高中数学教案
发布时间:2023-12-16 高中数学教案高中数学教案范例。
以下是一篇网络上非常出色的“高中数学教案”文章的介绍,建议您将此网页添加到收藏夹,以便复习。制定教案和制作课件是我们教师的一项重要工作,因此我们每天都会按时按质完成教案和课件。教师需要以教案为中心,把握课堂教学的重点和难点。
高中数学教案【篇1】
教材分析:
前面已学习了向量的概念及向量的线性运算,这里引入一种新的向量运算——向量的数量积。教科书以物体受力做功为背景引入向量数量积的概念,既使向量数量积运算与学生已有知识建立了联系,又使学生看到向量数量积与向量模的大小及夹角有关,同时与前面的向量运算不同,其计算结果不是向量而是数量。
在定义了数量积的概念后,进一步探究了两个向量夹角对数量积符号的影响;然后由投影的概念得出了数量积的几何意义;并由数量积的定义推导出一些数量积的重要性质;最后“探究”研究了运算律。
教学目标:
(一)知识与技能
1.掌握数量积的定义、重要性质及运算律;
2.能应用数量积的重要性质及运算律解决问题;
3.了解用平面向量数量积可以解决长度、角度、垂直共线等问题,为下节课灵活运用平面向量数量积解决问题打好基础。
(二)过程与方法
以物体受力做功为背景引入向量数量积的概念,从数与形两方面引导学生对向量数量积定义进行探究,通过例题分析,使学生明确向量的数量积与数的乘法的联系与区别。
(三)情感、态度与价值观
创设适当的问题情境,从物理学中“功”这个概念引入课题,开始就激发学生的学习兴趣,让学生容易切入课题,培养学生用数学的意识,加强数学与其它学科及生活实践的联系。
教学重点:
1.平面向量的数量积的定义;
2.用平面向量的数量积表示向量的模及向量的夹角。
教学难点:
平面向量数量积的定义及运算律的理解和平面向量数量积的应用。
教学方法:
启发引导式
教学过程:
(一)提出问题,引入新课
前面我们学习了平面向量的线性运算,包括向量的加法、减法、以及数乘运算,它们的运算结果都是向量,既然两个向量可以进行加法、减法运算,我们自然会提出:两个向量是否能进行“乘法”运算呢?如果能,运算结果又是什么呢?
这让我们联想到物理中“功”的概念,即如果一个物体在力F的作用下产生位移s,F与s的夹角是θ,那么力F所做的功如何计算呢?
我们知道:W=|F||s|cosθ,
功是一个标量(数量),而力它等于力F和位移s都是矢量(向量),功等于力和位移这两个向量的大小与它们夹角余弦的乘积。这给我们一种启示:能否把功W看成是两向量F和s的一种运算的结果呢,为此我们引入平面向量的数量积。
(二)讲授新课
今天我们就来学习:(板书课题)
2.4 平面向量的数量积
一、向量数量积的定义
1.已知两个非零向量 与 ,我们把数量| || |cosθ叫做 与 的数量积(或内积),记作 ,即 =| || |cosθ , 其中 θ是 与 的夹角。
2.规定:零向量与任一向量的数量积为0,即 =0
注意:
(1)符号“ ”在向量运算中既不能省略,也不能用“×”代替。
(2) 是 与 的夹角,范围是0≤θ≤π,(再找两向量夹角时,若两向量起点不同,必须通过平移,把起点移到同一点,再找夹角)。
(3)两个向量的数量积是一个数量,而不是向量。而且这个数量的大小与两个向量的模及其夹角有关。
(4)两非零向量 与 的数量积 的符号由夹角θ决定:
cosθ
= cosθ = 0
cosθwWW.YjS21.Com
前面我们学习了向量的加法、减法及数乘运算,他们都有明确的几何意义,那么向量的数量积的几何意义是什么呢?
二、数量积的几何意义
1.“投影”的概念:已知两个非零向量 与 ,θ是 与 的夹角,| |cos( 叫做向量 在 方向上的投影
思考:投影是向量,还是数量?
根据投影的定义,投影当然算数量,可能为正,可能为负,还可能为0
|(为锐角 (为钝角 (为直角
| |cos( | |cos( | |cos(=0
当(为锐角时投影为正值;当(为钝角时投影为负值;当(为直角时投影为0;当( = 0(时投影为 | |;当( = 180(时投影为 (| |
思考: 在 方向上的投影是什么,并作图表示
2.数量积的几何意义:数量积 等于 的长度| |与 在 方向上投影| |cos(的乘积,也等于 的长度| |与 在 方向上的投影| |cos(的乘积。
根据数量积的定义,可以推出一些结论,我们把它们作为数量积的重要性质
三、数量积的重要性质
设 与 都是非零向量,θ是 与 的夹角
高中数学教案【篇2】
一、教学目标
知识与技能:
理解任意角的概念(包括正角、负角、零角)与区间角的概念。
过程与方法:
会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写。
情感态度与价值观:
1、提高学生的推理能力;
2、培养学生应用意识。
二、教学重点、难点:
教学重点:
任意角概念的理解;区间角的集合的书写。
教学难点:
终边相同角的集合的表示;区间角的集合的书写。
三、教学过程
(一)导入新课
1、回顾角的定义
①角的第一种定义是有公共端点的两条射线组成的图形叫做角。
②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。
(二)教学新课
1、角的有关概念:
①角的定义:
角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。
②角的名称:
注意:
⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”;
⑵零角的终边与始边重合,如果α是零角α =0°;
⑶角的概念经过推广后,已包括正角、负角和零角。
⑤练习:请说出角α、β、γ各是多少度?
2、象限角的概念:
①定义:若将角顶点与原点重合,角的始边与x轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角。
例1、如图⑴⑵中的角分别属于第几象限角?
2022高中数学教案设计模板 篇2
教学目标:
1.结合实际问题情景,理解分层抽样的必要性和重要性;
2.学会用分层抽样的方法从总体中抽取样本;
3.并对简单随机抽样、系统抽样及分层抽样方法进行比较,揭示其相互关系.
教学重点:
通过实例理解分层抽样的方法.
教学难点:
分层抽样的步骤.
教学过程:
一、问题情境
1.复习简单随机抽样、系统抽样的概念、特征以及适用范围.
2.实例:某校高一、高二和高三年级分别有学生名,为了了解全校学生的视力情况,从中抽取容量为的样本,怎样抽取较为合理?
二、学生活动
能否用简单随机抽样或系统抽样进行抽样,为什么?
指出由于不同年级的学生视力状况有一定的差异,用简单随机抽样或系统抽样进行抽样不能准确反映客观实际,在抽样时不仅要使每个个体被抽到的机会相等,还要注意总体中个体的层次性.
由于样本的容量与总体的个体数的比为100∶2500=1∶25,
所以在各年级抽取的个体数依次是,,,即40,32,28.
三、建构数学
1.分层抽样:当已知总体由差异明显的几部分组成时,为了使样本更客观地反映总体的情况,常将总体按不同的特点分成层次比较分明的几部分,然后按各部分在总体中所占的比进行抽样,这种抽样叫做分层抽样,其中所分成的各部分叫“层”.
说明:①分层抽样时,由于各部分抽取的个体数与这一部分个体数的比等于样本容量与总体的个体数的比,每一个个体被抽到的可能性都是相等的;
②由于分层抽样充分利用了我们所掌握的信息,使样本具有较好的代表性,而且在各层抽样时可以根据具体情况采取不同的抽样方法,所以分层抽样在实践中有着非常广泛的应用.
2.三种抽样方法对照表:
类别
共同点
各自特点
相互联系
适用范围
简单随机抽样
抽样过程中每个个体被抽取的概率是相同的
从总体中逐个抽取
总体中的个体数较少
系统抽样
将总体均分成几个部分,按事先确定的规则在各部分抽取
在第一部分抽样时采用简单随机抽样
总体中的个体数较多
分层抽样
将总体分成几层,分层进行抽取
各层抽样时采用简单随机抽样或系统
总体由差异明显的几部分组成
3.分层抽样的步骤:
(1)分层:将总体按某种特征分成若干部分.
(2)确定比例:计算各层的个体数与总体的个体数的比.
(3)确定各层应抽取的样本容量.
(4)在每一层进行抽样(各层分别按简单随机抽样或系统抽样的方法抽取),综合每层抽样,组成样本.
四、数学运用
1.例题.
例1(1)分层抽样中,在每一层进行抽样可用_________________.
(2)①教育局督学组到学校检查工作,临时在每个班各抽调2人参加座谈;
②某班期中考试有15人在85分以上,40人在60-84分,1人不及格.现欲从中抽出8人研讨进一步改进教和学;
③某班元旦聚会,要产生两名“幸运者”.
对这三件事,合适的抽样方法为()
A.分层抽样,分层抽样,简单随机抽样
B.系统抽样,系统抽样,简单随机抽样
C.分层抽样,简单随机抽样,简单随机抽样
D.系统抽样,分层抽样,简单随机抽样
例2某电视台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12000人,其中持各种态度的人数如表中所示:
很喜爱
喜爱
一般
不喜爱
2435
4567
3926
1072
电视台为进一步了解观众的具体想法和意见,打算从中抽取60人进行更为详细的调查,应怎样进行抽样?
解:抽取人数与总的比是60∶12000=1∶200,
则各层抽取的人数依次是12.175,22.835,19.63,5.36,
取近似值得各层人数分别是12,23,20,5.
然后在各层用简单随机抽样方法抽取.
答用分层抽样的方法抽取,抽取“很喜爱”、“喜爱”、“一般”、“不喜爱”的人
数分别为12,23,20,5.
说明:各层的抽取数之和应等于样本容量,对于不能取整数的情况,取其近似值.
(3)某学校有160名教职工,其中教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的某意见,拟抽取一个容量为20的样本.
分析:(1)总体容量较小,用抽签法或随机数表法都很方便.
(2)总体容量较大,用抽签法或随机数表法都比较麻烦,由于人员没有明显差异,且刚好32排,每排人数相同,可用系统抽样.
(3)由于学校各类人员对这一问题的看法可能差异较大,所以应采用分层抽样方法.
五、要点归纳与方法小结
本节课学习了以下内容:
1.分层抽样的概念与特征;
2.三种抽样方法相互之间的区别与联系.
2022高中数学教案设计模板 篇3
教学目标:
1.理解流程图的选择结构这种基本逻辑结构.
2.能识别和理解简单的框图的功能.
3. 能运用三种基本逻辑结构设计流程图以解决简单的问题.
教学方法:
1. 通过模仿、操作、探索,经历设计流程图表达求解问题的过程,加深对流程图的感知.
2. 在具体问题的解决过程中,掌握基本的流程图的画法和流程图的三种基本逻辑结构.
教学过程:
一、问题情境
1.情境:
某铁路客运部门规定甲、乙两地之间旅客托运行李的费用为
其中(单位:)为行李的重量.
试给出计算费用(单位:元)的一个算法,并画出流程图.
二、学生活动
学生讨论,教师引导学生进行表达.
解 算法为:
输入行李的重量;
如果,那么,
否则;
输出行李的重量和运费.
上述算法可以用流程图表示为:
教师边讲解边画出第10页图1-2-6.
在上述计费过程中,第二步进行了判断.
三、建构数学
1.选择结构的概念:
先根据条件作出判断,再决定执行哪一种
操作的结构称为选择结构.
如图:虚线框内是一个选择结构,它包含一个判断框,当条件成立(或称条件为“真”)时执行,否则执行.
2.说明:(1)有些问题需要按给定的条件进行分析、比较和判断,并按判
断的不同情况进行不同的操作,这类问题的实现就要用到选择结构的设计;
(2)选择结构也称为分支结构或选取结构,它要先根据指定的条件进行判断,再由判断的结果决定执行两条分支路径中的某一条;
(3)在上图的选择结构中,只能执行和之一,不可能既执行,又执
行,但或两个框中可以有一个是空的,即不执行任何操作;
(4)流程图图框的形状要规范,判断框必须画成菱形,它有一个进入点和
两个退出点.
3.思考:教材第7页图所示的算法中,哪一步进行了判断?
2022高中数学教案设计模板 篇4
教学目标:
1.了解复数的几何意义,会用复平面内的点和向量来表示复数;了解复数代数形式的加、减运算的几何意义.
2.通过建立复平面上的点与复数的一一对应关系,自主探索复数加减法的几何意义.
教学重点:
复数的几何意义,复数加减法的几何意义.
教学难点:
复数加减法的几何意义.
教学过程:
一 、问题情境
我们知道,实数与数轴上的点是一一对应的,实数可以用数轴上的点来表示.那么,复数是否也能用点来表示呢?
二、学生活动
问题1 任何一个复数a+bi都可以由一个有序实数对(a,b)惟一确定,而有序实数对(a,b)与平面直角坐标系中的点是一一对应的,那么我们怎样用平面上的点来表示复数呢?
问题2 平面直角坐标系中的点A与以原点O为起点,A为终点的向量是一一对应的,那么复数能用平面向量表示吗?
问题3 任何一个实数都有绝对值,它表示数轴上与这个实数对应的点到原点的距离.任何一个向量都有模,它表示向量的长度,那么相应的,我们可以给出复数的模(绝对值)的概念吗?它又有什么几何意义呢?
问题4 复数可以用复平面的向量来表示,那么,复数的加减法有什么几何意义呢?它能像向量加减法一样,用作图的方法得到吗?两个复数差的模有什么几何意义?
三、建构数学
1.复数的几何意义:在平面直角坐标系中,以复数a+bi的实部a为横坐标,虚部b为纵坐标就确定了点Z(a,b),我们可以用点Z(a,b)来表示复数a+bi,这就是复数的几何意义.
2.复平面:建立了直角坐标系来表示复数的平面.其中x轴为实轴,y轴为虚轴.实轴上的点都表示实数,除原点外,虚轴上的点都表示纯虚数.
3.因为复平面上的点Z(a,b)与以原点O为起点、Z为终点的向量一一对应,所以我们也可以用向量来表示复数z=a+bi,这也是复数的几何意义.
4.复数加减法的几何意义可由向量加减法的平行四边形法则得到,两个复数差的模就是复平面内与这两个复数对应的两点间的距离.同时,复数加减法的法则与平面向量加减法的坐标形式也是完全一致的.
四、数学应用
例1 在复平面内,分别用点和向量表示下列复数4,2+i,-i,-1+3i,3-2i.
练习 课本P123练习第3,4题(口答).
思考
1.复平面内,表示一对共轭虚数的两个点具有怎样的位置关系?
2.如果复平面内表示两个虚数的点关于原点对称,那么它们的实部和虚部分别满足什么关系?
3.“a=0”是“复数a+bi(a,b∈R)是纯虚数”的__________条件.
4.“a=0”是“复数a+bi(a,b∈R)所对应的点在虚轴上”的_____条件.
例2 已知复数z=(m2+m-6)+(m2+m-2)i在复平面内所对应的点位于第二象限,求实数m允许的取值范围.
例3 已知复数z1=3+4i,z2=-1+5i,试比较它们模的大小.
思考 任意两个复数都可以比较大小吗?
例4 设z∈C,满足下列条件的点Z的集合是什么图形?
(1)│z│=2;(2)2
变式:课本P124习题3.3第6题.
五、要点归纳与方法小结
本节课学习了以下内容:
1.复数的几何意义.
2.复数加减法的几何意义.
3.数形结合的思想方法.
2022高中数学教案设计模板 篇5
数学是研究空间形式和数量关系的科学,是科学和技术的基础,是人类文化的重要组成部分。
数学课程是中等职业学校学生必修的一门公共基础课。本课程的任务是:使学生掌握必要的数学基础知识,具备必需的相关技能与能力,为学习专业知识、掌握职业技能、继续学习和终身发展奠定基础。
二、课程教学目标
1.在九年义务教育基础上,使学生进一步学习并掌握职业岗位和生活中所必要的数学基础知识。
2.培养学生的计算技能、计算工具使用技能和数据处理技能,培养学生的观察能力、空间想象能力、分析与解决问题能力和数学思维能力。
3.引导学生逐步养成良好的学习习惯、实践意识、创新意识和实事求是的科学态度,提高学生就业能力与创业能力。
三、教学内容结构
本课程的教学内容由基础模块、职业模块和拓展模块三个部分构成。
1.基础模块是各专业学生必修的基础性内容和应达到的基本要求,教学时数为128学时。
2.职业模块是适应学生学习相关专业需要的限定选修内容,各学校根据实际情况进行选择和安排教学,教学时数为32~64学时。
3.拓展模块是满足学生个性发展和继续学习需要的任意选修内容,教学时数不做统一规定。
四、教学内容与要求
(一)本大纲教学要求用语的表述1.认知要求(分为三个层次)
了解:初步知道知识的含义及其简单应用。
理解:懂得知识的概念和规律(定义、定理、法则等)以及与其它相关知识的联系。掌握:能够应用知识的概念、定义、定理、法则去解决一些问题。2.技能与能力培养要求(分为三项技能与四项能力)
计算技能:根据法则、公式,或按照一定的操作步骤,正确地进行运算求解。计算工具使用技能:正确使用科学型计算器及常用的数学工具软件。数据处理技能:按要求对数据(数据表格)进行处理并提取有关信息。观察能力:根据数据趋势,数量关系或图形、图示,描述其规律。
空间想象能力:依据文字、语言描述,或较简单的几何体及其组合,想象相应的空间图形;能够在基本图形中找出基本元素及其位置关系,或根据条件画出图形。
分析与解决问题能力:能对工作和生活中的简单数学相关问题,作出分析并运用适当的数学方法予以解决。
数学思维能力:依据所学的数学知识,运用类比、归纳、综合等方法,对数学及其应用问题能进行有条理的思考、判断、推理和求解;针对不同的问题(或需求),会选择合适的模型(模式)。
(二)教学内容与要求1.基础模块(128学时)
第1单元集合(10学时)
第2单元不等式(8学时)
第6单元数列(10学时)
第7单元平面向量(矢量)(10学时)
第8单元直线和圆的方程(18学时)
第10单元概率与统计初步(16学时)
2.职业模块
第2单元坐标变换与参数方程(12学时)
高中数学教案【篇3】
教材分析:集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方
面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所
反映的数学思想,在越来越广泛的领域种得到应用。
课 型:新授课
教学目标:(1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于”关系;
(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体
问题,感受集合语言的意义和作用;
教学重点:集合的基本概念与表示方法;
教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合; 教学过程:
一、 引入课题
军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?
在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。
二、 新课教学
(一)集合的有关概念
1. 集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这
些东西,并且能判断一个给定的东西是否属于这个总体。
2. 一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简
称集。
3. 关于集合的元素的特征
(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。
(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。
(3)集合相等:构成两个集合的元素完全一样
4. 元素与集合的关系;
(1)如果a是集合A的元素,就说a属于(belong to)A,记作a∈A(2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作a?A(或a A)
5. 常用数集及其记法
非负整数集(或自然数集),记作N
正整数集,记作N_或N+;
整数集,记作Z
有理数集,记作Q
实数集,记作R
(二)集合的表示方法
我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。
(1) 列举法:把集合中的元素一一列举出来,写在大括号内。
如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},?;
思考2,引入描述法
说明:集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序。
(2) 描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。
具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。
如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},?;
强调:描述法表示集合应注意集合的代表元素
{(x,y)|y= x2+3x+2}与 {y|y= x2+3x+2}不同,只要不引起误解,集合的代表元素也可省略,例如:{整数},即代表整数集Z。
辨析:这里的{ }已包含“所有”的意思,所以不必写{全体整数}。下列写法{实数集},{R}也是错误的。
说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。
三、 归纳小结
本节课从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了集合的常用表示方法,包括列举法、描述法。课题:§1.2集合间的基本关系
教材分析:类比实数的大小关系引入集合的包含与相等关系
了解空集的含义
课 型:新授课
教学目的:(1)了解集合之间的包含、相等关系的含义;
(2)理解子集、真子集的概念;
(3)能利用Venn图表达集合间的关系;
(4)了解与空集的含义。
教学重点:子集与空集的概念;用Venn图表达集合间的关系。 教学难点:弄清元素与子集 、属于与包含之间的区别;
教学过程:
四、 引入课题
1、 复习元素与集合的关系——属于与不属于的关系,填以下空白:(1)0 N;(2
;(3)-1.5 R
2、 类比实数的大小关系,如5
布课题)
五、 新课教学
a={1,2,3},B={1,2,3,4}
集合A是集合B的部分元素构成的集合,我们说集合B包含集合A;
如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集(subset)。
记作:A?B(或B?A)
读作:A包含于(is contained in)B,或B包含(contains)A (一) 集合与集合之间的“包含”关系;
当集合A不包含于集合B时,记作
B
用Venn图表示两个集合间的“包含”关系 A?B(或B?A)
(二) 集合与集合之间的 “相等”关系;
a?B且B?A,则A=B中的元素是一样的,因此A=B
?A?B即 A=B?? B?A?
结论:
任何一个集合是它本身的子集
(三) 真子集的概念
若集合A?B,存在元素x∈B且x?A,则称集合A是集合B的真子集(proper subset)。
记作:A B(或B A)
读作:A真包含于B(或B真包含A)
(四) 空集的概念
(实例引入空集概念)
不含有任何元素的集合称为空集(empty set),记作:? 规定: 空集是任何集合的子集,是任何非空集合的真子集。
(五) 结论:1A?A ○2A?B,且B?C,则A?C ○
(六) 例题
(1)写出集合{a,b}的所有的子集,并指出其中哪些是它的真子集。
(2)化简集合A={x|x-3>2},B={x|x≥5},并表示A、B的关系;
(七) 归纳小结,强化思想
两个集合之间的基本关系只有“包含”与“相等”两种,可类比两个实数间的大小关系,同时还要注意区别“属于”与“包含”两种关系及其表示方法;
1 已知集合A={x|a取值范围。
2 设集合A={○四边形},B={平行四边形},C={矩形},
D={正方形},试用Venn图表示它们之间的关系。
课题:§1.3集合的基本运算
教学目的:(1)理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集;
(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。
课 型:新授课
教学重点:集合的交集与并集、补集的概念;
教学难点:集合的交集与并集、补集“是什么”,“为什么”,“怎样做”;
教学过程:
六、 引入课题
我们两个实数除了可以比较大小外,还可以进行加法运算,类比实数的加法运算,两个集合是否也可以“相加”呢?
