应用梯形面积的计算公式计算梯形面积,解决实际问题。

梯形面积公式的推导是应用平行四边形、三角形面积公式推导的思路,利用转化思想解决新问题。通过观察新、旧图形的内在联系得出梯形面积的计算公式,再抽象出梯形面积的字母公式。本层次的重点是:使学生理解梯形面积公式的推导过程。难点是:理解面积公式的推导过程.

例1的重点是应用梯形面积公式计算面积。难点在于把题目中所给的已知条件与梯形的各部分名称一一对应起来。

教法建议

教学梯形面积的计算之前,可以先回忆一下三角形面积公式的推导过程,(三角形面积公式及其推导过程与梯形有许多相似之处)。讲解梯形面积公式的推导过程要注意引导学生根据三角形面积公式推导过程的思路展开联想,这样进行迁移,有了前面的基础,学生用两个梯形拼成平行四边形并不困难。

在推导梯形面积公式的过程中观察、对比新旧图形的联系很重要,为了便于发挥学生的主体性,增进学生交流,教师可把梯形与转化后的平行四边形的关系印成小篇子,由学生讨论后小组合作完成,由学生自己找出梯形面积的计算公式和字母公式。

在应用梯形面积计算公式中,教师尽量选择贴近生活实际的事例由学生解答,如计算篮球场中梯形的面积,计算梯形机翼模型的面积,计算梯形钢管堆中的钢管的根数等等,使学生体会到学习数学的价值与乐趣。

在设计练习时注意层次,使学生从练习中体会到题题具有挑战性.如变换梯形的摆放位置和角度,先测量再计算梯形面积,结合直角梯形,面积单位换算等旧知识进行综合练习,使学生既巩固旧知识又深化新知。

梯形的面积教案(篇10)

教学目标:

1、使学生经历猜想、验证、发现的科学研究过程,探索并发现梯形面积的计算方法,能正确计算梯形的面积,并应用公式解决相关的实际问题。

2、培养学生观察、推理、归纳能力,体会转化思想的价值。

3、让学生进一步积累解决问题的经验,增长新图形面积研究的策略意识,获得成功体验,提高学习自信心。

教学重点、难点:探索并掌握梯形的面积计算方法。

教学准备:教师准备多媒体课件一套,学生剪下6个梯形。

教学过程:

一、认知准备:知识、策略,双管齐下

谈话:同学们,前面我们已经学习了哪些图形的面积计算?我们是怎样找到它们的计算方法的?用一个词概括就是(转化)

出示梯形图,

提问:这是什么图形?

关于梯形,你已经知道了些什么?

那么,关于梯形,你还想知道些什么?

提问:是啊,梯形的面积该怎样计算呢?你有办法来找出梯形面积的计算方法吗?同桌商量一下。(板书课题:梯形的面积)

组织班内交流,根据学生回答相机板书。(板书:梯形转化成旧图形?)

[设计意图:梯形的面积是在平行四边形和三角形面积之后教学的,因此,迁移是本课设计的核心。课始从知识和策略两方面为学生迁移旧知、探索新知作好铺垫:其一、回忆梯形的相关知识;其二、回忆两种图形的面积公式推导过程并适当提炼转化思想。这样的准备,紧扣新知,直指要害,为学生留下了广阔的探索空间,简洁而有效。]

二、探索公式:猜想、验证、发现

1、动手操作,尝试转化

提问:你们是怎么想到用转化的方法来寻找梯形的面积呢?

师:你们真会动脑筋,能根据前面的学习方法提出这样的猜想(板书:猜想),可这个想法能实现吗?还得怎么办?(板书:验证)

小组活动:挑选梯形尝试转化。

交流,演示,多媒体出示拼成的三种情况。

明确:任何两个一样的梯形都能拼成一个平行四边形(板书),猜想得到证实。

2、讨论关系

师:仔细观察一下,拼成的平行四边形与每个梯形有怎样的关系?

