等式的性质课件
发布时间:2023-10-17
等式性质课件
等式课件
等式的性质课件。
老师在教授新课程时,通常会准备教案和课件。然而,在编写教案课件时需要注意一些方面,以使教案具有针对性和突出重点。如果您对“等式的性质课件”感到好奇,请阅读以下精心准备的资料。对于有需求的同学,请务必点击进来!
等式的性质课件【篇1】
一、教材分析:
“等式的基本性质”是在上一节刚刚认识了等式和方程的基础上进行教学的。该部分知识是学生解方程的依据,它是系统学习方程的开始,这节课的内容在简易方程中就起到了承上启下的作用。教材通过让学生观察天平演示实验,由具体实物之间的平衡关系抽象概括出等式的两个基本性质。关注学生由具体实例到一般意义的抽象概括过程,有意识地渗透“等价思想”、“建模思想”。
根据新课程标准的要求和教材的地位以及学生的实际情况,我把本课目标定为:知识与技能目标:理解并能用语言表述等式的基本性质,能利用等式的基本性质解决简单的问题。
本课的数学思考:在观察实验操作、讨论、归纳等活动中,经历探索等式基本性质的过程,渗透“等价”、“建模”等数学思想。
情感态度与价值观:鼓励学生积极参与数学活动,体验探索等式基本性质过程的挑战性和数学结论的确定性。
教学重难点:根据等式的性质在教材中的作用,我把抽象归纳出等式的基本性质作为本节课的重点,也是难点。
二、学情分析
新课标强调学生是数学学习的主人。学生已经了解了方程的意义而且小学五年级的学生,已具备一定的独立思考能力,乐于动手操作、合作探究。因此教学中我引导学生认真观察—独立思考—自主探究—合作交流,遵循由浅入深,由具体到抽象的规律,为学生创设一个和谐的学习环境,让孩子们在探索交流中,感受、理解和概括出等式的基本性质。
三、教学方法
《数学新课程标准》指出:数学教学必须注意从学生的生活情境以及学生感兴趣的事物出发,为他们提供参与的机会,使他们体会到数学就在身边,对数学产生亲切感。因此,在这节课中,教法上采用了观察法、讨论法、归纳法等,让学生通过实验观察和分组讨论探究学习。
四、教学准备
天平、多媒体课件。由于学具有限,所以采用了认识天平和通过多媒体课件展示结果。
五、教学过程
我把教学过程分为以下五个环节:导入新课——引导探究、合作交流——巩固练习、运用新知——课堂小结——板书设计
第一环节:导入新课。引导学生共同列举等式,对等式进行简单回顾,之后观察课件中的天平,用含有字母的等式来表示,由此引出本节课的新知。
第二环节:引导探究、合作交流。
1、猜想、验证。
通过课件展示教材第64页情境图1,先让学生猜想然后再通过课件在天平上演示过程,验证学生的猜想。
第一次猜想验证后引导学生小结出:等式两边同时加上同一个数,左右两边仍然相等。
2、假设数据、验证规律。
得到结论后通过假设物体的具体的数据验证学生自己总结出的规律:等式两边加上同一个数,左右两边仍然相等。
3、小组合作探究、发现规律。
通过课件展示教材情景图让学生小组合作探究:如果天平的两端同时拿掉1个苹果,结果会怎样?学生汇报后,再次通过课件进行演示。引导学生小结出:等式两边同时减去同一个数,左右两边仍然相等。
4、巩固练习、应用规律
通过一些简单的等式问答,应用等式两边同加或同减相同的数以加强规律的应用。
第四环节:课堂总结,布置作业。
让学生分别谈谈自己的收获,以强化巩固所学知识。课后作业安排为开放的任务:和同组的同学互相写10道利用等式的性质解决的问题,例如:如果x=y,x+8=( )+8。
第五环节:板书设计
在板书的设计上以简单明了为主。通过字母等式的同加、减,同乘、除表现出等式的两个基本性质。
等式的性质课件【篇2】
教学目标:
1.通过天平演示保持平衡的几种变换情况,让学生初步认识等式的基本性质。
2.利用观察天平保持平衡所发现的规律能直接判断天平变化后能否保持平衡。
3.培养学生观察与概括、比较与分析的能力。
教学重点:
理解,并能用自己的话来阐述天平保持平衡的几种变换情况,进而发现等式保持不变的规律。
教学难点:
等式性质里除法的推导及理解。
1.昨天学了什么知识?什么叫方程?举例说明。
2.判断下面式子哪些是方程。
3.昨天我们借助什么研究方程?天平在什么条件下才会保持平衡?
4.看这幅图(出示图1),
(1)你知道了什么?请用一句话描述。
(2)告诉你这些物品的质量,列出式子。(200 =100 100)为什么用等号?(用等式表示平衡的状态)
5.天平不仅可以称一些较轻的物品的质量,还可以帮助我们研究相关的数学知识。今天继续利用这个小助手做游戏,探究和等式有关的知识。
二、探究等式两边用加法和乘法的性质。
(一)1.如果要在天平两边放上一些物品,天平仍然要保持平衡,可以放些什么?独立思考。指名回答。
(1)师:随意的杯子吗?杯子有要求吗?对,要相同的杯子。看图,请用算式表示出来。(200 100=100 100 100)
(2)左右两边仍然相等吗?左边等于300,右边也等于300,所以这个等式成立。
(4)我可以放上2个同样的茶杯吗?那这个式子又该如何写?左右两边仍然相等吗?用字母表示是……
4.由此可得出什么结果?平衡的天平两边加上同样的物品,天平保持平衡。再看看这些等式,你有什么话想说?(师评价:我听到他说了一个词,同一个数,说到关键了)
5.等式就像平衡的天平,等式两边加上 同一个数,左右两边仍然相等。(板书,注意空格)
(二)1.刚才有同学说到,在天平左边加上一个茶壶,右边加上2个茶杯,这样也能平衡吗?为什么?能只放1个茶杯吗?不行,必须把2个茶杯看做一个整体,必须2个2个地放。
2.用式子表示出来。(板书:200 200=100 100 100 100)
3.如果天平左边加上2一个茶壶,右边要加上多少个茶杯?加上3个茶壶呢?用式子表示你觉得怎样?(太麻烦了)数学有时候可以偷懒的。想想有什么办法?
4.为什么用乘法?左边茶壶的数量多1个,我们也可以说扩大到原来的2倍,右边的茶杯的数量也要扩大到原来的2倍。写成算式是:200×2=(100 100)×2。为什么加小括号?刚才说过了,把2个茶杯看做一个整体,必须2个2个地放。
4.如果两边的数量分别扩大到原来的3倍、4倍、5倍,天平还保持平衡吗?
5.那在等式上又怎么表示?(等式两边同时乘同一个数,左右两边仍然相等。)
三、探究等式两边用减法和除法的性质。
1.学到这里,等式的左右两边同时加上或乘同一个数的情况研究完了,接着还想继续研究吗?研究什么?(减法和除法)那你猜猜,结论是什么?
2.你们猜对了吗?我们还是用事实来说话。看图(出示例题图二、图四),选择一幅图,研究等式两边用减法和除法时会出现什么情况。小组合作学习。
3.反馈。
4.平衡的天平两边减去同样的物品,天平也保持平衡。用式子说明则是:等式两边同时减去同一个数,左右两边仍然相等。(板书:在加法后加上“或减去”)
5.除法:把两边的球都平均分成2份,也就是左右两边同时除以2,各去掉1份,天平仍然保持平衡。用式子表示为:(300 300)÷2=600÷2。
6.除以任何数都可以吗?应该是除以同一个不为0的数。(板书:在乘法的后面加上“或除以同一个不为0的数”)
7.通过天平,我们又学习了等式的这些知识,这就是等式的性质。读一读。
提问:如果左边最后只留下X的话,等式两边该写什么?
3.练习十四第5题。
4. 天平左边放3个同样重的苹果,右边放9个同样重的梨,天平平衡。一个苹果和( )个梨同样重。
等式的性质课件【篇3】
各位老师:
很高兴有这次机会和大家一起学习交流。今天,我说课的题目是《等式的性质》的教学内容。我将从以下几个方面进行我的教学思路说明。
一、教材分析
本节课的主要内容是等式的基本性质以及运用等式的.基本性质解简单的一元一次方程。本课是在同学们学习了一元一次方程的概念后的授课内容。等式的基本性质是解方程的理论支撑,它为下节的学习铺平了道路。因此本节课内容起到了承上启下的作用。
二、教学目标。
(1)知识与技能:探究等式的性质,并能利用等式的性质进解简单的一元一次方程。
(2)过程与方法:通过观察探究培养学生探索能力、观察能力,归纳能力和应用新知识的能力。
(3)情感态度价值观:培养学生参与数学活动的积极性、自信心.
三、教学重、难点
教学重点:掌握等式的性质,根据等式性质解简单的一元一次方程。教学难点:由具体实例抽象出等式的性质,正确理解等式性质2中除数不能为0。
四、优缺点:
优点:在教学过程中我重视学生学习知识的生成规律,通过直观引导学生发现抽象的规律。重视数学思想和方法对的渗透,本节课运用到的数学方法有:从特殊到一般、类比、转化、化归等思想方法。
缺点:青少年学生都希望受到老师的表扬,有表现自我的机会,所以在教学中应抓住学生这一生理特点,用适当的语言能激发学生参与课堂的积极性。今后我需要在课堂用语上多下一些功夫。
五、课堂重建
在探究等式性质2的除法情况时,我运用的是在直观得出乘法的规律后,把乘法转化为除法来探究得出除法的规律,下次我会尝试采用利用天平直观演示得出这一规律。数学教学要给学生留出大量的习题训练时间,所以在以后的教学中,我会时时提醒自己精讲多练,尽量多给自主练习的时间和空间。
等式的性质课件【篇4】
一、说教材
1、教材所处的地位和作用:本课内容是在学生认识了等式和方程的基础上进行教学的,它是今后学习解多步方程的基础,它是系统学习方程的开始,其核心思想是构建等量关系的数学模型。通过本节课的学习,引导学生探索,思考比较,发现规律,在实验的基础上,掌握等式的两个基本性质,并能利用等式的性质解简单的方程,为今后运用等式的基本性质解较复杂的方程打下基础。
2、教学内容:本节内容主要讲解等式的性质,在掌握等式的性质后,利用等式性质解简单的方程,再进行具体化练习,加深认识。本节分两课时完成,其中第一节课探索等式的性质,并对等式的构建和等式的性质进行具体化练习。
3、教学目标:教案对学习目标的分解是以"学生的全域发展"作为标准进行的,更注重了学生的主体性和目标的可操作性。学习目标首先被分解为"知识和能力"、"过程和方法"、"情感、态度与价值观".不仅解决了"学到什么"和"怎样学习"的问题,尤其解决了"喜欢学"和"主动学"的问题。
二、说教学方法
"教必有法而教无定法",只有方法得当,才会有效。有效的数学学习活动不能单纯的依赖模仿与记忆,动手实践、自主探索、观察与思考、合作交流是学生学习数学的重要方式。因此在本节课的教学中,我利用多媒体演示、实践操作、通过观察法、实验法、合作交流等教学方法,引导学生动手操作—独立思考—自主探索—合作交流,遵循由浅到深,由具体到抽象的规律,为学生创设一个宽松、民主、和谐的学习环境,让孩子们在探索交流中,感受、理解和应用等式的性质。
三、说学法
首先教师创造良好的环境,引导学生从喜欢的、已知的、熟悉的生活内容入手,让学生自己在特定的环境下不知不觉中建立一些等式与方程之间的联系。再通过一系列的实验活动使学生体验到等量的变化关系和等式的性质,并引导学生用数学语言全面总结出来,从而达到培养学生挖掘问题能力、交流能力和归纳总结与口头表达的能力。
四、说教学程序
1、创设情景,引发认知冲突
以前学生解方程习惯用加减法、乘除法互为逆运算的方式解方程,这样的思路只适宜解比较简单的方程,例如:x+3=5、3x=-12等,简单的一元一次方程的解用估算的方法或逆运算的方式我们都可以求出方程的解;而象19+28x=33x-1这样比较复杂的方程我们用上述方法还能求出它的解吗?我利用学生认知上的冲突引入新课。这样既激发了学生的学习兴趣又明确了本节课的教学目的。为等式性质的构建做好铺垫。
2.实验探索,从特殊到一般
等式性质的呈现属于实验探究型课,目的是要学生在活动中体验等量的变化关系和等式的性质。这里我分段逐步呈现等式的特性。首先出示平衡天平的图形,给学生一个天平平衡的印象,引导学生用字母构建一个等式,接着在上一个平衡天平的基础上,两侧同放一个三角形的符号表示物体的重量,让学生观察这时出现什么现象,同时提出问题:怎样做,两边才会保持平衡?通过学生实验得出使天平两边平衡的方法,并用字母式子表示实验的过程,再通过归纳,概括出对象的共同属性加以表述,接着通过几个练习加以巩固,然后借助上一个实验的经验和方法,进一步指导学生完成天平两边成倍变化的实验,最后根据实验情况观察归纳结论。同时注意在总结时先让学生根据实验,把自己所得到的结论叙述出来,然后教师再对学生的结论给予概括得到等式的性质。
上述讲授等式的性质用的是观察实验法,实验观察是科学研究的一种基本的方法,它是根据客观事物和现象找出它具有的客观规律,有助于发现一些数学事实,抽象出对象的属性,再通过归纳,概括出对象的共同属性加以表述。同时也体现了由特殊到一般的思维认知规律。
3.强化概念,指导学生尝试
关于等式概念、等式与方程的联系的引出,教法上采用充分利用学生已有的知识、练习回顾、交流的方式。等式的性质的教学,采用师生共同观察实验,让学生通过对直观图形的观察、实验和猜想,自已发现结论,并用总结的形式表述结论。等式性质的理解和掌握关键在于应用,只有通过大量练习来巩固和提高,练习的速度越快正确越高,说明知识理解和掌握的越好。因此在教学中得到等式性质后,就用三组尝试练习加强巩固和提高,这样既调动了学生学习的趣味性和主动性,增强了学生积极参与教学活动的意识,又很好地培养了学生的动手操作能力、观察能力、逻辑思维能力和总结归纳能力,同时,也向学生渗透了实践——认识——再实践——再认识的一种学习方法,使新旧知识技能得到了有机的结合。
五、小结与练习
本环节是对所学内容作全面的小结,并质疑问难,除小结所学的知识技能外,还对所用到的数学方法进行了概括,使学生既学习了知识,又培养了能力。同时也对使学生能进一步体会等式与方程联系、等式的性质。
布置作业主要是为了达到:
(1)巩固所学概念;
(2)发现和弥补教与学中的遗漏和不足;
(3)强化基本技能训练,培养学生良好的学习习惯和品质。
等式的性质课件【篇5】
一、学情分析:作为初一学生(132班和137班)在小学时已经对等量关系和等式的性质有所了解,通过本节课的学习,目的是要使学生从天平的特点中归纳得出等式的性质。
新课标对本节课的要求是:掌握等式的性质。在前面一节课的学习中,学生掌握了一元一次方程的概念和初步应用后,需要解决的是一元一次方程的解法。本节内容借助于等式的性质这一工具来解一元一次方程。首先,通过天平的实验操作,使学生学会观察。尝试分析归纳等式的性质。然后,利用等式的性质解一元一次方程。通过解方程的学习提高学生的观察问题、解决问题的能力。
2、教育教学目标。
根据以上对教材的理解与内容分析,考虑到学生已有的知识结构和心理特征,制定如下教学目标:
(1)知识与技能:探究等式的性质,并能利用等式的性质进行等式变形、解简单的一元一次方程。
(2)过程与方法:通过实验培养学生探索能力、观察能力,归纳能力和应用新知识的能力。
(3)情感态度价值观:积极参与数学活动,体验探索等式性质过程的挑战性和数学结论的确定性,建立学生学好数学的信心。
为了使学生能比较顺利地达到教学目标,我确定了本节课的教学重、难点:
教学重点:探究等式的性质,能根据等式性质进行等式变形、解简单的一元一次方程。
教学难点:利用等式的性质把简单的一元一次方程变形为x=a(常数)的形式;正确理解等式性质2中除数不能为0。
(一)教学手段:如何突出重点、突破难点,从而实现教学目标,我在教学过程中利用多媒体演示拟计划进行如下操作:
1、读(看)――议――讲结合法。
2、图表分析法。
3、读图讨论法。
4、教学过程中坚持启发式教学的`原则。
坚持“以学生为主体,以教师为主导”的原则。即“以学生活动为主导,教师讲述为辅,学生活动在前,教师点拨评价在后”的原则。根据初一学生的心理发展规律。联系实际安排教学内容,采用学生参与高度的学导式讨论教学法、师生交谈法、图象信号法、问答法、教学课堂讨论法,使学生动口、主动探索、发现问题、解决问题、互动合作、归纳概括、形成能力,突出学生的主体地位。在采用问答法时,特别注重不同难度的问题。
提问不同层次的学生面向全体,使基础差的学生也有表现的机会,培养其自信心,激发学习热情,有效开发各层次学生的潜在能力求使每个学生都在原有基础上得到发展,同时通过课堂练习和课后作业启发学生。在教学中要积极培养学生数学学习兴趣和动机。明确学习目的,教师应在课堂上充分调动学生积极性,激发来自学生主体的最有力的动力。
实际上,青少年好动,注意力易分散,爱发表见解。希望得到老师的表扬所以在教学中应抓住学生这一生理特点。一方面运用直观生动的形象,引发学生兴趣,使他们的注意力始终集中在课堂上。另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。
首先我出了一些可以看出方程解的题目,让学生回答,由易到难,激起学生学习的欲望,紧接着就引入等式的定义,从而使学生明白解方程先要研究等式,从而引入课题。
由于学生的认知结构是由简单到复杂,由具体到抽象的过程,因此在这一环节中,我分两个方面来教学:等式的性质1由老师课件演示,学生观察归纳概括。
我利用多媒体依次展示天平图的各个操作。让学生通过观察,用语言来描述发现,与同桌交流。这样由具体演示到抽象概括,使学生记忆深刻,充分体现了学生为主体,教师为主导的原则。
通过上面的观察,让学生分组讨论:如何用算式表示实验结果?学生交流后,教师进行课件演示。
本节课,让学生经历一种从平衡到不平衡再到新的平衡的过程,体验变化是怎样产生的,怎样从打破平衡,又怎样达到新的平衡。从而培养了学生观察能力和抽象概括能力。
我接着提问:如果天平两边减去相同的质量,天平会有什么变化?
让学生先独立思考,然后教师课件演示。你又发现了什么规律?怎样用等式描述?得出等式两边同时减去同一个数,等式仍然成立。并且由以上两条规律得出:等式的两边同时加上或减去同一个数,等式仍然成立。
如果在天平两边同时加上或减去不同的质量,天平会有什么变化?
学生经过思考得出:等式的两边加上或减去的必须是同一个数,才能使等式成立。这样符合学生的认知规律,从实践认识,再到实践认识的过程。
教师再用课件展示天平图,学生通过观察,归纳得出:等式两边同时乘或除以同一个数(除数不能为0),等式仍然成立。
等式基本性质2的推导在性质1的基础上,让学生自己通过观察探究,运用知识的迁移得出,这样培养了学生逻辑思维能力,抽象概括能力和口头表达能力。
(2)若a=b,则ac=bc,
注意:
(1)等式两边都要参加运算,且是同一种运算。
(2)等式两边加或减,乘或除以的数一定是同一个数或同一个式子。
(3)等式两边不能都除以0,即0不能作除数或分母。
在这个环节中把等式的两个性质展示出来,我特别提到了三个注意:因为这是在等式性质解方程中容易出错的地方,就是希望同学们认真细心,正确利用性质解题。
我在练习中设计了三道题,从简单的填空到判断变形对错,到最后的解方程,方程的四道题也是有简单到复杂,总之练习题的设计,低起点,小台阶,循序渐进,符合学生接受知识的特点,是那些平时不举手的同学也积极参与,竟然问题也答得很好。从这些方面培养了学生的灵活性,使学生获得成功的满足感。
作业设计:
PPT投影出课本第83页习题3.1第4题。
Yjs21.coM更多幼师资料延伸读
等式课件
幼儿教师教育网编辑为大家整理的“等式课件”或许能帮助您解决一些疑惑。教案课件是每个老师在开学前需要准备的东西,每个人都要计划自己的教案课件了。 设计有创意的教学课件可以增加学生的学习趣味。我们提供的样本仅供参考具体操作请根据实际情况做出调整!
等式课件 篇1
【教材分析】
在新课程改革中,教材是重要的教育教学因素。等式的基本性质是学生解方程的依据,它是系统学习方程的开始。这节课的内容在简易方程中就起到了承上启下的作用。原来的教材中对于等式的基本性质只是初步的认识,并没有总结成概念性的东西,但学生实际运用时却需要概念来作支撑,所以在教材中作了调整,让学生通过观察天平演示实验,由具体实物之间的平衡关系抽象概括出等式的两个基本性质就成了本节课的教学重点。本课“等式的基本性质”是在上一节刚刚认识了等式和方程的基础上进行教学的。,其核心思想是构建等量关系的数学模型。课程标准要求学生能“理解等式的性质,会利用等式的性质解简单的方程”。
【教学目标】
1.通过天平演示保持平衡的几种变换情况,初步认识等式的基本性质。
2.利用观察天平保持平衡所发现的规律,能直接判断天平发生变化后能否保持平衡。
3.逐步养成观察与概括。比较与分析的能力。
【教学重点】
掌握等式的基本性质。
【教学难点】
理解并掌握等式的性质,能根据具体情境列出相应的方程。
【数学思想】
转化的思想,数形结合的思想,符号化的思想
【教学过程】
一。创设情境,引出问题
教师活动
学生活动及达成目标
师:同学们,你们做过天平游戏吗?这节课我们要利用天平一起来探索等式的性质。(板书课题:等式的性质)
达成目标:由熟悉的天平引出课题激发学生的兴趣。
二。共同探索,总结方法
教师活动
学生活动及达成目标
(一)等式的基本性质一
1.出示教材第64页情境图1第一个天平图。
让学生仔细观察图,并说一说:通过图你知道了什么?
教师小结:1个茶壶的重量=2个茶杯的重量。
追问:如果设一个茶壶的重量是a克,1个茶杯的重量是b克,能用式子表示吗?
(师板书)
引导学生思考:如果在天平的两边同时再各放上一个茶杯,天平会发生什么变化呢?为什么?
教师先进行实际操作天平验证,再演示这一过程,并明确:两边仍然相等。
提问:如果两边各放上2个茶杯,还保持平衡吗?
两边各放同样的一把茶壶呢?
2.出示教材第64页图2的第一个天平图。
(1)如果用a表示一个花盆的重量,用b表示一个花瓶的重量,怎样用等式来表示这幅图呢?
(2)如果把两边都拿掉1个花瓶,天平还平衡吗?让学生尝试用等式怎样表示?
从图上你能知道什么?(出示教材第64页图2第二个天平图)
3.通过这几个实验,你发现了什么?
4.你能用一句话来表示你的发现吗?
(二)等式的基本性质二
1.猜猜:除了向前面这样的变化,天平仍保持平衡外,还可以怎么做能使天平保持平衡?
这时教师一定要及时强调:这都是把等式的两边加上或减去同一个数,并提示学生如果把等式的两边同时乘或除以一个相同的数(O除外),会怎么样呢?
2.出示教材第65页图1的第一个天平图,让学生观察并说明。
引导学生用a表示墨水的重量,用b表示铅笔盒的重量,用式子怎样表示?
猜一猜:左边墨水的数量扩大到原来的2倍,右边铅笔盒的数量也扩大到原来的2倍,天平还保持平衡吗?
如果把天平的两边物品的数量分别扩大到原来的。3倍。4倍呢?
3.出示教材第65页图2的第一个天平图,让学生观察并说明知道了什么。
质疑:如果把两边的球都平均分成2份,各去掉一份,天平还能平衡吗?
教师演示。
4.通过刚才的试验,你发现了什么?
5.你能用一句话总结一下等式的这个性质吗?
6.为什么等式两边不能除以O?
1.自主回答,学生可能会回答:天平的左边放了一把茶壶,右边放了两个茶杯,天平保持平衡;这说明一个茶壶的重量与2个茶杯的重量相等。
尝试写出:a=2b
先猜一猜,学生可能会猜测出天平仍然平衡,因为两边加上的重量一样多。
观察小结:实验证明1个茶壶+1个茶杯的质量=3个茶杯的质量。
同时学生尝试用字母表示这个式子:a+b=2b+b
学生回答后,教师演示,并让学生分别用式子表示:a+2b=2b+2ba+a=2b+a
观察现在的天平是什么样的?(平衡)
生尝试写出:a+b=4b
先猜一猜,再回答,平衡:a+b-b=4b-b
得出1个花盆和3个花瓶同样重。
3.学生思考后小结:平衡的天平两边加上同样的物品,天平还保持平衡。平衡的天平两边减去同样的物品,天平还保持平衡。
4.学生归纳等式的性质1:等式两边加上或减去同一个数,左右两边仍然相等。
达成目标:通过演示在天平的两边同时放上或拿走同样的物品,天平仍然平衡。给学生思考。感悟天平保持平衡的变化规律,提供了直观的观察材料。从而得出天平平衡的原理,即等式的一条基本性质:等式两边加上或减去相等的数,等式不变。
1.如:学生猜测天平的两边同时放2个。3个杯子;同时减去一把茶壶等。
2.学生观察并说明:
一瓶墨水的重量=一盒铅笔盒的重量
写出等式:a=b。
学生猜测平衡后,教师进行实际天平操作,验证学生的猜测。
学生用等式表示:2a=2b。
天平仍然保持平衡
3.学生观察得出:
2个排球的质量=6个皮球的质量
有了前面的经验学生用a表示排球的重量,用6表示皮球的重量,写出等式:2a=6b。
学生猜测:平衡,并能用等式a=3b表示。
4.学生会发现:平衡的天平两边的物品扩大到原来的相同倍数,天平仍然平衡。平衡的天平两边的物品都缩小到原来的几分之一,天平仍然平衡。
5.学生归纳小结:等式两边乘同一个数,或除以同一个不为0的数,左右两边仍然相等。
达成目标:等式基本性质2的推导在性质1的基础上,让学生自己通过实验探究,运用知识的迁移得出,这样培养了学生的逻辑思维能力,抽象概括能力和口头表达能力。
6.学生交流,汇报:O不能做除数。
三。运用方法,解决问题
教师活动
学生活动及达成目标
出示教材第66页练习十四第4.5题。
学生试做集体订正,注意学生列式计算时的取值是否正确。
四。反馈巩固,分层练习
教师活动
学生活动及达成目标
基础练习:利用等式的性质填空
1.如果2x-5=9,那么2x=9+()
2.如果5=10+x,那么5x-()=10
3.如果3x=7,那么6x=()
4.如果5x=15,那么x=()
拓展练习:见课件
让学生回忆等式的性质,再自主完成填空。
达成目标:等式的基本性质一是简易方程部分重要的概念,不仅要理解,而且还要会应用。
五。课堂总结,提升认识
教师活动
学生活动及达成目标
这节课你运用了哪些,你有什么收获?你对自己这堂课的表现是怎么评价的?
学生总结本节课的收获,在梳理总结过程中提高学生对性质的认识和理解。
等式课件 篇2
教学内容:教科书第3~4页的内容,练习一的4~6题。
教学目标:
1、通过学习,使学生知道等式两边同时加上或减去同一个数,所得的结果仍然是等式。
2、根据等式的性质(一)学会解决含有加、减号的方程。
3、有意识地培养学生的自学能力。
教学过程:
一、教学例3
出示图,学生根据图独立填空。
根据学生的回答,板书:
20=20xx+10=20+10
X=50X+20=50+20
50+a=50+a50+a-a=50+a-a
X+20=70X+20-20=70-20
提问:比较两边的算式,你有什么发现,在小组里说说。
全班交流,引导学生说出:等式两边同时加上或减去同一个数,所得的结果仍然
是等式。这是等式的性质。
独立完成练一练第1题
二、教学例4
学生自学,不懂的问题和同组同学交流,能解决的就小组内交流。
全班交流:例4中还有什么不懂的地方提出来,能由学生解决的就由学生解决,
学生解决不了的教师解决。
一是方法:根据等式的性质把含有未知数的这边化简成就含有一个未知数。
二是检验:把计算的结果代到原式,看左右两边是否相等。
三强调书写的格式。
小结:求方程中未知数值的过程,叫做解方程。
完成试一试练一练的第2题。
学生独立完成后集体订正,重点帮助有困难的学生,针对学生出错的地方及时分
析错误原因,帮助他们弄懂。
三、课堂作业
练习一的第4、5、6题。
第4、6题做在书上,第5题写在作业本上。
板书:
等式两边同时加上或减去同一个数,所得的结果仍然是等式。
这时等式的性质。
X+10=50
解:X+10-10=50-10
X=40
教后小记
等式课件 篇3
《不等式及其基本性质》习题
【教学内容】
课本上不等式的五个基本性质,并学会应用.【教学目标】
1、掌握不等式的五个基本性质并且能正确应用.
2、经历探究不等式基本性质的过程,体会不等式与等式的异同点,发展学生分析问题和解决问题的能力.
3、开展研究性学习,使学生初步体会学习不等式基本性质的价值.
【重点难点】
重点:理解不等式的五个基本性质.难点:对不等式的基本性质3的认识.【教学方法】
本节课采用“类比-实验-交流”的教学方法.【教学过程】
一、回顾交流.
1、等式的基本性质 解一元一次方程的基本步骤
2、问题牵引:
用“﹥”或“﹤”填空,并总结其中的规律:
(1)5>3,5+2
3+2,5-2 3-2 ;
(2)–1
-1+2 3+2,-1-3 3-3 ;
结果:
(1)>、>(2)
当不等式两边加或减去同一个数(正数或负数)时,不等号的方向______
3、继续探究,接着又出示(3)、(4)题: 5 2×5,6×(3)6>2,6×(-5)
2×(-5),6 3×6,(4)2
3×(-6).得到:
当不等式的两边同乘以一个正数时,不等号的方向不变; 当不等式的两边同乘以一个负数时,不等号的方向改变.总结出不等式的性质: 不等式的性质1:不等式的两边加(或减)同一个数(或式子),不等号的方向不变.c
> b±c 字母表示为:如果a>b,那么a±不等式的性质2:不等式的两边乘(或除以)同一个正数,不等号的方向不变.字母表示为:如果a>b,c>0那么ac
> bc,不等式的性质3:不等式的两边乘(或除以)同一个负数,不等号的方向改变.字母表示为:如果a>b,c<0那么ac
不等式的对称性:如果a>b,那么bb,b>c,那么a>c
二、范例学习,应用所学.
1、利用不等式的性质解下列不等式. (1)x-7>26
(2)3x
(4)-4x﹥3
22、逐题分析得出结果.(1)x-7>26 分析:解未知数为x的不等式,就是要使不等式逐步化为x﹥a或x﹤a的形式.
解:(1)为了使不等式x-7>26中不等号的一边变为x,根据不等式的性质1,不等式两边都加7,不等号的方向不变,得 x-7+7﹥26+7 x﹥33(2)3x
为了使不等式3x
23不等号的方向不变,得 x﹥75(4)-4x﹥3
为了使不等式-4x﹥3中的不等号的一边变为x,根据不等式的性质3,不等式两边都除以-4,不等号的方向改变,得x
3 4通过(3)(4)的求解过程,类似于解方程两边都除以未知数的系数(未知数系数化为1),解不等式时要注意未知数系数的正负,以决定是否改变不等号的方向.三、课堂探究.
已知a
四、课堂小结提问.不等式性质的作用.
等式课件 篇4
尊敬的各位老师,下午好!
我叫孙有玺,来自音河中学。很高兴能把《不等式的性质(1)》一课的教学和大家一起探讨。下面我将从学生状况、教学任务、教学过程、设计说明等四个方面加以分析。
一、学生状况分析:
七年级下期的学生活泼好动,有一定合作探究意识,在知识方面已经学习了有理数大小比较,等式及基本性质。这些都为自主探究不等式的性质打下了良好的基础。
二、教学任务分析:
(一)教材地位与作用:
不等式是初中代数的重要内容之一,是已知量与未知量的矛盾统一体。数学关系中的相等与不等是事物运动和平衡的反映,学习研究数量的不等关系,可以更好地认识和掌握事物运动变化的规律。“不等式的性质”是学生学习整个不等式知识的理论基础,为以后学习解不等式(组)起到奠基的作用。
(二)教学目标:
知识目标:
探索不等式的基本性质,并能准确运用不等式的三条性质将不等式变形。
能力目标:
让学生学会类比的思想对等式性质及不等式性质进行了比较,培养学生的观察、分析、归纳的能力。
情感目标:
通过“等”与“不等”的比较使学生进一步领会对立统一的思想,培养学生辨证唯物主义的观点。
(三)教学重点、难点:
不等式的性质是本节不等式变形的基础,也是今后解不等式(组)的依据,所以掌握不等式的基本性质,并能正确运用它们将不等式变形是本节课的重点。
不等式的两边同乘以(或除以)负数,不等号方向改变和等式的性质不同,学生学习起来比较困难,因此,不等式性质3的理解与正确使用是本节课的难点。让学生自己动口、动手、动脑,进行比较、讨论,并加以强化练习达到突破的目的。
(四)教学方法与学法的指导:
本节课属于性质类知识,重在探索,意在应用。因此,我采用启发诱导、实例探究的方法进行教学,这种教学方法以“主动探索”为基础,先“引导发现”后“讲评点拨”,让学生在克服困难与障碍的过程中发展自己的观察力、想象力、思维力。引导学生学会类比、归纳的学习方法,帮助他们在自主探究过程中理解和掌握不等式的性质。
三、教学过程
(一)复习提问、引入新课
为了使学生自己能在教师的指导下,自主探究问题,发现问题,获得结论。而不是把现成的结论告诉学生。对于不等式性质的发现,我采用了下面的作法,我首先带领学生复习等式的性质
等式性质1等式两边加(或减)同一个数或式子,结果仍相等。
等式性质2等式两边乘同一个数,或除以同一个不为零的数,结果仍相等。
(二)合作交流、探究新知
在复习等式性质后,教师提出不等式是否也有类似的性质呢?先引导学生对不等式的两边都加、减同一个数,会发现什么呢?学生通过思考和计算后会说出不等式两边都加、减同一个数,“仍是不等式”。此时,教师抓住学生叙述中的问题予以纠正,不能笼统的说“仍是不等式”,因为“=”没有方向性,而不等号有方向性,所以要改为“不等号的方向不变”。接着,让学生不等式作两边都乘以或除以同一个数的变形,会发现什么呢?学生通过计算和讨论,甚至会发生争执,教师要深入学生,通过共同探讨,学生会发现不等式两边都乘以或除以正数,不等号方向不变,两边都乘以或除以负数,不等号方向改变。最后由学生归纳出不等式的`性质2和性质3。
我这样安排的目的是为了让学生通过动手、动口、动脑发挥合作精神,学会运用类比、归纳的数学思想去探究问题,同时学生也会品尝到成功的喜悦,从而提高他们学习数学的兴趣。
(三)灵活运用、巩固练习
为使学生能够准确运用性质将不等式变形,也为例题的教学做一些铺垫,我先设置了两组抢答题:
抢答:看谁答的快又准
1·设m>n,用“<”或“>”填空:
(1)m—5___n—5
(2)m+4___n+4
(3)6m___6n(4)
—5m___—5n
2·判断:
(1)∵3+x>3+y,∴x>y()
(2)∵3>2,∴n+3>2+n()
(3)∵a<b,∴2a+1<2b+1()
(4)∵—2a<6,∴x>—3()
在学生练习过程中,老师特别强调:当不等式两边同乘以或除以负数时,“不等号的方向改变”。
接着,给出例题:
例1·利用不等式的性质解下列不等式,并在数轴上表示解集:
(1)x+7>10
(2)3x>2x+1
(3)—10x>50
(4)—4x
例2·根据下列已知条件,说出a与b的不等关系:
(1)a—3>b—3
(2)—a>—b
(3)—2a+1
例1由学生分组讨论,写出解题过程,老师展示几个同学的解答并给予讲解。对于例2我采用先引导学生分析解题思路,再让学生口述解题过程,并说明根据不等式的哪一条性质,由师生共同完成。
为了解学生能否独立运用性质将练习三,安排学生演板:
3·利用不等式的性质解不等式。
(1)—3x>12
(2)3x—4
请两位学生演板,其余学生独立完成,并对学生演板的结果作出评价,教师深入小组,发现问题及时纠正,通过学生的互相评价找出应用不等式基本性质进行变形中出现的错误,以防患于未然。
以上练习完成之后,学生已能准确运用不等式的性质,将不等式变形,为培养学生的解题能力,让学生更深层地理解不等式的基本性质,在此基础上我又作出了一些引申和推广。
4·判断正误,并说明理由。
(1)∵5>4,∴5a>4a
(2)不等式2x>5x的两边同除以x,得2>5
(3)若ac2>bc2,则a>b
第4题设计说明,当不等式两边同乘或除以一个字母,而字母的取值不明确时,需对字母分情况讨论。
〔四〕归纳小结、整体把握
为帮助学生从整体把握本节课所学的知识,培养良好的学习习惯,让学生自己对本节课所学知识以及用到的解决问题的方法进行小结。方法是:由学生四人一组互谈本节课的收获,总结解题方法,并说明解题过程中应该注意的问题,然后请一位同学小结,其他学生补充,达到巩固知识的目的。
教学设计说明
学生的学习内容应该是现实的、有趣的和富有挑战性的,而老师则应该创造一个有利于学生主动求知的学习环境。因此,本节课把培养学生的学习兴趣和思维能力放在首位。教学中采用合作学习的方式,互相交流,集思广益,突破创新,以达到共同提高的目的。然后,通过多样化的练习巩固知识,既调动学生的积极性,又使学习伙伴之间进行了思维的碰撞和沟通。使其在轻松的氛围中多层次、多角度地掌握“不等式的性质”。
本节课的设计体现了一个原则:低起点、多练习、勤反馈、快矫正、重能力、以求最大限度提高课堂效率。
等式课件 篇5
均值不等式
教学目标
(一) 知识与技能:明确均值不等式及其使用条件,能用均值不等式解决简单的最值问题.
(二) 过程与方法:通过对问题主动探究,实现定理的发现,体验知识与规律的形成过程.
(三) 情感态度与价值观:通过问题的解决以及自身的探索研究领略获取新知的喜悦.教学重点:均值不等式的推导与证明,均值不等式的应用.教学难点:均值不等式的应用 教学过程
创设情境如图,AB是圆的直径,D是CAB上与A、B不重合的一点,AD=a,DB=b,过点D作垂直于AB的弦CD,连AC,BC,AaODbB则CD=__,半径OC=____E 讨论 :(1)CD OC (2)文字叙述(几何意义): (3)试用含a、b的表达式来表示上述关系 注意:(1)当 时, (2)a、b的取值范围
探求新知:均值不等式的内容及证明
均值定理:
证明:(比较作差法)
变形应用:(1)
(2)
讨论释疑:
牛刀小试:已知x0,则x1x 例
1、已知ab0,求证:baab2并推导出式中等号成立的条件
例
2、求函数f(x)x22x3x(x0)的最值,以及此时x的值
精炼巩固:
t2 1.设t0,则函数f(t)4t1的最小值为此时t的值
4 2.已知正数a,b满足ab1,则ab有最值为
点拨提高:
总结本节课的你的收获。
课堂小测:
1 .已知正数a,b满足ab1,则1a1b有最值为。 2 .设x3,则函数f(x)(x3)2x3的最小值为此时x的值3.已知a、bR,求证:(a11a)(bb)4
课堂小测:
1 .已知正数a,b满足ab1,则1a1b有最值为。 2 .设x3,则函数f(x)(x3)2x3的最小值为此时x的值3.已知a、bR,求证:(a11a)(bb)4
课堂小测:
1
.已知正数a,b满足ab1,则1a1b有最值为。 2 .设x3,则函数f(x)(x3)2x3的最小值为此时x的值3.已知a、bR,求证:(a11a)(bb)4
课堂小测:
1
.已知正数a,b满足ab1,则1a1b有最值为。 2 .设x3,则函数f(x)(x3)2x3的最小值为此时x的值3.已知a、bR,求证:(a11a)(bb)4
不等式基本性质教学设计
《等式的性质》教学设计
《等式的性质》教学设计
等式性质教学设计(共8篇)
基本不等式教学设计
等式课件 篇6
教学内容:教科书第3~4页的内容,练习一的4~6题。
教学目标:1、通过学习,使学生知道等式两边同时加上或减去同一个数,所得的结果仍然是等式。
2、有意识地培养学生的自学能力。
教学重点与难点:根据等式的性质(一)学会解决含有加、减号的方程。
教学流程:
一、教学例3
出示图,学生根据图独立填空。
根据学生的回答,板书:
20=20xx+10=20+10
X=50X+20=50+20
50+a=50+a50+a-a=50+a-a
X+20=70X+20-20=70-20
提问:比较两边的算式,你有什么发现,在小组里说说。
全班交流,引导学生说出:等式两边同时加上或减去同一个数,所得的结果仍然
是等式。这是等式的性质。
独立完成练一练第1题
二、教学例4
学生自学,不懂的问题和同组同学交流,能解决的就小组内交流。
全班交流:例4中还有什么不懂的地方提出来,能由学生解决的就由学生解决,学生解决不了的教师解决。
一是方法:根据等式的性质把含有未知数的这边化简成就含有一个未知数。
二是检验:把计算的结果代到原式,看左右两边是否相等。
三强调书写的格式。
小结:求方程中未知数值的过程,叫做解方程。
完成试一试练一练的第2题。
学生独立完成后集体订正,重点帮助有困难的学生,针对学生出错的地方及时分
析错误原因,帮助他们弄懂。
三、课堂作业
练习一的第5题。
板书:
等式两边同时加上或减去同一个数,所得的结果仍然是等式。
这时等式的性质。
X+10=50
解:X+10-10=50-10
X=40
等式课件 篇7
1、具体情境,感受天平平衡
通过课件展示情境图引导学生小结出等式并用字母表示。
2、猜想假设、小结规律
先让学生猜想然后再通过课件在天平上演示过程。验证学生的猜想,用字母表示。引导学生小结出:等式两边同时加上同一个数,左右两边仍然相等。
3、观察思考、总结发现
通过课件对教材第64页图2的演示过程让学生独立思考,再通过小组合作讨论总结出发现的规律。等式的性质1:等式两边加上或减去同一个数,左右两边仍然相等。
4、假设数据、验证规律
得到结论后通过假设物体的具体的数据验证学生自己总结出的规律。
5、口算练习、应用规律
通过一些简单的等式问答应用等式两边同加或同减相同的数以加强规律的应用。
6、设疑思考
提出问题让学生思考还有没有其他的运算也能使等式左右两边相等。留给学生思维的空间,再通过课件引导学生一步步总结出等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,左右两边仍然相等。
等式课件 篇8
1、创设情景,引发认知冲突
以前学生解方程习惯用加减法、乘除法互为逆运算的方式解方程,这样的思路只适宜解比较简单的方程,例如:x+3=5、3x=-12等,简单的一元一次方程的解用估算的方法或逆运算的方式我们都可以求出方程的解;而象19+28x=33x-1这样比较复杂的方程我们用上述方法还能求出它的解吗?我利用学生认知上的冲突引入新课。这样既激发了学生的学习兴趣又明确了本节课的教学目的。为等式性质的构建做好铺垫。
2、实验探索,从特殊到一般
等式性质的呈现属于实验探究型课,目的是要学生在活动中体验等量的变化关系和等式的性质。这里我分段逐步呈现等式的特性。首先出示平衡天平的图形,给学生一个天平平衡的印象,引导学生用字母构建一个等式,接着在上一个平衡天平的基础上,两侧同放一个三角形的符号表示物体的重量,让学生观察这时出现什么现象,同时提出问题:怎样做,两边才会保持平衡?通过学生实验得出使天平两边平衡的方法,并用字母式子表示实验的过程,再通过归纳,概括出对象的共同属性加以表述,接着通过几个练习加以巩固,然后借助上一个实验的经验和方法,进一步指导学生完成天平两边成倍变化的实验,最后根据实验情况观察归纳结论。同时注意在总结时先让学生根据实验,把自己所得到的结论叙述出来,然后教师再对学生的结论给予概括得到等式的性质。
上述讲授等式的性质用的是观察实验法,实验观察是科学研究的一种基本的方法,它是根据客观事物和现象找出它具有的客观规律,有助于发现一些数学事实,抽象出对象的属性,再通过归纳,概括出对象的共同属性加以表述。同时也体现了由特殊到一般的思维认知规律。
3、强化概念,指导学生尝试
关于等式概念、等式与方程的联系的引出,教法上采用充分利用学生已有的知识、练习回顾、交流的方式。等式的性质的教学,采用师生共同观察实验,让学生通过对直观图形的观察、实验和猜想,自已发现结论,并用总结的形式表述结论。等式性质的理解和掌握关键在于应用,只有通过大量练习来巩固和提高,练习的速度越快正确越高,说明知识理解和掌握的越好。因此在教学中得到等式性质后,就用三组尝试练习加强巩固和提高,这样既调动了学生学习的趣味性和主动性,增强了学生积极参与教学活动的意识,又很好地培养了学生的动手操作能力、观察能力、逻辑思维能力和总结归纳能力,同时,也向学生渗透了实践——认识——再实践——再认识的一种学习方法,使新旧知识技能得到了有机的结合。
等式课件 篇9
教学内容:教科书第3~4页的内容,练习一的4~6题。
教学目标:1、通过学习,使学生知道等式两边同时加上或减去同一个数,所得的结果仍然是等式。
2、根据等式的性质(一)学会解决含有加、减号的方程。
3、有意识地培养学生的自学能力。
教学过程:
一、教学例3
出示图,学生根据图独立填空。
根据学生的回答,板书:
20=2020+10=20+10
X=50X+20=50+20
50+a=50+a50+a-a=50+a-a
X+20=70X+20-20=70-20
提问:比较两边的算式,你有什么发现,在小组里说说。
全班交流,引导学生说出:等式两边同时加上或减去同一个数,所得的结果仍然
是等式。这是等式的性质。
独立完成练一练第1题
二、教学例4
学生自学,不懂的问题和同组同学交流,能解决的就小组内交流。
全班交流:例4中还有什么不懂的地方提出来,能由学生解决的就由学生解决,
学生解决不了的教师解决。
一是方法:根据等式的性质把含有未知数的这边化简成就含有一个未知数。
二是检验:把计算的结果代到原式,看左右两边是否相等。
三强调书写的格式。
小结:求方程中未知数值的过程,叫做解方程。
完成试一试练一练的第2题。
学生独立完成后集体订正,重点帮助有困难的学生,针对学生出错的地方及时分
析错误原因,帮助他们弄懂。
三、课堂作业
练习一的第4、5、6题。
第4、6题做在书上,第5题写在作业本上。
等式课件 篇10
一、学情分析:作为初一学生(132班和137班)在小学时已经对等量关系和等式的性质有所了解,通过本节课的学习,目的是要使学生从天平的特点中归纳得出等式的性质。
新课标对本节课的要求是:掌握等式的性质。在前面一节课的学习中,学生掌握了一元一次方程的概念和初步应用后,需要解决的是一元一次方程的解法。本节内容借助于等式的性质这一工具来解一元一次方程。首先,通过天平的实验操作,使学生学会观察。尝试分析归纳等式的性质。然后,利用等式的性质解一元一次方程。通过解方程的学习提高学生的观察问题、解决问题的能力。
2、教育教学目标。
根据以上对教材的理解与内容分析,考虑到学生已有的知识结构和心理特征,制定如下教学目标:
(1)知识与技能:探究等式的性质,并能利用等式的性质进行等式变形、解简单的一元一次方程。
(2)过程与方法:通过实验培养学生探索能力、观察能力,归纳能力和应用新知识的能力。
(3)情感态度价值观:积极参与数学活动,体验探索等式性质过程的挑战性和数学结论的确定性,建立学生学好数学的信心。
为了使学生能比较顺利地达到教学目标,我确定了本节课的教学重、难点:
教学重点:探究等式的性质,能根据等式性质进行等式变形、解简单的一元一次方程。
教学难点:利用等式的性质把简单的一元一次方程变形为x=a(常数)的形式;正确理解等式性质2中除数不能为0。
(一)教学手段:如何突出重点、突破难点,从而实现教学目标,我在教学过程中利用多媒体演示拟计划进行如下操作:
1、读(看)――议――讲结合法。
2、图表分析法。
3、读图讨论法。
4、教学过程中坚持启发式教学的`原则。
坚持“以学生为主体,以教师为主导”的原则。即“以学生活动为主导,教师讲述为辅,学生活动在前,教师点拨评价在后”的原则。根据初一学生的心理发展规律。联系实际安排教学内容,采用学生参与高度的学导式讨论教学法、师生交谈法、图象信号法、问答法、教学课堂讨论法,使学生动口、主动探索、发现问题、解决问题、互动合作、归纳概括、形成能力,突出学生的主体地位。在采用问答法时,特别注重不同难度的问题。
提问不同层次的学生面向全体,使基础差的学生也有表现的机会,培养其自信心,激发学习热情,有效开发各层次学生的潜在能力求使每个学生都在原有基础上得到发展,同时通过课堂练习和课后作业启发学生。在教学中要积极培养学生数学学习兴趣和动机。明确学习目的,教师应在课堂上充分调动学生积极性,激发来自学生主体的最有力的动力。
实际上,青少年好动,注意力易分散,爱发表见解。希望得到老师的表扬所以在教学中应抓住学生这一生理特点。一方面运用直观生动的形象,引发学生兴趣,使他们的注意力始终集中在课堂上。另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。
首先我出了一些可以看出方程解的题目,让学生回答,由易到难,激起学生学习的欲望,紧接着就引入等式的定义,从而使学生明白解方程先要研究等式,从而引入课题。
由于学生的认知结构是由简单到复杂,由具体到抽象的过程,因此在这一环节中,我分两个方面来教学:等式的性质1由老师课件演示,学生观察归纳概括。
我利用多媒体依次展示天平图的各个操作。让学生通过观察,用语言来描述发现,与同桌交流。这样由具体演示到抽象概括,使学生记忆深刻,充分体现了学生为主体,教师为主导的原则。
通过上面的观察,让学生分组讨论:如何用算式表示实验结果?学生交流后,教师进行课件演示。
本节课,让学生经历一种从平衡到不平衡再到新的平衡的过程,体验变化是怎样产生的,怎样从打破平衡,又怎样达到新的平衡。从而培养了学生观察能力和抽象概括能力。
我接着提问:如果天平两边减去相同的质量,天平会有什么变化?
