幼儿教师教育网,为您提供优质的幼儿相关资讯

反比例函数教案

发布时间:2024-02-03 反比例函数教案

反比例函数教案分享。

本文是栏目小编精心收集的有关“反比例函数教案”的信息,此篇文章内容仅供参考使用。上课前准备好课堂用到教案课件很重要,撰写教案课件是每位老师都要做的事。做好教案对于教师具有非决定性的作用。

反比例函数教案(篇1)

教学目标:

(一)教学知识点

1、经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题的过程。

2、体会数学与现实。

生活的紧密联系,增强应用意识。提高运用代数方法解决问题的能力

(二)能力训练要求

通过对反比例函数的应用,培养学生解决问题的能力。

(三)情感与价值观要求

经历将一些实际问题抽象为数学问题的过程,初步学会从数学的角度提出问题。理解问题,并能综合运用所学的知识和技能解决问题。发展应用意识,初步认识数学与人类生活的密切联系及对人类历史发展的作用。

教学重点:

用反比例函数的知识解决实际问题。

教学难点:

如何从实际问题中抽象出数学问题、建立数学模型,用数学知识去解决实际问题。

教学方法:

教师引导学生探索法。

教学过程:

Ⅰ、创设问题情境,引入新课

[师]有关反比例函数的表达式,图象的特征我们都研究过了,那么,我们学习它们的目的是什么呢?

[生]是为了应用。

[师]很好。学习的目的是为了用学到的知识解决实际问题。究竟反比例函数能解决一些什么问题呢?本节课我们就来学一学。

Ⅱ、新课讲解

投影片:()

某校科技小组进行野外考察,途中遇到片十几米宽的烂泥湿地。为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务。你能解释他们这样做的道理吗?当人和木板对湿地的压力一定时随着木板面积S(m2)的变化,人和木板对地面的压强p(Pa)将如何变化?如果人和木板对湿地地面的压力合计600N,那么:

(1)用含S的代数式表示p,p是S的反比例函数吗?为什么?

(2)当木板画积为时。压强是多少?

(3)如果要求压强不超过6000Pa,木板面积至少要多大?

(4)在直角坐标系中,作出相应的函数图象。

反比例函数教案(篇2)

一、 说教学内容

(一)、本课时的内容、地位及作用

本课内容是北师大版九年级(上)数学第五章《反比例函数》的第一课时,是继一次函数学习之后又一类新的函数——反比例函数,它位居初中阶段三大函数中的第二,区别于一次函数,但又建立在一次函数之上,而又为以后更高层次函数的学习,函数、方程、不等式间的关系的处理奠定了基础。函数本身是数学学习中的重要内容,而反比例函数则是基础函数,因此,本节内容有着举足轻重的地位。

(二)、本课题的教学目标:

教学目标是教学的出发点和归宿。因此,我根据新课标的知识、能力和德育目标的要求,以学生的认知点,心理特点和本课的特点来制定教学目标:

1、 知识目标

(1) 通过对实际问题的探究,理解反比例函数的实际意义。

(2) 体会反比例函数的不同表示法。

(3) 会判断反比例函数。

2、 能力目标

(1) 通过两个实际问题,培养学生勤于思考和分析归纳能力。

(2) 在思考、归纳过程中,发展学生的合情说理能力。

(3) 让学生会求反比例函数关系式。

3、 情感目标

(1)通过创设情境让学生经历在实际问题中探索数量关系的过程,体验数学活动与人类的生活的密切联系,养成用数学思维方式解决实际问题的习惯。

(2)理论联系实际,让学生有学有所用的感性认识。

4、 本课题的重点、难点和关键

重点:反比例函数的概念

难点:求反比例函数的解析式。

关键:如何由实际问题转化为数学模型。

二、 说教学方法:

本课将采用探究式教学,让学生主动去探索,并分层教学将顾及到全体学生,达到优生得到培养,后进生也有所收获的效果。同时在教学中将理论联系实际,让学生用所学的知识去解决身边的实际问题。

由于学生在前面已学过“变量之间的关系”和“一次函数”的内容,对函数已经有了初步的认识。因此,在教这节课时,要注意和一次函数,尤其是正比例函数一反比例的类比。引导学生从函函数的意义、自变量的取值范围等方面辨明相应的差别,在学生探索过程中,让学生体会到在探索的途径和方法上与一次函数相似。

对于所设置的两个问题为学生熟悉,尽量贴近学生生活,或者进入学生生活的圈子里,让学生感受到亲切、自然,激发学生的学习兴趣,提高学生思考问题的积极主动性和解决问题的能力,从而培养对数学学科的浓厚兴趣,使部分学生由不爱学变得爱学。让学生真正体会到:生活处处皆数学,生活处处有函数。

三、 说学法指导:

课堂,只有宝贵的四十分钟,有相当一部分学生注意力不能集中。针对这种情况,从学生身边的生活和已有的知识出发创设情境,目的是让学生感受到生活中处处有数学,激发学生对数学的兴趣和愿望,同时也为抽象反比例函数概念做好铺垫。让学生自己举例,讨论总结规律,抽象概念,便于学生理解和掌握反比例函数的概念,同时,培养和提高了学生的总结归纳能力和抽象能力。

为了让学生对反比例函数的意义牢牢掌握和深刻理解,启发学生回忆正比例函数并与之相类比,从内容到形式,学生自主地体会出反比例函数的真正内涵。

在本课时的师生互动过程中,积极创造条件和机会,关注个体差异,让学困生发表见解,使他们有成功的学习体验,激发他们的学习兴趣,增强他们的自信心,提高他们学习的主动性。

教师要善于捕捉学生的反馈信息,并能立即反馈给学生,矫正学生的学法和知识错误。力求体现以学生为主体,教师为主导的原则,在轻松愉快的氛围中,顺利地“消化”本节课的内容。同时,让学生体会到理论来自于实践,而理论又反过来指导实践的哲学思想。从而培养和提高学生分析问题和解决问题的能力。

四、 说教学过程:

1、 复习引入:

师生共同回忆前一阶段所学知识,再次强调函数和重要性,同时启开新的课题——反比例函数(教师板书)。

(一) 创设情景,激发热情

我经常在思考:长期以来,我们的学生为什么对数学不感兴趣,甚至害怕数学,其中的一个重要因素就是数学离学生的生活实际太远了。事实上,数学学习应该与学生的生活融合起来,从学生的生活经验和已有的知识背景出发,让他们在生活中去发现数学、探究数学、认识并掌握数学。

因而用两个最贴近学生生活实例引出反比例函数的概念;从而让学生感受数学与生活的紧密联系。

多媒体课件展示

(问题1)我校车棚工程已经启动,规划地基为36平方米的矩形,设连长为X(米),则另一连长Y(米)与X(米)的函数关系式。

让学生分析变量关系,然后教师总结:依矩形面积可得

XY=36 即Y=36/X

(问题2)昨天在放学回家时,小明的车胎爆了。第二天,小明的爸爸骑摩托车送小明来学校。中午放学小明不得不走回家。(小明家距学校2000米)

(1)、在这个故事中,有几种交通工具?

(2)、两种交通工具的正常行驶速度一样吗?来去的路程一样吗?时间呢?

师生共同探究,时间的变化是由速度所引起的,设时间为T,速度为V,则有T=2000/V

(二) 观察归纳——形成概念

由实例XY=36 即Y=36/X和T=2000/V 两个式子教师引导学生概括总结出本课新的知识点:

一般地,形如Y=K/X或XY=K(K是常数,K不为0)的函数叫做反比例函数。

在此教师对该函数做些说明。

(三) 讨论研究——深化概念

学生通过对例1的观察、讨论、交流后更进一步理解和掌握反比例函数的概念

多媒体课件展示、

例1、 下列函数关系中,哪些是反比例函数?

(1)、一个矩形面积是20平方厘米,相邻两条连长分别为X厘米和Y厘米那么变量Y是变量X的函数吗?是反比例函数吗?为什么?

(2)、滑动变阻器两端的电压为U,移动滑片时通过变阻器的电流I和电阻R之间的关系;

(3)、某地有耕地346.2公顷,人口数量N逐年发生变化,那么该村人均占有耕地面积M(公顷?(人))是全村人口数N的函数吗?是反比例函数吗?为什么?

(4)某乡粮食总产量M吨,那么该乡每人平均粮食Y(吨)与该乡人口数X的函数关系。

学生回答后教师给出正确答案。

四、 即时训练——巩固新知

为了使学生达到对知识的深化理解,从而达到巩固提高的效果,我特地设计了一组即时训练题,把课本的习题熔入即时训练题中,通过学生的观察尝试,讨论研究,教师引导来巩固新知识。

多媒体课件展示

(巩固练习:)

(口答)下列函数关系中,X均表示自变量,那么哪些是反比例函数?每一个反比例函数的K的值是多少?

Y=5/X Y=0.4/X Y=X/2 XY=2

5)Y=-1/X(给学困生发表见解的机会,激发他们的学习兴趣)

学生回答后教师给出正确答案。

反比例函数教案(篇3)

反比例函数的图像和性质

反比例函数是一种特殊的函数,其函数图像是一条右开口的双曲线。其函数表达式为y=k/x,其中k是常数,x不等于0。这种函数的性质与其他函数有很大的不同,因此掌握它的图像和性质对于学习数学和应用数学都具有重要的意义。

一、反比例函数的图像

1、基本图像

反比例函数的图像是一条右开口的双曲线,即图像关于x轴和y轴对称。当x趋近于0时,y趋近于无穷大或负无穷大;当x趋近于无穷大或负无穷大时,y趋近于0。反比例函数的图像通过坐标系原点。

2、影响因素

反比例函数的图像受到k的影响。k越大,反比例函数的图像越陡峭;k越小,反比例函数的图像越平缓。

二、反比例函数的性质

1、定义域和值域

反比例函数的定义域为x不等于0的实数集合,值域为实数集合。

2、单调性和奇偶性

当x>0且k>0时,反比例函数单调递减;当x0时,反比例函数单调递增。当k

3、渐近线

反比例函数的图像有两条渐近线,分别是x轴和y轴。当x趋于0时,反比例函数的图像逼近渐近线y=0;当x趋于无穷大或负无穷大时,反比例函数的图像逼近渐近线x=0。

4、对称性

反比例函数的图像是关于原点对称的。

5、最值

反比例函数没有最值。

6、解析式

反比例函数的解析式为y=k/x,其中k是常数,x不等于0。【Www.WEI508.coM 实用文书网】

三、反比例函数的应用

1、反比例函数在经济学中的应用

反比例函数在经济学中有着广泛的应用。比如,生产率与劳动力之间的关系,实际上就是一种反比例函数关系。当用更多的劳动力投入到生产中时,生产率会随之降低,而当用更少的劳动力投入时,生产率会随之增加。

2、反比例函数在物理学中的应用

反比例函数在物理学中也有着广泛的应用。比如,弹簧的弹性系数和弹簧伸长量之间的关系,实际上就是一种反比例函数关系。当伸长量越大时,弹性系数越小,反之亦然。

3、反比例函数在金融学中的应用

反比例函数在金融学中也有着广泛的应用。比如,资本与利息之间的关系,实际上就是一种反比例函数关系。当资本越多时,利息越少,反之亦然。

总之,反比例函数是一种非常重要的函数,具有很多重要的性质和应用。掌握反比例函数的图像和性质,可以帮助我们更好地理解和应用它,从而更好地应用数学解决实际问题。

反比例函数教案(篇4)

反比例函数,又称为倒数函数,是指形如y=k/x的函数,其中k为非零常数。它在数学中有着广泛的应用,在物理、化学等领域也得到了广泛的应用。反比例函数的图像非常具有特点,它的特点有什么?它的性质有什么?下面我们来一起学习。

一、反比例函数的图像

反比例函数的图像主要有以下几个特点:

1、反比例函数的图像是以原点为对称中心的曲线,即关于原点对称。

2、反比例函数的图像是一条双曲线。这条曲线的性质是:当x趋近于0时,y趋近于无穷大;当x趋近于无穷大时,y趋于0;当x趋近于正无穷或负无穷时,y值不为0,但很接近于0。

3、反比例函数的图像与x轴和y轴有渐进线,即当x趋向于正无穷或负无穷时,曲线会趋近于x轴或者y轴。

通过上述特点,我们可以画出反比例函数的图像,进而深入了解它的性质。

二、反比例函数的性质

反比例函数的特点决定了它有以下几个性质:

1、反比例函数的定义域为x不等于0的实数集,值域为y不等于0的实数集。这个定义域和值域的条件很重要,因为当x为0时,y的值就不存在了。

2、反比例函数y=k/x的图像在第一、三象限中,是单调递减的;在第二、四象限中,是单调递增的。

3、在反比例函数中,当x不断增大时,y的值会不断减小;当x不断减小时,y的值会不断增大。

4、反比例函数y=k/x的导函数为y'=-k/x^2,即反比例函数的导数也满足反比例。这个性质很有意思,它意味着反比例函数在每个点的切线斜率都是相同的。

通过以上性质,我们可以更好地理解和掌握反比例函数。

三、结语

反比例函数在数学中有着非常重要的地位,它不仅有着特殊的图像,而且还有许多重要的性质。掌握反比例函数的图像和性质可以让我们更好地理解数学中的一些基本概念。同时,反比例函数的应用也非常广泛,在生活中也常常会遇到。希望本文的介绍可以帮助大家更好地理解反比例函数,从而更轻松地应用它到实际问题中。

反比例函数教案(篇5)

1.定义:形如y= (k为常数,k≠0)的函数称为反比例函数。

2.其他形式 xy=k (k为常数,k≠0)都是。

反比例函数的图象既是轴对称图形又是中心对称图形。

3.性质:当k>0时双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小。

当k

所作的垂线段与两坐标轴围成的矩形的面积。

1、n个相同因式(或因数)a相乘,记作an,读作a的n次方(幂),其中a为底数,n为指数,an的结果叫做幂。

2、底数相同的幂叫做同底数幂。

3、同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。即:am﹒an=am+n。

5、开始底数不相同的幂的乘法,如果可以化成底数相同的幂的乘法,先化成同底数幂再运用法则。

1.旋转的定义:把一个图形绕着某一O转动一个角度的图形变换叫做旋转。点O叫做旋转中心,转动的角叫做旋转角。如果图形上的点A经过旋转变为点A′,那么,这两个点叫做这个旋转的对应点。

2.旋转的性质:

(1)对应点到旋转中心的距离相等;

(2)对应点与旋转中心所连线段的夹角等于旋转角;

(3)旋转前后的图形全等。

3.作图:

在画旋转图形时,要把握旋转中心与旋转角这两个元素。确定旋转中心的关键是看图形在旋转过程中某一点是“动”还是“不动”,不动的点则是旋转中心;确定旋转角度的方法是根据已知条件确定一组对应边,看其始边与终边的夹角即为旋转角。

作图的步骤:

(1)连接图形中的每一个关键点与旋转中心;

(2)把连线按要求绕旋转中心旋转一定的角度(旋转角);

(3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;

(4)连接所得到的各对应点。

反比例函数教案(篇6)

反比例函数是初中数学中比较重要的一种函数,它具有独特的图像和性质。在本篇课件中,我们将深入了解反比例函数的图像和性质,帮助学生更好地掌握这一知识点。

第一部分:反比例函数的定义和图像

1.1 反比例函数的定义

反比例函数是一种特殊的函数,它的定义为y = k/x (k≠0)。其中,k为反比例函数的比例常数。

1.2 反比例函数的图像

反比例函数的图像为双曲线,其横坐标轴和纵坐标轴都为渐进线。当x趋近于0时,y趋近于无穷大,反之亦然。双曲线的左右两端都存在对称点,即y轴所对应的点。

第二部分:反比例函数的性质

2.1 可定义域和值域

反比例函数的定义域为除去x = 0的一切实数,值域为除去y = 0的一切实数。因为当x = 0时,y无定义;当y = 0时,x无定义。

2.2 奇偶性

反比例函数是一个奇函数,即当x取反时,y取相反数。这可以通过函数式y = k/x的对称性进行证明。

2.3 单调性

当x增大时,y减小,反之亦然。反比例函数在它的定义域内是单调的。

2.4 渐进线

当x趋近于正无穷或负无穷时,反比例函数的图像趋近于x轴和y轴,即这两条轴成为反比例函数的渐进线。而当x取值很大或很小时,y在数值上接近于0,但y不等于0。

2.5 对称性

反比例函数的图像关于y轴和x轴都具有对称性。这可以通过函数式y = k/x的对称性进行证明。

第三部分:反比例函数的应用

3.1 比例与反比例函数的区别

在数学中,比例函数和反比例函数都属于函数关系中的特殊情况。比例函数的定义为y = kx,其中k为比例常数。相比之下,反比例函数的定义为y = k/x,与比例函数相比,反比例函数的变化方式更加明显。