思考(P9思考题),引入并集概念。
七、 新课教学
1. 并集
一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集(Union)
记作:A∪B
Venn图表示: 读作:“A并B” 即: A∪B={x|x∈A,或x∈B}
高中数学教案【篇4】
【教学目标】
1.会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。
2.能根据几何结构特征对空间物体进行分类。
3.提高学生的观察能力;培养学生的空间想象能力和抽象括能力。
【教学重难点】
教学重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。
教学难点:柱、锥、台、球的结构特征的概括。
【教学过程】
1.情景导入
教师提出问题,引导学生观察、举例和相互交流,提出本节课所学内容,出示课题。
2.展示目标、检查预习
3、合作探究、交流展示
(1)引导学生观察棱柱的几何物体以及棱柱的图片,说出它们各自的特点是什么?它们的共同特点是什么?
(2)组织学生分组讨论,每小组选出一名同学发表本组讨论结果。
在此基础上得出棱柱的主要结构特征。
(1)有两个面互相平行;
(2)其余各面都是平行四边形;
(3)每相邻两上四边形的公共边互相平行。概括出棱柱的概念。
(3)提出问题:请列举身边的棱柱并对它们进行分类
(4)以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。
(5)让学生观察圆柱,并实物模型演示,概括出圆柱的概念以及相关的概念及圆柱的表示。
(6)引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。
(7)教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。
4.质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。
(1)有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明)
(2)棱柱的任何两个平面都可以作为棱柱的底面吗?
(3)圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?
(4)棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?
(5)绕直角三角形某一边的几何体一定是圆锥吗?
5、典型例题
例1:判断下列语句是否正确。
⑴有一个面是多边形,其余各面都是三角形的几何体是棱锥。
⑵有两个面互相平行,其余各面都是梯形,则此几何体是棱柱。
答案 A B
6、课堂检测:
课本P8,习题1.1 A组第1题。
7.归纳整理
由学生整理学习了哪些内容
【板书设计】
一、柱、锥、台、球的结构
二、例题
例1
变式1、2
【作业布置】
导学案课后练习与提高
1.1.1柱、锥、台、球的结构特征
课前预习学案
一、预习目标:
通过图形探究柱、锥、台、球的结构特征
二、预习内容:
阅读教材第2—6页内容,然后填空
(1)多面体的概念: 叫多面体,
叫多面体的面, 叫多面体的棱,
叫多面体的顶点。
① 棱柱:两个面 ,其余各面都是 ,并且每相邻两个四边形的公共边都 ,这些面围成的几何体叫作棱柱
②棱锥:有一个面是 ,其余各面都是 的三角形,这些面围成的几何体叫作棱锥
③棱台:用一个 棱锥底面的平面去截棱锥, ,叫作棱台。
(2)旋转体的概念: 叫旋转体, 叫旋转体的轴。
①圆柱: 所围成的几何体叫做圆柱
②圆锥: 所围成的几何体叫做圆锥
③圆台: 的部分叫圆台
④球的定义
思考:
(1)试分析多面体与旋转体有何去别
(2)球面球体有何去别
(3)圆与球有何去别
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点 疑惑内容
高中数学教案【篇5】
教学目标:使学生初步理解集合的基本概念,了解“属于”关系的意义、常用数集的记法和集合中元素的特性.了解有限集、无限集、空集概念,
教学重点:集合概念、性质;“∈”,“?”的使用
教学难点:集合概念的理解;
课型:新授课
教学手段:
教学过程:
一、引入课题
军训前学校通知:8月15日8点,高一年级在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?
在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。
研究集合的数学理论在现代数学中称为集合论,它不仅是数学的一个基本分支,在数学中占据一个极其独特的地位,如果把数学比作一座宏伟大厦,那么集合论就是这座宏伟大厦的基石。集合理论是由德国数学家康托尔,他创造的集合论是近代许多数学分支的基础。(参看阅教材中读材料P17)。
下面几节课中,我们共同学习有关集合的一些基础知识,为以后数学的学习打下基础。
二、新课教学
“物以类聚,人以群分”数学中也有类似的分类。
如:自然数的集合0,1,2,3,……
如:2x-1>3,即x>2所有大于2的实数组成的集合称为这个不等式的解集。
如:几何中,圆是到定点的距离等于定长的点的集合。
1、一般地,指定的某些对象的全体称为集合,标记:A,B,C,D,…
集合中的每个对象叫做这个集合的元素,标记:a,b,c,d,…
2、元素与集合的关系
a是集合A的元素,就说a属于集合A,记作a∈A,
a不是集合A的元素,就说a不属于集合A,记作a?A
思考1:列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,
进而讲解下面的问题。
例1:判断下列一组对象是否属于一个集合呢?
(1)小于10的质数(2)数学家(3)中国的直辖市(4)maths中的字母
(5)book中的字母(6)所有的偶数(7)所有直角三角形(8)满足3x-2>x+3的全体实数
(9)方程的实数解
评注:判断集合要注意有三点:范围是否确定;元素是否明确;能不能指出它的属性。
3、集合的中元素的三个特性:
1.元素的确定性:对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
2.元素的互异性:任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。比如:book中的字母构成的集合
3.元素的无序性:集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。
集合元素的三个特性使集合本身具有了确定性和整体性。
4、数的集简称数集,下面是一些常用数集及其记法:
非负整数集(即自然数集)记作:N有理数集Q
正整数集N_或N+实数集R
整数集Z
5、集合的分类原则:集合中所含元素的多少
①有限集含有限个元素,如A={-2,3}
②无限集含无限个元素,如自然数集N,有理数
③空集不含任何元素,如方程x2+1=0实数解集。专用标记:Φ
三、课堂练习
1、用符合“∈”或“?”填空:课本P15练习惯1
2、判断下面说法是否正确、正确的在()内填“√”,错误的填“×”
(1)所有在N中的元素都在N_中()
(2)所有在N中的元素都在Z中()
(3)所有不在N_中的数都不在Z中()
(4)所有不在Q中的实数都在R中()
(5)由既在R中又在N_中的数组成的集合中一定包含数0()
(6)不在N中的数不能使方程4x=8成立()
四、回顾反思
1、集合的概念
2、集合元素的三个特征
其中“集合中的元素必须是确定的”应理解为:对于一个给定的集合,它的元素的意义是明确的.
“集合中的元素必须是互异的”应理解为:对于给定的集合,它的任何两个元素都是不同的.
3、常见数集的专用符号.
五、作业布置
1.下列各组对象能确定一个集合吗?
(1)所有很大的实数
(2)好心的人
(3)1,2,2,3,4,5.
2.设a,b是非零实数,那么可能取的值组成集合的元素是
3.由实数x,-x,|x|,所组成的集合,最多含()
(A)2个元素(B)3个元素(C)4个元素(D)5个元素
4.下列结论不正确的是()
a.O∈NB.QC.OQD.-1∈Z
5.下列结论中,不正确的是()
a.若a∈N,则-aNB.若a∈Z,则a2∈Z
C.若a∈Q,则|a|∈QD.若a∈R,则
6.求数集{1,x,x2-x}中的元素x应满足的条件;
Yjs21.Com更多幼儿园教案扩展阅读
高中数学教案设计范例(汇总8篇)
作为一名教师,通常会被要求编写教案,教案是备课向课堂教学转化的关节点。如何把教案做到重点突出呢?以下是小编收集整理的高中数学教案,欢迎大家借鉴与参考,希望对大家有所帮助。
高中数学教案设计范例 篇1
1.课题
填写课题名称(高中代数类课题)
2.教学目标
(1)知识与技能:
通过本节课的学习,掌握......知识,提高学生解决实际问题的能力;
(2)过程与方法:
通过......(讨论、发现、探究),提高......(分析、归纳、比较和概括)的能力;
(3)情感态度与价值观:
通过本节课的学习,增强学生的学习兴趣,将数学应用到实际生活中,增加学生数学学习的乐趣。
3.教学重难点
(1)教学重点:本节课的知识重点
(2)教学难点:易错点、难以理解的知识点
4.教学方法(一般从中选择3个就可以了)
(1)讨论法
(2)情景教学法
(3)问答法
(4)发现法
(5)讲授法
5.教学过程
(1)导入
简单叙述导入课题的方式和方法(例:复习、类比、情境导出本节课的课题)
(2)新授课程(一般分为三个小步骤)
①简单讲解本节课基础知识点(例:奇函数的定义)。
②归纳总结该课题中的重点知识内容,尤其对该注意的一些情况设置易错点,进行强调。可以设计分组讨论环节(分组判断几组函数图像是否为奇函数,并归纳奇函数图像的特点。设置定义域不关于原点对称的函数是否为奇函数的易错点)。
③拓展延伸,将所学知识拓展延伸到实际题目中,去解决实际生活中的问题。
(在新授课里面一定要表下出讲课的大体流程,但是不必太过详细。)
(3)课堂小结
教师提问,学生回答本节课的收获。
(4)作业提高
布置作业(尽量与实际生活相联系,有所创新)。
6.教学板书
高中数学教案设计范例 篇2
一、教学目标
1、在初中学过原命题、逆命题知识的基础上,初步理解四种命题。
2、给一个比较简单的命题(原命题),可以写出它的逆命题、否命题和逆否命题。
3、通过对四种命题之间关系的学习,培养学生逻辑推理能力
4、初步培养学生反证法的数学思维。
二、教学分析
重点:四种命题;难点:四种命题的关系
1、本小节首先从初中数学的命题知识,给出四种命题的概念,接着,讲述四种命题的关系,最后,在初中的基础上,结合四种命题的知识,进一步讲解反证法。
2、教学时,要注意控制教学要求。本小节的内容,只涉及比较简单的命题,不研究含有逻辑联结词“或”、“且”、“非”的命题的逆命题、否命题和逆否命题,
3、“若p则q”形式的命题,也是一种复合命题,并且,其中的p与q,可以是命题也可以是开语句,例如,命题“若,则x,y全为0”,其中的p与q,就是开语句。对学生,只要求能分清命题“若p则q”中的条件与结论就可以了,不必考虑p与q是命题,还是开语句。
三、教学手段和方法(演示教学法和循序渐进导入法)
1、以故事形式入题
2、多媒体演示
四、教学过程
(一)引入:一个生活中有趣的与命题有关的笑话:某人要请甲乙丙丁吃饭,时间到了,只有甲乙丙三人按时赴约。丁却打电话说“有事不能参加”主人听了随口说了句“该来的没来”甲听了脸色一沉,一声不吭的走了,主人愣了一下又说了一句“哎,不该走的走了”乙听了大怒,拂袖即去。主人这时还没意识到又顺口说了一句:“俺说的又不是你”。这时丙怒火中烧不辞而别。四个客人没来的没来,来的又走了。主人请客不成还得罪了三家。大家肯定都觉得这个人不会说话,但是你想过这里面所蕴涵的数学思想吗?通过这节课的学习我们就能揭开它的庐山真面,学生的兴奋点被紧紧抓住,跃跃欲试!
设计意图:创设情景,激发学生学习兴趣
(二)复习提问:
1.命题“同位角相等,两直线平行”的条件与结论各是什么?
2.把“同位角相等,两直线平行”看作原命题,它的逆命题是什么?
3.原命题真,逆命题一定真吗?
“同位角相等,两直线平行”这个原命题真,逆命题也真.但“正方形的四条边相等”的原命题真,逆命题就不真,所以原命题真,逆命题不一定真.
学生活动:
口答:(l)若同位角相等,则两直线平行;(2)若一个四边形是正方形,则它的四条边相等.
设计意图: 通过复习旧知识,打下学习否命题、逆否命题的基础.
(三)新课讲解:
1.命题“同位角相等,两直线平行”的条件是“同位角相等”,结论是“两直线平行”;如果把“同位角相等,两直线平行”看作原命题,它的逆命题就是“两直线平行,同位角相等”。也就是说,把原命题的结论作为条件,条件作为结论,得到的命题就叫做原命题的逆命题。
2.把命题“同位角相等,两直线平行”的条件与结论同时否定,就得到新命题“同位角不相等,两直线不平行”,这个新命题就叫做原命题的否命题。
3.把命题“同位角相等,两直线平行”的条件与结论互相交换并同时否定,就得到新命题“两直线不平行,同位角不相等”,这个新命题就叫做原命题的逆否命题。
(四)组织讨论:
让学生归纳什么是否命题,什么是逆否命题。
例1及例2
(五)课堂探究:“两条直线不平行,则同位角不相等”是否真?“若一个四边形的四条边不相等,则不是正方形”是否真?若原命题真,逆否命题是否也真?
学生活动:
讨论后回答
这两个逆否命题都真.
原命题真,逆否命题也真
引导学生讨论原命题的真假与其他三种命题的真
假有什么关系?举例加以说明,同学们踊跃发言。
(六)课堂小结:
1、一般地,用p和q分别表示原命题的条件和结论,用¬p和¬q分别表示p和q否定时,四种命题的形式就是:
原命题若p则q;
逆命题若q则p;(交换原命题的条件和结论)
否命题,若¬p则¬q;(同时否定原命题的条件和结论)
逆否命题若¬q则¬p。(交换原命题的条件和结论,并且同时否定)
2、四种命题的关系
(1).原命题为真,它的逆命题不一定为真.
(2).原命题为真,它的否命题不一定为真.
(3).原命题为真,它的逆否命题一定为真
(七)回扣引入
分析引入中的笑话,先讨论,后总结:现在我们来分析一下主人说的四句话:
第一句:“该来的没来”
其逆否命题是“不该来的来了”,甲认为自己是不该来的,所以甲走了。
第二句:“不该走的走了”,其逆否命题为“该走的没走”,乙认为自己该走,所以乙也走了。
第三句:“俺说的不是你(指乙)”其值为真其非命题:“俺说的是你”为假,则说的是他(指丙)为真。所以,丙认为说的是自己,所以丙也走了。
同学们,生活中处处是数学,期待我们善于发现的眼睛。
高中数学教案设计范例 篇3
一、教学目标
1.知识与技能
(1)掌握画三视图的基本技能
(2)丰富学生的空间想象力
2.过程与方法
主要通过学生自己的亲身实践,动手作图,体会三视图的作用。
3.情感态度与价值观
(1)提高学生空间想象力
(2)体会三视图的作用
二、教学重点、难点
重点:画出简单组合体的三视图
难点:识别三视图所表示的空间几何体
三、学法与教学用具
1.学法:观察、动手实践、讨论、类比
2.教学用具:实物模型、三角板
四、教学思路
(一)创设情景,揭开课题
“横看成岭侧看成峰”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体,这堂课我们主要学习空间几何体的三视图。
在初中,我们已经学习了正方体、长方体、圆柱、圆锥、球的三视图(正视图、侧视图、俯视图),你能画出空间几何体的三视图吗?
(二)实践动手作图
1.讲台上放球、长方体实物,要求学生画出它们的三视图,教师巡视,学生画完后可交流结果并讨论;
2.教师引导学生用类比方法画出简单组合体的三视图
(1)画出球放在长方体上的三视图
(2)画出矿泉水瓶(实物放在桌面上)的三视图
学生画完后,可把自己的作品展示并与同学交流,总结自己的作图心得。
作三视图之前应当细心观察,认识了它的基本结构特征后,再动手作图。
3.三视图与几何体之间的相互转化。
(1)投影出示图片(课本P10,图1.2-3)
请同学们思考图中的三视图表示的几何体是什么?
(2)你能画出圆台的三视图吗?
(3)三视图对于认识空间几何体有何作用?你有何体会?
教师巡视指导,解答学生在学习中遇到的困难,然后让学生发表对上述问题的看法。
4.请同学们画出1.2-4中其他物体表示的空间几何体的三视图,并与其他同学交流。
(三)巩固练习
课本P12练习1、2P18习题1.2A组1
(四)归纳整理
请学生回顾发表如何作好空间几何体的三视图
(五)课外练习
1.自己动手制作一个底面是正方形,侧面是全等的三角形的棱锥模型,并画出它的三视图。
2.自己制作一个上、下底面都是相似的正三角形,侧面是全等的等腰梯形的棱台模型,并画出它的三视图。
高中数学教案设计范例 篇4
教学目标:
(1)了解坐标法和解析几何的意义,了解解析几何的基本问题.
(2)进一步理解曲线的方程和方程的曲线.
(3)初步掌握求曲线方程的方法.
(4)通过本节内容的教学,培养学生分析问题和转化的能力.
教学重点、难点:求曲线的方程.
教学用具:
计算机.
教学方法:
启发引导法,讨论法.
教学过程:
【引入】
1.提问:什么是曲线的方程和方程的曲线.
学生思考并回答.教师强调.
2.坐标法和解析几何的意义、基本问题.
对于一个几何问题,在建立坐标系的基础上,用坐标表示点;用方程表示曲线,通过研究方程的性质间接地来研究曲线的性质,这一研究几何问题的方法称为坐标法,这门科学称为解析几何.解析几何的两大基本问题就是:
(1)根据已知条件,求出表示平面曲线的方程.
(2)通过方程,研究平面曲线的性质.
事实上,在前边所学的直线方程的理论中也有这样两个基本问题.而且要先研究如何求出曲线方程,再研究如何用方程研究曲线.本节课就初步研究曲线方程的求法.
【问题】
如何根据已知条件,求出曲线的方程.
【实例分析】
例1:设、两点的坐标是、(3,7),求线段的垂直平分线的方程.
首先由学生分析:根据直线方程的知识,运用点斜式即可解决.
解法一:易求线段的中点坐标为(1,3),
由斜率关系可求得l的斜率为
于是有
即l的方程为
①
分析、引导:上述问题是我们早就学过的,用点斜式就可解决.可是,你们是否想过①恰好就是所求的吗?或者说①就是直线的方程?根据是什么,有证明吗?
(通过教师引导,是学生意识到这是以前没有解决的问题,应该证明,证明的依据就是定义中的两条).
证明:(1)曲线上的点的坐标都是这个方程的解.
设是线段的垂直平分线上任意一点,则
即
将上式两边平方,整理得
这说明点的坐标是方程的解.
(2)以这个方程的解为坐标的点都是曲线上的点.
设点的坐标是方程①的任意一解,则
到、的距离分别为
所以,即点在直线上.
综合(1)、(2),①是所求直线的方程.
至此,证明完毕.回顾上述内容我们会发现一个有趣的现象:在证明(1)曲线上的点的坐标都是这个方程的解中,设是线段的垂直平分线上任意一点,最后得到式子,如果去掉脚标,这不就是所求方程吗?可见,这个证明过程就表明一种求解过程,下面试试看:
解法二:设是线段的垂直平分线上任意一点,也就是点属于集合
由两点间的距离公式,点所适合的条件可表示为
将上式两边平方,整理得
果然成功,当然也不要忘了证明,即验证两条是否都满足.显然,求解过程就说明第一条是正确的(从这一点看,解法二也比解法一优越一些);至于第二条上边已证.
这样我们就有两种求解方程的方法,而且解法二不借助直线方程的理论,又非常自然,还体现了曲线方程定义中点集与对应的思想.因此是个好方法.
让我们用这个方法试解如下问题:
例2:点与两条互相垂直的直线的距离的积是常数求点的轨迹方程.
分析:这是一个纯粹的几何问题,连坐标系都没有.所以首先要建立坐标系,显然用已知中两条互相垂直的直线作坐标轴,建立直角坐标系.然后仿照例1中的解法进行求解.
求解过程略.
【概括总结】通过学生讨论,师生共同总结:
分析上面两个例题的求解过程,我们总结一下求解曲线方程的大体步骤:
首先应有坐标系;其次设曲线上任意一点;然后写出表示曲线的点集;再代入坐标;最后整理出方程,并证明或修正.说得更准确一点就是:
(1)建立适当的坐标系,用有序实数对例如表示曲线上任意一点的坐标;
(2)写出适合条件的点的集合
(3)用坐标表示条件,列出方程;
(4)化方程为最简形式;
(5)证明以化简后的方程的解为坐标的点都是曲线上的点.
一般情况下,求解过程已表明曲线上的点的坐标都是方程的解;如果求解过程中的转化都是等价的,那么逆推回去就说明以方程的解为坐标的点都是曲线上的点.所以,通常情况下证明可省略,不过特殊情况要说明.
上述五个步骤可简记为:建系设点;写出集合;列方程;化简;修正.
下面再看一个问题:
例3:已知一条曲线在轴的上方,它上面的每一点到点的距离减去它到轴的距离的差都是2,求这条曲线的方程.
【动画演示】用几何画板演示曲线生成的过程和形状,在运动变化的过程中寻找关系.
解:设点是曲线上任意一点,轴,垂足是(如图2),那么点属于集合
由距离公式,点适合的条件可表示为
①
将①式移项后再两边平方,得
化简得
由题意,曲线在轴的上方,所以,虽然原点的坐标(0,0)是这个方程的解,但不属于已知曲线,所以曲线的方程应为,它是关于轴对称的抛物线,但不包括抛物线的顶点,如图2中所示.
【练习巩固】
题目:在正三角形内有一动点,已知到三个顶点的距离分别为x,x,x,且有,求点轨迹方程.
分析、略解:首先应建立坐标系,以正三角形一边所在的直线为一个坐标轴,这条边的垂直平分线为另一个轴,建立直角坐标系比较简单,如图3所示.设、的坐标为、,则的坐标为,的坐标为.
根据条件,代入坐标可得
化简得
①
由于题目中要求点在三角形内,所以,在结合①式可进一步求出、的范围,最后曲线方程可表示为
【小结】师生共同总结:
(1)解析几何研究研究问题的方法是什么?
(2)如何求曲线的方程?
(3)请对求解曲线方程的五个步骤进行评价.各步骤的作用,哪步重要,哪步应注意什么?
【作业】课本第72页练习1,2,3;
高中数学教案设计范例 篇5
学习目标
明确排列与组合的联系与区别,能判断一个问题是排列问题还是组合问题;能运用所学的排列组合知识,正确地解决的实际问题.