让学生先独立思考,然后教师课件演示。你又发现了什么规律?怎样用等式描述?得出等式两边同时减去同一个数,等式仍然成立。并且由以上两条规律得出:等式的两边同时加上或减去同一个数,等式仍然成立。
如果在天平两边同时加上或减去不同的质量,天平会有什么变化?
学生经过思考得出:等式的两边加上或减去的必须是同一个数,才能使等式成立。这样符合学生的认知规律,从实践认识,再到实践认识的过程。
教师再用课件展示天平图,学生通过观察,归纳得出:等式两边同时乘或除以同一个数(除数不能为0),等式仍然成立。
等式基本性质2的推导在性质1的基础上,让学生自己通过观察探究,运用知识的迁移得出,这样培养了学生逻辑思维能力,抽象概括能力和口头表达能力。
(2)若a=b,则ac=bc,
注意:
(1)等式两边都要参加运算,且是同一种运算。
(2)等式两边加或减,乘或除以的数一定是同一个数或同一个式子。
(3)等式两边不能都除以0,即0不能作除数或分母。
在这个环节中把等式的两个性质展示出来,我特别提到了三个注意:因为这是在等式性质解方程中容易出错的地方,就是希望同学们认真细心,正确利用性质解题。
我在练习中设计了三道题,从简单的填空到判断变形对错,到最后的解方程,方程的四道题也是有简单到复杂,总之练习题的设计,低起点,小台阶,循序渐进,符合学生接受知识的特点,是那些平时不举手的同学也积极参与,竟然问题也答得很好。从这些方面培养了学生的灵活性,使学生获得成功的满足感。
作业设计:
PPT投影出课本第83页习题3.1第4题。
等式课件 篇11
一、教材分析
等式的基本性质是学生在刚刚认识了等式与方程的基础上进行教学的。它是系统学习方程的开始,其核心思想是构建等量关系的数学模型。本节课的学习是学生在实验的基础上,掌握等式的两个基本性质,引导学生通过比较,发现规律,并为今后运用等式的基本性质解方程打基础。同时培养学生数学思维能力。
二、教学目标:
知识与技能:理解并能用语言表述等式的基本性质,能用等式的基本性质解决简单问题。
过程与方法:在用算式表示实验结果、讨论、归纳等活动中,经历探索等式基本性质的过程。
情感态度价值观:积极参与数学活动,体验探索等式基本性质过程的挑战性和数学结论的确定性。
三、教学重点是:
引导学生探索发现等式的基本性质,利用等式的基本性质解决简单问题。
教学难点是抽象归纳出等式的基本性质。
四、教学程序(分三部分教学)
(一)联系实际,激趣引入
首先激发探究兴趣:提出问题:“同学们,你用天平做过游戏吗?”这节课我们就利用天平一起来探索天平游戏中所包含的数学知识。”
(二)自主探索,合作交流
学习等式的基本性质1
1、具体情境,感受天平平衡
利用多媒体依次展示天平图的各个操作。让学生通过观察,用语言来描述发现,与同桌交流。这样由具体演示到抽象概括,使学生记忆深刻,充分体现了学生为主体,教师为主导的原则。
图1、图2的教学模式:先让学生观察,问:你发现了什么?然后提问:怎样变换,能使天平仍然保持平衡呢?待学生思考片刻,再进一步提问:往两边各放1个杯子,天平会发生什么变化?生口答,验证。接下去,继续提问:如果两边各放上2个茶杯,天平还会保持平衡吗?两边各放上同样的一把茶壶呢?生答,再一一演示验证。
图3、图4的教学模式和前面一样。
板书如下:
2、总结抽象,认识规律
通过上面的观察,先用一句话归纳图1和图2的内容。(1、等式的两边都加上或减去相同的数,等式不变。)再以第一句话为基础归纳出图3和图4的内容。(2、等式的两边都乘或除以相同的数(0除外)等式不变。)
教师指出这是等式的一个非常重要的性质。板书:等式的基本性质
(三)巩固练习,深化认识
练习题的设计,低起点,小台阶,循序渐进,符合学生接受知识的特点,培养了学生的灵活性,使学生获得成功的满足感。
1、根据图(1)在下面每幅图的括号里填上适当的符号或数字,使天平平衡。
2、课堂作业。(当堂完成)
填一填。(a、b均不为0)
(1) 如果x+a=b,那么x+a-a=b○
(2) 如果x-a=b,那么x-a+a=b○
(3) 如果ax=b,那么a x÷a=b○
(4) 如果x÷a =b,那么x÷a×a=b○
3、拓展训练。
五、最后,关注学生的和感受,提出:通过本节课的学习你有什么收获?
不等式的课件
老师在开学前需要把教案课件准备好,每个人都要计划自己的教案课件了。教案是实现高效教学的不可或缺要素之一。如果您想深入理解这一话题不妨看看“不等式的课件”,本文的内容必将给您带来很多有用的收获!
不等式的课件 篇1
【教学目标】
1、知识与技能目标
(1)掌握基本不等式 ,认识其运算结构;
(2)了解基本不等式的几何意义及代数意义;
(3)能够利用基本不等式求简单的最值。
2、过程与方法目标
(1)经历由几何图形抽象出基本不等式的过程;
(2)体验数形结合思想。
3、情感、态度和价值观目标
(1)感悟数学的发展过程,学会用数学的眼光观察、分析事物;
(2)体会多角度探索、解决问题。
【能力培养】
培养学生严谨、规范的学习能力,辩证地分析问题的能力,学以致用的能力,分析问题、解决问题的能力。
【教学重点】
应用数形结合的思想理解不等式,并从不同角度探索不等式 的证明过程。
【教学难点】
基本不等式 等号成立条件。
【教学方法】
教师启发引导与学生自主探索相结合
【教学工具】
课件辅助教学、实物演示实验
【教学流程】
SHAPE MERGEFORMAT
【教学过程设计】
创设情景,引入新课
如图是在北京召开的第24届国际数学家大会的会标, 这是根据赵爽弦图而设计的。用课前折好的赵爽弦图示范,比较 4个直角三角形的面积和与大正方形的面积,你会得到怎样的相 等和不等关系?
赵爽弦图
1.探究图形中的不等关系
将图中的“风车”抽象成如图,在正方形ABCD中右个全等的直角三角形。
设直角三角形的两条直角边长为a,b那么正方形的边长为 。这样,4个直角三角形的面积的和是2ab,正方形的面积为 。由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式: 。
当直角三角形变为等腰直角三角形,即a=b时,正方形EFGH缩为一个点,这时有 。
2.得到结论:一般的,如果
3.思考证明:你能给出它的证明吗?
证明:因为
当
所以, ,即
4.基本不等式
1)特别的,如果a>0,b>0,我们用分别代替a、b ,可得 ,通常我们把上式写作:
2)从不等式的性质推导基本不等式
用分析法证明:
要证 (1)
只要证 (2)
要证(2),只要证 a+b- 0 (3)
要证(3),只要证 ( - ) (4)
显然,(4)是成立的。当且仅当a=b时,(4)中的等号成立。
3)理解基本不等式 的几何意义
不等式的课件 篇2
基本不等式教学设计
数学与应用数学 钟林
课题:人教A版必修5第3章4节,基本不等式
【教学目标】
1.通过两个探究实例,引导学生从几何图形中获得两个基本不等式,了解基本不等式的几何背景,体会数形结合的思想。
2.进一步提炼、完善基本不等式,并从代数角度给出不等式的证明,组织学生分析证明方法,加深对基本不等式的认识,提高逻辑推理论证能力。 3.结合课本的探究图形,引导学生进一步探究基本不等式的几何解释,强化数形结合的思想。
4.借助例1尝试用基本不等式解决简单的最值问题,通过例2及其变式引导学生
ab领会运用基本不等式ab的三个限制条件(一正二定三相等)在解决最
2值中的作用,提升解决问题的能力,体会方法与策略。
【重点难点】
重点:应用数形结合的思想理解基本不等式,并从不同角度探索不等式abab的证明过程。
2难点:在几何背景下抽象出基本不等式,并理解基本不等式。
【教学设计】
(一)问题导入
欣赏2002年国际数学家大会会徽,会徽是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。你能发现它是什么图形构成的吗?请根据会徽探索一些常见相等或不等关系。
探究一:在这张“弦图”中能找出一些相等关系和不等关系吗? 在正方形ABCD中有4个全等的直角三角形.设直角三角形两条直角边长为,a,b。
22ab那么正方形的边长为。
于是,4个直角三角形的面积之和S12ab。 正方形的面积S2a2b2。 由图可知S2S1,即a2b22ab。
当直角三角形变为等腰直角三角形,即时,正方形EFGH缩为一个点,这时 a2b22ab
所以a2b22ab。
探究二:如下图所示的梯形中,EF是梯形ABCD的中位线,梯形ABGH相似于梯 形GHDC。
梯形ABCD的上底是a,下底是b。让同学们自主研究GH和EF的大小关系。
ab因为EF是中位线,所以EF,
2由相似,可以得出GHab, 同样因为相似,有
AGABa, GDGHb又因为ab,所以AGGD,即AGAE,
ab。 2显然,当AB逐渐趋近CD的时候,GH也逐渐向EF靠近, 当AB=CD的时候,即ABCD是矩形的时候,GH与EF重合。
ab即,当且仅当ab时,ab。
2ab所以,ab,当且仅当ab时,等号成立。
2所以GHEF,即ab
(二)概念深入
根据上述两个几何背景,初步形成不等式结论:
若a,bR,则a2b22ab。(当且仅当a=b时,等号成立)
ab。(当且仅当a=b时,等号成立) 2请同学们运用代数法证明: 作法一(作差法): 若a,bR,则aba2b22ab(ab)20ab2ab22
当且仅当a=b时,等号成立。且发现这里且a和b可以是全体实数、单项式、多项式。
作法二(分析法):
要证明abab, 2只需证明ab2ab, 即证ab-2ab0, 即为a-b20,该式显然成立,所以,当ab时取等号。
于是有这样的结论:
称ab为a,b的几何平均数;称基本不等式abab为a,b的算术平均数, 2ab又可叙述为: 2两个正数的几何平均数不大于它们的算术平均数
作法三(几何法):
如图,AB是圆O的直径,点C是AB上一点,AC=a,BC=b.过点C作 垂直于AB的弦DE,连接AD,BD。 从而有CDab,ODab。 2ab。 2ab当且仅当C点与圆心O点重合时,即a=b时,ab
2故再次证明:
aba0,b0,ab,当且仅当a=b时,等号成立。
2ab也说明了ab的几何意义:半径不小于半弦。
2由于直角三角形COD中,直角边CD
(三)例题讲解
例1.(1)用篱笆围一个面积为100平方米的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短,最短的篱笆是多少?
(2)一段长为36米的篱笆围成一个矩形菜园,问这个矩形的长、宽为多少时,菜园的面积最大,最大面积是多少?
(通过例1的讲解,总结归纳利用基本不等式求最值问题的特征,实现积与和的转化)
对于x,yR,
(1)若xyp(定值),则当且仅当xy时,xy有最小值2p;
s2(2)若xys(定值),则当且仅当xy时,xy有最大值。
4(鼓励学生自己探索推导,不但可使他们加深基本不等式的理解,还锻炼了他们的思维,培养了勇于探索的精神。)
1例2.求yx(x0)的值域。
x1变式1.若x2,求x的最小值.
x21在运用基本不等式解题的基础上,利用几何画板展示yx(x0)的函数
x图象,使学生再次感受数形结合的数学思想。
ab并通过例2及其变式引导学生领会运用基本不等式ab的三个限制
2条件(一正二定三相等)在解决最值问题中的作用,提升解决问题的能力,体会方法与策略。
(四)归纳小结&课后作业 基本不等式:
若a,bR,则a2b22ab。(当且仅当a=b时,等号成立)
ab。(当且仅当a=b时,等号成立) 2(1)基本不等式的几何解释(数形结合思想); (2)运用基本不等式解决简单最值问题的基本方法。
作业:A组第4题,B组第1题,第2题
若a,bR,则ab
不等式的课件 篇3
课题:3.4.3 基本不等式 的应用(二) 科目:数学 教学对象:高二(290)学生 课时:1课时 提供者:刘和安 单位: 姚安一中 一、教学内容分析 本节课的研究是起到了对学生以前所学知识与方法的复习、应用,进而构建他们更完善的知识网络。数学建模能力的培养与锻炼是数学教学的一项长期而艰苦的任务,这一点,在本节课是真正得到了体现和落实。?
根据本节课的教学内容,应用观察、阅读、归纳、逻辑分析、思考、合作交流、探究,对基本不等式展开实际应用,进行启发、探究式教学并使用投影仪辅助。? 二、教学目标 (一)知识目标:构建基本不等式解决函数的值域、最值问题;
(二)能力目标:让学生探究用基本不等式解决实际问题
(三)情感、态度和价值观目标:
通过具体问题的解决,让学生去感受、体验现实世界和日常生活中存在着大量的不等量关系并需要从理性的角度去思考,鼓励学生用数学观点进行类比、归纳、抽象,使学生感受数 学、走进数学、培养学生严谨的数学学习习惯和良好的思维习惯;? 三、学习者特征分析 在本节课的教学过程中,仍应强调不等式的现实背景和实际应用,真正地把不等式作为刻画现实世界中不等关系的工具。通过实际问题的分析解决,让学生去体会基本不等式所具有的广泛的实用价值,同时,也让学生去感受数学的应用价值,从而激发学生去热爱数学、研究数学。而不是觉得数学只是一门枯燥无味的推理学科。在解决实际问题的过程中,既要求学生能用数学的眼光、观点去看待现实生活中的许多问题,又会涉及与函数、方程、三角等许多数学本身的知识与方法的处理 四、教学策略选择与设计 1.采用探究法,按照观察、阅读、归纳、思考、交流、逻辑分析、抽象应用的方法进行启发式教学;?
2.教师提供问题、素材,并及时点拨,发挥老师的主导作用和学生的主体作用;?
3.设计较典型的具有挑战性的问题,激发学生去积极思考,从而培养他们的数学学习兴趣。?? 五、教学重点及难点 教学重点:1.构建基本不等式解决函数的值域、最值问题。?
2.让学生探究用基本不等式解决实际问题;?
教学难点:1.让学生探究用基本不等式解决实际问题;?
2.基本不等式应用时等号成立条件的考查;?
六、教学过程 教师活动 学生活动 设计意图 (一)导入新课
(二)推进新课
已知 ,若ab为常数k,那么a+b的值如何变化?
若a+b为常数s,那么ab的值如何变化?
老师用投影仪给出本节课的第一组问题
(1)求函数y=2x2+ (x>0)的最小值。?
(2)求函数y=x2+ (x>0)的最小值。?
(3)求函数y=3x2-2x3(0
(4)求函数y=x(1-x2)(0
(5)设a>0,b>0,且a2+ =1,求 的最大值。?
(三)合作探究 我们来考虑运用正数的算术平均数与几何平均数之间的关系来解答这些问题。根据函数最值的含义,我们不难发现若平均值不等式的某一端为常数,则当等号能够取到时,这个常数即为另一端的一个最值。 ?
(四)例题精析?
【例】某工厂要建造一个长方体形无盖贮水池,其容积为4 800 m3,深为 3 m.如果池底每平方米的造价为150元,池壁每平方米的造价为120元,怎样设计水池能使总造价最低?最低总造价是多少?
当且仅当a=b时,a+b就有最小值为2k.?
当且仅当a=b时,ab就有最大值 (或ab有 最大值 ).?
学生完成
留五分钟的时间让学生思考,合作交流
(根据学生完成的典型情况,找五位学生到黑板板演,然后老师根据学生到黑板板演的完成情况再一次作点评)?
学生思考、回答,
不等式的课件 篇4
不等式
教材分析:本课由实际问题中的不等关系引出不等式的概念;类比方程的解,明确不等式解和解集的概念,以及不等式解集的两种表示方法。
教学目标:了解不等式概念,理解不等式的解和解集。 教学重难点:不等式及解集概念的理解。 教学过程: 一:引出新知。
现实世界中存在大量的数量关系,包括相等关系和不等关系。用等式(包括方程),我们可以研究相等关系,而研究不等关系需要用本章的不等式,如引言中选择购物商场问题.二:探索新知。
问题1 一辆匀速行驶的汽车在11:20距离A地50 km,要在12:00之前驶过A地.你能用式子表示出车速应满足的条件吗?
1、汽车在12:00之前驶过A地的意思是什么? 从时间上看,汽车要在12:00之前驶过A地,则 以这个速度行驶50 km所用的时间不到。
从路程上看,汽车要在12:00之前驶过A地,则以这个速度行驶的路程要超过50 km。
2、如何用式子表示以上不等关系? 设:车速为x km/h. 从时间上看: 从路程上看:
(1)对于不等式 而言,车速可以是80 km/h吗?78 km/h呢?75 km/h呢?72 km/h呢?
(2)类比方程的解,什么叫不等式的解?
使不等式成立的未知数的值.(3)不等式还有其他解吗?如果有,这些解应满足什么条件?
一般地,一个含有未知数的不等式的所有的解,组成这个不等式的解集.求不等式的解集的过程叫做解不等式. (4)除了用不等式表示取值范围,还有其他表示方法吗? 数轴
三、运用新知。 例1 请用不等式表示:
(1) 是负数;
(2) 与5的和小于-7;
(3) 的一半大于3.例2 直接说出不等式的解集,并在数轴上表
示出来.
四、归纳总结 (1)什么叫不等式?
(2)什么叫不等式的解?不等式的解和方程的解的区别? (3)什么叫不等式的解集?不等式的解和不等式的解集的区别?
五、布置作业
教科书 习题 第
1、
2、3题。
不等式的课件 篇5
[教学目标]
依据《新标准》对《不等式》学段的目标要求和本班学生实际情况,特确定如下目标:
1、知识与能力目标:理解掌握基本不等式,并能运用基本不等式解决一些简单问题(求最值、证明不等式);培养学生探究能力以及分析问题解决问题的能力。
2、过程与方法目标:按照创设情景,提出问题→ 剖析归纳证明→ 几何解释→ 应用(最值的求法、不等式的证明)的过程呈现。启动观察、分析、归纳、总结、抽象概括等思维活动,培养学生的思维能力,体会数学概念的学习方法,通过运用多媒体的教学手段,引领学生主动探索基本不等式性质,体会学习数学规律的方法,体验成功的乐趣。
3、情感与态度目标:通过问题情境的设置,使学生认识到数学是从实际中来,培养学生用数学的眼光看世界,通过数学思维认知世界,从而培养学生善于思考、勤于动手的良好品质。
二、 [教学重点]
基本不等式 的证明过程及应用。
三、 [教学难点]
1、基本不等式成立时的三个限制条件(简称一正、二定、三相等)的正确理解;
2、灵活利用基本不等式求解实际问题中的最大值和最小值。
四、 [教学方法]
本节课采启发诱导、讲练结合的教学方法,结合现代信息技术多媒体课件、几何画板作为教学辅助手段,加深学生对基本不等式的理解。
[教学用具]
多媒体、几何画板
六、 [教学过程]
教学过程设计以问题为中心,以探究解决问题的方法为主线展开。这种安排强调过程,符合学生的认知规律,使数学教学过程成为学生对知识的再创造、再发现的过程,从而培养学生的创新意识。
具体过程安排如下:
(一)、创设情景,提出问题;
上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客。
[问]你能在这个图中找出一些相等关系或不等关系吗?
利用图中相关面积间存在的数量关系,抽象出不等式 。在此基础上,引导学生认识基本不等式。
同时,(几何画板辅助教学)通过几何画板演示,
让学生更直观的抽象、归纳出结论:
(二)、抽象归纳:
一般地,对于任意实数 ,有 ,当且仅当 时,等号成立。
[问] 你能给出它的证明吗?
学生在黑板上板书。
特别地,当 时,在不等式 中,以 、 分别代替 ,得到什么?
答案: 。
【归纳总结】
如果 都是正数,那么 ,当且仅当 时,等号成立。
我们称此不等式为基本不等式。 其中 称为 的算术平均数, 称为 的几何平均数。
(三)、理解升华:
1、文字语言叙述:
两个正数的算术平均数不小于它们的几何平均数。
2、符号语言叙述:
若 ,则有 ,当且仅当 时, 。
[问] 怎样理解“当且仅当”?
3、探究基本不等式证明方法:
[问] 如何证明基本不等式?
方法一:作差比较或由 展开证明。
方法二:分析法。
分析法,实际上是寻找结论的充分条件,执果索因的一种思维方法。
4、探究基本不等式的几何意义:
读书破万卷下笔如有神,以上就是一米范文范文为大家带来的3篇《2023高中数学基本不等式教学教案》,希望对您有一些参考价值。
不等式的课件 篇6
不等式和不等式组复习课教学设计
一、设计思想:
“不等式”是初中数学核心内容之一。就不等式的解法来说,它是一种重要的数学技能;而就不等式的广泛作用来说,不管是与实际相关的问题,还是纯粹的数学问题,不管是代数方面的问题,还是几何图形方面的问题,乃至更为一般化的问题,只要是求未知数的值或范围的问题,经常要借助于不等式,可见学好不等式具有非常重要的意义。
这节课是中考前的专题复习课,知识点不多。由于学生已经学过本章内容,因此在本节复习中主要以提问的形式进行知识要点的复习,以学生自主探索和合作探究的学习方法学习本节内容。教师主要在习题的设计上选好典型例题,复习的知识尽量全面。教学效果上使不同的学生有不同的收获。
二、教学内容分析:
1.《课程标准》对本专题教学内容的要求:
(1)结合具体问题,了解不等式的意义,探索不等式的基本性质。 (2)能解简单的一元一次不等式,并能在数轴上表示出解集;会用数轴确定由两个一元一次不等式组成的不等式组的解集。
(3)能根据具体问题中的数量关系,列出一元一次不等式,解决简单的问题。 2.本节内容在中考中的地位和作用。
本部分内容在中考中大约6~12分,约占全卷分数的5%~8%左右。而且,近几年考试中,经常与方程、函数三角函数、几何等内容一起综合考查,因此学好本节内容对于解决这些综合问题起着举足轻重的作用。
三、教学目标:
1、知识技能:
①掌握不等式的概念和性质,能根据不等式的性质解决有关问题;
②掌握不等式(组)的解法,会求不等式(组)的解集,特别是不等式组的整数解;
③能根据不等式组的解集确定字母系数的范围;
④会列不等式(组)解决简单的实际问题,特别是方案设计问题。
2、数学思考:通过列不等式或不等式组解决具有不等关系的实际问题,让学生体会不等式是解决实际问题的有效的数学模型。
3、解决问题:通过不等式(组)描述不等关系解决实际问题,发展学生由实际问题转化为数学问题的能力。
4、情感态度:①通过复习教学,继续强化用数学的意识,从而使学生乐于接触社会环境中的数学信息,愿意谈论某些数学话题,能够在数学活动中发挥积极作用。
②.通过探索,增进学生之间的配合,使学生敢于面对数学活动中的困难,并有克服困难和运用知识解决问题的成功体验,树立学好数学的自信心。
教学重点:不等式(组)的解法的规范性及实际应用
教学难点:不等式组有无解的问题中字母系数的确定和实际问题中不等式(组)的列出
教学方法:依托多媒体平台,启发、谈论、互动探究法(学生讨论、教师点拨)、讲练结合。
教学手段:计算机多媒体辅助教学。 教学时间:1课时
教学准备:1.学生准备:预习教材,了解本节的知识要点。
2.教师准备:将学生分组,选好组长;制作多媒体课件。
教学设计
一 情境设计
导入新课
出示多媒体课件
1、问题情境:问题:某化妆品店老板到厂家选购A、B两种品牌的化妆品,若销售1套A品牌的化妆品可获利30元,销售1套B品牌的化妆品可获利20元,根据市场需求,化妆品店老板决定,购进B品牌化妆品的数量比购进A品牌化妆品数量的2倍还多4套,且B品牌化妆品最多可购进40套,这样化妆品全部售出后,可使总的获利不少于1200元,问有几种进货方案?如何进货? 教师:同学们,如果你是这个化妆品店的老板,你怎么解决进货方案问题? (学生思考):
教师:如何用数学符号表示标有下划线的词语?应该考查我们哪部分知识? 学生:最多 —— ≤;不少于—— -≥。 教师:我们学过的哪章知识与它们联系最密切?由此我们想到了哪部分知识? 学生:不等式和不等式组
教师:下面我们就来复习有关这方面的内容,“专题复习
(二)方程和不等式-----------不等式和不等式”。 (板书课题)
(多媒体出示教学目标。图略)
二、展示教学目标、教学重点和难点:(让学生学有目的,学有依据)
三、回顾知识要点:
1.知识网络出示;(使学生对本节知识的复习内容一目了然,从总体把握知识间的内在联系)
实际问题
3、知识要点复习不等关系不等式不等式的性质解不等式解集一元一次不等式一元一次不等式组解法解法数轴表示解集数轴表示实际应用解集数轴表示 2.知识要点复习:(通过提问由学生回答) ①基本概念复习
(澄清基本概念,对知识间的内在联系更明确。)
3、知识要点复习
一、基本概念:
1、不等式:
2、不等号:
3、不等式的解:
4、不等式的解集:
5、解不等式:
6、一元一次不等式:
7、一元一次不等式组:
8、一元一次不等式组的解集:
9、解一元一次不等式组: ②不等式性质复习:(它是解不等式和不等式组的重要依据,特别注意第3条性质,不等号方向改变问题,提醒学生,此处易错,提起注意)
3、知识要点复习
二、不等式的性质:(1)如果a>b,那么a+c>b+c,a-c>b-c不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。ab(2)如果a>b,并且c>0,那么ac>bc,cc不等式两边都乘以(或除以)同一个正数,不等号的方向不变。(3)如果a>b,并且c
3、知识要点复习三,规律与方法:1,不等式的解法:2,解不等式组的方法:3,不等式的解集在数轴上的表示:大向右,小向左,有等号是实心,无等号是空心.4,求几个不等式的解的公共部分的方法和规律:(1)数轴法(2)口诀法同大取大同小取小一大一小中间找 ④用一元一次不等式组解决实际问题的步骤:(为解决实际问题提供依据,这是本节的重点知识,学生可能会类比前边复习的方程和方程组的知识说出。)
3、知识要点复习
5、用一元一次不等式组解决实际问题的步骤:实际问题设未知数,列不等式(组)数学问题(不等式或不等式组)解不等式组实际问题的解答检验数学问题的解(不等式(组)的解集)
四、典型例题解析:(这一环节也是学生要达到的知识技能目标的重要一环,学生解题的顺利与否,是教师关注的重点。学生能够独立解出的,关注其过程是否规范,思路是否清晰,方法是否得当。不能解出的,先由小组合作探究,看是否能找到解题的思路,得出问题的答案;如果仍不能得出,教师加以点拨,引导,帮助学生找到解题思路,得出问题的答案。)
例1.(本题是一元一次不等式的解法的考查,是本节的基本题型,估计学生都能独立解出,可让中游的学生板演,这样解题步骤展现在大家面前,如果规范,起个示范作用;不规范,示范改正,起警示作用。把重点放在解题步骤是否规范上。)
4、典型例题:例1.解一元一次不等式解:3 (x-1) ≤6 –2(x-2)3x –3 ≤6 –2x+43x+2x ≤6+4+35x ≤13x ≤135自然数解非负整数解正整数解最大解最大整数解 (右边的云形图中是在学生解完不等式后先后出示的五种特殊情况,这样进
行变式教学,展示了一题多解的典型题目,同时又使学生锻炼了仔细审题的能力。)
4、典型例题:例1.解一元一次不等式解一元一次方程一元一次不解:3 (x-1) = 6 –2(x-2)解:3 (x-1) ≤6 –2(x-2)3x –3 = 6 –2x+43x –3 ≤6 –2x+4等式和一元一次3x+2x =6+4+3方程有何共同点3x+2x ≤6+4+35x =13和不同点?5x ≤x =x≤55 (通过这种一元一次不等式和一元一次方程解法的类比,使学生明确知识间的内在联系,同时发现其中的异同,对两者的区别更加清晰)
例2.(考查不等式的变形,解决问题的关键是正确理解不等式的概念和基本性质。重点关注基本性质的灵活掌握)
例3.(把平面直角坐标系的象限问题转化成不等式组问题,既体现了转化的数学思想方法,又见识了不等式组的广泛应用。可以帮学生回忆坐标系的有关知识。)
4、典型例题:a例2.若a1;b1a③a+b
3、在直角坐标系中,P(2x-6,x-5)在第四象限,则x的取值范围是3
例4.(把不等式中的相等问题出示,体现了相等和不等可以互相转化的数学思想。并与数与式中的乘方问题相联系,具有一定的综合性。)
例5.(借助数轴确定不等式组的解集,对于解这类题非常有效,学生容易做错,特别是是否包括界点问题,有一定难度,让学生小组合作探究,共同寻找问题的答案。教师巡视,给有困难小组点拨,指导。)
4、典型例题:xa2例
4、(2009凉山)若不等式组集是-1
例题分析:问题5问题分析:本题存在两个不等关系,一是购买B品牌化妆品不超过40套;二是两种化妆品的获利不少于1200元。根据这两个不等关系,可列不等式组求解。 (学生写出解题过程后,教师可出示规范的解题过程,体现数学学科的严谨性。)
4例题讲解:、典型例题:解:设A品牌化妆品购进m套,则B品牌化妆品购进(2m+4)套。根据题意得:解得:16≤m≤18.因为m为正整数,所以m=16,17,18,所以2m+4=
36、
38、40.所以有三种进货方案:(1)A种品牌的化妆品的购进16套,B种品牌的化妆品购进36套;(1)A种品牌的化妆品的购进16套,B种品牌的化妆品购进36套;(1)A种品牌的化妆品的购进16套,B种品牌的化妆品购进36套; (通过方案设计题的解决,使学生能够由实际问题建立数学模型,从而增强解决实际问题的能力。)
五、
归纳小结(先由学生自己归纳总结本节课的收获,从而把课堂传授的知识尽快化为学生的素质,以培养和增强学生的归纳总结能力;然后老师予以补充和归纳,为学生良好学习习惯的养成继续进行指导。)
5、归纳小结你会了吗?这节课你学到了什么?你有什么收获?你还有什么问题?
六、达标检测:(在这一环节,我设计了几个有梯度的题目,这样可使不同层次的学生都能有所收获,都能感受到成功的喜悦,使他们“在数学上都能有不同的发展”。)
6.达标检测(1)若2x=3+k的解集是负数,那么k的取值范围是______.K
3、不等式组数解为(A的最小整)A,-1 B,0 C,2 D,3 9
6.达标检测
4、跃壮五金商店准备从宁云机械厂购进甲、乙两种零件进行销售。若每个甲种零件的进价比每个乙种零件的进价少2元,且用80元购进甲种零件的数量与用100元购进乙种零件的数量相同。(1)求每个甲种零件、每个乙种零件的进价分别为多少元?(2)若该五金商店本次购进甲种零件的数量比购进乙种零件的数量的3倍还少5个,购进两种零件的总数量不超过95个,该五金商店每个甲种零件的销售价格为12元,每个乙种零件的销售价格为15元,则将本次购进的甲、乙两种零件全部售出后,可使销售两种零件的总利润(利润=售价-进价超过371元,通过计算求出跃壮五金商店本次从宁云机械厂购进甲、乙两种零件有几种方案?请你设计出来。 6.达标检测选做题•若不等式组xa012xx2有解,则a的取•值范围是(A)。•>-1 ≥-1 ≤1 <1
七、教学设计的理论依据
1.“理论联系实际”的原则,联系学生身边的生活,引导学生学习运用理论知识分析、解决实际问题。
2.新课程标准中的“学生是学习的主人”的主体教育思想。
本节课努力构建师生互动、生生互动的新的教学模式,创设情境引领教学,引导学生的合作学习,让其在思考讨论中自主学习,真正落实以学生为中心、以学生发展为根本,注重学生道德和能力的培养。
不等式的课件 篇7
《基本不等式》教学设计
基本不等式
开江中学 魏江兰
目标分析
依据《新课程标准》对《不等式》学段的目标要求和学生的实际情况,特确定如下目标:
1、知识与能力目标:理解掌握基本不等式,并能运用基本不等式解决一些简单的求最值问题;理解算数平均数与几何平均数的概念,学会构造条件使用基本不等式;培养学生探究能力以及分析问题解决问题的能力。
2、过程与方法目标:按照创设情景,提出问题→ 剖析归纳证明→ 几何解释→ 应用(最值的求法、实际问题的解决)的过程呈现。启动观察、分析、归纳、总结、抽象概括等思维活动,培养学生的思维能力,体会数学概念的学习方法,通过运用多媒体的教学手段,引领学生主动探索基本不等式性质,体会学习数学规律的方法,体验成功的乐趣。
3、情感与态度目标:通过问题情境的设置,使学生认识到数学是从实际中来,培养学生用数学的眼光看世界,通过数学思维认知世界,从而培养学生善于思考、勤于动手的良好品质。
教学重、难点分析
重点:应用数形结合的思想理解基本不等式,并从不同角度探索基本不等式abab的证明过程及应用。 2难点:
1、基本不等式成立时的三个限制条件(简称一正、二定、三相等);
2、利用基本不等式求解实际问题中的最大值和最小值。
教法分析
本节课采用观察——感知——抽象——归纳——探究;启发诱导、讲练结合的教学方法,以学生为主体,以基本不等式为主线,从实际问题出发,放手让学生探究思索。以现代信息技术多媒体课件作为教学辅助手段,加深学生对基本不等式的理解。
《基本不等式》教学设计
教学准备
多媒体课件、板书
教学过程
教学过程设计以问题为中心,以探究解决问题的方法为主线展开。这种安排强调过程,符合学生的认知规律,使数学教学过程成为学生对知识的再创造、再发现的过程,从而培养学生的创新意识。 具体过程安排如下:
一、创设情景,提出问题;
设计意图:数学教育必须基于学生的“数学现实”,现实情境问题是数学教学的平台,数学教师的任务之一就是帮助学生构造数学现实,并在此基础上发展他们的数学现实.基于此,设置如下情境: 上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客。
[问]你能在这个图中找出一些相等关系或不等关系吗?
本背景意图在于利用图中相关面积间存在的数量关系,抽象出不等式a2b22ab。在此基础上,引导学生认识基本不等式。
二、抽象归纳:
一般地,对于任意实数a,b,有a2b22ab,当且仅当a=b时,等号成立。 [问] 你能给出它的证明吗?
证明:因为a2b22ab(ab)20,即a2b22ab.(当ab时取等号)
特别地,当a>0,b>0时,在不等式a2b22ab中,以a、b分别代替a、b,得到什么?
设计依据:类比是学习数学的一种重要方法,此环节不仅让学生理解了基本不等式不等式的来源,突破了重点和难点,而且感受了其中的函数思想,为今后学习奠定基础.
《基本不等式》教学设计
答案: abab(a,b0)。 2你能用不等式的性质直接推导这个不等式吗? 证明:(分析法):由于a,bR,于是要证明 ab2ab,
只要证明 ab2即证
2ab,
ab2ab0,即 (ab)20,
所以abab,(当ab时取等号)
【归纳总结】
如果a,b都是正数,那么abab,当且仅当a=b时,等号成立。 2ab称为a,b的算术平均数,ab称2我们称此不等式为基本不等式。 其中为a,b的几何平均数。
文字语言叙述:两个正数的算术平均数不小于它们的几何平均数。
探究基本不等式的几何意义:借助初中阶段学生熟知的几何图形,引导学生探究abab(a,b0)2的几何解释,通过数形结合,赋予不等式不等式abab(a,b0)2几何直观。进一步领悟不等式中等号成立的条件。
如图:AB是圆的直径,点C是AB上一点,CD⊥AB,AC=a,CB=b,CD
Dab
abab2abOCAB几何解释实质可认为是:在同一半圆中,半径不小于半弦(直径是最长的弦);或者认为是,直角三角形斜边的一半不小于斜边上的高。
《基本不等式》教学设计
4.应用举例,巩固提高
我们可以用两个重要不等式来解决什么样的问题呢?
例1(1)用篱笆围一个面积为100平方米的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短,最短的篱笆是多少? (2)一段长为36米的篱笆围成一个矩形菜园,问这个矩形的长、宽为多少时,菜园的面积最大,最大面积是多少?
(通过例1的讲解,总结归纳利用基本不等式求最值问题的特征,实现积与和的转化) 对于(1)若(2)若,
(定值),则当且仅当(定值),则当且仅当
时,时,
有最小值有最大值
; .
(鼓励学生自己探索推导,不但可使他们加深基本不等式的理解,还锻炼了他们的思维,培养了勇于探索的精神.)
1例 2:当x0时,求yx的最小值?x1变式1:当x0时,yx有最值吗?
x1变式2:当x1时,yx有最值吗?
x通过例2及其变式引导学生领会运用基本不等式的三个限制条件(一正二定三相等)在解决最值问题中的作用,提升解决问题的能力,体会方法与策略.
练一练(自主练习):课本练习 5.归纳小结,反思提高
《基本不等式》教学设计
基本不等式:若若
,则,则
(当且仅当(当且仅当
时,等号成立) 时,等号成立)
(1)基本不等式的几何解释(数形结合思想);(2)运用基本不等式解决简单最值问题的基本方法(一正二定三相等). 6.布置作业,课后延拓
(1)基本作业:课本P100习题组
1、
2、3题
(2)拓展作业:请同学们课外到阅览室或网上查找基本不等式的其他几何解释,整理并相互交流.
基本不等式教学设计
《等式的性质》教学设计
《等式的性质》教学设计
等式性质教学设计(共8篇)
等式的基本性质的课后教学反思
不等式的课件 篇8
一、教学目标:
(一)知识与能力目标:(课件第2张)
1.体会解不等式的步骤,体会比较、转化的作用。
2.学生理解、巩固一元一次不等式的解法.
3.用数轴表示解集,加深对数形结合思想的进一步理解和掌握。
4.在解决实际问题中能够体会将文字语言转化成数学语言,学会用数学语言表示实际的数量关系。
(二)过程与方法目标:
1.介绍一元一次不等式的概念。
2.通过对一元一次方程的解法的复习和对不等式性质的利用,导入对解不等式的讨论。
3.学生体会通过综合利用不等式的概念和基本性质解不等式的方法。
4.学生将文字表达转化为数学语言,从而解决实际问题。
5.练习巩固,将本节和上节内容联系起来。
(三)情感、态度与价值目标:(课件第3张)
1.在教学过程中,学生体会数学中的比较和转化思想。
2.通过类比一元一次方程的解法,从而更好的掌握一元一次不等式的解法,树立辩证统一思想。
3.通过学生的讨论,学生进一步体会集体的作用,培养其集体合作的精神。
4.通过本节的学习,学生体会不等式解集的奇异的数学美。
二、教学重、难点:
1.掌握一元一次不等式的解法。
2.掌握解一元一次不等式的阶梯步骤,并能准确求出解集。
3.能将文字叙述转化为数学语言,从而完成对应用问题的解决。
三、教学突破:
教材中没有给出解法的一般步骤,所以在教学中要注意让学生经历将所给的不等式转化为简单不等式的过程,并通过学生的讨论交流使学生经历知识的形成和巩固过程。在解不等式的过程中,与上节课联系起来,重视将解集表示在数轴上,从而指导学生体会用数形结合的方法解决问题。在研究中,鼓励学生用多种方法求解,从而锻炼他们活跃的思维。
四、教 具:计算机辅助教学.