3.2 反比例函数在实际问题中的应用

反比例函数可以用于一些实际问题中,例如一个物体离开另一个物体的距离和它们之间的引力。引力随着距离的增加而减小,因此它们之间的关系可以写成反比例函数。此外,反比例函数还可以用于计算机的缓存和带宽。

结语

通过本篇课件,我们深入了解了反比例函数的图像和性质。反比例函数在初中数学中占据重要的地位,掌握它的定义和特点对于学习和应用数学知识都具有重要的意义。我们希望学生们能够认真学习,并且在实践中成功应用这些知识。

反比例函数教案(篇7)

反比例函数是高中数学中的一个重要概念,它的图像和性质非常值得学生深入研究。本文将从图像和性质两个方面,对反比例函数进行详细的讲解和解释,帮助学生深入理解和掌握反比例函数的特点和应用。

一、反比例函数的图像

反比例函数的图像是一条反比例曲线,它可以用函数式表示为y=k/x,其中k为正常数。这条曲线具有以下几个特点:

1.图像的形状

反比例函数的图像是一条开口向右下方的双曲线,它没有定义域和值域,因为它在x轴和y轴上都不存在渐近线。

2.渐近线

反比例函数的图像存在两条渐近线,它们是x轴和y轴。

3.对称轴

反比例函数的图像在第一象限和第三象限分别关于y=x对称,因此反比例函数具有对称性。

二、反比例函数的性质

除了图像的特点,反比例函数还具有以下几个性质:

1.定义域和值域

反比例函数的定义域为除了0以外的所有实数,它的值域也为除了0以外的所有实数。

2.单调性

反比例函数在其定义域上是单调递减的。

3.零点和极值

反比例函数没有零点和极值,因为它的图像没有交点和最大值或最小值。

4.特殊点

反比例函数的一个特殊点是原点(0,0),因为当x或y等于0时,函数值不存在。

三、反比例函数的应用

反比例函数在实际问题中的应用非常广泛,例如:

1.速度和时间的关系。当一辆汽车行驶的速度越快,行驶一定距离所需的时间就会越短,因此速度和时间之间的关系可以用反比例函数来表示。

2.人口和资源的关系。当一个地区的人口增加,对资源的需求也会增加,因此人口和资源之间的关系可以用反比例函数来表示。

3.光线的反射。当光线在一定角度入射到平面上时,反射角度与入射角度成反比例关系,因此可以用反比例函数来表示。

总之,反比例函数是一个非常重要的概念,它的图像和性质与许多实际问题密切相关。学生应该通过深入研究和实践,在应用反比例函数解决实际问题中提高自己的数学素养和解决问题的能力。

反比例函数教案(篇8)

【教学目的】

1、知识目标:经历观察、归纳、交流的过程,探索反比例函数的主要性质及其图像形状。

2、能力目标:提高学生的观察、分析能力和对图形的感知水平。

3、情感目标:让学生进一步体会反比例函数刻画现实生活问题的作用。

【教学重点】

探索反比例函数图象的主要性质及其图像形状。

【教学难点】

1、准确画出反比例函数的图象。

2、准确掌握并能运用反比例函数图象的性质。

【教学过程】

活动1、汇海拾贝

让学生回忆我们所学过得一次函数y=kx+b(k≠0),说出画函数图像的一般步骤。(列表、描点、连线),对照图象回忆一次函数的性质。

活动2、学海历练

让学生仿照画一次函数的方法画反比例函数y=2/x和y=—2/x的图像并观察图像的特点

活动3、成果展示

将各组的成果展示在大家的面前,并纠正可能出现的问题。

活动4、行家看台

1、反比例函数的图象是双曲线

2、当k>0时,两支双曲线分别位于第一,三象限内当k

3、双曲线会越来越靠近坐标轴,但不会与坐标轴相交

活动5、星级挑战

活动6、终极挑战

如图,矩形abcd的对角线bd经过坐标原点,矩形的边分别平行于坐标轴,点c在反比例函数y=(k2—5k—10)/x的图像上,若点a的坐标是(—2,—2)则k的值为?

反比例函数教案(篇9)

一、教材分析:

反比例函数的图象与性质是对正比例函数图象与性质的复习和对比,也是以后学习二次函数的基础,本课时的学习是学生对函数的图象与性质一个再知的过程,由于初二学生是首次接触双曲线这种函数图象,所以教学时应注意引导学生抓住反比例函数图象的特征,让学生对反比例函数有一个形象和直观的认识。

根据二期课改“以学生为主体,激活课堂气氛,充分调动起学生参与教学过程”的精神。在教学设计上,我设想通过使用多媒体课件创设情境,在掌握反比例函数相关知识的同时激发学生的学习兴趣和探究欲望,引导学生积极参与和主动探索。

因此把教学目标确定为:1.掌握反比例函数的概念,能够根据已知条件求出反比例函数的解析式;学会用描点法画出反比例函数的图象;掌握图象的特征以及由函数图象得到的函数性质。2.在教学过程中引导学生自主探索、思考及想象,从而培养学生观察、分析、归纳的综合能力。3.通过学习培养学生积极参与和勇于探索的精神。

本堂课的重点是掌握反比例函数的定义、图象特征以及函数的性质;

难点则是如何抓住特征准确画出反比例函数的图象。

为了突出重点、突破难点。我设计并制作了能动态演示函数图象的多媒体课件。让学生亲手操作,积极参与并主动探索函数性质,帮助学生直观地理解反比例函数的`性质。

鉴于教材特点及初二学生的年龄特点、心理特征和认知水平,设想采用问题教学法

和对比教学法,用层层推进的提问启发学生深入思考,主动探究,主动获取知识。同时注意与学生已有知识的联系,减少学生对新概念接受的困难,给学生充分的自主探索时间。通过教师的引导,启发调动学生的积极性,让学生在课堂上多活动、多观察,主动参与到整个教学活动中来,组织学生参与“探究——讨论——交流——总结” 的学习活动过程,同时在教学中,还充分利用多媒体教学,通过演示,操作,观察,练习等师生的共同活动中启发学生,让每个学生动手、动口、动眼、动脑,培养学生直觉思维能力,

本堂课立足于学生的“学”,要求学生多动手,多观察,从而可以帮助学生形成分析、

对比、归纳的思想方法。在对比和讨论中让学生在“做中学”,提高学生利用已学知识去主动获取新知识的能力。因此在课堂上要采用积极引导学生主动参与,合作交流的方法组织教学,使学生真正成为教学的主体,体会参与的乐趣,成功的喜悦,感知数学的奇妙。

(2) 运动会的田径比赛中,运动员小王的平均速度是8米/秒,他所跑过的路程s和所用时间t之间的关系

(4) 王师傅要生产100个零件,他的工作效率x和工作时间t之间的关系

问题1:请大家判断一下,在我们写出来的这些关系式中哪些是正比例函数?

问题1主要是复习正比例函数的定义,为后面学生运用对比的方法给出反比例函数的定义打下基础。

问题2:那么请大家再仔细观察一下,其余两个函数关系式有什么共同点吗?

通过问题2来引出反比例函数的解析式 ,请学生对比正比例函数的定

义来给出反比例函数的定义,这不仅有助于对旧知识的复习和巩固,同时还可以培养学生的对比和探究能力。

反比例函数教案(篇10)

1、知识与能力目标:

(1)复习反比例函数概念、图象与性质的知识点,通过相应知识点的配套练习加深学生对反比例函数本章知识的理解与掌握。

(2)能够根据问题中的条件确定反比例函数的解析式,会画出它的图象,并根据问题确定自变量的取值范围及增减性。

2、过程与方法目标:通过对相关问题的变式探究,正确运用反比例函数知识,进一步体验形成解决问题的一些基本策略,发展实践能力和创新精神。

3、情感态度与价值观目标:创设教学情景,鼓励学生主动参与反比例函数复习活动,激发学习兴趣,获得问题解决后的乐趣,继续渗透数形结合等数学思想方法。

重点:进一步掌握反比例函数的概念、图像、性质并正确运用。

难点:反比例函数性质的灵活运用。数形结合思想的`应用。

探究——讨论——交流——总结

多媒体课件。

同学们,今天我们就来复习反比例函数,通过今天的复习课,希望大家加深对反比例函数知识的理解和运用首先请同学们回忆一下,对反比例函数你了解那知识?

课件展示:

1、反比例函数的意义

2、反比例函数的图象与性质

3、利用反比例函数解决实际问题

(一)与反比例函数的意义有关的问题

课件展示:

忆一忆:什么是反比例函数?

要求学生说出反比例函数的意义及其等价形式

巩固练习:课件展示:

1、下列函数中,哪些是反比例函数?

(1)y= 5/x(2)y=x/4+2 (3)y= -5/3x(4)y=-7 x的-1次方(5)y=1/x+4

2、写出下列问题中的函数关系式,并指出它们是什么函数?

⑴当路程s一定时,时间t与平均速度v之间的关系。

⑵质量为m(kg)的气体,其体积v(m3)与密度ρ(kg/m3)之间的关系。

3、若y=为反比例函数,则m=______

4、若y=(m-1)为反比例函数,则m=______ 。

(二)运用反比例函数的图象与性质解决问题

1、反比例函数的图象是

2、图象性质见下表(课件展示):

3、做一做(课件展示)

(1)函数y=的图象在第______象限,当x

(2)双曲线y=经过点(-3,______)。

(3)函数y=的图象在二、四象限内,m的取值范围是______ 。

(4)若双曲线经过点(-3,2),则其解析式是______.

(5)已知点A(-2,y1),B(-1,y2) C(4,y3)都在反比例函数y=的图象上,则y1、y2与y3的大小关系(从大到小)为____________ 。

(三)综合运用(课件展示)

一次函数的图像y=ax+b与反比例函数y=交与M(2,m)、N(-1,-4)两点。(1)求反比例函数和一次函数的解析式;(2)根据图像写出反比例函数的值大于一次函数的值的X的取值范围

见课件

1、反比例函数的意义

2、反比例函数的图象与性质

配套练习22页21、22题

反比例函数教案(篇11)

反比例函数的图像和性质

反比例函数是一类非常重要的函数,它在数学和实际生活中都有广泛的应用。反比例函数是一种特殊的函数,它是一种比例关系的反向反映。反比例函数的图像特点是它的图像是一条双曲线。在本文中,我们将介绍反比例函数的图像和性质,以深入了解反比例函数的本质。

一、反比例函数的定义和性质

反比例函数通常被定义为:y = k/x,其中k是一个常数。这个函数的重要性在于它表示一种反比例关系。反比例关系是一种数学关系,它表示两个变量的相对变化。在反比例关系中,当一个变量变大时,另一个变量会减少,反之亦然。反比例函数是两个变量之间的比例关系反转。

反比例函数是一种特殊的函数,它有以下性质:

1. 反比例函数的定义域为除数不为零的实数。

2. 反比例函数的值域为实数。

3. 反比例函数在y轴上是不连续的。

4. 反比例函数在x轴上是渐近线。

5. 反比例函数是对称的。

二、反比例函数的图像

反比例函数的图像是一条双曲线。这个双曲线分为两个分支,分别围绕着x轴和y轴展开。这个双曲线的两个极点分别在x轴和y轴上。这个双曲线与x轴、y轴和两个渐近线相交。

反比例函数的图像具有如下几个特点:

1. 通过原点。因为当x=0时,y=0,所以反比例函数的图像一定通过原点。

2. 分为两个分支。反比例函数的图像有两个分支,分别位于x轴的正负两侧。这两个分支对称于y轴。

3. 极点。反比例函数的图像的极点位于x轴和y轴上。极点是函数的定义区间的两个端点x=0和y=0。

4. 表示反比例关系。反比例函数的图像反映了两个变量的反比例关系,即当一个变量增加,另一个变量减少。

5. 无零点。反比例函数的图像不穿过x轴,也就是说,反比例函数没有零点。

三、反比例函数的应用

反比例函数广泛应用于实际生活中的许多问题。以下是反比例函数的一些典型应用:

1. 电阻和电流的关系。电阻和电流之间通常是一个反比例关系。这个反比例关系可以用反比例函数来表示。反比例函数可以帮助我们更好地理解电路中电流和电阻之间的关系。

2. 压力和面积的关系。在流体动力学中,压力和面积之间通常是一个反比例关系。这个反比例关系可以用反比例函数来表示。反比例函数可以帮助我们更好地理解流体动力学中压力和面积之间的关系。

3. 速度和时间的关系。在运动学中,速度和时间之间通常是一个反比例关系。这个反比例关系可以用反比例函数来表示。反比例函数可以帮助我们更好地理解运动学中速度和时间之间的关系。

4. 人口和资源的关系。在人口学和资源经济学中,人口数量和资源数量之间通常是一个反比例关系。这个反比例关系可以用反比例函数来表示。反比例函数可以帮助我们更好地理解人口学和资源经济学中人口数量和资源数量之间的关系。

四、总结

反比例函数是一个非常重要的数学工具,它在实际生活和学术研究中都有广泛的应用。反比例函数的图像特点是它的图像是一条双曲线。反比例函数的主要性质包括定义域、值域、y轴不连续性、x轴渐近线和对称性。反比例函数在许多领域有着广泛的应用,包括电路、流体动力学、运动学和人口学和资源经济学。通过深入了解反比例函数的图像和性质,我们可以更好地理解这个重要的函数,从而更好地应用它。

反比例函数教案(篇12)

一、 说教学内容:

(一)、本课时的内容、地位及作用:

本课内容是华东师大版八年级(下)数学第十八章《函数及其图象》第四节《反比例函数》的第一课时,是继一次函数学习之后又一类新的函数-—反比例函数,它位居初中阶段三大函数中的第二,区别于一次函数,但又建立在一次函数之上,而又为以后更高层次函数的学习,函数、方程、不等式间关系的处理奠定了基础。函数本身是数学学习中的重要内容,而反比例函数则是基础函数,因此,本节内容有着举足轻重的地位。

(二) 、本课题的教学目标:

教学目标是教学的出发点和归宿。因此,我根据新课标的知识、能力和德育目标的要求,以学生的认知点,心理特点和本课的特点来制定教学目标:

(1)、通过对实际问题的探究,理解反比例函数的意义。

(2)、体会反比例函数的不同表示法。

(1)、通过两个实际问题,培养学生勤于思考和分析归纳的能力。

(2)、在思考、归纳等过程中,发展学生的合情说理能力。

(1)、通过已有的知识经验探索的过程,体验数学研究和发现的过程,逐步培养学生在教学活动中的主动探索的意识和合作交流的习惯。

(2)、理论联系实际,让学生有学有所用的感性认识。

二、 说教学方法:

本课将采用探究式教学,让学生主动去探索,并分层教学将顾及到全体学生,达到优生得到培养,后进生也有所收获的效果。同时在教学中将理论联系实际,让学生用所学的知识去解决身边的实际问题。

由于学生才第一次接触函数,对一次函数尽管已经学习了,但对函数这部分内容不是十分熟练。因此,在教这节课时,要注意和一次函数,尤其是正比例函数与反比例函数的类比。引导学生从函数的意义、自变量的取值范围等方面辨明相应的差别,在学生探索过程中,让学生体会到在探索的途径和方法上与一次函数相似。

对于所设置的两个问题为学生所熟悉,尽量贴近学生生活,或者进入学生生活的圈子里,让学生感受到亲切、自然,激发学生的学习兴趣,提高学生思考问题的积极主动性和解决问题的能力,从而培养对数学学科的.浓厚兴趣,使部分学生由不爱学变得爱学。让学生真正体会到:生活处处皆数学,生活处处有函数。

三、 说学法指导:

课堂,只有宝贵的四十五分钟,有相当一部分学生很难驾驭,身不由已,注意力不能集中。针对这种情况,故意设置两个贴近生活的实例,让学生展开想象的翅膀,主动思考,相互探讨,学生互动,师生互动。在想象与探讨的互动中,迸发出思想的火花,寻求问题的答案――反比例函数的意义。

为了让学生对反比例函数的意义牢牢掌握和深刻理解,启发学生回忆正比例函数并与之相类比,从内容到形式,学生自主地体会出反比例函数的真正内涵。

在本课时的教学双边活动过程中,抓住初中学生的心理生理特点,尽量运用生动的语言,引发学生的兴趣,吸引他们的注意力;另一方面积极创造条件和机会,让学生发表见解,发挥学生学习的主动性。

教师要善于捕捉学生的反馈信息,并能立即反馈给学生,矫正学生的学法和知识错误。力求体现以学生为主体,教师为主导的原则,在轻松愉快的氛围中,顺利地“消化”本节课的内容。同时,让学生体会到“理论来自于实践,而理论又反过来指导实践”的哲学思想。从而培养和提高学生分析问题和解决问题的能力.