学习过程
一、学前准备
复习:
(课本P28A13)填空:
(1)有三张参观卷,要在5人中确定3人去参观,不同方法的种数是 ;
(2)要从5件不同的礼物中选出3件分送3为同学,不同方法的种数是 ;
(3)5名工人要在3天中各自选择1天休息,不同方法的种数是 ;
(4)集合A有个 元素,集合B有 个元素,从两个集合中各取1个元素,不同方法的种数是 ;
二、新课导学
探究新知(复习教材P14~P25,找出疑惑之处)
问题1:判断下列问题哪个是排列问题,哪个是组合问题:
(1)从4个风景点中选出2个安排游览,有多少种不同的方法?
(2)从4个风景点中选出2个,并确定这2个风景点的游览顺序,有多少种不同的方法?
应用示例:
例1:从10个不同的文艺节目中选6个编成一个节目单,如果某女演员的独唱节目一定不能排在第二个节目的位置上,则共有多少种不同的排法?
例2:7位同学站成一排,分别求出符合下列要求的不同排法的种数.
(1) 甲站在中间;
(2)甲、乙必须相邻;
(3)甲在乙的左边(但不一定相邻);
(4)甲、乙必须相邻,且丙不能站在排头和排尾;
(5)甲、乙、丙相邻;
(6)甲、乙不相邻;
(7)甲、乙、丙两两不相邻。
反馈练习
1、(课本P40A4)某学生邀请10位同学中的6位参加一项活动,其中两位同学要么都请,要么都不请,共有多少种邀请方法?
2、5男5女排成一排,按下列要求各有多少种排法:(1)男女相间;(2)女生按指定顺序排列
3、马路上有12盏灯,为了节约用电,可以熄灭其中3盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,那么熄灯方法共有______种.
当堂检测
1、某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为( )
A.42 B.30 C.20 D.12
2、(课本P40A7)书架上有4本不同的数学书,5本不同的物理书,3本不同的化学书,全部排在同一层,如果不使同类的书分开,一共有多少种排法?
课后作业
1、(课本P41B2)用数字0,1,2,3,4,5组成没有重复数字的数,问:(1)能够组成多少个六位奇数?(2)能够组成多少个大于201345的正整数?
2、(课本P41B4)某种产品的加工需要经过5道工序,问:(1)如果其中某一工序不能放在最后,有多少种排列加工顺序的方法?(2)如果其中两道工序既不能放在最前,也不能放在最后,有多少种排列加工顺序的方法?
高中数学教案设计范例 篇6
一、教学内容分析
圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象.恰当地利用定义解题,许多时候能以简驭繁.因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,再一次强调定义,学会利用圆锥曲线定义来熟练的解题”。
二、学生学习情况分析
我所任教班级的学生参与课堂教学活动的积极性强,思维活跃,但计算能力较差,推理能力较弱,使用数学语言的表达能力也略显不足。
三、设计思想
由于这部分知识较为抽象,如果离开感性认识,容易使学生陷入困境,降低学习热情.在教学时,借助多媒体动画,引导学生主动发现问题、解决问题,主动参与教学,在轻松愉快的环境中发现、获取新知,提高教学效率.
四、教学目标
1.深刻理解并熟练掌握圆锥曲线的定义,能灵活应用定义解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。
2.通过对练习,强化对圆锥曲线定义的理解,提高分析、解决问题的能力;通过对问题的不断引申,精心设问,引导学生学习解题的一般方法。
3.借助多媒体辅助教学,激发学习数学的兴趣.
五、教学重点与难点:
教学重点
1.对圆锥曲线定义的理解
2.利用圆锥曲线的定义求“最值”
3.“定义法”求轨迹方程
教学难点:
巧用圆锥曲线定义解题
六、教学过程设计
【设计思路】
(一)开门见山,提出问题
一上课,我就直截了当地给出——
例题1:(1) 已知A(-2,0), B(2,0)动点M满足|MA|+|MB|=2,则点M的轨迹是( )。
(A)椭圆 (B)双曲线 (C)线段 (D)不存在
(2)已知动点 M(x,y)满足(x1)2(y2)2|3x4y|,则点M的轨迹是( )。
(A)椭圆 (B)双曲线 (C)抛物线 (D)两条相交直线
【设计意图】
定义是揭示概念内涵的逻辑方法,熟悉不同概念的不同定义方式,是学习和研究数学的一个必备条件,而通过一个阶段的学习之后,学生们对圆锥曲线的定义已有了一定的认识,他们是否能真正掌握它们的本质,是我本节课首先要弄清楚的问题。
为了加深学生对圆锥曲线定义理解,我以圆锥曲线的定义的运用为主线,精心准备了两道练习题。
【学情预设】
估计多数学生能够很快回答出正确答案,但是部分学生对于圆锥曲线的定义可能并未真正理解,因此,在学生们回答后,我将要求学生接着说出:若想答案是其他选项的话,条件要怎么改?这对于已学完圆锥曲线这部分知识的学生来说,并不是什么难事。但问题(2)就可能让学生们费一番周折—— 如果有学生提出:可以利用变形来解决问题,那么我就可以循着他的思路,先对原等式做变形:(x1)2(y2)2
5这样,很快就能得出正确结果。如若不然,我将启发他们从等式两端的式子|3x4y|5
入手,考虑通过适当的变形,转化为学生们熟知的两个距离公式。
在对学生们的解答做出判断后,我将把问题引申为:该双曲线的中心坐标是 ,实轴长为 ,焦距为 。以深化对概念的理解。
(二)理解定义、解决问题
例2 (1)已知动圆A过定圆B:x2y26x70的圆心,且与定圆C:xy6x910 相内切,求△ABC面积的最大值。
(2)在(1)的条件下,给定点P(-2,2), 求|PA|
【设计意图】
运用圆锥曲线定义中的数量关系进行转化,使问题化归为几何中求最大(小)值的模式,是解析几何问题中的一种常见题型,也是学生们比较容易混淆的一类问题。例2的设置就是为了方便学生的辨析。
【学情预设】
根据以往的经验,多数学生看上去都能顺利解答本题,但真正能完整解答的可能并不多。事实上,解决本题的关键在于能准确写出点A的轨迹,有了练习题1的铺垫,这个问题对学生们来讲就显得颇为简单,因此面对例2(1),多数学生应该能准确给出解答,但是对于例2(2)这样相对比较陌生的问题,学生就无从下手。我提醒学生把3/5和离心率联系起来,这样就容易和第二定义联系起来,从而找到解决本题的突破口。
(三)自主探究、深化认识
如果时间允许,练习题将为学生们提供一次数学猜想、试验的机会——
练习:设点Q是圆C:(x1)2225|AB|的最小值。 3y225上动点,点A(1,0)是圆内一点,AQ的垂直平分线与CQ交于点M,求点M的轨迹方程。
引申:若将点A移到圆C外,点M的轨迹会是什么?
【设计意图】 练习题设置的目的是为学生课外自主探究学习提供平台,当然,如果课堂上时间允许的话,
可借助“多媒体课件”,引导学生对自己的结论进行验证。
【知识链接】
(一)圆锥曲线的定义
1. 圆锥曲线的第一定义
2. 圆锥曲线的统一定义
(二)圆锥曲线定义的应用举例
1.双曲线1的两焦点为F1、F2,P为曲线上一点,若P到左焦点F1的距离为12,求P到右准线的距离。
2.|PF1||PF2|2.P为等轴双曲线x2y2a2上一点, F1、F2为两焦点,O为双曲线的中心,求的|PO|取值范围。
3.在抛物线y22px上有一点A(4,m),A点到抛物线的焦点F的距离为5,求抛物线的方程和点A的坐标。
4.(1)已知点F是椭圆1的右焦点,M是这椭圆上的动点,A(2,2)是一个定点,求|MA|+|MF|的最小值。
x2y211(2)已知A(,3)为一定点,F为双曲线1的右焦点,M在双曲线右支上移动,当|AM||MF|最小时,求M点的坐标。
(3)已知点P(-2,3)及焦点为F的抛物线y,在抛物线上求一点M,使|PM|+|FM|最小。
5.已知A(4,0),B(2,2)是椭圆1内的点,M是椭圆上的动点,求|MA|+|MB|的最小值与最大值。
七、教学反思
1.本课将借助于,将使全体学生参与活动成为可能,使原来令人难以理解的抽象的数学理论变得形象,生动且通俗易懂,同时,运用“多媒体课件”辅助教学,节省了板演的时间,从而给学生留出更多的时间自悟、自练、自查,充分发挥学生的主体作用,这充分显示出“多媒体课件”与探究合作式教学理念的有机结合的教学优势。
2.利用两个例题及其引申,通过一题多变,层层深入的探索,以及对猜测结果的检测研究,培养学生思维能力,使学生从学会一个问题的求解到掌握一类问题的解决方法. 循序渐进的让学生把握这类问题的解法;将学生容易混淆的两类求“最值问题”并为一道题,方便学生进行比较、分析。虽然从表面上看,我这一堂课的教学容量不大,但事实上,学生们的思维运动量并不会小。
总之,如何更好地选择符合学生具体情况,满足教学目标的例题与练习、灵活把握课堂教学节奏仍是我今后工作中的一个重要研究课题.而要能真正进行素质教育,培养学生的创新意识,自己首先必须更新观念——在教学中适度使用多媒体技术,让学生有参与教学实践的机会,能够使学生在学习新知识的同时,激发起求知的欲望,在寻求解决问题的办法的过程中获得自信和成功的体验,于不知不觉中改善了他们的思维品质,提高了数学思维能力。
高中数学教案设计范例 篇7
1.课题
填写课题名称(高中代数类课题)
2.教学目标
(1)知识与技能:
通过本节课的学习,掌握......知识,提高学生解决实际问题的能力;
(2)过程与方法:
通过......(讨论、发现、探究),提高......(分析、归纳、比较和概括)的能力;
(3)情感态度与价值观:
通过本节课的学习,增强学生的学习兴趣,将数学应用到实际生活中,增加学生数学学习的乐趣。
3.教学重难点
(1)教学重点:本节课的知识重点
(2)教学难点:易错点、难以理解的知识点
4.教学方法(一般从中选择3个就可以了)
(1)讨论法
(2)情景教学法
(3)问答法
(4)发现法
(5)讲授法
5.教学过程
(1)导入
简单叙述导入课题的方式和方法(例:复习、类比、情境导出本节课的课题)
(2)新授课程(一般分为三个小步骤)
①简单讲解本节课基础知识点(例:奇函数的定义)。
②归纳总结该课题中的重点知识内容,尤其对该注意的一些情况设置易错点,进行强调。可以设计分组讨论环节(分组判断几组函数图像是否为奇函数,并归纳奇函数图像的特点。设置定义域不关于原点对称的函数是否为奇函数的易错点)。
③拓展延伸,将所学知识拓展延伸到实际题目中,去解决实际生活中的问题。
(在新授课里面一定要表下出讲课的大体流程,但是不必太过详细。)
(3)课堂小结
教师提问,学生回答本节课的收获。
(4)作业提高
布置作业(尽量与实际生活相联系,有所创新)。
6.教学板书
2.高中数学教案格式
一.课题(说明本课名称)
二.教学目的(或称教学要求,或称教学目标,说明本课所要完成的教学任务)
三.课型(说明属新授课,还是复习课)
四.课时(说明属第几课时)
五.教学重点(说明本课所必须解决的关键性问题)
六.教学难点(说明本课的学习时易产生困难和障碍的知识传授与能力培养点)
七.教学方法要根据学生实际,注重引导自学,注重启发思维
八.教学过程(或称课堂结构,说明教学进行的内容、方法步骤)
九.作业处理(说明如何布置书面或口头作业)
十.板书设计(说明上课时准备写在黑板上的内容)
十一.教具(或称教具准备,说明辅助教学手段使用的工具)
十二.教学反思:(教者对该堂课教后的感受及学生的收获、改进方法)
3.高中数学教案范文
【教学目标】
1.知识与技能
(1)理解等差数列的定义,会应用定义判断一个数列是否是等差数列:
(2)账务等差数列的通项公式及其推导过程:
(3)会应用等差数列通项公式解决简单问题。
2.过程与方法
在定义的理解和通项公式的推导、应用过程中,培养学生的观察、分析、归纳能力和严密的逻辑思维的能力,体验从特殊到一般,一般到特殊的认知规律,提高熟悉猜想和归纳的能力,渗透函数与方程的思想。
3.情感、态度与价值观
通过教师指导下学生的自主学习、相互交流和探索活动,培养学生主动探索、用于发现的求知精神,激发学生的学习兴趣,让学生感受到成功的喜悦。在解决问题的过程中,使学生养成细心观察、认真分析、善于总结的良好习惯。
【教学重点】
①等差数列的概念;
②等差数列的通项公式
【教学难点】
①理解等差数列“等差”的特点及通项公式的含义;
②等差数列的通项公式的推导过程.
【学情分析】
我所教学的学生是我校高一(7)班的学生(平行班学生),经过一年的高中数学学习,大部分学生知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力,但也有一部分学生的基础较弱,学习数学的兴趣还不是很浓,所以我在授课时注重从具体的生活实例出发,注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。
【设计思路】
1、教法
①启发引导法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性.
②分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性.
③讲练结合法:可以及时巩固所学内容,抓住重点,突破难点.
2、学法
引导学生首先从三个现实问题(数数问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法.
【教学过程】
一、创设情境,引入新课
1、从0开始,将5的倍数按从小到大的顺序排列,得到的数列是什么?
2、水库管理人员为了保证优质鱼类有良好的生活环境,用定期放水清库的办法清理水库中的杂鱼.如果一个水库的水位为18m,自然放水每天水位降低2.5m,最低降至5m.那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位(单位:m)组成一个什么数列?
3、我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本息计算下一期的利息.按照单利计算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10000元钱,年利率是0.72%,那么按照单利,5年内各年末的本利和(单位:元)组成一个什么数列?
教师:以上三个问题中的数蕴涵着三列数.
学生:
①0,5,10,15,20,25,….
②18,15.5,13,10.5,8,5.5.
③10072,10144,10216,10288,10360.
(设置意图:从实例引入,实质是给出了等差数列的现实背景,目的是让学生感受到等差数列是现实生活中大量存在的数学模型.通过分析,由特殊到一般,激发学生学习探究知识的自主性,培养学生的归纳能力.
二、观察归纳,形成定义
①0,5,10,15,20,25,….
②18,15.5,13,10.5,8,5.5.
③10072,10144,10216,10288,10360.
思考1上述数列有什么共同特点?
思考2根据上数列的共同特点,你能给出等差数列的一般定义吗?
思考3你能将上述的文字语言转换成数学符号语言吗?
教师:引导学生思考这三列数具有的共同特征,然后让学生抓住数列的特征,归纳得出等差数列概念.
学生:分组讨论,可能会有不同的答案:前数和后数的差符合一定规律;这些数都是按照一定顺序排列的…只要合理教师就要给予肯定.
教师引导归纳出:等差数列的定义;另外,教师引导学生从数学符号角度理解等差数列的定义.
(设计意图:通过对一定数量感性材料的观察、分析,提炼出感性材料的本质属性;使学生体会到等差数列的规律和共同特点;一开始抓住:“从第二项起,每一项与它的前一项的差为同一常数”,落实对等差数列概念的准确表达.)
三、举一反三,巩固定义
1、判定下列数列是否为等差数列?若是,指出公差d.
(1)1,1,1,1,1;
(2)1,0,1,0,1;
(3)2,1,0,-1,-2;
(4)4,7,10,13,16.
教师出示题目,学生思考回答.教师订正并强调求公差应注意的问题.
注意:公差d是每一项(第2项起)与它的前一项的差,防止把被减数与减数弄颠倒,而且公差可以是正数,负数,也可以为0.
(设计意图:强化学生对等差数列“等差”特征的理解和应用).
2、思考4:设数列{an}的通项公式为an=3n+1,该数列是等差数列吗?为什么?
(设计意图:强化等差数列的证明定义法)
四、利用定义,导出通项
1、已知等差数列:8,5,2,…,求第200项?
2、已知一个等差数列{an}的首项是a1,公差是d,如何求出它的任意项an呢?
教师出示问题,放手让学生探究,然后选择列式具有代表性的上去板演或投影展示.根据学生在课堂上的具体情况进行具体评价、引导,总结推导方法,体会归纳思想以及累加求通项的方法;让学生初步尝试处理数列问题的常用方法.
(设计意图:引导学生观察、归纳、猜想,培养学生合理的推理能力.学生在分组合作探究过程中,可能会找到多种不同的解决办法,教师要逐一点评,并及时肯定、赞扬学生善于动脑、勇于创新的品质,激发学生的创造意识.鼓励学生自主解答,培养学生运算能力)
五、应用通项,解决问题
1、判断100是不是等差数列2,9,16,…的项?如果是,是第几项?
2、在等差数列{an}中,已知a5=10,a12=31,求a1,d和an.
3、求等差数列3,7,11,…的第4项和第10项
教师:给出问题,让学生自己操练,教师巡视学生答题情况.
学生:教师叫学生代表总结此类题型的解题思路,教师补充:已知等差数列的首项和公差就可以求出其通项公式
(设计意图:主要是熟悉公式,使学生从中体会公式与方程之间的联系.初步认识“基本量法”求解等差数列问题.)
六、反馈练习:教材13页练习1
七、归纳总结:
1、一个定义:
等差数列的定义及定义表达式
2、一个公式:
等差数列的通项公式
3、二个应用:
定义和通项公式的应用
教师:让学生思考整理,找几个代表发言,最后教师给出补充
(设计意图:引导学生去联想本节课所涉及到的各个方面,沟通它们之间的联系,使学生能在新的高度上去重新认识和掌握基本概念,并灵活运用基本概念.)
【设计反思】
本设计从生活中的数列模型导入,有助于发挥学生学习的主动性,增强学生学习数列的兴趣.在探索的过程中,学生通过分析、观察,归纳出等差数列定义,然后由定义导出通项公式,强化了由具体到抽象,由特殊到一般的思维过程,有助于提高学生分析问题和解决问题的能力.本节课教学采用启发方法,以教师提出问题、学生探讨解决问题为途径,以相互补充展开教学,总结科学合理的知识体系,形成师生之间的良性互动,提高课堂教学效率.
高中数学教案设计范例 篇8
【教学目标】
1.会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。
2.能根据几何结构特征对空间物体进行分类。
3.提高学生的观察能力;培养学生的空间想象能力和抽象括能力。
【教学重难点】
教学重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。
教学难点:柱、锥、台、球的结构特征的概括。
【教学过程】
1.情景导入
教师提出问题,引导学生观察、举例和相互交流,提出本节课所学内容,出示课题。
2.展示目标、检查预习
3、合作探究、交流展示
(1)引导学生观察棱柱的几何物体以及棱柱的图片,说出它们各自的特点是什么?它们的共同特点是什么?
(2)组织学生分组讨论,每小组选出一名同学发表本组讨论结果。在此基础上得出棱柱的主要结构特征。(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行。概括出棱柱的概念。
(3)提出问题:请列举身边的棱柱并对它们进行分类
(4)以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。
(5)让学生观察圆柱,并实物模型演示,概括出圆柱的概念以及相关的概念及圆柱的表示。
(6)引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。
(7)教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。
4.质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。
(1)有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明)
(2)棱柱的任何两个平面都可以作为棱柱的底面吗?
(3)圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?
(4)棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?
(5)绕直角三角形某一边的几何体一定是圆锥吗?
5、典型例题
例1:判断下列语句是否正确。
⑴有一个面是多边形,其余各面都是三角形的几何体是棱锥。
⑵有两个面互相平行,其余各面都是梯形,则此几何体是棱柱。
答案 A B
6、课堂检测:
课本P8,习题1.1 A组第1题。
7.归纳整理
由学生整理学习了哪些内容
【板书设计】
一、柱、锥、台、球的结构
二、例题
例1
变式1、2
【作业布置】
导学案课后练习与提高
1.1.1柱、锥、台、球的结构特征
课前预习学案
一、预习目标:
通过图形探究柱、锥、台、球的结构特征
二、预习内容:
阅读教材第2—6页内容,然后填空
(1)多面体的概念: 叫多面体,
叫多面体的面, 叫多面体的棱,
叫多面体的顶点。
① 棱柱:两个面 ,其余各面都是 ,并且每相邻两个四边形的公共边都 ,这些面围成的几何体叫作棱柱
②棱锥:有一个面是 ,其余各面都是 的三角形,这些面围成的几何体叫作棱锥
③棱台:用一个 棱锥底面的平面去截棱锥, ,叫作棱台。
(2)旋转体的概念: 叫旋转体, 叫旋转体的轴。
①圆柱: 所围成的几何体叫做圆柱
②圆锥: 所围成的几何
体叫做圆锥
③圆台: 的部分叫圆台
. ④球的定义
思考:
(1)试分析多面体与旋转体有何去别
(2)球面球体有何去别
(3)圆与球有何去别
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点 疑惑内容
数学教案范例
每个老师在上课前需要规划好教案课件,又到了老师开始写教案课件的时候了。 了解学生在课堂上反应可以让教师更好地调整教学方法,从哪些角度去准备写自己的教案课件呢?必看的“数学教案”相关文章让你更了解,热烈欢迎你参考这些资料愿你在工作和学习中走向更高的峰巅!
数学教案(篇1)
教学目标:
1.使学生体验数据的收集、整理、描述和分析的过程,了解统计的意义,会用简单的方法收集和表现数据。
2.使学生认识条形统计图,明确用1格表示5个单位的表现形式,能根据统计图提出问题,并初步进行简单的预测。
3.在学习过程中培养学生的实践能力与合作意识。
教具准备:教科书第109页教学情境的录像片或教学挂图。
教学过程:
一、创设情境谈话:
在我们的生活中处处离不开车,各种车辆每天都为我们的生活提供着方便,而且道路上的车辆川流不息。请同学们看,这是一条道路上过往车辆的录像片。请同学们帮助记录一下四种车辆的数量。
二、探求新知
1.组织记录。
(1)给学生发记录单。种类轿车面包车客车货车辆数
(2)学生记录。同学们,在观看录像的时候,你是如何记录四种车辆的数量的?交流后明确用画“正”字的方法记录既快捷又方便。
(3)再次播放录像,学生记录。由于车辆过往速度快,学生记录会产生困难,反馈时如果学生记录不全,再次组织学生研究如何记录才能完整。强调分组合作记录,每人记录一种车辆的数量。
(4)再次记录四种车辆的数量。
(5)整理数据并填入统计表。
2.制作统计图。
(1)学生分组讨论。如果运用一个□表示1辆或2辆车,最多画几个格?应该怎么办?明确用1个□表示5辆车比较合适。
(2)师生共同完成统计图。先让学生尝试独立绘制条形统计图,然后回答问题。组织讨论:20分钟后来的第一辆车最有可能是哪一种车?为什么?