五、教学流程:
(一)、复习:
教学环节
教 师 活 动
学 生 活 动
设 计 意 图
不等式课件
不为明天做好准备的人是没有未来的,当幼儿园教师的工作遇到难题时,我们经常会用提前准备好的资料进行参考。资料通常是指书籍、报刊、图表、图片等。有了资料才能更好的在接下来的工作轻装上阵!所以,关于幼师资料你究竟了解多少呢?在这里,你不妨读读不等式课件,欢迎阅读,希望对你有帮助。
不等式课件【篇1】
教学目标:
了解一元一次不等式的概念,掌握一元一次不等式的解法。
教学重点:
是掌握解一元一次不等式的步骤
教学难点:
是必须切实注意遇到要在不等式两边都乘以(或除以)同一负数时,必须改变不等号的方向。
教学过程:
一、问题导入
复习:
1、不等式的基本性质有哪些?什么是一元一次方程?并举出两个例子。
2、观察不等式x+3<5与x<2,说明解x<2是x+3<5依据什么变形得到的?
3、解一元一次方程:6x+5=7-2x,目的是为了与下面所学的解一元一次不等式进行类比,找到它们的联系与区别。
二、指导自学,小组合作交流
请同学们根据以下提问进行自学,先个人思考,后小组合作学习。
1、观察下列不等式,说一说这些不等式有哪些共同特点?
(1)2x+5≥8(2)x+1≤—4(3)x<2(4)6—3x>43(x+1)≤0
观察上面不等式有哪些共同特点,让学生通过交流,再总结一元一次不等式的概念。老师板书定义。
2、让学生举出2或3个一元一次不等式的例子,小组交流。
3、让学生通过比较解一元一次方程:6x+5=7-2x的解法试解一元一次不等式:6x+5<7-2x,并将解集在数轴上表示出来。
4、思考:一元一次不等式与一元一次方程的解法有哪些类似之处?有什么不同?
5、解下列不等式,并把它们的解集在数轴上表示出来。
(1)3-x<2x+9(2)2-4(x-1)>3(x+2)-x
(3)(x-1)/3≥(2-x)/2+1
总结:解一元一次不等式的依据和解一元一次不等式的步骤。
三、互动交流,教师点拨
(一)、学生易出错的问题和注意的事项:
1、确定一个不等式是不是一元一次不等式,要抓住三个要点:左右两边都是整式,只有一个未知数,未知数的次数是1。
2、对于(1),让学生说明不等式3-x<2x+9的每一步变形的依据是什么,特别注意的是:解不等式的移项和解方程的移项一样。即移项要变号(培养学生运用类比的数学思想)。
3、不等式两边同时除以(-3)时,不等号的方向改变。
2、重点点拨(2)和(3),先让学生到黑板上板演。老师再讲评。
(2)易出错的地方是:去括号时漏乘,括号前是负号,去掉括号后括号里的项没变号,还有移项没有变号;(3)易出错的地方是:去分母时漏乘无分母的项。
3、归纳解一元一次不等式的步骤(与解一元一次方程的步骤类比):去分母,去括号,移项,合并同类项,系数化为1。(在系数化为1这一步要特别提醒学生注意当系数为负数时,要记住改变不等号的方向。)
四、巩固练习
1、判断下列不等式是不是一元一次不等式,为什么?
(1)2/x—3
(2)5x+3x–1
(4)x(2x+1)
(5)X+2≥x
2、解下列不等式,并把它们的解集在数轴上表示出来
(1)3x–8
(2)2(x–1)≥x+3
(3)x/5≥1+(x–3)/2
3、[思考]当x取何值时,代数式(x–2)/2的值比(3x+1)/3的值大?
小结:
(1)不等式两边同时除以负数时,不等号的方向要改变。
(2)注意去括号时不要漏乘,括号前是负号,去掉括号后括号里的项要变号,还有移项一定要变号
(3)去分母时不要漏乘无分母的项。
不等式课件【篇2】
一、教学目标
(一)知识与技能
1.了解从实际情境中抽象出二元一次不等式(组)模型的过程
2.掌握简单的二元线性规划问题的解法
3.了解数学建模的整个过程
(二)过程与方法
1.通过对实际问题的探索,培养学生用数学眼光去观察生活、并且能提出问题、分析问题、解决问题的能力.
2.增强学生的协作能力.
(三)情感、态度与价值观
1.通过学生自主探索、合作交流,亲身体验数学模型的发现,培养学生勇于探索、善于发现、不畏艰辛的品质,增强学习的成功心理,激发学习数学的兴趣,深刻体会数学是有用的.
2.通过实例的社会意义,培养学生爱护环境的责任心.
二、教学重点、难点
重点:从具体生活情境中提炼出简单的二元线性规划问题,并且用数学方法解决问题.
难点:从具体生活情境中提炼出约束条件和目标函数.
三、教学设想
本节课采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以二元一次不等式(组)模型的发现为基本探究内容,以周围世界和生活实际为对象,为学生提供充分自由表达、质疑、探究、讨论问题的机会,让学生通过个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对实际问题的深入探讨.让学生在“活动”中学习,在“主动”中发展,在“合作”中增知,在“探究”中创新.设计思路如下:
创设情境→方案讨论→数据筛选→建立模型→解决模型→反馈实际
四、教学过程:
引入
(1)如图,小明与小聪玩跷跷板,大家都不用力时,跷跷板左低右高.小明的身体质量为p(kg),小聪的身体质量为q(kg),书包的质量为2kg,怎样表示p、q之间的关系?
(2)上图是公路上对汽车的限速标志,表示汽车在该路段行使的速度不得超过40km/h.若用v(km/h)表示车的速度,那么v与40之间的数量关系用怎样的式子表示?
(3)据科学家测定,太阳表面的温度不低于6000℃.设太阳表面的温度为t(℃),怎样表示t与6000之间的关系?
归纳:数学作用之一,我们可以用数学语言描述客观世界的某些现象
当然,数学作用不仅于此,我们还可以通过数学解决现实生活中的问题.
(一)情景设置
我校环境优美,毗邻江水,校园内四季常青,但是远眺围墙外,有一座小山,那是一座垃圾山.杨府山垃圾场有他的.历史作用和意义,现在已经完成了它的历史使命,而且现在有了负面影响,市委市政府打算对其进行改造.经过专家论证,有如下方案可行:发电、制砖
(二)处理方案讨论
现同时用两种措施对垃圾山进行改造处理,如果你是项目经理,给你500万采购发电设备以及制砖设备,你该如何去实施?
(学生自主发言)
学生问题一、怎样安排资金?买几台发电设备,几台制砖设备?如何决策?
引导:问题转化为如何安排资金,能取得最大效益?即两种方案生产产品的利润(售价减去成本)
学生问题二、如何知道这些信息?(产品售价、设备的单价等)
引导(先提问学生):上网查询、市场调查、向已建厂取经、参观展销会等等.
(三)数据的筛选
由于教室条件限制,不能现场查取,所以老师帮你们收集了一些资料,希望对你们有所帮助.请分析以下信息,提取你认为有用的数据.
信息一、
信息二、
焚烧垃圾重量直接关系到垃圾发电企业的经济效益.在BOT的模式下,企业的效益这样来保障:
1.每处理1吨垃圾,政府补贴发电企业73.8元,
2.保证以0.52元/千瓦时的价格收购全部垃圾发电量,
3.一台发电设备每处理1吨垃圾平均费用为123元
4.一台发电设备日处理垃圾能力为225吨,
5.1吨垃圾可发电300千瓦时,其中30%为自用电
信息三、
发电设备:120万/台制砖设备:35万/台
机房总面积为7亩,每台设备有各自平均占地,其中发电设备每台平均占地1亩,制砖机每台平占地1亩
(四)建立模型
你能从以上信息中提炼出你所需要的信息,并用数学语言表示出来吗?
(学生动手)
引导:我们刚才处理的问题即应用题:
例一工厂欲生产甲乙两种产品,已知生产一件甲产品利润为60元,一台甲设备价格为120万,占地1亩,年生产能力为82125件;生产一件乙产品利润为0.12元,一台乙设备价格为35万,占地1亩,年生产能力为15000000件.现有资金500万,厂房7亩,该厂该如何添置甲乙两种设备,使得年利润最大?
(五)解决模型
该问题即我们上节课刚学过的线性规划问题,请大家动手解决.
(六)反馈实际
我们可以将我们的成果发到市长信箱,为城市建设出谋划策,贡献自己的一份力量.
五、归纳小结
(一)解决生活问题的步骤:
创设情境→方案讨论→数据筛选→建立模型→解决模型→反馈实际
现实问题:给你资金和地皮,购置设备
方案讨论:通过1.上网查询2.市场调查3.吸收已建厂经验等方法收集信息.
数据筛选及建立模型:将收集到的信息用数学语言表示出来.
解决模型:用已学过的数学知识进行分析、处理,得出结论.
反馈实际:将结论应用于实际问题当中.
(二)顺利解决生活问题体要具备的能力
我们要具备信息收集及处理能力、生活语言转化成数学语言的能力以及扎实的数学解题能力.
不等式课件【篇3】
各位领导
你们好!
今天我要为大家讲的课题是 : 《 不等式及其解集 》 。
首先,我对本节教材进行一些分析:
一、教材分析:
1.教材所处的地位和作用:
本节内容在全书及章节的地位是:《 不等式及其解集 》是 新人教版 初中数学教材第 七 册第 九 章第 1 节内容。 学生已初步体会到生活中的量与量之间的关系,有相等与不等的情形,就是有大小之分…… 在此之前,学生已学习了 等式 基础上,这为过渡到本节的学习起着铺垫作用。
2教学目标:
根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:
(1)知识目标:
了解不等式及一元一次不等式概念。
理解不等式的解、解集,能正确表示不等式的解集。
(2)能力目标:
通过教学初步培养学生分析问题,解决实际问题,读图分析、收集处理信息、团结协作、语言表达的能力,以及通过师生 互动 ,初步培养学生运用知识的能力,培养学生加强理论联系实际的能力。
(3)情感目标:
通过对 《不等式及其解集》 的教学,引导学生从现实生活的经历与体验出发,激发学生对地理问题的兴趣,使学生了解地理知识的功能与价值,形成主动学习的态度,让学生初步认识到地理知识的优越性,同时渗透 安全教育 ;通过理论联系实际的方式,通过知识的应用,培养学生唯物主义的思想观点。
3.重点,难点以及确定的依据:
本课中 不等式相关概念的理解和不等式的解集的表 是重点, 不等式解集的理解 是本课的难点,但由于学生年龄小,解决实际问题能力弱,对理论联系实际的问题的理解难度大。下面,为了讲清重难点,使学生能达到本节课设定的教学目标,我再从教法和学法上谈谈:
二、教学策略(说教法):
(一)教学手段:
如何突出重点,突破难点,从而实现教学目标。我在教学过程中拟计划进行如下操作:
1.“读(看)——议——讲”结合法
2 .读图讨论法
3 .教学过程中坚持启发式教学的原则
基于本节课的特点: 第一节知识性特点 ,应着重采用 自主探讨 的教学方法。
(二)教学方法及其理论依据:
坚持“以学生为主体,以教师为主导”的原则,即“以学生活动为主,教师讲述为辅,学生活动在前,教师点拨评价在后”的原则,根据学生的心理发展规律,联系实 际安排教学内容。采用学生参与程度高的学导式讨论教学法。在学生看图片 、讨论基础上,在教师启发引导下,运用问题解决式教学法,师生交谈法、问答法、课堂讨论法,引导学生根据现实生活的经历和体验及收集到的信息(感性材料)来理解课文中的理论知识。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现的机会,培养其自信心,激发其学习热情。有效地开发各层次学生的潜在智能,力求使每个学生都能在原有的基础上得到发展。同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践,学以致用,落实教学目标。
使学生学习对生活有用的数学,学习对终身发展有用的数学的基本理念。提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的知识和技能,在教学中要积极培养学生学习兴趣和动机,明确的学习目的。教师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力
三、学情分析:(说学法) :
1.学生特点分析:
中学生心理学研究指出,初中阶段是智力发展的关键年龄,学生逻辑思维从经验型逐步向理论型发展,观察能力、记忆能力和想象能力也随着迅速发展。从年龄特点来看,初中学生好动、好奇、好表现,抓住学生特点,积极采用形象生动、形式多样的教学方法和学生广泛的、积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。生理上,青少年好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中应抓住学生这一生理特点,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。
2.知识障碍上:
(1)知识掌握上,学生原有的知识 等式 ,许多学生出现知识遗忘,所以应 更学生更过的时间分组预习讨论 。
(2)学生学习本节课的知识障碍。 不等式解集的表示方法
知识,学生不易理解,所以教学中教师应予以简单明白、深入浅出的分析。
3.动机和兴趣上:
明确的学习目的。教师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。
最后我来具体谈一谈这一堂课的教学过程:
四、教学程序及设想:
教学程序:
(一)课堂结构: 出示学习目标,预习展示 , 练习反馈 , 课堂自测, 布置作业 五 个部分。
(二)教学简要过程:
1、 出示学习目标,课前预习
出示学习目标,学生观察学习目标,自主预习。
设计意图:有了明确的学习目标才能激发起学生的学习热情,才能充分调动学生学习的积极性。
学生分小组进行自主探究学习,同学之间进行合作交流,教师巡视指导,观察学生的探究方法,并倾听学生之间的探讨。
【设计意图】:本次任务为本节课的核心任务,其目的是通过学生的自主学习,理解本节几个概念,并通过学生的举例回答,从具体的实例中去掌握这几个概念。
2 、预习反馈
让学生自己来讲解,有利于提高学生的语言表达能力,学生用语言来概括这几个概念,培养学生的数学语言表达能力及抽象概念能力。
3 、老师归纳,练习反馈
归纳补充知识点,并进行练习反馈。针对每个知识点设置不同的练习。如
1 ) 、不等式的定义设置 , (判断)下列各式是否为不等式;
(1)-2<5 (2)x+3> 2x (3)4x-2y<0 (4)a-2b
(5)x2-2x+1<0 (6) a+b≠c (7)5m+3=8 (8)x≤-4
2 ) 、 用不等式表示:
⑴ a与1的和是正数;
⑵ y的2倍与1的和小于3;
⑶ y的3倍与x的2倍的和是非负数 ;
⑷ x乘以3的积加上2最多为5.
3 ) 、下列说法正确的是( )
A. x=3是2x>1的解
B. x=3是2x>1的唯一解
C. x=3不是2x>1的解
D. x=3是2x>1的解集
及认识不等式解集的表示方法有两种:最简形式与在数轴上表示。分组讨论找规律,记口诀。(定界点,定方向)相关题型:
用数轴表示不等式的解集:
(1)x>-2; (2)x≤3; (3)y≤0
找三名同学上台展示。
展示学生的成果,让学生在学习过程中感受学习的乐趣和成功的喜悦,增强学生的学习兴趣。
体会不等式是解决实际问题的有效工具。
4 、课堂自测
检测学习本节课的掌握情况。
5 、布置作业
分层作业。针对学生的学习情况,让每一名同学都 能完成 老师布置的任务,增强成就感及学习数学的兴趣。 A类: 教科书P119,120:1,2,3;B 类: 卷:能力提高作业。
五、 反思:
本节教学,有以下几点特别值得回味的地方。
1、从生活中来回到生活中去的教学设计
新课标指出:“数学的教学活动必须建立在学生的认知发展水平和已有知识经验基础上。”心理学的研究表明,学习内容和学生生活背景、知识背景越接近,学生自觉接纳知识懂得的程度就越高。导入的恰当、合理会引起学生极大的学习兴趣,对知识的衔接和理顺起到画龙点睛的作用,又对新知识起到设疑、点拔的作用。用学生身边感兴趣的实例 过马路、跷跷板体验生活中的不等式 ,一方面引起学生的参与欲,另一方面也体现了知识拓展的需要。因为这样既可引出一元一次不等式的意义,又让学生产生学习不等式的需求,也使学生对解不等式 的方法有了很自然的联想 让学生充分感受到学习一元一次不等式的必要性。使学生进一步认识到“数学来源于生活,反过来又为生活服务”,增强学好数学的信心与决定。
2、重视数学思想方法的渗透
数学思想方法是数学的灵魂,知识转化为能力的桥梁。在整节课的教学中都非常重视数学思想方法的渗透。学习不等式时,类比方程、不等式解集的概念,渗透“类比”思想。使学生在已有知识上进行迁移,在主动参与、探索交流中不知不觉学到了新知识。利用数轴求不等式的解集,渗透“数形结合”思想。掌握不等式的解集 在数轴上的表示 ,利用数轴把解集 讲解得非常透彻,使学生充分认识到“数形结合”思想方法的用处。列不等式解决实际问题,渗透“建模”思想,培养学生应用数学的意识。最后的小结,不是流俗的学习内容小结,而是思想方法的小结,它起到了提纲挈领,梳理总结的目的。
3、重视数学的“再创造”
课堂教学改革的宗旨和根本出发点是:改善和促进学生全面、持续、和谐地发展。建构主义理论强调学习的主动性、社会性和情景性,认为学习者不是知识信息的被动吸收者,而是主动积极的建构者。留给学生的作业:完成课外探究题,借助数轴归纳求不等式的解集一般规律。教学时重视了数学的“再创造”,由学生本人把需学的东西自己去发现和创造出来。学生的学习不再是一种被动地吸收知识,反复练习,强化储存知识的过程,而是通过反复研究、探索、思考、概括,亲身经历“再创造”的探究性学习过程,从而自主获得知识。
总之,教学设计时体现新课程标准的思想和理念,注重知识与能力并重,培养发展学生自主探索的独立思考精神。
不等式课件【篇4】
一教材分析
1、教材地位和作用
均值不等式又叫做基本不等式,选自人教B版(必修5)的3章的2节的内容,是在上节不等式性质的基础上对不等式的进一步研究.同时也是为了以后学习中的几种重要不等式,以及不等式的证明作铺垫,起着承上启下的作用。
本节内容具有变通灵活性、应用广泛性、条件约束性等特点,所以本节课可以培养学生应用数学知识灵活解决实际问题的能力。
“均值不等式”在不等式的证明和求最值过程中有着广泛的应用。求最值是高考的热点。它在科学研究、经济管理、工程设计上都有广泛的作用。
2、教学目标
A.知识目标:学会推导并掌握均值不等式,理解这个均值不等式的几何意义,并掌握定理中取等号的条件.B.能力目标:通过对均值不等式的推导过程,提高学生探究问题,分析与解决问题的能力。参透类比思想,数形结合的思想,优化了学生的思维品质。
C.情感目标:(1)通过探索均值不等式的证明过程,培养探索、研究精神。(2)通过对均值不等式成立的条件的分析,养成严谨的科学态,并形成勇于提出问题、分析问题的习惯。
3、教学重点、难点:
重点:
通过对新课程标准的解读,教材内容的解析,我认为结果固然重要,但数学学习过程更重要,它有利于培养学生的数学思维和探究能力,所以均值不等式的推导是本节课的重点
难点:
很多同学对均值不等式成立的条件的认识不深刻,在应用时候常常出错误,所以,均值不等式成立的条件是本节课的难点
二教法学法分析
1.教法
本节课主要采用探究归纳,启发诱导,讲练结合的教学方法。以学生为主体,以均值不等式为主线,从实际问题出发,放手让学生探究思索。
2、教学手段
为了使抽象变为具体,我使用了多媒体。为了突出重点我使用了彩色粉笔。3,学法
从实际生活出发,通过创设问题情境,让学生经历由实际问题出发,探求均值不等式,发现均值不等式的实质,利用均值不等式解决实际问题的过程。使学生从代数证明和几何证明两方面理解并掌握基本不等式。
三教学过程
(一)、创设情景,引入课题
从古至今中国人有很多发明创造推动了和推动着世界的前进,在这璀璨的星空里,最耀眼的一颗就是被奉为2002年北京国际数学家大会会徽的《赵爽弦图》(动画打出)。
如图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。这就是公元前1000多年前我国数学家赵爽发现并记录在《周脾算经》中的发现和证明勾股定理的《赵爽弦图》;它比欧洲毕达哥拉斯学派的发现早了500多年。
你能在这个图案中找出一些相等关系或不等关系吗?
设计意图:勾起学生强烈的民族自豪感和强烈的求知欲,并对学生渗透爱国主义教育,同时告诉学生记住我国光辉而灿烂的历史。
探究图形中的不等关系(用提问题的方式)
将图中的“风车”抽象成如图,在正方形ABCD中有4个全等的直角三角形。
设直角三角形的两条直角边长为a,b
4个直角
22三角形的面积的和是2ab,正方形的面积为ab。
由于4个直角三角形的面积和小于正方形的面积,22我们就得到了一个不等式:ab2ab。
当直角三角形变为等腰直角三角形,即a=b时,22正方形EFGH缩为一个点,这时有ab2ab。
22a,bR,那么ab2ab(当且仅当ab时取“”号)得到结论:重要不等式:如果
具有这种形式的式子就是我们今天要讨论的问题.(二)新课讲授。
1给出均值定理(在老师写均值不等式定理时,要求同学在课本上了解均值定理,并思考怎样证明。),师生一起证明均值不等式。
aba0,b0)2要证:„„„„„„„„„①
即证:ab„„„„„„„„„„„②
要证②,只要证:ab0„„„„③
2要证③,只要证:(-)0 „„④
点评,强调取等条件;
2.ab2的几何意义 aba0,b0)2当a≠b时,OC>CD,即
ab当a=b时,OC=CD,即
2我们是否能从图中看见当D向O点移动时CD是逐渐变长了,当D,O重合时CD最长,并且a=b.ab
3.在数学中,我们称2为正数a、b的算术平均数,称ab为正数a、b的几何平均数.均值不等式还可叙述为:两个正数的几何平均数不大于它们的算术平均数.设计意图:探索发现,观察归纳,形成概念,加深对均值不等式的认识和理解;培养学生数形结合的思想方法和对比的数学思想,多方面思考问题的能力.让学生积极的参与到学习中来,激发学生的学习兴趣。
(三)例题讲解(精讲第一题)
例,矩形的面积为100 m2,问这个矩形的长、宽各为多少时,矩形周长最短。最短周长是多少?
用波利亚的4环节来进行解题
1:审题(把实际问题数学化)
2:分析(矩形的长与宽的乘积是一个常数,求长与宽的和的2倍的最小值;)3:解题
4:回顾(给出规律:规律:两个正数的积为常数时,它们的和有最小值)。
设计意图:这个例题体现了基本不等式的实用价值。随着高考综合科目的确定,联系各个学科的试题将会不断出现,数学作为工具性的学科,学好数学,也增强了攻读好其他学科的信心。
为了体现夸美纽斯的巩固性原则,我设计了下面练习。
练习:已知矩形的周长是36m,问这个矩形的长、宽各为多少时,矩形的面积最大?最大面积是多少?
先老师对该练习进行提示,再抽一位同学在黑板上来练习,其他同学在下面练习。做完后大家一起点评该练习,不让同学通过上面的回顾来终结下面的规律:
两个正数的和为常数时,它们的积有最大值
四小结(教师引导学生小结本节课):
知识:均值定理及其成立的条件,及其均值定理的应用
方法:一正,二定,三相等。
思想:类比和数形结合的思想。
设计意图:培养学生对所学知识进行概括归纳的能力,巩固所学知识.
五作业:
基础题:课本 第77页A组 1.提高题:课本 第77页A组 3.4研究题:设正数a、b,试尽可能多的给出含有a和b的两个元素的不等式
板书设计:
为了更好的板书本节课的内容,使整个板面重点突出,层次分明,我将黑板分为四版.定理例题练习副版
定理的证明讲解讲解
不等式课件【篇5】
课题:§3.2.3均值不等式课时:第3课时 授课时间:授课类型:新授课
【教学目标】
1.知识与技能:了解均值不等式在证明不等式中的简单应用。
2.过程与方法:培养学生的探究能力以及分析问题、解决问题的能力。
3.情态与价值:激发学习数学的热情,培养善于思考、勤于动手的学习品质。
【教学重点】了解均值不等式在证明不等式中的简单应用。
【教学难点】了解均值不等式在证明不等式中的简单应用。
【教学过程】
例
1、已知a、b、c∈R,求证:
不等式的左边是根式,而右边是整式,应设法通过适当的放缩变换将左边各根式的被开方式转化为完全平方式,再利用不等式的性质证得原命题。
a2b2c
2abc 例
2、若a,b,cR,则bca
本题若用“求差法”证明,计算量较大,难以获得成功,注意到a , b , c∈R,从结论的特点出发,均值不等式,问题是不难获证的。
+
例
3、已知a,b,c为两两不相等的实数,求证:abcabbcca 证明:∵ab2abbc2bcca2ca
以上三式相加:2(abc)2ab2bc2ca
∴abcabbcca
例
4、已知a,b,c,d都是正数,求证:(abcd)(acbd)4abcd
分析:此题要求学生注意与均值不等式定理的“形”上发生联系,从而正确运用,同22222222222222
2证明:∵a,b,c,d都是正数,∴ab>0,cd>0,ac>0,bd>
得abcdacbd0,0.22
(abcd)(acbd)abcd.4由不等式的性质定理4的推论1,得
即(abcd)(acbd)4abcd
小结:正数的算术平均数不小于它们的几何平均数
课堂练习:第73页习题B 3、4课后作业:第73页习题B 5、6
板书设计:
教学反思:
不等式课件【篇6】
《均值不等式》说课稿
山东陵县一中 燕继龙李国星
尊敬的各位评委、老师们:
大家好!我今天说课的题目是 《均值不等式》,下面我从教材分析,教学目标,教学重点、难点,教学方法,学生学法,教学过程,板书设计,效果分析八个方面说说我对这堂课的设计。
一、教材分析:
均值不等式又称基本不等式,选自普通高中课程标准实验教科书(人教B版)必修5第三章第3节内容。是不等式这一章的核心,在高中数学中有着比较重要的地位。对于不等式的证明及利用均值不等式求最值等实际问题都起到工具性作用。通过本节的学习有利于学生对后面不等式的证明及前面函数的一些最值值域进一步研究,起到承前启后的作用。
二、教学目标:
1、知识与技能:
(1)掌握均值不等式以及其成立的条件;
(2)能运用均值不等式解决一些较为简单的问题。
2、过程与方法:
(1)探索并了解均值不等式的证明过程、体会均值不等式的证明方法;
(2)培养探究能力以及分析问题、解决问题的能力。
3、情感态度与价值观:
(1)通过探索均值不等式的证明过程,培养探索、钻研、合作精神;
(2)通过对均值不等式成立条件的分析,养成严谨的科学态度;
(3)认识到数学是从实际中来,通过数学思维认知世界。
三、教学重点和难点:
重点:通过对新课程标准的解读,教材内容的解析,我认为结果固然重要,但数学学习过程更重要,它有利于培养学生的数学思维和探究能力,所以均值不等式的推导是本节课的重点之一;再者,均值不等式有比较广泛的应用,需重点掌握,而用好均值不等式,关键是对不等式成立条件的准确理解,因此,均值不等式及其成立的条件也是教学重点。
难点:很多同学对均值不等式成立的条件的认识不深刻,在应用时候常常出现错误,所以,均值不等式成立的条件是本节课的难点。
四、教学方法:
为了达到目标、突出重点、突破难点、解决疑点,我本着以教师为主导的原则,再结合本节的实际特点,确定本节课的教学方法。
突出重点的方法:我将通过引导启发、学生展示来突出均值不等式的推导;通过多媒体展示、来突出均值不等式及其成立的条件。
突破难点的方法:我将采用重复法(在课堂的每一环节,以各种方式进行强调均值不等式和
来突破均值不等式成立的条件这个难点。
此外还将继续采用个人和小组积分法,调动学生积极参与的热情。
五、学生学法:
在学生的学习中,注重知识与能力,过程与方法,情感态度和价值观三个方面的共同发展。充分体现学生是主体,具体如下:
1、课前预习----学会;、明确重点、解决疑点;
2、分组讨论
3、积极参与----敢于展示、大胆质疑、争相回答;
4、自主探究----学生实践,巩固提高;
六、教学过程:
采取“三步骤四环节和谐高效课堂”教学模式,运用学案导学开展本节课的教学,首先进行
:课前预习
(一)成果反馈
1.对课前小组合作完成的现实生活中的问题:
“今有一台天平,两臂不等长,要用它称物体质量,将物体放在左、右托盘各称一次,称得的质量分别为a,b,问:能否用a,b的平均值表示物体的真实质量?若不能,这二者是什么关系?”
进行多媒体情景演示,抽小组派代表回答,从而引出均值不等式抽出两名同学上黑板完成2、32.均值定理:_____________________________________
ab
2。
预备定理:a2b22ab(a,bR),仿照预备定理的证明证明均值定理 3.已知ab>0,求证:
ab
ab2,并推导出式中等号成立的条件。
与此同时,其他同学分组合作探究和均值定理有关的以下问题,教师巡视并参与讨论,适时点拨。
① 适用范围a,b________,x0,x
1x2
对吗?
② 等号成立的条件,当且仅当__________时,________=_________ ③ 语言表述:两个___数的____平均数_____它们的_______平均数 ④ 把不等式_________________又称为均值或________不等式 ⑤ 数列观点:两个正数的______中项不小于它们的_____中项
。⑥ 几何解释(见右图):________________
⑦常见变形ab_______
________,即ab
___________。例:
4、(1)一个矩形的面积为100 m,问这个矩形的长、宽各为多少时,矩形的周长最短?最短周长是多少?(2)已知矩形的周长是36m,问这个矩形的长、宽各为多少时,矩形的面积最大?最大面积是多少?
由此题可以得出两条重要规律:
两个正数的积为常数时,它们的和有______值; 两个正数的和为常数时,它们的积有______值。
等待两名同学做完后,适时终止讨论,学生各就各位。首先针对黑板上这两道题发动学生上来捉错(用不同色粉笔),然后再由老师完善,以此加深学生对定理及应用条件的认识。其次,老师根据刚才巡视掌握的情况,结合多媒体进行有针对性的讲解(重点应强调均值定理的几何解释:半径不小于半弦,以及用三角形相似或射影定理的几何证明过程,使定理“形化”),进一步加深学生对定理的认识及应用能力,初步掌握用均值定理求函数最值时要注意“一正、二定、三相等”
第二步:课内探究
(二)精讲点拨 1.例:求函数f(x)
2xx
3x
(x0)的最大值,及此时x的值。
先和学生们一起探讨该问题的解题思路,先拆分再提出“-”号,为使用均值定理创造条件,后由学生们独立完成,教师通过巡视或提问发现问题,通过多媒体演示来解决问题,该例题主要让学生注意定理的应用条件及一些变形技巧。
2.多媒体展示辨析对错:
这几道辨析题先让学生们捉错,再由
多媒体给出答案,创设情境加深学生对用均值定理求函数最值时注意“一正、二定、三相等”的认识
(三)有效训练
1.(独立完成)下列函数的最小值为2的是()
A、yx
1x
B、ysinx
1sinx
(0x
)
C、y
1D、ytanx
本题意在巩固用均值定理求函数最值时要注意“一正、二定、三相等”,待学生完成后,随机抽取几名学生说一下答案,选D,应该不会有问题。
2.(小组合作探究)一扇形中心角为α,所在圆半径为R。若扇形周长为一常值C(C>0),当α为何值时,扇形面积最大,并求此最大值。
本题若直接运用均值不等式不会出现定值,需要拼凑。待学生讨论过后,先通答案,2时扇形面积最大值为
c
tanx
(0x
)
。若有必要,抽派小组代表到讲台上讲解,及时反馈矫正。
(四)本节小结
小结本节课主要内容,知识点,由学生总结,教师完善,不外乎: 1.两个重要不等式
ab2ab(a,bR,当且仅当ab时取“”)
2ab2
a,bR,当且仅当ab时取“”)
2.用均值定理求函数最值时要注意“一正、二定、三相等”。
(一)、双基达标(必做,独立完成):
1、课本第71页练习A、B;
2、已知x1,求yx6
x
1的最值;
(二)、拓展提高(供选做, 可小组合作完成):
23、若a,bR且a
b
1,求a最大值及此时a,b的值.4、a0,b0,且
5、求函数f(x)
1a
9b
1,求ab最小值.x3x1x
1(x1)的最小值。
通过作业使学生进一步巩固本节课所学内容,注重分层次设计题目,更加关注学生的差异。
七、板书设计:
由于本节采用多媒体教学,板书比较简单,且大部分是学生的展示。
八、效果分析:
本节课采取了我校推行的“三步骤四环节和谐高效课堂”教学模式,通过学案导学,多媒体展示,师生互动,生生互动。学生基本能掌握均值不等式以及其成立的条件;能运用均值不等式解决一些较为简单的问题。但用均值定理求函数最值时要注意“一正、二定、三相等”,说起来容易做起来难,学生还得通过反思和课后训练进一步体会。
我的说课到此结束,恳请各位评委和老师们批评指正,谢谢!
不等式课件【篇7】
【教学目标】
1.通过具体情境让学生感受和体验现实世界和日常生活中存在着大量的不等关系,鼓励学生用数学观点进行观察、归纳、抽象,使学生感受数学、走进数学、改变学生的数学学习态度。
2.建立不等观念,并能用不等式或不等式组表示不等关系。
3.了解不等式或不等式组的实际背景。
4.能用不等式或不等式组解决简单的实际问题。
【重点难点】
重点:
1.通过具体的问题情景,让学生体会不等量关系存在的普遍性及研究的必要性。
2.用不等式或不等式组表示实际问题中的不等关系,并用不等式或不等式组研究含有简单的不等关系的问题。
3.理解不等式或不等式组对于刻画不等关系的意义和价值。
难点:
1.用不等式或不等式组准确地表示不等关系。
2.用不等式或不等式组解决简单的含有不等关系的实际问题。
【方法手段】
1.采用探究法,按照阅读、思考、交流、分析,抽象归纳出数学模型,从具体到抽象再从抽象到具体的方法进行启发式教学。
2.教师提供问题、素材,并及时点拨,发挥老师的主导作用和学生的主体作用。
3.设计教典型的现实问题,激发学生的学习兴趣和积极性。
【教学过程】
教学环节
教师活动
学生活动
设计意图
导入新课
日常生活中,同学们发现了哪些数量关系。你能举出一些例子吗?
实例1.某天的天气预报报道,最高气温35℃,最低气温29℃。
实例2.若一个数是非负数,则这个数大于或等于零。
实例3.两点之间线段最短。
实例4.三角形两边之和大于第三边,两边之差小于第三边。
引导学生想生活中的例子和学过的数学中的例子。在老师的引导下,学生肯定会迫不及待的能说出很多个例子来。即活跃了课堂气氛,又激发了学生学习数学的兴趣。
推进新课
同学们所举的这些例子联系了现实生活,又考虑到数学上常见的数量关系,非常好。而且大家已经考虑到本节课的标题《不等关系与不等式》,所举的实例都是反映不等量的关系。
(下面利用电脑投影展示两个实例)
实例5:限时40km/h的路标,指示司机在前方路段行使时,应使汽车的速度v不超过40km/h。
实例6:某品牌酸奶的质量检查规定,酸奶中脂肪的含量f应不少于2.5%,蛋白质的含量p应不少于2.3%.
同学们认真观看显示屏幕上老师所举的例子。
让学生们边看边思考:生活中有许多的事情的描述可以采用不等的数量关系来描述
过程引导
能够发现身边的数学当然很好,这说明同学们已经走进了数学这门学科,但是我们还要能用数学的眼光、数学的观点、进行观察、归纳、抽象,完成这些量与量的比较过程,那么我们用什么知识来表示这些不等关系呢?
什么是不等式呢?
用大屏幕展示一组不等式-71+4;2x≤6;a+2≥0;3≠4.
能用不等式及不等式组把这些不等关系表示出来,也就是建立不等式数学模型的过程通过对不等式数学模型的'研究,反过来作用于现实生活,这才是学习数学的最终目的。
思考并回答老师的问题:可以用不等式或不等式组来表示不等关系。
经过老师的启发和点拨,学生可以自己总结出:用不等号将两个解析试连接起来所成的式子叫不等式。
目的是让学生回忆不等式的一些基本形式,并说明不等号≤,≥的含义,是或的关系。回忆了不等式的概念,不等式组学生自然而然就清楚了。
此时学生已经迫不及待地想说出自己的观点了。
合作探究
(一)。下面我们把上述实例中的不等量的关系用不等式或不等式组一一的表示出来,那应该怎么表示呢?
这两位同学的观点是否正确?
老师要表扬学生:“很好!这样思考问题很严密。”应该用不等式组来表示此实际问题中的不等量关系,也可以用“且”的形式来表达。
(二)。问题一:设点A与平面的距离为d,B为平面上的任意一点。
请同学们用不等式或不等式组来表示出此问题中的不等量的关系。
老师提示:借助于图形,这个问题是不是可以解决?
(下面让学生板演,结合三角形草图来表达)
问题(二):某种杂志原以每本2。5元的价格销售,可以售出8万本,据市场调查,若单价每提高0。1元,销售量就可能相应减少20xx本。若把提价后杂志的定价设为x元,怎样用不等式表示销售的总收入仍不低于20万元呢?
是不是还有其他的思路?
为什么可以这样设?
很好,请继续讲。
这位学生回答的很好,表述得很准确。请同学们对两种解法作比较。
问题(三):某钢铁厂要把长度为4000mm的钢管截成500mm和600mm两种,按照生产的要求,600mm钢管的数量不超过500mm钢管的3倍。怎样写出满足上述所有不等式关系的不等式?
假设截得500mm的钢管x根,截得600mm的钢管y根。根据题意,应当有什么样的不等量关系呢?
右边的三个不等关系是“或”还是“且”的关系呢?
这位学生回答得很好,思维很严密,那么该用怎样的不等式组来表示此问题中的不等关系呢?
通过上述三个问题的探究,同学们对如何用不等式或不等式组把实际问题中隐藏的不等量关系表示出来,这一点掌握得很好。请同学们完成书本练习第74页1,2。
课堂小结:
1.学习数学可以帮助我们解决实际生活中的问题。
2.数学和我们的生活联系非常密切。
3.本节课巩固了二元一次不等式及二元一次不等式组,并且能用它来解决现实生活中存在的大量不等量关系的实际问题。还要注意思维要严密,规范,并且要注意数形结合等思想方法的综合应用。
布置作业:
第75页习题3.1 A组4,5。
29℃≤t≤35℃
x≥0
|AC|+|BC|>|AB|
|AB|+|BC|>|AC|、|AC|+|BC|>|AB|、|AB|+|AC|>|BC|.
|AB|-|BC|
|AB|-|AC|
如果用表示速度,则v≤40km/h.
f≥2.5%或p≥2.3%
学生自己纠正了错误:这种表达是错误的,因为两个不等量关系要同时满足,所以应该用不等式组来表示次实际问题中的不等量关系,即可以表示为也可表示为f≥2.5%且p≥2.3%.
过点A作AC⊥平面于点C,则d=|AC|≤|AB|
可设杂志的定价为x元,则销售量就减少万本。销售量变为(8-)万本,则总收入为(8-)x万元。即销售的总收入为不低于20万元的不等式表示为(8-)x≥20.
解法二:可设杂志的单价提高了0.1n元,(n)
我只考虑单价的增量。
那么销售量减少了0.2n万本,单价为(2.5+0.1n)元,则也可得销售的总收入为不低于20万元的不等式,表示为(2.5+0.1n)(8-0.2n)≥20.
截得两种钢管的总长度不能超过4000mm。
截得600mm钢管的数量不能超过500mm钢管的3倍。
截得两种钢管的数量都不能为负数。
它们是同时满足条件,应该是且的关系。由实际问题的意义,还应有x,y要同时满足上述三个不等关系,可以用下面的不等式组来表示:
如果学生没有想到的话,老师可以在黑板上板演示意图,启发学生考虑三边的大小关系。
此时启发学生“或”字可以吗?学生没有了声音,他们在思考着。到底行不行呢?有的回答“行”,有的回答“不行”。
此时学生们在思考,时间长的话,老师要及时点拨。
让学生知道,在解决问题时应该贯穿数形结合的思想,以形助数,下面有学生的声音,有学生在讨论,有的学生还有疑问。老师注意关注学生的思维状况,并且及时的加以指导。
此时学生已经真正进入本节课的学习状态,老师再给出问题(三)使学生一直处于跟随老师积极思考和解决问题的状态。问题是教学研究的核心,以问题展示的形式来培养学生的问题意识与探究意识。
【教学反思】(【设计说明】)
本节课内容很多,都是不等式和不等式组的有关问题,还有很多是生活中的实例,学生学习起来很感兴趣,课堂的气氛也很好,大多数学生都能很积极地回答问题,使课堂的学习气氛很浓,确实也做到了愉快教学。设计是按照老师引导式教学,边讲授边引导,启发学习思考问题及能自己解决问题,锻炼学习能自主的学习能力。
【交流评析】
一是课堂容量适中,二是实例很好,接近生活,学生感兴趣。三是学生回答问题积极踊跃,和老师配合很好。四是多媒体应用的恰到好处,教学设备很完善,老师也能很熟练的应用。
不等式课件【篇8】
3.2均值不等式 教案(3)
(第三课时)
教学目标:
了解均值不等式在证明不等式中的简单应用
教学重点:
了解均值不等式在证明不等式中的简单应用
教学过程
例
1、已知a、b、c∈R,求证:
不等式的左边是根式,而右边是整式,应设法通过适当的放缩变换将左边各根式的被开方式转化为完全平方式,再利用不等式的性质证得原命题.
a2b2c
2abc 例
2、若a,b,cR,则bca
本题若用“求差法”证明,计算量较大,难以获得成功,注意到a , b , c∈R,从结论的特点出发,均值不等式,问题是不难获证的.
+
例
3、已知a,b,c为两两不相等的实数,求证:abcabbcca 证明:∵ab2abbc2bcca2ca
以上三式相加:2(abc)2ab2bc2ca
∴abcabbcca
例
4、已知a,b,c,d都是正数,求证:(abcd)(acbd)4abcd 22222222222222
2分析:此题要求学生注意与均值不等式定理的“形”上发生联系,从而正确运用,同时证明:∵a,b,c,d都是正数,∴ab>0,cd>0,ac>0,bd>得
abcdacbd0,0.22
由不等式的性质定理4的推论1,得
(abcd)(acbd)abcd.4即(abcd)(acbd)4abcd
小结:正数的算术平均数不小于它们的几何平均数
课堂练习:第77页练习A、B
课后作业:略
不等式课件【篇9】
教材分析:
上节课认识了不等式,知道了什么叫不等式和不等式的解。本节主要学习不等式的解集,这是学好利用不等式解决实际问题的关键,同时要求学生会用数轴表示不等式的解集,使学生感受到数形结合的作用。并且本课也通过让学生经历实验、观察、分析、概括过程,自主探索不等式的解集等概念,培学生的思维能力。在情感态度、价值观方面要培养学生与他人合作学习的习惯。
教学重点:
理解不等式的解集的含义,明确不等式的解是在某个范围内的所有解。
教学难点:
对不等式的解集含义的理解。
教学难点突破办法:
通过实验、观察,分析、概括过程,使学生对不等式的解集有了初步的理解,然后通过数轴直观地表示出不等式的解集,从而加深了学生对不等式的解集的理解。
教学方法:
1、采用复习法查缺补漏,引导发现法培养学生类比推理能力,尝试指导法逐步培养学生独立思考能力及语言表达能力。充分发挥学生的主体作用,使学生在轻松愉快的气氛中掌握知识。
2、让学生充分发表自己的见解,给学生一定的时间和空间自主探究每一个问题,而不是急于告诉学生结论。
3、尊重学生的个体差异,注意分层教学,满足学生多样化的学习需要。
学习方法:
1、学生要深刻思考,把实际问题转化为数学模型,养成认真思考的好习惯。
2、合作类推法:学习过程中学生共同讨论,并用类比推理的方法学习。
教学步骤设计如下:
(一)创设问题情境,引入新课:
实验:将如下重量的砝码分别放入天平的左边。
请大家仔细观察,哪些砝码放入天平左边后能使天平向左边倾斜?如果砝码重x克,要使x+2>5,即:天平左边放入x克砝码后使天平向左边倾斜。那么这样的x取应取什么数?这样的数是有限个还是无限个?