师生共同回忆前一阶段所学知识,再次强调函数的重要性,同时启开新的课题——反比例函数(教师板书),(若作业中存在普遍问题,应先纠正)。

2、 创设问题情景,激发学生的学习热情,培养学生遵纪守法的意识:

教师陈述本班小王发生的一个故事(问题1),故事的经过是这样的:

昨天下午3时许,小王的爸爸骑摩托车带着小王去了离家24公里的县城,因摩托车没有注册入户,被交警将车扣留,6点钟小王父子坐了小四轮按原路返回。

(2)、两种交通工具的正常行驶速度一样吗?来去的路程一样吗?时间呢?(生答:不一样、一样、不一样)

师生共同探究,时间的变化是由速度的变化所引起,设时间为t,速度为v,则有 t=24/v

问题2、我校车棚工程已经启动,规划地基为36平方米的矩形,设一边长为x(米),则另一边长y(米)与x(米)的函数关系式。

3、 归纳得出结论:

一般地,形如y=k/x (k是常数,k不为0)的函数叫做反比例函数。

在此教师对该函数做些说明。

4、 例题讲解:

例1、下列函数关系中,哪些是反比例函数?

(1)、平行四边形面积是12平方厘米,它的一边是a厘米,这边上的高是h厘米,a与h的函数关系。

yJS21.com更多精选幼儿园教案阅读

反比例函数教案集合


今天编辑为大家带来了一篇与“反比例函数教案”相关的文章推荐,请收藏此页和我们的网站以备后用。上课前准备好课堂用到教案课件很重要,撰写教案课件是每位老师都要做的事。教案的编写是教师课堂教学的决定性因素之一。

反比例函数教案 篇1

第一课时

教学设计思想

本节课是在学习了反比例函数的概念,反比例函数的图像和性质等相关知识的基础上引入的。首先创设问题情境,展示反比例函数在实际生活中的应用情况,激发学生的求知欲和浓厚的学习兴趣。接下来主要讨论了反比例函数在体积、面积这样的实际问题中的应用。分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。

教学目标

知识与技能

1、能灵活列反比例函数表达式解决一些实际问题。

2、能综合利用几何、方程、反比例函数的知识解决一些实际问题。

过程与方法

1、经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。

2、体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力。

情感态度与价值观

体验反比例函数是有效地描述现实世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具。

教学重难点

重点:掌握从实际问题中建构反比例函数模型。

难点:从实际问题中寻找变量之间的关系。关键是充分运用所学知识分析实际情况,建立函数模型,教学时注意分析过程,渗透数形结合的思想。

教学方法

启发引导、合作探究

教学媒体

课件

教学过程设计

(一)创设问题情境,引入新课

[师]有关反比例函数的表达式,图像的特征我们都研究过了,那么,我们学习它们的目的是什么呢?

[生]是为了应用。

[师]很好。学习的目的是为了用学到的知识解决实际问题。究竟反比例函数能解决一些什么问题呢?本节课我们就来学一学。

问题:某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务的情境。

反比例函数教案 篇2

一、教学目标

1.利用反比例函数的知识分析、解决实际问题

2.渗透数形结合思想,提高学生用函数观点解决问题的能力

二、重点、难点

1.重点:利用反比例函数的知识分析、解决实际问题

2.难点:分析实际问题中的数量关系,正确写出函数解析式

三、例题的意图分析

教材第57页的例1,数量关系比较简单,学生根据基本公式很容易写出函数关系式,此题实际上是利用了反比例函数的定义,同时也是要让学生学会分析问题的方法。

教材第58页的例2是一道利用反比例函数的定义和性质来解决的实际问题,此题的实际背景较例1稍复杂些,目的是为了提高学生将实际问题抽象成数学问题的能力,掌握用函数观点去分析和解决问题的思路。

补充例题一是为了巩固反比例函数的有关知识,二是为了提高学生从图象中读取信息的能力,掌握数形结合的思想方法,以便更好地解决实际问题

四、课堂引入

寒假到了,小明正与几个同伴在结冰的河面上溜冰,突然发现前面有一处冰出现了裂痕,小明立即告诉同伴分散趴在冰面上,匍匐离开了危险区。你能解释一下小明这样做的道理吗?

反比例函数教案 篇3

反比例函数的图像和性质

反比例函数是高中数学中一个非常重要的函数类型,具有很多特殊的性质和应用。掌握反比例函数的图像和性质对于理解和解决实际问题非常有帮助。在本文中,我们将重点介绍反比例函数的图像和性质,帮助学生更好地理解和应用反比例函数。

一、反比例函数的定义

反比例函数是指函数y=k/x,其中k为常数,x为自变量,y为因变量。它的定义域为{x | x ≠ 0},值域为{y | y ≠ 0}。

二、反比例函数的图像

反比例函数的图像是一条经过坐标轴原点的双曲线。当x趋近于0时,y趋近于无穷大;当x趋近于无穷大时,y趋近于0。反比例函数的图像如下所示:

三、反比例函数的性质

1. 定义域和值域

反比例函数的定义域为{x | x ≠ 0},值域为{y | y ≠ 0},即y不能等于0。

2. 单调性

反比例函数是单调递增的,即当x1 y2。

3. 零点和渐近线

反比例函数的零点为(0,k),即过原点且与y轴平行的直线。反比例函数还有两条渐近线,分别是x轴和y轴。当x趋近于无穷大或负无穷大时,反比例函数的值趋近于0。

4. 对称性

反比例函数是关于y轴的对称函数。如果将函数图像沿y轴翻转180度,则原来在第二象限的点会被映射到第三象限,原来在第一象限的点会被映射到第四象限。

四、反比例函数的应用

反比例函数在实际问题中有广泛的应用,例如:

1. 比例问题

反比例函数可以用于解决比例问题,例如“一个物体的密度与其体积成反比例关系,当物体的密度为2时,它的体积是多少?”可以用反比例函数y=k/x表示物体的密度和体积之间的关系,其中k为常数。根据题意,当密度为2时,体积为k/2,因此k=2v,所以y=2v/x。当密度为2时,体积为2v/2=V,即体积为V。

2. 费用问题

反比例函数可以用于解决费用问题,例如“一辆汽车每小时行驶60公里,行驶一定距离的时间越短,所产生的费用越大,费用与行驶时间成反比例关系,费用为每小时80元,行驶120公里需要多少费用?”可以用反比例函数y=k/x表示费用和时间之间的关系,其中k为常数。根据题意,当时间为1小时时,费用为80元,因此k=80。此时反比例函数为y=80/x,当行驶120公里时,时间为120/60=2小时,因此费用为80元/小时×2小时=160元。

总之,反比例函数是高中数学中一个非常重要的函数类型,具有很多特殊的性质和应用。掌握反比例函数的图像和性质不仅可以帮助学生理解反比例函数,还可以应用到实际问题中,解决各种复杂的问题。

反比例函数教案 篇4

《实际问题与反比例函数(第三课时)》说课稿

一、数学本质与教学目标定位

《实际问题与反比例函数(第三课时)》是新人教版八年级下册第十七章第二节的课题,是在前面学习了反比例函数、反比例函数的图象和性质的基础上的一节应用课。体现反比例函数是解决实际问题有效的数学模型,经历“找出常量和变量,建立并表示函数模型,讨论函数模型,解决实际问题“的过程。

本节课的教学目标分以下三个方面:

1、知识与技能目标:(1)通过对“杠杆原理”等实际问题与反比例函数关系的探究,使学生能够从函数的观点来解决一些实际问题;

(2)通过对实际问题中变量之间关系的分析,建立函数模型,运用已学过的反比例函数知识加以解决,体会数学建模思想和学以致用的数学理念。

2、能力训练目标:分析实际问题中变量之间的关系,建立反比例函数模型解决问题,进一步运用函数的图像、性质挖掘杠杆原理中蕴涵的道理。

3.情感、态度与价值观目标:(1)利用函数探索古希腊科学家阿基米德发现的“杠杆定律”,使学生的求知欲望得到激发,再通过自己所学知识解决了身边的问题,大大提高了学生学习数学的兴趣。

(2)训练学生能把思考的结果用语言很好地表达出来,同时要让学生很好地交流和合作.

二、学习内容的基础以及其作用

在17.1学习了反比例函数的概念及函数的图像和性质基础上,《实际问题与反比例函数》这一节重点介绍反比例函数在现实生活中的广泛性,以及如何应用反比例函数的知识解决现实生活中的实际问题。

本节课的探究的例题和练习题都是现实生活中的常见问题,反映了数学与实际的关系,即数学理论来源于实际又发过来服务实际,这样有助于提高学生把抽象的数学概念应用于实际问题的能力。在数学课上涉及了物理学力学的实际问题,运用到古希腊科学家阿基米德发现的“杠杆定理”,其本质体现的是力与力臂两个量的发比例关系,最后落实到运用数学来解决。通过学习,让学生进一步加深对反比例函数的运用和理解,更深层次体会建立反比例模型解决实际问题的思想,巩固和提高所学知识,鼓励学生将所学知识应用到生活中去。

三、教学诊断分析:

本节课容易了解的地方是:杠杆是我们在生活中常常遇到的物理模型,利用杠杆定理容易建立函数关系式。而我认为本节课有两个问题学生比较难理解:(1)是注意在实际问题中函数自变量的取值范围,用数学知识去解决实际问题。在讲课时注意提醒学生关注实际问题的意义;(2)从函数的角度深层次挖掘变量的关系,在这一过程中学生逐渐建立运用运动变化的观点解释一些现象,实现从静到动的转变。授课时教师要按照学生的认知规律有层次、有步骤地引导学生分析解决问题。学生可以在我设计的问题的提示下来进行探究,学生若能发现其他的规律,教师应表扬,并让同学自己来讲解。

四、教法特点以及预期效果分析

教法特点:1、在研究性学习中应以问题情境和学习任务为驱动.教学过程中 ,教师不应把现成的结论和方法直接告诉学生,应以问题情境和学习任务为驱动,激发学生的探索精神和求知欲望.同时,又要营造一种宽松、和谐、积极民主的学习氛围,使每位学生都成为问题的探索者、研究中的发现者.

2、注重观察能力的培养.教学过程中应注重对学生观察的目的.性、敏锐性和思辨性结合的培养 ,优化观察的对象,透过现象看本质,迅速从繁杂无序问题中捕捉最有价值的信息.此能力是发现问题和解决问题的关键.

3、合作意识和合作能力的培养.合作意识和合作能力是现代人才必备的基本素质之一.现代社会中,几乎任何一项工作都要许多人通力合作才能完成(如上述众多结论的获得) ,是否具有协作精神,能否与他人合作,已成为决定一个人能否成功的重要因素.教师要创设一切为学生合作的情境和机会,使学生学会与他人合作.

4、数学应用意识的培养.作为数学教师 ,我们的主要任务是,培养学生用数学的眼光去观察和分析实际问题,提高对数学的兴趣,增强学好数学的信心,达到培养创新精神和能力的目的.以上问题的解决过程,实际上就是要求学生作为主体去面对解决的问题,主动去探索、讨论,寻找问题解决的途径,用数学的方法和技术来处理实际模型,最终得出结论.

5、数学审美能力的培养.数学是“真”的典范 ,同时又是“美”的科学.教师应引导学生去发现美、体验美、感受美和创造美,这样能够使学生的思维得到锻炼、智力得到开发、情操得到陶冶和创新能力得到提高.它是鼓舞学生奋发向上,引导学生积极创造的重要因素.

预期效果分析:

(1)教学难点的突破:本节的难点在于“把实际问题利用反比例函数转化为数学问题加以解决”,课前预设通过“师生共分析——分析错处——再独立解题”的三个环节,以达到学生逐步掌握转化的方法。

(2)教学重点的落实:在探索实际问题与反比例函数时,教学活动设计了学生通过“现观察——后归纳——再比较——后小结”的循环上升的思维进程进行引导,在实际教学活动中学生通过自主探索能发现并归纳,使学生所学知识进一步内化和系统化。总之 ,学生是具有学习的自主性、探索性、协作性和实践性.本节课是学生对科学探索与研究的初步尝试,但是它对学生今后的学习和15.1分式的意义说课稿

教材《上教版九年制义务教育课本数学七年级第二册》P51-P53

一、教材分析

1.地位、作用和前后联系:本节课的主要内容是分式的概念以及掌握分式有意义、无意义、分式值为0的条件.它是在学生掌握了整式的四则运算、多项式的因式分解,并以六年级第一学期的分数知识为基础,对比引出分式的概念,把学生对“式”的认识由整式扩充到有理式.学好本节知识是为进一步学习分式知识打下扎实的基础,是以后学习函数、方程等问题的关键。

2.学情分析:我校初二年级学生基础比较差,学习能力较弱.但通过预初年级分数的学习,头脑中已形成了分数的相关知识,知道分数的分子、分母都是具体的数,因此学生可能会用学习分数的思维定势去认知、理解分式.但是在分式中,它的分母不是具体的数,而是抽象的含有字母的整式,会随着字母取值的变化而变化.为了学生能切实掌握所学知识,在教学中特别设计了几组练习;对于教材中的例题和练习题,将作适当的延伸拓展和变式处理.

二、目标分析:教育目标的确立应该建立在学生的学习过程上,而学生对数学的学习应该包括三个层次:学习数学基础知识;形成一定的数学能力;完善自我的精神品格。结合我校学生的实际情况,我对本节课的教学目标确定如下:

1、知识技能目标①理解分式的概念.②能求出分式有意义的条件.

2、过程性目标①通过对分式与分数的类比,学生亲身经历探究整式扩充到分式的过程,初步学会运用类比转化的思想方法研究数学问题.②学生通过类比方法的学习,提高了对事物之间是普遍联系又是变化发展的辩证观点的再认识.

3、情感与态度目标①通过联系实际探究分式的概念,能够体会到数学的应用价值.②在合作学习过程中增强与他人的合作意识.

三、教学方法1.师生互动探究式教学 以教学大纲为依据,渗透新的教育理念,遵循教师为主导、学生为主体的原则,结合初二学生的求知心理和已有的认知水平开展教学.学生通过熟悉的现实生活情景,发现有些数量关系仅用整式来表示是不够的,引发认知冲突,提出需要学习新的知识.引导学生类比分数探究分式的概念,形成师生互动,体现了数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上.

2.自主探索、研讨发现.知识是通过学生自己动口、动脑,积极思考、主动探索获得.学生在讨论、交流、合作、探究活动中形成分式概念、掌握分式有意义、分式值为0的条件.在活动中注重引导学生体会用类比的方法(如类比分数的概念形成分式的概念)扩展知识的过程,培养学生学习的主动性和积极性.

3.设计理念.根据《上海市中小学数学课程标准(试行本)》中明确指出以学生发展为本,坚持全体学生的全面发展,关注学生个性的健康发展和可持续发展。

本节课的教学,是在学生已有的分数知识基础上,创设情景,产生认知冲突,引导学生开展观察特点、类比归纳、讨论交流等探究活动,在活动中向学生渗透类比思想、特殊与一般的辩证唯物主义观点.

4.教学重点与难点:重点:分式的概念.难点:理解和掌握分式有意义、值为0的条件.

突破点:由于部分学生容易忽略分式分母的值不能为0,所以在教学中,采取类比分数的意义,加强对分式的分母不能为0的教学.

四、教学过程分析

1、教学流程图2、流程说明:根据教材的结构特点,紧紧抓住新旧知识的内在联系,运用类比、联想、转化的思想,突破难点.本节课的教学设计思路:

1、创设情景 从实际问题引入,提出表示数量关系仅用整式是不够的,体现了数学源于生活.

2、形成概念 类比分数知识,得到分式概念. 由分式的概念,类比分数得到分式有意义的条件.

3、反馈训练 为了更好地理解、掌握分式的基本概念,根据不同学生的学习需要,按照分层递进的教学原则,设计安排了2个由浅入深的例题.例1是熟悉分式有意义的条件,其变式是训练学生掌握分式无意义的条件;例2是如何求分式的值为0.同时配有三个由低到高、层次不同的巩固性练习,体现渐进性原则,希望学生能将知识转化为技能.

4、归纳小结 由学生总结、归纳、反思,加深对知识的理解,并且能熟练运用所学知识解决问题.