出示讨论题,同桌商量,交流汇报,最后同桌再互相说一说。

[设计意图:学生之前已亲历了平行四边形和三角形面积公式的探索过程,对转化思想在推导平面图形面积公式中的作用已有了较深的感受,也积累了一些转化的经验(剪移拼和转移拼)和观察的经验(从底、高、面积三方面找关系)。因此,今天的转化梯形和寻找关系早已成了学生跳一跳可以摘到的果子!放手让学生自主解决,正是尊重学生数学现实的务实之举,如此创设出的较大探索空间亦有利于激发学生的创造性。]

3、应用关系,体验方法

在3个拼成平行四边形中的梯形上标出上底、下底、高的数据。

师:如果知道了梯形的上底、下底、高,你能利用刚才发现的关系计算出这个梯形的面积吗?

学生任选一个梯形独立求出它的面积。

交流汇报:

(6+10)42

(3+7)32

(3+6)62

谈话:老师发现同学们求梯形面积用的方法竟然完全一样!谁来告诉我,你们这部分算的是什么啊?(划出(6+10))再乘上4呢?

提问:我明白了,这里算的是拼成平行四边形的面积(板书)

那为什么还要除以2呀?

4、想象延伸,发现方法

出示独立的梯形(标有数据)

提问:你能求出这个梯形的面积吗?

学生在草稿本上写下算式。

提问:(3+5)4算的是什么?

你能想象出拼成的平行四边形的样子吗?用手书空画一画。

为什么要除以2?

归纳:现在你知道该怎样计算梯形的面积了吗?

根据学生回答板书:发现(上底+下底)高2

[设计意图:一般的教学,在找出拼成平行四边形和梯形的关系后,就利用这3条关系通过适当的板书顺理成章地推导梯形的面积公式了。但事实是,这看似顺理成章的几句推导之词,其中却是浓缩了一系列的逻辑推理,甚至还融合了等量代换的思想。因此,直接利用关系推导公式对学生来说是有相当的思维难度的,课后我对部分学生的调查也证实了这一点,很多学生感觉晕晕乎乎就得出了公式,对推理的过程仅停留在几句顺口溜的字面上,真正能说清楚地没几个。那么,该如何才能让学生真正体悟到公式得出过程呢?我增设了计算一环:让学生观察拼合图,利用发现的关系计算拼成平行四边形中梯形的面积。这一计算面积的过程能促使学生主动的应用关系寻求计算方法,加深对3条关系的理解;同时,计算的过程其实正是原来抽象推理的外显和物化,这样通过计算这一形式就把纯推理巧妙地加以直观化,给学生理解公式架起了一座思维的桥梁。最后通过适当的说理、想象、归纳,梯形面积公式的得出就瓜熟蒂落了。]

5、回顾过程,感受策略

师:同学们,经过大家共同的努力,我们终于找到了梯形面积的计算方法,就是(生齐说)。我们再一起回顾一下刚才的探索之旅:根据平行四边形和三角形的面积方法的寻找过程,我们大胆的猜测:

三、应用公式:紧扣主线,不拘一格,技能与发散并重

1、直接应用,熟练公式

学生独立完成练一练第2题。

2、活用公式,体会梯形公式的实质

(1)梯形的上下底的和是12厘米,高是4厘米,求它的面积。

(2)练一练第1题

3、应用公式解决生活中的实际问题

完成试一试。

四、全课总结

师:今天你有什么收获?

梯形的面积教案(篇11)

教学内容:混合练习(课本第84-85页,练习十九第11-18题)

教学目标:⒈通过混合练习,理清多边形的面积计算公式,能够熟练地运用公式求面积和解答有关的应用问题。

⒉在复习与梳理中学会联系,进而提高综合分析解题能力。

教学过程:

一、复习梳理

⒈公式的复习

我们已经学过各种多边形的面积计算公式,谁来说说这些公式各是什么?它们是怎样推导出来的?

师生共同进行:边回顾、边画图、边讨论;

⒉教师指出:多边形的面积公式是互相联系,彼此相关的,我们必须以长方形的面积公式为基础,以平行四边形的面积为重点,清楚地把握它们之间的同在联系和区别。

二、练习巩固

⒈独立完成练习十九的第12题--看谁正确率最高!

要求:开列已知条件;写出相应的面积公式;列式解答。

⒉完成第14题

先议:⑴左图是什么图形?求面积需要哪些条件?怎么取得?⑵右图是什么图形?为什么?求它的面积需要量几个量?把它们分别量出来。

⒊完成第13和15题

在求得面积之后,怎样选择算法求解。

三、综合提高:

讨论:

⑴平行四边形的底扩大3倍,高不变,面积怎样变化?如果高也扩大2倍呢?