学生活动:
1、让学生观察实验,寻找数量关系回答问题;
2、让学生采取小组合作的学习方式。
(二)讲授新课
通过实验、讨论、交流、归纳得到:大于心不甘的每个数都是不等式x+2>5的解,而小于3的每一个数都不是不等式x+2>5的解,因此不等式x+2>5的解有无限多个,它们组成集合,称为一元不等式x+2>5的解集。即表示为x>3。
由实例概括出不等式的解集以及解不等式的概念:一个不等式的所有解,组成这个不等式的解的集合,简称为这个不等式的解集;求不等式的解集过程,叫做解不等式。
我们知道解不等式不能只求个别解,而应求它的解集.一般而言,不等式的解集不是由一个数或几个数组成的,而是由无限多个数组成的,如x>3.那么如何在数轴上直观地表示不等式x+2>5的解集x>3呢?
不等式解集x>3,在数轴上可以直观地表示出来。如图8.2.1
如果某个不等式x≤-2,也可在数轴上直观地表示出来,如图8.2.2
说明:8.2.1在表示范表演的点画空心圆圈,表不包括这一点,表示大时就往右拐;图8.2.2在表示-2的点画黑点表示包括这一点,表示小时不向左拐。
(三)知识拓展
将数轴上x的范围用不等式来表示:
(四)尝试反馈:
课本第44页“练习”第1、2题。
(五)归纳小结:
这节课主要学习了不等式的解集的有关概念,并会用数轴表示不等式的解集。
不等式课件【篇10】
《不等式的基本性质》它是北师大版八年级下册第一章第二节的内容。今天我将从教材分析,教学目标,教学重难点,教法学法,教学过程这五个方面谈谈我对这节课处理的一些不成熟的看法:
本节内容不等式,它是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应用,所以对不等式的学习有着重要的实际意义。同时,不等式的基本性质也为学生以后顺利学习解一元一次不等式和解一元一次不等式组的有关内容的理论基础,起到重要的奠基作用。
根据《新课程标准》的要求,教材的内容兼顾我校八年级学生的特点,我制定了如下教学目标:
知识与技能:
1. 感受生活中存在的不等关系,了解不等式的意义。
2. 掌握不等式的基本性质。
过程与方法:经历不等式的基本性质的探索过程,初步体会不等式与等式的异同。
情感态度与价值观:经历由具体实例建立不等式模型的过程,进一步符号感与数学化的能力。
教学重难点:
重点:不等式概念及其基本性质
难点:不等式基本性质3
教法与学法:
1. 教学理念: “ 人人学有用的数学”
2. 教学方法:观察法、引导发现法、讨论法.
3. 教学手段:多媒体应用教学
4. 学法指导:尝试,猜想,归纳,总结
根据《数学课程标准》的要求,教材和学生的特点,我制定了以下四个教学环节。
下面我将具体的教学过程阐述一下:
一、创设情境,导入新课
上课伊始,我将用一个公园买门票如何才划算的例子导入课题。
世纪公园的票价是:每人5元;一次购票满30张,每张可少收1元。某班有27名团员去世纪公园进行活动。当领队王小华准备好了零钱到售票处买27张票时,爱动脑筋的李敏同学喊住了王小华,提议买30张票。但有的同学不明白,明明我们只有27个人,买30张票,岂不是“浪费”吗?
(此处学生是很容易得出买30张门票需要4X30=120(元), 买27张门票需要5X27=135(元),由于120〈135,所以买30张门票比买27张还要划算。由此建立了一个数与数之间的不等关系式)
紧接着进一步提问:若人数是x时,又当如何买票划算?
二、探求新知,讲授新课
引例列出了数与数之间的不等关系和含有未知量120
接下来我用一组例题来巩固一下对不等式概念的认知,把表示不等量关系的常用关键词提出。
(1)a是负数;
(2)a是非负数;
(3) a与b的和小于5;
(4) x与2的差大于-1;
(5) x的4倍不大于7;
(6) 的一半不小于3
关键词:非负数,非正数,不大于,不小于,不超过,至少
回到引入课题时的门票问题120
难点突破:通过上面三组算式,学生已经尝试着归纳出不等式的三条基本性质了。不等式性质3是本节的难点。在不等式性质3用数探讨出以后,换一个角度让学生想一想,是否能在数轴上任取两个点,用相反数的相关知识挖掘一下,乘以或除以一个负数时,任意两个数比较是否性质3都成立。通过“数形结合”的思想,使数的取值从特殊化到一般化,从对具体数的感知完成到字母代替数的升华。让学生用实例对一些数学猜想作出检验,从而增加猜想的可信程度。同时,让学生尝试从不同角度寻求解决问题的方法并能有效地解决问题。
反馈练习:用一个小练习巩固三条性质。
如果a>b,那么
(1) a-3 b-3 (2) 2a 2b (3) -3a -3b
提出疑问,我们讨论性质2,3是好象遗忘了一个数0。
引出让学生归纳,等式与不等式的区别与联系
三、拓展训练
根据不等式基本性质,将下列不等式化为“”的形式
(1)x-13
再次回到开头的门票问题,让学生解出相应的x的取值范围
四、小结
1.新知识
一个数学概念;两种数学思想;三条基本性质
2.与旧知识的联系
等式性质与不等式性质的异同
五、作业的布置
以上是我对这节课的教学的看法,希望各位专家指正。谢谢!
“让学生主动参与数学教学的全过程,真正成为学习的主人”
不等式课件【篇11】
教材分析
本节课是在系统的学习了不等关系和不等式性质,掌握了不等式性质的基础上展开的,作为重要的基本不等式之一,为后续的学习奠定基础。要进一步了解不等式的性质及运用,研究最值问题,此时基本不等式是必不可缺的。基本不等式在知识体系中起了承上启下的作用,同时在生活及生产实际中有着广泛的应用,因此它也是对学生进行情感价值观教育的好素材,所以基本不等式应重点研究。
教学中注意用新课程理念处理教材,学生的数学学习活动不仅要接受、记忆、模仿和练习,而且要自主探索、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程。通过本节学习体会数学来源于生活,提高学习数学的乐趣。
课程目标分析
依据《新课程标准》对《不等式》学段的目标要求和学生的实际情况,特确定如下目标:
1、知识与能力目标:理解掌握基本不等式,并能运用基本不等式解决一些简单的求最值问题;理解算数平均数与几何平均数的概念,学会构造条件使用基本不等式;培养学生探究能力以及分析问题解决问题的能力。
2、过程与方法目标:按照创设情景,提出问题→剖析归纳证明→几何解释→应用(最值的求法、实际问题的解决)的过程呈现。启动观察、分析、归纳、总结、抽象概括等思维活动,培养学生的思维能力,体会数学概念的学习方法,通过运用多媒体的教学手段,引领学生主动探索基本不等式性质,体会学习数学规律的方法,体验成功的乐趣。
3、情感与态度目标:通过问题情境的设置,使学生认识到数学是从实际中来,培养学生用数学的眼光看世界,通过数学思维认知世界,从而培养学生善于思考、勤于动手的良好品质。
教学重、难点分析
重点:应用数形结合的思想理解基本不等式,并从不同角度探索基本不等式的证明过程及应用。
难点:1、基本不等式成立时的三个限制条件(简称一正、二定、三相等);
2、利用基本不等式求解实际问题中的最大值和最小值。
教法分析
本节课采用观察——感知——抽象——归纳——探究;启发诱导、讲练结合的教学方法,以学生为主体,以基本不等式为主线,从实际问题出发,放手让学生探究思索。以现代信息技术多媒体课件作为教学辅助手段,加深学生对基本不等式的理解。
教学准备
多媒体课件、板书
教学过程
教学过程设计以问题为中心,以探究解决问题的方法为主线展开。这种安排强调过程,符合学生的认知规律,使数学教学过程成为学生对知识的再创造、再发现的过程,从而培养学生的创新意识。
具体过程安排如下:
创设情景,提出问题;
设计意图:数学教育必须基于学生的“数学现实”,现实情境问题是数学教学的平台,数学教师的任务之一就是帮助学生构造数学现实,并在此基础上发展他们的数学现实.基于此,设置如下情境:
上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客。
[问]你能在这个图中找出一些相等关系或不等关系吗?
本背景意图在于利用图中相关面积间存在的数量关系,抽象出不等式。在此基础上,引导学生认识基本不等式。
二、抽象归纳:
一般地,对于任意实数a,b,有,当且仅当a=b时,等号成立。
[问]你能给出它的证明吗?
学生在黑板上板书。
特别地,当a>0,b>0时,在不等式中,以、分别代替a、b,得到什么?
设计依据:类比是学习数学的一种重要方法,此环节不仅让学生理解了基本不等式不等式的来源,突破了重点和难点,而且感受了其中的函数思想,为今后学习奠定基础.
答案:。
【归纳总结】
如果a,b都是正数,那么,当且仅当a=b时,等号成立。
我们称此不等式为基本不等式。其中称为a,b的算术平均数,称为a,b的几何平均数。
三、理解升华:
1、文字语言叙述:
两个正数的算术平均数不小于它们的几何平均数。
2、联想数列的知识理解基本不等式
已知a,b是正数,A是a,b的等差中项,G是a,b的正的等比中项,A与G有无确定的大小关系?
两个正数的等差中项不小于它们正的等比中项。
3、符号语言叙述:
若,则有,当且仅当a=b时,。
[问]怎样理解“当且仅当”?(学生小组讨论,交流看法,师生总结)
“当且仅当a=b时,等号成立”的含义是:
不等式的课件收藏
经验时常告诉我们,做事要提前做好准备。在幼儿教育工作中,我们都有会准备一写需要用到资料。资料包含着人类在社会实践,科学实验和研究过程中所汇集的经验。有了资料的协助我们的工作会变得更加顺利!所以,关于幼师资料你究竟了解多少呢?小编现在推荐你阅读一下不等式的课件收藏,相信能对大家有所帮助。
不等式的课件 篇1
基本不等式是初中数学比较重要的一个概念,对于求解不等式问题有非常大的作用。在教学中,老师可以通过多学示例,呈现形式多样,让学生深刻理解基本不等式的本质和应用,使学生在解决实际问题中灵活掌握相关知识。本文将结合基本不等式的定义、性质和应用,探讨其相关主题。
一、基本不等式的定义和性质
基本不等式是在解决实际问题时常用到的一种数学方法,它可以有效地帮助我们解决很多实际问题。在数学中,一般把基本不等式定义为,对于任何正整数a和b,有下列不等关系:
(a+b)^2>=4ab
这个不等式在初中数学中非常重要,我们还可以把它解释成下面的形式:对于任何两个正数a和b,有下列不等式:
a/b+b/a>=2
这个式子实际上就是基本不等式的一个特例,也说明了基本不等式中的a和b可以指任何两个正数。
基本不等式的一些性质:
1、两边同时乘以正数或是开根号(即不改变不等关系的实质)是允许的。
2、当a=b时等号成立。
3、当a不等于b时,不等号成立。
这些性质是我们用基本不等式时需要注意的几个关键点。如果我们了解了这些基本的性质,就可以更加灵活地运用基本不等式解决实际问题。
二、基本不等式的应用
基本不等式的应用非常广泛,例如可以用它来解决以下问题:
1、证明
√(a^2+b^2)>=a/√2+b/√2
这个问题就可以使用基本不等式来证明,首先得到(a+b)^2>=2(a^2+b^2),将式子化简可得√(a^2+b^2)>=a/√2+b/√2,这就是想要证明的结论。
2、解决一些最值问题。例如:如何使a+b的值最小?这个问题可以用基本不等式来解决,我们设a+b=k,那么a+b的平方就是k^2,代入基本不等式中可得出:
k^2>=4ab,即(a+b)^2>=4ab
这个不等式右边是4ab,左边则是(a+b)^2,因此a+b的值取得最小值时,应当使(a+b)^2=4ab,所以a=b,因此a+b的最小值就是2a或是2b。
3、证明一些平方和不等式的结论。例如:
(a/b)^2+(b/a)^2>=2
这个问题可以通过基本不等式进行证明,首先我们设x=a/b,y=b/a,很显然有x+y>=2,然后通过简单的运算可得:x^2+y^2>=2,也即(a/b)^2+(b/a)^2>=2。
综上所述,基本不等式作为初中数学比较重要的一部分,其定义、性质和应用都与实际问题密切相关。在解决实际问题时,我们可以通过多学示例,灵活运用基本不等式的性质和应用,进而更好地理解其本质和应用,从而使初中数学知识更加牢固。
不等式的课件 篇2
(1)运用问题的形式帮助学生整理全章的内容,建立知识体系。
(2)在独立思考的基础上,鼓励学生开展小组和全班的交流,使学生通过交流和反思加强对所学知识的理解和掌握,并逐步建立知识体系。
通过问题情境的设立,使学生再现已学知识,锻炼抽象、概括的能力。解决问题
通过具体问题来体会知识间的联系和学习本章所采用的主要思想方法。
通过独立思考获取学习的成功体验,通过小组交流培养合作交流意识,通过大胆发表自己的观点,增强自信心。
重点:对一元一次不等式基本性质的掌握;理解不等式(组)解及解集的含义,会解简单的一元一不等式(组),并会在数轴上表示其解集;会解相关的问题,建立起相关的知识体系。
不等式有哪些基本性质?它与等式的性质有什么相同和不同之处?
解一元一次不等式和解一元一次方程有什么异同?引导学生回忆解一元一次方程的步骤.比较两者之间的不同学生举例回答.
举例说明在数轴上如何表示一元一不等式(组)的解集分组竞赛.看哪一组出的题型好,全班一起解答.
举例说明不等式、函数、方程的联系.引导学生回忆函数的有关内容.举例说明三者之间的关系.小组讨论,合作回答.函数性质、图象
小组交流、讨论不等式和函数、函数和方程等之间的关系,分别举例说明.
布置作业开动脑筋,勇于表达自己的'想法.
(1)在运用所学知识解决具体问题的同时,加深对全章知识体系理解。
(2)发展学生抽象能力、推理能力和有条理表达自己想法的能力.
教学思考:
体会数学的应用价值,并学会在解决问题过程中与他人合作.解决问题。在独立思考的基础上,积极参与问题的讨论,从交流中学习,并敢于发表自己的观点和主张,同时尊重与理解别人的观点。
情感态度与价值观:
进一步尝试学习数学的成功体验,认识到不等式是解决实际问题的重要工具,逐渐形成对数学活动积极参与的意识。
重点:
对一元一次不等式基本性质的掌握;理解不等式(组)解及解集的含义,会解简单的一元一次不等式(组),并会在数轴上表示其解集;会解相关的问题,建立起相关的知识体系。
↓ ↓
安排一组练习让学生充分充分讨论解决.
(1)当X取何值时,Y>0(2)当X取何值时,Y=0(3)当X取何值时,Y
3.某工人制造机器零件,如果每天比预定多做一件,那么8天所做零件超过100件;如果每天比预定少做一件,那么8天所做零件不到90件,这个工人预定每天做几个零件?
不等式的课件 篇3
一元二次不等式是高中数学中的一个重要概念,是指一个带有二次项的不等式。在数学学习中,我们经常需要利用二次不等式来解决问题,掌握这个概念对于深入了解高中数学知识是至关重要的。因此,学习一元二次不等式是高中数学学习中的一大难点,需要认真对待。
一元二次不等式的概念和性质
一元二次不等式可以写成如下形式:
ax² + bx + c > 0
或
ax² + bx + c
其中a、b、c都是实数,a ≠ 0。
我们可以通过一些方法求出不等式的根,比如将其转化为标准形式。将不等式变形,我们可以得到如下形式:
ax² + bx
或
ax² + bx > – c
然后,我们再用求一元二次方程根的方法求出不等式的解,就能够得到它的解集。
对于不等式ax² + bx + c > 0,其图像为二次函数的上凸形,即开口向上的抛物线,而对于不等式ax² + bx + c
一元二次不等式的解法
解一元二次不等式的方法有很多,下面我们介绍其中的两种:
方法一:化为标准形式,再利用求一元二次方程根的方法求解。
方法二:利用符号法将不等式中的式子化简,得到一系列不等式,然后将这些不等式求解即可。
实际上,解一元二次不等式还有很多其他的方法,比如绝对值法、图形法等等。在解题时,我们要根据具体的情况选择最合适的方法来求解。
一元二次不等式的应用
一元二次不等式广泛应用于数学学习以及生活中的各个领域,比如物理学、经济学、社会学等。下面我们以生活中的一个例子来说明一元二次不等式的应用。
假设你要购买一台电视机,商家提供了两种方案供你选择。方案一:首付1500元,每月还款100元;方案二:首付3500元,每月还款80元。那么,你需要比较两个方案的总花费,来决定哪个方案更加划算。
我们假设电视机的总价格为x元。那么,方案一的总花费为:
C1 = 1500 + 100×n
而方案二的总花费为:
C2 = 3500 + 80×n
这里n为分期的期数,即你需要还款的总期数。为了比较两种方案的划算程度,我们可以列出一个一元二次不等式:
1500 + 100×n
经过化简,我们可以得到:
20n > 2000
n > 100
因此,当还款期数大于100期时,方案一比方案二更加划算。这个例子很好地展示了一元二次不等式的应用,它能够帮助我们在日常生活中做出明智的选择,也能够更加深入地理解数学知识。
总结
一元二次不等式是高中数学学习中的重要概念,它在数学中和生活中都有广泛的应用。学习一元二次不等式需要我们认真对待,掌握其概念、性质和解法,同时也需要我们理解其实际应用,这样才能够更好地掌握高中数学的知识。
不等式的课件 篇4
本节课的研究是对初中不等式学习的延续和拓展,也是实数理论的进一步发展.在本节课的学习过程中,将让学生回忆实数的基本理论,并能用实数的基本理论来比较两个代数式的大小.
通过本节课的学习,让学生从一系列的具体问题情境中,感受到在现实世界和日常生活中存在着大量的不等关系,并充分认识不等关系的存在与应用.对不等关系的相关素材,用数学观点进行观察、归纳、抽象,完成量与量的比较过程.即能用不等式或不等式组把这些不等关系表示出来.
在本节课的学习过程中还安排了一些简单的、学生易于处理的问题,其用意在于让学生注意对数学知识和方法的应用,同时也能激发学生的学习兴趣,并由衷地产生用数学工具研究不等关系的愿望.根据本节课的教学内容,应用再现、回忆得出实数的基本理论,并能用实数的基本理论来比较两个代数式的大小.
在本节教学中,教师可让学生阅读书中实例,充分利用数轴这一简单的数形结合工具,直接用实数与数轴上点的一一对应关系,从数与形两方面建立实数的顺序关系.要在温故知新的基础上提高学生对不等式的认识.
1.在学生了解不等式产生的实际背景下,利用数轴回忆实数的基本理论,理解实数的大小关系,理解实数大小与数轴上对应点位置间的关系.
2.会用作差法判断实数与代数式的大小,会用配方法判断二次式的大小和范围.
3.通过温故知新,提高学生对不等式的认识,激发学生的学习兴趣,体会数学的奥秘与数学的结构美.
教学重点:比较实数与代数式的大小关系,判断二次式的大小和范围.
思路1.(章头图导入)通过多媒体展示卫星、飞船和一幅山峦重叠起伏的壮观画面,它将学生带入“横看成岭侧成峰,远近高低各不同”的大自然和浩瀚的宇宙中,使学生在具体情境中感受到不等关系在现实世界和日常生活中是大量存在的,由此产生用数学研究不等关系的强烈愿望,自然地引入新课.
思路2.(情境导入)列举出学生身体的高矮、身体的轻重、距离学校路程的远近、百米赛跑的时间、数学成绩的多少等现实生活中学生身边熟悉的事例,描述出某种客观事物在数量上存在的不等关系.这些不等关系怎样在数学上表示出来呢?让学生自由地展开联想,教师组织不等关系的相关素材,让学生用数学的观点进行观察、归纳,使学生在具体情境中感受到不等关系与相等关系一样,在现实世界和日常生活中大量存在着.这样学生会由衷地产生用数学工具研究不等关系的愿望,从而进入进一步的探究学习,由此引入新课.
1回忆初中学过的不等式,让学生说出“不等关系”与“不等式”的异同.怎样利用不等式研究及表示不等关系?
2在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系.你能举出一些实际例子吗?
3数轴上的任意两点与对应的两实数具有怎样的关系?
4任意两个实数具有怎样的关系?用逻辑用语怎样表达这个关系?
活动:教师引导学生回忆初中学过的不等式概念,使学生明确“不等关系”与“不等式”的异同.不等关系强调的是关系,可用符号“>”“b”“a
教师与学生一起举出我们日常生活中不等关系的例子,可让学生充分合作讨论,使学生感受到现实世界中存在着大量的不等关系.在学生了解了一些不等式产生的实际背景的前提下,进一步学习不等式的有关内容.
实例1:某天的天气预报报道,最高气温32 ℃,最低气温26 ℃.
实例2:对于数轴上任意不同的两点A、B,若点A在点B的左边,则xA
实例5:三角形两边之和大于第三边,两边之差小于第三边.
实例6:限速40 km/h的路标指示司机在前方路段行驶时,应使汽车的速度v不超过40 km/h.
实例7:某品牌酸奶的质量检查规定,酸奶中脂肪的含量f应不少于2.5%,蛋白质的含量p应不少于2.3%.
教师进一步点拨:能够发现身边的数学当然很好,这说明同学们已经走进了数学这门学科,但作为我们研究数学的人来说,能用数学的眼光、数学的观点进行观察、归纳、抽象,完成这些量与量的比较过程,这是我们每个研究数学的人必须要做的,那么,我们可以用我们所研究过的什么知识来表示这些不等关系呢?学生很容易想到,用不等式或不等式组来表示这些不等关系.那么不等式就是用不等号将两个代数式连结起来所成的式子.如-71+4,2x≤6,a+2≥0,3≠4,0≤5等.
教师引导学生将上述的7个实例用不等式表示出来.实例1,若用t表示某天的气温,则26 ℃≤t≤32 ℃.实例3,若用x表示一个非负数,则x≥0.实例5,|AC|+|BC|>|AB|,如下图.
|AB|+|BC|>|AC|、|AC|+|BC|>|AB|、|AB|+|AC|>|BC|.
|AB|-|BC|
实例6,若用v表示速度,则v≤40 km/h.实例7,f≥2.5%,p≥2.3%.对于实例7,教师应点拨学生注意酸奶中的脂肪含量与蛋白质含量需同时满足,避免写成f≥2.5%或p≥2.3%,这是不对的.但可表示为f≥2.5%且p≥2.3%.
对以上问题,教师让学生轮流回答,再用投影仪给出课本上的两个结论.
讨论结果:
(1)(2)略;(3)数轴上任意两点中,右边点对应的实数比左边点对应的实数大.
(4)对于任意两个实数a和b,在a=b,a>b,a0a>b;a-b=0a=b;a-b
活动:通过两例让学生熟悉两个代数式的大小比较的基本方法:作差,配方法.
点评:本节两例的求解,是借助因式分解和应用配方法完成的,这两种方法是代数式变形时经常使用的方法,应让学生熟练掌握.
1.若f(x)=3x2-x+1,g(x)=2x2+x-1,则f(x)与g(x)的大小关系是( )
解析:f(x)-g(x)=x2-2x+2=(x-1)2+1≥1>0,∴f(x)>g(x).
2.已知x≠0,比较(x2+1)2与x4+x2+1的大小.
解:由(x2+1)2-(x4+x2+1)=x4+2x2+1-x4-x2-1=x2.
∵x≠0,得x2>0.从而(x2+1)2>x4+x2+1.
例2比较下列各组数的大小(a≠b).
(1)a+b2与21a+1b(a>0,b>0);
(2)a4-b4与4a3(a-b).
活动:比较两个实数的大小,常根据实数的运算性质与大小顺序的关系,归结为判断它们的差的符号来确定.本例可由学生独立完成,但要点拨学生在最后的符号判断说理中,要理由充分,不可忽略这点.
解:(1)a+b2-21a+1b=a+b2-2aba+b=a+b2-4ab2a+b=a-b22a+b.
∵a>0,b>0且a≠b,∴a+b>0,(a-b)2>0.∴a-b22a+b>0,即a+b2>21a+1b.
(2)a4-b4-4a3(a-b)=(a-b)(a+b)(a2+b2)-4a3(a-b)
=(a-b)(a3+a2b+ab2+b3-4a3)=(a-b)[(a2b-a3)+(ab2-a3)+(b3-a3)]
=-(a-b)2(3a2+2ab+b2)=-(a-b)2[2a2+(a+b)2].
∵2a2+(a+b)2≥0(当且仅当a=b=0时取等号),
又a≠b,∴(a-b)2>0,2a2+(a+b)2>0.∴-(a-b)2[2a2+(a+b)2]
∴a4-b4
点评:比较大小常用作差法,一般步骤是作差——变形——判断符号.变形常用的手段是分解因式和配方,前者将“差”变为“积”,后者将“差”化为一个或几个完全平方式的“和”,也可两者并用.
已知x>y,且y≠0,比较xy与1的大小.
活动:要比较任意两个数或式的大小关系,只需确定它们的差与0的大小关系.
∵x>y,∴x-y>0.
当y
当y>0时,x-yy>0,即xy-1>0.∴xy>1.
点评:当字母y取不同范围的值时,差xy-1的正负情况不同,所以需对y分类讨论.
例3建筑设计规定,民用住宅的窗户面积必须小于地板面积.但按采光标准,窗户面积与地板面积的比值应不小于10%,且这个比值越大,住宅的采光条件越好.试问:同时增加相等的窗户面积和地板面积,住宅的采光条件是变好了,还是变坏了?请说明理由.
活动:解题关键首先是把文字语言转换成数学语言,然后比较前后比值的大小,采用作差法.
解:设住宅窗户面积和地板面积分别为a、b,同时增加的面积为m,根据问题的要求a
由于a+mb+m-ab=mb-abb+m>0,于是a+mb+m>ab.又ab≥10%,
因此a+mb+m>ab≥10%.
所以同时增加相等的窗户面积和地板面积后,住宅的采光条件变好了.
点评:一般地,设a、b为正实数,且a0,则a+mb+m>ab.
已知a1,a2,…为各项都大于零的等比数列,公比q≠1,则( )
C.a1+a8=a4+a5 D.a1+a8与a4+a5大小不确定
解析:(a1+a8)-(a4+a5)=a1+a1q7-a1q3-a1q4
=a1[(1-q3)-q4(1-q3)]=a1(1-q)2(1+q+q2)(1+q)(1+q2).
∵{an}各项都大于零,∴q>0,即1+q>0.
又∵q≠1,∴(a1+a8)-(a4+a5)>0,即a1+a8>a4+a5.
1.下列不等式:①a2+3>2a;②a2+b2>2(a-b-1);③x2+y2>2xy.其中恒成立的不等式的个数为( )
2.比较2x2+5x+9与x2+5x+6的大小.
答案:
1.C解析:∵②a2+b2-2(a-b-1)=(a-1)2+(b+1)2≥0,
③x2+y2-2xy=(x-y)2≥0.
∴只有①恒成立.
2.解:因为2x2+5x+9-(x2+5x+6)=x2+3>0,
所以2x2+5x+9>x2+5x+6.
1.教师与学生共同完成本节课的小结,从实数的基本性质的回顾,到两个实数大小的比较方法;从例题的活动探究点评,到紧跟着的变式训练,让学生去繁就简,联系旧知,将本节课所学纳入已有的知识体系中.
2.教师画龙点睛,点拨利用实数的基本性质对两个实数大小比较时易错的地方.鼓励学有余力的学生对节末的思考与讨论在课后作进一步的探究.
1.本节设计关注了教学方法的优化.经验告诉我们:课堂上应根据具体情况,选择、设计最能体现教学规律的教学过程,不宜长期使用一种固定的教学方法,或原封不动地照搬一种实验模式.各种教学方法中,没有一种能很好地适应一切教学活动.也就是说,世上没有万能的教学方法.针对个性,灵活变化,因材施教才是成功的施教灵药.
2.本节设计注重了难度控制.不等式内容应用面广,可以说与其他所有内容都有交汇,历来是高考的重点与热点.作为本章开始,可以适当开阔一些,算作抛砖引玉,让学生有个自由探究联想的平台,但不宜过多向外拓展,以免对学生产生负面影响.
3.本节设计关注了学生思维能力的训练.训练学生的思维能力,提升思维的品质,是数学教师直面的重要课题,也是中学数学教育的主线.采用一题多解有助于思维的发散性及灵活性,克服思维的僵化.变式训练教学又可以拓展学生思维视野的广度,解题后的点拨反思有助于学生思维批判性品质的提升.
1.比较(x-3)2与(x-2)(x-4)的大小.
2.试判断下列各对整式的大小:(1)m2-2m+5和-2m+5;(2)a2-4a+3和-4a+1.
5.设a>0,b>0,且a≠b,试比较aabb与abba的大小.
∴(x-3)2>(x-2)(x-4).
=m2.
∵m2≥0,∴(m2-2m+5)-(-2m+5)≥0.
∴m2-2m+5≥-2m+5.
=a2+2.
∵a2≥0,∴a2+2≥2>0.
∴a2-4a+3>-4a+1.
=x24,
又∵x>0,∴x24>0.
∴(1+x2)2>(1+x)2.
由x>0,得1+x2>1+x.
=(x-y)[(x2+y2)-(x+y)2]
=-2xy(x-y).
∵x0,x-y
∴-2xy(x-y)>0.
∴(x2+y2)(x-y)>(x2-y2)(x+y).
5.解:∵aabbabba=aa-bbb-a=(ab)a-b,且a≠b,
当a>b>0时,ab>1,a-b>0,
则(ab)a-b>1,于是aabb>abba.
则(ab)a-b>1.
于是aabb>abb a.
综上所述,对于不相等的正数a、b,都有aabb>abba.
不等式的课件 篇5
基本不等式是初中数学中重要的一章内容,也是高中数学和竞赛数学的基础。基本不等式的学习不仅有助于提高学生的数学素养和解题能力,同时也能帮助他们提高逻辑思维能力。本文旨在探讨“基本不等式”这一主题。
一、基本不等式的定义与性质
基本不等式是说:对于正实数x1,x2,…,xn,有
(x1+x2+…+xn)/n≥√(x1x2…xn),当且仅当x1=x2=…=xn时等号成立。
基本不等式的性质有以下几条:
(1)当n为偶数时,等号成立;
(2)当n为奇数时,当且仅当所有数相等时等号成立;
(3)两个数的平均数不小于它们的几何平均数,即(a+b)/2≥√(ab),其中a,b均为正实数且a≠b;
(4)当n≥3时,三个数的平均数不小于它们的几何平均数,即(a+b+c)/3≥√(abc),其中a,b,c均为正实数且a≠b≠c。
二、基本不等式的应用
基本不等式作为一种重要的数学工具,可以应用于众多问题之中。以下是基本不等式的一些常见应用。
1. 求和式的最小值
例题1:已知-x1+x2+x3+x4+x5=-18,其中x1,x2,x3,x4,x5均为正数,并且x1+x2+x3+x4+x5≥5,则x1x2x3x4x5的最小值为多少?
解法:根据已知条件,设x1+x2+x3+x4+x5=5+m(其中m≥0),则有x1+x2+x3+x4+x5+m=5+2m。代入到基本不等式中可得:
(x1+x2+x3+x4+x5+m)/5≥√(x1x2x3x4x5)m/5≥√(x1x2x3x4x5)/5
移项得到x1x2x3x4x5≥1,则x1x2x3x4x5的最小值为1。
2. 比较函数大小
例题2:比较函数f(x)=√(a²+x²)+√(b²+(c-x)²)(a,b,c>0)在[0,c]上的最小和最大值。
解法:根据已知条件和基本不等式,将f(x)分解成两个正数的平均数不小于它们的几何平均数的形式,即
f(x)=[√(a²+x²)+√(b²+(c-x)²)]/2+1/2[√(a²+x²)+√(b²+(c-x)²)]
≥√[(√(a²+x²)×√(b²+(c-x)²)]+1/2(2c)
=√(a²+b²+c²+ab-ac-bc)+c
当x=c/3时等号成立,即f(x)的最小值为√(a²+b²+c²+ab-ac-bc)+c,最大值为√(a²+b²+c²+ab+ac+bc)+c。
3. 求极限
例题3:已知数列{a_n}(n≥1)的通项公式为a_n=(√n+1)/(n+1),则求∑(n从1到∞)a_n的极限。
解法:根据基本不等式,有
a_1+a_2+…+a_n≥n(√(a_1a_2…a_n))^1/n
代入已知条件,可得:
a_1+a_2+…+a_n≥n[(√(1+1)×√(2+1)×…×√(n+1))/((1+1)×(2+1)×…×(n+1))]^(1/n)
= n[√(n+1)/2×1/3×…×1/(n+1)]^(1/n) =n[(n+1)/[2(n+1)]]^(1/n)
极限为1/2。
4. 求证不等式
例题4:已知a,b,c为正实数,且a+b+c=1,证明∑(a/(1-a))≥3(a²+b²+c²)/(ab+bc+ca)。
解法:将不等式化简,得:
∑(a/(1-a))≥3(a²+b²+c²)/(ab+bc+ca)
⇔(a/(1-a))+(b/(1-b))+(c/(1-c))≥3(a²+b²+c²)/(ab+bc+ca)
⇔(a/(1-a))+(b/(1-b))+(c/(1-c))≥3[(a+b+c)²-(ab+bc+ca)]/(ab+bc+ca)
由于a+b+c=1,有
(ab+bc+ca)≤a²+b²+c²,
(a/(1-a))+(b/(1-b))+(c/(1-c))≥(a+b+c)²/(a(1-a)+b(1-b)+c(1-c))≥3(a²+b²+c²)/(ab+bc+ca)
其中第一个不等式成立是因为当a=b=c=1/3时,等号成立;第二个不等式用到了基本不等式的形式。
综上所述,基本不等式是数学中的重要概念,掌握了基本不等式的定义、性质和应用方法,将有助于提高人们的数学素养和解题能力。在日常生活和学习中,要重视基本不等式的学习和应用,逐步提高自己的数学水平。
不等式的课件 篇6
学生初步接触了一点代数知识(如用字母表示定律,用符号表示数),是在学生学习了用字母表示数以后基础上进行学习。应用方程是解决问题的基础,有关的几个概念,教材只作描述不下定义。在教学设计中仍然把理念作为教学的重点,理解方程的意义,判断“等式”和“方程”知道方程是一个“含有未知数的等式”,才有可能明确所谓解方程。
学生不够活泼,学习积极性不是很高,学生数学基础不好。方程对学生来说还是比较陌生的,在他们头脑中还没有过方程这样的表象,所以授新课就要从学生原有的`基础开始,因为在前面学习用字母表示数的这部分内容时,有了基础,我想在学习简易方程应该没什么大的问题。
1、使学生初步理解和辨析“等式”“不等式”的意义。
2、会按要求用方程表示出数量关系,
3、培养学生的观察、比较、分析能力。
教学重点: 用字母表示常见的数量关系,会用方程的意义去判断一个式子是否是方程。
教师介绍天平各部分名称。让学生操作当天平两端托盘的物体的质量相等时,天平就会平衡,指针指向中。根据这这个原理来称物体的质量。(让学生操作,激发学生的兴趣,借助实物演示的优势。初步感受平衡与不平衡的表象)
1、实物演示,引出方程:
(1)在天平称出100克的左边空杯,让学生观察是否平衡,感受1只空杯=100克。
(2)往空杯里倒入果汁,另一边加100克法码,问学生发现了什么? (让学生感受天平慢慢倾斜,水是未知数)引出100+X>200,往右加100克法码, 问:哪边重些?(学生初步感受平衡和不平衡的表象) 问:怎样用式子表示?100+X<300
(3)教学100+X=250 问:如果是天平平衡怎么办?(让学生讨论交流平衡的方案)把100克法码换成50克的砝码,这时会怎样?(引导学生观察这时天平出现平衡), 问:现在两边的质量怎样?现在水有多重知道吗?如果用字母X表示怎样用式子表示?得出:100+X=250
示题:100+X<250100+X=2504X+50>10040+40=80 X÷2=45X-12=27
请学生观察合作交流分类:
(一)引出(1)两边不相等,叫做不等式。(2)两边相等叫做等式。
(2)含有未知数的等式100+X=250 X÷2=4 揭示:(2)这样的含有未知数等式叫做方程(通过分类,培养学生对方程意义的了解) 问:方程的具备条件是什么?(感知必须是等式,而一定含有未知数)你能写出一些方程吗?(同桌交流检查)
(三)练习判断那些是方程?那些不是方程?
6+2X=14103+X250÷2=1256+X>251÷A=3X+Y=180 (让学生加深对方程的意义的认识,培养学生的判断能力。)
教师:我们能够判断什么是方程了,方程和等式有很密切的关系,你能画图来表示他们的关系吗?(小组合作讨论交流)
方程 等式 (让学生通过观察、思考、分析、归类,自主发现获得对方程和等式的关系理解,同时初步渗透教学中的集合思想。)
不等式的课件 篇7
基本不等式作为高中数学必修内容之一,在学生学习中扮演着极为重要的角色。本篇文章将围绕基本不等式,探讨它的概念、性质、证明方法及应用,并展示基本不等式的魅力和实用性。
一、基本不等式的概念
基本不等式是指对于任意正实数 $a_1,a_2,\cdots,a_n$ 和任意正整数 $n$,有以下不等式成立:
$\dfrac{a_1}{n}+\dfrac{a_2}{n}+\cdots+\dfrac{a_n}{n}\geq\sqrt[n]{a_1a_2\cdots a_n}$
这个不等式也被称为均值不等式或AM-GM不等式。其中,$\dfrac{a_1}{n}+\dfrac{a_2}{n}+\cdots+\dfrac{a_n}{n}$ 表示这些数的算术平均值,而 $\sqrt[n]{a_1a_2\cdots a_n}$ 表示这些数的几何平均值。均值不等式的意义在于,算术平均数大于等于几何平均数。
二、基本不等式的性质
基本不等式有以下几个性质:
1. 当且仅当 $a_1=a_2=\cdots=a_n$ 时等号成立。
2. 如果 $a_1,a_2,\cdots,a_n$ 中至少有一个数为 id="article-content1">
等式的性质课件
发布时间:2023-10-17 等式性质课件 等式课件 等式的性质课件。
老师在教授新课程时,通常会准备教案和课件。然而,在编写教案课件时需要注意一些方面,以使教案具有针对性和突出重点。如果您对“等式的性质课件”感到好奇,请阅读以下精心准备的资料。对于有需求的同学,请务必点击进来!
等式的性质课件【篇1】
一、教材分析:
“等式的基本性质”是在上一节刚刚认识了等式和方程的基础上进行教学的。该部分知识是学生解方程的依据,它是系统学习方程的开始,这节课的内容在简易方程中就起到了承上启下的作用。教材通过让学生观察天平演示实验,由具体实物之间的平衡关系抽象概括出等式的两个基本性质。关注学生由具体实例到一般意义的抽象概括过程,有意识地渗透“等价思想”、“建模思想”。
根据新课程标准的要求和教材的地位以及学生的实际情况,我把本课目标定为:知识与技能目标:理解并能用语言表述等式的基本性质,能利用等式的基本性质解决简单的问题。
本课的数学思考:在观察实验操作、讨论、归纳等活动中,经历探索等式基本性质的过程,渗透“等价”、“建模”等数学思想。
情感态度与价值观:鼓励学生积极参与数学活动,体验探索等式基本性质过程的挑战性和数学结论的确定性。
教学重难点:根据等式的性质在教材中的作用,我把抽象归纳出等式的基本性质作为本节课的重点,也是难点。
二、学情分析
新课标强调学生是数学学习的主人。学生已经了解了方程的意义而且小学五年级的学生,已具备一定的独立思考能力,乐于动手操作、合作探究。因此教学中我引导学生认真观察—独立思考—自主探究—合作交流,遵循由浅入深,由具体到抽象的规律,为学生创设一个和谐的学习环境,让孩子们在探索交流中,感受、理解和概括出等式的基本性质。
三、教学方法
《数学新课程标准》指出:数学教学必须注意从学生的生活情境以及学生感兴趣的事物出发,为他们提供参与的机会,使他们体会到数学就在身边,对数学产生亲切感。因此,在这节课中,教法上采用了观察法、讨论法、归纳法等,让学生通过实验观察和分组讨论探究学习。
四、教学准备
天平、多媒体课件。由于学具有限,所以采用了认识天平和通过多媒体课件展示结果。
五、教学过程
我把教学过程分为以下五个环节:导入新课——引导探究、合作交流——巩固练习、运用新知——课堂小结——板书设计
第一环节:导入新课。引导学生共同列举等式,对等式进行简单回顾,之后观察课件中的天平,用含有字母的等式来表示,由此引出本节课的新知。
第二环节:引导探究、合作交流。
1、猜想、验证。
通过课件展示教材第64页情境图1,先让学生猜想然后再通过课件在天平上演示过程,验证学生的猜想。
第一次猜想验证后引导学生小结出:等式两边同时加上同一个数,左右两边仍然相等。
2、假设数据、验证规律。
得到结论后通过假设物体的具体的数据验证学生自己总结出的规律:等式两边加上同一个数,左右两边仍然相等。
3、小组合作探究、发现规律。
通过课件展示教材情景图让学生小组合作探究:如果天平的两端同时拿掉1个苹果,结果会怎样?学生汇报后,再次通过课件进行演示。引导学生小结出:等式两边同时减去同一个数,左右两边仍然相等。
4、巩固练习、应用规律
通过一些简单的等式问答,应用等式两边同加或同减相同的数以加强规律的应用。
第四环节:课堂总结,布置作业。
让学生分别谈谈自己的收获,以强化巩固所学知识。课后作业安排为开放的任务:和同组的同学互相写10道利用等式的性质解决的问题,例如:如果x=y,x+8=( )+8。
第五环节:板书设计
在板书的设计上以简单明了为主。通过字母等式的同加、减,同乘、除表现出等式的两个基本性质。
等式的性质课件【篇2】
教学目标:
1.通过天平演示保持平衡的几种变换情况,让学生初步认识等式的基本性质。
2.利用观察天平保持平衡所发现的规律能直接判断天平变化后能否保持平衡。
3.培养学生观察与概括、比较与分析的能力。
教学重点:
理解,并能用自己的话来阐述天平保持平衡的几种变换情况,进而发现等式保持不变的规律。
教学难点:
等式性质里除法的推导及理解。
1.昨天学了什么知识?什么叫方程?举例说明。
2.判断下面式子哪些是方程。
3.昨天我们借助什么研究方程?天平在什么条件下才会保持平衡?
4.看这幅图(出示图1),
(1)你知道了什么?请用一句话描述。
(2)告诉你这些物品的质量,列出式子。(200 =100 100)为什么用等号?(用等式表示平衡的状态)
5.天平不仅可以称一些较轻的物品的质量,还可以帮助我们研究相关的数学知识。今天继续利用这个小助手做游戏,探究和等式有关的知识。
二、探究等式两边用加法和乘法的性质。
(一)1.如果要在天平两边放上一些物品,天平仍然要保持平衡,可以放些什么?独立思考。指名回答。
(1)师:随意的杯子吗?杯子有要求吗?对,要相同的杯子。看图,请用算式表示出来。(200 100=100 100 100)
(2)左右两边仍然相等吗?左边等于300,右边也等于300,所以这个等式成立。
(4)我可以放上2个同样的茶杯吗?那这个式子又该如何写?左右两边仍然相等吗?用字母表示是……
4.由此可得出什么结果?平衡的天平两边加上同样的物品,天平保持平衡。再看看这些等式,你有什么话想说?(师评价:我听到他说了一个词,同一个数,说到关键了)
5.等式就像平衡的天平,等式两边加上 同一个数,左右两边仍然相等。(板书,注意空格)
(二)1.刚才有同学说到,在天平左边加上一个茶壶,右边加上2个茶杯,这样也能平衡吗?为什么?能只放1个茶杯吗?不行,必须把2个茶杯看做一个整体,必须2个2个地放。
2.用式子表示出来。(板书:200 200=100 100 100 100)
3.如果天平左边加上2一个茶壶,右边要加上多少个茶杯?加上3个茶壶呢?用式子表示你觉得怎样?(太麻烦了)数学有时候可以偷懒的。想想有什么办法?
4.为什么用乘法?左边茶壶的数量多1个,我们也可以说扩大到原来的2倍,右边的茶杯的数量也要扩大到原来的2倍。写成算式是:200×2=(100 100)×2。为什么加小括号?刚才说过了,把2个茶杯看做一个整体,必须2个2个地放。
4.如果两边的数量分别扩大到原来的3倍、4倍、5倍,天平还保持平衡吗?
5.那在等式上又怎么表示?(等式两边同时乘同一个数,左右两边仍然相等。)
三、探究等式两边用减法和除法的性质。
1.学到这里,等式的左右两边同时加上或乘同一个数的情况研究完了,接着还想继续研究吗?研究什么?(减法和除法)那你猜猜,结论是什么?