3.师生总结绘制用1格表示5个单位的条形统计图的方法。
三、巩固应用
1.独立完成第111页的“做一做”。
2.完成练习二十二的第1~4题。
(1)练习二十二的第1题。组织学生提供信息,收集信息,记录数据并填写统计表,完成填空题。
(2)练习二十二的第2题。课前与学校卫生室联系,调查二年(1)班和五年(1)班的视力情况,完成统计表,并谈一谈对视力较弱的同学的建议,鼓励学生畅谈自己的想法。
(3)练习二十二的第3题。利用多媒体出示“班级图书角情境图”。学生自己观察,独立完成。对要增添的书的建议,组织学生谈一谈自己的想法,并说明理由。
(4)练习二十二的第4题。这道题以作业的方式完成,课后以小组为单位调查二年级全体同学看电视的时间,把调查得到的数据制成统计表和统计图。明确长时间看电视有害健康,要注意用眼卫生。
数学教案(篇2)
一、活动目标:
1、通过尝试性的操作和判断,学习将一个物体分成相等的两份,感知整体和部分的关系。
2、探索物体等分的多种方法,激发幼儿对等分的兴趣。
3、发展幼儿的观察能力,比较能力,判断能力。
二、活动准备:
1.材料:绸带,纸(圆行,正方形,长方形),等分练习纸。
2.工具:笔,剪刀,直尺。
三、活动过程:
(一)讲解演示
1.“小朋友,今天老师的头发有什么变化吗?(扎两个辫子)我还要给两条小辫扎上漂亮的绸带,现在只有一根绸带,怎么办才能扎两根小辫呢?”
2. 组织幼儿讨论,等充分表达意见后,教师边讲解边演示,让幼儿注意观察。
3. 把绸带两头对折,剪成一样大小的两份,叫二等分。使幼儿感知二等分的含义。 *次环节以形象直观的具体事物——绸带为材料,吸引了幼儿的注意力;并提出问题,让幼儿开动脑筋,帮助分绸带。通过把操作的过程与结果展现给幼儿,使幼儿初步认识“二等分”这一概念。
(二)操作探索
操作一:
1. 为幼儿提供圆形材料,幼儿动手操作,教师巡回指导等观察。
2. 组织幼儿讨论等分方法。
3. 小结:把圆形对折,然后剪成一样大小的两份,叫二等分。使幼儿进一步感知二等分的含义。
4. 操作验证材料的二等分。 “怎样让别人相信你的两份纸是一样大的呢?”(叠在一起比较) “这儿有个好听的词,叫“重叠””。学习词:“重叠”
5. 讨论整体与部分的关系。
(1)请幼儿把剪开后的两部分与原来的材料作比较,看它们有什么不同。比一比,等分后的部分是否一样大,以及原来的图形和分后的每一部分哪个大?哪个小?
(2)总结:二个部分合起来是原来的一份。 *此环节让幼儿开动脑筋想出对折的折法来二等分圆形,得到一样大小的两份,然后通过验证来证实二等分和理解整体和部分的关系,充分感知二等分的实际含义。
操作二:
1. 为幼儿提供正方形,长方形材料,考虑有没有其它对折的办法来二等分正方形、长方形。
2. 幼儿操作探索,教师观察指导。
3. 请幼儿介绍新方法。
4. 教师小结:向幼儿介绍讲清对角线折、对角折的方法。请没这样折过的幼儿重新试一次。*此环节提供正方形和长方形的纸,让幼儿操作,探索多种二等分的方法,给幼儿增加了难度,有个别能力强的幼儿能想出对角线折的方法二等分,教师应及时给予表扬、鼓励,能激发幼儿积极性和独创精神。教师让没有尝试对角线折和对角折的幼儿一个充分学习的机会,再次巩固新的二等分方法。
(三)巩固练习:
游戏方法:教师把各种几何图形等份成二份,一份在桌子上,一份在参加游戏的幼儿手中。幼儿四散找到和自己手中一份同样大小的图形,并把两份图形拼成一个整体,看谁找的又快又对。 ⒈教师讲评幼儿的活动结果 ⒉幼儿展示自己拼贴的图形 *此环节为幼儿巩固二等分的知识而设计,在活动中幼儿通过判断,选择正确的二等分图形。
四、活动延伸:
正方形的纸能二等分,它还可以进行四等分,八等分呢,怎么分呢?开动脑筋想想办法。 *次环节给幼儿思维拓展的空间,为学习四等分作铺垫。
五、活动评价:
随着年龄的提高,大班幼儿对圆形,正方形,长方形是熟悉的,因此对图形进行等分就有可操作性。本次活动从幼儿感兴趣的帮助老师分绸带入手,充分激发了幼儿学习探索的欲望,接着围着图形层层展开活动。整个活动遵循由易到难,循序渐进地原则,并通过幼儿自己动手探索操作,对认识新事物具有积极意义。第一环节提供圆形可学习用对折的方法二等分,理解部分与整体的关系。第二环节提供长方形、正方形,幼儿凭自己地思维能力选择二等分地方法,在讲解中学习多种二等分地方法。第三环节,要求幼儿在掌握二等分概念的基础上进行练习,加以巩固。第四环节,使知识能力得到提高。
数学教案(篇3)
使学生掌握正方形和长方形的特征。
正方形和长方形特征的归纳总结。
长方形纸片,正方形纸片,直尺1把,三角尺1块,钉子板,橡皮筋。
一、激情导入
1.幻灯片播放正方形、长方形图片,吸引兴趣
2.在生活中很多东西都是由正方形和长方形组成,你们通过观察发现了什么:引发学生思考。
二、实际操作,验证猜想
1、观察 拿出长方形和正方形,猜猜它们有什么特点呢? 你有办法证明自己的猜想是正确的吗?同桌交流。
2、操作验证 (1)拿出自己的学具,用自己的办法验证。 (2)把自己的猜想和验证向小组汇报。
3、反馈 (1)对长方形的边你有什么发现?相机板书。 你是怎样证明的?(量、折、比等) 相机教学“对边”。 指一指长方形的对边在哪里,一个长方形有几组对边? 长的一条边,请你给它起个名字,你会叫它什么?短的一条边呢? (2)对长方形的角你有什么发现?相机板书。 你是怎样证明的?(量、折等) (3)正方形的边你发现了什么?相机板书。 怎样来证明? 正方形的边你会叫它什么? (4)正方形的角你发现了什么?相机板书。 怎样来证明?
4、归纳 通过刚才的活动,你对长方形和正方形有了哪些新的认识?
练习: 1、在钉子板上围出一个长方形,再把这个长方形变成一个正方形,再说说它们的特点。
2、在书上p64第7题的方格纸上画一个长方形和一个正方形。 再说说小青菜提的问题。
3、完成书上p64第4题。 先自己拼一拼,再与同桌交流一下。 (1)用6个一样的小正方形,拼成一个长方形。 (2)用16个一样的小正方形,拼成一个大正方形,再拼出几个不同的长方形。
4、思考:你能用一张长方形的纸折出一个最大的正方形吗?
三、课堂小结
向同学们提问通过今天的学习有什么收获。
布置作业
1.完成课后的习题
2.把不理解的地方标画在书上。
数学教案(篇4)
设计说明
本节课针对方程的整理和复习分两个层次展开。第一个层次:复习用字母表示数的作用,使学生可以简明地表达数量关系,旨在举一反三,启发学生想到更多的实例。引导学生经历回顾和整理与方程有关知识的过程。会解决简单问题,感受方程在解决问题中的价值,培养初步的代数思想。第二个层次:请学生列方程并求出方程的解,目的是引导学生把有关方程的知识进行整理,对方程的概念、方程与等式的关系、什么叫解方程、解方程的依据(即等式的性质)、在解决问题时如何找等量关系、如何根据等量关系列出方程等知识进行回顾。帮助学生巩固基础,熟练掌握列方程解决实际问题的方法,同时进一步体会用方程解决问题的优越性。
课前准备
教师准备 PPT课件
教学过程
⊙独立思考,构建知识网络
1.学习构建知识网络。
(1)归纳整理。
师:本学期我们学习了哪些有关方程的知识?请同学们先自行整理,再在组内交流。
(学生回忆整理,小组讨论交流,教师巡视指导)
(2)构建知识网络。
师:怎样展示相关的知识才能一目了然呢?现在,就让我们一起来完成知识网络的`构建。
(引导学生有序地回顾已学的有关方程的知识,结合学生的回答,课件出示建立知识网络的过程)
设计意图:通过引导学生回顾、整理所学知识,使学生对所学的方程知识有一个比较系统的了解,并学会如何构建完整的知识网络。
2.展示构建的知识网络
方程
设计意图:对学过的知识进行系统化的梳理,通过展示,使学生明确这一板块所呈现的内容,加深对所学知识的理解和掌握,形成完善的知识体系。
⊙复习,分项整理
1.复习用字母表示数。
(1)课件出示教材96页6、7题。
请学生先独立解决问题,然后说一说用字母表示数的方法。
小结:
①当数字与字母相乘时,去掉乘号,把数字写在字母的前面,也可以用点表示乘号,如4×a可以写作4·a或4a。
②当字母与字母相乘时,可以用点表示乘号或直接去掉乘号,如a×b可以写作a·b或ab;a×a可以写作a·a或a2。
③当字母与1相乘时,1可以省略不写,只写字母本身,如1×a可以写作a。
(2)填一填。
①小明的身高是138厘米,比哥哥矮a厘米,哥哥的身高是( )厘米。
②一个正方形的边长是a米,它的周长是( )米,面积是( )平方米。
③一堆煤有a吨(a>5b),每车运b吨,运了5车后,还剩( )吨。
④在自然数中,与自然数a相邻的两个数是( )和( ),它们三个数的和是( )。(a>1)
指名回答,集体订正。
(3)判断。
①a×b×8可以简写成ab8。( )
②a2和2a相等。( )
③a÷b中,a、b可以是任何数。( )
设计意图:让学生回顾用字母表示数的意义,体会代数思想,巩固一些特殊的写法:数与字母之间的乘号可以省略不写,数要写在字母的前面等。
数学教案(篇5)
设计说明
本节课学习的知识是后面学习统计图的重要基础。这节复习课在教学设计上关注了以下几点:
1.重视学生知识体系的形成。
统计的相关知识是一个体系,前后的知识关联性比较紧密,所以在复习时必须进行系统的整理,使学生在头脑中形成一个完整的、清晰的知识体系,从而更深刻地理解统计是为生活服务的,通过数据的`收集与整理可以有效地解决生活中的问题。
2.重视学生实践能力的提升。
在教学中,充分利用教材资源,广泛收集各种类型的习题,让学生独立思考、分析、解答,开阔学生的思路,让学生亲身经历数据的收集与整理的全过程,让学生懂得只有经过调查才有发言权。
课前准备
教师准备 PPT课件
教学过程
⊙整理复习
1.复习根据给定的标准或者自己选定的标准对事物和数据进行分类。
师:请大家以小组为单位选择一种标准把全班同学分成两组,说一说你是怎样分的。
学生小组内交流分类标准,确定分类标准和记录数据的方法后进行数据的收集和整理。
师巡视指导。
小组长汇报:
一组:我们小组是按性别来进行分类的,男生一组,女生一组。使用画“正”字的方法对数据进行记录,我们班共有45人,其中男生有20人,女生有25人。
二组:我们小组是按同学们的出生年月来进行分类的。使用画“○”的方法对数据进行记录,我们班上半年出生的有18人,下半年出生的有27人。
三组:我们小组是按同学们的身高来进行分类的。使用画“△”的方法对数据进行记录,我们班同学身高在140厘米以上的有16人,身高在140厘米及140厘米以下的有29人。
四组:我们小组是把同学们按喜欢足球运动和不喜欢足球运动两类来进行分类的。使用画点线图的方法对数据进行记录,喜欢足球运动的有15人,不喜欢足球运动的有30人。
五组:……
集体评议。
2.复习根据统计的结果,并参照数据进行分析,感受数据中蕴涵的信息。
师:谁能说一说从我们整理的这些数据中你有什么发现?
学生独立思考后汇报。
预设:
生1:从男生和女生统计的结果来看,我知道了我们班的男生人数比女生人数少。
生2:从同学们喜不喜欢足球运动这份数据来看,我发现班级里喜欢足球的人数不多。
生3:……
设计意图:让学生自己确定分类的标准,同时经历数据的收集和整理的过程,教师只是学习活动的引导者,应充分发挥学生的主体地位。
数学教案(篇6)
教学内容:
以求和为基本数量关系的两步计算应用题(书p51)。
教学目标:
使学生理解以求和为基本数量关系的两步计算应用题的结构,能用分析法或综合法分析数量关系,会口述解题步骤,能正确地列式解答。
教学步骤:
一、准备引新
1、秋天到了,让我们到果园里看看吧!果园里种满了什么树呀?如果老师告诉大家果园里有苹果树1420棵,要求苹果树和梨树一共有多少棵?(出示准备题1)你能解答吗?为什么?谁来补一个条件呢?
2、学生补充条件,并列式计算
梨树有1000棵 1420+1000=2420(棵)
3、这是一道几步计算的应用题?谁能补一个条件,使它成为两步计算的应用题?
学生口答补充:
(1)梨树比苹果树少420棵
(2)梨树比苹果树多420棵
(3)苹果树比梨树少420棵
(4)苹果树比梨树多420棵
4、揭题:这样的两步计算应用题就是我们今天要学习的新课,现在我们先一起来研究第一种
二、探究新知:
1、研究例3
(1) 读题,找条件和问题,师画出线段图
(2) 根据小黑板上的思考提示,同桌互说这道题的解题思路
(3) 学生在本子上试做这道题,只用列出分步算式,快的同学可以列出综合算式。
(4) 指名板演算式,集体交流:指名说解题思路,1420表示什么?1000表示什么?
(5) 综合算式怎么写 ?谁还有不同的写法?1420-420表示什么?
2、如果补充的是梨树比苹果树多420棵,你怎样想?怎样算呢?根据思考提示自己思考后在本子上列式计算。
指名板演,并说说先求什么?再求什么?
3、小结:
我们今天学习的两步计算应用题跟以前学习的两步计算应用题在条件上有什么不同?只有两个条件的时候,其中一个条件需要用到几次,这两题中的哪个条件用了两次?第一次用它求什么?第二次用它求什么?但今天学习的两步计算应用题跟以前学习的两步计算应用题有一点还是相同的,那就是关键都是先求出中间问题。
三、巩固深化
1、p52练一练1,请学生写在书上,集体校对
2、p52练一练2,看线段图列式计算
3、p52练一练3判断:谁的解法对?
小刚:240+40=280(人)
小明:240+40=280(人)
240+280=520(人)
小华:240-40=200(人)
240+200=440(人)
小青:240+240=480(人)
480+40=520(人)
小组讨论,选出正确的答案,错的答案要说说错在哪里?
4、p53练一练5
5、p53练一练4
四、总结
今天你学会了什么?
数学教案(篇7)
教学内容:
北师大版小学数学一年级上册第三单元第27—28页。
教学目标:
1、结合熟悉的生活情境和已有的生活经验,初步认识减法的意义。学会从具体的情境中提出减法问题并解答。
2、在独立思考,动手操作和与同伴合作交流的活动中,探索5以内数的减法。
3、初步培养学有条理地表述自己的思考过程和认真倾听与理解别人思路的能力,体会用数学的乐趣。
教学重点:
能正确计算5以内的减法。教学难点:理解减法的意义。
教学过程:
课前谈话:智慧老爷爷请王老师带来5个智慧星,请看,他说呀,想把这5个智慧星送给咱们一(8)班会倾听,能观察,肯发言,专心思考聪明孩子。想得到这些智慧星吗?看大家的表现吧!
一、创情导入、引入新课笑笑家的苹果成熟了,她邀请我们到她家做客,大家想去吗?
二、操作探究,理解意义
(一)还剩下多少个苹果?
1、大家仔细观察,这棵苹果树上一共有几个苹果?现在发生了什么?掉下了几个苹果?现在树上还剩几个苹果?你能把这个数学故事完整地讲出来吗?(树上原来有5个苹果,掉了2个,树上还剩下3个苹果。)
2、你能根据这个数学故事能完整地表达出两个数学信息,并提出一个数学问题吗?(原有5个苹果,掉下2个,还剩多少个?)
3、师板书课题还剩下多少。今天我们就来解决还剩下多少这一类的数学问题。
4、摆一摆。师:刚才我们讲出了这个数学故事,其实我们还可以把这个故事用我们手上的学具摆出来。
请同学们拿出5个圆片来代替5个苹果,摆一摆。学生动手摆一摆。
(先摆5个圆片,拿走2个圆片,还有3个)
5、你是怎么摆的'?又是怎样知道还剩下3个苹果的?引导学生说出:是从总数5里去掉2个,就是少了2个,还剩下3个。
6、板书贴图。
强调:从整体中去掉一部分,另一部分就是剩下的。
(二)还剩下几块奶酪?
1、数一数,一共有几块奶酪?看,小老鼠干什么呢?你能把这个数学故事完整地讲出来吗?(有5块奶酪,搬走2块,还有3块)
2、你能根据这个数学故事能完整地表达出两个数学信息,并提出一个数学问题吗?(有5块奶酪,搬走2块,还剩几块?)
3、摆一摆。
同桌互说你能把图中的意思用圆片摆出来吗?同桌互相说一说,你是怎样摆的。
4、板书贴图。
强调:从整体中去掉一部分,另一部分就是剩下的。
5、画一画。
你能把刚才摆的过程画下来吗?师引导:数学故事不仅可以讲出来,摆出来,还可以画出来呢,我们可以用图形(圆,三角形,正方形等形状)代替奶酪,怎样把5块奶酪,拿走2块又怎样画下来,思考一下,把这个过程画在本上。
6、交流汇报。
师引导把表达与操作,形与数结合,体会减法的意义。
三、抽象理解,认识减法
1、谁愿意再来说一说这两个数学故事。
2、我们把这个两个数学故事用算式表示出来,怎么表示?板书:5—2=33、你知道每个数都表示什么意思吗?让学生结合情境说一说。
3、认识减号,读算式这里的—是减号,表示去掉的意思,像这样的有减号的算法,叫作减法,补充课题,认识减法师:这个算式怎么读呢?(5减2等于3)从左往右读,能把减号两边的数交换吗?
4、这两个数学问题为什么要用减法计算呢?引导归纳:从总数中去掉一部分,求还剩下多少要用减法来计算?
5、生活中还有很多这样用减法来计算的例子,我们还是以5—2=3为例子,它还要可能讲的是什么数学故事呢?引导学生完整表达。
比如5颗糖,吃了2颗,还剩下3颗。有5元钱,花了2元,还有3元钱。
四、综合练习,加深理解
1、画一画,算一算引导学生读懂图意,尝试练习,汇报交流。
2、练一练第1题。
先学生说一说图意,再列出算式,集体汇报。
五、评价小结,拓展运用利用智慧星讲评,老师想把智慧老人带来的智慧星奖下去,如果从这5个从一次拿走1颗,你想用什么方式来记录这个过程,算式5—1=4,如果我一下子拿走2颗呢?5—2=3如果我一下子拿走3颗呢?5—3=2如果我一下子拿走4颗呢?5—4=1如果我一下子拿走5颗呢?(全部拿走)5—5=0下节课我们继续学习得数是0的减法。
师:今天我们学习了什么?你有什么收获?我们是怎么认识减法的?减法有什么意义?附板书设计:还剩下多少(认识减法)图15个苹果掉下2个,还剩3个图25块奶酪拿走2块,还剩3块5—2=3减号读作:5减2等于3。
初中数学教案范例分析
作为一位兢兢业业的人民教师,通常会被要求编写教案,借助教案可以提高教学质量,收到预期的教学效果。教案应该怎么写呢?以下是小编帮大家整理的初中数学教案,仅供参考,欢迎大家阅读。
初中数学教案范例分析 篇1
一、课题
27.3 过三点的圆
二、教学目标
1.经历过一点、两点和不在同一直线上的三点作圆的过程.
2.. 知道过不在同一条直线上的三个点画圆的方法
3.了解三角形的外接圆和外心.
三、教学重点和难点
重点:经历过一点、两点和不在同一直线上的三点作圆的过程.
难点:知道过不在同一条直线上的三个点画圆的方法.
四、教学手段
现代课堂教学手段
五、教学方法
学生自己探索
六、教学过程设计
(一)、新授
1.过已知一个点A画圆,并考虑这样的圆有多少个?
2.过已知两个点A、B画圆,并考虑这样的圆有多少个?
3.过已知三个点A、B、C画圆,并考虑这样的圆有多少个?
让学生以小组为单位,进行探索、思考、交流后,小组选派代表向全班学生展示本小组的探索成果,在展示后,接受其他学生的质疑.
得出结论:过一点可以画无数个圆;过两点也可以画无数个圆;这些圆的圆心都在连结这两点的线段的垂直平分线上;经过不在同一直线上的三个点可以画一个圆,并且这样的圆只有一个.
不在同一直线上的三个点确定一个圆.
给出三角形外接圆的概念:经过三角形三个顶点可以作一个圆,这个圆叫作三角形的外接圆,外接圆的圆心叫做三角形的外心.
例:画已知三角形的外接圆.
让学生探索课本第15页习题1.
一起探究
八年级(一)班的学生为老区的小朋友捐款500元,准备为他们购买甲、乙 两种图书共12套.已知甲种图书每套45元,乙种图书每套40元.这些钱最多能买甲种图书多少套?
分析:带领学生完成课本第13页的.表格,并完成2、3 问题,使学生清楚通过列表可以更好的分析题目,对于情景较为复杂的问题情景可采用这种分析方法解题.另外通过此题,使学生认识到:在应不等式解决实际问题时,当求出不等式的解集后,还要根据问题的实际意义确定问题的解.
(二)、小结
七、练习设计
P15习题2、3
八、教学后记
后备练习:
1. 已知一个三角形的三边长分别是 ,则这个三角形的外接圆面积等于 .