反比例函数教案 篇5

一、教材分析:

本节课学习的主要内容是画反比例函数的图象,让学生经历画图、观察、猜想、思考等数学活动,初步认识具体的反比例函数图象的特征。反比例函数的图象是在学生已经知道了研究函数图象的一般方法,以及一次函数的图象是一条直线的基础之上进一步去研究的。同时,反比例函数的图象也与众不同。针对教材及学生的实际情况,本节课的设计是让学生多动手去探索规律。

二、教学目标:

知识与技能:

(1)作反比例函数的图象。

(2)掌握反比例函数的图象与性质。

过程与方法:

逐步提高从函数图象中获取信息的能力,和数形结合的能力。

情感、态度与价值观:

培养学生积极参与,乐于探究,善于交流的意识和习惯。

三、教学重难点

教学重点:学习反比例函数图象的画法,概括反比例函数图象的共同特征。

教学难点:从反比例函数的图象中归纳总结反比例函数的主要性质。

四、教学过程:

(一)创设情境、提出问题

我们已经知道一次函数的图象是一条直线,那么反比例函数(k为常数,k≠0)的图象是什么呢?猜猜看,应该怎么画呢?(让学生根据已有的知识经验,回忆画函数图象的一般方法与步骤,类比一次函数的图象进行猜想)

(二)动手实践、解决问题

1、画图:画出反比例函数的图象在教师的引导下,让学生通过亲自动脑、动手实践去科学地验证自己的猜想,培养学生科学的态度与精神。

师:画函数图象的第一个步骤是什么?

生:列表。

师:(大屏幕投影:表格)根据前面学习一次函数的经验,列表时应注意什么?

生:应注意自变量x的取值范围,本题当中x≠0。

师:是不是把所有的x不等于零的值全都列举出来?

生:不是。

师:那怎么取值呢?(学生讨论)

生:为了便于计算和描点,我们通常取x>0和x

师:(大屏幕投影)那么,对应的y值分别是多少呢?(学生填表、口答答案。)

目的:让学生回忆、类比,注意比较与画一次函数的图象时列表的相同点与不同点。

师:列表之后,我们得到了几组x、y的对应值,即几组有序实数对,如何用直角坐标系中的点把它们表示出来呢?也就是如何描点?

生:以表中x的值作为点的横坐标,y的值作为点的纵坐标依次描点。

①学生描点

②教师利用多媒体课件演示描点的动画过程。

友情提醒:描点可要细心哦!

目的:让学生独立描点,观察描出的点的位置。培养学生细心的良好品质。

师:如何把描出的点连接起来,从而画出它的图象呢?

①学生连接。

②教师利用实物投影仪展示学生成果。

师:这里有同学们画的一些反比例函数的图象,我从中选出了四幅图象,请同学们仔细观察并进行讨论这四幅图象画得对还是不对?如果不对,它们分别错在哪里?为什么?(学生分析讨论)

生:第一幅图象是对的;第二、三、四幅图象都是错误的,错误的原因是:没有注意到自变量x的取值范围是x≠0的全体实数师:一位同学有这样一种想法:“在相邻的两点之间用线段来连接。”这种想法对吗?如果不对,错在哪里?为什么?学生分组讨论。学生相互讨论生:除了线段两个端点的坐标满足函数解析式之外,线段上其余各点的坐标都不满足函数解析式。所以用线段连接的方法是错误的。

师:除了已描好的点之外,你还能不能找到其它坐标满足函数解析式的点,比如横坐标在大于1小于2之间?

师:那么,应当用什么样的线来连接呢?

生:应当用平滑的曲线顺次连接。

目的:师生互动、生生互动,让学生充分参与、经历画图的过程,体会知识的形成过程;通过对学生画图个案的评析、多媒体课件填充点的过程演示、以及学生的认真观察、思考,探索得出重要的结论:应当用平滑的曲线顺次连接。学生自发的为自己发现的结论鼓掌,让学生品尝到成功的喜悦,增强学生的自信心。教师利用多媒体课件演示连接的过程:用平滑的曲线先顺次连接第一象限内的各点,得到图象的一个分支;然后再顺次连接第三象限内的各点,得到图象的另一个分支。把两个分支组合在一起就得到了反比例函数的图象。

2、猜想:反比例函数的图象在什么象限?请你在下面的平面直角坐标系内画出它的图象。

师:刚才,我们画出了k=6时,反比例函数的图象。请同学们猜想一下,k=-6时,反比例函数的图象在什么象限?为什么?

生:图象分布在二、四象限。由k=-6得xy=-6所以x、y异号所以反比例函数的图象分布在二、四象限。

3、师:请同学们画图验证自己的猜想。

4、①学生画图验证

②相互交流成果检验自己的猜想是否正确。

目的:让学生先类比k=6时,反比例函数的图象的位置,猜想k=-6时,反比例函数的图象的位置;然后,再独立画图验证自己的猜想。培养学生类比、猜想、说理、独立画图验证的能力。

师:(大屏幕投影:显示画图象的全过程)请同学们观察反比例函数的图象,注意比较与一次函数图象有哪些不同?讨论反比例函数的图象具有那些特征(学生分组讨论)

生:①一次函数的图象是一条直线,反比例函数的图象是由两个分支组成的,而且都是曲线;

②一次函数的图象与x、y轴有交点,反比例函数的图象与x、y轴没有交点;

③反比例函数的图象的两个分支关于原点成中心对称。

④反比例函数的图象的两个分支被坐标轴隔开,它们可以无限地靠近x、y轴,但是永远不能与x、y轴有交点;

师:反比例函数的图象有许多的特征,在今后的学习当中,我们会逐步地去认识它。

设计目的:通过观察图象并比较与一次函数图象的不同点,让学生初步认识具体的反比例函数图象的特征。)

五、本节课你学到了什么?有哪些收获?

生:①画反比例函数的图象的方法

②知道了反比例函数的图象是双曲线

③反比例函数的图象不与坐标轴有交点

④反比例函数的图象是中心对称图形

反比例函数教案 篇6

初二数学《17.2反比例函数》说课稿

一、教材分析:

反比例函数的图象与性质是对正比例函数图象与性质的复习和对比,也是以后学习二次函数的基础。本课时的学习是学生对函数的图象与性质一个再知的过程,由于初二学生是首次接触双曲线这种函数图象,所以教学时应注意引导学生抓住反比例函数图象的特征,让学生对反比例函数有一个形象和直观的认识。

二、教学目标分析

根据二期课改“以学生为主体,激活课堂气氛,充分调动起学生参与教学过程”的精神。在教学设计上,我设想通过使用多媒体课件创设情境,在掌握反比例函数相关知识的同时激发学生的学习兴趣和探究欲望,引导学生积极参与和主动探索。

因此把教学目标确定为:1.掌握反比例函数的概念,能够根据已知条件求出反比例函数的解析式;学会用描点法画出反比例函数的图象;掌握图象的特征以及由函数图象得到的函数性质。2.在教学过程中引导学生自主探索、思考及想象,从而培养学生观察、分析、归纳的综合能力。3.通过学习培养学生积极参与和勇于探索的精神。

三、教学重点难点分析

本堂课的重点是掌握反比例函数的定义、图象特征以及函数的性质;

难点则是如何抓住特征准确画出反比例函数的图象。

为了突出重点、突破难点。我设计并制作了能动态演示函数图象的多媒体课件。让学生亲手操作,积极参与并主动探索函数性质,帮助学生直观地理解反比例函数的性质。

四、教学方法

鉴于教材特点及初二学生的'年龄特点、心理特征和认知水平,设想采用问题教学法

和对比教学法,用层层推进的提问启发学生深入思考,主动探究,主动获取知识。同时注意与学生已有知识的联系,减少学生对新概念接受的困难,给学生充分的自主探索时间。通过教师的引导,启发调动学生的积极性,让学生在课堂上多活动、多观察,主动参与到整个教学活动中来,组织学生参与“探究——讨论——交流——总结” 的学习活动过程,同时在教学中,还充分利用多媒体教学,通过演示,操作,观察,练习等师生的共同活动中启发学生,让每个学生动手、动口、动眼、动脑,培养学生直觉思维能力。

反比例函数课件汇编14篇


老师会对课本中的主要教学内容整理到教案课件中,所以老师写教案可不能随便对待。教案是评估学生学习效果的有效依据,好的教案课件是怎么写成的?我们听了一场关于“反比例函数课件”的演讲让我们思考了很多,经过阅读本页你的认识会更加全面!

反比例函数课件(篇1)

反比例函数是高中数学中比较重要的一类函数,也是在理论和实际问题中经常遇到的一类函数。本文将围绕反比例函数的图像和性质展开,详细介绍反比例函数的特点、性质以及图像的绘制方法。

一、反比例函数的定义及特点

首先来回顾反比例函数的定义:若x≠0(λ为常数),则称y=λ/x(x≠0)为变量x的反比例函数,又称为x的倒数函数。

反比例函数的特点如下:

(1)定义域为除x=0外的所有实数,即Df={x|x≠0};

(2)值域为除y=0外的所有实数,即Rf={y|y≠0};

(3)反比例函数曲线在第一象限内或第三象限内。

二、反比例函数的性质

接下来,我们来介绍反比例函数的性质,以及结合实例来解析反比例函数的实际运用。

1. 单调性

由于反比例函数的定义式中y=λ/x(x≠0),因此当x越大,x的倒数1/x越小,于是y越小。

可得,当x1

y1,即反比例函数在定义域内是单调递减的。

2. 对称性

对于反比例函数,有性质f(-x)=f(x),即x轴为反比例函数的对称轴。

例如,当λ=2时,反比例函数为y=2/x,则f(-x)=2/-x=-2/x=-f(x)。

3. 渐进线

反比例函数的图像有两条渐进线,分别是x轴和y轴。

当x趋于0时,y=λ/x趋近于无穷大,故反比例函数的y轴是图像的渐进线。

同理,当y趋于0时,x趋近于无穷大,故反比例函数的x轴是图像的渐进线。

4. 零点

反比例函数的零点为x=0,即当x=0时,y=λ/0没有定义,从而无零点。

实际应用中,反比例函数常常用来表示比例关系。例如,当速度和时间成反比例关系时,我们可以使用反比例函数来表示。设物体运动速度为v(km/h),运动时间为t(h),则速度和时间的比例关系式为v=k/t,其中k为比例常数。因此,反比例函数就等于y=k/x,表示运动速度和运动时间的关系。

三、反比例函数的图像绘制方法

反比例函数的图像绘制方法如下:

1. 确定定义域和值域

反比例函数的定义域为除x=0外的所有实数,值域为除y=0外的所有实数。

2. 求取渐进线

当x趋于0时,y=λ/x趋近于无穷大,故反比例函数的y轴是图像的渐进线;同理,当y趋于0时,x趋近于无穷大,故反比例函数的x轴是图像的渐进线。

3. 计算函数图像的一些特殊点

例如,当λ=1时,反比例函数曲线上的几个特殊点为:(1,1)、(2,1/2)、(3,1/3)

4. 向直观的图像平面上绘制图像

通过上述计算,我们可以将反比例函数的图像绘制到二维平面上。通过对称性、单调性和渐进线的考虑,我们可以绘制出一条准确的反比例函数图像。

综上所述,反比例函数是一类在高中数学中非常重要的函数类型,它不仅拥有一些独特的性质和特点,同时也具有广泛的实际应用。通过本文的介绍,相信读者们对反比例函数的图像和性质有了更深入的理解,能够更好地理解和掌握这一重要数学概念。

反比例函数课件(篇2)

一、教学目标

1、利用反比例函数的知识分析、解决实际问题

2、渗透数形结合思想,提高学生用函数观点解决问题的能力

二、重点、难点

1、重点:利用反比例函数的知识分析、解决实际问题

2、难点:分析实际问题中的数量关系,正确写出函数解析式

3、难点的突破方法:

用函数观点解实际问题,一要搞清题目中的基本数量关系,将实际问题抽象成数学问题,看看各变量间应满足什么样的关系式(包括已学过的基本公式),这一步很重要;二是要分清自变量和函数,以便写出正确的函数关系式,并注意自变量的取值范围;三要熟练掌握反比例函数的意义、图象和性质,特别是图象,要做到数形结合,这样有利于分析和解决问题。教学中要让学生领会这一解决实际问题的基本思路。

三、例题的意图分析

教材第57页的例1,数量关系比较简单,学生根据基本公式很容易写出函数关系式,此题实际上是利用了反比例函数的定义,同时也是要让学生学会分析问题的方法。

教材第58页的例2是一道利用反比例函数的定义和性质来解决的实际问题,此题的实际背景较例1稍复杂些,目的是为了提高学生将实际问题抽象成数学问题的能力,掌握用函数观点去分析和解决问题的思路。

反比例函数课件(篇3)

一、 说教学内容

(一)、本课时的内容、地位及作用

本课内容是北师大版九年级(上)数学第五章《反比例函数》的第一课时,是继一次函数学习之后又一类新的函数——反比例函数,它位居初中阶段三大函数中的第二,区别于一次函数,但又建立在一次函数之上,而又为以后更高层次函数的学习,函数、方程、不等式间的关系的处理奠定了基础。函数本身是数学学习中的重要内容,而反比例函数则是基础函数,因此,本节内容有着举足轻重的地位。

(二)、本课题的教学目标:

教学目标是教学的出发点和归宿。因此,我根据新课标的知识、能力和德育目标的要求,以学生的认知点,心理特点和本课的特点来制定教学目标:

1、 知识目标

(1) 通过对实际问题的探究,理解反比例函数的实际意义。

(2) 体会反比例函数的不同表示法。

(3) 会判断反比例函数。

2、 能力目标

(1) 通过两个实际问题,培养学生勤于思考和分析归纳能力。

(2) 在思考、归纳过程中,发展学生的合情说理能力。

(3) 让学生会求反比例函数关系式。

3、 情感目标

(1)通过创设情境让学生经历在实际问题中探索数量关系的过程,体验数学活动与人类的生活的密切联系,养成用数学思维方式解决实际问题的习惯。

(2)理论联系实际,让学生有学有所用的感性认识。

4、 本课题的重点、难点和关键

重点:反比例函数的概念

难点:求反比例函数的解析式。

关键:如何由实际问题转化为数学模型。

二、 说教学方法:

本课将采用探究式教学,让学生主动去探索,并分层教学将顾及到全体学生,达到优生得到培养,后进生也有所收获的效果。同时在教学中将理论联系实际,让学生用所学的知识去解决身边的实际问题。

由于学生在前面已学过“变量之间的关系”和“一次函数”的内容,对函数已经有了初步的认识。因此,在教这节课时,要注意和一次函数,尤其是正比例函数一反比例的类比。引导学生从函函数的意义、自变量的取值范围等方面辨明相应的差别,在学生探索过程中,让学生体会到在探索的途径和方法上与一次函数相似。

对于所设置的两个问题为学生熟悉,尽量贴近学生生活,或者进入学生生活的圈子里,让学生感受到亲切、自然,激发学生的学习兴趣,提高学生思考问题的积极主动性和解决问题的能力,从而培养对数学学科的浓厚兴趣,使部分学生由不爱学变得爱学。让学生真正体会到:生活处处皆数学,生活处处有函数。

三、 说学法指导:

课堂,只有宝贵的四十分钟,有相当一部分学生注意力不能集中。针对这种情况,从学生身边的生活和已有的知识出发创设情境,目的是让学生感受到生活中处处有数学,激发学生对数学的兴趣和愿望,同时也为抽象反比例函数概念做好铺垫。让学生自己举例,讨论总结规律,抽象概念,便于学生理解和掌握反比例函数的概念,同时,培养和提高了学生的总结归纳能力和抽象能力。

为了让学生对反比例函数的意义牢牢掌握和深刻理解,启发学生回忆正比例函数并与之相类比,从内容到形式,学生自主地体会出反比例函数的真正内涵。

在本课时的师生互动过程中,积极创造条件和机会,关注个体差异,让学困生发表见解,使他们有成功的学习体验,激发他们的学习兴趣,增强他们的自信心,提高他们学习的主动性。

教师要善于捕捉学生的反馈信息,并能立即反馈给学生,矫正学生的学法和知识错误。力求体现以学生为主体,教师为主导的原则,在轻松愉快的氛围中,顺利地“消化”本节课的内容。同时,让学生体会到理论来自于实践,而理论又反过来指导实践的哲学思想。从而培养和提高学生分析问题和解决问题的能力。

四、 说教学过程:

1、 复习引入:

师生共同回忆前一阶段所学知识,再次强调函数和重要性,同时启开新的课题——反比例函数(教师板书)。

(一) 创设情景,激发热情

我经常在思考:长期以来,我们的学生为什么对数学不感兴趣,甚至害怕数学,其中的一个重要因素就是数学离学生的生活实际太远了。事实上,数学学习应该与学生的生活融合起来,从学生的生活经验和已有的知识背景出发,让他们在生活中去发现数学、探究数学、认识并掌握数学。

因而用两个最贴近学生生活实例引出反比例函数的概念;从而让学生感受数学与生活的紧密联系。

多媒体课件展示

(问题1)我校车棚工程已经启动,规划地基为36平方米的矩形,设连长为X(米),则另一连长Y(米)与X(米)的函数关系式。

让学生分析变量关系,然后教师总结:依矩形面积可得

XY=36 即Y=36/X

(问题2)昨天在放学回家时,小明的车胎爆了。第二天,小明的爸爸骑摩托车送小明来学校。中午放学小明不得不走回家。(小明家距学校2000米)

(1)、在这个故事中,有几种交通工具?