2.你们猜对了吗?我们还是用事实来说话。看图(出示例题图二、图四),选择一幅图,研究等式两边用减法和除法时会出现什么情况。小组合作学习。
3.反馈。
4.平衡的天平两边减去同样的物品,天平也保持平衡。用式子说明则是:等式两边同时减去同一个数,左右两边仍然相等。(板书:在加法后加上“或减去”)
5.除法:把两边的球都平均分成2份,也就是左右两边同时除以2,各去掉1份,天平仍然保持平衡。用式子表示为:(300 300)÷2=600÷2。
6.除以任何数都可以吗?应该是除以同一个不为0的数。(板书:在乘法的后面加上“或除以同一个不为0的数”)
7.通过天平,我们又学习了等式的这些知识,这就是等式的性质。读一读。
提问:如果左边最后只留下X的话,等式两边该写什么?
3.练习十四第5题。
4. 天平左边放3个同样重的苹果,右边放9个同样重的梨,天平平衡。一个苹果和( )个梨同样重。
等式的性质课件【篇3】
各位老师:
很高兴有这次机会和大家一起学习交流。今天,我说课的题目是《等式的性质》的教学内容。我将从以下几个方面进行我的教学思路说明。
一、教材分析
本节课的主要内容是等式的基本性质以及运用等式的.基本性质解简单的一元一次方程。本课是在同学们学习了一元一次方程的概念后的授课内容。等式的基本性质是解方程的理论支撑,它为下节的学习铺平了道路。因此本节课内容起到了承上启下的作用。
二、教学目标。
(1)知识与技能:探究等式的性质,并能利用等式的性质进解简单的一元一次方程。
(2)过程与方法:通过观察探究培养学生探索能力、观察能力,归纳能力和应用新知识的能力。
(3)情感态度价值观:培养学生参与数学活动的积极性、自信心.
三、教学重、难点
教学重点:掌握等式的性质,根据等式性质解简单的一元一次方程。教学难点:由具体实例抽象出等式的性质,正确理解等式性质2中除数不能为0。
四、优缺点:
优点:在教学过程中我重视学生学习知识的生成规律,通过直观引导学生发现抽象的规律。重视数学思想和方法对的渗透,本节课运用到的数学方法有:从特殊到一般、类比、转化、化归等思想方法。
缺点:青少年学生都希望受到老师的表扬,有表现自我的机会,所以在教学中应抓住学生这一生理特点,用适当的语言能激发学生参与课堂的积极性。今后我需要在课堂用语上多下一些功夫。
五、课堂重建
在探究等式性质2的除法情况时,我运用的是在直观得出乘法的规律后,把乘法转化为除法来探究得出除法的规律,下次我会尝试采用利用天平直观演示得出这一规律。数学教学要给学生留出大量的习题训练时间,所以在以后的教学中,我会时时提醒自己精讲多练,尽量多给自主练习的时间和空间。
等式的性质课件【篇4】
一、说教材
1、教材所处的地位和作用:本课内容是在学生认识了等式和方程的基础上进行教学的,它是今后学习解多步方程的基础,它是系统学习方程的开始,其核心思想是构建等量关系的数学模型。通过本节课的学习,引导学生探索,思考比较,发现规律,在实验的基础上,掌握等式的两个基本性质,并能利用等式的性质解简单的方程,为今后运用等式的基本性质解较复杂的方程打下基础。
2、教学内容:本节内容主要讲解等式的性质,在掌握等式的性质后,利用等式性质解简单的方程,再进行具体化练习,加深认识。本节分两课时完成,其中第一节课探索等式的性质,并对等式的构建和等式的性质进行具体化练习。
3、教学目标:教案对学习目标的分解是以"学生的全域发展"作为标准进行的,更注重了学生的主体性和目标的可操作性。学习目标首先被分解为"知识和能力"、"过程和方法"、"情感、态度与价值观".不仅解决了"学到什么"和"怎样学习"的问题,尤其解决了"喜欢学"和"主动学"的问题。
二、说教学方法
"教必有法而教无定法",只有方法得当,才会有效。有效的数学学习活动不能单纯的依赖模仿与记忆,动手实践、自主探索、观察与思考、合作交流是学生学习数学的重要方式。因此在本节课的教学中,我利用多媒体演示、实践操作、通过观察法、实验法、合作交流等教学方法,引导学生动手操作—独立思考—自主探索—合作交流,遵循由浅到深,由具体到抽象的规律,为学生创设一个宽松、民主、和谐的学习环境,让孩子们在探索交流中,感受、理解和应用等式的性质。
三、说学法
首先教师创造良好的环境,引导学生从喜欢的、已知的、熟悉的生活内容入手,让学生自己在特定的环境下不知不觉中建立一些等式与方程之间的联系。再通过一系列的实验活动使学生体验到等量的变化关系和等式的性质,并引导学生用数学语言全面总结出来,从而达到培养学生挖掘问题能力、交流能力和归纳总结与口头表达的能力。
四、说教学程序
1、创设情景,引发认知冲突
以前学生解方程习惯用加减法、乘除法互为逆运算的方式解方程,这样的思路只适宜解比较简单的方程,例如:x+3=5、3x=-12等,简单的一元一次方程的解用估算的方法或逆运算的方式我们都可以求出方程的解;而象19+28x=33x-1这样比较复杂的方程我们用上述方法还能求出它的解吗?我利用学生认知上的冲突引入新课。这样既激发了学生的学习兴趣又明确了本节课的教学目的。为等式性质的构建做好铺垫。
2.实验探索,从特殊到一般
等式性质的呈现属于实验探究型课,目的是要学生在活动中体验等量的变化关系和等式的性质。这里我分段逐步呈现等式的特性。首先出示平衡天平的图形,给学生一个天平平衡的印象,引导学生用字母构建一个等式,接着在上一个平衡天平的基础上,两侧同放一个三角形的符号表示物体的重量,让学生观察这时出现什么现象,同时提出问题:怎样做,两边才会保持平衡?通过学生实验得出使天平两边平衡的方法,并用字母式子表示实验的过程,再通过归纳,概括出对象的共同属性加以表述,接着通过几个练习加以巩固,然后借助上一个实验的经验和方法,进一步指导学生完成天平两边成倍变化的实验,最后根据实验情况观察归纳结论。同时注意在总结时先让学生根据实验,把自己所得到的结论叙述出来,然后教师再对学生的结论给予概括得到等式的性质。
上述讲授等式的性质用的是观察实验法,实验观察是科学研究的一种基本的方法,它是根据客观事物和现象找出它具有的客观规律,有助于发现一些数学事实,抽象出对象的属性,再通过归纳,概括出对象的共同属性加以表述。同时也体现了由特殊到一般的思维认知规律。
3.强化概念,指导学生尝试
关于等式概念、等式与方程的联系的引出,教法上采用充分利用学生已有的知识、练习回顾、交流的方式。等式的性质的教学,采用师生共同观察实验,让学生通过对直观图形的观察、实验和猜想,自已发现结论,并用总结的形式表述结论。等式性质的理解和掌握关键在于应用,只有通过大量练习来巩固和提高,练习的速度越快正确越高,说明知识理解和掌握的越好。因此在教学中得到等式性质后,就用三组尝试练习加强巩固和提高,这样既调动了学生学习的趣味性和主动性,增强了学生积极参与教学活动的意识,又很好地培养了学生的动手操作能力、观察能力、逻辑思维能力和总结归纳能力,同时,也向学生渗透了实践——认识——再实践——再认识的一种学习方法,使新旧知识技能得到了有机的结合。
五、小结与练习
本环节是对所学内容作全面的小结,并质疑问难,除小结所学的知识技能外,还对所用到的数学方法进行了概括,使学生既学习了知识,又培养了能力。同时也对使学生能进一步体会等式与方程联系、等式的性质。
布置作业主要是为了达到:
(1)巩固所学概念;
(2)发现和弥补教与学中的遗漏和不足;
(3)强化基本技能训练,培养学生良好的学习习惯和品质。
等式的性质课件【篇5】
一、学情分析:作为初一学生(132班和137班)在小学时已经对等量关系和等式的性质有所了解,通过本节课的学习,目的是要使学生从天平的特点中归纳得出等式的性质。
新课标对本节课的要求是:掌握等式的性质。在前面一节课的学习中,学生掌握了一元一次方程的概念和初步应用后,需要解决的是一元一次方程的解法。本节内容借助于等式的性质这一工具来解一元一次方程。首先,通过天平的实验操作,使学生学会观察。尝试分析归纳等式的性质。然后,利用等式的性质解一元一次方程。通过解方程的学习提高学生的观察问题、解决问题的能力。
2、教育教学目标。
根据以上对教材的理解与内容分析,考虑到学生已有的知识结构和心理特征,制定如下教学目标:
(1)知识与技能:探究等式的性质,并能利用等式的性质进行等式变形、解简单的一元一次方程。
(2)过程与方法:通过实验培养学生探索能力、观察能力,归纳能力和应用新知识的能力。
(3)情感态度价值观:积极参与数学活动,体验探索等式性质过程的挑战性和数学结论的确定性,建立学生学好数学的信心。
为了使学生能比较顺利地达到教学目标,我确定了本节课的教学重、难点:
教学重点:探究等式的性质,能根据等式性质进行等式变形、解简单的一元一次方程。
教学难点:利用等式的性质把简单的一元一次方程变形为x=a(常数)的形式;正确理解等式性质2中除数不能为0。
(一)教学手段:如何突出重点、突破难点,从而实现教学目标,我在教学过程中利用多媒体演示拟计划进行如下操作:
1、读(看)――议――讲结合法。
2、图表分析法。
3、读图讨论法。
4、教学过程中坚持启发式教学的`原则。
坚持“以学生为主体,以教师为主导”的原则。即“以学生活动为主导,教师讲述为辅,学生活动在前,教师点拨评价在后”的原则。根据初一学生的心理发展规律。联系实际安排教学内容,采用学生参与高度的学导式讨论教学法、师生交谈法、图象信号法、问答法、教学课堂讨论法,使学生动口、主动探索、发现问题、解决问题、互动合作、归纳概括、形成能力,突出学生的主体地位。在采用问答法时,特别注重不同难度的问题。
提问不同层次的学生面向全体,使基础差的学生也有表现的机会,培养其自信心,激发学习热情,有效开发各层次学生的潜在能力求使每个学生都在原有基础上得到发展,同时通过课堂练习和课后作业启发学生。在教学中要积极培养学生数学学习兴趣和动机。明确学习目的,教师应在课堂上充分调动学生积极性,激发来自学生主体的最有力的动力。
实际上,青少年好动,注意力易分散,爱发表见解。希望得到老师的表扬所以在教学中应抓住学生这一生理特点。一方面运用直观生动的形象,引发学生兴趣,使他们的注意力始终集中在课堂上。另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。
首先我出了一些可以看出方程解的题目,让学生回答,由易到难,激起学生学习的欲望,紧接着就引入等式的定义,从而使学生明白解方程先要研究等式,从而引入课题。
由于学生的认知结构是由简单到复杂,由具体到抽象的过程,因此在这一环节中,我分两个方面来教学:等式的性质1由老师课件演示,学生观察归纳概括。
我利用多媒体依次展示天平图的各个操作。让学生通过观察,用语言来描述发现,与同桌交流。这样由具体演示到抽象概括,使学生记忆深刻,充分体现了学生为主体,教师为主导的原则。
通过上面的观察,让学生分组讨论:如何用算式表示实验结果?学生交流后,教师进行课件演示。
本节课,让学生经历一种从平衡到不平衡再到新的平衡的过程,体验变化是怎样产生的,怎样从打破平衡,又怎样达到新的平衡。从而培养了学生观察能力和抽象概括能力。
我接着提问:如果天平两边减去相同的质量,天平会有什么变化?
让学生先独立思考,然后教师课件演示。你又发现了什么规律?怎样用等式描述?得出等式两边同时减去同一个数,等式仍然成立。并且由以上两条规律得出:等式的两边同时加上或减去同一个数,等式仍然成立。
如果在天平两边同时加上或减去不同的质量,天平会有什么变化?
学生经过思考得出:等式的两边加上或减去的必须是同一个数,才能使等式成立。这样符合学生的认知规律,从实践认识,再到实践认识的过程。
教师再用课件展示天平图,学生通过观察,归纳得出:等式两边同时乘或除以同一个数(除数不能为0),等式仍然成立。
等式基本性质2的推导在性质1的基础上,让学生自己通过观察探究,运用知识的迁移得出,这样培养了学生逻辑思维能力,抽象概括能力和口头表达能力。
(2)若a=b,则ac=bc,
注意:
(1)等式两边都要参加运算,且是同一种运算。
(2)等式两边加或减,乘或除以的数一定是同一个数或同一个式子。
(3)等式两边不能都除以0,即0不能作除数或分母。
在这个环节中把等式的两个性质展示出来,我特别提到了三个注意:因为这是在等式性质解方程中容易出错的地方,就是希望同学们认真细心,正确利用性质解题。
我在练习中设计了三道题,从简单的填空到判断变形对错,到最后的解方程,方程的四道题也是有简单到复杂,总之练习题的设计,低起点,小台阶,循序渐进,符合学生接受知识的特点,是那些平时不举手的同学也积极参与,竟然问题也答得很好。从这些方面培养了学生的灵活性,使学生获得成功的满足感。
作业设计:
PPT投影出课本第83页习题3.1第4题。
Yjs21.coM更多幼师资料延伸读
等式课件
幼儿教师教育网编辑为大家整理的“等式课件”或许能帮助您解决一些疑惑。教案课件是每个老师在开学前需要准备的东西,每个人都要计划自己的教案课件了。 设计有创意的教学课件可以增加学生的学习趣味。我们提供的样本仅供参考具体操作请根据实际情况做出调整!
等式课件 篇1
【教材分析】
在新课程改革中,教材是重要的教育教学因素。等式的基本性质是学生解方程的依据,它是系统学习方程的开始。这节课的内容在简易方程中就起到了承上启下的作用。原来的教材中对于等式的基本性质只是初步的认识,并没有总结成概念性的东西,但学生实际运用时却需要概念来作支撑,所以在教材中作了调整,让学生通过观察天平演示实验,由具体实物之间的平衡关系抽象概括出等式的两个基本性质就成了本节课的教学重点。本课“等式的基本性质”是在上一节刚刚认识了等式和方程的基础上进行教学的。,其核心思想是构建等量关系的数学模型。课程标准要求学生能“理解等式的性质,会利用等式的性质解简单的方程”。
【教学目标】
1.通过天平演示保持平衡的几种变换情况,初步认识等式的基本性质。
2.利用观察天平保持平衡所发现的规律,能直接判断天平发生变化后能否保持平衡。
3.逐步养成观察与概括。比较与分析的能力。
【教学重点】
掌握等式的基本性质。
【教学难点】
理解并掌握等式的性质,能根据具体情境列出相应的方程。
【数学思想】
转化的思想,数形结合的思想,符号化的思想
【教学过程】
一。创设情境,引出问题
教师活动
学生活动及达成目标
师:同学们,你们做过天平游戏吗?这节课我们要利用天平一起来探索等式的性质。(板书课题:等式的性质)
达成目标:由熟悉的天平引出课题激发学生的兴趣。
二。共同探索,总结方法
教师活动
学生活动及达成目标
(一)等式的基本性质一
1.出示教材第64页情境图1第一个天平图。
让学生仔细观察图,并说一说:通过图你知道了什么?
教师小结:1个茶壶的重量=2个茶杯的重量。
追问:如果设一个茶壶的重量是a克,1个茶杯的重量是b克,能用式子表示吗?
(师板书)
引导学生思考:如果在天平的两边同时再各放上一个茶杯,天平会发生什么变化呢?为什么?
教师先进行实际操作天平验证,再演示这一过程,并明确:两边仍然相等。
提问:如果两边各放上2个茶杯,还保持平衡吗?
两边各放同样的一把茶壶呢?
2.出示教材第64页图2的第一个天平图。
(1)如果用a表示一个花盆的重量,用b表示一个花瓶的重量,怎样用等式来表示这幅图呢?
(2)如果把两边都拿掉1个花瓶,天平还平衡吗?让学生尝试用等式怎样表示?
从图上你能知道什么?(出示教材第64页图2第二个天平图)
3.通过这几个实验,你发现了什么?
4.你能用一句话来表示你的发现吗?
(二)等式的基本性质二
1.猜猜:除了向前面这样的变化,天平仍保持平衡外,还可以怎么做能使天平保持平衡?
这时教师一定要及时强调:这都是把等式的两边加上或减去同一个数,并提示学生如果把等式的两边同时乘或除以一个相同的数(O除外),会怎么样呢?
2.出示教材第65页图1的第一个天平图,让学生观察并说明。
引导学生用a表示墨水的重量,用b表示铅笔盒的重量,用式子怎样表示?
猜一猜:左边墨水的数量扩大到原来的2倍,右边铅笔盒的数量也扩大到原来的2倍,天平还保持平衡吗?
如果把天平的两边物品的数量分别扩大到原来的。3倍。4倍呢?
3.出示教材第65页图2的第一个天平图,让学生观察并说明知道了什么。
质疑:如果把两边的球都平均分成2份,各去掉一份,天平还能平衡吗?
教师演示。
4.通过刚才的试验,你发现了什么?
5.你能用一句话总结一下等式的这个性质吗?
6.为什么等式两边不能除以O?
1.自主回答,学生可能会回答:天平的左边放了一把茶壶,右边放了两个茶杯,天平保持平衡;这说明一个茶壶的重量与2个茶杯的重量相等。
尝试写出:a=2b
先猜一猜,学生可能会猜测出天平仍然平衡,因为两边加上的重量一样多。
观察小结:实验证明1个茶壶+1个茶杯的质量=3个茶杯的质量。
同时学生尝试用字母表示这个式子:a+b=2b+b
学生回答后,教师演示,并让学生分别用式子表示:a+2b=2b+2ba+a=2b+a
观察现在的天平是什么样的?(平衡)
生尝试写出:a+b=4b
先猜一猜,再回答,平衡:a+b-b=4b-b
得出1个花盆和3个花瓶同样重。
3.学生思考后小结:平衡的天平两边加上同样的物品,天平还保持平衡。平衡的天平两边减去同样的物品,天平还保持平衡。
4.学生归纳等式的性质1:等式两边加上或减去同一个数,左右两边仍然相等。
达成目标:通过演示在天平的两边同时放上或拿走同样的物品,天平仍然平衡。给学生思考。感悟天平保持平衡的变化规律,提供了直观的观察材料。从而得出天平平衡的原理,即等式的一条基本性质:等式两边加上或减去相等的数,等式不变。
1.如:学生猜测天平的两边同时放2个。3个杯子;同时减去一把茶壶等。
2.学生观察并说明:
一瓶墨水的重量=一盒铅笔盒的重量
写出等式:a=b。
学生猜测平衡后,教师进行实际天平操作,验证学生的猜测。
学生用等式表示:2a=2b。
天平仍然保持平衡
3.学生观察得出:
2个排球的质量=6个皮球的质量
有了前面的经验学生用a表示排球的重量,用6表示皮球的重量,写出等式:2a=6b。
学生猜测:平衡,并能用等式a=3b表示。
4.学生会发现:平衡的天平两边的物品扩大到原来的相同倍数,天平仍然平衡。平衡的天平两边的物品都缩小到原来的几分之一,天平仍然平衡。
5.学生归纳小结:等式两边乘同一个数,或除以同一个不为0的数,左右两边仍然相等。
达成目标:等式基本性质2的推导在性质1的基础上,让学生自己通过实验探究,运用知识的迁移得出,这样培养了学生的逻辑思维能力,抽象概括能力和口头表达能力。
6.学生交流,汇报:O不能做除数。
三。运用方法,解决问题
教师活动
学生活动及达成目标
出示教材第66页练习十四第4.5题。
学生试做集体订正,注意学生列式计算时的取值是否正确。
四。反馈巩固,分层练习
教师活动
学生活动及达成目标
基础练习:利用等式的性质填空
1.如果2x-5=9,那么2x=9+()
2.如果5=10+x,那么5x-()=10
3.如果3x=7,那么6x=()
4.如果5x=15,那么x=()
拓展练习:见课件
让学生回忆等式的性质,再自主完成填空。
达成目标:等式的基本性质一是简易方程部分重要的概念,不仅要理解,而且还要会应用。
五。课堂总结,提升认识
教师活动
学生活动及达成目标
这节课你运用了哪些,你有什么收获?你对自己这堂课的表现是怎么评价的?
学生总结本节课的收获,在梳理总结过程中提高学生对性质的认识和理解。
等式课件 篇2
教学内容:教科书第3~4页的内容,练习一的4~6题。
教学目标:
1、通过学习,使学生知道等式两边同时加上或减去同一个数,所得的结果仍然是等式。
2、根据等式的性质(一)学会解决含有加、减号的方程。
3、有意识地培养学生的自学能力。
教学过程:
一、教学例3
出示图,学生根据图独立填空。
根据学生的回答,板书:
20=20xx+10=20+10
X=50X+20=50+20
50+a=50+a50+a-a=50+a-a
X+20=70X+20-20=70-20
提问:比较两边的算式,你有什么发现,在小组里说说。
全班交流,引导学生说出:等式两边同时加上或减去同一个数,所得的结果仍然
是等式。这是等式的性质。
独立完成练一练第1题
二、教学例4
学生自学,不懂的问题和同组同学交流,能解决的就小组内交流。
全班交流:例4中还有什么不懂的地方提出来,能由学生解决的就由学生解决,
学生解决不了的教师解决。
一是方法:根据等式的性质把含有未知数的这边化简成就含有一个未知数。
二是检验:把计算的结果代到原式,看左右两边是否相等。
三强调书写的格式。
小结:求方程中未知数值的过程,叫做解方程。
完成试一试练一练的第2题。
学生独立完成后集体订正,重点帮助有困难的学生,针对学生出错的地方及时分
析错误原因,帮助他们弄懂。
三、课堂作业
练习一的第4、5、6题。
第4、6题做在书上,第5题写在作业本上。
板书:
等式两边同时加上或减去同一个数,所得的结果仍然是等式。
这时等式的性质。
X+10=50
解:X+10-10=50-10
X=40
教后小记
等式课件 篇3
《不等式及其基本性质》习题
【教学内容】
课本上不等式的五个基本性质,并学会应用.【教学目标】
1、掌握不等式的五个基本性质并且能正确应用.
2、经历探究不等式基本性质的过程,体会不等式与等式的异同点,发展学生分析问题和解决问题的能力.
3、开展研究性学习,使学生初步体会学习不等式基本性质的价值.
【重点难点】
重点:理解不等式的五个基本性质.难点:对不等式的基本性质3的认识.【教学方法】
本节课采用“类比-实验-交流”的教学方法.【教学过程】
一、回顾交流.
1、等式的基本性质 解一元一次方程的基本步骤
2、问题牵引:
用“﹥”或“﹤”填空,并总结其中的规律:
(1)5>3,5+2
3+2,5-2 3-2 ;
(2)–1
-1+2 3+2,-1-3 3-3 ;
结果:
(1)>、>(2)
当不等式两边加或减去同一个数(正数或负数)时,不等号的方向______
3、继续探究,接着又出示(3)、(4)题: 5 2×5,6×(3)6>2,6×(-5)
2×(-5),6 3×6,(4)2
3×(-6).得到:
当不等式的两边同乘以一个正数时,不等号的方向不变; 当不等式的两边同乘以一个负数时,不等号的方向改变.总结出不等式的性质: 不等式的性质1:不等式的两边加(或减)同一个数(或式子),不等号的方向不变.c
> b±c 字母表示为:如果a>b,那么a±不等式的性质2:不等式的两边乘(或除以)同一个正数,不等号的方向不变.字母表示为:如果a>b,c>0那么ac
> bc,不等式的性质3:不等式的两边乘(或除以)同一个负数,不等号的方向改变.字母表示为:如果a>b,c<0那么ac
不等式的对称性:如果a>b,那么bb,b>c,那么a>c
二、范例学习,应用所学.
1、利用不等式的性质解下列不等式. (1)x-7>26
(2)3x
(4)-4x﹥3
22、逐题分析得出结果.(1)x-7>26 分析:解未知数为x的不等式,就是要使不等式逐步化为x﹥a或x﹤a的形式.
解:(1)为了使不等式x-7>26中不等号的一边变为x,根据不等式的性质1,不等式两边都加7,不等号的方向不变,得 x-7+7﹥26+7 x﹥33(2)3x
为了使不等式3x
23不等号的方向不变,得 x﹥75(4)-4x﹥3
为了使不等式-4x﹥3中的不等号的一边变为x,根据不等式的性质3,不等式两边都除以-4,不等号的方向改变,得x
3 4通过(3)(4)的求解过程,类似于解方程两边都除以未知数的系数(未知数系数化为1),解不等式时要注意未知数系数的正负,以决定是否改变不等号的方向.三、课堂探究.
已知a
四、课堂小结提问.不等式性质的作用.
等式课件 篇4
尊敬的各位老师,下午好!
我叫孙有玺,来自音河中学。很高兴能把《不等式的性质(1)》一课的教学和大家一起探讨。下面我将从学生状况、教学任务、教学过程、设计说明等四个方面加以分析。
一、学生状况分析:
七年级下期的学生活泼好动,有一定合作探究意识,在知识方面已经学习了有理数大小比较,等式及基本性质。这些都为自主探究不等式的性质打下了良好的基础。
二、教学任务分析:
(一)教材地位与作用:
不等式是初中代数的重要内容之一,是已知量与未知量的矛盾统一体。数学关系中的相等与不等是事物运动和平衡的反映,学习研究数量的不等关系,可以更好地认识和掌握事物运动变化的规律。“不等式的性质”是学生学习整个不等式知识的理论基础,为以后学习解不等式(组)起到奠基的作用。
(二)教学目标:
知识目标:
探索不等式的基本性质,并能准确运用不等式的三条性质将不等式变形。
能力目标:
让学生学会类比的思想对等式性质及不等式性质进行了比较,培养学生的观察、分析、归纳的能力。
情感目标:
通过“等”与“不等”的比较使学生进一步领会对立统一的思想,培养学生辨证唯物主义的观点。
(三)教学重点、难点:
不等式的性质是本节不等式变形的基础,也是今后解不等式(组)的依据,所以掌握不等式的基本性质,并能正确运用它们将不等式变形是本节课的重点。
不等式的两边同乘以(或除以)负数,不等号方向改变和等式的性质不同,学生学习起来比较困难,因此,不等式性质3的理解与正确使用是本节课的难点。让学生自己动口、动手、动脑,进行比较、讨论,并加以强化练习达到突破的目的。
(四)教学方法与学法的指导:
本节课属于性质类知识,重在探索,意在应用。因此,我采用启发诱导、实例探究的方法进行教学,这种教学方法以“主动探索”为基础,先“引导发现”后“讲评点拨”,让学生在克服困难与障碍的过程中发展自己的观察力、想象力、思维力。引导学生学会类比、归纳的学习方法,帮助他们在自主探究过程中理解和掌握不等式的性质。
三、教学过程
(一)复习提问、引入新课
为了使学生自己能在教师的指导下,自主探究问题,发现问题,获得结论。而不是把现成的结论告诉学生。对于不等式性质的发现,我采用了下面的作法,我首先带领学生复习等式的性质
等式性质1等式两边加(或减)同一个数或式子,结果仍相等。
等式性质2等式两边乘同一个数,或除以同一个不为零的数,结果仍相等。
(二)合作交流、探究新知
在复习等式性质后,教师提出不等式是否也有类似的性质呢?先引导学生对不等式的两边都加、减同一个数,会发现什么呢?学生通过思考和计算后会说出不等式两边都加、减同一个数,“仍是不等式”。此时,教师抓住学生叙述中的问题予以纠正,不能笼统的说“仍是不等式”,因为“=”没有方向性,而不等号有方向性,所以要改为“不等号的方向不变”。接着,让学生不等式作两边都乘以或除以同一个数的变形,会发现什么呢?学生通过计算和讨论,甚至会发生争执,教师要深入学生,通过共同探讨,学生会发现不等式两边都乘以或除以正数,不等号方向不变,两边都乘以或除以负数,不等号方向改变。最后由学生归纳出不等式的`性质2和性质3。
我这样安排的目的是为了让学生通过动手、动口、动脑发挥合作精神,学会运用类比、归纳的数学思想去探究问题,同时学生也会品尝到成功的喜悦,从而提高他们学习数学的兴趣。
(三)灵活运用、巩固练习
为使学生能够准确运用性质将不等式变形,也为例题的教学做一些铺垫,我先设置了两组抢答题:
抢答:看谁答的快又准
1·设m>n,用“<”或“>”填空:
(1)m—5___n—5
(2)m+4___n+4
(3)6m___6n(4)
—5m___—5n
2·判断:
(1)∵3+x>3+y,∴x>y()
(2)∵3>2,∴n+3>2+n()
(3)∵a<b,∴2a+1<2b+1()
(4)∵—2a<6,∴x>—3()
在学生练习过程中,老师特别强调:当不等式两边同乘以或除以负数时,“不等号的方向改变”。
接着,给出例题:
例1·利用不等式的性质解下列不等式,并在数轴上表示解集:
(1)x+7>10
(2)3x>2x+1
(3)—10x>50
(4)—4x
例2·根据下列已知条件,说出a与b的不等关系:
(1)a—3>b—3
(2)—a>—b
(3)—2a+1
例1由学生分组讨论,写出解题过程,老师展示几个同学的解答并给予讲解。对于例2我采用先引导学生分析解题思路,再让学生口述解题过程,并说明根据不等式的哪一条性质,由师生共同完成。
为了解学生能否独立运用性质将练习三,安排学生演板:
3·利用不等式的性质解不等式。
(1)—3x>12
(2)3x—4
请两位学生演板,其余学生独立完成,并对学生演板的结果作出评价,教师深入小组,发现问题及时纠正,通过学生的互相评价找出应用不等式基本性质进行变形中出现的错误,以防患于未然。
以上练习完成之后,学生已能准确运用不等式的性质,将不等式变形,为培养学生的解题能力,让学生更深层地理解不等式的基本性质,在此基础上我又作出了一些引申和推广。
4·判断正误,并说明理由。
(1)∵5>4,∴5a>4a
(2)不等式2x>5x的两边同除以x,得2>5
(3)若ac2>bc2,则a>b
第4题设计说明,当不等式两边同乘或除以一个字母,而字母的取值不明确时,需对字母分情况讨论。
〔四〕归纳小结、整体把握
为帮助学生从整体把握本节课所学的知识,培养良好的学习习惯,让学生自己对本节课所学知识以及用到的解决问题的方法进行小结。方法是:由学生四人一组互谈本节课的收获,总结解题方法,并说明解题过程中应该注意的问题,然后请一位同学小结,其他学生补充,达到巩固知识的目的。
教学设计说明
学生的学习内容应该是现实的、有趣的和富有挑战性的,而老师则应该创造一个有利于学生主动求知的学习环境。因此,本节课把培养学生的学习兴趣和思维能力放在首位。教学中采用合作学习的方式,互相交流,集思广益,突破创新,以达到共同提高的目的。然后,通过多样化的练习巩固知识,既调动学生的积极性,又使学习伙伴之间进行了思维的碰撞和沟通。使其在轻松的氛围中多层次、多角度地掌握“不等式的性质”。
本节课的设计体现了一个原则:低起点、多练习、勤反馈、快矫正、重能力、以求最大限度提高课堂效率。
等式课件 篇5
均值不等式
教学目标
(一) 知识与技能:明确均值不等式及其使用条件,能用均值不等式解决简单的最值问题.
(二) 过程与方法:通过对问题主动探究,实现定理的发现,体验知识与规律的形成过程.
(三) 情感态度与价值观:通过问题的解决以及自身的探索研究领略获取新知的喜悦.教学重点:均值不等式的推导与证明,均值不等式的应用.教学难点:均值不等式的应用 教学过程
创设情境如图,AB是圆的直径,D是CAB上与A、B不重合的一点,AD=a,DB=b,过点D作垂直于AB的弦CD,连AC,BC,AaODbB则CD=__,半径OC=____E 讨论 :(1)CD OC (2)文字叙述(几何意义): (3)试用含a、b的表达式来表示上述关系 注意:(1)当 时, (2)a、b的取值范围
探求新知:均值不等式的内容及证明
均值定理:
证明:(比较作差法)
变形应用:(1)
(2)
讨论释疑:
牛刀小试:已知x0,则x1x 例
1、已知ab0,求证:baab2并推导出式中等号成立的条件
例
2、求函数f(x)x22x3x(x0)的最值,以及此时x的值
精炼巩固:
t2 1.设t0,则函数f(t)4t1的最小值为此时t的值
4 2.已知正数a,b满足ab1,则ab有最值为
点拨提高:
总结本节课的你的收获。
课堂小测:
1 .已知正数a,b满足ab1,则1a1b有最值为。 2 .设x3,则函数f(x)(x3)2x3的最小值为此时x的值3.已知a、bR,求证:(a11a)(bb)4
课堂小测:
1 .已知正数a,b满足ab1,则1a1b有最值为。 2 .设x3,则函数f(x)(x3)2x3的最小值为此时x的值3.已知a、bR,求证:(a11a)(bb)4
课堂小测:
1
.已知正数a,b满足ab1,则1a1b有最值为。 2 .设x3,则函数f(x)(x3)2x3的最小值为此时x的值3.已知a、bR,求证:(a11a)(bb)4
课堂小测:
1
.已知正数a,b满足ab1,则1a1b有最值为。 2 .设x3,则函数f(x)(x3)2x3的最小值为此时x的值3.已知a、bR,求证:(a11a)(bb)4
不等式基本性质教学设计
《等式的性质》教学设计
《等式的性质》教学设计
等式性质教学设计(共8篇)
基本不等式教学设计
等式课件 篇6
教学内容:教科书第3~4页的内容,练习一的4~6题。
教学目标:1、通过学习,使学生知道等式两边同时加上或减去同一个数,所得的结果仍然是等式。
2、有意识地培养学生的自学能力。
教学重点与难点:根据等式的性质(一)学会解决含有加、减号的方程。
教学流程:
一、教学例3
出示图,学生根据图独立填空。
根据学生的回答,板书:
20=20xx+10=20+10
X=50X+20=50+20
50+a=50+a50+a-a=50+a-a
X+20=70X+20-20=70-20
提问:比较两边的算式,你有什么发现,在小组里说说。
全班交流,引导学生说出:等式两边同时加上或减去同一个数,所得的结果仍然
是等式。这是等式的性质。
独立完成练一练第1题
二、教学例4
学生自学,不懂的问题和同组同学交流,能解决的就小组内交流。
全班交流:例4中还有什么不懂的地方提出来,能由学生解决的就由学生解决,学生解决不了的教师解决。
一是方法:根据等式的性质把含有未知数的这边化简成就含有一个未知数。
二是检验:把计算的结果代到原式,看左右两边是否相等。
三强调书写的格式。
小结:求方程中未知数值的过程,叫做解方程。
完成试一试练一练的第2题。
学生独立完成后集体订正,重点帮助有困难的学生,针对学生出错的地方及时分
析错误原因,帮助他们弄懂。
三、课堂作业
练习一的第5题。
板书:
等式两边同时加上或减去同一个数,所得的结果仍然是等式。
这时等式的性质。
X+10=50
解:X+10-10=50-10
X=40
等式课件 篇7
1、具体情境,感受天平平衡
通过课件展示情境图引导学生小结出等式并用字母表示。
2、猜想假设、小结规律
先让学生猜想然后再通过课件在天平上演示过程。验证学生的猜想,用字母表示。引导学生小结出:等式两边同时加上同一个数,左右两边仍然相等。
3、观察思考、总结发现
通过课件对教材第64页图2的演示过程让学生独立思考,再通过小组合作讨论总结出发现的规律。等式的性质1:等式两边加上或减去同一个数,左右两边仍然相等。
4、假设数据、验证规律
得到结论后通过假设物体的具体的数据验证学生自己总结出的规律。
5、口算练习、应用规律
通过一些简单的等式问答应用等式两边同加或同减相同的数以加强规律的应用。
6、设疑思考
提出问题让学生思考还有没有其他的运算也能使等式左右两边相等。留给学生思维的空间,再通过课件引导学生一步步总结出等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,左右两边仍然相等。
等式课件 篇8
1、创设情景,引发认知冲突
以前学生解方程习惯用加减法、乘除法互为逆运算的方式解方程,这样的思路只适宜解比较简单的方程,例如:x+3=5、3x=-12等,简单的一元一次方程的解用估算的方法或逆运算的方式我们都可以求出方程的解;而象19+28x=33x-1这样比较复杂的方程我们用上述方法还能求出它的解吗?我利用学生认知上的冲突引入新课。这样既激发了学生的学习兴趣又明确了本节课的教学目的。为等式性质的构建做好铺垫。
2、实验探索,从特殊到一般
等式性质的呈现属于实验探究型课,目的是要学生在活动中体验等量的变化关系和等式的性质。这里我分段逐步呈现等式的特性。首先出示平衡天平的图形,给学生一个天平平衡的印象,引导学生用字母构建一个等式,接着在上一个平衡天平的基础上,两侧同放一个三角形的符号表示物体的重量,让学生观察这时出现什么现象,同时提出问题:怎样做,两边才会保持平衡?通过学生实验得出使天平两边平衡的方法,并用字母式子表示实验的过程,再通过归纳,概括出对象的共同属性加以表述,接着通过几个练习加以巩固,然后借助上一个实验的经验和方法,进一步指导学生完成天平两边成倍变化的实验,最后根据实验情况观察归纳结论。同时注意在总结时先让学生根据实验,把自己所得到的结论叙述出来,然后教师再对学生的结论给予概括得到等式的性质。
上述讲授等式的性质用的是观察实验法,实验观察是科学研究的一种基本的方法,它是根据客观事物和现象找出它具有的客观规律,有助于发现一些数学事实,抽象出对象的属性,再通过归纳,概括出对象的共同属性加以表述。同时也体现了由特殊到一般的思维认知规律。
3、强化概念,指导学生尝试
关于等式概念、等式与方程的联系的引出,教法上采用充分利用学生已有的知识、练习回顾、交流的方式。等式的性质的教学,采用师生共同观察实验,让学生通过对直观图形的观察、实验和猜想,自已发现结论,并用总结的形式表述结论。等式性质的理解和掌握关键在于应用,只有通过大量练习来巩固和提高,练习的速度越快正确越高,说明知识理解和掌握的越好。因此在教学中得到等式性质后,就用三组尝试练习加强巩固和提高,这样既调动了学生学习的趣味性和主动性,增强了学生积极参与教学活动的意识,又很好地培养了学生的动手操作能力、观察能力、逻辑思维能力和总结归纳能力,同时,也向学生渗透了实践——认识——再实践——再认识的一种学习方法,使新旧知识技能得到了有机的结合。
等式课件 篇9
教学内容:教科书第3~4页的内容,练习一的4~6题。
教学目标:1、通过学习,使学生知道等式两边同时加上或减去同一个数,所得的结果仍然是等式。
2、根据等式的性质(一)学会解决含有加、减号的方程。
3、有意识地培养学生的自学能力。
教学过程:
一、教学例3
出示图,学生根据图独立填空。
根据学生的回答,板书:
20=2020+10=20+10
X=50X+20=50+20
50+a=50+a50+a-a=50+a-a
X+20=70X+20-20=70-20
提问:比较两边的算式,你有什么发现,在小组里说说。
全班交流,引导学生说出:等式两边同时加上或减去同一个数,所得的结果仍然
是等式。这是等式的性质。
独立完成练一练第1题
二、教学例4
学生自学,不懂的问题和同组同学交流,能解决的就小组内交流。
全班交流:例4中还有什么不懂的地方提出来,能由学生解决的就由学生解决,
学生解决不了的教师解决。
一是方法:根据等式的性质把含有未知数的这边化简成就含有一个未知数。
二是检验:把计算的结果代到原式,看左右两边是否相等。
三强调书写的格式。
小结:求方程中未知数值的过程,叫做解方程。
完成试一试练一练的第2题。
学生独立完成后集体订正,重点帮助有困难的学生,针对学生出错的地方及时分
析错误原因,帮助他们弄懂。
三、课堂作业
练习一的第4、5、6题。
第4、6题做在书上,第5题写在作业本上。
等式课件 篇10
一、学情分析:作为初一学生(132班和137班)在小学时已经对等量关系和等式的性质有所了解,通过本节课的学习,目的是要使学生从天平的特点中归纳得出等式的性质。
新课标对本节课的要求是:掌握等式的性质。在前面一节课的学习中,学生掌握了一元一次方程的概念和初步应用后,需要解决的是一元一次方程的解法。本节内容借助于等式的性质这一工具来解一元一次方程。首先,通过天平的实验操作,使学生学会观察。尝试分析归纳等式的性质。然后,利用等式的性质解一元一次方程。通过解方程的学习提高学生的观察问题、解决问题的能力。
2、教育教学目标。
根据以上对教材的理解与内容分析,考虑到学生已有的知识结构和心理特征,制定如下教学目标:
(1)知识与技能:探究等式的性质,并能利用等式的性质进行等式变形、解简单的一元一次方程。
(2)过程与方法:通过实验培养学生探索能力、观察能力,归纳能力和应用新知识的能力。
(3)情感态度价值观:积极参与数学活动,体验探索等式性质过程的挑战性和数学结论的确定性,建立学生学好数学的信心。
为了使学生能比较顺利地达到教学目标,我确定了本节课的教学重、难点:
教学重点:探究等式的性质,能根据等式性质进行等式变形、解简单的一元一次方程。
教学难点:利用等式的性质把简单的一元一次方程变形为x=a(常数)的形式;正确理解等式性质2中除数不能为0。
(一)教学手段:如何突出重点、突破难点,从而实现教学目标,我在教学过程中利用多媒体演示拟计划进行如下操作:
1、读(看)――议――讲结合法。
2、图表分析法。
3、读图讨论法。
4、教学过程中坚持启发式教学的`原则。
坚持“以学生为主体,以教师为主导”的原则。即“以学生活动为主导,教师讲述为辅,学生活动在前,教师点拨评价在后”的原则。根据初一学生的心理发展规律。联系实际安排教学内容,采用学生参与高度的学导式讨论教学法、师生交谈法、图象信号法、问答法、教学课堂讨论法,使学生动口、主动探索、发现问题、解决问题、互动合作、归纳概括、形成能力,突出学生的主体地位。在采用问答法时,特别注重不同难度的问题。
提问不同层次的学生面向全体,使基础差的学生也有表现的机会,培养其自信心,激发学习热情,有效开发各层次学生的潜在能力求使每个学生都在原有基础上得到发展,同时通过课堂练习和课后作业启发学生。在教学中要积极培养学生数学学习兴趣和动机。明确学习目的,教师应在课堂上充分调动学生积极性,激发来自学生主体的最有力的动力。
实际上,青少年好动,注意力易分散,爱发表见解。希望得到老师的表扬所以在教学中应抓住学生这一生理特点。一方面运用直观生动的形象,引发学生兴趣,使他们的注意力始终集中在课堂上。另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。
首先我出了一些可以看出方程解的题目,让学生回答,由易到难,激起学生学习的欲望,紧接着就引入等式的定义,从而使学生明白解方程先要研究等式,从而引入课题。
由于学生的认知结构是由简单到复杂,由具体到抽象的过程,因此在这一环节中,我分两个方面来教学:等式的性质1由老师课件演示,学生观察归纳概括。
我利用多媒体依次展示天平图的各个操作。让学生通过观察,用语言来描述发现,与同桌交流。这样由具体演示到抽象概括,使学生记忆深刻,充分体现了学生为主体,教师为主导的原则。
通过上面的观察,让学生分组讨论:如何用算式表示实验结果?学生交流后,教师进行课件演示。
本节课,让学生经历一种从平衡到不平衡再到新的平衡的过程,体验变化是怎样产生的,怎样从打破平衡,又怎样达到新的平衡。从而培养了学生观察能力和抽象概括能力。
我接着提问:如果天平两边减去相同的质量,天平会有什么变化?
让学生先独立思考,然后教师课件演示。你又发现了什么规律?怎样用等式描述?得出等式两边同时减去同一个数,等式仍然成立。并且由以上两条规律得出:等式的两边同时加上或减去同一个数,等式仍然成立。
如果在天平两边同时加上或减去不同的质量,天平会有什么变化?