2. 如图,有A, ,C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()
A.在AC,BC两边高线的交点处
B.在AC,BC两边中线的交点处
C.在AC,BC两边垂直平分线的交点处
D.在A,B两内角平分线的交点处
初中数学教案范例分析 篇2
4.1二元一次方程
【教学目标】
知识与技能目标
1、通过与一元一次方程的比较,能说出二元一次方程的概念,并会辨别一个方程是不是
二元一次方程;
2、通过探索交流,会辨别一个解是不是二元一次方程的解,能写出给定的二元一次方程的解,了解方程解的不唯一性;
3、会将一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。过程与方法目标经历观察、比较、猜想、验证等数学学习活动,培养分析问题的能力和数学说理能力;
情感与态度目标
1、通过与一元一次方程的类比,探究二元一次方程及其解的概念,进一步培养运用类比转化的思想解决问题的能力;
2、通过对实际问题的分析,培养关注生活,进一步体会方程是刻画现实世界的有效数学模型,培养良好的数学应用意识。
【重点、难点】
重点:二元一次方程的概念及二元一次方程的解的概念。
难点1、了解二元一次方程的解的不唯一性和相关性。即了解二元一次方程的解有无数个,
但不是任意的两个数是它的解。
2、把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。
【教学方法与教学手段】
1、通过创设问题情境,让学生在寻求问题解决的过程中认识二元一次方程,了解二元一
次方程的特点,体会到二元一次方程的引入是解决实际问题的需要。
2、通过观察、思考、交流等活动,激发学习情绪,营造学习气氛,给学生一定的时间和
空间,自主探讨,了解二元一次方程的解的不唯一性和相关性。
3、通过学练结合,以游戏的形式让学生及时巩固所学知识。
【教学过程】
一、创设情境导入新课
1、一个数的3倍比这个数大6,这个数是多少?
2、写有数字5的黄卡和写有数字2的蓝卡若干张,问黄卡和蓝卡各取几张,才能使取到的卡片上的数字之和为22?
思考:这个问题中,有几个未知数?能列一元一次方程求解吗?
如果设黄卡取x张,蓝卡取y张,你能列出方程吗?
3、在高速公路上,一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20千米。如果设轿车的速度是a千米/时,卡车的速度是b千米/时,你能列出怎样的方程?
二、师生互动探索新知
1、推陈出新发现新知
引导学生观察所列的方程:5x?2y?22,2a?3b?20,这两个方程有哪些共同特征?这些特征与一元一次方程比较,哪些是相同的,哪些是不同的?你能给它们取个名字吗?
(板书:二元一次方程)
根据它们的共同特征,你认为怎样的方程叫做二元一次方程?(二元一次方程的定义:含有两个未知数,且含有未知数的项的次数都是一次的方程叫做二元一次方程。)
2、小试牛刀巩固新知
判断下列各式是不是二元一次方程
(1)x2?y?0(2)12a?b?2b?0(3)y?x(4)x??123y
3、师生互动再探新知
(1)什么是方程的解?(使方程两边的值相等的`未知数的值,叫做方程的解。)
(2)你能给二元一次方程的解下一个定义吗?(使二元一次方程两边的值相等的一对未
知数的值,叫做二元一次方程的一个解。)
?若未知数设为x,y,记做x?,若未知数设为a,b,记做
?y?
4、再试牛刀检验新知
(1)检验下列各组数是不是方程2a?3b?20的解:(学生感悟二元一次方程解的不唯一性)
a?4a?5a?0a?100
b?3b??1020b??b?6033
(2)你能写出方程x-y=1的一个解吗?(再一次让学生感悟二元一次方程的解的不唯一性)
5、自我挑战三探新知
有3张写有相同数字的蓝卡和2张写有相同数字的黄卡,这五张卡片上的数字之和为10。设蓝卡上的数字为x,黄卡上的数字为y,根据题意列方程。3x?2y?10
请找出这个方程的一个解,并写出你得到这个解的过程。
学生在解二元一次方程的过程中体验和了解二元一次方程解的不唯一性。
6、动动笔头巩固新知
独立完成课本第81页课内练习2
三、你说我说清点收获
比较一元一次方程和二元一次方程的相同点和不同点
相同点:方程两边都是整式
含有未知数的项的次数都是一次
如何求一个二元一次方程的解
四、知识巩固
1、必答题
(1)填空题:若mxy?9x?3yn?1?7是关于x,y的二元一次方程,则m?n?x?2y?5变形正确的有2
10?xx?10①x?5?4y②x?10?4y③y?④y?44
(3x?7是方程2x?y?15的解。()(2)多选题:方程
y?1
x?7
(4)判断题:方程2x?y?15的解是。()y?1
2、抢答题
是方程2x?3y?5的一个解,求a的值。(1)已知x??2
y?a
(2)写出一个解为x?3的二元一次方程。
y?1
3、个人魅力题
写有数字5的黄卡和写有数字2的蓝卡若干张,问黄卡和蓝卡各取几张,才能使取到的卡片上的数字之和为22?设黄卡取x张,蓝卡取y张,根据题意列方程:5x?2y?22你能完成这道题目吗?
五、布置作业
初中数学教案范例分析 篇3
教学目标
(一)教学知识点
1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.
2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根.
3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标.
(二)能力训练要求
1.经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神.
2.通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想.
3.通过学生共同观察和讨论,培养大家的合作交流意识.
(三)情感与价值观要求
1.经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.
2.具有初步的创新精神和实践能力.
教学重点
1.体会方程与函数之间的联系.
2.理解何时方程有两个不等的实根,两个相等的实数和没有实根.
3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标.
教学难点
1.探索方程与函数之间的联系的过程.
2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系.
教学方法
讨论探索法.
教具准备
投影片二张
第一张:(记作§2.8.1A)
第二张:(记作§2.8.1B)
教学过程
Ⅰ.创设问题情境,引入新课
[师]我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,讨论了它们之间的关系.当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解.
现在我们学习了一元二次方程ax2+bx+c=0(a≠0)和二次函数y=ax2+bx+c(a≠0),它们之间是否也存在一定的关系呢?本节课我们将探索有关问题。
通过学生的讨论,使学生更清楚以下事实:
(1)分解因式与整式的乘法是一种互逆关系;
(2)分解因式的结果要以积的形式表示;
(3)每个因式必须是整式,且每个因式的次数都必须低于原来的'多项式的次数;
(4)必须分解到每个多项式不能再分解为止。
活动5:应用新知
例题学习:
P166例1、例2(略)
在教师的引导下,学生应用提公因式法共同完成例题。
让学生进一步理解提公因式法进行因式分解。
活动6:课堂练习
1.P167练习;
2.看谁连得准
x2-y2 (x+1)2
9-25 x 2 y(x -y)
x 2+2x+1 (3-5 x)(3+5 x)
xy-y2 (x+y)(x-y)
3.下列哪些变形是因式分解,为什么?
(1)(a+3)(a -3)= a 2-9
(2)a 2-4=( a +2)( a -2)
(3)a 2-b2+1=( a +b)( a -b)+1
(4)2πR+2πr=2π(R+r)
学生自主完成练习。
通过学生的反馈练习,使教师能全面了解学生对因式分解意义的理解是否到位,以便教师能及时地进行查缺补漏。
活动7:课堂小结
从今天的课程中,你学到了哪些知识?掌握了哪些方法?明白了哪些道理?
学生发言。
通过学生的回顾与反思,强化学生对因式分解意义的理解,进一步清楚地了解分解因式与整式的乘法的互逆关系,加深对类比的数学思想的理解。
活动8:课后作业
课本P170习题的第1、4大题。
学生自主完成
通过作业的巩固对因式分解,特别是提公因式法理解并学会应用。
板书设计(需要一直留在黑板上主板书)
15.4.1提公因式法例题
1.因式分解的定义
2.提公因式法
初中数学教案范例分析 篇4
一、教材的地位与作用
《二元一次方程》是九年义务教育人教版教材七年级下册第四章《二元一次方程组》的第一节。在此之前学生已经学习了一元一次方程,这为本节的学习起了铺垫的作用。本节内容是二元一次方程的起始部分,因此,在本章的教学中,起着承上启下的地位。
二、教学目标
(一)知识与技能:
1.了解二元一次方程概念;
2.了解二元一次方程的解的概念和解的不唯一性;
3.会将一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。
(二)数学思考:
体会学习二元一次方程的必要性,学会独立思考,体会数学的转化思想和主元思想。
(三)问题解决:
初步学会利用二元一次方程来解决实际问题,感受二元一次方程解的不唯一性。获得求二元一次方程解的思路方法。
(四)情感态度:
培养学生发现意识和能力,使其具有强烈的好奇心和求知欲。
三、教学重点与难点
教学重点:二元一次方程及其解的概念。
教学难点:二元一次方程的概念里“含未知数的项的次数”的理解;把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。
四、教法与学法分析
教法:情境教学法、比较教学法、阅读教学法。
学法:阅读、比较、探究的学习方式。
五、教学过程
1.创设情境,引入新课
从学生熟悉的姚明受伤事件引入。
师:火箭队最近取得了20连胜,姚明参加了前面的12场比赛,是球队的顶梁柱。
(1)连胜的第12场,火箭对公牛,在这场比赛中,姚明得了12分,其中罚球得了2分,你知道姚明投中了几个两分球?(本场比赛姚明没投中三分球)师:能用方程解决吗?列出来的方程是什么方程?
(2)连胜的第1场,火箭对勇士,在这场比赛中,姚明得了36分,你知道姚明投中了几个两分球,罚进了几个球吗?(罚进1球得1分,本场比赛姚明没投中三分球)师:这个问题能用一元一次方程解决吗?,你能列出方程吗?
设姚明投进了x个两分球,罚进了y个球,可列出方程。
(3)在雄鹿队与火箭队的比赛中易建联全场总共得了19分,其中罚球得了3分。你知道他分别投进几个两分球、几个三分球吗?
设易建联投进了x个两分球,y个三分球,可列出方程。
师:对于所列出来的三个方程,后面两个你觉的是一元一次方程吗?那这两个方程有什么相同点吗?你能给它们命一个名称吗?
从而揭示课题。
(设计意图:第一个问题主要是让学生体会一元一次方程是解决实际问题的数学模型,从而回顾一元一次方程的概念;第二、三问题设置的主要目的是让学生体会到当实际问题不能用一元一次方程来解决的时候,我们可以试着列出二元一次方程,渗透方程模型的通用性。另外,数学来源于生活,又应用于生活,通过创设轻松的问题情境,点燃学习新知识的“导火索”,引起学生的学习兴趣,以“我要学”的主人翁姿态投入学习而且“会学”“乐学”。)
2.探索交流,汲取新知
概念思辨,归纳二元一次方程的特征
师:那到底什么叫二元一次方程?(学生思考后回答)
师:翻开书本,请同学们把这个概念划起来,想一想,你觉得和我们自己归纳出来的概念有什么区别吗?(同学们思考后回答)
师:根据概念,你觉得二元一次方程应具备哪几个特征?
活动:你自己构造一个二元一次方程。
快速判断:下列式子中哪些是二元一次方程?
①x2+y=0②y=2x+
4③2x+1=2x ④ab+b=4
(设计意图:这一环节是本课设计的重点,为加深学生对“含有未知数的项的次数”的内涵的理解,我采取的是阅读书本中二元一次方程的概念,形成学生的认知冲突,激发学生对“项的次数”的思考,进而完善学生对二元一次方程概念的理解,通过学生自己举例子的活动去把“项的次数”形象化。)
二元一次方程解的概念
师:前面列的两个方程2x+y=36,2x+3y=16真的是二元一次方程吗?通过方程2x+3y=16,你知道易建联可能投中几个两分球,几个三分球吗?
师:你是怎么考虑的?(让学生说说他是如何得到x和y的值的,怎么证明自己的这对未知数的取值是对的)利用一个学生合理的解释,引导学生类比一元一次方程的解的概念,让学生归纳出二元一次方程的解的概念及其记法。(学生看书本上的记法)
使二元一次方程两边的值相等的一对未知数的值,叫做二元一次方程的一个解。(设计意图:通过引导学生自主取值,猜x和y的值,从而更深刻的体会二元一次方程解的本质:使方程左右两边相等的一对未知数的取值。引导学生看书本,目的`是让学生在记法上体会“一对未知数的取值”的真正含义。)
二元一次方程解的不唯一性
对于2x+3y=16,你觉得这个方程还有其它的解吗?你能试着写几个吗?师:这些解你们是如何算出来的?
(设计意图:设计此环节,目的有三个:首先,是让学生学会如何检验一对未知数的取值是二元一次方程的解;其次是让学生体会到二元一次方程的解的不唯一性;最后让学生感受如何得到一个正确的解:只要取定一个未知数的取值,就可以代入方程算出另一个未知数的值,这也就是求二元一次方程的解的方法。)如何去求二元一次方程的解
例:已知方程3x+2y=10,
(1)当x=2时,求所对应的y的值;
(2)取一个你自己喜欢的数作为x的值,求所对应的y的值;
(3)用含x的代数式表示y;
(4)用含y的代数式表示x;
(5)当x=负2,0时,所对应的y的值是多少?
(6)写出方程3x+2y=10的三个解.
(设计意图:此处设计主要是想让学生形成求二元一次方程的解的一般方法,先让学生展示他们的思维过程,再从他们解一元一次方程的重复步骤中提炼出用一个未知数的代数式表示另一个未知数,然后把它与原方程比较,把一个未知数的值代入哪一个方程计算会更简单,形成“正迁移”,引导学生体会“用关于一个未知数的代数式表示另一个未知数”的过程,实质是解一个关于y的一元一次方程,渗透数学的主元思想。以此突破本节课的难点。)
初中数学教案范例分析 篇5
教学目标:
(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。
(2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯
重点难点:
能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。
教学过程:
一、试一试
1.设矩形花圃的垂直于墙的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格中,
2.x的'值是否可以任意取?有限定范围吗?
3.我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定, y是x的函数,试写出这个函数的关系式,
对于1.,可让学生根据表中给出的AB的长,填出相应的BC的长和面积,然后引导学生观察表格中数据的变化情况,提出问题:(1)从所填表格中,你能发现什么?(2)对前面提出的问题的解答能作出什么猜想?让学生思考、交流、发表意见,达成共识:当AB的长为5cm,BC的长为10m时,围成的矩形面积最大;最大面积为50m2。 对于2,可让学生分组讨论、交流,然后各组派代表发表意见。形成共识,x的值不可以任意取,有限定范围,其范围是0 <x <10。 对于3,教师可提出问题,(1)当AB=xm时,BC长等于多少m?(2)面积y等于多少?并指出y=x(20-2x)(0 <x <10)就是所求的函数关系式.
二、提出问题
某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。将这种商品的售价降低多少时,能使销售利润最大? 在这个问题中,可提出如下问题供学生思考并回答:
1.商品的利润与售价、进价以及销售量之间有什么关系?
[利润=(售价-进价)×销售量]
2.如果不降低售价,该商品每件利润是多少元?一天总的利润是多少元?
[10-8=2(元),(10-8)×100=200(元)]
3.若每件商品降价x元,则每件商品的利润是多少元?一天可销
售约多少件商品?
[(10-8-x);(100+100x)]
4.x的值是否可以任意取?如果不能任意取,请求出它的范围,
[x的值不能任意取,其范围是0≤x≤2]
5.若设该商品每天的利润为y元,求y与x的函数关系式。
[y=(10-8-x) (100+100x)(0≤x≤2)]
将函数关系式y=x(20-2x)(0 <x <10=化为:
y=-2x2+20x(0<x<10………(1) 将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为: y=-100x2+100x+20D (0≤x≤2)……(2)
三、观察;概括
1.教师引导学生观察函数关系式(1)和(2),提出以下问题让学生思考回答;
(1)函数关系式(1)和(2)的自变量各有几个?
(各有1个)
(2)多项式-2x2+20和-100x2+100x+200分别是几次多项式? (分别是二次多项式)
(3)函数关系式(1)和(2)有什么共同特点?
(都是用自变量的二次多项式来表示的)
(4)本章导图中的问题以及P1页的问题2有什么共同特点? 让学生讨论、交流,发表意见,归结为:自变量x为何值时,函数y取得最大值。
2.二次函数定义:形如y=ax2+bx+c (a、b、、c是常数,a≠0)的函数叫做x的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.
四、课堂练习
1.(口答)下列函数中,哪些是二次函数?
(1)y=5x+1 (2)y=4x2-1
(3)y=2x3-3x2 (4)y=5x4-3x+1
2.P3练习第1,2题。
五、小结
1.请叙述二次函数的定义.
2,许多实际问题可以转化为二次函数来解决,请你联系生活实际,编一道二次函数应用题,并写出函数关系式。
六、作业:略
初中数学教案范例分析 篇6
一、教学目标
(一)知识教学点
1.了解;方程算术解法与代数解法的区别。
2.掌握:代数解法解简易方程。
(二)能力训练点
1.通过代数解法解简易方程的学习使学生认识问题头脑不僵化,培养其创造性思维的能力。
2.通过代数法解简易方程进一步培养学生运算能力和逻辑思维能力。
(三)德育渗透点
1.培养学生实事求是的科学态度,用发展的眼光看问题的辩证唯物主义思想。
2.渗透化“未知”为“已知”的化归思想。
(四)美育渗透点
通过用新的方法解简易方程,使学生初步领略数学中的方法美。
二、学法引导
1.教学方法:引导发现法。注意教学中民主意识和学生的`主体作用的体现。
2.学生学法:识记→练习反馈
三、重点、难点、疑点及解决办法
1.重点:代数解法解简易方程。
2.难点:解方程时准确把握两边都加上(或减去)、乘以(或除以)同一适当的数。
3.疑点:代数解法解简易方程的依据。
四、课时安排
1课时
五、教具学具准备
投影仪或电脑、自制胶片。
六、师生互动活动设计
教师创设情境,学生解决问题。教师介绍新的方法,学生反复练习。
七、教学步骤
(一)创设情境,复习导入
(出示投影1)
引例:班上有37名同学,分成人数相等的两队进行拔河比赛,恰好余3人当裁判员,每个队有多少人?
师:该问题如何解决呢?请同学们考虑好后写在练习本上.
学生活动:解答问题,一个学生板演.
师生共同订正,对照板演学生的做法,师问:有无不同解法?
学生活动:回答问题,一个学生板演,其他学生比较两种解法.
问;这两种解法有什么不同呢?
学生活动:积极思索,回答问题.(一是列算式的解法,二是列方程的解法).
师:很好.为了叙述问题方便,我们分别把这两种解法叫做算术解法和代数解法.小学学过的应用题可用算术方法也可用代数方法解.有时算术方法简便,有时代数方法简便,但是随着学习的逐步展开,遇到的问题越来越复杂,使用代数解法的优越性将会体现的越来越充分,因此,在初中代数课上,将把方程的知识作为一个重要的内容来学习.当然,在开始学习方程时,还是要从简单的方程入手,即简易方程.引出课题.
[板书]1.5简易方程
(二)探索新知,讲授新课
师:谈到方程,同学们并不陌生,你能说明什么叫方程吗?
学生活动:踊跃举手,回答问题。
[板书] 含有未知数的等式叫方程
接问:你还知道关于方程的其他概念吗?
学生活动:积极思考并回答。
[板书] 方程的解;解方程
追问:能再具体些吗?即什么叫方程的解?什么叫解方程?并举例说明.学生活动:互相讨论后回答.(使方程左右两边相等的未知数的值叫做方程的解;求方程的解的过程叫解方程,
师:好!这是小学学的解方程的方法。在初中代数课上,我们要从另一角度来解,还以上边这个方程为例。
[板书]
学生活动:相互讨论达成共识(合理。因把x=5 代入方程3x+9=24 ,左边=右边,所以x=5是方程的解)
【教法说明】先复习小学有关方程的几个概念和解法,再提代数解法,形成对比,使学生认识到同一问题可从不同角度去考虑,即培养了发散思维。正是因为认识问题的不同侧面,导致学生感到疑惑,这时让学生自己去检验新方法的合理性,不但可消除疑虑,而且还有助于发展学生的创造能力。
师:以前的方法只能解很简单的方程,而后者则可以解较复杂的方程,因此更为重要。为了更好的理解和熟悉这种解法,我们共同做例1。
(三)尝试反馈,巩固练习
例1 解方程(x/2)-5=11
问:你认为第一步方程两边应加上(或减去)什么数最合适?为什么?
学生活动:思考并回答.(师板书)
问:你认为第二步方程两边应乘以(或除以)什么数最合适?为什么?
学生活动:思考并回答(师板书)
解:方程两边都加上5,得
(x/2)-5+5=11+5
x/2=16
(x/2)x2=16x2
x=32
问:这个结果正确吗?请同学们自己检验.
学生活动:练习本上检验并回答问题.(正确)
师:这种新方法解方程时,第一步目的是什么?第二步目的是什么?从而确定出该加上(或减去)怎样的数,该乘以(或除以)怎样的数更合适.
学生活动:回答这两个问题.
初中数学教案范例分析 篇7
一、课题引入
为了让学生更好地理解正数与负数的概念,作为教师有必要了解数系的发展.从数系的发展历程来看,微积分的基础是实数理论,实数的基础是有理数,而有理数的基础则是自然数.自然数为数学结构提供了坚实的基础.
对于“数的发展”(也即“数的扩充”),有着两种不同的认知体系.一是数的自然扩充过程,如图1所示,即数系发展的自然的、历史的体系,它反映了人类对数的认识的历史发展进程;另一是数的逻辑扩充过程,如图2所示,即数系发展所经历的理论的、逻辑的体系,它是策墨罗、冯诺伊曼、皮亚诺、高斯等数学家构造的一种逻辑体系,其中综合反映了现代数学中许多思想方法.
二、课题研究
在实际生活中,存在着诸如上升5m,下降5m;收入5000元,支出5000元等各种具体的数量.这些数量不仅与5、5000等数量有关,而且还含有上升与下降、收入与支出等实际的意义.显然上升5m与下降5m,收入5000元与支出5000元的实际意义是不同的.
为了准确表达诸如此类的一些具有相反意义的量,仅用小学学过的正整数、正分数、零,是不够的.如果把收入5000元记作5000元,那么支出5000元显然是不可以也同样记作5000元的.收入与支出是“意义相反”的两回事,是不能用同一个数来表达的.因此,为了准确表达支出5000元,就有必要引入了一种新数—负数.