(2)、两种交通工具的正常行驶速度一样吗?来去的路程一样吗?时间呢?

师生共同探究,时间的变化是由速度所引起的,设时间为T,速度为V,则有T=2000/V

(二) 观察归纳——形成概念

由实例XY=36 即Y=36/X和T=2000/V 两个式子教师引导学生概括总结出本课新的知识点:

一般地,形如Y=K/X或XY=K(K是常数,K不为0)的函数叫做反比例函数。

在此教师对该函数做些说明。

(三) 讨论研究——深化概念

学生通过对例1的观察、讨论、交流后更进一步理解和掌握反比例函数的概念

多媒体课件展示、

例1、 下列函数关系中,哪些是反比例函数?

(1)、一个矩形面积是20平方厘米,相邻两条连长分别为X厘米和Y厘米那么变量Y是变量X的函数吗?是反比例函数吗?为什么?

(2)、滑动变阻器两端的电压为U,移动滑片时通过变阻器的电流I和电阻R之间的关系;

(3)、某地有耕地346.2公顷,人口数量N逐年发生变化,那么该村人均占有耕地面积M(公顷?(人))是全村人口数N的函数吗?是反比例函数吗?为什么?

(4)某乡粮食总产量M吨,那么该乡每人平均粮食Y(吨)与该乡人口数X的函数关系。

学生回答后教师给出正确答案。

四、 即时训练——巩固新知

为了使学生达到对知识的深化理解,从而达到巩固提高的效果,我特地设计了一组即时训练题,把课本的习题熔入即时训练题中,通过学生的观察尝试,讨论研究,教师引导来巩固新知识。

多媒体课件展示

(巩固练习:)

(口答)下列函数关系中,X均表示自变量,那么哪些是反比例函数?每一个反比例函数的K的值是多少?

Y=5/X Y=0.4/X Y=X/2 XY=2

5)Y=-1/X(给学困生发表见解的机会,激发他们的学习兴趣)

学生回答后教师给出正确答案。

反比例函数课件(篇4)

教学目标

(一)教学知识点

1、从现实情境和已有的知识经验出发,讨论两个变量之间的相似关系,加深对函数概念的理解。

2、经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念。

(二)能力训练要求

结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数表达式。

(三)情感与价值观要求

结合实例引导学生了解所讨论的函数的表达形式,形成反比例函数概念的具体形象,是从感性认识到理性认识的转化过程,发展学生的思维;同时体验数学活动与人类生活的密切联系及对人类历史发展的作用。

教学重点

经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念。

教学难点

领会反比例函数的意义,理解反比例函数的概念。

教学方法

教师引导学生进行归纳。

教具准备

投影片两张

第一张:(记作§5.1A)

第二张:(记作§5.1B)

教学过程

Ⅰ。创设问题情境,引入新课

[师]我们在前面学过一次函数和正比例函数,知道一次函数的表达式为y=kx+b.其中k,b为常数且k≠0,正比例函数的表达式为y=kx,其中k为不为零的常数。但是在现实生活中,并不是只有这两种类型的表达式。如从A地到B地的路程为1200km,某人开车要从A地到B地,汽车的速度v(km/h)和时间t(h)之间的关系式为vt=1200,则t= 中t和v之间的关系式肯定不是正比例函数和一次函数的关系式,那么它们之间的关系式究竟是什么关系式呢?这就是本节课我们要揭开的奥秘。

反比例函数课件(篇5)

教学目标 :

1、理解反比例函数,并能从实际问题中抽象出反比例关系的函数解析式;

2、会画出反比例函数的图象,并结合图象分析总结出反比例函数的性质;

3、渗透数形结合的数学思想及普遍联系的辨证唯物主义思想;

4、体会数学从实践中来又到实际中去的研究、应用过程;

5、培养学生的观察能力,及数学地发现问题,解决问题的能力.

教学重点:

结合图象分析总结出反比例函数的性质;

即vt=S(S是常数);

从函数的观点看,在运动变化的过程中,有两个变量可以分别看成自变量与函数,写成:

一般地,函数 (k是常数, )叫做反比例函数.

如上例,当路程S是常数时,时间t就是v的反比例函数.当矩形面积S是常数时,长a是宽b的反比例函数.

在现实生活中,也有许多反比例关系的例子.可以组织学生进行讨论.下面的例子仅供

1

说明:由于学生第一次接触反比例函数,无法推测出它的大致图象.取点的时候最好多取几个,正负可以对称着取分别画点描图

一般地反比例函数 (k是常数, )的图象由两条曲线组成,叫做双曲线.

前面学习了三类基本的初等函数,有了一定的基础,这里可视学生的程度或展开全面的讨论,或在老师的引导下完成知识的学习.

显示这两个函数的图象,提出问题:你能从图象上发现什么有关反比例函数的性质呢?并能从解析式或列表中得到论证.(下列答案仅供参考)

(1) 的图象在第一、三象限.可以扩展到k >0时的情形,即k>0时,双曲线两支各在第一和第三象限.从解析式中,也可以得出这个结论:xy=k,即x与y同号,因此,图象在第一、三象限.

的讨论与此类似.

抓住机会,说明数与形的统一,也渗透了数形结合的数学思想方法.体现了由特殊到一般的研究过程.

(2)函数 的图象,在每一个象限内,y随x的增大而减小;

从图象中可以看出,当x从左向右变化时,图象呈下坡趋势.从列表中也可以看出这样的变化趋势.有理数除法说明了同样的道理,被除数一定时,若除数大于零,除数越大,商越小;若除数小于零,同样是除数越大,商越小.由此可归纳出,当k>0时,函数 的图象,在每一个象限内,y随x的增大而减小.

同样可以推出 的图象的性质.

(3)函数 的图象不经过原点,且不与x轴、y轴交.从解析式中也可以看出, .如果x取值越来越大时,y的值越来越小,趋近于零;如果x取负值且越来越小时,y的值也越来越趋近于零.因此,呈现的是双曲线的样子.同理,抽象出 图象的性质.

函数 的图象性质的讨论与次类似.

4、小结:

本节课我们学习了反比例函数的概念及其图象的性质.大家展开了充分的讨论,对函数的概念,函数的图象的性质有了进一步的认识.数学学习要求我们要深刻地理解,找出事物间的普遍联系和发展规律,能数学地发现问题,并能运用已有的数学知识,给以一定的解释.即数学是世界的一个部分,同时又隐藏在世界中.

1.使学生了解反比例函数的概念;

2.使学生能够根据问题中的条件确定反比例函数的解析式;

3.使学生理解反比例函数的性质,会画出它们的图像,以及根据图像指出函数值随自变量的增加或减小而变化的情况;

4.会用待定系数法确定反比例函数的解析式.

1.培养学生的作图、观察、分析、总结的能力;

2.向学生渗透数形结合的教学思想方法.

1.向学生渗透数学来源于实践又反过来作用于实践的观点;

2.使学生体会事物是有规律地变化着的观点.

通过反比例函数图像的研究,渗透反映其性质的图像的直观形象美,激发学生的兴趣,也培养学生积极探求知识的能力.

学生学习反比例函数要与学习其他函数一样,要善于数形结合,由解析式联想到图像的位置及其性质,由图像和性质联想比例系数k的符号.

1.教学重点:反比例的概念、图像、性质以及用待定系数法确定反比例函数的解析式.因为要研究反比例函数就必须明确反比例函数的上述问题.

2.教学难点 :画反比例函数的图像.因为反比例函数的图像有两个分支,而且这两个分支的变化趋势又不同,学生初次接触,一定会感到困难.

3.教学疑点:(1)反比例函数为何与x轴,y轴无交点;(2)反比例函数的图像只能说在第一、三象限或第二、四象限,而不能说经过第几象限,增减性也要说明在第几象限(或说在它的每一个象限内).

4.解决办法:(1) 中隐含条件是 或 ;(2)双曲线的两个分支是断开的,研究函数的增减性时,要将两个分支分别讨论,不能一概而论.

由学生先考虑及讨论一下.

答:小学学过:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做反比例的量,它们的关系叫做反比例关系.

1. 当路程s一定时,时间t与速度v成反比例;

2.当矩形面积S一定时,长a与宽b成反比例;

它们分别可以写成 (s是常数), (S是常数)写在黑板上,用以得出反比例函数的概念:(板书)

一般地,函数 (k是常数, )叫做反比例函数.

即在上面的例子中,当路程s是常数时,时间t就是速度v的反比例函数,能否说:速度v是时间t的反比例函数呢?

通过这个问题,使学生进一步理解反比例函数的概念,只要满足 (k是常数, )就可以.因此可以说速度v是时间t的反比例函数,因为 (s是常量).对第2个实例也一样.

根据前面学习特殊函数的经验,研究完函数的概念,跟着要研究的是什么?

通过这个问题,使学生对课本上给出的知识的发生、发展过程有一个明确的认识,以后

学生要研究其他函数,也可以按照这种方式来研究.

下面,我们就来看桓隼?猓海ǔ鍪净玫疲?/P>

例1  画出反比例函数 与 的图像.

2.在选值时,你认为要注意什么问题?

答:(1)由于函数图像的特点还不清楚,多选几个点较好;

(2)不能选 ,因为 时函数无意义;

(3)选整数较好计算和描点.

这个问题中最核心的一点是关于 的问题,提醒学生注意.

3.你能不能自己完成这道题呢?

学生在练习本上列表、描点、连线,教师在黑板上板演,到连线时可暂停,让学生先连完线之后,找一名同学上黑板连线,然后就这名同学的连线加以评价、总结:

注意:(1)一般地,反比例函数 的图像由两条曲线组成,叫做双曲线;

(2)这两条曲线不相交;

(3)这两条曲线无限延伸,无限靠近x轴和y轴,但永不会与x轴和y轴相交.

通过这个问题既可加深学生对反比例函数图像的记忆,又可培养学生思维的灵活性和深刻性.

再让学生观察黑板上的图,提问:

1.当 时,双曲线的两个分支各在哪个象限?在每个象限内,y随x的增大怎样变化?

2.当 时,双曲线的两个分支各在哪个象限?在每个象限内,y随x的增大怎样变化?

这两个问题由学生讨论总结之后回答,教师板书:

对于双曲线(1)当 :(1)当 时,双曲线的两分支位于一、三象限,y随x的增大而减少;(2)当 时,双曲线的两分支位于二、四象限,y随x的增大而增大.

3.反比例函数的这一性质与正比例函数的性质有何异同?

通过这个问题使学生能把学过的相关知识有机地串联起来,便于记忆和应用.

练习二:教材P129中2由学生在练习本上完成,教师巡回指导.P130中2、3填在书上

上面,我们讨论了反比例函数的概念、图像和性质,下面我们再来看一个不同类型的例题:(出示幻灯)

例2已知y与 成反比例,并且当 时, ,求 时,y的`值.

用提问的方式对此题加以分析:

(1)y与 成反比例是什么含义?

由学生讨论这一问题,最后归结为根据反比例函数的概念,这句话说明了: .

(2)根据这个式子,能否求出当 时,y的值?

(3)要想求出y的值,必须先知道哪个量呢?

(4)怎样才能确定k的值?用什么条件?

答:用待定系数法,把 时 代入 ,求出k的值.

(5)你能否自己完成这道例题:

由一名同学板演,其他同学在练习本上完成.

例3   已知: , 与x成正比例, 与x成反比例,当 时, 时, ,求y与x的解析式.

要用x分别把 , 表示出来得 ,

要注意 不能写成k,∴

2.反比例函数的图像是什么样的?

3.反比例函数 的性质是什么?

4.命题方向及题型设置,反比例函数也是中考命题的主要考点,其图像和性质,以及其函数解析式的确定,常以填空题、选择题出现,在低档题中,近两年各省、市的中考试卷中出现不少将反比例函数与一次函数、几何知识、三角知识等综合编拟的解答题,丰富了压轴题的形式和内容.

已知:如图,一次函数的图像经过第一、二、三象限,且与反比例函数的图像交于A、B两点,与y轴交于点C,与x轴交于点D。 。

(1)求反比例函数的解析式;

(2)设点A的横坐标为m, 的面积为S,求S与m的函数关系式,并写出自变量m的取值范围;

(3)当 的面积等于 时,试判断过A、B两点的抛物线在x轴上截得的线段长能否等于3。如果能,求此时抛物线的解析式;如果不能,请说明理由。

又 ,

∵  点B在反比例函数的图像上,

∴  反比例函数的解析式为 。

(2)设直线AB的解析式为 。

由点A在第一象限,得 。

又由点A在函数 的图像上,可求得点A的纵坐标为 。

∵  点B(-3,-1),点 ,

∴  直线AB的解析式为 。

令  。

由已知,直线经过第一、二、三象限,

∴  。

即  。

(3)过A、B两点的抛物线在x轴上截得的线段长不能等于3。

解得 。

经检验, 都是这个方程的根。

∴  不合题意,舍去。

∴  点A(1,3)。

设过A(1,3)、B(-3,-1)两点的抛物线的解析式为 。

即  。

则  。

即  。

整理,得  。

∴  方程 无实数根。

因此过A、B两点的抛物线在x轴上截得的线段长不能等于3。

反比例函数课件(篇6)

教学目标:

1、知识与能力目标:

(1)复习反比例函数概念、图象与性质的知识点,通过相应知识点的配套练习加深学生对反比例函数本章知识的理解与掌握。

(2)能够根据问题中的条件确定反比例函数的解析式,会画出它的图象,并根据问题确定自变量的取值范围及增减性。

2、过程与方法目标:通过对相关问题的变式探究,正确运用反比例函数知识,进一步体验形成解决问题的一些基本策略,发展实践能力和创新精神。

3、情感态度与价值观目标:创设教学情景,鼓励学生主动参与反比例函数复习活动,激发学习兴趣,获得问题解决后的乐趣,继续渗透数形结合等数学思想方法。

教学重点和难点

重点:进一步掌握反比例函数的概念、图像、性质并正确运用。

难点:反比例函数性质的灵活运用。数形结合思想的应用。

教学方法:

探究——讨论——交流——总结

教学媒体:

多媒体课件。

教学过程:

一、知识梳理:

同学们,今天我们就来复习反比例函数,通过今天的复习课,希望大家加深对反比例函数知识的理解和运用首先请同学们回忆一下,对反比例函数你了解那知识?

课件展示:

1、反比例函数的意义

2、反比例函数的图象与性质

3、利用反比例函数解决实际问题

二、合作交流、解读探究

(一)与反比例函数的意义有关的问题

课件展示:

忆一忆:什么是反比例函数?

要求学生说出反比例函数的意义及其等价形式

巩固练习:课件展示:

1、下列函数中,哪些是反比例函数?

(1)y= 5/x(2)y=x/4+2 (3)y= -5/3x(4)y=-7 x的-1次方(5)y=1/x+4

2、写出下列问题中的函数关系式,并指出它们是什 么函数?

⑴当路程s一定时,时间t与平均速度v之间的关系。

⑵质量为m(kg)的气体,其体积v(m3)与密度ρ(kg/m3)之间的关系。

3、若y= 为反比例函数,则m=______

4、若y=(m-1) 为反比例函数,则m=______ 。

(二)运用反比例函数的图象与性质解决问题

1、反比例函数的图象是

2、图象性质见下表(课件展示):

3、做一做(课件展示)

(1)函数y= 的图象在第______象限,当x

(2)双曲线y= 经过点 (-3 ,______ )。

(3)函数y= 的图象在二、四象限内,m的取值范围是______ 。

(4)若双曲线经过点(-3 ,2),则其解析式是______.