学生经过思考得出:等式的两边加上或减去的必须是同一个数,才能使等式成立。这样符合学生的认知规律,从实践认识,再到实践认识的过程。
教师再用课件展示天平图,学生通过观察,归纳得出:等式两边同时乘或除以同一个数(除数不能为0),等式仍然成立。
等式基本性质2的推导在性质1的基础上,让学生自己通过观察探究,运用知识的迁移得出,这样培养了学生逻辑思维能力,抽象概括能力和口头表达能力。
(2)若a=b,则ac=bc,
注意:
(1)等式两边都要参加运算,且是同一种运算。
(2)等式两边加或减,乘或除以的数一定是同一个数或同一个式子。
(3)等式两边不能都除以0,即0不能作除数或分母。
在这个环节中把等式的两个性质展示出来,我特别提到了三个注意:因为这是在等式性质解方程中容易出错的地方,就是希望同学们认真细心,正确利用性质解题。
我在练习中设计了三道题,从简单的填空到判断变形对错,到最后的解方程,方程的四道题也是有简单到复杂,总之练习题的设计,低起点,小台阶,循序渐进,符合学生接受知识的特点,是那些平时不举手的同学也积极参与,竟然问题也答得很好。从这些方面培养了学生的灵活性,使学生获得成功的满足感。
作业设计:
PPT投影出课本第83页习题3.1第4题。
等式课件 篇11
一、教材分析
等式的基本性质是学生在刚刚认识了等式与方程的基础上进行教学的。它是系统学习方程的开始,其核心思想是构建等量关系的数学模型。本节课的学习是学生在实验的基础上,掌握等式的两个基本性质,引导学生通过比较,发现规律,并为今后运用等式的基本性质解方程打基础。同时培养学生数学思维能力。
二、教学目标:
知识与技能:理解并能用语言表述等式的基本性质,能用等式的基本性质解决简单问题。
过程与方法:在用算式表示实验结果、讨论、归纳等活动中,经历探索等式基本性质的过程。
情感态度价值观:积极参与数学活动,体验探索等式基本性质过程的挑战性和数学结论的确定性。
三、教学重点是:
引导学生探索发现等式的基本性质,利用等式的基本性质解决简单问题。
教学难点是抽象归纳出等式的基本性质。
四、教学程序(分三部分教学)
(一)联系实际,激趣引入
首先激发探究兴趣:提出问题:“同学们,你用天平做过游戏吗?”这节课我们就利用天平一起来探索天平游戏中所包含的数学知识。”
(二)自主探索,合作交流
学习等式的基本性质1
1、具体情境,感受天平平衡
利用多媒体依次展示天平图的各个操作。让学生通过观察,用语言来描述发现,与同桌交流。这样由具体演示到抽象概括,使学生记忆深刻,充分体现了学生为主体,教师为主导的原则。
图1、图2的教学模式:先让学生观察,问:你发现了什么?然后提问:怎样变换,能使天平仍然保持平衡呢?待学生思考片刻,再进一步提问:往两边各放1个杯子,天平会发生什么变化?生口答,验证。接下去,继续提问:如果两边各放上2个茶杯,天平还会保持平衡吗?两边各放上同样的一把茶壶呢?生答,再一一演示验证。
图3、图4的教学模式和前面一样。
板书如下:
2、总结抽象,认识规律
通过上面的观察,先用一句话归纳图1和图2的内容。(1、等式的两边都加上或减去相同的数,等式不变。)再以第一句话为基础归纳出图3和图4的内容。(2、等式的两边都乘或除以相同的数(0除外)等式不变。)
教师指出这是等式的一个非常重要的性质。板书:等式的基本性质
(三)巩固练习,深化认识
练习题的设计,低起点,小台阶,循序渐进,符合学生接受知识的特点,培养了学生的灵活性,使学生获得成功的满足感。
1、根据图(1)在下面每幅图的括号里填上适当的符号或数字,使天平平衡。
2、课堂作业。(当堂完成)
填一填。(a、b均不为0)
(1) 如果x+a=b,那么x+a-a=b○
(2) 如果x-a=b,那么x-a+a=b○
(3) 如果ax=b,那么a x÷a=b○
(4) 如果x÷a =b,那么x÷a×a=b○
3、拓展训练。
五、最后,关注学生的和感受,提出:通过本节课的学习你有什么收获?
不等式的课件
老师在开学前需要把教案课件准备好,每个人都要计划自己的教案课件了。教案是实现高效教学的不可或缺要素之一。如果您想深入理解这一话题不妨看看“不等式的课件”,本文的内容必将给您带来很多有用的收获!
不等式的课件 篇1
【教学目标】
1、知识与技能目标
(1)掌握基本不等式 ,认识其运算结构;
(2)了解基本不等式的几何意义及代数意义;
(3)能够利用基本不等式求简单的最值。
2、过程与方法目标
(1)经历由几何图形抽象出基本不等式的过程;
(2)体验数形结合思想。
3、情感、态度和价值观目标
(1)感悟数学的发展过程,学会用数学的眼光观察、分析事物;
(2)体会多角度探索、解决问题。
【能力培养】
培养学生严谨、规范的学习能力,辩证地分析问题的能力,学以致用的能力,分析问题、解决问题的能力。
【教学重点】
应用数形结合的思想理解不等式,并从不同角度探索不等式 的证明过程。
【教学难点】
基本不等式 等号成立条件。
【教学方法】
教师启发引导与学生自主探索相结合
【教学工具】
课件辅助教学、实物演示实验
【教学流程】
SHAPE MERGEFORMAT
【教学过程设计】
创设情景,引入新课
如图是在北京召开的第24届国际数学家大会的会标, 这是根据赵爽弦图而设计的。用课前折好的赵爽弦图示范,比较 4个直角三角形的面积和与大正方形的面积,你会得到怎样的相 等和不等关系?
赵爽弦图
1.探究图形中的不等关系
将图中的“风车”抽象成如图,在正方形ABCD中右个全等的直角三角形。
设直角三角形的两条直角边长为a,b那么正方形的边长为 。这样,4个直角三角形的面积的和是2ab,正方形的面积为 。由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式: 。
当直角三角形变为等腰直角三角形,即a=b时,正方形EFGH缩为一个点,这时有 。
2.得到结论:一般的,如果
3.思考证明:你能给出它的证明吗?
证明:因为
当
所以, ,即
4.基本不等式
1)特别的,如果a>0,b>0,我们用分别代替a、b ,可得 ,通常我们把上式写作:
2)从不等式的性质推导基本不等式
用分析法证明:
要证 (1)
只要证 (2)
要证(2),只要证 a+b- 0 (3)
要证(3),只要证 ( - ) (4)
显然,(4)是成立的。当且仅当a=b时,(4)中的等号成立。
3)理解基本不等式 的几何意义
不等式的课件 篇2
基本不等式教学设计
数学与应用数学 钟林
课题:人教A版必修5第3章4节,基本不等式
【教学目标】
1.通过两个探究实例,引导学生从几何图形中获得两个基本不等式,了解基本不等式的几何背景,体会数形结合的思想。
2.进一步提炼、完善基本不等式,并从代数角度给出不等式的证明,组织学生分析证明方法,加深对基本不等式的认识,提高逻辑推理论证能力。 3.结合课本的探究图形,引导学生进一步探究基本不等式的几何解释,强化数形结合的思想。
4.借助例1尝试用基本不等式解决简单的最值问题,通过例2及其变式引导学生
ab领会运用基本不等式ab的三个限制条件(一正二定三相等)在解决最
2值中的作用,提升解决问题的能力,体会方法与策略。
【重点难点】
重点:应用数形结合的思想理解基本不等式,并从不同角度探索不等式abab的证明过程。
2难点:在几何背景下抽象出基本不等式,并理解基本不等式。
【教学设计】
(一)问题导入
欣赏2002年国际数学家大会会徽,会徽是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。你能发现它是什么图形构成的吗?请根据会徽探索一些常见相等或不等关系。
探究一:在这张“弦图”中能找出一些相等关系和不等关系吗? 在正方形ABCD中有4个全等的直角三角形.设直角三角形两条直角边长为,a,b。
22ab那么正方形的边长为。
于是,4个直角三角形的面积之和S12ab。 正方形的面积S2a2b2。 由图可知S2S1,即a2b22ab。
当直角三角形变为等腰直角三角形,即时,正方形EFGH缩为一个点,这时 a2b22ab
所以a2b22ab。
探究二:如下图所示的梯形中,EF是梯形ABCD的中位线,梯形ABGH相似于梯 形GHDC。
梯形ABCD的上底是a,下底是b。让同学们自主研究GH和EF的大小关系。
ab因为EF是中位线,所以EF,
2由相似,可以得出GHab, 同样因为相似,有
AGABa, GDGHb又因为ab,所以AGGD,即AGAE,
ab。 2显然,当AB逐渐趋近CD的时候,GH也逐渐向EF靠近, 当AB=CD的时候,即ABCD是矩形的时候,GH与EF重合。
ab即,当且仅当ab时,ab。
2ab所以,ab,当且仅当ab时,等号成立。
2所以GHEF,即ab
(二)概念深入
根据上述两个几何背景,初步形成不等式结论:
若a,bR,则a2b22ab。(当且仅当a=b时,等号成立)
ab。(当且仅当a=b时,等号成立) 2请同学们运用代数法证明: 作法一(作差法): 若a,bR,则aba2b22ab(ab)20ab2ab22
当且仅当a=b时,等号成立。且发现这里且a和b可以是全体实数、单项式、多项式。
作法二(分析法):
要证明abab, 2只需证明ab2ab, 即证ab-2ab0, 即为a-b20,该式显然成立,所以,当ab时取等号。
于是有这样的结论:
称ab为a,b的几何平均数;称基本不等式abab为a,b的算术平均数, 2ab又可叙述为: 2两个正数的几何平均数不大于它们的算术平均数
作法三(几何法):
如图,AB是圆O的直径,点C是AB上一点,AC=a,BC=b.过点C作 垂直于AB的弦DE,连接AD,BD。 从而有CDab,ODab。 2ab。 2ab当且仅当C点与圆心O点重合时,即a=b时,ab
2故再次证明:
aba0,b0,ab,当且仅当a=b时,等号成立。
2ab也说明了ab的几何意义:半径不小于半弦。
2由于直角三角形COD中,直角边CD
(三)例题讲解
例1.(1)用篱笆围一个面积为100平方米的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短,最短的篱笆是多少?
(2)一段长为36米的篱笆围成一个矩形菜园,问这个矩形的长、宽为多少时,菜园的面积最大,最大面积是多少?
(通过例1的讲解,总结归纳利用基本不等式求最值问题的特征,实现积与和的转化)
对于x,yR,
(1)若xyp(定值),则当且仅当xy时,xy有最小值2p;
s2(2)若xys(定值),则当且仅当xy时,xy有最大值。
4(鼓励学生自己探索推导,不但可使他们加深基本不等式的理解,还锻炼了他们的思维,培养了勇于探索的精神。)
1例2.求yx(x0)的值域。
x1变式1.若x2,求x的最小值.
x21在运用基本不等式解题的基础上,利用几何画板展示yx(x0)的函数
x图象,使学生再次感受数形结合的数学思想。
ab并通过例2及其变式引导学生领会运用基本不等式ab的三个限制
2条件(一正二定三相等)在解决最值问题中的作用,提升解决问题的能力,体会方法与策略。
(四)归纳小结&课后作业 基本不等式:
若a,bR,则a2b22ab。(当且仅当a=b时,等号成立)
ab。(当且仅当a=b时,等号成立) 2(1)基本不等式的几何解释(数形结合思想); (2)运用基本不等式解决简单最值问题的基本方法。
作业:A组第4题,B组第1题,第2题
若a,bR,则ab
不等式的课件 篇3
课题:3.4.3 基本不等式 的应用(二) 科目:数学 教学对象:高二(290)学生 课时:1课时 提供者:刘和安 单位: 姚安一中 一、教学内容分析 本节课的研究是起到了对学生以前所学知识与方法的复习、应用,进而构建他们更完善的知识网络。数学建模能力的培养与锻炼是数学教学的一项长期而艰苦的任务,这一点,在本节课是真正得到了体现和落实。?
根据本节课的教学内容,应用观察、阅读、归纳、逻辑分析、思考、合作交流、探究,对基本不等式展开实际应用,进行启发、探究式教学并使用投影仪辅助。? 二、教学目标 (一)知识目标:构建基本不等式解决函数的值域、最值问题;
(二)能力目标:让学生探究用基本不等式解决实际问题
(三)情感、态度和价值观目标:
通过具体问题的解决,让学生去感受、体验现实世界和日常生活中存在着大量的不等量关系并需要从理性的角度去思考,鼓励学生用数学观点进行类比、归纳、抽象,使学生感受数 学、走进数学、培养学生严谨的数学学习习惯和良好的思维习惯;? 三、学习者特征分析 在本节课的教学过程中,仍应强调不等式的现实背景和实际应用,真正地把不等式作为刻画现实世界中不等关系的工具。通过实际问题的分析解决,让学生去体会基本不等式所具有的广泛的实用价值,同时,也让学生去感受数学的应用价值,从而激发学生去热爱数学、研究数学。而不是觉得数学只是一门枯燥无味的推理学科。在解决实际问题的过程中,既要求学生能用数学的眼光、观点去看待现实生活中的许多问题,又会涉及与函数、方程、三角等许多数学本身的知识与方法的处理 四、教学策略选择与设计 1.采用探究法,按照观察、阅读、归纳、思考、交流、逻辑分析、抽象应用的方法进行启发式教学;?
2.教师提供问题、素材,并及时点拨,发挥老师的主导作用和学生的主体作用;?
3.设计较典型的具有挑战性的问题,激发学生去积极思考,从而培养他们的数学学习兴趣。?? 五、教学重点及难点 教学重点:1.构建基本不等式解决函数的值域、最值问题。?
2.让学生探究用基本不等式解决实际问题;?
教学难点:1.让学生探究用基本不等式解决实际问题;?
2.基本不等式应用时等号成立条件的考查;?
六、教学过程 教师活动 学生活动 设计意图 (一)导入新课
(二)推进新课
已知 ,若ab为常数k,那么a+b的值如何变化?
若a+b为常数s,那么ab的值如何变化?
老师用投影仪给出本节课的第一组问题
(1)求函数y=2x2+ (x>0)的最小值。?
(2)求函数y=x2+ (x>0)的最小值。?
(3)求函数y=3x2-2x3(0
(4)求函数y=x(1-x2)(0
(5)设a>0,b>0,且a2+ =1,求 的最大值。?
(三)合作探究 我们来考虑运用正数的算术平均数与几何平均数之间的关系来解答这些问题。根据函数最值的含义,我们不难发现若平均值不等式的某一端为常数,则当等号能够取到时,这个常数即为另一端的一个最值。 ?
(四)例题精析?
【例】某工厂要建造一个长方体形无盖贮水池,其容积为4 800 m3,深为 3 m.如果池底每平方米的造价为150元,池壁每平方米的造价为120元,怎样设计水池能使总造价最低?最低总造价是多少?
当且仅当a=b时,a+b就有最小值为2k.?
当且仅当a=b时,ab就有最大值 (或ab有 最大值 ).?
学生完成
留五分钟的时间让学生思考,合作交流
(根据学生完成的典型情况,找五位学生到黑板板演,然后老师根据学生到黑板板演的完成情况再一次作点评)?
学生思考、回答,
不等式的课件 篇4
不等式
教材分析:本课由实际问题中的不等关系引出不等式的概念;类比方程的解,明确不等式解和解集的概念,以及不等式解集的两种表示方法。
教学目标:了解不等式概念,理解不等式的解和解集。 教学重难点:不等式及解集概念的理解。 教学过程: 一:引出新知。
现实世界中存在大量的数量关系,包括相等关系和不等关系。用等式(包括方程),我们可以研究相等关系,而研究不等关系需要用本章的不等式,如引言中选择购物商场问题.二:探索新知。
问题1 一辆匀速行驶的汽车在11:20距离A地50 km,要在12:00之前驶过A地.你能用式子表示出车速应满足的条件吗?
1、汽车在12:00之前驶过A地的意思是什么? 从时间上看,汽车要在12:00之前驶过A地,则 以这个速度行驶50 km所用的时间不到。
从路程上看,汽车要在12:00之前驶过A地,则以这个速度行驶的路程要超过50 km。
2、如何用式子表示以上不等关系? 设:车速为x km/h. 从时间上看: 从路程上看:
(1)对于不等式 而言,车速可以是80 km/h吗?78 km/h呢?75 km/h呢?72 km/h呢?
(2)类比方程的解,什么叫不等式的解?
使不等式成立的未知数的值.(3)不等式还有其他解吗?如果有,这些解应满足什么条件?
一般地,一个含有未知数的不等式的所有的解,组成这个不等式的解集.求不等式的解集的过程叫做解不等式. (4)除了用不等式表示取值范围,还有其他表示方法吗? 数轴
三、运用新知。 例1 请用不等式表示:
(1) 是负数;
(2) 与5的和小于-7;
(3) 的一半大于3.例2 直接说出不等式的解集,并在数轴上表
示出来.
四、归纳总结 (1)什么叫不等式?
(2)什么叫不等式的解?不等式的解和方程的解的区别? (3)什么叫不等式的解集?不等式的解和不等式的解集的区别?
五、布置作业
教科书 习题 第
1、
2、3题。
不等式的课件 篇5
[教学目标]
依据《新标准》对《不等式》学段的目标要求和本班学生实际情况,特确定如下目标:
1、知识与能力目标:理解掌握基本不等式,并能运用基本不等式解决一些简单问题(求最值、证明不等式);培养学生探究能力以及分析问题解决问题的能力。
2、过程与方法目标:按照创设情景,提出问题→ 剖析归纳证明→ 几何解释→ 应用(最值的求法、不等式的证明)的过程呈现。启动观察、分析、归纳、总结、抽象概括等思维活动,培养学生的思维能力,体会数学概念的学习方法,通过运用多媒体的教学手段,引领学生主动探索基本不等式性质,体会学习数学规律的方法,体验成功的乐趣。
3、情感与态度目标:通过问题情境的设置,使学生认识到数学是从实际中来,培养学生用数学的眼光看世界,通过数学思维认知世界,从而培养学生善于思考、勤于动手的良好品质。
二、 [教学重点]
基本不等式 的证明过程及应用。
三、 [教学难点]
1、基本不等式成立时的三个限制条件(简称一正、二定、三相等)的正确理解;
2、灵活利用基本不等式求解实际问题中的最大值和最小值。
四、 [教学方法]
本节课采启发诱导、讲练结合的教学方法,结合现代信息技术多媒体课件、几何画板作为教学辅助手段,加深学生对基本不等式的理解。
[教学用具]
多媒体、几何画板
六、 [教学过程]
教学过程设计以问题为中心,以探究解决问题的方法为主线展开。这种安排强调过程,符合学生的认知规律,使数学教学过程成为学生对知识的再创造、再发现的过程,从而培养学生的创新意识。
具体过程安排如下:
(一)、创设情景,提出问题;
上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客。
[问]你能在这个图中找出一些相等关系或不等关系吗?
利用图中相关面积间存在的数量关系,抽象出不等式 。在此基础上,引导学生认识基本不等式。
同时,(几何画板辅助教学)通过几何画板演示,
让学生更直观的抽象、归纳出结论:
(二)、抽象归纳:
一般地,对于任意实数 ,有 ,当且仅当 时,等号成立。
[问] 你能给出它的证明吗?
学生在黑板上板书。
特别地,当 时,在不等式 中,以 、 分别代替 ,得到什么?
答案: 。
【归纳总结】
如果 都是正数,那么 ,当且仅当 时,等号成立。
我们称此不等式为基本不等式。 其中 称为 的算术平均数, 称为 的几何平均数。
(三)、理解升华:
1、文字语言叙述:
两个正数的算术平均数不小于它们的几何平均数。
2、符号语言叙述:
若 ,则有 ,当且仅当 时, 。
[问] 怎样理解“当且仅当”?
3、探究基本不等式证明方法:
[问] 如何证明基本不等式?
方法一:作差比较或由 展开证明。
方法二:分析法。
分析法,实际上是寻找结论的充分条件,执果索因的一种思维方法。
4、探究基本不等式的几何意义:
读书破万卷下笔如有神,以上就是一米范文范文为大家带来的3篇《2023高中数学基本不等式教学教案》,希望对您有一些参考价值。
不等式的课件 篇6
不等式和不等式组复习课教学设计
一、设计思想:
“不等式”是初中数学核心内容之一。就不等式的解法来说,它是一种重要的数学技能;而就不等式的广泛作用来说,不管是与实际相关的问题,还是纯粹的数学问题,不管是代数方面的问题,还是几何图形方面的问题,乃至更为一般化的问题,只要是求未知数的值或范围的问题,经常要借助于不等式,可见学好不等式具有非常重要的意义。
这节课是中考前的专题复习课,知识点不多。由于学生已经学过本章内容,因此在本节复习中主要以提问的形式进行知识要点的复习,以学生自主探索和合作探究的学习方法学习本节内容。教师主要在习题的设计上选好典型例题,复习的知识尽量全面。教学效果上使不同的学生有不同的收获。
二、教学内容分析:
1.《课程标准》对本专题教学内容的要求:
(1)结合具体问题,了解不等式的意义,探索不等式的基本性质。 (2)能解简单的一元一次不等式,并能在数轴上表示出解集;会用数轴确定由两个一元一次不等式组成的不等式组的解集。
(3)能根据具体问题中的数量关系,列出一元一次不等式,解决简单的问题。 2.本节内容在中考中的地位和作用。
本部分内容在中考中大约6~12分,约占全卷分数的5%~8%左右。而且,近几年考试中,经常与方程、函数三角函数、几何等内容一起综合考查,因此学好本节内容对于解决这些综合问题起着举足轻重的作用。
三、教学目标:
1、知识技能:
①掌握不等式的概念和性质,能根据不等式的性质解决有关问题;
②掌握不等式(组)的解法,会求不等式(组)的解集,特别是不等式组的整数解;
③能根据不等式组的解集确定字母系数的范围;
④会列不等式(组)解决简单的实际问题,特别是方案设计问题。
2、数学思考:通过列不等式或不等式组解决具有不等关系的实际问题,让学生体会不等式是解决实际问题的有效的数学模型。
3、解决问题:通过不等式(组)描述不等关系解决实际问题,发展学生由实际问题转化为数学问题的能力。
4、情感态度:①通过复习教学,继续强化用数学的意识,从而使学生乐于接触社会环境中的数学信息,愿意谈论某些数学话题,能够在数学活动中发挥积极作用。
②.通过探索,增进学生之间的配合,使学生敢于面对数学活动中的困难,并有克服困难和运用知识解决问题的成功体验,树立学好数学的自信心。
教学重点:不等式(组)的解法的规范性及实际应用
教学难点:不等式组有无解的问题中字母系数的确定和实际问题中不等式(组)的列出
教学方法:依托多媒体平台,启发、谈论、互动探究法(学生讨论、教师点拨)、讲练结合。
教学手段:计算机多媒体辅助教学。 教学时间:1课时
教学准备:1.学生准备:预习教材,了解本节的知识要点。
2.教师准备:将学生分组,选好组长;制作多媒体课件。
教学设计
一 情境设计
导入新课
出示多媒体课件
1、问题情境:问题:某化妆品店老板到厂家选购A、B两种品牌的化妆品,若销售1套A品牌的化妆品可获利30元,销售1套B品牌的化妆品可获利20元,根据市场需求,化妆品店老板决定,购进B品牌化妆品的数量比购进A品牌化妆品数量的2倍还多4套,且B品牌化妆品最多可购进40套,这样化妆品全部售出后,可使总的获利不少于1200元,问有几种进货方案?如何进货? 教师:同学们,如果你是这个化妆品店的老板,你怎么解决进货方案问题? (学生思考):
教师:如何用数学符号表示标有下划线的词语?应该考查我们哪部分知识? 学生:最多 —— ≤;不少于—— -≥。 教师:我们学过的哪章知识与它们联系最密切?由此我们想到了哪部分知识? 学生:不等式和不等式组
教师:下面我们就来复习有关这方面的内容,“专题复习
(二)方程和不等式-----------不等式和不等式”。 (板书课题)
(多媒体出示教学目标。图略)
二、展示教学目标、教学重点和难点:(让学生学有目的,学有依据)
三、回顾知识要点:
1.知识网络出示;(使学生对本节知识的复习内容一目了然,从总体把握知识间的内在联系)
实际问题
3、知识要点复习不等关系不等式不等式的性质解不等式解集一元一次不等式一元一次不等式组解法解法数轴表示解集数轴表示实际应用解集数轴表示 2.知识要点复习:(通过提问由学生回答) ①基本概念复习
(澄清基本概念,对知识间的内在联系更明确。)
3、知识要点复习
一、基本概念:
1、不等式:
2、不等号:
3、不等式的解:
4、不等式的解集:
5、解不等式:
6、一元一次不等式:
7、一元一次不等式组:
8、一元一次不等式组的解集:
9、解一元一次不等式组: ②不等式性质复习:(它是解不等式和不等式组的重要依据,特别注意第3条性质,不等号方向改变问题,提醒学生,此处易错,提起注意)
3、知识要点复习
二、不等式的性质:(1)如果a>b,那么a+c>b+c,a-c>b-c不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。ab(2)如果a>b,并且c>0,那么ac>bc,cc不等式两边都乘以(或除以)同一个正数,不等号的方向不变。(3)如果a>b,并且c
3、知识要点复习三,规律与方法:1,不等式的解法:2,解不等式组的方法:3,不等式的解集在数轴上的表示:大向右,小向左,有等号是实心,无等号是空心.4,求几个不等式的解的公共部分的方法和规律:(1)数轴法(2)口诀法同大取大同小取小一大一小中间找 ④用一元一次不等式组解决实际问题的步骤:(为解决实际问题提供依据,这是本节的重点知识,学生可能会类比前边复习的方程和方程组的知识说出。)
3、知识要点复习
5、用一元一次不等式组解决实际问题的步骤:实际问题设未知数,列不等式(组)数学问题(不等式或不等式组)解不等式组实际问题的解答检验数学问题的解(不等式(组)的解集)
四、典型例题解析:(这一环节也是学生要达到的知识技能目标的重要一环,学生解题的顺利与否,是教师关注的重点。学生能够独立解出的,关注其过程是否规范,思路是否清晰,方法是否得当。不能解出的,先由小组合作探究,看是否能找到解题的思路,得出问题的答案;如果仍不能得出,教师加以点拨,引导,帮助学生找到解题思路,得出问题的答案。)
例1.(本题是一元一次不等式的解法的考查,是本节的基本题型,估计学生都能独立解出,可让中游的学生板演,这样解题步骤展现在大家面前,如果规范,起个示范作用;不规范,示范改正,起警示作用。把重点放在解题步骤是否规范上。)
4、典型例题:例1.解一元一次不等式解:3 (x-1) ≤6 –2(x-2)3x –3 ≤6 –2x+43x+2x ≤6+4+35x ≤13x ≤135自然数解非负整数解正整数解最大解最大整数解 (右边的云形图中是在学生解完不等式后先后出示的五种特殊情况,这样进
行变式教学,展示了一题多解的典型题目,同时又使学生锻炼了仔细审题的能力。)
4、典型例题:例1.解一元一次不等式解一元一次方程一元一次不解:3 (x-1) = 6 –2(x-2)解:3 (x-1) ≤6 –2(x-2)3x –3 = 6 –2x+43x –3 ≤6 –2x+4等式和一元一次3x+2x =6+4+3方程有何共同点3x+2x ≤6+4+35x =13和不同点?5x ≤x =x≤55 (通过这种一元一次不等式和一元一次方程解法的类比,使学生明确知识间的内在联系,同时发现其中的异同,对两者的区别更加清晰)
例2.(考查不等式的变形,解决问题的关键是正确理解不等式的概念和基本性质。重点关注基本性质的灵活掌握)
例3.(把平面直角坐标系的象限问题转化成不等式组问题,既体现了转化的数学思想方法,又见识了不等式组的广泛应用。可以帮学生回忆坐标系的有关知识。)
4、典型例题:a例2.若a1;b1a③a+b
3、在直角坐标系中,P(2x-6,x-5)在第四象限,则x的取值范围是3
例4.(把不等式中的相等问题出示,体现了相等和不等可以互相转化的数学思想。并与数与式中的乘方问题相联系,具有一定的综合性。)
例5.(借助数轴确定不等式组的解集,对于解这类题非常有效,学生容易做错,特别是是否包括界点问题,有一定难度,让学生小组合作探究,共同寻找问题的答案。教师巡视,给有困难小组点拨,指导。)
4、典型例题:xa2例
4、(2009凉山)若不等式组集是-1
例题分析:问题5问题分析:本题存在两个不等关系,一是购买B品牌化妆品不超过40套;二是两种化妆品的获利不少于1200元。根据这两个不等关系,可列不等式组求解。 (学生写出解题过程后,教师可出示规范的解题过程,体现数学学科的严谨性。)
4例题讲解:、典型例题:解:设A品牌化妆品购进m套,则B品牌化妆品购进(2m+4)套。根据题意得:解得:16≤m≤18.因为m为正整数,所以m=16,17,18,所以2m+4=
36、
38、40.所以有三种进货方案:(1)A种品牌的化妆品的购进16套,B种品牌的化妆品购进36套;(1)A种品牌的化妆品的购进16套,B种品牌的化妆品购进36套;(1)A种品牌的化妆品的购进16套,B种品牌的化妆品购进36套; (通过方案设计题的解决,使学生能够由实际问题建立数学模型,从而增强解决实际问题的能力。)
五、
归纳小结(先由学生自己归纳总结本节课的收获,从而把课堂传授的知识尽快化为学生的素质,以培养和增强学生的归纳总结能力;然后老师予以补充和归纳,为学生良好学习习惯的养成继续进行指导。)
5、归纳小结你会了吗?这节课你学到了什么?你有什么收获?你还有什么问题?
六、达标检测:(在这一环节,我设计了几个有梯度的题目,这样可使不同层次的学生都能有所收获,都能感受到成功的喜悦,使他们“在数学上都能有不同的发展”。)
6.达标检测(1)若2x=3+k的解集是负数,那么k的取值范围是______.K
3、不等式组数解为(A的最小整)A,-1 B,0 C,2 D,3 9
6.达标检测
4、跃壮五金商店准备从宁云机械厂购进甲、乙两种零件进行销售。若每个甲种零件的进价比每个乙种零件的进价少2元,且用80元购进甲种零件的数量与用100元购进乙种零件的数量相同。(1)求每个甲种零件、每个乙种零件的进价分别为多少元?(2)若该五金商店本次购进甲种零件的数量比购进乙种零件的数量的3倍还少5个,购进两种零件的总数量不超过95个,该五金商店每个甲种零件的销售价格为12元,每个乙种零件的销售价格为15元,则将本次购进的甲、乙两种零件全部售出后,可使销售两种零件的总利润(利润=售价-进价超过371元,通过计算求出跃壮五金商店本次从宁云机械厂购进甲、乙两种零件有几种方案?请你设计出来。 6.达标检测选做题•若不等式组xa012xx2有解,则a的取•值范围是(A)。•>-1 ≥-1 ≤1 <1
七、教学设计的理论依据
1.“理论联系实际”的原则,联系学生身边的生活,引导学生学习运用理论知识分析、解决实际问题。
2.新课程标准中的“学生是学习的主人”的主体教育思想。
本节课努力构建师生互动、生生互动的新的教学模式,创设情境引领教学,引导学生的合作学习,让其在思考讨论中自主学习,真正落实以学生为中心、以学生发展为根本,注重学生道德和能力的培养。
不等式的课件 篇7
《基本不等式》教学设计
基本不等式
开江中学 魏江兰
目标分析
依据《新课程标准》对《不等式》学段的目标要求和学生的实际情况,特确定如下目标:
1、知识与能力目标:理解掌握基本不等式,并能运用基本不等式解决一些简单的求最值问题;理解算数平均数与几何平均数的概念,学会构造条件使用基本不等式;培养学生探究能力以及分析问题解决问题的能力。
2、过程与方法目标:按照创设情景,提出问题→ 剖析归纳证明→ 几何解释→ 应用(最值的求法、实际问题的解决)的过程呈现。启动观察、分析、归纳、总结、抽象概括等思维活动,培养学生的思维能力,体会数学概念的学习方法,通过运用多媒体的教学手段,引领学生主动探索基本不等式性质,体会学习数学规律的方法,体验成功的乐趣。
3、情感与态度目标:通过问题情境的设置,使学生认识到数学是从实际中来,培养学生用数学的眼光看世界,通过数学思维认知世界,从而培养学生善于思考、勤于动手的良好品质。
教学重、难点分析
重点:应用数形结合的思想理解基本不等式,并从不同角度探索基本不等式abab的证明过程及应用。 2难点:
1、基本不等式成立时的三个限制条件(简称一正、二定、三相等);
2、利用基本不等式求解实际问题中的最大值和最小值。
教法分析
本节课采用观察——感知——抽象——归纳——探究;启发诱导、讲练结合的教学方法,以学生为主体,以基本不等式为主线,从实际问题出发,放手让学生探究思索。以现代信息技术多媒体课件作为教学辅助手段,加深学生对基本不等式的理解。
《基本不等式》教学设计
教学准备
多媒体课件、板书
教学过程
教学过程设计以问题为中心,以探究解决问题的方法为主线展开。这种安排强调过程,符合学生的认知规律,使数学教学过程成为学生对知识的再创造、再发现的过程,从而培养学生的创新意识。 具体过程安排如下:
一、创设情景,提出问题;
设计意图:数学教育必须基于学生的“数学现实”,现实情境问题是数学教学的平台,数学教师的任务之一就是帮助学生构造数学现实,并在此基础上发展他们的数学现实.基于此,设置如下情境: 上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客。
[问]你能在这个图中找出一些相等关系或不等关系吗?
本背景意图在于利用图中相关面积间存在的数量关系,抽象出不等式a2b22ab。在此基础上,引导学生认识基本不等式。
二、抽象归纳:
一般地,对于任意实数a,b,有a2b22ab,当且仅当a=b时,等号成立。 [问] 你能给出它的证明吗?
证明:因为a2b22ab(ab)20,即a2b22ab.(当ab时取等号)
特别地,当a>0,b>0时,在不等式a2b22ab中,以a、b分别代替a、b,得到什么?
设计依据:类比是学习数学的一种重要方法,此环节不仅让学生理解了基本不等式不等式的来源,突破了重点和难点,而且感受了其中的函数思想,为今后学习奠定基础.
《基本不等式》教学设计
答案: abab(a,b0)。 2你能用不等式的性质直接推导这个不等式吗? 证明:(分析法):由于a,bR,于是要证明 ab2ab,
只要证明 ab2即证
2ab,
ab2ab0,即 (ab)20,
所以abab,(当ab时取等号)
【归纳总结】
如果a,b都是正数,那么abab,当且仅当a=b时,等号成立。 2ab称为a,b的算术平均数,ab称2我们称此不等式为基本不等式。 其中为a,b的几何平均数。
文字语言叙述:两个正数的算术平均数不小于它们的几何平均数。
探究基本不等式的几何意义:借助初中阶段学生熟知的几何图形,引导学生探究abab(a,b0)2的几何解释,通过数形结合,赋予不等式不等式abab(a,b0)2几何直观。进一步领悟不等式中等号成立的条件。
如图:AB是圆的直径,点C是AB上一点,CD⊥AB,AC=a,CB=b,CD
Dab
abab2abOCAB几何解释实质可认为是:在同一半圆中,半径不小于半弦(直径是最长的弦);或者认为是,直角三角形斜边的一半不小于斜边上的高。
《基本不等式》教学设计
4.应用举例,巩固提高
我们可以用两个重要不等式来解决什么样的问题呢?
例1(1)用篱笆围一个面积为100平方米的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短,最短的篱笆是多少? (2)一段长为36米的篱笆围成一个矩形菜园,问这个矩形的长、宽为多少时,菜园的面积最大,最大面积是多少?
(通过例1的讲解,总结归纳利用基本不等式求最值问题的特征,实现积与和的转化) 对于(1)若(2)若,
(定值),则当且仅当(定值),则当且仅当
时,时,
有最小值有最大值
; .
(鼓励学生自己探索推导,不但可使他们加深基本不等式的理解,还锻炼了他们的思维,培养了勇于探索的精神.)
1例 2:当x0时,求yx的最小值?x1变式1:当x0时,yx有最值吗?
x1变式2:当x1时,yx有最值吗?
x通过例2及其变式引导学生领会运用基本不等式的三个限制条件(一正二定三相等)在解决最值问题中的作用,提升解决问题的能力,体会方法与策略.
练一练(自主练习):课本练习 5.归纳小结,反思提高
《基本不等式》教学设计
基本不等式:若若
,则,则
(当且仅当(当且仅当
时,等号成立) 时,等号成立)
(1)基本不等式的几何解释(数形结合思想);(2)运用基本不等式解决简单最值问题的基本方法(一正二定三相等). 6.布置作业,课后延拓
(1)基本作业:课本P100习题组
1、
2、3题
(2)拓展作业:请同学们课外到阅览室或网上查找基本不等式的其他几何解释,整理并相互交流.
基本不等式教学设计
《等式的性质》教学设计
《等式的性质》教学设计
等式性质教学设计(共8篇)
等式的基本性质的课后教学反思
不等式的课件 篇8
一、教学目标:
(一)知识与能力目标:(课件第2张)
1.体会解不等式的步骤,体会比较、转化的作用。
2.学生理解、巩固一元一次不等式的解法.
3.用数轴表示解集,加深对数形结合思想的进一步理解和掌握。
4.在解决实际问题中能够体会将文字语言转化成数学语言,学会用数学语言表示实际的数量关系。
(二)过程与方法目标:
1.介绍一元一次不等式的概念。
2.通过对一元一次方程的解法的复习和对不等式性质的利用,导入对解不等式的讨论。
3.学生体会通过综合利用不等式的概念和基本性质解不等式的方法。
4.学生将文字表达转化为数学语言,从而解决实际问题。
5.练习巩固,将本节和上节内容联系起来。
(三)情感、态度与价值目标:(课件第3张)
1.在教学过程中,学生体会数学中的比较和转化思想。
2.通过类比一元一次方程的解法,从而更好的掌握一元一次不等式的解法,树立辩证统一思想。
3.通过学生的讨论,学生进一步体会集体的作用,培养其集体合作的精神。
4.通过本节的学习,学生体会不等式解集的奇异的数学美。
二、教学重、难点:
1.掌握一元一次不等式的解法。
2.掌握解一元一次不等式的阶梯步骤,并能准确求出解集。
3.能将文字叙述转化为数学语言,从而完成对应用问题的解决。
三、教学突破:
教材中没有给出解法的一般步骤,所以在教学中要注意让学生经历将所给的不等式转化为简单不等式的过程,并通过学生的讨论交流使学生经历知识的形成和巩固过程。在解不等式的过程中,与上节课联系起来,重视将解集表示在数轴上,从而指导学生体会用数形结合的方法解决问题。在研究中,鼓励学生用多种方法求解,从而锻炼他们活跃的思维。
四、教 具:计算机辅助教学.
五、教学流程:
(一)、复习:
教学环节
教 师 活 动
学 生 活 动
设 计 意 图
不等式课件
不为明天做好准备的人是没有未来的,当幼儿园教师的工作遇到难题时,我们经常会用提前准备好的资料进行参考。资料通常是指书籍、报刊、图表、图片等。有了资料才能更好的在接下来的工作轻装上阵!所以,关于幼师资料你究竟了解多少呢?在这里,你不妨读读不等式课件,欢迎阅读,希望对你有帮助。
不等式课件【篇1】
教学目标:
了解一元一次不等式的概念,掌握一元一次不等式的解法。
教学重点:
是掌握解一元一次不等式的步骤
教学难点:
是必须切实注意遇到要在不等式两边都乘以(或除以)同一负数时,必须改变不等号的方向。
教学过程:
一、问题导入
复习:
1、不等式的基本性质有哪些?什么是一元一次方程?并举出两个例子。
2、观察不等式x+3<5与x<2,说明解x<2是x+3<5依据什么变形得到的?
3、解一元一次方程:6x+5=7-2x,目的是为了与下面所学的解一元一次不等式进行类比,找到它们的联系与区别。
二、指导自学,小组合作交流
请同学们根据以下提问进行自学,先个人思考,后小组合作学习。
1、观察下列不等式,说一说这些不等式有哪些共同特点?
(1)2x+5≥8(2)x+1≤—4(3)x<2(4)6—3x>43(x+1)≤0
观察上面不等式有哪些共同特点,让学生通过交流,再总结一元一次不等式的概念。老师板书定义。
2、让学生举出2或3个一元一次不等式的例子,小组交流。
3、让学生通过比较解一元一次方程:6x+5=7-2x的解法试解一元一次不等式:6x+5<7-2x,并将解集在数轴上表示出来。
4、思考:一元一次不等式与一元一次方程的解法有哪些类似之处?有什么不同?
5、解下列不等式,并把它们的解集在数轴上表示出来。
(1)3-x<2x+9(2)2-4(x-1)>3(x+2)-x
(3)(x-1)/3≥(2-x)/2+1
总结:解一元一次不等式的依据和解一元一次不等式的步骤。
三、互动交流,教师点拨
(一)、学生易出错的问题和注意的事项:
1、确定一个不等式是不是一元一次不等式,要抓住三个要点:左右两边都是整式,只有一个未知数,未知数的次数是1。
2、对于(1),让学生说明不等式3-x<2x+9的每一步变形的依据是什么,特别注意的是:解不等式的移项和解方程的移项一样。即移项要变号(培养学生运用类比的数学思想)。
3、不等式两边同时除以(-3)时,不等号的方向改变。
2、重点点拨(2)和(3),先让学生到黑板上板演。老师再讲评。
(2)易出错的地方是:去括号时漏乘,括号前是负号,去掉括号后括号里的项没变号,还有移项没有变号;(3)易出错的地方是:去分母时漏乘无分母的项。
3、归纳解一元一次不等式的步骤(与解一元一次方程的步骤类比):去分母,去括号,移项,合并同类项,系数化为1。(在系数化为1这一步要特别提醒学生注意当系数为负数时,要记住改变不等号的方向。)
四、巩固练习
1、判断下列不等式是不是一元一次不等式,为什么?
(1)2/x—3
(2)5x+3x–1
(4)x(2x+1)
(5)X+2≥x
2、解下列不等式,并把它们的解集在数轴上表示出来
(1)3x–8
(2)2(x–1)≥x+3
(3)x/5≥1+(x–3)/2
3、[思考]当x取何值时,代数式(x–2)/2的值比(3x+1)/3的值大?
小结:
(1)不等式两边同时除以负数时,不等号的方向要改变。
(2)注意去括号时不要漏乘,括号前是负号,去掉括号后括号里的项要变号,还有移项一定要变号
(3)去分母时不要漏乘无分母的项。
不等式课件【篇2】
一、教学目标
(一)知识与技能
1.了解从实际情境中抽象出二元一次不等式(组)模型的过程
2.掌握简单的二元线性规划问题的解法
3.了解数学建模的整个过程
(二)过程与方法
1.通过对实际问题的探索,培养学生用数学眼光去观察生活、并且能提出问题、分析问题、解决问题的能力.
2.增强学生的协作能力.
(三)情感、态度与价值观
1.通过学生自主探索、合作交流,亲身体验数学模型的发现,培养学生勇于探索、善于发现、不畏艰辛的品质,增强学习的成功心理,激发学习数学的兴趣,深刻体会数学是有用的.
2.通过实例的社会意义,培养学生爱护环境的责任心.
二、教学重点、难点
重点:从具体生活情境中提炼出简单的二元线性规划问题,并且用数学方法解决问题.
难点:从具体生活情境中提炼出约束条件和目标函数.
三、教学设想
本节课采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以二元一次不等式(组)模型的发现为基本探究内容,以周围世界和生活实际为对象,为学生提供充分自由表达、质疑、探究、讨论问题的机会,让学生通过个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对实际问题的深入探讨.让学生在“活动”中学习,在“主动”中发展,在“合作”中增知,在“探究”中创新.设计思路如下:
创设情境→方案讨论→数据筛选→建立模型→解决模型→反馈实际
四、教学过程:
引入
(1)如图,小明与小聪玩跷跷板,大家都不用力时,跷跷板左低右高.小明的身体质量为p(kg),小聪的身体质量为q(kg),书包的质量为2kg,怎样表示p、q之间的关系?
(2)上图是公路上对汽车的限速标志,表示汽车在该路段行使的速度不得超过40km/h.若用v(km/h)表示车的速度,那么v与40之间的数量关系用怎样的式子表示?
(3)据科学家测定,太阳表面的温度不低于6000℃.设太阳表面的温度为t(℃),怎样表示t与6000之间的关系?
归纳:数学作用之一,我们可以用数学语言描述客观世界的某些现象
当然,数学作用不仅于此,我们还可以通过数学解决现实生活中的问题.
(一)情景设置
我校环境优美,毗邻江水,校园内四季常青,但是远眺围墙外,有一座小山,那是一座垃圾山.杨府山垃圾场有他的.历史作用和意义,现在已经完成了它的历史使命,而且现在有了负面影响,市委市政府打算对其进行改造.经过专家论证,有如下方案可行:发电、制砖
(二)处理方案讨论
现同时用两种措施对垃圾山进行改造处理,如果你是项目经理,给你500万采购发电设备以及制砖设备,你该如何去实施?
(学生自主发言)
学生问题一、怎样安排资金?买几台发电设备,几台制砖设备?如何决策?
引导:问题转化为如何安排资金,能取得最大效益?即两种方案生产产品的利润(售价减去成本)
学生问题二、如何知道这些信息?(产品售价、设备的单价等)
引导(先提问学生):上网查询、市场调查、向已建厂取经、参观展销会等等.