我们把所学过的大于零的数,都称为正数;而且还可以在正数的前面添加一个“+”号,比如在5的前面添加一个“+”号就成了“+5”,把“+5”称为一个正数,读作“正5”.
在正数的前面添加一个“-”号,比如在5的前面添加一个“-”号,就成了“-5”,所有按这种形式构成的数统称为负数.“-5”读作“负5”,“-5000”读作“负5000”.
于是“收入5000元”可以记作“5000元”,也可以记作“+5000元”,同时“支出5000元”就可以记作“-5000元”了.这样具有相反意义的两个数量就有了不同的表达方式.
利用正数与负数可以准确地表达或记录诸如上升与下降、收入与支出、海平面以上与海平面以下、零上与零下等一些“具有相反意义的量”.再如,某个机器零件的实际尺寸比设计尺寸大0.5mm就可以表示成“0.5mm”,或“+0.5mm”;如果“另一个机器零件的实际尺寸比设计尺寸小0.5mm”,那么就可以表示成“-0.5mm”了.在一次足球比赛中,如果甲队赢了乙队2个球,那么可以把甲队的净胜球数记作“+2”,把乙队的净胜球数记作“-2”.
借助实际例子能够让学生较好地理解为什么要引入负数,认识到负数是为了有效表达与实际生活相关的一些数量而引入的一种新数,而不是人为地“硬造”出来的一种“新数”.
三、巩固练习
例1博然的父母6月共收入4800元,可以将这笔收入记作+4800元;由于天气炎热,博然家用其中的1600元钱买了一台空调,又该怎样记录这笔支出呢?
思路分析:“收入”与“支出”是一对“具有相反意义的量”,可以用正数或负数来表示.一般来说,把“收入4800元”记作+4800元,而把与之具有相反意义的量“支出1600元”记作-1600元.
特别提醒:通常具有“增加、上升、零上、海平面以上、盈余、上涨、超出”等意义的数量,都用正数来表示;而与之相对的、具有“减少、下降、零下、海平面以下、亏损、下跌、不足”等意义的数量则用负数来表示.
再如,若游泳池的水位比正常水位高5cm,则可以将这时游泳池的水位记作+5cm;若游泳池的水位比正常的水位低3cm,则可以将这时游泳池的水位记作-3cm;若游泳池的水位正好处于正常水位的位置,则将其水位记作0cm.
例2周一证券交易市场开盘时,某支股票的开盘价为18.18元,收盘时下跌了2.11元;周二到周五开盘时的价格与前一天收盘价相比的涨跌情况及当天的收盘价与开盘价的涨跌情况如下表:单位:元
日期周二周三周四周五
开盘+0.16+0.25+0.78+2.12
收盘-0.23-1.32-0.67-0.65
当日收盘价
试在表中填写周二到周五该股票的收盘价.
思路分析:以周二为例,表中数据“+0.16”所表示的实际意义是“周二该股票的开盘价比周一的收盘价高出了0.16元”;而表中数据“-0.23”则表示“周二该股票收盘时的收盘价比当天的开盘价降低了0.23元”.
因此,这五天该股票的开盘价与收盘价分别应该按如下的方式进行计算:
周一该股票的收盘价是18.18-2.11=16.07元;周二该股票的收盘价为16.07+0.16-0.23=16.00元;周三该股票的收盘价为16.00+0.25-1.32=14.93元;周四的该股票的收盘价为14.93+0.78-0.67=15.04元;周五该股票的收盘价为15.04+2.12-0.65=16.51元.
例3甲、乙、丙三支球队以主客场的形式进行双循环比赛,每两队之间都比赛两场,下表是这三支球队的比赛成绩,其中左栏表示主队,上行表示客队,比分中前后两数分别是主客队的进球数,例如3∶2表示主队进3球客队进2球.
初中数学教案范例分析 篇8
教学目标
(1)认知目标
理解并掌握分式的乘除法法则,能进行简单的分式乘除法运算,能解决一些与分式乘除有关的实际问题。
(2)技能目标
经历从分数的乘除法运算到分式的乘除法运算的过程,培养学生类比的探究能力,加深对从特殊到一般数学的思想认识。
(3)情感态度与价值观
教学中让学生在主动探究,合作交流中渗透类比转化的思想,使学生在学知识的同时感受探索的乐趣和成功的体验。
教学重难点
重点:运用分式的乘除法法则进行运算。
难点:分子、分母为多项式的分式乘除运算。
教学过程
(一)提出问题,引入课题
俗话说:“好的开端是成功的一半”同样,好的引入能激发学生兴趣和求知欲。因此我用实际出发提出现实生活中的问题:
问题1:求容积的高是,(引出分式乘法的学习需要)。
问题2:求大拖拉机的工作效率是小拖拉机的工作效率的倍,(引出分式除法的学习需要)。
从实际出发,引出分式的乘除的实在存在意义,让学生感知学习分式的乘法和除法的'实际需要,从而激发学生兴趣和求知欲。
(二)类比联想,探究新知
从学生熟悉的分数的乘除法出发,引发学生的学习兴趣。
解后总结概括:
(1)式是什么运算?依据是什么?
(2)式又是什么运算?依据是什么?能说出具体内容吗?(如果有困难教师应给于引导,学生应该能说出依据的是:分数的乘法和除法法则)教师加以肯定,并指出与分数的乘除法法则类似,引导学生类比分数的乘除法则,猜想出分式的乘除法则。
(分式的乘除法法则)
乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母。
除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
(三)例题分析,应用新知
师生活动:教师参与并指导,学生独立思考,并尝试完成例题。
P11的例1,在例题分析过程中,为了突出重点,应多次回顾分式的乘除法法则,使学生耳熟能详。P11例2是分子、分母为多单项式的分式乘除法则的运用,为了突破本节课的难点我采取板演的形式,和学生一起详细分析,提醒学生关注易错易漏的环节,学会解题的方法。
(四)练习巩固,培养能力
P13练习第2题的(1)、(3)、(4)与第3题的(2)。
师生活动:教师出示问题,学生独立思考解答,并让学生板演或投影展示学生的解题过程。
通过这一环节,主要是为了通过课堂跟踪反馈,达到巩固提高的目的,进一步熟练解题的思路,也遵循了巩固与发展相结合的原则。让学生板演,一是为了暴露问题,二是为了规范解题格式和结果。
(五)课堂小结,回扣目标
引导学生自主进行课堂小结:
1、本节课我们学习了哪些知识?
2、在知识应用过程中需要注意什么?
3、你有什么收获呢?
师生活动:学生反思,提出疑问,集体交流。
(六)布置作业
教科书习题6.2第1、2(必做)练习册P(选做),我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。
初中数学教案范例分析 篇9
教学目标
1.理解二元一次方程及二元一次方程的解的概念;
2.学会求出某二元一次方程的几个解和检验某对数值是否为二元一次方程的解;
3.学会把二元一次方程中的一个未知数用另一个未知数的一次式来表示;
4.在解决问题的过程中,渗透类比的思想方法,并渗透德育教育。
教学重点、难点
重点:二元一次方程的意义及二元一次方程的解的概念.
难点:把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程.
教学过程
1.情景导入:
新闻链接:桐乡70岁以上老人可领取生活补助,得到方程:80a+150b=902880.2.
2.新课教学:
引导学生观察方程80a+150b=902880与一元一次方程有异同?
得出二元一次方程的概念:含有两个未知数,并且所含未知数的项的次数都是1次的方程叫做二元一次方程.
3.合作学习:
给定方程x+2y=8,男同学给出y(x取绝对值小于10的整数)的值,女同学马上给出对应的x的值;接下来男女同学互换.(比一比哪位同学反应快)请算的最快最准确的同学讲他的计算方法.提问:给出x的值,计算y的值时,y的系数为多少时,计算y最为简便?
4.课堂练习:
1)已知:5xm-2yn=4是二元一次方程,则m+n=;
2)二元一次方程2x-y=3中,方程可变形为y=当x=2时,y=_
5.课堂总结:
(1)二元一次方程的意义及二元一次方程的解的概念(注意书写格式);
(2)二元一次方程解的不定性和相关性;
(3)会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式.
作业布置
本章的课后的方程式巩固提高练习。
初中数学教案范例分析 篇10
教学目标
1.使学生认识字母表示数的意义,了解字母表示数是数学的一大进步;
2.了解代数式的概念,使学生能说出一个代数式所表示的数量关系;
3.通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力;
4.通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法。
教学建议
1. 知识结构:本小节先回顾了小学学过的字母表示的两种实例,一是运算律,二是公式,从中看出字母表示数的优越性,进而引出代数式的概念。
2.教学重点分析:教科书,介绍了小学用字母表示数的实例,一个是运算律,一个是常用公式,上述两种例子应用广泛,且能很好地体现用字母表示数所具有的简明、普遍的优越性,用字母表示是数学从算术到代数的一大进步,是代数的显著特点。运用算术的方法解决问题,是小学学生的思维方法 ,现在,从具体的数过渡到用字母表示数,渗透了抽象概括的思维方法,在认识上是一个质的飞跃。对代数式的概念课文没有直接给出,而是用实例形象地说明了代数式的概念。对代数式的概念可以从三个方面去理解:
(1)从具体的数到用字母表示数,是抽象思维的开始,体现了特殊与一般的辨证关系,用字母表示数具有简明、普遍的优越性.
(2)代数式中并不要求数和表示数的字母同时出现,单独的一个数和字母也是代数式.如:2,m都是代数式.
等都不是代数式.
3.教学难点分析:能正确说出一个代数式的数量关系,即用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序。用语言表达代数式的意义,具体说法没有统一规定,以简明而不引起误会为出发点。
如:说出代数式7(a-3)的意义。
分析 7(a-3)读成7乘a减3,这样就产生歧义,究竟是7a-3呢?还是7(a-3)呢?有模棱两可之感。代数式7(a-3)的最后运算是积,应把a-3作为一个整体。所以,7(a-3)的意义是7与(a-3)的积。
4.书写代数式的注意事项:
(1)代数式中数字与字母或者字母与字母相乘时,通常把乘号简写作“·”或省略不写,同时要求数字应写在字母前面.
如3×a ,应写作3.a 或写作3a ,a×b 应写作3.a 或写作ab .带分数与字母相乘,应把带分数化成假分数,
#FormatImgID_0#
.数字与数字相乘一般仍用“×”号.
(2)代数式中有除法运算时,一般按照分数的写法来写.
(3)含有加减运算的代数式需注明单位时,一定要把整个式子括起来.
5.对本节例题的分析:
例1是用代数式表示几个比较简单的数量关系,这些小学都学过.比较复杂一些的数量关系的代数式表示,课文安排在下一节中专门介绍.
例2是说出一些比较简单的代数式的意义.因为代数式中用字母表示数,所以把字母也看成数,一种特殊的数,就可以像看待原来比较熟悉的数式一样,说出一个代数式所表示的数量关系,只是另外还要考虑乘号可能省略等新规定而已.
6.教法建议
(1)因为这一章知识大部分在小学学习过,讲授新课之前要先复习小学学过的运算律,在学生原有的认知结构上,提出新的问题。这样即复习了旧知识,又引出了新知识,能激发学生的学习兴趣。在教学中,一定要注意发挥本章承上启下的作用,搞好小学数学与初中代数的衔接,使学生有一个良好的开端。
(2)在本节的学习过程中,要使学生理解代数式的概念,首先要给学生多举例子(学生比较熟悉、贴近现实生活的例子),使学生从感性上认识什么是代数式,理清代数式中的运算和运算顺序,才能正确说出一个代数式所表示的数量关系,从而认识字母表示数的意义——普遍性、简明性,也为列代数式做准备。
(3)条件比较好的学校,老师可选用一些多媒体课件,激发学生的学习兴趣,增强学生自主学习的能力。
(4)老师在讲解第一节之前,一定要对全章内容和课时安排有一个了解,注意前后知识的衔接,只有这样,我们老师才能教给学生系统的而不是一些零散的知识,久而久之,学生头脑中自然会形成一个完整的知识体系。
(5)因为是新学期代数的第一节课,老师一定要给学生一个好印象,好的开端等于成功了一半。那么,怎么才能给学生留下好印象呢?首先,你要尽量在学生面前展示自己的才华。比,英语口语好的老师,可以用英语做一个自我介绍,然后为学生说一段祝福语。第二,上课时尽量使用多种语言与学生交流,其中包括情感语言(眉目语言、手势语言等),让学生感受到老师对他的关心。
7.教学重点、难点:
重点:用字母表示数的意义
难点:学会用字母表示数及正确说出一个代数式所表示的数量关系。
教学设计示例
课堂教学过程设计
一、从学生原有的认知结构提出问题
1在小学我们曾学过几种运算律?都是什么?如可用字母表示它们?
(通过启发、归纳最后师生共同得出用字母表示数的五种运算律)
(1)加法交换律 a+b=b+a;
(2)乘法交换律 a·b=b·a;
(3)加法结合律 (a+b)+c=a+(b+c);
(4)乘法结合律 (ab)c=a(bc);
(5)乘法分配律 a(b+c)=ab+ac
指出:(1)“×”也可以写成“·”号或者省略不写,但数与数之间相乘,一般仍用“×”;
(2)上面各种运算律中,所用到的字母a,b,c都是表示数的字母,它代表我们过去学过的一切数
2(投影)从甲地到乙地的路程是15千米,步行要3小时,骑车要1小时,乘汽车要0.25小时,试问步行、骑车、乘汽车的速度分别是多少?
3若用s表示路程,t表示时间,ν表示速度,你能用s与t表示ν吗?
4(投影)一个正方形的边长是a厘米,则这个正方形的周长是多少?面积是多少?
(用I厘米表示周长,则I=4a厘米;用S平方厘米表示面积,则S=a2平方厘米)
此时,教师应指出:(1)用字母表示数可以把数或数的关系,简明的表示出来;(2)在公式与中,用字母表示数也会给运算带来方便;(3)像上面出现的a,5,15÷3,4a,a+b,s/t 以及a2等等都叫代数式.那么究竟什么叫代数式呢?代数式的意义又是什么呢?这正是本节课我们将要学习的内容.
三、讲授新课
1代数式
单独的一个数字或单独的一个字母以及用运算符号把数或表示数的字母连接而成的式子叫代数式.学习代数,首先要学习用代数式表示数量关系,明确代数上的意义
2举例说明
例1 填空:
(1)每包书有12册,n包书有__________册;
(2)温度由t℃下降到2℃后是_________℃;
(3)棱长是a厘米的正方体的体积是_____立方厘米;
(4)产量由m千克增长10%,就达到_______千克
(此例题用投影给出,学生口答完成)
解:(1)12n; (2)(t-2); (3)a3; (4)(1+10%)m
例2 说出下列代数式的意义:
解:(1)2a+3的意义是2a与3的和;(2)2(a+3)的意义是2与(a+3)的积;
(5)a2+b2的意义是a,b的平方的和;(6)(a+b)2的意义是a与b的和的平方
说明:(1)本题应由教师示范来完成;
(2)对于代数式的意义,具体说法没有统一规定,以简明而不致引起误会为出发点如第(1)小题也可以说成“a的2倍加上3”或“a的2倍与3的和”等等
例3 用代数式表示:
(1)m与n的和除以10的商;
(2)m与5n的差的平方;
(3)x的2倍与y的和;
(4)ν的立方与t的3倍的积
分析:用代数式表示用语言叙述的数量关系要注意:①弄清代数式中括号的使用;②字母与数字做乘积时,习惯上数字要写在字母的前面
四、课堂练习
1填空:(投影)
(1)n箱苹果重p千克,每箱重_____千克;
(2)甲身高a厘米,乙比甲矮b厘米,那么乙的身高为_____厘米;
(3)底为a,高为h的三角形面积是______;
(4)全校学生人数是x,其中女生占48%?则女生人数是____,男生人数是____
2说出下列代数式的意义:(投影)
3用代数式表示:(投影)
(1)x与y的和; (2)x的平方与y的立方的差;
(3)a的60%与b的2倍的和; (4)a除以2的商与b除3的商的和
五、师生共同小结
首先,提出如下问题:
1本节课学习了哪些内容?2用字母表示数的意义是什么?
3什么叫代数式?
教师在学生回答上述问题的基础上,指出:①代数式实际上就是算式,字母像数字一样也可以进行运算;②在代数式和运算结果中,如有单位时,要正确地使用括号
六、作业
1一个三角形的三条边的长分别的`a,b,c,求这个三角形的周长
2张强比王华大3岁,当张强a岁时,王华的年龄是多少?
3飞机的速度是汽车的40倍,自行车的速度是汽车的1/3 ,若汽车的速度是ν千米/时,那么,飞机与自行车的速度各是多少?
4a千克大米的售价是6元,1千克大米售多少元?
5圆的半径是R厘米,它的面积是多少?
6用代数式表示:
(1)长为a,宽为b米的长方形的周长;
(2)宽为b米,长是宽的2倍的长方形的周长;
(3)长是a米,宽是长的1/3 的长方形的周长;
(4)宽为b米,长比宽多2米的长方形的周长
初中数学教案范例分析 篇11
一、目的要求
1、使学生初步理解一次函数与正比例函数的概念。
2、使学生能够根据实际问题中的条件,确定一次函数与正比例函数的解析式。
二、内容分析
1、初中主要是通过几种简单的函数的初步介绍来学习函数的,前面三小节,先学习函数的概念与表示法,这是为学习后面的几种具体的函数作准备的,从本节开始,将依次学习一次函数(包括正比例函数)、二次函数与反比例函数的有关知识,大体上,每种函数是按函数的解析式、图象及性质这个顺序讲述的,通过这些具体函数的学习,学生可以加深对函数意义、函数表示法的认识,并且,结合这些内容,学生还会逐步熟悉函数的知识及有关的数学思想方法在解决实际问题中的应用。
2、旧教材在讲几个具体的函数时,是按先讲正反比例函数,后讲一次、二次函数顺序编排的,这是适当照顾了学生在小学数学中学了正反比例关系的知识,注意了中小学的衔接,新教材则是安排先学习一次函数,并且,把正比例函数作为一次函数的特例予以介绍,而最后才学习反比例函数,为什么这样安排呢?第一,这样安排,比较符合学生由易到难的认识规津,从函数角度看,一次函数的解析式、图象与性质都是比较简单的,相对来说,反比例函数就要复杂一些了,特别是,反比例函数的图象是由两条曲线组成的,先学习反比例函数难度可能要大一些。第二,把正比例函数作为一次函数的特例介绍,既可以提高学习效益,又便于学生了解正比例函数与一次函数的关系,从而,可以更好地理解这两种函数的概念、图象与性质。
3、“函数及其图象”这一章的重点是一次函数的概念、图象和性质,一方面,在学生初次接触函数的有关内容时,一定要结合具体函数进行学习,因此,全章的主要内容,是侧重在具体函数的讲述上的。另一方面,在大纲规定的几种具体函数中,一次函数是最基本的,教科书对一次函数的讨论也比较全面。通过一次函数的学习,学生可以对函数的研究方法有一个初步的认识与了解,从而能更好地把握学习二次函数、反比例函数的学习方法。
三、教学过程
复习提问:
1、什么是函数?
2、函数有哪几种表示方法?
3、举出几个函数的例子。
新课讲解:
可以选用提问时学生举出的例子,也可以直接采用教科书中的四个函数的例子。然后让学生观察这些例子(实际上均是一次函数的解析式),y=x,s=3t等。观察时,可以按下列问题引导学生思考:
(1)这些式子表示的是什么关系?(在学生明确这些式子表示函数关系后,可指出,这是函数。)
(2)这些函数中的自变量是什么?函数是什么?(在学生分清后,可指出,式子中等号左边的y与s是函数,等号右边是一个代数式,其中的字母x与t是自变量。)
(3)在这些函数式中,表示函数的自变量的式子,分别是关于自变量的什么式呢?(这题牵扯到有关整式的基本概念,表示函数的自变量的式子也就是等号右边的`式子,都是关于自变量的一次式。)
(4)x的一次式的一般形式是什么?(结合一元一次方程的有关知识,可以知道,x的一次式是kx+b(k≠0)的形式。)
由以上的层层设问,最后给出一次函数的定义。
一般地,如果y=kx+b(k,b是常数,k≠0)那么,y叫做x的一次函数。
对这个定义,要注意:
(1)x是变量,k,b是常数;
(2)k≠0 (当k=0时,式子变形成y=b的形式。b是x的0次式,y=b叫做常数函数,这点,不一定向学生讲述。)
由一次函数出发,当常数b=0时,一次函数kx+b(k≠0)就成为:y=kx(k是常数,k≠0)我们把这样的函数叫正比例函数。
在讲述正比例函数时,首先,要注意适当复习小学学过的正比例关系,小学数学是这样陈述的:
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
写成式子是(一定)
需指出,小学因为没有学过负数,实际的例子都是k>0的例子,对于正比例函数,k也为负数。
其次,要注意引导学生找出一次函数与正比例函数之间的关系:正比例函数是特殊的一次函数。
课堂练习:
教科书13、4节练习第1题.
初中数学教案范例分析 篇12
一、教学目的:
1.理解并掌握菱形的定义及两个判定方法;会用这些判定方法进行有关的论证和计算;
2.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.
二、重点、难点
1.教学重点:菱形的两个判定方法.
2.教学难点:判定方法的证明方法及运用.
三、例题的意图分析
本节课安排了两个例题,其中例1是教材P109的例3,例2是一道补充的题目,这两个题目都是菱形判定方法的直接的运用,主要目的是能让学生掌握菱形的判定方法,并会用这些判定方法进行有关的论证和计算.这些题目的推理都比较简单,学生掌握起来不会有什么困难,可以让学生自己去完成.程度好一些的班级,可以选讲例3.
四、课堂引入
1.复习
(1)菱形的定义:一组邻边相等的平行四边形;
(2)菱形的性质1、菱形的四条边都相等;
性质2、菱形的对角线互相平分,并且每条对角线平分一组对角;
(3)运用菱形的定义进行菱形的判定,应具备几个条件?(判定:2个条件)
2.【问题】要判定一个四边形是菱形,除根据定义判定外,还有其它的判定方法吗?