⑵三角形的底不变,高缩小2倍,面积怎样变化?如果高缩小2倍,底扩大2倍,情况又怎样呢?

⑶一个三角形与一个平行四边形等底等面积,那么三角形底边上的高一定是这个平行四边形高的2倍,为什么?

四、总结:

多边形的面积计算,关键是公式的理解与熟练,同时在选用公式时,尤其注意哪些图形求面积时要2。

五、板书设计:

梯形面积的计算

六、教后感:

梯形的面积教案(篇12)

梯形的面积教学片段设计——北师大版第九册第二单元

教学重点:学生运用“转化”的思想推导梯形面积公式

教学难点:运用不同方法推导出梯形的面积公式

教具准备:梯形学具(两个完全一样的直角梯形、等腰梯形、任意梯形)

电脑课件

教学过程:

一、设置情境 提出问题

1、师:(板书课题)我们学过的平行四边形、三角形的面积与它的底和高有关,你觉得今天研究的梯形的面积可能和它的什么有关系?

生:可能与它的上底,下底,高有关(师板书:上底,下底,高)

师:到底是不是这样,下面我们就一起来研究一下。回忆一下我们在研究三角形面积时是怎样推导的?

生: 将两个完全一样的三角形拼成平行四边形;也可以用割补的方法把三角形转化成我们以前学过的基本图形,如:正方形、长方形或平行四边形,再用面积公式计算推导出公式。

小结过渡:我们把要研究的图形转化成已学过的平面图形,就能找到求图形面积的计算方法,今天我们要研究的梯形,可以怎样转化呢?

二、小组合作,自主探索:

1、动手实践操作

师:下面我们就来实践操作一下吧,大家看见桌子上的袋子了吗?想不想知道里面装的是什么?

生:想!

师:各组打开看看吧!

生:是各种颜色的梯形。

师:哪组同学看出老师给你准备的梯形有什么特点?

生:各种梯形都有,而且每种梯形都是一模一样的两个,并且是同一个颜色。

师:我们先看看实践提纲吧。(课件出示实践提纲)

生:默读提纲,开始小组合作探究。

师:巡视指导,引导学生注意把转化前后图形各部分之间的关系找准。

2、课件直观演示

师:(出示课件)现在画面展示的是两个完全相同的梯形重叠在一起,哪个小组能说一说刚才你们将其拼成了什么图形?是怎样拼的?

生:将一个梯形旋转180度后再平移,拼成平行四边形。

师:那怎样求梯形的面积呢?

生:要先求平行四边形的面积——底×高,再除以2。

师:平行四边形的底和高图中标有吗?

生:平行四边形的底就是梯形的上底和下底的和,高就是梯形的高。(师用课件配合演示)

师:追问为什么要除以2?

生:因为我们用的是两个一模一样的梯形拼摆的,求一个梯形的面积就可以用平行四边形的面积除以二。(师用课件配合演示)

师:大家是这样拼的吗?下面谁来完成一下我们的实践提纲。(课件出示,生逐一汇报)

实践提纲:

(1)用两个完全一样的梯形可以拼成一个________________形。

(2)这个平行四边形的底等于____________________,高等于___________________.

(3)每个梯形的面积等于拼成的平行四边形面积的____________________.

(4)梯形的面积=____________________________.

总结:所以,梯形的面积公式我们就可以写成……(板书:梯形的面积=)谁到前面来将公式补充完整?(生补充板书)谁能用字母表示一下?(生板演)

《梯形的面积》教学片断评课稿

辽宁省盘锦市辽油迎宾小学 王辉

尊敬的各位领导,老师大家好!