(5)已知点A(-2,y1),B(-1,y2) C(4,y3)都在反比例函数y= 的图象上,则y1、y2 与y3的大小关系(从大到小)为____________ 。

(三)综合运用(课件展示)

一次函数的图像y=ax+b与反比例函数y= 交与M(2,m)、N(-1,-4)两点。(1)求反比例函数和一次函数的解析式;(2)根据图像写出反比例函数的值大于一次函数的值的X 的取值范围

三、随堂练习

见课件

四、小结

1、反比例函数的意义

2、反比例函数的图象与性质

五、作业:

配套练习22页21、22题

反比例函数课件(篇7)

反比例函数的图像和性质

反比例函数是一类非常重要的函数,它在数学和实际生活中都有广泛的应用。反比例函数是一种特殊的函数,它是一种比例关系的反向反映。反比例函数的图像特点是它的图像是一条双曲线。在本文中,我们将介绍反比例函数的图像和性质,以深入了解反比例函数的本质。

一、反比例函数的定义和性质

反比例函数通常被定义为:y = k/x,其中k是一个常数。这个函数的重要性在于它表示一种反比例关系。反比例关系是一种数学关系,它表示两个变量的相对变化。在反比例关系中,当一个变量变大时,另一个变量会减少,反之亦然。反比例函数是两个变量之间的比例关系反转。

反比例函数是一种特殊的函数,它有以下性质:

1. 反比例函数的定义域为除数不为零的实数。

2. 反比例函数的值域为实数。

3. 反比例函数在y轴上是不连续的。

4. 反比例函数在x轴上是渐近线。

5. 反比例函数是对称的。

二、反比例函数的图像

反比例函数的图像是一条双曲线。这个双曲线分为两个分支,分别围绕着x轴和y轴展开。这个双曲线的两个极点分别在x轴和y轴上。这个双曲线与x轴、y轴和两个渐近线相交。

反比例函数的图像具有如下几个特点:

1. 通过原点。因为当x=0时,y=0,所以反比例函数的图像一定通过原点。

2. 分为两个分支。反比例函数的图像有两个分支,分别位于x轴的正负两侧。这两个分支对称于y轴。

3. 极点。反比例函数的图像的极点位于x轴和y轴上。极点是函数的定义区间的两个端点x=0和y=0。

4. 表示反比例关系。反比例函数的图像反映了两个变量的反比例关系,即当一个变量增加,另一个变量减少。

5. 无零点。反比例函数的图像不穿过x轴,也就是说,反比例函数没有零点。

三、反比例函数的应用

反比例函数广泛应用于实际生活中的许多问题。以下是反比例函数的一些典型应用:

1. 电阻和电流的关系。电阻和电流之间通常是一个反比例关系。这个反比例关系可以用反比例函数来表示。反比例函数可以帮助我们更好地理解电路中电流和电阻之间的关系。

2. 压力和面积的关系。在流体动力学中,压力和面积之间通常是一个反比例关系。这个反比例关系可以用反比例函数来表示。反比例函数可以帮助我们更好地理解流体动力学中压力和面积之间的关系。

3. 速度和时间的关系。在运动学中,速度和时间之间通常是一个反比例关系。这个反比例关系可以用反比例函数来表示。反比例函数可以帮助我们更好地理解运动学中速度和时间之间的关系。

4. 人口和资源的关系。在人口学和资源经济学中,人口数量和资源数量之间通常是一个反比例关系。这个反比例关系可以用反比例函数来表示。反比例函数可以帮助我们更好地理解人口学和资源经济学中人口数量和资源数量之间的关系。

四、总结

反比例函数是一个非常重要的数学工具,它在实际生活和学术研究中都有广泛的应用。反比例函数的图像特点是它的图像是一条双曲线。反比例函数的主要性质包括定义域、值域、y轴不连续性、x轴渐近线和对称性。反比例函数在许多领域有着广泛的应用,包括电路、流体动力学、运动学和人口学和资源经济学。通过深入了解反比例函数的图像和性质,我们可以更好地理解这个重要的函数,从而更好地应用它。

反比例函数课件(篇8)

一、教材分析:

本课时的内容是在已经学习了平面直角坐标系和一次函数的基础上,再一次进入函数范畴,让学生进一步理解函数的内涵,并感受到现实世界中存在各种函数。反比例函数的图象与性质是对正比例函数图象与性质的复习和对比,也是以后学习二次函数的基础。本课时的学习是学生对函数的图象与性质一个再知的过程,由于初二学生是首次接触双曲线这种函数图象,所以教学时应注意引导学生抓住反比例函数图象的特征,让学生对反比例函数有一个形象和直观的认识。

二、教学目标分析:

根据新课改“以学生为主体,激活课堂气氛,充分调动起学生参与教学过程”的精神。在教学设计上,我设想通过使用多媒体课件创设情境,在掌握反比例函数相关知识的同时激发学生的学习兴趣和探究欲望,引导学生积极参与和主动探索。

因此把教学目标确定为:

(一)知士标:

1、使学生了解反比例函数的概念

2、使学生能够根据问题中的条件确定反比例函数的解析式。

3、使学生理解反比例函数的性质,会画出它们的图象,以及根据图象指出函数值随自变量的增加或减少而变化的情况。

4、会用待定系数法确定反比例函数的解析式。

(二)能力目标:

培养学生的观察能力,分析能力,立解决问题的能力。

(三)德育目标:

1、向学生渗透数学来源于实践又反过去作用于实践的观点。

2、使学生体会事物是有规律地变化着的观点。

(四)美育目标:

通过反比例函数图象的研究,渗透反映其性质的图象的直观形象美,激发学生的兴趣,也培养了学生积极探索知识的能力。

三、教学重点,难点。

(一)教学重点:反比例的概念、图象、性质,以及用待定系数法确定反比例函数的解析性。

(二)教学难点:画反比例函数的图象。

(三)解决方法

(1)由分组讨论,积极思考,分析问题,发现结论。

(2)训练,研究,总结

因为反比例函数的图象有两个分支,而且这两个分支的变化趋势又不同,学生初次接触,一定会感到困难。为了突出重点、突破难点。我设计并制作了能动态演示函数图象的多媒体课件。让学生亲手操作,积极参与并主动探索函数性质,帮助学生直观地理解反比例函数的性质。

四、教学方法:

初中学生好动、好奇、好表现,抓住学生特点,积极采用形象生动、形式多样的教学方法和学生广泛的`、积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。生理上,青少年好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中应抓住学生这一生理特点,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。鉴于教材和初二学生的年龄特点、心理特征和认知水平,设想采用问题教学法和对比教学法,用层层推进的提问启发学生深入思考,主动探究,主动获取知识。同时注意与学生已有知识的联系,减少学生对新概念接受的困难,给学生充分的自主探索时间。通过教师的引导,启发调动学生的积极性,让学生在课堂上多活动、多观察,主动参与到整个教学活动中来,组织学生参与“探究。

4、反比例函数及其图象说课稿

今天我说课的内容是八年级数学下册第十七章反比例函数及其图象。

反比例函数课件(篇9)

反比例函数是高中数学中的一个重要概念,它是由一个定值与变量的乘积所组成的函数。反比例函数的图像和性质是理解和掌握反比例函数的关键。

一、反比例函数的定义

反比例函数是指当自变量 x 取不同值时,函数值 y 与 x 呈倒比例关系的函数,即 y = k/x。其中,k 为常数,被称为比例常数。反比例函数通常用字母 y 或 f(x) 表示。

二、反比例函数的图像

反比例函数 y = k/x 的图像是一条双曲线,其图像在 x 轴和 y 轴上的渐近线分别为 y = 0 和 x = 0。当 x 趋近于 0 时,y 的值趋近于正无穷大或负无穷大;当 y 趋近于 0 时,x 的值趋近于正无穷大或负无穷大。

三、反比例函数的性质

1. 定义域和值域

反比例函数的定义域为 x ≠ 0,值域为 y ≠ 0。

2. 单调性

反比例函数在定义域上是单调的。当 x1 y2。反比例函数是一个下凸函数,也就是说,在两个端点处函数的导数等于正无穷大。

3. 零点

反比例函数没有零点。因为当 x ≠ 0 时,y ≠ 0。

4. 对称轴

反比例函数的图像关于一条倾斜的直线 y = x 对称。

5. 变换

反比例函数的图像可以通过平移、拉伸或翻转等变换来得到。

四、反比例函数的应用

反比例函数在实际生活中有着广泛的应用。例如,电子元件的电阻值和电流的关系、探测器的灵敏度和距离的关系、贷款的利率和贷款金额的关系等。在这些应用中,反比例函数的图像和性质是非常重要的,因为它们帮助我们更好地理解这些问题,并提供了解决问题的方法。

总之,反比例函数的图像和性质是高中数学中的重要内容,它们是理解和掌握反比例函数的关键。通过学习反比例函数的图像和性质,我们可以更好地掌握反比例函数的应用,为实际生活中的问题提供解决方案。

反比例函数课件(篇10)

反比例函数的图像和性质

反比例函数是数学中一个常见的函数类型,它在实际生活和工作中也得到了广泛应用。在学习和掌握反比例函数时,为了更好地理解和应用,需要掌握其图像和性质。本文将详细介绍反比例函数的图像和性质。

一、反比例函数的定义及表达式

反比例函数是由两个变量的乘积等于一个常数来定义的函数。其一般表达式为: y = k/x (k ≠ 0)。

其中,x 和 y 是函数的自变量和因变量,k 是常数。

二、反比例函数的图像

反比例函数的图像是一条双曲线。其特点是:当 x 趋近于正无穷或负无穷时,y 趋近于 0;当 x 靠近 0 时,y 趋近于正或负无穷。

拿 y = 3/x 的反比例函数为例,它的图像如下所示:

[图像]

可以看到,当 x 靠近 0 时,y 趋近于正或负无穷,而当 x 趋近正无穷或负无穷时,y 趋近于 0。这也是反比例函数图像的一个特点。

三、反比例函数的性质

1. 零点(x 轴交点)

反比例函数的 x 轴上的零点为 k/y。也就是说,当 y = 0 时,x = ±∞。因为当 y = 0 时,x 无限大或无限小,与反比例函数图像的特点相符。

2. 对称轴

反比例函数的对称轴为 y = x。这是因为反比例函数的定义是 y = k/x,即 x = k/y。将 x 和 y 互换位置,即可得到 y = k/x,即对称轴为 y = x。

3. 单调性

反比例函数在自变量的正负两侧单调递减。这是因为当自变量 x 增大时,因变量 y 会减小。以 y = 3/x 为例,可以看到,当 x 变大时,y 会变小。

4. 渐进线

反比例函数的渐进线有两条,分别是 x 轴和 y 轴。当 x 趋近于正无穷或负无穷时,函数值趋近于 0,即与 x 轴趋近。当 y 趋近于正无穷或负无穷时,函数值趋近于 0,即与 y 轴趋近。

5. 消减率

反比例函数的消减率为反比例常数 k。消减率定义为 y 的变化量与 x 的变化量之比,即 dy/dx = -k/x^2。

在应用反比例函数时,可以利用其性质来解决问题,例如根据消减率求解问题、利用渐进线来近似计算函数值等。

总之,反比例函数是数学中一个重要的函数类型。在学习和应用中,掌握其图像和性质是非常重要的。希望本文能够对读者更好地理解和掌握反比例函数提供帮助。

反比例函数课件(篇11)

1、知识与能力目标:

(1)复习反比例函数概念、图象与性质的知识点,通过相应知识点的配套练习加深学生对反比例函数本章知识的理解与掌握。

(2)能够根据问题中的条件确定反比例函数的解析式,会画出它的图象,并根据问题确定自变量的取值范围及增减性。

2、过程与方法目标:通过对相关问题的变式探究,正确运用反比例函数知识,进一步体验形成解决问题的一些基本策略,发展实践能力和创新精神。

3、情感态度与价值观目标:创设教学情景,鼓励学生主动参与反比例函数复习活动,激发学习兴趣,获得问题解决后的乐趣,继续渗透数形结合等数学思想方法。

重点:进一步掌握反比例函数的概念、图像、性质并正确运用。

难点:反比例函数性质的灵活运用。数形结合思想的`应用。

探究——讨论——交流——总结

多媒体课件。

同学们,今天我们就来复习反比例函数,通过今天的复习课,希望大家加深对反比例函数知识的理解和运用首先请同学们回忆一下,对反比例函数你了解那知识?

课件展示:

1、反比例函数的意义

2、反比例函数的图象与性质

3、利用反比例函数解决实际问题

(一)与反比例函数的意义有关的问题

课件展示:

忆一忆:什么是反比例函数?

要求学生说出反比例函数的意义及其等价形式

巩固练习:课件展示:

1、下列函数中,哪些是反比例函数?

(1)y= 5/x(2)y=x/4+2 (3)y= -5/3x(4)y=-7 x的-1次方(5)y=1/x+4

2、写出下列问题中的函数关系式,并指出它们是什么函数?

⑴当路程s一定时,时间t与平均速度v之间的关系。

⑵质量为m(kg)的气体,其体积v(m3)与密度ρ(kg/m3)之间的关系。

3、若y=为反比例函数,则m=______

4、若y=(m-1)为反比例函数,则m=______ 。

(二)运用反比例函数的图象与性质解决问题

1、反比例函数的图象是

2、图象性质见下表(课件展示):

3、做一做(课件展示)

(1)函数y=的图象在第______象限,当x

(2)双曲线y=经过点(-3,______)。

(3)函数y=的图象在二、四象限内,m的取值范围是______ 。

(4)若双曲线经过点(-3,2),则其解析式是______.

(5)已知点A(-2,y1),B(-1,y2) C(4,y3)都在反比例函数y=的图象上,则y1、y2与y3的大小关系(从大到小)为____________ 。

(三)综合运用(课件展示)

一次函数的图像y=ax+b与反比例函数y=交与M(2,m)、N(-1,-4)两点。(1)求反比例函数和一次函数的解析式;(2)根据图像写出反比例函数的值大于一次函数的值的X的取值范围

见课件

1、反比例函数的意义

2、反比例函数的图象与性质

配套练习22页21、22题

反比例函数课件(篇12)

教学目标:

使学生对反比例函数和反比 例函数的图象意义加深理解。

教学重点:

反比例函数 的应用

教学程序:

一、新授:

1、实例1:(1)用含S的代数式 表示P,P是 S的反比例函数吗?为什么?

答:P=600s (s0),P 是S的反比例函数。

(2)、当木板面积为0.2 m2时,压强是多少?

答:P=3000Pa

(3)、如果要求压强不超过6000Pa,木板的面积至少 要多少?

答:至少0.lm2。

(4)、在直角坐标系中,作出相应的函数 图象。

(5)、请利用图象(2)和(3)作出直观 解释,并与同伴进行交流。

二、做一做

1、(1)蓄电池的电 压为定值,使用此电源时,电流I(A)与电阻R()之间的函数关系如图5-8 所示。

(2)蓄电池的电压是多少?你以写出这一函数的表达式吗?

电压U=36V , I=60k

2、完成下表,并 回答问题,如果以蓄电池为电源的用电器限制电流不得超过10A,那么用电器的可变电阻应控制在什么范围内?

R() 3 4 5 6 7 8 9 10

I(A )

3、如图5-9,正比例函数y=k1x的图象与反比例函数y=60k 的图象相交于A、B两点,其中点A的坐标为(3 ,23 )

(1)分别写出这两个函 数的表达式;

(2)你能求出点B的坐标吗?你是怎样求的?与同伴进行交流;

随堂练习:

P145~146 1、2、3、4、5

作业:P146 习题5.4 1、2

反比例函数课件(篇13)

反比例函数的图像和性质

反比例函数是数学中的一个重要章节,是常见的函数类型之一。反比例函数在实际生活中也有广泛的应用,如在经济学、物理学等领域中,反比例函数扮演着重要的角色。本文将介绍反比例函数的图像和性质,旨在帮助读者更好地了解反比例函数。

反比例函数的定义

反比例函数是一种函数类型,通常用y = k/x的形式表示,其中k为常数。这个函数的特点是,当x值变大,y值变小;反之,当x值变小,y值变大。这也是为什么这个函数被称为“反比例函数”。

反比例函数的图像

为了更好地理解反比例函数的特点,我们可以通过图像来展示它的性质。下面我们将通过不同的常数k值来描绘反比例函数图像,主要分为以下两个部分:

1.当k>0时

当k为正数时,反比例函数的图像为一条从右上方斜向左下方倾斜的曲线。从原点开始绘制图形,当x值增加时,y值不断减小,而曲线却越来越平缓,直至渐近于y = 0轴。这种趋势表明,当x值变得极大时,y值将趋近于零。这也是代表反比例函数的“倒双曲线”的一般图像。

2.当k

当k为负数时,反比例函数的图像为一条斜率为负的直线。同样从原点开始绘制图像,当x值增加时,y值也会增加,直至渐近于y = 0轴。这种趋势表明,当x值变得非常小的时候,y值也会趋近于零。这也代表反比例函数的一般图像。

反比例函数的性质

1.无极限

反比例函数是一种无极限的函数类型。反比例函数的图像在一条轴上渐近于零,因此当x变得非常大或非常小的时候,此函数的值会接近于零。这种性质的应用非常广泛,特别是在经济学领域中,例如数量需求和价格需求。

2.凸性

反比例函数不具有凸性,它在坐标轴上逐渐趋近于平坦。这种凸性缺失的性质反映了反比例函数的特殊性质。

3.横截距

反比例函数的横截距是其常数k。当x = 0时,y=k,即反比例函数的截距为k。

4.渐进线

反比例函数的图像有两条渐近线。当k>0时,渐近线分别为x = 0和y = 0;当k

结论

反比例函数在数学中是一种重要的函数类型。本文分析了反比例函数的图像和性质,体现了反比例函数的特殊性质,并说明了反比例函数在实际生活中的应用。反比例函数在科学计算、经济学和物理学等领域中都有广泛的应用。希望本文能使读者更好地了解反比例函数的图像和性质,有助于读者更深入地了解反比例函数。

反比例函数课件(篇14)

教学目标

1. 经历从实际问题抽象出反比例函数的探索过程,发展学生的抽象思维能力。

2. 理解反比例函数的概念,会列出实际问题的反比例函数关系式。

3. 使学生会画出反比例函数的图象。

4. 经历对反比例函数图象的观察、分析、讨论、概括过程,会说出它的性质。

教学重点

1、 使学生了解反比例函数的表达式,会画反比例函数图象

2、 使学生掌握反比例函数的图象性质

3、 利用反比例函数解题

教学难点

1、 列函数表达式

2、 反比例函数图象解题

教学过程

教师活动

一、作业检查与讲评

二、复习导入

1.什么是正比例函数?