3.【探究】(教材P109的探究)用一长一短两根木条,在它们的中点处固定一个小钉,做成一个可转动的十字,四周围上一根橡皮筋,做成一个四边形.转动木条,这个四边形什么时候变成菱形?
通过演示,容易得到:
菱形判定方法1对角线互相垂直的平行四边形是菱形.
注意此方法包括两个条件:
(1)是一个平行四边形;
(2)两条对角线互相垂直.
通过教材P109下面菱形的作图,可以得到从一般四边形直接判定菱形的方法:
菱形判定方法2四边都相等的四边形是菱形.
五、例习题分析
例1(教材P109的例3)略
例2(补充)已知:如图ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F.
求证:四边形AFCE是菱形.
证明:∵四边形ABCD是平行四边形,
∴AE∥FC.
∴∠1=∠2.
又∠AOE=∠COF,AO=CO,
∴△AOE≌△COF.
∴EO=FO.
∴四边形AFCE是平行四边形.
又EF⊥AC,
∴AFCE是菱形(对角线互相垂直的平行四边形是菱形).
※例3(选讲)已知:如图,△ABC中,∠ACB=90°,BE平分∠ABC,CD⊥AB与D,EH⊥AB于H,CD交BE于F.
求证:四边形CEHF为菱形.
略证:易证CF∥EH,CE=EH,在Rt△BCE中,∠CBE+∠CEB=90°,在Rt△BDF中,∠DBF+∠DFB=90°,因为∠CBE=∠DBF,∠CFE=∠DFB,所以∠CEB=∠CFE,所以CE=CF.
所以,CF=CE=EH,CF∥EH,所以四边形CEHF为菱形.
六、随堂练习
1.填空:
(1)对角线互相平分的四边形是;
(2)对角线互相垂直平分的四边形是________;
(3)对角线相等且互相平分的四边形是________;
(4)两组对边分别平行,且对角线的四边形是菱形.
2.画一个菱形,使它的两条对角线长分别为6cm、8cm.
3.如图,O是矩形ABCD的对角线的交点,DE∥AC,CE∥BD,DE和CE相交于E,求证:四边形OCED是菱形。
七、课后练习
1.下列条件中,能判定四边形是菱形的是().
(A)两条对角线相等(B)两条对角线互相垂直
(C)两条对角线相等且互相垂直(D)两条对角线互相垂直平分
2.已知:如图,M是等腰三角形ABC底边BC上的中点,DM⊥AB,EF⊥AB,ME⊥AC,DG⊥AC.求证:四边形MEND是菱形.
3.做一做:
设计一个由菱形组成的花边图案.花边的长为15cm,宽为4cm,由有一条对角线在同一条直线上的四个菱形组成,前一个菱形对角线的交点,是后一个菱形的一个顶点.画出花边图形.
初中数学教案范例分析 篇13
教学目标
1,掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;
2,了解分类的标准与分类结果的相关性,初步了解“集合”的含义;
3,体验分类是数学上的常用处理问题的方法。
教学难点
正确理解分类的标准和按照一定的标准进行分类
知识重点
正确理解有理数的概念
教学过程
(师生活动)设计理念
探索新知在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).
问题1:观察黑板上的9个数,并给它们进行分类.
学生思考讨论和交流分类的情况.
学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.
例如,
对于数5,可这样问:5和5.1有相同的类型吗?5可以表示5个人,而5.1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5.1不是整个的数,称为“正分数,,.…(由于小数可化为分数,以后把小数和分数都称为分数)
通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数,’.
按照书本的说法,得出“整数”“分数”和“有理数”的概念.
看书了解有理数名称的由来.
“统称”是指“合起来总的名称”的意思.
试一试:按照以上的分类,你能作出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的)分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参与
学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。
有理数的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会
练一练1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流.
2,教科书第10页练习.
此练习中出现了集合的概念,可向学生作如下的说明.
把一些数放在一起,就组成了一个数的集合,简称“数集”,所有有理数组成的数集叫做有理数集.类似地,所有整数组成的数集叫做整数集,所有负数组成的数集叫做负数集……;
数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号.
思考:上面练习中的四个集合合并在一起就是全体有理数的集合吗?
也可以教师说出一些数,让学生进行判断。
集合的概念不必深入展开。
创新探究问题2:有理数可分为正数和负数两大类,对吗?为什么?
教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,逐步得到如下的分类表。
有理数这个分类可视学生的程度确定是否有必要教学。
应使学生了解分类的标准不一样时,分类的结果也是不同的,所以分类的标准要明确,使分类后每一个参加分类的象属于其中的某一类而只能属于这一类,教学中教师可举出通俗易懂的例子作些说明,可以按年龄,也可以按性别、地域来分等
小结与作业
课堂小结到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。
本课作业
1,必做题:教科书第18页习题1.2第1题
2,教师自行准备
本课教育评注(课堂设计理念,实际教学效果及改进设想)
1,本课在引人了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概念.分类是数学中解决问题的常用手段,通过本节课的学习使学生了解分类的思想并进行简单的分类是数学能力的体现,教师在教学中应引起足够的重视.关于分类标准与分类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不要过多展开。
2,本课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,可避免直接进行分类所带来的枯燥性;同时还体现合作学习、交流、探究提高的特点,对学生分类能力的养成有很好的作用。
3,两种分类方法,应以第一种方法为主,第二种方法可视学生的情况进行。
初中数学教案范例分析 篇14
重难点分析
本节的重点是的性质和判定定理。是在平行四边形的前提下定义的,首先她是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法。的这些性质和判定定理即是平行四边形性质与判定的延续,又是以后要学习的正方形的基础。
本节的难点是性质的灵活应用。由于是特殊的平行四边形,所以它不但具有平行四边形的性质,同时还具有自己独特的性质。如果得到一个平行四边形是,就可以得到许多关于边、角、对角线的条件,在实际解题中,应该应用哪些条件,怎样应用这些条件,常常让许多学生手足无措,教师在教学过程中应给予足够重视。
教法建议
根据本节内容的特点和与平行四边形的关系,建议教师在教学过程中注意以下问题:
1.学生在小学时接触过一些,可由小学学过的知识作为引入。
2.在现实中的实例较多,在讲解的性质和判定时,教师可自行准备或由学生准备一些生活实例来进行判别应用了哪些性质和判定,既增加了学生的参与感又巩固了所学的知识.
3.如果条件允许,教师在讲授这节内容前,可指导学生按照教材148页图4-33所示,制作一个平行四边形作为教学过程中的道具,既增强了学生的动手能力和参与感,有在教学中有切实的体例,使学生对知识的掌握更轻松些.
4.在对性质的讲解中,教师可将学生分成若干组,每个学生分别对事先准备后的图形进行边、角、对角线的测量,然后在组内进行整理、归纳.
5.由于和的性质定理证明比较简单,教师可引导学生分析思路,由学生来进行具体的证明.
6.在性质应用讲解中,为便于理解掌握,教师要注意题目的层次安排。
一、教学目标
1.掌握概念,知道与平行四边形的关系.
2.掌握的性质.
3.通过运用知识解决具体问题,提高分析能力和观察能力.
4.通过教具的演示培养学生的学习兴趣.
5.根据平行四边形与矩形、的从属关系,通过画图向学生渗透集合思想.
6.通过性质的学习,体会的图形美.
二、教法设计
观察分析讨论相结合的方法
三、重点·难点·疑点及解决办法
1.教学重点:的性质定理.
2.教学难点:把的性质和直角三角形的知识综合应用.
3.疑点:与矩形的性质的区别.
四、课时安排
1课时
五、教具学具准备
教具(做一个短边可以运动的平行四边形)、投影仪和胶片,常用画图工具
六、师生互动活动设计
教师演示教具、创设情境,引入新课,学生观察讨论;学生分析论证方法,教师适时点拨
七、教学步骤
【复习提问】
1.什么叫做平行四边形?什么叫矩形?平行四边形和矩形之间的关系是什么?
2.矩形中对角线与大边的夹角为,求小边所对的两条对角线的夹角.
3.矩形的一个角的平分线把较长的边分成、,求矩形的周长.
【引入新课】
我们已经学习了一种特殊的平行四边形——矩形,其实还有另外的特殊平行四边形,这时可将事先按课本中图4-38做成的一个短边也可以活动的教具进行演示,如图,改变平行四边形的边,使之一组邻进相等,引出概念.
【讲解新课】
1.定义:有一组邻边相等的平行四边形叫做.
讲解这个定义时,要抓住概念的本质,应突出两条:
(1)强调是平行四边形.
(2)一组邻边相等.
2.的性质:
教师强调,既然是特殊的平行四边形,因此它就具有平行四边形的一切性质,此外由于它比平行四边形多了“一组邻边相等”的条件,和矩形类似,也比平行四边形增加了一些特殊性质.
下面研究的性质:
师:同学们根据的定义结合图形猜一下有什么性质(让学生们讨论,并引导学生分别从边、角、对角线三个方面分析).
生:因为是有一组邻边相等的平行四边形,所以根据平行四边形对边相等的性质可以得到.
性质定理1:的四条边都相等.
由的四条边都相等,根据平行四边形对角线互相平分,可以得到
性质定理2:的对角线互相垂直并且每一条对角线平分一组对角.
引导学生完成定理的规范证明.
师:观察右图,被对角线分成的四个直角三角形有什么关系?
生:全等.
师:它们的底和高和两条对角线有什么关系?
生:分别是两条对角线的一半.
师:如果设的两条对角线分别为、,则的面积是什么?
生:
教师指出当不易求出对角线长时,就用平行四边形面积的一般计算方法计算面积.
例2已知:如右图,是△的角平分线,交于,交于.
求证:四边形是.
(引导学生用定义来判定.)
例3已知的边长为,,对角线,相交于点,如右图,求这个的对角线长和面积.
(1)按教材的方法求面积.
(2)还可以引导学生求出△一边上的高,即的高,然后用平行四边形的面积公式计算的面积.
【总结、扩展】
1.小结:(打出投影)(图4)
(1)、平行四边形、四边形的从属关系:
(2)性质:图5
①具有平行四边形的所有性质.
②特有性质:四条边相等;对角线互相垂直,且平分每一组对角.
八、布置作业
教材P158中6、7、8,P196中10
九、板书设计
标题
定义……
性质例2……小结:
性质定理1:……例3…………
性质定理2:……
十、随堂练习
教材P151中1、2、3
补充
1.的两条对角线长分别是3和4,则周长和面积分别是___________、___________.
2.周长为80,一对角线为20,则相邻两角的度数为___________、____________.
2025中班数学教案(范例8篇)
老师每一堂上一般都需要一份教案课件,写好教案课件是每位老师必须具备的基本功。编写完整的教案是实现有效教学和提高学生学习成绩的需要。幼儿教师教育网编辑为您推荐一个思维深刻有价值的“中班数学教案”文章,这里提供了一些可供参考的信息希望对您有所帮助!
中班数学教案 篇1
设计思路:
在〈一样的小熊在哪里〉的活动中,我为幼儿提供了色彩鲜艳的操作材料,让幼儿进行比较,辨别事物间的细小差异,并给小熊配对,提高幼儿的视觉辨认能力。
1、能按顺序的进行细致的观察,将衣着相同的两个小熊找出来;
2、提高幼儿的视觉辨别能力。
3、能认真倾听同伴发言,且能独立地进行操作活动。
4、培养幼儿乐意在众人面前大胆发言的习惯,学说普通话。
3:小熊卡片24张,裤子线条、颜色一样的,各6张,分4组;
1:引入活动;游戏:“猜猜我是谁”;观察有条纹小熊的卡片;集体游戏;个人操作。
故事引入:有一天,小熊哥哥与小熊弟弟去逛街,街上可热闹了,人来人往,小熊哥哥与小熊弟弟走丢了,小熊哥哥找不着小熊弟弟很着急,所以,想请小警察帮助小熊哥哥找到小熊弟弟,引出下个环节。
玩法:教师依次出示红、黄、蓝、绿四种颜色,让幼儿辨认。
(三)教师依次出示4张不同衣着的小熊卡片,让幼儿观察,分别说出每张卡片上小熊裤子的颜色。
玩法:教师将有衣着条纹不一样小熊卡片发给幼儿,幼儿将卡片举在胸前,然后,在4个圈里找到和自己拿的小熊卡片一样的小熊,就在哪个圈里。(游戏过程中,教师要注意观察幼儿能否按照小熊裤子条纹的颜色排列寻找朋友,找到后要提醒找到的幼儿再次比较)。
1:玩法:教师出示挂图,引导幼儿观察〈〈一样的小熊在哪里〉〉图上的10个小熊的衣着,然后让幼儿找出衣着相同的小熊哥哥与小熊弟弟;
2:发书让幼儿自己操作,把小熊哥哥与小熊弟弟用彩笔圈起来。
活动反思:
数学能为幼儿动手、动口、动脑,多种感官参与学习活动创设最佳情景,激发幼儿的学习兴趣,调动幼儿积极性,最大限度地发挥幼儿身心潜能,省时高效地完成学习任务,同时,渗透思想品德教育,培养良好的学习习惯和心理素质,使智力和非智力品质协调发展。引导幼儿在“玩“中学,“趣”中练,“乐“中长才干,“赛”中增勇气。提高学习效率,培养幼儿良好的学习习惯和组织纪律性。
中班数学教案 篇2
【活动目标】
1、运用点数、对应和连线的方式感知两种物体的数量关系。
2、学会不受物体大小、形状和排列等因素的干扰判断5以内物体的数量,感知数的守恒。
3、体验数学活动带来的乐趣。
4、能与同伴合作,并尝试记录结果
5、使小朋友们感到快乐、好玩,在不知不觉中应经学习了知识。
【活动准备】
白板课件、幼儿操作材料人手一份。
【活动过程】
一、谈话导入,激发幼儿学习的兴趣。
出示鹅大哥:“今天鹅大哥的水产品店开张了,欢迎大家来买哦!”
二、看标记,幼儿选物品。
1、根据小猫篮子上的数字与标记,请幼儿选择相应的物品。
2、看小鸭篮子上的数字与篮子中的物品,请幼儿选择还需要买多少物品。
三、摆放水产品,让幼儿感知数与量的守恒。
1、出示两排摆放不同的水产品,让幼儿感知同种物品的不同摆放方式。
2、出示两种不同的物品,让幼儿感知不同物品的摆放方式。
3、小结:水产品的大小不同、摆放的方式不同,但它们的数量是相同的。
四、卖水产品,请幼儿找出等量的水产品。
1、出示五只乌龟,乌龟要买和它们一样多的水产品。
2、出示小狗,用猜谜语的形式让幼儿猜出小狗要买的是螃蟹。
五、幼儿操作,巩固知识。
1、给一样多的打钩、接着往下数。
2、给水产品找朋友。
3、看实物画点子。
幼儿操作,教师指导,(请两位幼儿到白板上来操作)
六、展示幼儿作业,教师讲评,结束活动。
【活动反思】
本活动我利用家乡的鹅、螃蟹、鱼、螺丝等特产来创设情景展开活动,进一步加深幼儿对家乡的认识,培养幼儿爱家乡的情感。活动中我利用白板中的聚光灯、拉幕、拖动等功能,激发幼儿探索学习的兴趣,整个活动,目标明确,层次清晰,幼儿在做做玩玩中掌握相关知识,幼儿学习兴趣浓厚,目标达成度较高。但在让幼儿感知数与量的守恒关系时,我应多请几位幼儿来讲讲,让每个孩子都有一次锻炼的机会。
中班数学教案 篇3
第(三)周班级工作计划班级:中(三)班
时间:三月十一日--三月十五日主题《我真能干》----说说我自己区角内容与要求教育区:促使幼儿充分的融入活动,多给幼儿提供机会,适时引导参与进来,提高幼儿的积极性。
情感区:提高孩子对自己对他人的认识,培养与别人的友好关系。
目标
1、知道手是我们的好朋友,它可以帮助我们做许多事情,初步了解保护手的方法。
2、外出活动时,知道轻轻把椅子推入桌下。
幼儿行为会主动向老师、同伴问好、道别。知道饭前便后要洗手。活动中懂得等待、谦让。学会了倾听、不随便打断别人的谈话。
星期内容一二三四五上午晨间活动踩高跷、羊角球、呼啦圈、飞镖、跳绳
活动(一)社会:
《我会交朋友》科学:
《筷子》美工:
《奇怪的脸》语言:
《说说我自己》社会:
《我会用筷子》
户外游戏音乐游戏:
"镜子游戏"体育游戏:
"聪明勇敢的小兔"智力游戏:
"接反话"体育游戏:
"扑通扑通跳不停"角色游戏:
"超市、银行、幼儿园"
活动(二)体育游戏:
"小猴学样"区域活动:
"玛丽医院"体育游戏:
"看谁投得远"区域活动:
"情感区"探索游戏:
"运海洋球"下午户外游戏思维游戏:
"吸纸跑"体育游戏:
"熊来了"体育游戏:
"小猫钓鱼"结构游戏:
"飞机"建构游戏:
"宇宙飞船"
活动(三)数学:《大转盘》手工:《我的名片》健康:《吃不完怎么办》安全:《防止烫伤》音乐:《泼水歌》
保育工作清洁卫生习惯:
养成饭前便后及手脏时洗手的习惯,学会自己卷衣袖,在老师的指导下会用洗手液洗手,不咬指甲,不把玩具放入口中,用毛巾洗脸,保持衣服整洁。
家长工作
1、用餐时,尽量鼓励孩子使用筷子。
2、加强对孩子自我服务能力的培养。日常生活中,鼓励孩子学会自己的事情自己做,如:穿脱衣服、整理玩具等。
第三周主题:《我真能干》----说说我自己星期一一日生活常规晨间接待(7:40-8:00)对幼儿的要求:
(一)衣着整洁,愉快入园,有礼貌地和老师、小朋友见面。
(二)有礼貌地和家长告别。
(三)学会告诉老师自己的身体有无不舒服的感觉。
(四)积极投入晨间活动。
区域活动自主地选择自己喜欢的区域进行活动,并有一定的持久性。
晨间活动(8:00-8:30)
活动目标:
1.学会站在高跷上保持平衡度的技能。
2.在游戏中尝试快速向你走动或跑,体验活动的乐趣。
指导重难点:
学会保持平衡和向前后行走的技能。
活动准备:
木马障碍物若干。
过程:
1.引导幼儿思考:大家想想,这个高跷可以怎样玩?(让幼儿回答,并将自己的方法展示给大家看。)
2.让幼儿分散练习踩高跷,提醒幼儿寻找空的场地。(教师从旁指导幼儿掌握正确的方法。)
3.游戏:开心的高跷游戏(玩法:让幼儿园各自站在自己的高跷上,向前和向后练习,在老师开始说准备后开始后。幼儿向前走动,看谁走的最稳最快。)
4.早操前十分钟,让幼儿收拾整理玩具、材料、作好参加早操活动的准备。
早操(8:40-9:00)内容:
器械操、牛仔操要求:
1.教师组织幼儿排成一路纵队进入活动场地。
2.幼儿情绪积极,走队形时不推,能马上找到自己的早操位置。
3.在做操的过程中,保持精神饱满,动作到位。
4.有次序的退场,注意按队形排列。
盥洗活动(9:00-9:10)对幼儿的要求:
1.提醒幼儿排队洗手,不拥挤,注意安全。
2.在自己的座位上喝牛奶。
3.入厕,做到便后要洗手。
4.先把手淋湿,搓上肥皂。
5.按手背、手指、手腕顺序洗手,再冲洗肥皂沫,抖掉水珠,用自己的毛巾擦干手,挂好毛巾,放下衣袖。
集体教学(一)(9:10-9:40)活动一社会活动《我会交朋友》教案
活动目标:
1.学习同侪良善的相处模式。
2.学习欣赏他人的优点。
活动准备:
敌人派(道声出版)。
活动过程:
1.老师讲述「敌人派」故事,简述如下:
这原本应该是个完美的暑假,直到小杰搬到附近变成头号大敌人,就完全变样了。幸好爸爸有消灭敌人的必胜绝招--敌人派。但是这个派其中一个秘方,竟然是必须和敌人相处一整天!
小杰想要消灭敌人,动了歪脑筋,他要把恶心的东西加在给敌人吃的敌人派里,如:杂草、虫子、石头,和嚼了一个早上的口香糖,使敌人派闻起来很臭,看起来很恐怖。小杰愿意花一整天的时间和敌人在一起,还要对他很好,来换得敌人永远的消失。但是当他跟敌人相处以后,却产生了一种奇妙的感觉,他发现和敌人一起玩很有趣,他觉得这个人其实也还不错。最后,他竟然感到惊慌,小杰发现他根本不想让敌人吃敌人派,因为敌人已经变成朋友了!
2.请幼儿说出是否有像小杰一样的经验,很讨厌一个人,为什麽?老师将大家讨厌那个人的原因写下来。
3.请幼儿回想故事情节,小杰的敌人有哪些让他喜欢的优点,再轮流指出自己心目中讨厌的那个人有哪些优点,老师一一写下来,再引导幼儿对照缺点,想想那个人还是那麽的令人讨厌吗?
4.设定一些状况,让幼儿发表想法:
表达:当和大家讨论事情时,你的方式是1把自己的想法放在心里,不说出来2懒得想,以别人的意见为主3勇於提出自己的想法。
尊重:当与人意见不合时,你的方式是1以自己的想法为主,不听别人的想法2尊重大家的决定。
负责:当与人合作完成一件事时,你的方式是1自己负责的事情做到一半就放弃了,让别人完成2自己不做,全部的事情由别人代劳3努力的完成自己分配到的工作,即使很累也会完成。
包容:和别人相处遇到不愉快的事情时,你的方式是1自己一个人生闷气2适当的说出自己的感觉,原谅他,请他下次改进。
5.老师依幼儿的选择,讨论与人合作的模式,并指出喜欢什麽样的朋友,如:会赞美朋友的人、愿意和朋友分享的人、会鼓励朋友的人……,老师再把它记录下来。
6.让大家握手或拥抱互说一句好听的话,增进同侪的情谊。
活动结束:
1.能指出一项适当的人际相处模式。
2.能向同学说一句好听的话。
盥洗活动(9:40-9:50)对幼儿的要求:
(一)盥洗时不拥挤。
(二)学习掌握洗手、洗脸的一定顺序方法。洗手:(洗手前先擦干净鼻涕)。
1.卷好袖口,幼儿互相帮助。
2.先把手淋湿,搓上肥皂。
3.按手背、手指、手腕顺序洗手,再冲洗肥皂沫,抖掉水珠,用自己的毛巾擦干手,挂好毛巾,放下衣袖。
户外游戏(9:50-10:15):
户外活动音乐游戏:《镜子游戏》教案一、设计意图现今社会不管是哪个场所都会有一样东西--镜子。镜子是当代社会所有人所必不可少的生活用品。在对镜子认识的基础上,配上范晓萱的健康歌由此引伸了《魔镜》这一堂音乐游戏课。
1.当别人在发言时会尊重他人。
2.会遵守游戏规则。
3.凡事能踊跃参与。
二、活动过程:
团体讨论:哪些场所会有镜子?为什么要照镜子?