下面我就孟老师执教的《梯形的面积》这一教学片断,从以下几个方面作以简单的评述。

一、从教学目标上看,本节课突出了一个“明”字,既知识和技能,数学能力,情感与态度。目标明确具体,关注了学生的全面发展,且在课堂教学中能紧紧围绕制定的目标展开教学,符合新课程标准中的教学理念。

二、从教学内容上看,本课抓住了一个“准”字,既教学重点,难点确立准确,教师在教材处理和教法选择上都突出了重点,使学生会运用“转化”的数学思想来推导梯形的面积公式,突破了难点,使学生会运用不同的方法来推导和验证梯形的面积公式。

三、从教学程序和教学思路上,本节课体现了一个“清”字,整个课堂教学结构设计严谨,环环相扣,过渡自然,时间分配合理,密度适中,效率高。设置情境,导入新课-------小组合作,自主探究-------发散拓展,验证结论。整个教学思路清晰。

本节课的教学中,孟老师注重渗透新课程理念,大胆开放自主探索空间,实现数学学习的“再创造”。具体体现在以下三个方面的课堂教学过程中:

(一)、创设情境,架起新知与旧知的桥梁。

《标准》指出:“数学教学,要紧密联系学生的生活实际,从学生的生活经验和已有知识出发,创设生动有趣的情境,引导学生开展观察、操作、猜想、推理、交流等活动,使学生通过数学活动,掌握 基本的数学知识和技能,初步学会从数学的角度去观察事物、思考问题,激发对数学的兴趣,以及学好数学的愿望。”根据这一理念,教者在新课导入时,教者借助知识的迁移引发学生的猜想:“梯形的面积与它的什么有关系?”同时教师又从学生已有的知识出发,向学生渗透数学转化思想,使新知识转化为旧知,新知、旧知有机的融为一体,学生把新知纳入已有的知识结构中去。不仅架起了新知与旧知的桥梁,拉近了数学与生活的距离,更让学生对数学产生了亲近感,激发了他们主动的探索欲望。

(二)、强化动手实践,拓宽探究空间。

《标准》指出:“学生的学习过程应是一个主动建构知识的过程,必须在学生认知发展水平和已有知识经验的基础上,为学生提供从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握数学知识,动手实践、自主探索与合作交流是学生学习数学的重要方式。”根据这一理念,老师在教学中注重为学生自主探究提供充分的素材、时间和空间。充分让学生动手实践——用学具剪剪拼拼,进行了自主探索,并在形式上响应地组织了小组合作交流。体现了探究性教学的特点。

(三)、发散验证培养解决问题的能力

在学生验证自己的想法是否正确时,鼓励学生大胆地表达自己的想法,以说促思,开启学生思维的“闸门”,引导学生说一说,议一议,互相交流,达成共识。在此基础上让学生归纳出梯形面积的计算方法。通过“拼、剪、说”的活动过程,让学生在活动中发散,在活动中发展,学得主动、扎实,更重要的是培养了学生求异思维、创造能力和解决实际问题的能力。在本课教学中,我比较注重培养学生的推理、操作探究及自主学习的能力。学生在拼一拼、剪一剪以及推理归纳的学习过程中,多种感观参与学习,既理解、掌握了梯形的有关知识,同时又培养了学生获取知识的能力。

(四)、从教法和学法上看,本节课呈现了一个“活”字,教学方法的“活”,主要体现在“活动探究”“小组合作”“猜想验证”等多种教学方法,使学生在数学学习活动中,主动参与,自主探索,合作交流,引导学生体会数学知识间的内在联系,感受数学的整体性,不断积累解决问题的策略,培养学生的创新意识和实践能力。

学生学法的“活”主要体现在与教法相结合,在教师的指导下学生的学习积极性很高,兴趣浓,主动参与意识强,合作,讨论交流热烈。

(五)、从教学手段上看,运用现代信息技术,实现了学生的学习方式、教师的教学方式和师生互动方式的变革,实现了现代信息技术与学科课程的整合。

《课标》中指出,把现代信息技术作为学生学习数学和解决问题的强有力工具,致力于改变学生的学习方式,使学生乐于并有更多的精力投入到现实的探索性的数学活动中去,本节课的设计充分发挥了多媒体课件的演示功能,把多媒体课件和学具有机结合,这不仅帮助学生清楚地理解、掌握用拼摆法,割补法推导梯形的面积公式,更重要的是向学生渗透数学的“转化”思想,拓展了学生的思维,极大地调动了学生参与的积极性,有效地突破了教学的重、难点,完成了本课的教学目标。

(六)、从教学效果上看,得到了一个“好”字。

即课堂教学效果高,学生思维活跃,人人主动参与,即面向全体学生,又注重个别差异,使不同的学生在教学上得到不同的发展。

综上所述,本课体现了学生是数学学习的主人,教师是数学学习的组织者,引导者与合作者,即以教师为主导,学生为主体的教学理念,体现了动手操作、合作交流、自主探究的探究性教学特点,培养了学生的创新意识和实践能力,圆满地完成了本节课的教学任务,

谢谢大家!