(三)数据的筛选
由于教室条件限制,不能现场查取,所以老师帮你们收集了一些资料,希望对你们有所帮助.请分析以下信息,提取你认为有用的数据.
信息一、
信息二、
焚烧垃圾重量直接关系到垃圾发电企业的经济效益.在BOT的模式下,企业的效益这样来保障:
1.每处理1吨垃圾,政府补贴发电企业73.8元,
2.保证以0.52元/千瓦时的价格收购全部垃圾发电量,
3.一台发电设备每处理1吨垃圾平均费用为123元
4.一台发电设备日处理垃圾能力为225吨,
5.1吨垃圾可发电300千瓦时,其中30%为自用电
信息三、
发电设备:120万/台制砖设备:35万/台
机房总面积为7亩,每台设备有各自平均占地,其中发电设备每台平均占地1亩,制砖机每台平占地1亩
(四)建立模型
你能从以上信息中提炼出你所需要的信息,并用数学语言表示出来吗?
(学生动手)
引导:我们刚才处理的问题即应用题:
例一工厂欲生产甲乙两种产品,已知生产一件甲产品利润为60元,一台甲设备价格为120万,占地1亩,年生产能力为82125件;生产一件乙产品利润为0.12元,一台乙设备价格为35万,占地1亩,年生产能力为15000000件.现有资金500万,厂房7亩,该厂该如何添置甲乙两种设备,使得年利润最大?
(五)解决模型
该问题即我们上节课刚学过的线性规划问题,请大家动手解决.
(六)反馈实际
我们可以将我们的成果发到市长信箱,为城市建设出谋划策,贡献自己的一份力量.
五、归纳小结
(一)解决生活问题的步骤:
创设情境→方案讨论→数据筛选→建立模型→解决模型→反馈实际
现实问题:给你资金和地皮,购置设备
方案讨论:通过1.上网查询2.市场调查3.吸收已建厂经验等方法收集信息.
数据筛选及建立模型:将收集到的信息用数学语言表示出来.
解决模型:用已学过的数学知识进行分析、处理,得出结论.
反馈实际:将结论应用于实际问题当中.
(二)顺利解决生活问题体要具备的能力
我们要具备信息收集及处理能力、生活语言转化成数学语言的能力以及扎实的数学解题能力.
不等式课件【篇3】
各位领导
你们好!
今天我要为大家讲的课题是 : 《 不等式及其解集 》 。
首先,我对本节教材进行一些分析:
一、教材分析:
1.教材所处的地位和作用:
本节内容在全书及章节的地位是:《 不等式及其解集 》是 新人教版 初中数学教材第 七 册第 九 章第 1 节内容。 学生已初步体会到生活中的量与量之间的关系,有相等与不等的情形,就是有大小之分…… 在此之前,学生已学习了 等式 基础上,这为过渡到本节的学习起着铺垫作用。
2教学目标:
根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:
(1)知识目标:
了解不等式及一元一次不等式概念。
理解不等式的解、解集,能正确表示不等式的解集。
(2)能力目标:
通过教学初步培养学生分析问题,解决实际问题,读图分析、收集处理信息、团结协作、语言表达的能力,以及通过师生 互动 ,初步培养学生运用知识的能力,培养学生加强理论联系实际的能力。
(3)情感目标:
通过对 《不等式及其解集》 的教学,引导学生从现实生活的经历与体验出发,激发学生对地理问题的兴趣,使学生了解地理知识的功能与价值,形成主动学习的态度,让学生初步认识到地理知识的优越性,同时渗透 安全教育 ;通过理论联系实际的方式,通过知识的应用,培养学生唯物主义的思想观点。
3.重点,难点以及确定的依据:
本课中 不等式相关概念的理解和不等式的解集的表 是重点, 不等式解集的理解 是本课的难点,但由于学生年龄小,解决实际问题能力弱,对理论联系实际的问题的理解难度大。下面,为了讲清重难点,使学生能达到本节课设定的教学目标,我再从教法和学法上谈谈:
二、教学策略(说教法):
(一)教学手段:
如何突出重点,突破难点,从而实现教学目标。我在教学过程中拟计划进行如下操作:
1.“读(看)——议——讲”结合法
2 .读图讨论法
3 .教学过程中坚持启发式教学的原则
基于本节课的特点: 第一节知识性特点 ,应着重采用 自主探讨 的教学方法。
(二)教学方法及其理论依据:
坚持“以学生为主体,以教师为主导”的原则,即“以学生活动为主,教师讲述为辅,学生活动在前,教师点拨评价在后”的原则,根据学生的心理发展规律,联系实 际安排教学内容。采用学生参与程度高的学导式讨论教学法。在学生看图片 、讨论基础上,在教师启发引导下,运用问题解决式教学法,师生交谈法、问答法、课堂讨论法,引导学生根据现实生活的经历和体验及收集到的信息(感性材料)来理解课文中的理论知识。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现的机会,培养其自信心,激发其学习热情。有效地开发各层次学生的潜在智能,力求使每个学生都能在原有的基础上得到发展。同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践,学以致用,落实教学目标。
使学生学习对生活有用的数学,学习对终身发展有用的数学的基本理念。提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的知识和技能,在教学中要积极培养学生学习兴趣和动机,明确的学习目的。教师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力
三、学情分析:(说学法) :
1.学生特点分析:
中学生心理学研究指出,初中阶段是智力发展的关键年龄,学生逻辑思维从经验型逐步向理论型发展,观察能力、记忆能力和想象能力也随着迅速发展。从年龄特点来看,初中学生好动、好奇、好表现,抓住学生特点,积极采用形象生动、形式多样的教学方法和学生广泛的、积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。生理上,青少年好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中应抓住学生这一生理特点,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。
2.知识障碍上:
(1)知识掌握上,学生原有的知识 等式 ,许多学生出现知识遗忘,所以应 更学生更过的时间分组预习讨论 。
(2)学生学习本节课的知识障碍。 不等式解集的表示方法
知识,学生不易理解,所以教学中教师应予以简单明白、深入浅出的分析。
3.动机和兴趣上:
明确的学习目的。教师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。
最后我来具体谈一谈这一堂课的教学过程:
四、教学程序及设想:
教学程序:
(一)课堂结构: 出示学习目标,预习展示 , 练习反馈 , 课堂自测, 布置作业 五 个部分。
(二)教学简要过程:
1、 出示学习目标,课前预习
出示学习目标,学生观察学习目标,自主预习。
设计意图:有了明确的学习目标才能激发起学生的学习热情,才能充分调动学生学习的积极性。
学生分小组进行自主探究学习,同学之间进行合作交流,教师巡视指导,观察学生的探究方法,并倾听学生之间的探讨。
【设计意图】:本次任务为本节课的核心任务,其目的是通过学生的自主学习,理解本节几个概念,并通过学生的举例回答,从具体的实例中去掌握这几个概念。
2 、预习反馈
让学生自己来讲解,有利于提高学生的语言表达能力,学生用语言来概括这几个概念,培养学生的数学语言表达能力及抽象概念能力。
3 、老师归纳,练习反馈
归纳补充知识点,并进行练习反馈。针对每个知识点设置不同的练习。如
1 ) 、不等式的定义设置 , (判断)下列各式是否为不等式;
(1)-2<5 (2)x+3> 2x (3)4x-2y<0 (4)a-2b
(5)x2-2x+1<0 (6) a+b≠c (7)5m+3=8 (8)x≤-4
2 ) 、 用不等式表示:
⑴ a与1的和是正数;
⑵ y的2倍与1的和小于3;
⑶ y的3倍与x的2倍的和是非负数 ;
⑷ x乘以3的积加上2最多为5.
3 ) 、下列说法正确的是( )
A. x=3是2x>1的解
B. x=3是2x>1的唯一解
C. x=3不是2x>1的解
D. x=3是2x>1的解集
及认识不等式解集的表示方法有两种:最简形式与在数轴上表示。分组讨论找规律,记口诀。(定界点,定方向)相关题型:
用数轴表示不等式的解集:
(1)x>-2; (2)x≤3; (3)y≤0
找三名同学上台展示。
展示学生的成果,让学生在学习过程中感受学习的乐趣和成功的喜悦,增强学生的学习兴趣。
体会不等式是解决实际问题的有效工具。
4 、课堂自测
检测学习本节课的掌握情况。
5 、布置作业
分层作业。针对学生的学习情况,让每一名同学都 能完成 老师布置的任务,增强成就感及学习数学的兴趣。 A类: 教科书P119,120:1,2,3;B 类: 卷:能力提高作业。
五、 反思:
本节教学,有以下几点特别值得回味的地方。
1、从生活中来回到生活中去的教学设计
新课标指出:“数学的教学活动必须建立在学生的认知发展水平和已有知识经验基础上。”心理学的研究表明,学习内容和学生生活背景、知识背景越接近,学生自觉接纳知识懂得的程度就越高。导入的恰当、合理会引起学生极大的学习兴趣,对知识的衔接和理顺起到画龙点睛的作用,又对新知识起到设疑、点拔的作用。用学生身边感兴趣的实例 过马路、跷跷板体验生活中的不等式 ,一方面引起学生的参与欲,另一方面也体现了知识拓展的需要。因为这样既可引出一元一次不等式的意义,又让学生产生学习不等式的需求,也使学生对解不等式 的方法有了很自然的联想 让学生充分感受到学习一元一次不等式的必要性。使学生进一步认识到“数学来源于生活,反过来又为生活服务”,增强学好数学的信心与决定。
2、重视数学思想方法的渗透
数学思想方法是数学的灵魂,知识转化为能力的桥梁。在整节课的教学中都非常重视数学思想方法的渗透。学习不等式时,类比方程、不等式解集的概念,渗透“类比”思想。使学生在已有知识上进行迁移,在主动参与、探索交流中不知不觉学到了新知识。利用数轴求不等式的解集,渗透“数形结合”思想。掌握不等式的解集 在数轴上的表示 ,利用数轴把解集 讲解得非常透彻,使学生充分认识到“数形结合”思想方法的用处。列不等式解决实际问题,渗透“建模”思想,培养学生应用数学的意识。最后的小结,不是流俗的学习内容小结,而是思想方法的小结,它起到了提纲挈领,梳理总结的目的。
3、重视数学的“再创造”
课堂教学改革的宗旨和根本出发点是:改善和促进学生全面、持续、和谐地发展。建构主义理论强调学习的主动性、社会性和情景性,认为学习者不是知识信息的被动吸收者,而是主动积极的建构者。留给学生的作业:完成课外探究题,借助数轴归纳求不等式的解集一般规律。教学时重视了数学的“再创造”,由学生本人把需学的东西自己去发现和创造出来。学生的学习不再是一种被动地吸收知识,反复练习,强化储存知识的过程,而是通过反复研究、探索、思考、概括,亲身经历“再创造”的探究性学习过程,从而自主获得知识。
总之,教学设计时体现新课程标准的思想和理念,注重知识与能力并重,培养发展学生自主探索的独立思考精神。
不等式课件【篇4】
一教材分析
1、教材地位和作用
均值不等式又叫做基本不等式,选自人教B版(必修5)的3章的2节的内容,是在上节不等式性质的基础上对不等式的进一步研究.同时也是为了以后学习中的几种重要不等式,以及不等式的证明作铺垫,起着承上启下的作用。
本节内容具有变通灵活性、应用广泛性、条件约束性等特点,所以本节课可以培养学生应用数学知识灵活解决实际问题的能力。
“均值不等式”在不等式的证明和求最值过程中有着广泛的应用。求最值是高考的热点。它在科学研究、经济管理、工程设计上都有广泛的作用。
2、教学目标
A.知识目标:学会推导并掌握均值不等式,理解这个均值不等式的几何意义,并掌握定理中取等号的条件.B.能力目标:通过对均值不等式的推导过程,提高学生探究问题,分析与解决问题的能力。参透类比思想,数形结合的思想,优化了学生的思维品质。
C.情感目标:(1)通过探索均值不等式的证明过程,培养探索、研究精神。(2)通过对均值不等式成立的条件的分析,养成严谨的科学态,并形成勇于提出问题、分析问题的习惯。
3、教学重点、难点:
重点:
通过对新课程标准的解读,教材内容的解析,我认为结果固然重要,但数学学习过程更重要,它有利于培养学生的数学思维和探究能力,所以均值不等式的推导是本节课的重点
难点:
很多同学对均值不等式成立的条件的认识不深刻,在应用时候常常出错误,所以,均值不等式成立的条件是本节课的难点
二教法学法分析
1.教法
本节课主要采用探究归纳,启发诱导,讲练结合的教学方法。以学生为主体,以均值不等式为主线,从实际问题出发,放手让学生探究思索。
2、教学手段
为了使抽象变为具体,我使用了多媒体。为了突出重点我使用了彩色粉笔。3,学法
从实际生活出发,通过创设问题情境,让学生经历由实际问题出发,探求均值不等式,发现均值不等式的实质,利用均值不等式解决实际问题的过程。使学生从代数证明和几何证明两方面理解并掌握基本不等式。
三教学过程
(一)、创设情景,引入课题
从古至今中国人有很多发明创造推动了和推动着世界的前进,在这璀璨的星空里,最耀眼的一颗就是被奉为2002年北京国际数学家大会会徽的《赵爽弦图》(动画打出)。
如图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。这就是公元前1000多年前我国数学家赵爽发现并记录在《周脾算经》中的发现和证明勾股定理的《赵爽弦图》;它比欧洲毕达哥拉斯学派的发现早了500多年。
你能在这个图案中找出一些相等关系或不等关系吗?
设计意图:勾起学生强烈的民族自豪感和强烈的求知欲,并对学生渗透爱国主义教育,同时告诉学生记住我国光辉而灿烂的历史。
探究图形中的不等关系(用提问题的方式)
将图中的“风车”抽象成如图,在正方形ABCD中有4个全等的直角三角形。
设直角三角形的两条直角边长为a,b
4个直角
22三角形的面积的和是2ab,正方形的面积为ab。
由于4个直角三角形的面积和小于正方形的面积,22我们就得到了一个不等式:ab2ab。
当直角三角形变为等腰直角三角形,即a=b时,22正方形EFGH缩为一个点,这时有ab2ab。
22a,bR,那么ab2ab(当且仅当ab时取“”号)得到结论:重要不等式:如果
具有这种形式的式子就是我们今天要讨论的问题.(二)新课讲授。
1给出均值定理(在老师写均值不等式定理时,要求同学在课本上了解均值定理,并思考怎样证明。),师生一起证明均值不等式。
aba0,b0)2要证:„„„„„„„„„①
即证:ab„„„„„„„„„„„②
要证②,只要证:ab0„„„„③
2要证③,只要证:(-)0 „„④
点评,强调取等条件;
2.ab2的几何意义 aba0,b0)2当a≠b时,OC>CD,即
ab当a=b时,OC=CD,即
2我们是否能从图中看见当D向O点移动时CD是逐渐变长了,当D,O重合时CD最长,并且a=b.ab
3.在数学中,我们称2为正数a、b的算术平均数,称ab为正数a、b的几何平均数.均值不等式还可叙述为:两个正数的几何平均数不大于它们的算术平均数.设计意图:探索发现,观察归纳,形成概念,加深对均值不等式的认识和理解;培养学生数形结合的思想方法和对比的数学思想,多方面思考问题的能力.让学生积极的参与到学习中来,激发学生的学习兴趣。
(三)例题讲解(精讲第一题)
例,矩形的面积为100 m2,问这个矩形的长、宽各为多少时,矩形周长最短。最短周长是多少?
用波利亚的4环节来进行解题
1:审题(把实际问题数学化)
2:分析(矩形的长与宽的乘积是一个常数,求长与宽的和的2倍的最小值;)3:解题
4:回顾(给出规律:规律:两个正数的积为常数时,它们的和有最小值)。
设计意图:这个例题体现了基本不等式的实用价值。随着高考综合科目的确定,联系各个学科的试题将会不断出现,数学作为工具性的学科,学好数学,也增强了攻读好其他学科的信心。
为了体现夸美纽斯的巩固性原则,我设计了下面练习。
练习:已知矩形的周长是36m,问这个矩形的长、宽各为多少时,矩形的面积最大?最大面积是多少?
先老师对该练习进行提示,再抽一位同学在黑板上来练习,其他同学在下面练习。做完后大家一起点评该练习,不让同学通过上面的回顾来终结下面的规律:
两个正数的和为常数时,它们的积有最大值
四小结(教师引导学生小结本节课):
知识:均值定理及其成立的条件,及其均值定理的应用
方法:一正,二定,三相等。
思想:类比和数形结合的思想。
设计意图:培养学生对所学知识进行概括归纳的能力,巩固所学知识.
五作业:
基础题:课本 第77页A组 1.提高题:课本 第77页A组 3.4研究题:设正数a、b,试尽可能多的给出含有a和b的两个元素的不等式
板书设计:
为了更好的板书本节课的内容,使整个板面重点突出,层次分明,我将黑板分为四版.定理例题练习副版
定理的证明讲解讲解
不等式课件【篇5】
课题:§3.2.3均值不等式课时:第3课时 授课时间:授课类型:新授课
【教学目标】
1.知识与技能:了解均值不等式在证明不等式中的简单应用。
2.过程与方法:培养学生的探究能力以及分析问题、解决问题的能力。
3.情态与价值:激发学习数学的热情,培养善于思考、勤于动手的学习品质。
【教学重点】了解均值不等式在证明不等式中的简单应用。
【教学难点】了解均值不等式在证明不等式中的简单应用。
【教学过程】
例
1、已知a、b、c∈R,求证:
不等式的左边是根式,而右边是整式,应设法通过适当的放缩变换将左边各根式的被开方式转化为完全平方式,再利用不等式的性质证得原命题。
a2b2c
2abc 例
2、若a,b,cR,则bca
本题若用“求差法”证明,计算量较大,难以获得成功,注意到a , b , c∈R,从结论的特点出发,均值不等式,问题是不难获证的。
+
例
3、已知a,b,c为两两不相等的实数,求证:abcabbcca 证明:∵ab2abbc2bcca2ca
以上三式相加:2(abc)2ab2bc2ca
∴abcabbcca
例
4、已知a,b,c,d都是正数,求证:(abcd)(acbd)4abcd
分析:此题要求学生注意与均值不等式定理的“形”上发生联系,从而正确运用,同22222222222222
2证明:∵a,b,c,d都是正数,∴ab>0,cd>0,ac>0,bd>
得abcdacbd0,0.22
(abcd)(acbd)abcd.4由不等式的性质定理4的推论1,得
即(abcd)(acbd)4abcd
小结:正数的算术平均数不小于它们的几何平均数
课堂练习:第73页习题B 3、4课后作业:第73页习题B 5、6
板书设计:
教学反思:
不等式课件【篇6】
《均值不等式》说课稿
山东陵县一中 燕继龙李国星
尊敬的各位评委、老师们:
大家好!我今天说课的题目是 《均值不等式》,下面我从教材分析,教学目标,教学重点、难点,教学方法,学生学法,教学过程,板书设计,效果分析八个方面说说我对这堂课的设计。
一、教材分析:
均值不等式又称基本不等式,选自普通高中课程标准实验教科书(人教B版)必修5第三章第3节内容。是不等式这一章的核心,在高中数学中有着比较重要的地位。对于不等式的证明及利用均值不等式求最值等实际问题都起到工具性作用。通过本节的学习有利于学生对后面不等式的证明及前面函数的一些最值值域进一步研究,起到承前启后的作用。
二、教学目标:
1、知识与技能:
(1)掌握均值不等式以及其成立的条件;
(2)能运用均值不等式解决一些较为简单的问题。
2、过程与方法:
(1)探索并了解均值不等式的证明过程、体会均值不等式的证明方法;
(2)培养探究能力以及分析问题、解决问题的能力。
3、情感态度与价值观:
(1)通过探索均值不等式的证明过程,培养探索、钻研、合作精神;
(2)通过对均值不等式成立条件的分析,养成严谨的科学态度;
(3)认识到数学是从实际中来,通过数学思维认知世界。
三、教学重点和难点:
重点:通过对新课程标准的解读,教材内容的解析,我认为结果固然重要,但数学学习过程更重要,它有利于培养学生的数学思维和探究能力,所以均值不等式的推导是本节课的重点之一;再者,均值不等式有比较广泛的应用,需重点掌握,而用好均值不等式,关键是对不等式成立条件的准确理解,因此,均值不等式及其成立的条件也是教学重点。
难点:很多同学对均值不等式成立的条件的认识不深刻,在应用时候常常出现错误,所以,均值不等式成立的条件是本节课的难点。
四、教学方法:
为了达到目标、突出重点、突破难点、解决疑点,我本着以教师为主导的原则,再结合本节的实际特点,确定本节课的教学方法。
突出重点的方法:我将通过引导启发、学生展示来突出均值不等式的推导;通过多媒体展示、来突出均值不等式及其成立的条件。
突破难点的方法:我将采用重复法(在课堂的每一环节,以各种方式进行强调均值不等式和
来突破均值不等式成立的条件这个难点。
此外还将继续采用个人和小组积分法,调动学生积极参与的热情。
五、学生学法:
在学生的学习中,注重知识与能力,过程与方法,情感态度和价值观三个方面的共同发展。充分体现学生是主体,具体如下:
1、课前预习----学会;、明确重点、解决疑点;
2、分组讨论
3、积极参与----敢于展示、大胆质疑、争相回答;
4、自主探究----学生实践,巩固提高;
六、教学过程:
采取“三步骤四环节和谐高效课堂”教学模式,运用学案导学开展本节课的教学,首先进行
:课前预习
(一)成果反馈
1.对课前小组合作完成的现实生活中的问题:
“今有一台天平,两臂不等长,要用它称物体质量,将物体放在左、右托盘各称一次,称得的质量分别为a,b,问:能否用a,b的平均值表示物体的真实质量?若不能,这二者是什么关系?”
进行多媒体情景演示,抽小组派代表回答,从而引出均值不等式抽出两名同学上黑板完成2、32.均值定理:_____________________________________
ab
2。
预备定理:a2b22ab(a,bR),仿照预备定理的证明证明均值定理 3.已知ab>0,求证:
ab
ab2,并推导出式中等号成立的条件。
与此同时,其他同学分组合作探究和均值定理有关的以下问题,教师巡视并参与讨论,适时点拨。
① 适用范围a,b________,x0,x
1x2
对吗?
② 等号成立的条件,当且仅当__________时,________=_________ ③ 语言表述:两个___数的____平均数_____它们的_______平均数 ④ 把不等式_________________又称为均值或________不等式 ⑤ 数列观点:两个正数的______中项不小于它们的_____中项
。⑥ 几何解释(见右图):________________
⑦常见变形ab_______
________,即ab
___________。例:
4、(1)一个矩形的面积为100 m,问这个矩形的长、宽各为多少时,矩形的周长最短?最短周长是多少?(2)已知矩形的周长是36m,问这个矩形的长、宽各为多少时,矩形的面积最大?最大面积是多少?
由此题可以得出两条重要规律:
两个正数的积为常数时,它们的和有______值; 两个正数的和为常数时,它们的积有______值。
等待两名同学做完后,适时终止讨论,学生各就各位。首先针对黑板上这两道题发动学生上来捉错(用不同色粉笔),然后再由老师完善,以此加深学生对定理及应用条件的认识。其次,老师根据刚才巡视掌握的情况,结合多媒体进行有针对性的讲解(重点应强调均值定理的几何解释:半径不小于半弦,以及用三角形相似或射影定理的几何证明过程,使定理“形化”),进一步加深学生对定理的认识及应用能力,初步掌握用均值定理求函数最值时要注意“一正、二定、三相等”
第二步:课内探究
(二)精讲点拨 1.例:求函数f(x)
2xx
3x
(x0)的最大值,及此时x的值。
先和学生们一起探讨该问题的解题思路,先拆分再提出“-”号,为使用均值定理创造条件,后由学生们独立完成,教师通过巡视或提问发现问题,通过多媒体演示来解决问题,该例题主要让学生注意定理的应用条件及一些变形技巧。
2.多媒体展示辨析对错:
这几道辨析题先让学生们捉错,再由
多媒体给出答案,创设情境加深学生对用均值定理求函数最值时注意“一正、二定、三相等”的认识
(三)有效训练
1.(独立完成)下列函数的最小值为2的是()
A、yx
1x
B、ysinx
1sinx
(0x
)
C、y
1D、ytanx
本题意在巩固用均值定理求函数最值时要注意“一正、二定、三相等”,待学生完成后,随机抽取几名学生说一下答案,选D,应该不会有问题。
2.(小组合作探究)一扇形中心角为α,所在圆半径为R。若扇形周长为一常值C(C>0),当α为何值时,扇形面积最大,并求此最大值。
本题若直接运用均值不等式不会出现定值,需要拼凑。待学生讨论过后,先通答案,2时扇形面积最大值为
c
tanx
(0x
)
。若有必要,抽派小组代表到讲台上讲解,及时反馈矫正。
(四)本节小结
小结本节课主要内容,知识点,由学生总结,教师完善,不外乎: 1.两个重要不等式
ab2ab(a,bR,当且仅当ab时取“”)
2ab2
a,bR,当且仅当ab时取“”)
2.用均值定理求函数最值时要注意“一正、二定、三相等”。
(一)、双基达标(必做,独立完成):
1、课本第71页练习A、B;
2、已知x1,求yx6
x
1的最值;
(二)、拓展提高(供选做, 可小组合作完成):
23、若a,bR且a
b
1,求a最大值及此时a,b的值.4、a0,b0,且
5、求函数f(x)
1a
9b
1,求ab最小值.x3x1x
1(x1)的最小值。
通过作业使学生进一步巩固本节课所学内容,注重分层次设计题目,更加关注学生的差异。
七、板书设计:
由于本节采用多媒体教学,板书比较简单,且大部分是学生的展示。
八、效果分析:
本节课采取了我校推行的“三步骤四环节和谐高效课堂”教学模式,通过学案导学,多媒体展示,师生互动,生生互动。学生基本能掌握均值不等式以及其成立的条件;能运用均值不等式解决一些较为简单的问题。但用均值定理求函数最值时要注意“一正、二定、三相等”,说起来容易做起来难,学生还得通过反思和课后训练进一步体会。
我的说课到此结束,恳请各位评委和老师们批评指正,谢谢!
不等式课件【篇7】
【教学目标】
1.通过具体情境让学生感受和体验现实世界和日常生活中存在着大量的不等关系,鼓励学生用数学观点进行观察、归纳、抽象,使学生感受数学、走进数学、改变学生的数学学习态度。
2.建立不等观念,并能用不等式或不等式组表示不等关系。
3.了解不等式或不等式组的实际背景。
4.能用不等式或不等式组解决简单的实际问题。
【重点难点】
重点:
1.通过具体的问题情景,让学生体会不等量关系存在的普遍性及研究的必要性。
2.用不等式或不等式组表示实际问题中的不等关系,并用不等式或不等式组研究含有简单的不等关系的问题。
3.理解不等式或不等式组对于刻画不等关系的意义和价值。
难点:
1.用不等式或不等式组准确地表示不等关系。
2.用不等式或不等式组解决简单的含有不等关系的实际问题。
【方法手段】
1.采用探究法,按照阅读、思考、交流、分析,抽象归纳出数学模型,从具体到抽象再从抽象到具体的方法进行启发式教学。
2.教师提供问题、素材,并及时点拨,发挥老师的主导作用和学生的主体作用。
3.设计教典型的现实问题,激发学生的学习兴趣和积极性。
【教学过程】
教学环节
教师活动
学生活动
设计意图
导入新课
日常生活中,同学们发现了哪些数量关系。你能举出一些例子吗?
实例1.某天的天气预报报道,最高气温35℃,最低气温29℃。
实例2.若一个数是非负数,则这个数大于或等于零。
实例3.两点之间线段最短。
实例4.三角形两边之和大于第三边,两边之差小于第三边。
引导学生想生活中的例子和学过的数学中的例子。在老师的引导下,学生肯定会迫不及待的能说出很多个例子来。即活跃了课堂气氛,又激发了学生学习数学的兴趣。
推进新课
同学们所举的这些例子联系了现实生活,又考虑到数学上常见的数量关系,非常好。而且大家已经考虑到本节课的标题《不等关系与不等式》,所举的实例都是反映不等量的关系。
(下面利用电脑投影展示两个实例)
实例5:限时40km/h的路标,指示司机在前方路段行使时,应使汽车的速度v不超过40km/h。
实例6:某品牌酸奶的质量检查规定,酸奶中脂肪的含量f应不少于2.5%,蛋白质的含量p应不少于2.3%.
同学们认真观看显示屏幕上老师所举的例子。
让学生们边看边思考:生活中有许多的事情的描述可以采用不等的数量关系来描述
过程引导
能够发现身边的数学当然很好,这说明同学们已经走进了数学这门学科,但是我们还要能用数学的眼光、数学的观点、进行观察、归纳、抽象,完成这些量与量的比较过程,那么我们用什么知识来表示这些不等关系呢?
什么是不等式呢?
用大屏幕展示一组不等式-71+4;2x≤6;a+2≥0;3≠4.
能用不等式及不等式组把这些不等关系表示出来,也就是建立不等式数学模型的过程通过对不等式数学模型的'研究,反过来作用于现实生活,这才是学习数学的最终目的。
思考并回答老师的问题:可以用不等式或不等式组来表示不等关系。
经过老师的启发和点拨,学生可以自己总结出:用不等号将两个解析试连接起来所成的式子叫不等式。
目的是让学生回忆不等式的一些基本形式,并说明不等号≤,≥的含义,是或的关系。回忆了不等式的概念,不等式组学生自然而然就清楚了。
此时学生已经迫不及待地想说出自己的观点了。
合作探究
(一)。下面我们把上述实例中的不等量的关系用不等式或不等式组一一的表示出来,那应该怎么表示呢?
这两位同学的观点是否正确?
老师要表扬学生:“很好!这样思考问题很严密。”应该用不等式组来表示此实际问题中的不等量关系,也可以用“且”的形式来表达。
(二)。问题一:设点A与平面的距离为d,B为平面上的任意一点。
请同学们用不等式或不等式组来表示出此问题中的不等量的关系。
老师提示:借助于图形,这个问题是不是可以解决?
(下面让学生板演,结合三角形草图来表达)
问题(二):某种杂志原以每本2。5元的价格销售,可以售出8万本,据市场调查,若单价每提高0。1元,销售量就可能相应减少20xx本。若把提价后杂志的定价设为x元,怎样用不等式表示销售的总收入仍不低于20万元呢?
是不是还有其他的思路?
为什么可以这样设?
很好,请继续讲。
这位学生回答的很好,表述得很准确。请同学们对两种解法作比较。
问题(三):某钢铁厂要把长度为4000mm的钢管截成500mm和600mm两种,按照生产的要求,600mm钢管的数量不超过500mm钢管的3倍。怎样写出满足上述所有不等式关系的不等式?
假设截得500mm的钢管x根,截得600mm的钢管y根。根据题意,应当有什么样的不等量关系呢?
右边的三个不等关系是“或”还是“且”的关系呢?
这位学生回答得很好,思维很严密,那么该用怎样的不等式组来表示此问题中的不等关系呢?
通过上述三个问题的探究,同学们对如何用不等式或不等式组把实际问题中隐藏的不等量关系表示出来,这一点掌握得很好。请同学们完成书本练习第74页1,2。
课堂小结:
1.学习数学可以帮助我们解决实际生活中的问题。
2.数学和我们的生活联系非常密切。
3.本节课巩固了二元一次不等式及二元一次不等式组,并且能用它来解决现实生活中存在的大量不等量关系的实际问题。还要注意思维要严密,规范,并且要注意数形结合等思想方法的综合应用。
布置作业:
第75页习题3.1 A组4,5。
29℃≤t≤35℃
x≥0
|AC|+|BC|>|AB|
|AB|+|BC|>|AC|、|AC|+|BC|>|AB|、|AB|+|AC|>|BC|.
|AB|-|BC|
|AB|-|AC|
如果用表示速度,则v≤40km/h.
f≥2.5%或p≥2.3%
学生自己纠正了错误:这种表达是错误的,因为两个不等量关系要同时满足,所以应该用不等式组来表示次实际问题中的不等量关系,即可以表示为也可表示为f≥2.5%且p≥2.3%.
过点A作AC⊥平面于点C,则d=|AC|≤|AB|
可设杂志的定价为x元,则销售量就减少万本。销售量变为(8-)万本,则总收入为(8-)x万元。即销售的总收入为不低于20万元的不等式表示为(8-)x≥20.
解法二:可设杂志的单价提高了0.1n元,(n)
我只考虑单价的增量。
那么销售量减少了0.2n万本,单价为(2.5+0.1n)元,则也可得销售的总收入为不低于20万元的不等式,表示为(2.5+0.1n)(8-0.2n)≥20.
截得两种钢管的总长度不能超过4000mm。
截得600mm钢管的数量不能超过500mm钢管的3倍。
截得两种钢管的数量都不能为负数。
它们是同时满足条件,应该是且的关系。由实际问题的意义,还应有x,y要同时满足上述三个不等关系,可以用下面的不等式组来表示:
如果学生没有想到的话,老师可以在黑板上板演示意图,启发学生考虑三边的大小关系。
此时启发学生“或”字可以吗?学生没有了声音,他们在思考着。到底行不行呢?有的回答“行”,有的回答“不行”。
此时学生们在思考,时间长的话,老师要及时点拨。
让学生知道,在解决问题时应该贯穿数形结合的思想,以形助数,下面有学生的声音,有学生在讨论,有的学生还有疑问。老师注意关注学生的思维状况,并且及时的加以指导。
此时学生已经真正进入本节课的学习状态,老师再给出问题(三)使学生一直处于跟随老师积极思考和解决问题的状态。问题是教学研究的核心,以问题展示的形式来培养学生的问题意识与探究意识。
【教学反思】(【设计说明】)
本节课内容很多,都是不等式和不等式组的有关问题,还有很多是生活中的实例,学生学习起来很感兴趣,课堂的气氛也很好,大多数学生都能很积极地回答问题,使课堂的学习气氛很浓,确实也做到了愉快教学。设计是按照老师引导式教学,边讲授边引导,启发学习思考问题及能自己解决问题,锻炼学习能自主的学习能力。
【交流评析】
一是课堂容量适中,二是实例很好,接近生活,学生感兴趣。三是学生回答问题积极踊跃,和老师配合很好。四是多媒体应用的恰到好处,教学设备很完善,老师也能很熟练的应用。
不等式课件【篇8】
3.2均值不等式 教案(3)
(第三课时)
教学目标:
了解均值不等式在证明不等式中的简单应用
教学重点:
了解均值不等式在证明不等式中的简单应用
教学过程
例
1、已知a、b、c∈R,求证:
不等式的左边是根式,而右边是整式,应设法通过适当的放缩变换将左边各根式的被开方式转化为完全平方式,再利用不等式的性质证得原命题.
a2b2c
2abc 例
2、若a,b,cR,则bca
本题若用“求差法”证明,计算量较大,难以获得成功,注意到a , b , c∈R,从结论的特点出发,均值不等式,问题是不难获证的.
+
例
3、已知a,b,c为两两不相等的实数,求证:abcabbcca 证明:∵ab2abbc2bcca2ca
以上三式相加:2(abc)2ab2bc2ca
∴abcabbcca
例
4、已知a,b,c,d都是正数,求证:(abcd)(acbd)4abcd 22222222222222
2分析:此题要求学生注意与均值不等式定理的“形”上发生联系,从而正确运用,同时证明:∵a,b,c,d都是正数,∴ab>0,cd>0,ac>0,bd>得
abcdacbd0,0.22
由不等式的性质定理4的推论1,得
(abcd)(acbd)abcd.4即(abcd)(acbd)4abcd
小结:正数的算术平均数不小于它们的几何平均数
课堂练习:第77页练习A、B
课后作业:略
不等式课件【篇9】
教材分析:
上节课认识了不等式,知道了什么叫不等式和不等式的解。本节主要学习不等式的解集,这是学好利用不等式解决实际问题的关键,同时要求学生会用数轴表示不等式的解集,使学生感受到数形结合的作用。并且本课也通过让学生经历实验、观察、分析、概括过程,自主探索不等式的解集等概念,培学生的思维能力。在情感态度、价值观方面要培养学生与他人合作学习的习惯。
教学重点:
理解不等式的解集的含义,明确不等式的解是在某个范围内的所有解。
教学难点:
对不等式的解集含义的理解。
教学难点突破办法:
通过实验、观察,分析、概括过程,使学生对不等式的解集有了初步的理解,然后通过数轴直观地表示出不等式的解集,从而加深了学生对不等式的解集的理解。
教学方法:
1、采用复习法查缺补漏,引导发现法培养学生类比推理能力,尝试指导法逐步培养学生独立思考能力及语言表达能力。充分发挥学生的主体作用,使学生在轻松愉快的气氛中掌握知识。
2、让学生充分发表自己的见解,给学生一定的时间和空间自主探究每一个问题,而不是急于告诉学生结论。
3、尊重学生的个体差异,注意分层教学,满足学生多样化的学习需要。
学习方法:
1、学生要深刻思考,把实际问题转化为数学模型,养成认真思考的好习惯。
2、合作类推法:学习过程中学生共同讨论,并用类比推理的方法学习。
教学步骤设计如下:
(一)创设问题情境,引入新课:
实验:将如下重量的砝码分别放入天平的左边。
请大家仔细观察,哪些砝码放入天平左边后能使天平向左边倾斜?如果砝码重x克,要使x+2>5,即:天平左边放入x克砝码后使天平向左边倾斜。那么这样的x取应取什么数?这样的数是有限个还是无限个?
学生活动:
1、让学生观察实验,寻找数量关系回答问题;
2、让学生采取小组合作的学习方式。
(二)讲授新课
通过实验、讨论、交流、归纳得到:大于心不甘的每个数都是不等式x+2>5的解,而小于3的每一个数都不是不等式x+2>5的解,因此不等式x+2>5的解有无限多个,它们组成集合,称为一元不等式x+2>5的解集。即表示为x>3。
由实例概括出不等式的解集以及解不等式的概念:一个不等式的所有解,组成这个不等式的解的集合,简称为这个不等式的解集;求不等式的解集过程,叫做解不等式。
我们知道解不等式不能只求个别解,而应求它的解集.一般而言,不等式的解集不是由一个数或几个数组成的,而是由无限多个数组成的,如x>3.那么如何在数轴上直观地表示不等式x+2>5的解集x>3呢?
不等式解集x>3,在数轴上可以直观地表示出来。如图8.2.1
如果某个不等式x≤-2,也可在数轴上直观地表示出来,如图8.2.2
说明:8.2.1在表示范表演的点画空心圆圈,表不包括这一点,表示大时就往右拐;图8.2.2在表示-2的点画黑点表示包括这一点,表示小时不向左拐。
(三)知识拓展
将数轴上x的范围用不等式来表示:
(四)尝试反馈:
课本第44页“练习”第1、2题。
(五)归纳小结:
这节课主要学习了不等式的解集的有关概念,并会用数轴表示不等式的解集。
不等式课件【篇10】
《不等式的基本性质》它是北师大版八年级下册第一章第二节的内容。今天我将从教材分析,教学目标,教学重难点,教法学法,教学过程这五个方面谈谈我对这节课处理的一些不成熟的看法:
本节内容不等式,它是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应用,所以对不等式的学习有着重要的实际意义。同时,不等式的基本性质也为学生以后顺利学习解一元一次不等式和解一元一次不等式组的有关内容的理论基础,起到重要的奠基作用。
根据《新课程标准》的要求,教材的内容兼顾我校八年级学生的特点,我制定了如下教学目标:
知识与技能:
1. 感受生活中存在的不等关系,了解不等式的意义。
2. 掌握不等式的基本性质。
过程与方法:经历不等式的基本性质的探索过程,初步体会不等式与等式的异同。
情感态度与价值观:经历由具体实例建立不等式模型的过程,进一步符号感与数学化的能力。
教学重难点:
重点:不等式概念及其基本性质
难点:不等式基本性质3
教法与学法:
1. 教学理念: “ 人人学有用的数学”
2. 教学方法:观察法、引导发现法、讨论法.
3. 教学手段:多媒体应用教学
4. 学法指导:尝试,猜想,归纳,总结
根据《数学课程标准》的要求,教材和学生的特点,我制定了以下四个教学环节。
下面我将具体的教学过程阐述一下:
一、创设情境,导入新课
上课伊始,我将用一个公园买门票如何才划算的例子导入课题。
世纪公园的票价是:每人5元;一次购票满30张,每张可少收1元。某班有27名团员去世纪公园进行活动。当领队王小华准备好了零钱到售票处买27张票时,爱动脑筋的李敏同学喊住了王小华,提议买30张票。但有的同学不明白,明明我们只有27个人,买30张票,岂不是“浪费”吗?
(此处学生是很容易得出买30张门票需要4X30=120(元), 买27张门票需要5X27=135(元),由于120〈135,所以买30张门票比买27张还要划算。由此建立了一个数与数之间的不等关系式)
紧接着进一步提问:若人数是x时,又当如何买票划算?
二、探求新知,讲授新课
引例列出了数与数之间的不等关系和含有未知量120
接下来我用一组例题来巩固一下对不等式概念的认知,把表示不等量关系的常用关键词提出。
(1)a是负数;
(2)a是非负数;
(3) a与b的和小于5;
(4) x与2的差大于-1;
(5) x的4倍不大于7;
(6) 的一半不小于3
关键词:非负数,非正数,不大于,不小于,不超过,至少
回到引入课题时的门票问题120
难点突破:通过上面三组算式,学生已经尝试着归纳出不等式的三条基本性质了。不等式性质3是本节的难点。在不等式性质3用数探讨出以后,换一个角度让学生想一想,是否能在数轴上任取两个点,用相反数的相关知识挖掘一下,乘以或除以一个负数时,任意两个数比较是否性质3都成立。通过“数形结合”的思想,使数的取值从特殊化到一般化,从对具体数的感知完成到字母代替数的升华。让学生用实例对一些数学猜想作出检验,从而增加猜想的可信程度。同时,让学生尝试从不同角度寻求解决问题的方法并能有效地解决问题。
反馈练习:用一个小练习巩固三条性质。
如果a>b,那么
(1) a-3 b-3 (2) 2a 2b (3) -3a -3b
提出疑问,我们讨论性质2,3是好象遗忘了一个数0。
引出让学生归纳,等式与不等式的区别与联系
三、拓展训练
根据不等式基本性质,将下列不等式化为“”的形式
(1)x-13
再次回到开头的门票问题,让学生解出相应的x的取值范围
四、小结
1.新知识
一个数学概念;两种数学思想;三条基本性质
2.与旧知识的联系
等式性质与不等式性质的异同
五、作业的布置
以上是我对这节课的教学的看法,希望各位专家指正。谢谢!
“让学生主动参与数学教学的全过程,真正成为学习的主人”
不等式课件【篇11】
教材分析
本节课是在系统的学习了不等关系和不等式性质,掌握了不等式性质的基础上展开的,作为重要的基本不等式之一,为后续的学习奠定基础。要进一步了解不等式的性质及运用,研究最值问题,此时基本不等式是必不可缺的。基本不等式在知识体系中起了承上启下的作用,同时在生活及生产实际中有着广泛的应用,因此它也是对学生进行情感价值观教育的好素材,所以基本不等式应重点研究。
教学中注意用新课程理念处理教材,学生的数学学习活动不仅要接受、记忆、模仿和练习,而且要自主探索、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程。通过本节学习体会数学来源于生活,提高学习数学的乐趣。
课程目标分析
依据《新课程标准》对《不等式》学段的目标要求和学生的实际情况,特确定如下目标:
1、知识与能力目标:理解掌握基本不等式,并能运用基本不等式解决一些简单的求最值问题;理解算数平均数与几何平均数的概念,学会构造条件使用基本不等式;培养学生探究能力以及分析问题解决问题的能力。
2、过程与方法目标:按照创设情景,提出问题→剖析归纳证明→几何解释→应用(最值的求法、实际问题的解决)的过程呈现。启动观察、分析、归纳、总结、抽象概括等思维活动,培养学生的思维能力,体会数学概念的学习方法,通过运用多媒体的教学手段,引领学生主动探索基本不等式性质,体会学习数学规律的方法,体验成功的乐趣。
3、情感与态度目标:通过问题情境的设置,使学生认识到数学是从实际中来,培养学生用数学的眼光看世界,通过数学思维认知世界,从而培养学生善于思考、勤于动手的良好品质。
教学重、难点分析
重点:应用数形结合的思想理解基本不等式,并从不同角度探索基本不等式的证明过程及应用。
难点:1、基本不等式成立时的三个限制条件(简称一正、二定、三相等);
2、利用基本不等式求解实际问题中的最大值和最小值。
教法分析
本节课采用观察——感知——抽象——归纳——探究;启发诱导、讲练结合的教学方法,以学生为主体,以基本不等式为主线,从实际问题出发,放手让学生探究思索。以现代信息技术多媒体课件作为教学辅助手段,加深学生对基本不等式的理解。
教学准备
多媒体课件、板书
教学过程
教学过程设计以问题为中心,以探究解决问题的方法为主线展开。这种安排强调过程,符合学生的认知规律,使数学教学过程成为学生对知识的再创造、再发现的过程,从而培养学生的创新意识。
具体过程安排如下:
创设情景,提出问题;
设计意图:数学教育必须基于学生的“数学现实”,现实情境问题是数学教学的平台,数学教师的任务之一就是帮助学生构造数学现实,并在此基础上发展他们的数学现实.基于此,设置如下情境:
上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客。
[问]你能在这个图中找出一些相等关系或不等关系吗?