主要活动:镜子游戏当镜子的人必须模仿照镜子的人所做出的动作。
(1)老师先和全体幼儿玩,每个幼儿先当镜子,由老师当照镜子的人。
(2)静态到动态的动作,如跳跃、弯腰、举脚……
(3)2人分为一组,其中一人当人,另一人当镜子,玩一遍后再互换角色。
综合活动:律动-全身运动(健康歌)
(1)播放范晓萱的歌:左三圈、右三圈,脖子扭扭、屁股扭扭……
(2)随着音乐全身扭动,当音乐停下来,每个幼儿必须停下来摆一个动作,当音乐再继续,则开始动,等音乐停,再摆个姿势(可强调:每次不同,和别人不同)。
(3)接着变化玩法,当歌词唱到"左三圈"时,"三圈"不唱出歌词改换成拍手,"右三圈"的"三圈"改成拍手。脖子扭扭,"扭扭"改成不动渐进,变化玩法规则。
三、活动延伸1.科学角加入迷宫图配合主要活动中加入的镜子,玩"看镜子走迷宫"的游戏。
2."健康歌"录音带放在音乐角,供小朋友角落时间自由使用。
盥洗活动(10:15-10:25)要求:
1.入厕。系好裤子,做到自觉地洗手。
2.喝水。排队喝水,不拥挤,小心烫。
教学活动(二)(10:25-10:55)活动二体育游戏:《小猴学样》教案
一、游戏目标:
1.初步学习助跑跨跳过30-40厘米宽的平行线。
2.引导幼儿利用自制器械,探索其不同玩法,发展幼儿的创造力。
3.培养幼儿在户外活动中听音乐和口令行动的习惯以及合作、竞争精神。
二、游戏重点:学习跨跳。
三、游戏准备:
1.可乐瓶88只,绳44条。
2.录音机、录音带。
四、游戏过程:
1.开始部分:
"小猴学样",幼儿用绳做尾,扮小猴学样的动作,并进行队列练习:小猴(一路纵队)--鱼游(早操队形)--孔雀(六行变三行,再变回六行)--小鸭(变双圈)--兔跳(变四小圆圈,再变六行)。
2.基本部分:
(1)导入活动,幼儿拿绳、瓶,思考其不同玩法。
(2)幼儿自由地玩绳。
指导:观察幼儿封锁绳、玩瓶的花样。
(3)老师简单小结,并请创编花样好的幼儿示范。
(4)"过小河"。
A.排成两纵队学习跨跳,跳过30-40厘米的平行线。
B.教师示范跨跳动作。
指导:面对平行线,原地站立,起跳时后腿用力蹬地跳起,摆动前腿向前。
C.幼儿听鼓声反复练习跳过平行线(利用绳瓶摆平行线)。
(5)游戏:小猴学样
A.排成六路纵队,学习助跑跨跳过30-40厘米的平行线。
B.示范玩法:起跑--过小河--过小河--过小河--跑--纵跳触物--从右往回跑。
C.各队幼儿进行练习。
规则指导:用中速助跑,连续跨跳三条平行线。
D.竞赛式练习。
3、 结束部分:
舞蹈:小猴子和小桃树。
中班数学教案 篇4
活动目标:
1、启发幼儿找出图形间两个相同点,并作记录。
2、培养幼儿抽象概括图形特征的能力。
3、引发幼儿学习图形的兴趣。
4、发展目测力、判断力。
5、引导幼儿积极与材料互动,体验数学活动的乐趣。
活动重点难点:
活动重点:
启发幼儿找出图形间两个相同点,并作记录。
活动难点:
培养幼儿抽象概括图形特征的能力。
活动准备:
教具:各种图形卡片,各种标记图卡。 学具:幼儿人手一张作业纸和一支铅笔
活动过程:
一、概括两图形间相同点。
1、教师出示大小不同的两个三角形:黑板上有什么?(.本文来源:快思老.师)它们什么地方一样?(颜色、形状一样)谁会把它们一样的地方,用标记记下来呢?
2、出示标记图:请一名幼儿来记录,先记颜色(或大小),再记形状。他是怎么记的,我们一起来读一读。(红的三角形)
二、找出相同点并记录。
1、教师出示颜色相同,种类不一样的两个玩具,幼儿观察,做标记。
教师:我们再来看一看这两个玩具,请小朋友观察一下,它们有什么相同点?(颜色相同,形状相同)
2、谁能根据它们的相同点制作标记呢?请幼儿在黑板上记录。
3、检查结果并纠正。
4、出示形状相同、大小相同,颜色不同的两本书。幼儿观察并找出相同点做标记。
三、幼儿操作活动。
1、教师出示三组图形,要求幼儿找出图形的相同点并做标记。①两个颜色不同,大小一样的三角形。②两个大小相同,橙色的圆形。③两个大小不同,蓝色的梯形。
2、幼儿操作,教师巡回指导。
教师:把你的标记做好了之后说一说,这些标记表示什么呢?
四、结束活动。
教师小结:今天我们学习了制作标记,那么用标记我们就可以很明显地看出来,两个物体的相同之处。
活动反思:
依据《纲要》精神和合理利用各种教育教学方法组织教学。并利用操作、探索、观察这三种不可分割的教学手段突破本节活动的重难点。教师还让幼儿通过探索获得感知经验,引发幼儿的好奇心,让幼儿积极思考,从中发现问题,解决问题。在活动中,教师能分配好自己的角色,起到一个引导者、合作者、支持者的作用,让幼儿成为学习的主体。本节活动还遵循了循序渐进的教育理念,由浅入深的引导幼儿去学习、游戏,孩子们对本节活动非常感兴趣,学习的积极性很高,他们在玩中、在游戏中掌握了所学的知识。
中班数学教案 篇5
目标
1:教会幼儿19序数,从左到右区分物体19的位置。
2:启发幼儿用语言讲述操作活动。
3:培养幼儿对计算的兴趣,发展幼儿思维的灵活性。
准备:19张动物图片。19数字,凳子9张,幼儿操作材料一套,
大楼房图片一张,左,右,上,下汉字各一个。
过程:1、小动物做客,激发幼儿的学习计算的兴趣。
师:今天有许多小动物来到我们中班,知道在哪吗?它们是谁?
(出示左----右)数一数看有几只动物?排在最前面的是谁?小鸡排在第几?小猫呢?最后是谁?
2、教19序数。
(1)师:这些小动物还给我们带来了礼物,你们看是什么?(花)摆在最前面的是第几盆?用数字几表示?(1)。一一找出相应数字19。
(2)这些小动物要和大家一起玩捉迷藏游戏,它们就在这些花盆后边做游戏。请小朋友帮它藏
好。现在我们开始玩游戏。
请把XX小动物藏在第三盆花的后面,一一把它们藏起来。
师:小动物藏好了,现在我们把他找出来,要完整的说出XX藏在第几盆的后面。
3、游戏:乘火车
游戏规则:请9位幼儿听开火车音乐上前面,分别取数字19,模仿开火车,音乐停止,幼儿马
上对号入座,,看哪位偶幼儿最快找到位置。
4、学习从上到下找位置。
师:时间不早了,小动物们要到旅馆休息去了,我们送他们回去,,旅馆有几层,数一数,请小朋友先找出数字贴上,一一送进去,并用语言讲述。
5操作活动
发给幼儿学具,让幼儿动手操作。
中班数学教案 篇6
【活动目标】
1、在了解伞的不同特征的基础上,继续积累分类的经验。
2、鼓励幼儿用自己的方式简单清楚地记录,发展幼儿的观察能力。
3、初步培养观察、比较和反应能力。
4、引发幼儿学习的兴趣。
【活动重点】
根据伞的不同特征进行分类,并用圆点记录伞的数量。
【活动难点】
能准确的进行分类,并能清楚的表述自己的分类结果。
【活动准备】
1、小熊图片、花伞图片若干。
2、幼儿活动材料《数学》第13页《花伞商店》。
【活动过程】
一、情景导入。
1、师:小熊新开了一家花伞商店,花伞商店是卖什么的?(伞)。小朋友有没有自己的伞?我请小朋友来说说你的伞是什么样子的?
2、幼儿评经验讲述自己伞的样子,教师从伞的颜色、形状、图案引导。
3、师:小朋友的伞都不一样,都非常漂亮。这个时候呀,小熊遇到了一个难题,花伞商店的伞太多了,小熊想把这些伞(出示六张花伞图片)分分类,放放好(一样的放一起),你们愿意帮助小熊吗?
4、师:第一种方法是按颜色分类。(黄伞和绿伞)黄伞有几把?绿伞有几把?我们把黄伞和绿伞的数量用圆点表示。
5、师:第二种方法是按伞柄的形状分类。(圆柄伞和弯柄伞)圆柄伞有几把?弯柄伞有几把?我们也用圆点表示伞的数量。
6、师:在这些伞中,黄色的弯柄伞有几把?绿色的圆柄伞有几把?
二、哪一把不一样。
1、出示第一组伞。师:小熊也整理了一些伞,他想把一样的伞放进一个货架,你们看看小熊放对了吗?引导幼儿观察、发现其中一把伞的伞柄形状与其他伞的不同。
2、出示第二组伞。找出其中一把伞上的图案数量与其他伞的不同。
3、出示第三组伞。找出其中一把伞的图案形状与其他伞的不同。
4、小结:我们可以从伞柄的图案、伞上图案的数量和形状比较伞的不一样。
三、花伞架分类。
1、出示伞架和伞。
师:老师把这些伞分成五类,就是有五种不同的伞。左边是伞架,右边是伞。每个伞架上都有一把伞,请你从右边的伞中找出和伞架上一样的伞,把伞贴在伞架上。
2、请幼儿找一找,做一做。
3、用圆点记录每一个伞架上伞的数量。
4、师:刚刚我们小朋友上来找的时候是用了什么方法呢?(伞的颜色、伞柄的形状、伞上图案的形状和数量)
5、师结:我们分类的时候你可以先看伞的颜色和伞柄的形状,再看伞上图案的数量。
四、整理花伞架。
1、师:我们小朋友的数学本上面也有一个花伞架,让我们小朋友把伞分分类,和我们刚刚用的方法是一样的。找出相同的伞放到同一个伞架上,然后在右边的格子里用圆点表示数量。(贴上去伞的数量)
2、教师来回观察指导幼儿。
3、教师对作业作出评价。
教学反思:
幼儿园的数学活动相对于其他活动枯燥、单调,容易使幼儿失去学习兴趣。因为这个时期的幼儿年龄小,逻辑思维尚未发展,所以本次活动中我为幼儿创设了一个可操作的丰富材料的环境,为幼儿创设了一个可选择性、可操作性的空间。使幼儿能独立的操作材料,并大胆的表达自己的想法。幼儿的自主性,选择性,独立性得到了充分的体现。通过一系列的游戏活动,达到了主题总目标预设的要求。
中班数学教案 篇7
活动目标:
1、对生活中特殊的电话号码(119、110、120)感兴趣,在活动中感知它们与人们生活的关系。
2、乐意学习拨打特殊电话并正确描述情境,初步积累在紧急情况下报警求救保护生命的经验。
3、培养幼儿敏锐的观察能力。
4、初步培养幼儿的安全意识,提高自我保护能力。
活动准备:
1、海报背景图三幅,正面分别写着110、119、120,背面贴有双面胶的卡片若干,活动记录表张。
2、自制课件,不同的电话机、手机。
活动过程:
一、感知辨别
1、引出特殊的电话号码
师最近,我们收集了许多不同的电话机和手机。小朋友在介绍自己知道的电话号码时发现,家里的电话号码有8位数字,爸爸妈妈的手机号码有11位数字。黄老师还知道三个特殊的电话号码只有3位数字,这三个号码是人们在碰到危险或紧急情况时使用的,你们知道是哪三个号码吗?(110、119、120)
小结:我们班有小朋友知道这三个电话号码。这三个特殊的电话号码是人们在危险或紧急情况下使用的,所以只用三个数字,这样记起来容易,拨起来也快。
2、配对游戏
课件中出示房子着火、打架、有人病重的三幅场景图与三个电话号码,请幼儿仔细观察每一幅图。
师:这里发生了什么事情?
幼:着火了。/有人生病了。/马路上有人在打架。
师:发生这样的危险和紧急情况该拨打什么电话?房子着火了该打哪个电话?
幼119。(根据幼儿的回答,教师操作课件,将号码119与着火的房子相配。)
师.原来,发生了火灾要打火警电话119。那有人生病了该拨打哪个电话号码呢?
幼110。120。(根据幼儿回答操作课件,110与病人的图片配对失败,120配对成功!课件中响起欢呼声、)
师.这次对了。原来有人突然生病或受伤了要拨打急救电话120。那马路上有人打架要拨打哪个电话号码呢?
幼:110。(配对成功。)
师对l如果有人打架,周围的人可以打报警电话110。
拉拉(幼儿喜欢的卡通形象、天线宝宝拉拉.小朋友真聪明-那你们知道为什么说这三个电话是特殊的电话号码吗?(教师鼓励幼儿大胆回答。)
幼.因为这三个号码是三个数字的。/因为这三个号码是人们在危险时用的。/因为这三个号码是在紧急情况下使用的。
师:哦,我也有一个理由,这三个电话号码在我们国家的每个地方都可以用,而且平时我们不能随意拨打这三个电话。拉拉,我们说得对吗?
拉拉小朋友和黄老师都说对了,告诉你们,之所以说这三个电话特殊,还因为它们都是免费的。好了,现在我们起跟这三个特殊的电话号码做个“谁不见了”的游戏吧(教师播放课件,先同时呈现三个号码.点击让其中一个突然消失,请幼儿说出消失的是哪个号码,目的是让幼儿进一步熟悉并记住这三个特殊的电话号码。)
拉拉黄老师,你们班的小朋友真聪明,这么快就记住了这三个特殊的电话号码,那么你们会用这三个电话号码吗?
二、模拟实践
1、学习拨打火警电话119师:拉拉问我们会用这三个号码吗?你们会吗?让我们试试吧
师:(播放课件,幼儿园大门口的真实照片配flash的火焰,表示门房间着火了。看,这里发生了什么事?谁愿意来打电话?
师:记得要像上次火灾逃生演习一样快,要不小火很快就会变成大火。(播放课件,出现电话的图像,请一个幼儿用真实的电话机边说边拔119。幼儿拨完后,课件里的电话铃响起,消防员出现在画面中。)
消防员:“喂,你好,这里是火警中心。”
幼:叔叔,我们幼儿园着火了,请你们快来救火。
消防员知道了,马上来
师:消防员叔叔怎么还不开消防车出来?火越来越大了。
消防员:我还不知道要去哪里灭火呢?
师:哦,原来是××小朋友忘记告诉消防员叔叔是什么幼儿园、在什么路上第几号了。火势更大了}快,谁再来打一次电话?(再请一名幼儿拔打电话。)
消防员:喂,你好,这里是火警中心。
幼:你好,周浦镇瓦屑建设路14号,瓦屑幼儿园着火了,请你赶快来
师:请问瓦屑幼儿园的哪个地方着火了?现在火大不大?
幼:瓦屑幼儿园的门房间着火了,火越来越大了。
消防员:知道了,马上来。(课件中消防车出动,赶赴火场扑灭大火。)
师:真棒,××把火灾发生的地点和火势情况都跟消防员叔叔讲清楚了,所以消防车很快就开到了我们幼儿园,还把火灭了,保护了大家的生命安全,我们真该谢谢他。那你们听见刚才××在电话里是怎么跟消防员叔叔说的?(请幼儿复述火警电话应该说什么.并简单讲解拔打119的一些注意事项.如说清着火的具体地址是什么镇什么路几号、着火点是哪儿、火势大小、有没有人受伤、打电话的人是谁、联系电话是多少,等等。)
2、复习拨打火警电话119
师:(课件播放瓦屑菜场着火、一位卖菜的叔叔受伤的示意图)哎呀’这里也着火了,谁来帮他们打电话?(请两三位幼儿自选电话并与教师模拟打电话。幼儿完整讲述所有必要信息后.教师播放消防车出动的课件。)
3、讨论:还该打什么电话
师大火把菜场里的叔叔也烧伤了,我们还应该帮叔叔打什么电话?(120急救电话。)
师:对了,遇到急病或严重的病情可以拨打120求救。那谁愿意帮受伤的叔叔拨打120?(请2~3位幼儿拔打120急救电话,教师扮演急救中心工作人员。电话打完,播放救护车出动的画面。)
师:(小结拔打120的注意事项)拨打120时同样要说清病人所在的具体地址是什么镇、什么路几号、伤势或病情如何、你是谁、你的联系电话是多少。
师:(播放课件中小偷偷东西的画面)咦卜这是谁?他要干什么?我们打哪个电话?(引出110报警电话,请两位幼儿模拟对打电话。电话打完后,课件播放警车出动。)
师(小结拨打110的注意事项)原来拨打报警电话110和火警电话119、急救电话120道理都一样,都要说清楚事情发生的具体地址是哪里,你是谁,你的联系电话是多少。不过打报警电话110时还要说清发生的到底是什么事件,这样能方便110中心安排对应警种的警察前来处理。
师:怎么样拉拉,我们小朋友真的会打特殊电话了吧!
拉拉:小朋友真聪明,我服了
三、制作海报
1、合作制作海报
师:我们小朋友真的很棒,知道了三个特殊电话号码的用途,学会了拨打它们的方法。也许小班的弟弟妹妹们还不知道怎么用这些电话,我们一起来做几张宣传海报,把这些保护自己的方法也告诉他们好吗?
(教师拿出事先准备好的三张海报,上面有小朋友迷路、失火、爆炸、交通事故、重病病人、小偷偷窃、打架、抢劫、孕妇晕倒等画面。请幼儿将三个电话号码的卡片分别贴在对应的图片旁边。具体要求:幼儿分成三组,跟朋友合作完成海报;做海报时先看清画面内容,再想想该打哪个电话号码,最后在篮子里找出这个号码贴在图片旁边。教师记录幼儿的配对情况。)
2、检查幼儿的海报
逐一检查三张海报,发现问题及时纠正。(幼儿基本都能读懂每幅图,并贴上了对应的报警电话,有几位能力较强的幼儿还在交通事故的图画旁贴上了110和120两个电话号码,在火灾图中的受伤人员旁贴上了119和120。)
师:好了,大家都完成了。等小班的弟弟妹妹有空的时候,我们就去把学到的方法介绍给他们
活动反思:
1、课件与幼儿互动能大大增加幼儿的学习兴趣。在课件中我引入了幼儿十分喜欢的卡通形象一一天线宝宝拉拉,让他代替教师向幼儿提问、对幼儿的回答进行评价、引出游戏环节等,很好地吸引了每个幼儿,让他们始终保持聆听、观看和积极参与的热情。
2、幼儿对活动提供的各种通讯工具(为了达到让幼儿感知不同类型的通讯设备及使用方法的隐性目标)似乎并不在意,所有模拟打电话的幼儿都选择了同一款电话机,这意味着在本次活动中这一隐性目标是否必要得进一步考虑。
3、本活动侧重社会性教育与安全教育,还可以渗透一些在紧急情况下保持沉着、镇静的情感教育。
4、紧急情况下的自救或互救能力也是生命教育中的重要内容之一,为了更好地提高幼儿这方面的能力,还可以尝试协同家长一起开展此活动,如让幼儿事先记住家庭地址、家庭电话等,让幼儿进行更加真实的尝试。
中班数学教案 篇8
【活动目标】
1、能仔细观察画面中的人物细节,看懂单页多幅图画书的主要内容,增强预知故事情节发展和结局的能力。
2、认识夏季常见的冰品及食用时的注意事项。
3、愿意与同伴交流自己的见解。
4、体验解决问题的成就感。
5、在活动中将幼儿可爱的一面展现出来。
【教学重点、难点】
1、 教学重点:能仔细观察画面中的人物细节,看懂单页多幅图画书的主要内容,增强预知故事情节发展和结局的能力。
2、教学难点:认识夏季常见的冰品及食用时的注意事项。
【活动准备】
挂图、家长通知(教师需于活动前两周发给家长,请家长协助准备冷饮的包装纸盒)。
【活动过程】
一、教师利用挂图讲述故事,并与幼儿共同讨论。提问:
1、熊爸爸开的是什么店呢?卖哪些东西呢?
2、为什么这么多人都去他的店买东西呢?熊爸爸用什么来开店呢?
3、夏天到了,熊爸爸的客人最喜欢店里的什么东西呢?
二、教师展示各种冷饮包装:请幼儿分组进行讨论。
1、提问:小朋友,桌子上有什么?这些包装里面是什么呢?
2、教师:小朋友以组为单位,与同组的小朋友说一说自己带来的冷饮名称和包装的特色(颜色、图案、食品安全标志等)以及自己喝过的冷饮滋味。
3、说说冷饮有哪些好处?饮用不当会有什么后果?
三、教师组织幼儿,进行集体讨论。提问:
1、你们吃过的冷饮中,最喜欢哪一种?为什么呢?若是有带冷饮包装来的,可以带上台向我们介绍
【教学反思】
幼儿在活动中积极主动,参与的热情高,有适度的自由空间,因为这个活动主题是和他们的生活密切相关,冷饮很受他们欢迎。
根据活动过程,可以看出我在设计活动时基本把握住了幼儿的经验水平、学习特点。并挖掘了教育内容的核心价值,为幼儿的健康成长建立了一定的基础,。