梯形的面积教案(篇13)

一、教学目标

1.在实际情境中,认识计算梯形面积的必要性。

2.引导学生在自主参与探索的过程中,发现并掌握梯形的面积计算方法,能灵活运用梯形面积计算公式解决相关的数学问题。

3.结合数学“再创造”过程,培养学][生观察、操作、比较等逻辑思维能力与初步的科学探究能力。

4.通过小组合作学习,培养学生合作学习的能力。

二、教学设计

(一)新知探索

(一)呈现实际情境,感受计算梯形面积的必要性

师:孩子们,这是一幅堤坝的图案,知道堤坝有什么作用吗?

生:它是用来防水灾的。

师:对了,它是一种防水拦水的建筑物,请看,这是它的横截面,这个横截面是个什么图形吗?

生:梯形。

师:堤坝横截面是梯形是因为水的压强随深度增加而增大,因此在筑堤坝时要将下部做的又宽又厚,这样既能防止强大的水压将堤坝压垮,又节省材料!你还记得梯形各部分的名称吗?

生:上底,下底,还有高。

师:那么这个堤坝的横截面积到底该怎么计算呢?今天,让我们共同来研究。(板书课题:梯形的面积)

师:你认为我们该从哪儿入手研究呢?想想我们在学习三角形的时候是怎么开始的?

生:可以象三角形那样把梯形转化为学过的图形。

师:孩子们学得真好。我有个建议,发挥小组的力量,共同合作探究。

(二)提供材料,自主探究图形的转化过程

1、提出小组合作的要求

师:听清楚老师的要求:

a.利用你们手上的梯形学具,独立思考能把梯形转化成已学过的什么图形。

b.想:拼成的图形和原来的梯形有什么关系?

2.自主探究,合作学习

(学生小组合作讨论,动手操作,教师巡视参与并给以适当的指导。让部分小组上黑板展示)

3.全班汇报交流

师:同学们已经用不同的方法把梯形转化成了我们学过的图形,哪一个小组愿意先上来给我们讲一讲。

生1:我们小组的方法是用两个完全相同的梯形拼成一个平行四边形。这个平成的平行四边形的底就是梯形上底加下底的和,高还是原来梯形的高,所以梯形的面积是平成的平行四边形的一半。

生2:我们用的是两个完全一样的直角梯形,拼成的是一个长方形,长方形的长是梯形的上底加下地的和,长方形的宽是梯形的高,梯形的面积是这个长方形的一半。

生3:

4.公式的推导

师:(展示教具)对了,用两个完全一样的梯形可以平成一个平行四边形,梯形上、下底的和等于拼成后平行四边形的底,梯形的高就是平行四边形的高。梯形的面积是所拼平行四边形面积的一半。

生:梯形的面积=(上底+下底)×高÷2

(教师板书梯形面积计算公式)

师:我再请一位孩子来流利的说出这种推倒的方法。

生:有没有小组是其他的办法的?

生:我们小组用的是割补法,就是沿梯形高的一半分割成两个梯形,再转化成平行四边形。高是原来的一半了,所以推导出梯形的公式。

生3:我们是把一个梯形剪成了两个三角形,利用乘法分配律,用三角形的公式推出梯形的公式。

师:同学们介绍了各种推导方法,你们都推出了梯形的面积。 这可是我们大家智慧的结晶,我们的同学真了不起!

师:如果用s表示梯形的面积,用a、b和h分别表示梯形的上底、下底和高,那么梯形面积的计算公式应怎样表示?

板书:s=(a+b)h÷2

师:谁来说说,想算出大坝横截面的面积应该知道什么条件呢?

生:上底,下底,高

师:对了,这是求梯形面积的重要条件,谁说一说该怎么列式呢?