我们知道当

(1) 当路程s一定,时间t与速度v成反比例,即vt=s(s是常数)

(2) 当矩形面积一定时,长a和宽b成反比例,即ab=s(s是常数)

创设问题情境

问题1:小华的爸爸早晨骑自行车带小华到15千米外的镇上去赶集,回来时让小华乘坐公共汽车,用的时间少了。假设自行车和汽车的速度在行驶过程中都不变,爸爸要小华找出从家里到镇上的时间和乘坐不同交通工具的速度之间的关系。

分析 和其他实际问题一样,要探求两个变量之间的关系,就应先选用适当的符号表示变量,再根据题意列出相应的函数关系式.

设小华乘坐交通工具的速度是v千米/时,从家里到镇上的时间是t小时.因为在匀速运动中,时间=路程÷速度,所以

从这个关系式中发现:

1.路程一定时,时间t就是速度v的反比例函数.即速度增大了,时间变小;速度减小了,时间增大.

2.自变量v的取值是v>0.

问题2:学校课外生物小组的同学准备自己动手,用旧围栏建一个面积为24平方米的矩形饲养场.设它的一边长为x(米),求另一边的长y(米)与x的函数关系式.

分析 根据矩形面积可知

xy=24,即

从这个关系中发现:

1.当矩形的面积一定时,矩形的一边是另一边的反比例函数.即矩形的一边长增大了,则另一边减小;若一边减小了,则另一边增大;

2.自变量的取值是x>0.

北师大版数学九年级上册6.3反比例函数的应用优秀教案反思


现在向您介绍幼儿园教案《北师大版数学九年级上册6.3反比例函数的应用优秀教案反思》

《北师大版数学九年级上册6.3反比例函数的应用优秀教案反思》这是一篇九年级上册数学教案,教师应以学段教学目标为背景,以本章教学目标为标准来考察学生的学习状况。在教与学的过程中,了解学生数学活动中情感与智力的参与程度和目标达到的水平,及时进行归因分析,不断积极引导和激励。同时利用诊断结果不断改进自己的教学。

6.3反比例函数的应用

1.会根据实际问题中变量之间的关系,建立反比例函数模型;(重点)

2.能利用反比例函数解决实际问题.(难点)

一、情景导入

我们都知道,气球内可以充满一定质量的气体.

如果在温度不变的情况下,气球内气体的气压p(kPa)与气体体积V(m3)之间有怎样的关系?你想知道气球在什么条件下会爆炸吗?

二、合作探究

探究点一:实际问题与反比例函数

做拉面的过程中,渗透着反比例函数的知识.一定体积的面团做成拉面,面条的总长度y(m)是面条的粗细(横截面积)S(mm2)的反比例函数,其图象如图所示:

(1)写出y与S之间的函数表达式;

(2)当面条的横截面积为1.6mm2时,面条的总长度是多少米?

(3)要使面条的横截面积不多于1.28mm2,面条的总长度至少是多少米?

解析:由题意可设y与S之间的函数表达式为y=kS,而P(32,4)为函数图象上一点,所以把对应的S,y的值代入函数表达式即可求出比例系数,从而得出反比例函数的表达式,最后根据反比例函数的图象和性质解题.

解:(1)由题意可设y与S之间的函数关系式为y=kS.∵点P(4,32)在图象上,

∴32=k4,∴k=128.

∴y与S之间的函数表达式为y=128S(S>0);

(2)把S=1.6代入y=128S中,得y=1281.6=80.

∴当面条的横截面积为1.6mm2时,面条的总长度是80m;

(3)把S=1.28代入y=128S,得y=100.

由图象可知,要使面条的横截面积不多于1.28mm2,面条的总长度至少应为100m.

方法总结:解决实际问题的关键是认真阅读,理解题意,明确基本数量关系(即题中的变量与常量之间的关系),抽象出实际问题中的反比例函数模型,由此建立反比例函数,再利用反比例函数的图象与性质解决问题.

探究点二:反比例函数与其他学科知识的综合

某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全、迅速通过这片湿地,他们沿着前进路线铺了若干木块,构筑成一条临时近道.木板对地面的压强p(Pa)是木板面积S(m2)的反比例函数,其图象如图所示.

(1)请直接写出这一函数表达式和自变量的取值范围;

(2)当木板面积为0.2m2时,压强是多少?

(3)如果要求压强不超过6000Pa,木板的面积至少要多大?

解析:由于木板对地面的压强p(Pa)是木板面积S(m2)的反比例函数,而图象经过点A,于是可以利用待定系数法求得反比例函数的关系式,进而可以进一步求解.

解:(1)设木板对地面的压强p(Pa)与木板面积S(m2)的反比例函数关系式为p=kS(S>0).

因为反比例函数的图象经过点A(1.5,400),所以有k=600.

所以反比例函数的关系式为p=600S(S>0);

(2)当S=0.2时,p=6000.2=3000,即压强是3000Pa;

(3)由题意知600S≤6000,所以S≥0.1,即木板面积至少要有0.1m2.

方法总结:本题渗透了物理学中压强、压力与受力面积之间的关系p=,当压力F一定时,p与S成反比例.另外,利用反比例函数的知识解决实际问题时,要善于发现实际问题中变量之间的关系,从而进一步建立反比例函数模型.

三、板书设计

反比例函数的应用实际问题与反比例函数反比例函数与其他学科知识的综合

经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题的过程,提高运用代数方法解决问题的能力,体会数学与现实生活的紧密联系,增强应用意识.通过反比例函数在其他学科中的运用,体验学科整合思想.

【反思】

“反比例函数的图像与性质”是反比例函数的教学重点,学生需要在理解的基础上熟练运用。为此应该有意识地加强反比例函数与正比例函数之间的对比。对比可以从以下几个方面进行:

(1)两种函数的关系式有何不同?两种函数的图像的特征有何区别?

(2)在常数相同的情况下,当自变量变化时,两种函数的函数值的变化趋势有什么区别?

(3)两种函数的取值范围有什么不同,常数的符号的改变对两种函数图像的变化趋势有什么影响?

从这些方面去比较理解反比例函数与一次函数,帮助学生将所学知识串联起来,提高学生综合能力。

此外,在学习反比例函数图像的性质(k大于0双曲线的两个分支在一、三象限,k小于0双曲线的两个分支在二、四象限)时,学生由画法观察图象可知;而增减性由解析式y等于k比x(k不等于0),学生也容易理解,但从图象观察增减性较难,借助计算机的动态演示就容易多了。运用多媒体比较两函数图像,使学生更直观、更清楚地看清两函数的区别。从而使学生加深对两函数性质的理解。

通过本案例的教学,使我深刻地体会到了信息技术在数学课堂教学中的灵活性、直观性。虽然制作起来比较麻烦,但能使课堂教学达到预想不到的效果,使课堂教学效率也明显提高。

在评价学生的学习时应关注以下几个过程

1、关注学生学习过程,进行形成性评价

教师应以学段教学目标为背景,以本章教学目标为标准来考察学生的学习状况。在教与学的过程中,了解学生数学活动中情感与智力的参与程度和目标达到的水平,及时进行归因分析,不断积极引导和激励。同时利用诊断结果不断改进自己的教学。

2、知识技能的评价,注重学生对函数概念及反比例函数的理解水平。

本部分内容中,对知识技能的评价包括:能否理解反比例函数的概念,了解函数及其图象的主要性质;能否根据所给信息确定反比例函数表达式,画出反比例函数的图象,并利用它们解决简单的实际问题等。对这些知识技能的评价,应当更多的关注其在实际问题情境中的意义理解。如对于反比例函数的概念及其性质,关键是体会它们在不同情境中的应用,只要学生能在具体情境应用它们解决问题即可,而不要过于关注其具体运用的熟练程度,如可以要求学生举例说明反比例函数在显示生活中的应用等。

3、发展性评价,关注数学活动引起人的变化

观察反比例函数图象获取函数相关性质的信息有较大空间,考察学生能否对信息作出灵敏反应,应用时,能否善于分析和决策,灵活支配运用知识有效的解决问题。关注并追踪这些活动所引起的学生的持久变化。

不足与改进:在整个课堂教学过程中,教师围绕主题、围绕学生提问的多,给学生提问的时间和机会很少.我的改进设想是:留给时间让学生提出问题,师生共同讨论、交流,让学生的学习更富有主动性;在活动一画出反比例函数的图象后,没有让学生趁热打铁“看图说话”,说出具体的图象的特征,为活动二猜想作很好的铺垫.我的改进设想是:在活动一画出反比例函数的图象后,追加这样一个问题:“请同学们仔细观察图象并进行讨论,这个反比例函数的图象区别于一次函数的图象有那些不同的特征呢?”留给时间让学生讨论、交流,这样改进之后,必将能更大的激发学生的探索热情,更能体现学生的创新能力,同时也为进一步学习反比例函数的图象的特征埋下伏笔,能增强学生学习的信心.

六年级下册《正比例和反比例》公开课教案教学分析反思


现在向您介绍幼儿园教案《六年级下册《正比例和反比例》公开课教案教学分析反思》

《六年级下册《正比例和反比例》公开课教案教学分析反思》这是一篇六年级下册数学教案,正反比例关系是比较重要的一种数量间的关系。

撰写公开课教案是每个教师都必需熟悉的一项工作,好的公开课教案能够激发同学兴趣,培养同学多方面的能力,有效提高课堂教学效率。本站提供的这套六年级下册《正比例和反比例的比较》公开课教案符合新课标的规范,思路清晰,结构合理,适合同学的年龄特征,与素质教育的要求相吻合,具有科学性、实用性等优点。

单元教学内容:

变化的量正比例画一画反比例观察与探究图形的缩放比例尺

单元教学目标:

1、结合具体情境,体会生活中存在着大量互相依赖的变量;在具体情境中,尝试用自身的语言描述两个变量之间的关系。

2、结合丰富的实例,认识正比例或者反比例;能根据正比例和反比例的意义,判断两个相关联的量是不是成正比例或反比例

3、能找出生活中成正比例和反比例的实例,会利用正、反比例的有关指示解决一些简单的生活问题。

4、通过观察、操作与交流,体会比例持发生的必要性和实际意义,了解比例尺的含义。

5、运用比例尺的有关知识,通过丈量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。

单元教材分析:

单元教材分析这局部内容是在同学已经学过比的意义、比的化简与比的应用的基础上学习的。本单元教材编写力图体现以下主要特点。:

1.提供具体情境,使同学体会生活中存在大量互相依赖的量我们生活在一个变化的世界中,从数学的角度研究变量和变量之间的关系,将有助于人们更好地认识实际世界、预测未来。同时,研究实际世界中的变化规律,也使同学从常量的世界进入了变量的世界,开始接触一种新的思维方式。我们知道,函数(函数可以直观地理解为:在一个变化过程中有两个变量x,y,对于x的每一个变化的值,y都有唯一确定的值与之对应,y就叫做x的函数)是研究实际世界变量之间关系的一个重要模型,对它的学习一直是中学阶段数学学习的一个重要内容。而国际数学课程发展的趋势标明,对变量之间关系的探索、描述应从小学阶段非正式地开始,早期对函数的丰富经历是十分重要的。其实,以前学习的探索数、形的变化规律,字母表示数等,已经为同学积累了研究变量之间关系的经验,而本章的正比例、反比例自身就是两个重要的函数。函数是刻画变量之间相互关系的重要模型,体会函数思想需要丰富的情境,同学将在这些情境中,感受到生活中存在着大量变量,有的变量之间是存在一定关系的,一个变量随另一个变量的变化而变化。因此,在正式学习正比例、反比例之前,教材设计了三个具体情境,通过同学感兴趣的日常生活中的问题,使他们体会变量和变量之间相互依赖的关系,并尝试对这些关系进行大致地描述。多种研究标明,为了有助于同学对函数思想的理解,应使他们对函数的多种表示———数值表示(表格)、图像表示、解析表示(关系式),有丰富的经历。因此,教材在出现具体情境中变量之间的关系时,分别运用了表格表示、图像表示、关系式表示的方法。在后面正比例、反比例的学习中,也十分重视三种方式的结合。

2.提供丰富情境,引导同学经历从具体情境中笼统出正、反比例的过程正比例关系、反比例关系是数学中比较重要的数量关系,同时,同学理解正比例、反比例的意义往往比较困难。为此,教材密切联系同学已有的生活经验和学习经验,设计了系列情境,让同学体会生活中存在大量相关联的量,它们之间的关系有着一起之处,从而引发同学的讨论和考虑,并通过对具体问题的讨论,使同学认识成正比例的量、成反比例的量以和正比例、反比例在生活中的广泛存在。这些系列情境也为同学理解“正比例”“反比例”的意义提供了丰富的直观背景和具体案例,例如教材从不同的角度(实际生活、图形)提供了有利于同学探索并理解正比例意义的情境,这些情境中既包括“时间与路程”“购买苹果应付的钱数与质量”等生活情境,也包括正方形周长与边长、面积与边长等数学情境,情境中有正例也有反例,以引导同学经历从具体情境中笼统概括出正比例的过程。

3.注重引导同学利用“正、反比例”的意义解决实际问题,关注知识之间的联系正、反比例在生活中有着广泛的应用,教材不只仅是在引入时为同学提供了丰富的实际情境,还鼓励同学寻找生活情境中成“正、反比例”的量。如,设计“找一找生活中成正、反比例的例子,并与同伴交流”的题目,使同学认识到正、反比例的知识与日常生活的密切联系。同时,教材还特别注重知识之间的联系,出现了大量同学以前学过的量与量之间的关系,鼓励同学判断它们之间的关系。如,底一定时,平行四边形的面积与高;圆的周长与直径。

4.在画图或解决实际问题等的活动中,体验比例尺的应用对于比例尺的知识,同学并不陌生,生活经验比较丰富,如地图上的比例尺等。尽管如此,比例尺的应用对于同学来说还是比较笼统的,教材结合具体的活动和实例,贴近同学的生活经验,让同学感受到比例尺的广泛应用。如,在探究活动中,通过在方格纸上画小猫图,讨论哪只小猫长得更像乐乐,让同学初步体会比例尺的应用。再如,在实践活动中,通过画自身卧室的平面图,设计巨人的教室,进一步体会比例尺在生活中的应用。同时,通过“你知道吗”栏目中的知识,了解比例尺的另一种形式,拓宽同学的视野。

课时布置:

15课时

教学目标:

1.利用正比例解决一些简单的生活问题,感受正比例关系在生活中的广泛应用。

2.能根据正比例的意义,判断两个相关联的量是不是成正比例。

3.结合丰富的事例,认识正比例。

教学重点:

1、结合丰富的事例,认识正比例。

2、能根据正比例的意义,判断两个相关联的量是不是成正比例。

教学难点:

能根据正比例的意义,判断两个相关联的量是不是成正比例。

教学用具:

课件

教学过程:

活动一:在情境中感受两种相关联的量之间的变化规律。

(一)情境一:

1、观察图,分别把正方形的周长与边长,面积与边长的变化情况填入表格中。请根据你的观察,把数据填在表中。

2、填完表以后考虑:正方形的周长与边长,面积与边长的变化是否有关系?它们的变化分别有怎样的规律?规律相同吗?

说说从数据中发现了什么?

3、小结:正方形的周长和面积都随边长的增加而增加,在变化过程中,正方形的周长与边长的比值一定都是4。正方形的面积一边长的比是边长,是一个不确定的值。

说说你发现的规律。

(二)情境二:

1、一种汽车行驶的速度为90千米/小时。汽车行驶的时间和路程如下:

2、请把下表填写完整。

3、从表中你发现了什么规律?

说说你发现的规律:路程与时间的比值(速度)相同。

(三)情境三:

1、一些人买一种苹果,购买苹果的质量和应付的钱数如下。

2、把表填写完整。

3、从表中发现了什么规律?

应付的钱数与质量的比值(也就是单价)相同。

4、说说以上两个例子有什么一起的特点。

小结:路程随时间的变化而变化,在变化过程中路程与时间的比值相同;应付的钱数随购买苹果的质量的变化而变化,在变化过程中应付的钱数与质量的比值相同。

5、正比例关系:

(1)时间增加,所走的路程也相应增加,而且路程与时间的比值(速度)相同。那么我们说路程和时间成正比例。

(2)购买苹果应付的钱数与质量有什么关系?

6、观察考虑成正比例的量有什么特征?

一个量随另一个量的变化而变化,在变化过程中这两个量的比值相同。

(四)想一想:

1、正方形的周长与边长成正比例吗?面积与边长呢?为什么?

师小结:

(1)正方形的周长随边长的变化而变化,并且周长与边长的比值都是4,所以正方形的周长与边长成正比例。

请你也试着说一说。

(2)正方形的面积虽然也随边长的变化而变化,但面积与边长的比值是一个变化的值,所以正方形的面积和边长不成正比例。

请生用自身的语言说一说。

2、小明和爸爸的年龄变化情况如下:

小明的年龄/岁

6

7

8

9

10

11

爸爸的年龄/岁

32

33

(1)把表填写完整。

(2)父子的年龄成正比例吗?为什么?

(3)爸爸的年龄=小明的年龄+26。虽然小明岁数增加,爸爸岁数也增加,但是小明岁数与爸爸岁数的比值随着时间发生变化,不是一个确定的值,所以父子的年龄不成正比例。

与同桌交流,再集体汇报

在老师的小结中感受并总结正比例关系的特征

活动二:练一练。

1、判断下面各题中的两个量,是否成正比例,并说明理由。

(1)每袋大米的质量一定,大米的总质量和袋数。

(2)一个人的身高和年龄。

(3)宽不变,长方形的周长与长。

2、根据下表中平行四边形的面积与高相对应的数值,判断当底是6厘米的时候,它们是是成正比例,并说明理由。

平行四边形的面积随高的变化而变化,即平行四边形的面积与高的比值不变,所以平行四边形的面积与高成正比例。(也可以用公式进行说明)

3、买邮票的枚数与应付的钱数成正比例吗?填写表格。先填写表格,再说明理由

应付的钱数随购买的枚数的变化而变化,而且比值不便。所以应付的钱数与买邮票的枚数成正比例。

4、找一找生活中成正比例的例子。

5、先自身独立完成,然后集体订正,说理由。

认识反比例,能根据反比例的意义判断两个相关联的量是不是成反比例。

教学难点:

认识反比例,能根据反比例的意义判断两个相关联的量是不是成反比例。

教学过程:

一、复习

1、什么是正比例的量?

2、判断下面各题中的两种量是否成正比例?为什么?

(1)工作效率一定,工作时间和工作总量。

(2)每头奶牛的产奶量一定,奶牛的头数和产奶总量。

(3)正方形的边长和它的面积。

二、导入新课

利用反义词来导入今天研究的课题。今天研究两种量成反比例关系的变化规律。

三、进行新课

情境(一)

认识加法表中和是12的直线和乘法表中积是12的曲线。

引导同学发现规律:加法表中和是12,一个加数随另一个加数的变化而变化;乘法表中积是12,一个乘数随另一个乘数的变化而变化。

情境(二)

让同学把汽车行驶的速度和时间的表填完整,当速度发生变化时,时间怎样变化?每

两个相对应的数的乘积各是多少?你有什么发现?独立观察,考虑

同桌交流,用自身的语言表达

写出关系式:速度×时间=路程(一定)

观察考虑并用自身的语言描述变化关系乘积(路程)一定

情境(三)

把杯数和每杯果汁量的表填完整,当杯数发生变化时,每杯果汁量怎样变化?每两个相对应的数的乘积各是多少?你有什么发现?用自身的语言描述变化关系

写出关系式:每杯果汁量×杯数=果汗总量(一定)

5、以上两个情境中有什么一起点?

反比例意义

引导小结:都有两种相关联通的量,其中一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的乘积是一定的。这两种量之间是反比例关系。

活动四:想一想

P26页第1、2、3题

关系式:X×Y=K(一定)

教学目标:

1、结合具体情境,认识比例尺,能根据图上距离,实际距离,比例尺中的两个量求第三个量。

2、运用比例尺的有关知识,通过丈量、绘图、估算、计算等活动,学会解决生活中的一些实际问题,进一步体会数学与日常生活的密切联系。

教学重点:认识比例尺,能根据三个量中的两个量求第三个量,运用比例尺的知识解决实际问题的能力。

教学难点:认识比例尺,能根据三个量中的两个量求第三个量,运用比例尺的知识解决实际问题的能力。

教学过程:

一、出现情境图

思考、讨论

我家的房屋平面图

1、比例尺1:100是什么意思?

图上距离

2、比例尺=--------------

实际距离

3、独立完成P30页第2、3题。

4、P30页第4题,怎样求窗户的图上距离?注意比成相成的单位后再计算。

5、指导完成P30页第5题。

注意求比例尺时,图上距离与实际距离的单位要统一。

P31页第1题,说明清楚两地距离一般假设是直线距离,计算时,注意单位换算。

P31页第2题,自身尝试独立完成。

放手让同学自身研究。

教师对困难的同学加以指导

试一试

练一练

教学内容:变化的量

教学目标:

1.结合具体目标,体会生活中存在着大量互相依存的变量。

2.在具体情境中,尝试用自身的语言描述两个变量之间的关系。

教学重点:

结合具体目标,体会生活中存在着大量互相依存的变量。

教学难点:

在具体情境中,尝试用自身的语言描述两个变量之间的关系。

教学用具:

课件

教学过程:

活动一:观察并回答。

1、下表是小明的体重变化情况。

观察表中所反映的内容,搞清楚表中所涉和的量是哪两个量?观察后请回答。

2、上表中哪些量在发生变化?

3、说一说小明10周岁前的体重是如何随年龄增加而变化的?

小结:小明的体重随年龄的增加而变化。2—6岁和6---10岁是体重的增加高峰。说明这两个阶段是小朋友生长的重要阶段。

4、体重一直会随年龄的增加而变化吗?这说明了什么?

说明:体重和年龄是一组相关联的量。但体重的增加是随着人的生长规律而确定的。

1、教育同学要合理饮食,适当控制自身的体重。

活动二:骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大的变化。

观察书上统计图:

1、图中所反映的两个变化的量是哪两个?

2、横轴表示什么?纵轴表示什么?

同桌两人观察并考虑,得出结论后,记录在书上,然后再在全班汇报说明。

3、一天中,骆驼的体温最高是多少?最低是多少?

4、一天中,在什么时间范围内骆驼的体温在上升?在什么时间范围内骆驼的体温在下降?

5、第二天8时骆驼的体温与前一天8时的体温有什么关系?

6、骆驼的体温有什么变化变化的规律吗?

活动三:某地的一位同学发现蟋蟀叫的次数与气温之间有如下的近似关系。

1、蟋蟀1分叫的次数除以7再加3,所得的结果与当时的气温值差不多。

2、假如用t表示蟋蟀每分叫的次数,你能用公式表示这个近似关系吗?请你写出这个关系式,全班展示,交流。

3、你还发现生活中有哪两个量之间具有变化的关系?它们之间是怎样变化的?四人小组交流你收集到的信息,选派代表请举例说明

4、你还发现我们学过的数学知识中有哪些量之间具有变化的关系?

全课小结:今天我们研究的两个量都是相关联的。它们之间在变化的时候都具有一定的关系。下一节课我们将深入研究具有相关联的两个量,在变化时有相同的变化特征,这样的知识在数学上的应用。

教学目标:

1、在具体情境中,通过“画一画”的活动,初步认识正比例图象。

2、会在方格纸上描出成正比例的量所对应的点,并能在图中根据一个变量的值估计它所对应的变量的值。

3、利用正比例关系,解决生活中的一些简单问题。

教学重点:

1、在具体情境中,通过“画一画”的活动,初步认识正比例图象。

2、会在方格纸上描出成正比例的量所对应的点,并能在图中根据一个变量的值估计它所对应的变量的值。

教学难点:

1、会在方格纸上描出成正比例的量所对应的点,并能在图中根据一个变量的值估计它所对应的变量的值。

2、利用正比例关系,解决生活中的一些简单问题。

教学过程:

一、复习

活动一;判断下面的量是否成正比例关系?

1、每行人数一定,总人数和行数。

2、长方形的长一定,宽和面积。

3、长方体的底面积一定,体积和高。

4、分子一定,分母和分数值。

5、长方形的周长一定,长和宽。

6、一个自然数和它的倒数。

7、正方形的边长与周长。

8、正方形的边长与面积。

9、圆的半径与周长。

10、圆的面积与半径。

11、什么样的两个量叫做成正比例的量?

二、新授

活动二:探索一个数与它的5倍之间的关系。

1、求出一个数的5倍,填写书上表格。自身独立完成。

2、判断一个数的5倍和这个数有怎样的关系?说说你判断的理由

小结:一个数和它的5倍之间具有正比例关系。

3、根据上表,说出下图中各点的含义。(图见书上)。请观察横轴表示什么?纵轴表示什么?然后说说各点表示的含义。

4、连接各点,你发现了什么?

注:所描的点都在同一条直线上。

5、利用书上的图,把下表填完整。

6、估计并找一找这组数据在统计图上的位置。

自身独立完成。

在统计图上估计一下,看看自身估计地是否准确

三、练习

活动三:试一试。

1、在下图中描点,表示第20页两个表格中的数量关系。

2、考虑;连接各点,你发现了什么?

活动四:练一练。

1、圆的半径和面积成正比例关系吗?为什么?

教师讲解:因为圆的面积和半径的比值不是一个常数。

2、乘船的人数与所付船费为:(数据见书上)

(1)将书上的图补充完整。

(2)说说哪个量没有变?

(3)乘船人数与船费有什么关系?

(4)连接各点,你发现了什么?

每人所需的乘船费用没有变化。

乘船费用与人数成正比例。

所有的点都在一条直线上。

3、回答下列问题:

(1)圆的周长与直径成正比例吗?为什么?

圆的周长与直径成正比例关系。

(2)根据右图,先估计圆的周长,再实际计算。

(3)直径为5厘米的圆的周长估计值为(),实际计算值为()。

(4)直径为15厘米的圆的周长估计值为(),实际计算值为()。

4、把下表填写完整。试着在第一题的图上描点,并连接各点,你发现了什么?(表格见书上)所有的点都在同一条直线上。

四、教学反思:

教学目标:

1、让同学尝试用图表示成反比例的量之间的关系,利用图进一步认识反比例。2、渗透事物之间都是相互联系和发展变化的观点,初步渗透函数思想。

教学重难点:

动手操作,用图表示成反比例的量之间的关系,利用图进一步认识反比例。

教学过程:

一、复习

长方形面积一定,长与宽成反比例吗?为什么?

二、新课

出现情境

这节课我们用图表表示成反比例的量之间的关系。

用x、y表示面积为24cm2的长方形相邻的两条边长,它们的变化关系如下表。略

1、观察表格,根据数据在方格纸上画出这8个长方形。

2、把图中的点用平滑的曲线依次连起来。

3、长和宽是怎样变化的?有什么规律?—长扩大,宽缩小,相对应的长和宽的乘积是24。

关系式:长×宽=长方形面积(一定)

4、图上的点A、B、C、D……在一条直线上吗

三、小结:

四、教学反思:

正反比例关系是比较重要的一种数量间的关系。在教学中我积极利用了学生的自我观察,给于了学生一些较为形象具体的表格形式进行对比、分析。从而让学生能轻易地发现两个数量间的变化关系。在观察和对比了以后再进行意义的概括。由浅到深逐步慢慢转化为对文字的叙述的判断。但是对正比例意义的理解还将涉及到学生对一些数量关系的掌握情况。但是我并没有急于地让学生背数量关系。而是把对意义的理解作为重点,通过几个具体的表格的强化加深学生对意义的理解。这也是新教材与老教材的区别。教材淡化了学生对数量关系的理解,而是让学生能够在具体的情境的中慢慢体会。正反比例的教学并不仅仅停留在数量关系上,只是让学生能够根据数量关系作一些简单的判断。学生其实只是停留在机械的模仿和识记上。我们要从一个新的数学角度来加以研究,用一种新的数学思想来加以理解,用一种新的数学语言来加以定义。因此在复习题中我让学生大量的复习了常见的数量关系,并且联系教材复习了教材及练习中涉及到的一些数量关系,渗透了难点。对于一些学生较容易出现错误的题目进行重点的讲解。像圆柱的底面积一定,体积与高成什么比例;圆柱的高一定,体积与底面半径成什么比例,圆的周长一定,直径和圆周率等等这些题目能够帮助学生真正理解正反比例的意义。

下面以图上距离、实际距离、比例尺为例,谈谈如何联系具体的问题情境理解三者之间的关系。当比例尺一定时,图上距离和实际距离成正比例;可以结合图上距离和实际距离变化方向相同,那么在同一幅地图上,图上距离越长,表示的实际距离也就越大。当图上距离一定时,实际距离和比例尺成反比例,那么实际距离和比例尺的变化规律正好相反,可以出这样一道题帮助理解,图上距离3厘米在下面哪一幅地图上表示的实际距离最大①1:400②1:600000③1:600000因为实际距离和比例尺成反比例,它们的变化方向相反,要使实际距离大,那么比例尺就要小,所以选第三个。当实际距离一定时,图上距离和比例尺成正比例,可以出这样一道题帮助理解,一个半径100米的花坛,画在下面哪一幅地图上,图上距离最大①1:40000②1:60000③1:100000因为图上距离和比例尺成正比例,它们的变化规律一致,比例尺越大,图上距离就越大,所以应该选第一个比例尺。通过这样的练习能够更好地帮助学生理解图上距离、实际距离、比例尺三者之间的关系。起到很好的教学效果。

相关推荐

  • 反比例函数教案集合 今天编辑为大家带来了一篇与“反比例函数教案”相关的文章推荐,请收藏此页和我们的网站以备后用。上课前准备好课堂用到教案课件很重要,撰写教案课件是每位老师都要做的事。教案的编写是教师课堂教学的决定性因素之一。...
    2024-08-02 阅读全文
  • 反比例函数课件汇编14篇 老师会对课本中的主要教学内容整理到教案课件中,所以老师写教案可不能随便对待。教案是评估学生学习效果的有效依据,好的教案课件是怎么写成的?我们听了一场关于“反比例函数课件”的演讲让我们思考了很多,经过阅读本页你的认识会更加全面!...
    2024-09-26 阅读全文
  • 北师大版数学九年级上册6.3反比例函数的应用优秀教案反思 现在向您介绍幼儿园教案《北师大版数学九年级上册6.3反比例函数的应用优秀教案反思》《北师大版数学九年级上册6.3反比例函数的应用优秀教案反思》这是一篇九年级上册数学教案,教师应以学段教学目标为背景,以...
    2022-03-03 阅读全文
  • 六年级下册《正比例和反比例》公开课教案教学分析反思 现在向您介绍幼儿园教案《六年级下册《正比例和反比例》公开课教案教学分析反思》《六年级下册《正比例和反比例》公开课教案教学分析反思》这是一篇六年级下册数学教案,正反比例关系是比较重要的一种数量间的关系。...
    2022-03-04 阅读全文
  • 反比例数学教案2000字系列10篇 老师可以在很多方面拓展学生的兴趣。如今教师对准备教案已经不再陌生。教案是老师授课最实用的工具,写好教案要求教师具备哪些方面的能力呢?我们特地花时间为你收集并编辑了反比例数学教案,希望对大家有所帮助。...
    2023-01-26 阅读全文

今天编辑为大家带来了一篇与“反比例函数教案”相关的文章推荐,请收藏此页和我们的网站以备后用。上课前准备好课堂用到教案课件很重要,撰写教案课件是每位老师都要做的事。教案的编写是教师课堂教学的决定性因素之一。...

2024-08-02 阅读全文

老师会对课本中的主要教学内容整理到教案课件中,所以老师写教案可不能随便对待。教案是评估学生学习效果的有效依据,好的教案课件是怎么写成的?我们听了一场关于“反比例函数课件”的演讲让我们思考了很多,经过阅读本页你的认识会更加全面!...

2024-09-26 阅读全文

现在向您介绍幼儿园教案《北师大版数学九年级上册6.3反比例函数的应用优秀教案反思》《北师大版数学九年级上册6.3反比例函数的应用优秀教案反思》这是一篇九年级上册数学教案,教师应以学段教学目标为背景,以...

2022-03-03 阅读全文

现在向您介绍幼儿园教案《六年级下册《正比例和反比例》公开课教案教学分析反思》《六年级下册《正比例和反比例》公开课教案教学分析反思》这是一篇六年级下册数学教案,正反比例关系是比较重要的一种数量间的关系。...

2022-03-04 阅读全文

老师可以在很多方面拓展学生的兴趣。如今教师对准备教案已经不再陌生。教案是老师授课最实用的工具,写好教案要求教师具备哪些方面的能力呢?我们特地花时间为你收集并编辑了反比例数学教案,希望对大家有所帮助。...

2023-01-26 阅读全文
Baidu
map