生:(20+80)*40/2=200

(二)联系实际,巩固运用

1.试一试

引入:梯形的用途很广泛,在很多物体中都经常看到梯形。下面我们来解决一些日常中的问题,计算下列梯形的面积。(只列市不计算)

(1)梯形梯田的面积

(2)出示篮球场的罚球区图形,请计算出罚球区的面积。

(3)出示汽车侧面玻璃,要制作这扇门的窗户需要多少平方厘米的有机玻璃?

2.练一练第1、2、3题,让学生独立完成。

(三)课堂小结

师:通过今天的上课,谈谈你的收获。

师:是的,这节课我们通过操作,观察,比较,分析,推导出了梯形面积的计算公式,真了不起,今后同学们在日常生活中要灵活运用,提高解决有关实际问题的能力。

相关推荐

  • 梯形的面积教案精选9篇 教案课件是我们老师工作的一部分,每个老师对于写教案课件都不陌生。老师要按照教案课件来实施上课。编辑为您准备了一些有关此话题的内容,希望本文能够帮助到大家!...
    2023-04-29 阅读全文
  • 梯形面积教案集合七篇 经过细心筛选,幼儿教师教育网为大家准备了一篇名为“梯形面积教案”的文章。学生们能够在有趣生动的课堂上学习,这离不开老师们辛勤准备的教案和课件。编写每一份教案课件需要大家的认真投入。教案是教师对教学内容深刻理解和准确把握的体现。如果您需要,希望我的经验和知识能够帮助您解决一些问题!...
    2023-12-13 阅读全文
  • 梯形面积课件教案2000字 每位教师都需要精心编写教案和制作课件,以便上好每一堂课。只有教案课件准备得越充分,课堂氛围才会更加活跃和愉悦。你是否正在为如何编写好的教案课件而发愁呢?别担心,编辑为您准备了一些相关内容,欢迎与您的朋友一起分享!...
    2023-06-06 阅读全文
  • 梯形的面积教案经典十三篇 从多个角度来看“梯形的面积教案”都有着引人深思的意义。老师在正式上课之前需要写好本学期教学教案课件,现在着手准备教案课件也不迟。制定好教案可以有效地促进学生吸收知识的数量和深度。请将本页加入收藏夹方便随时查阅和分享!...
    2024-06-04 阅读全文
  • [精]梯形的面积说课稿5篇 如何撰写教案的开头呢?一位优秀的教师应该将自己的工作贯穿始终,将脑海中的知识用纸质形式呈现给学生。教案是教师备课的展示和体现,下面为您介绍我们整理的《梯形的面积说课稿》。希望您通过本文的阅读,能够对教案的撰写有所启示,并收藏本网页供日后查看。...
    2023-06-30 阅读全文

教案课件是我们老师工作的一部分,每个老师对于写教案课件都不陌生。老师要按照教案课件来实施上课。编辑为您准备了一些有关此话题的内容,希望本文能够帮助到大家!...

2023-04-29 阅读全文

经过细心筛选,幼儿教师教育网为大家准备了一篇名为“梯形面积教案”的文章。学生们能够在有趣生动的课堂上学习,这离不开老师们辛勤准备的教案和课件。编写每一份教案课件需要大家的认真投入。教案是教师对教学内容深刻理解和准确把握的体现。如果您需要,希望我的经验和知识能够帮助您解决一些问题!...

2023-12-13 阅读全文

每位教师都需要精心编写教案和制作课件,以便上好每一堂课。只有教案课件准备得越充分,课堂氛围才会更加活跃和愉悦。你是否正在为如何编写好的教案课件而发愁呢?别担心,编辑为您准备了一些相关内容,欢迎与您的朋友一起分享!...

2023-06-06 阅读全文

从多个角度来看“梯形的面积教案”都有着引人深思的意义。老师在正式上课之前需要写好本学期教学教案课件,现在着手准备教案课件也不迟。制定好教案可以有效地促进学生吸收知识的数量和深度。请将本页加入收藏夹方便随时查阅和分享!...

2024-06-04 阅读全文

如何撰写教案的开头呢?一位优秀的教师应该将自己的工作贯穿始终,将脑海中的知识用纸质形式呈现给学生。教案是教师备课的展示和体现,下面为您介绍我们整理的《梯形的面积说课稿》。希望您通过本文的阅读,能够对教案的撰写有所启示,并收藏本网页供日后查看。...

2023-06-30 阅读全文
Baidu
map