本背景意图在于利用图中相关面积间存在的数量关系,抽象出不等式。在此基础上,引导学生认识基本不等式。
二、抽象归纳:
一般地,对于任意实数a,b,有,当且仅当a=b时,等号成立。
[问]你能给出它的证明吗?
学生在黑板上板书。
特别地,当a>0,b>0时,在不等式中,以、分别代替a、b,得到什么?
设计依据:类比是学习数学的一种重要方法,此环节不仅让学生理解了基本不等式不等式的来源,突破了重点和难点,而且感受了其中的函数思想,为今后学习奠定基础.
答案:。
【归纳总结】
如果a,b都是正数,那么,当且仅当a=b时,等号成立。
我们称此不等式为基本不等式。其中称为a,b的算术平均数,称为a,b的几何平均数。
三、理解升华:
1、文字语言叙述:
两个正数的算术平均数不小于它们的几何平均数。
2、联想数列的知识理解基本不等式
已知a,b是正数,A是a,b的等差中项,G是a,b的正的等比中项,A与G有无确定的大小关系?
两个正数的等差中项不小于它们正的等比中项。
3、符号语言叙述:
若,则有,当且仅当a=b时,。
[问]怎样理解“当且仅当”?(学生小组讨论,交流看法,师生总结)
“当且仅当a=b时,等号成立”的含义是:
不等式的课件收藏
经验时常告诉我们,做事要提前做好准备。在幼儿教育工作中,我们都有会准备一写需要用到资料。资料包含着人类在社会实践,科学实验和研究过程中所汇集的经验。有了资料的协助我们的工作会变得更加顺利!所以,关于幼师资料你究竟了解多少呢?小编现在推荐你阅读一下不等式的课件收藏,相信能对大家有所帮助。
不等式的课件 篇1
基本不等式是初中数学比较重要的一个概念,对于求解不等式问题有非常大的作用。在教学中,老师可以通过多学示例,呈现形式多样,让学生深刻理解基本不等式的本质和应用,使学生在解决实际问题中灵活掌握相关知识。本文将结合基本不等式的定义、性质和应用,探讨其相关主题。
一、基本不等式的定义和性质
基本不等式是在解决实际问题时常用到的一种数学方法,它可以有效地帮助我们解决很多实际问题。在数学中,一般把基本不等式定义为,对于任何正整数a和b,有下列不等关系:
(a+b)^2>=4ab
这个不等式在初中数学中非常重要,我们还可以把它解释成下面的形式:对于任何两个正数a和b,有下列不等式:
a/b+b/a>=2
这个式子实际上就是基本不等式的一个特例,也说明了基本不等式中的a和b可以指任何两个正数。
基本不等式的一些性质:
1、两边同时乘以正数或是开根号(即不改变不等关系的实质)是允许的。
2、当a=b时等号成立。
3、当a不等于b时,不等号成立。
这些性质是我们用基本不等式时需要注意的几个关键点。如果我们了解了这些基本的性质,就可以更加灵活地运用基本不等式解决实际问题。
二、基本不等式的应用
基本不等式的应用非常广泛,例如可以用它来解决以下问题:
1、证明
√(a^2+b^2)>=a/√2+b/√2
这个问题就可以使用基本不等式来证明,首先得到(a+b)^2>=2(a^2+b^2),将式子化简可得√(a^2+b^2)>=a/√2+b/√2,这就是想要证明的结论。
2、解决一些最值问题。例如:如何使a+b的值最小?这个问题可以用基本不等式来解决,我们设a+b=k,那么a+b的平方就是k^2,代入基本不等式中可得出:
k^2>=4ab,即(a+b)^2>=4ab
这个不等式右边是4ab,左边则是(a+b)^2,因此a+b的值取得最小值时,应当使(a+b)^2=4ab,所以a=b,因此a+b的最小值就是2a或是2b。
3、证明一些平方和不等式的结论。例如:
(a/b)^2+(b/a)^2>=2
这个问题可以通过基本不等式进行证明,首先我们设x=a/b,y=b/a,很显然有x+y>=2,然后通过简单的运算可得:x^2+y^2>=2,也即(a/b)^2+(b/a)^2>=2。
综上所述,基本不等式作为初中数学比较重要的一部分,其定义、性质和应用都与实际问题密切相关。在解决实际问题时,我们可以通过多学示例,灵活运用基本不等式的性质和应用,进而更好地理解其本质和应用,从而使初中数学知识更加牢固。
不等式的课件 篇2
(1)运用问题的形式帮助学生整理全章的内容,建立知识体系。
(2)在独立思考的基础上,鼓励学生开展小组和全班的交流,使学生通过交流和反思加强对所学知识的理解和掌握,并逐步建立知识体系。
通过问题情境的设立,使学生再现已学知识,锻炼抽象、概括的能力。解决问题
通过具体问题来体会知识间的联系和学习本章所采用的主要思想方法。
通过独立思考获取学习的成功体验,通过小组交流培养合作交流意识,通过大胆发表自己的观点,增强自信心。
重点:对一元一次不等式基本性质的掌握;理解不等式(组)解及解集的含义,会解简单的一元一不等式(组),并会在数轴上表示其解集;会解相关的问题,建立起相关的知识体系。
不等式有哪些基本性质?它与等式的性质有什么相同和不同之处?
解一元一次不等式和解一元一次方程有什么异同?引导学生回忆解一元一次方程的步骤.比较两者之间的不同学生举例回答.
举例说明在数轴上如何表示一元一不等式(组)的解集分组竞赛.看哪一组出的题型好,全班一起解答.
举例说明不等式、函数、方程的联系.引导学生回忆函数的有关内容.举例说明三者之间的关系.小组讨论,合作回答.函数性质、图象
小组交流、讨论不等式和函数、函数和方程等之间的关系,分别举例说明.
布置作业开动脑筋,勇于表达自己的'想法.
(1)在运用所学知识解决具体问题的同时,加深对全章知识体系理解。
(2)发展学生抽象能力、推理能力和有条理表达自己想法的能力.
教学思考:
体会数学的应用价值,并学会在解决问题过程中与他人合作.解决问题。在独立思考的基础上,积极参与问题的讨论,从交流中学习,并敢于发表自己的观点和主张,同时尊重与理解别人的观点。
情感态度与价值观:
进一步尝试学习数学的成功体验,认识到不等式是解决实际问题的重要工具,逐渐形成对数学活动积极参与的意识。
重点:
对一元一次不等式基本性质的掌握;理解不等式(组)解及解集的含义,会解简单的一元一次不等式(组),并会在数轴上表示其解集;会解相关的问题,建立起相关的知识体系。
↓ ↓
安排一组练习让学生充分充分讨论解决.
(1)当X取何值时,Y>0(2)当X取何值时,Y=0(3)当X取何值时,Y
3.某工人制造机器零件,如果每天比预定多做一件,那么8天所做零件超过100件;如果每天比预定少做一件,那么8天所做零件不到90件,这个工人预定每天做几个零件?
不等式的课件 篇3
一元二次不等式是高中数学中的一个重要概念,是指一个带有二次项的不等式。在数学学习中,我们经常需要利用二次不等式来解决问题,掌握这个概念对于深入了解高中数学知识是至关重要的。因此,学习一元二次不等式是高中数学学习中的一大难点,需要认真对待。
一元二次不等式的概念和性质
一元二次不等式可以写成如下形式:
ax² + bx + c > 0
或
ax² + bx + c
其中a、b、c都是实数,a ≠ 0。
我们可以通过一些方法求出不等式的根,比如将其转化为标准形式。将不等式变形,我们可以得到如下形式:
ax² + bx
或
ax² + bx > – c
然后,我们再用求一元二次方程根的方法求出不等式的解,就能够得到它的解集。
对于不等式ax² + bx + c > 0,其图像为二次函数的上凸形,即开口向上的抛物线,而对于不等式ax² + bx + c
一元二次不等式的解法
解一元二次不等式的方法有很多,下面我们介绍其中的两种:
方法一:化为标准形式,再利用求一元二次方程根的方法求解。
方法二:利用符号法将不等式中的式子化简,得到一系列不等式,然后将这些不等式求解即可。
实际上,解一元二次不等式还有很多其他的方法,比如绝对值法、图形法等等。在解题时,我们要根据具体的情况选择最合适的方法来求解。
一元二次不等式的应用
一元二次不等式广泛应用于数学学习以及生活中的各个领域,比如物理学、经济学、社会学等。下面我们以生活中的一个例子来说明一元二次不等式的应用。
假设你要购买一台电视机,商家提供了两种方案供你选择。方案一:首付1500元,每月还款100元;方案二:首付3500元,每月还款80元。那么,你需要比较两个方案的总花费,来决定哪个方案更加划算。
我们假设电视机的总价格为x元。那么,方案一的总花费为:
C1 = 1500 + 100×n
而方案二的总花费为:
C2 = 3500 + 80×n
这里n为分期的期数,即你需要还款的总期数。为了比较两种方案的划算程度,我们可以列出一个一元二次不等式:
1500 + 100×n
经过化简,我们可以得到:
20n > 2000
n > 100
因此,当还款期数大于100期时,方案一比方案二更加划算。这个例子很好地展示了一元二次不等式的应用,它能够帮助我们在日常生活中做出明智的选择,也能够更加深入地理解数学知识。
总结
一元二次不等式是高中数学学习中的重要概念,它在数学中和生活中都有广泛的应用。学习一元二次不等式需要我们认真对待,掌握其概念、性质和解法,同时也需要我们理解其实际应用,这样才能够更好地掌握高中数学的知识。
不等式的课件 篇4
本节课的研究是对初中不等式学习的延续和拓展,也是实数理论的进一步发展.在本节课的学习过程中,将让学生回忆实数的基本理论,并能用实数的基本理论来比较两个代数式的大小.
通过本节课的学习,让学生从一系列的具体问题情境中,感受到在现实世界和日常生活中存在着大量的不等关系,并充分认识不等关系的存在与应用.对不等关系的相关素材,用数学观点进行观察、归纳、抽象,完成量与量的比较过程.即能用不等式或不等式组把这些不等关系表示出来.
在本节课的学习过程中还安排了一些简单的、学生易于处理的问题,其用意在于让学生注意对数学知识和方法的应用,同时也能激发学生的学习兴趣,并由衷地产生用数学工具研究不等关系的愿望.根据本节课的教学内容,应用再现、回忆得出实数的基本理论,并能用实数的基本理论来比较两个代数式的大小.
在本节教学中,教师可让学生阅读书中实例,充分利用数轴这一简单的数形结合工具,直接用实数与数轴上点的一一对应关系,从数与形两方面建立实数的顺序关系.要在温故知新的基础上提高学生对不等式的认识.
1.在学生了解不等式产生的实际背景下,利用数轴回忆实数的基本理论,理解实数的大小关系,理解实数大小与数轴上对应点位置间的关系.
2.会用作差法判断实数与代数式的大小,会用配方法判断二次式的大小和范围.
3.通过温故知新,提高学生对不等式的认识,激发学生的学习兴趣,体会数学的奥秘与数学的结构美.
教学重点:比较实数与代数式的大小关系,判断二次式的大小和范围.
思路1.(章头图导入)通过多媒体展示卫星、飞船和一幅山峦重叠起伏的壮观画面,它将学生带入“横看成岭侧成峰,远近高低各不同”的大自然和浩瀚的宇宙中,使学生在具体情境中感受到不等关系在现实世界和日常生活中是大量存在的,由此产生用数学研究不等关系的强烈愿望,自然地引入新课.
思路2.(情境导入)列举出学生身体的高矮、身体的轻重、距离学校路程的远近、百米赛跑的时间、数学成绩的多少等现实生活中学生身边熟悉的事例,描述出某种客观事物在数量上存在的不等关系.这些不等关系怎样在数学上表示出来呢?让学生自由地展开联想,教师组织不等关系的相关素材,让学生用数学的观点进行观察、归纳,使学生在具体情境中感受到不等关系与相等关系一样,在现实世界和日常生活中大量存在着.这样学生会由衷地产生用数学工具研究不等关系的愿望,从而进入进一步的探究学习,由此引入新课.
1回忆初中学过的不等式,让学生说出“不等关系”与“不等式”的异同.怎样利用不等式研究及表示不等关系?
2在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系.你能举出一些实际例子吗?
3数轴上的任意两点与对应的两实数具有怎样的关系?
4任意两个实数具有怎样的关系?用逻辑用语怎样表达这个关系?
活动:教师引导学生回忆初中学过的不等式概念,使学生明确“不等关系”与“不等式”的异同.不等关系强调的是关系,可用符号“>”“b”“a
教师与学生一起举出我们日常生活中不等关系的例子,可让学生充分合作讨论,使学生感受到现实世界中存在着大量的不等关系.在学生了解了一些不等式产生的实际背景的前提下,进一步学习不等式的有关内容.
实例1:某天的天气预报报道,最高气温32 ℃,最低气温26 ℃.
实例2:对于数轴上任意不同的两点A、B,若点A在点B的左边,则xA
实例5:三角形两边之和大于第三边,两边之差小于第三边.
实例6:限速40 km/h的路标指示司机在前方路段行驶时,应使汽车的速度v不超过40 km/h.
实例7:某品牌酸奶的质量检查规定,酸奶中脂肪的含量f应不少于2.5%,蛋白质的含量p应不少于2.3%.
教师进一步点拨:能够发现身边的数学当然很好,这说明同学们已经走进了数学这门学科,但作为我们研究数学的人来说,能用数学的眼光、数学的观点进行观察、归纳、抽象,完成这些量与量的比较过程,这是我们每个研究数学的人必须要做的,那么,我们可以用我们所研究过的什么知识来表示这些不等关系呢?学生很容易想到,用不等式或不等式组来表示这些不等关系.那么不等式就是用不等号将两个代数式连结起来所成的式子.如-71+4,2x≤6,a+2≥0,3≠4,0≤5等.
教师引导学生将上述的7个实例用不等式表示出来.实例1,若用t表示某天的气温,则26 ℃≤t≤32 ℃.实例3,若用x表示一个非负数,则x≥0.实例5,|AC|+|BC|>|AB|,如下图.
|AB|+|BC|>|AC|、|AC|+|BC|>|AB|、|AB|+|AC|>|BC|.
|AB|-|BC|
实例6,若用v表示速度,则v≤40 km/h.实例7,f≥2.5%,p≥2.3%.对于实例7,教师应点拨学生注意酸奶中的脂肪含量与蛋白质含量需同时满足,避免写成f≥2.5%或p≥2.3%,这是不对的.但可表示为f≥2.5%且p≥2.3%.
对以上问题,教师让学生轮流回答,再用投影仪给出课本上的两个结论.
讨论结果:
(1)(2)略;(3)数轴上任意两点中,右边点对应的实数比左边点对应的实数大.
(4)对于任意两个实数a和b,在a=b,a>b,a0a>b;a-b=0a=b;a-b
活动:通过两例让学生熟悉两个代数式的大小比较的基本方法:作差,配方法.
点评:本节两例的求解,是借助因式分解和应用配方法完成的,这两种方法是代数式变形时经常使用的方法,应让学生熟练掌握.
1.若f(x)=3x2-x+1,g(x)=2x2+x-1,则f(x)与g(x)的大小关系是( )
解析:f(x)-g(x)=x2-2x+2=(x-1)2+1≥1>0,∴f(x)>g(x).
2.已知x≠0,比较(x2+1)2与x4+x2+1的大小.
解:由(x2+1)2-(x4+x2+1)=x4+2x2+1-x4-x2-1=x2.
∵x≠0,得x2>0.从而(x2+1)2>x4+x2+1.
例2比较下列各组数的大小(a≠b).
(1)a+b2与21a+1b(a>0,b>0);
(2)a4-b4与4a3(a-b).
活动:比较两个实数的大小,常根据实数的运算性质与大小顺序的关系,归结为判断它们的差的符号来确定.本例可由学生独立完成,但要点拨学生在最后的符号判断说理中,要理由充分,不可忽略这点.
解:(1)a+b2-21a+1b=a+b2-2aba+b=a+b2-4ab2a+b=a-b22a+b.
∵a>0,b>0且a≠b,∴a+b>0,(a-b)2>0.∴a-b22a+b>0,即a+b2>21a+1b.
(2)a4-b4-4a3(a-b)=(a-b)(a+b)(a2+b2)-4a3(a-b)
=(a-b)(a3+a2b+ab2+b3-4a3)=(a-b)[(a2b-a3)+(ab2-a3)+(b3-a3)]
=-(a-b)2(3a2+2ab+b2)=-(a-b)2[2a2+(a+b)2].
∵2a2+(a+b)2≥0(当且仅当a=b=0时取等号),
又a≠b,∴(a-b)2>0,2a2+(a+b)2>0.∴-(a-b)2[2a2+(a+b)2]
∴a4-b4
点评:比较大小常用作差法,一般步骤是作差——变形——判断符号.变形常用的手段是分解因式和配方,前者将“差”变为“积”,后者将“差”化为一个或几个完全平方式的“和”,也可两者并用.
已知x>y,且y≠0,比较xy与1的大小.
活动:要比较任意两个数或式的大小关系,只需确定它们的差与0的大小关系.
∵x>y,∴x-y>0.
当y
当y>0时,x-yy>0,即xy-1>0.∴xy>1.
点评:当字母y取不同范围的值时,差xy-1的正负情况不同,所以需对y分类讨论.
例3建筑设计规定,民用住宅的窗户面积必须小于地板面积.但按采光标准,窗户面积与地板面积的比值应不小于10%,且这个比值越大,住宅的采光条件越好.试问:同时增加相等的窗户面积和地板面积,住宅的采光条件是变好了,还是变坏了?请说明理由.
活动:解题关键首先是把文字语言转换成数学语言,然后比较前后比值的大小,采用作差法.
解:设住宅窗户面积和地板面积分别为a、b,同时增加的面积为m,根据问题的要求a
由于a+mb+m-ab=mb-abb+m>0,于是a+mb+m>ab.又ab≥10%,
因此a+mb+m>ab≥10%.
所以同时增加相等的窗户面积和地板面积后,住宅的采光条件变好了.
点评:一般地,设a、b为正实数,且a0,则a+mb+m>ab.
已知a1,a2,…为各项都大于零的等比数列,公比q≠1,则( )
C.a1+a8=a4+a5 D.a1+a8与a4+a5大小不确定
解析:(a1+a8)-(a4+a5)=a1+a1q7-a1q3-a1q4
=a1[(1-q3)-q4(1-q3)]=a1(1-q)2(1+q+q2)(1+q)(1+q2).
∵{an}各项都大于零,∴q>0,即1+q>0.
又∵q≠1,∴(a1+a8)-(a4+a5)>0,即a1+a8>a4+a5.
1.下列不等式:①a2+3>2a;②a2+b2>2(a-b-1);③x2+y2>2xy.其中恒成立的不等式的个数为( )
2.比较2x2+5x+9与x2+5x+6的大小.
答案:
1.C解析:∵②a2+b2-2(a-b-1)=(a-1)2+(b+1)2≥0,
③x2+y2-2xy=(x-y)2≥0.
∴只有①恒成立.
2.解:因为2x2+5x+9-(x2+5x+6)=x2+3>0,
所以2x2+5x+9>x2+5x+6.
1.教师与学生共同完成本节课的小结,从实数的基本性质的回顾,到两个实数大小的比较方法;从例题的活动探究点评,到紧跟着的变式训练,让学生去繁就简,联系旧知,将本节课所学纳入已有的知识体系中.
2.教师画龙点睛,点拨利用实数的基本性质对两个实数大小比较时易错的地方.鼓励学有余力的学生对节末的思考与讨论在课后作进一步的探究.
1.本节设计关注了教学方法的优化.经验告诉我们:课堂上应根据具体情况,选择、设计最能体现教学规律的教学过程,不宜长期使用一种固定的教学方法,或原封不动地照搬一种实验模式.各种教学方法中,没有一种能很好地适应一切教学活动.也就是说,世上没有万能的教学方法.针对个性,灵活变化,因材施教才是成功的施教灵药.
2.本节设计注重了难度控制.不等式内容应用面广,可以说与其他所有内容都有交汇,历来是高考的重点与热点.作为本章开始,可以适当开阔一些,算作抛砖引玉,让学生有个自由探究联想的平台,但不宜过多向外拓展,以免对学生产生负面影响.
3.本节设计关注了学生思维能力的训练.训练学生的思维能力,提升思维的品质,是数学教师直面的重要课题,也是中学数学教育的主线.采用一题多解有助于思维的发散性及灵活性,克服思维的僵化.变式训练教学又可以拓展学生思维视野的广度,解题后的点拨反思有助于学生思维批判性品质的提升.
1.比较(x-3)2与(x-2)(x-4)的大小.
2.试判断下列各对整式的大小:(1)m2-2m+5和-2m+5;(2)a2-4a+3和-4a+1.
5.设a>0,b>0,且a≠b,试比较aabb与abba的大小.
∴(x-3)2>(x-2)(x-4).
=m2.
∵m2≥0,∴(m2-2m+5)-(-2m+5)≥0.
∴m2-2m+5≥-2m+5.
=a2+2.
∵a2≥0,∴a2+2≥2>0.
∴a2-4a+3>-4a+1.
=x24,
又∵x>0,∴x24>0.
∴(1+x2)2>(1+x)2.
由x>0,得1+x2>1+x.
=(x-y)[(x2+y2)-(x+y)2]
=-2xy(x-y).
∵x0,x-y
∴-2xy(x-y)>0.
∴(x2+y2)(x-y)>(x2-y2)(x+y).
5.解:∵aabbabba=aa-bbb-a=(ab)a-b,且a≠b,
当a>b>0时,ab>1,a-b>0,
则(ab)a-b>1,于是aabb>abba.
则(ab)a-b>1.
于是aabb>abb a.
综上所述,对于不相等的正数a、b,都有aabb>abba.
不等式的课件 篇5
基本不等式是初中数学中重要的一章内容,也是高中数学和竞赛数学的基础。基本不等式的学习不仅有助于提高学生的数学素养和解题能力,同时也能帮助他们提高逻辑思维能力。本文旨在探讨“基本不等式”这一主题。
一、基本不等式的定义与性质
基本不等式是说:对于正实数x1,x2,…,xn,有
(x1+x2+…+xn)/n≥√(x1x2…xn),当且仅当x1=x2=…=xn时等号成立。
基本不等式的性质有以下几条:
(1)当n为偶数时,等号成立;
(2)当n为奇数时,当且仅当所有数相等时等号成立;
(3)两个数的平均数不小于它们的几何平均数,即(a+b)/2≥√(ab),其中a,b均为正实数且a≠b;
(4)当n≥3时,三个数的平均数不小于它们的几何平均数,即(a+b+c)/3≥√(abc),其中a,b,c均为正实数且a≠b≠c。
二、基本不等式的应用
基本不等式作为一种重要的数学工具,可以应用于众多问题之中。以下是基本不等式的一些常见应用。
1. 求和式的最小值
例题1:已知-x1+x2+x3+x4+x5=-18,其中x1,x2,x3,x4,x5均为正数,并且x1+x2+x3+x4+x5≥5,则x1x2x3x4x5的最小值为多少?
解法:根据已知条件,设x1+x2+x3+x4+x5=5+m(其中m≥0),则有x1+x2+x3+x4+x5+m=5+2m。代入到基本不等式中可得:
(x1+x2+x3+x4+x5+m)/5≥√(x1x2x3x4x5)m/5≥√(x1x2x3x4x5)/5
移项得到x1x2x3x4x5≥1,则x1x2x3x4x5的最小值为1。
2. 比较函数大小
例题2:比较函数f(x)=√(a²+x²)+√(b²+(c-x)²)(a,b,c>0)在[0,c]上的最小和最大值。
解法:根据已知条件和基本不等式,将f(x)分解成两个正数的平均数不小于它们的几何平均数的形式,即
f(x)=[√(a²+x²)+√(b²+(c-x)²)]/2+1/2[√(a²+x²)+√(b²+(c-x)²)]
≥√[(√(a²+x²)×√(b²+(c-x)²)]+1/2(2c)
=√(a²+b²+c²+ab-ac-bc)+c
当x=c/3时等号成立,即f(x)的最小值为√(a²+b²+c²+ab-ac-bc)+c,最大值为√(a²+b²+c²+ab+ac+bc)+c。
3. 求极限
例题3:已知数列{a_n}(n≥1)的通项公式为a_n=(√n+1)/(n+1),则求∑(n从1到∞)a_n的极限。
解法:根据基本不等式,有
a_1+a_2+…+a_n≥n(√(a_1a_2…a_n))^1/n
代入已知条件,可得:
a_1+a_2+…+a_n≥n[(√(1+1)×√(2+1)×…×√(n+1))/((1+1)×(2+1)×…×(n+1))]^(1/n)
= n[√(n+1)/2×1/3×…×1/(n+1)]^(1/n) =n[(n+1)/[2(n+1)]]^(1/n)
极限为1/2。
4. 求证不等式
例题4:已知a,b,c为正实数,且a+b+c=1,证明∑(a/(1-a))≥3(a²+b²+c²)/(ab+bc+ca)。
解法:将不等式化简,得:
∑(a/(1-a))≥3(a²+b²+c²)/(ab+bc+ca)
⇔(a/(1-a))+(b/(1-b))+(c/(1-c))≥3(a²+b²+c²)/(ab+bc+ca)
⇔(a/(1-a))+(b/(1-b))+(c/(1-c))≥3[(a+b+c)²-(ab+bc+ca)]/(ab+bc+ca)
由于a+b+c=1,有
(ab+bc+ca)≤a²+b²+c²,
(a/(1-a))+(b/(1-b))+(c/(1-c))≥(a+b+c)²/(a(1-a)+b(1-b)+c(1-c))≥3(a²+b²+c²)/(ab+bc+ca)
其中第一个不等式成立是因为当a=b=c=1/3时,等号成立;第二个不等式用到了基本不等式的形式。
综上所述,基本不等式是数学中的重要概念,掌握了基本不等式的定义、性质和应用方法,将有助于提高人们的数学素养和解题能力。在日常生活和学习中,要重视基本不等式的学习和应用,逐步提高自己的数学水平。
不等式的课件 篇6
学生初步接触了一点代数知识(如用字母表示定律,用符号表示数),是在学生学习了用字母表示数以后基础上进行学习。应用方程是解决问题的基础,有关的几个概念,教材只作描述不下定义。在教学设计中仍然把理念作为教学的重点,理解方程的意义,判断“等式”和“方程”知道方程是一个“含有未知数的等式”,才有可能明确所谓解方程。
学生不够活泼,学习积极性不是很高,学生数学基础不好。方程对学生来说还是比较陌生的,在他们头脑中还没有过方程这样的表象,所以授新课就要从学生原有的`基础开始,因为在前面学习用字母表示数的这部分内容时,有了基础,我想在学习简易方程应该没什么大的问题。
1、使学生初步理解和辨析“等式”“不等式”的意义。
2、会按要求用方程表示出数量关系,
3、培养学生的观察、比较、分析能力。
教学重点: 用字母表示常见的数量关系,会用方程的意义去判断一个式子是否是方程。
教师介绍天平各部分名称。让学生操作当天平两端托盘的物体的质量相等时,天平就会平衡,指针指向中。根据这这个原理来称物体的质量。(让学生操作,激发学生的兴趣,借助实物演示的优势。初步感受平衡与不平衡的表象)
1、实物演示,引出方程:
(1)在天平称出100克的左边空杯,让学生观察是否平衡,感受1只空杯=100克。
(2)往空杯里倒入果汁,另一边加100克法码,问学生发现了什么? (让学生感受天平慢慢倾斜,水是未知数)引出100+X>200,往右加100克法码, 问:哪边重些?(学生初步感受平衡和不平衡的表象) 问:怎样用式子表示?100+X<300
(3)教学100+X=250 问:如果是天平平衡怎么办?(让学生讨论交流平衡的方案)把100克法码换成50克的砝码,这时会怎样?(引导学生观察这时天平出现平衡), 问:现在两边的质量怎样?现在水有多重知道吗?如果用字母X表示怎样用式子表示?得出:100+X=250
示题:100+X<250100+X=2504X+50>10040+40=80 X÷2=45X-12=27
请学生观察合作交流分类:
(一)引出(1)两边不相等,叫做不等式。(2)两边相等叫做等式。
(2)含有未知数的等式100+X=250 X÷2=4 揭示:(2)这样的含有未知数等式叫做方程(通过分类,培养学生对方程意义的了解) 问:方程的具备条件是什么?(感知必须是等式,而一定含有未知数)你能写出一些方程吗?(同桌交流检查)
(三)练习判断那些是方程?那些不是方程?
6+2X=14103+X250÷2=1256+X>251÷A=3X+Y=180 (让学生加深对方程的意义的认识,培养学生的判断能力。)
教师:我们能够判断什么是方程了,方程和等式有很密切的关系,你能画图来表示他们的关系吗?(小组合作讨论交流)
方程 等式 (让学生通过观察、思考、分析、归类,自主发现获得对方程和等式的关系理解,同时初步渗透教学中的集合思想。)
不等式的课件 篇7
基本不等式作为高中数学必修内容之一,在学生学习中扮演着极为重要的角色。本篇文章将围绕基本不等式,探讨它的概念、性质、证明方法及应用,并展示基本不等式的魅力和实用性。
一、基本不等式的概念
基本不等式是指对于任意正实数 $a_1,a_2,\cdots,a_n$ 和任意正整数 $n$,有以下不等式成立:
$\dfrac{a_1}{n}+\dfrac{a_2}{n}+\cdots+\dfrac{a_n}{n}\geq\sqrt[n]{a_1a_2\cdots a_n}$
这个不等式也被称为均值不等式或AM-GM不等式。其中,$\dfrac{a_1}{n}+\dfrac{a_2}{n}+\cdots+\dfrac{a_n}{n}$ 表示这些数的算术平均值,而 $\sqrt[n]{a_1a_2\cdots a_n}$ 表示这些数的几何平均值。均值不等式的意义在于,算术平均数大于等于几何平均数。
二、基本不等式的性质
基本不等式有以下几个性质:
1. 当且仅当 $a_1=a_2=\cdots=a_n$ 时等号成立。
2. 如果 $a_1,a_2,\cdots,a_n$ 中至少有一个数为 $0$,则 $\sqrt[n]{a_1a_2\cdots a_n}=0$,这时等号成立。
3. 基本不等式可以扩展到实数范围内。
4. 均值不等式不等式对于大于 $0$ 的实数都成立。
三、基本不等式的证明方法
基本不等式有多种证明方法,下面列举其中两种:
方法一:数学归纳法
假设基本不等式对于 $n=k$ 时成立,即对于 $k$ 个正实数 $a_1,a_2,\cdots,a_k$,有以下不等式成立:
$\dfrac{a_1}{k}+\dfrac{a_2}{k}+\cdots+\dfrac{a_k}{k}\geq\sqrt[k]{a_1a_2\cdots a_k}$
现证明它对于 $n=k+1$ 时也成立。将 $a_{k+1}$ 插入到原来的不等式中,得到:
$\dfrac{a_1}{k+1}+\dfrac{a_2}{k+1}+\cdots+\dfrac{a_k}{k+1}+\dfrac{a_{k+1}}{k+1}\geq\sqrt[k+1]{a_1a_2\cdots a_k a_{k+1}}$
由于:
$\dfrac{a_1}{k+1}+\dfrac{a_2}{k+1}+\cdots+\dfrac{a_k}{k+1}\geq\sqrt[k]{a_1a_2\cdots a_k}$
因此,我们只需证明以下不等式:
$\dfrac{(k+1)\sqrt[k]{a_1a_2\cdots a_k}\cdot a_{k+1}}{k+1}\geq\sqrt[k+1]{a_1a_2\cdots a_k a_{k+1}}$
经过变形化简,可以得到:
$\sqrt[k]{a_1a_2\cdots a_k} \geq \sqrt[k+1]{a_1a_2\cdots a_k a_{k+1}}$
显然,这是成立的。
因此,按照归纳法的证明方式,基本不等式对于所有的正整数 $n$ 都成立。
方法二:对数函数的应用
对于 $a_1,a_2,\cdots,a_n$,我们可以定义函数:
$f(x)=\ln{x}$
显然,函数 $f(x)$ 是连续的、单调递增的。根据式子:
$\dfrac{a_1}{n}+\dfrac{a_2}{n}+\cdots+\dfrac{a_n}{n}\geq\sqrt[n]{a_1a_2\cdots a_n}$
可以得到:
$\ln\left(\dfrac{a_1}{n}\right)+\ln\left(\dfrac{a_2}{n}\right)+\cdots+\ln\left(\dfrac{a_n}{n}\right)\geq\dfrac{1}{n} (\ln a_1+\ln a_2+\cdots+\ln a_n)$
即:
$\ln\left(\sqrt[n]{a_1a_2\cdots a_n}\right)\leq\dfrac{\ln a_1+\ln a_2+\cdots+\ln a_n}{n}$
对于左边的式子,有:
$\ln\left(\sqrt[n]{a_1a_2\cdots a_n}\right)=\dfrac{1}{n}\ln(a_1a_2\cdots a_n)$
对于右边的式子,有:
$\dfrac{\ln a_1+\ln a_2+\cdots+\ln a_n}{n}=\ln\left(\sqrt[n]{a_1a_2\cdots a_n}\right)$
因此,我们可以得到:
$\ln(a_1a_2\cdots a_n)\geq n\ln\left(\sqrt[n]{a_1a_2\cdots a_n}\right)$
即:
$a_1a_2\cdots a_n\geq\left(\sqrt[n]{a_1a_2\cdots a_n}\right)^n$
这正是均值不等式的形式。因此,基本不等式得证。
四、基本不等式的应用
基本不等式在数学和物理学中有广泛的应用。下面介绍几个常见的应用场景:
1. 最小值求解
如果有 $n$ 个正实数 $a_1,a_2,\cdots,a_n$,它们的和为 $k$,求它们的积的最大值,即:
$\max(a_1a_2\cdots a_n)$
根据基本不等式,有:
$\dfrac{a_1+a_2+\cdots+a_n}{n}\geq\sqrt[n]{a_1a_2\cdots a_n}$
因此,可以得到:
$\dfrac{k}{n}\geq\sqrt[n]{a_1a_2\cdots a_n}$
两边同时取幂,可以得到:
$\dfrac{k^n}{n^n}\geq a_1a_2\cdots a_n$
即:
$\max(a_1a_2\cdots a_n)=\dfrac{k^n}{n^n}$
2. 凸函数的优化问题
如果 $f(x)$ 是一个凸函数,$a_1,a_2,\cdots,a_n$ 是正实数,$b_1,b_2,\cdots,b_n$ 是任意实数且 $\sum_{i=1}^n b_i=1$,则有:
$f(b_1a_1+b_2a_2+\cdots+b_na_n)\leq b_1f(a_1)+b_2f(a_2)+\cdots+b_nf(a_n)$
这是凸函数的优化问题中常用的基本不等式形式。它可以通过Jensen不等式或基本不等式证明。
3. 三角形求证
如果我们可以用 $a,b,c$ 表示一个三角形的三边长,则有:
$\sqrt{(a+b+c)(a+b-c)(a-b+c)(-a+b+c)}\leq\dfrac{(a+b+c)^2}{4\sqrt{3}}$
这个不等式在三角形求证中也被广泛应用。
五、结语
基本不等式是高中数学必修内容之一,但其实它的应用范围远不止于此。在实际问题中,基本不等式常常能给我们提供有效的解决方案。通过本文的介绍,希望读者能够更加深入地理解基本不等式的概念、性质、证明方法及应用,并能在实际问题中灵活运用。
不等式的课件 篇8
关于基本不等式的主题范文:
基本不等式是数学中非常重要的一道课题,所以我们需要从以下几个方面来对基本不等式进行介绍。
一、基本不等式是什么
基本不等式是指数学中的一个重要定理,它表述的是任意正整数n及n个正数a1,a2,…,an的积与它们的和之间的关系。也就是说,对于任意正整数n和n个正数a1,a2,…,an,有以下不等式成立:
(a1+a2+…+an)/n ≥ (a1×a2×…×an)1/n
其中,等式成立当且仅当a1 = a2 = … = an。
二、基本不等式的证明
下面我们来看一下基本不等式的证明过程。
首先,如果我们令Ai = nai和G = (a1 × a2 × … × an)1/n,则我们可以将原不等式转化为:
(a1+a2+…+an)/n ≥ G
接下来,我们来看一下如果证明G ≤ (a1+a2+…+an)/n,那么我们就可以证明基本不等式,因为不等式具有对称性,即如果G ≤ (a1+a2+…+an)/n,则(a1+a2+…+an)/n ≥ G也成立。
接下来,我们证明G ≤ (a1+a2+…+an)/n,即:
(a1+a2+…+an)/n ≥ (a1 × a2 × … × an)1/n
将不等式右边两边平方,得到:
(a1+a2+…+an)/n ≥ (a1 × a2 × … × an)2/n
这时,我们来观察右边的式子,将式子中的每一项都乘以(n-1),得到:
(a1 × (n-1) + a2 × (n-1) + … + an × (n-1)) / n ≥ (a1 × a2 × … × an)2/n
继续进行简化,得到:
[(a1 × (n-1)) + (a2 × (n-1)) + … + (an × (n-1))] / n ≥ (n-1) × a1 × a2 × … × an / n
左边乘以1/n,右边除以(n-1),得到:
(a1 + a2 + … + an) / n ≥ (a1 × a2 × … × an)1/n
这样我们就完成了基本不等式的证明。
三、基本不等式在实际中的应用
基本不等式在实际中的应用非常广泛,下面我们来看一下其中的几个例子。
1. 求平均数
如果我们已知n个正数的积,需要求它们的平均数,那么根据基本不等式,我们可以得到:
(a1 + a2 + … + an) / n ≥ (a1 × a2 × … × an)1/n
等式两边都乘以n-1,得到:
a1 + a2 + … + an ≥ (n-1) × (a1 × a2 × … × an)1/n
这样我们就可以求得平均数:
(a1 + a2 + … + an) / n ≥ (n-1) × (a1 × a2 × … × an)1/n / n
2. 求数列中n个数的积的最大值
假设我们需要从数列{a1, a2, …, an}中选取n个数,求它们的积的最大值。根据基本不等式,我们有:
(a1 + a2 + … + an) / n ≥ (a1 × a2 × … × an)1/n
因为我们需要求积的最大值,所以当等式左边的和恰好等于n个数的积时,这个积才能取到最大值。因此,我们可以得到:
a1 = a2 = … = an
这样,我们就得到了求数列中n个数的积的最大值的方法。
三、结论
通过对基本不等式的介绍,我们可以发现它不仅仅是一道看似简单的数学题目,而是一个非常重要的定理,有着广泛的应用价值。希望大家能够在今后的学习中更加重视基本不等式,并能够深刻理解它的实际应用。
不等式的课件 篇9
基本不等式是高中数学中重要的一部分,也是初学者比较难掌握的一个概念。通过学习基本不等式,可以帮助学生理解不等式的基本概念、性质和运算。同时,对于高中数学,基本不等式还有很多相关的题型需要掌握,比如极值问题、夹逼定理等。本文将从基本不等式的定义开始,探讨其相关概念、性质和应用。
一、基本不等式的定义
基本不等式是指对于任意正实数a、b,有以下不等式成立:
(a + b)² ≥ 4ab
这个不等式也可以写成:
a² + b² ≥ 2ab
这个不等式的含义是:对于任意两个正实数a、b,它们的平均数一定大于等于它们的几何平均数。
二、基本不等式的证明
对于任意实数x,y,可以用(x-y)²≥0来证明基本不等式:
(x-y)²≥0
x²-2xy+y²≥0
x²+y²≥2xy
将x换成a、y换成b,即可得到基本不等式。
三、基本不等式的相关概念
1. 等式条件:
当且仅当a=b时,等式成立。
2. 平均数与几何平均数:
平均数指的是两个数的和的一半,即(a+b)/2;几何平均数指的是两个数的积的二分之一,即√(ab)。由于基本不等式的成立,可以得出平均数大于等于几何平均数的结论。
3. 关于两个数之和与两个数的比值的关系:
从基本不等式得到如下两个等式:
(a+b)²=4ab+(a-b)²;ab≥(a+b)/2
以上两个式子给出了两个关于两个数之和与两个数的比值的关系。
四、基本不等式的性质
1. 交换律和结合律:基本不等式满足交换律和结合律。
2. 反比例函数:若f(x)=1/x,x>0,则f(a)+f(b)≤2f((a+b)/2)对于a,b>0成立。
3. 带约束的基本不等式:若a,b>0,且a+b=k,则(a+b)/2≥√(ab),即k/2≥√(ab)。
五、基本不等式的应用
1. 求证夹逼定理:如果a1≤b1≤c1,且a2≤b2≤c2,则(a1a2+b1b2+c1c2)/3≥(a1b2+b1c2+c1a2)/3≥√(a1b1c1a2b2c2)。
2. 判断一个二次函数的最大值或最小值:由于二次函数的导数为一次函数,可以通过求导得到函数的极值。而基本不等式可以用于判断二次函数的极值点是否合理,即是否在定义域内。
3. 算术平均数和几何平均数之间的关系:通过基本不等式可以证明,当两个数的和固定时,它们的平均数越大,它们的几何平均数就越小。
总的来说,基本不等式是高中数学不可缺少的一部分,不仅在考试中占有重要地位,而且还具有很重要的理论意义。希望本文对初学者掌握基本不等式有所帮助。
不等式的课件 篇10
教学目标:
1.一元一次不等式与一次函数的关系.
2.会根据题意列出函数关系式,画出函数图象,并利用不等关系进行比较.
1.通过一元一次不等式与一次函数的图象之间的结合,培养学生的数形结合意识.
2.训练大家能利用数学知识去解决实际问题的能力.
体验数、图形是有效地描述现实世界的重要手段,认识到数学是解决问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用.
自己根据题意列函数关系式,并能把函数关系式与一元一次不等式联系起来作答.
1.张大爷买了一个手机,想办理一张电话卡,开米广场移动通讯公司业务员对张大爷介绍说:移动通讯公司开设了两种有关神州行的通讯业务:甲类使用者先缴15元基础费,然后每通话1分钟付话费0.2元;乙类不交月基础费,每通话1分钟付话费0.3元。你能帮帮张大爷选择一种电话卡吗?
2.展示学习目标:
(1)、理解一次函数图象与一元一次不等式的关系。
(2)、能够用图像法解一元一次不等式。
(3)、理解两种方法的关系,会选择适当的方法解一元一次不等式。
积极思考,尝试回答问题,导出本节课题。
阅读学习目标,明确探究方向。
问题1:结合函数y=2x-5的图象,观察图象回答下列问题:
问题2:如果y=-2x-5,那么当x取何值时,y>0?当x取何值时,y
巡回每个小组之间,鼓励学生用不同方法进行尝试,寻找最佳方案。答疑展示中存在的问题。
问题3.兄弟俩赛跑,哥哥先让弟弟跑9m,然后自己才开始跑,已知弟弟每秒跑3m,哥哥每秒跑4m,列出函数关系式,画出函数图象,观察图象回答下列问题:
(1)何时哥哥分追上弟弟?
(2)何时弟弟跑在哥哥前面?
(3)何时哥哥跑在弟弟前面?
(4)谁先跑过20m?谁先跑过100m?
你是怎样求解的?与同伴交流。
问题4:已知y1=-x+3,y2=3x-4,当x取何值时,y1>y2?你是怎样做的?与同伴交流.
让学生体会数形结合的魅力所在。理解函数和不等式的联系。
移动通讯公司开设了两种长途通讯业务:全球通使用者先缴50元基础费,然后每通话1分钟付话费0.4元;神州行不交月基础费,每通话1分钟付话费0.6元。若设一个月内通话x分钟,两种通讯方式的费用分别为y1元和y2元,那么
(1)写出y1、y2与x之间的函数关系式;
(2)在同一直角坐标系中画出两函数的图象;
(3)求出或寻求出一个月内通话多少分钟,两种通讯方式费用相同;
(4)若某人预计一个月内使用话费200元,应选择哪种通讯方式较合算?
在共同探究的过程中加强理解,体会数学在生活中的重大应用,进行能力提升。
积极完成导学案上的检测内容,相互点评。
学生回顾总结学习收获,交流学习心得。
教材P51.习题2.6知识技能1;问题解决2,3.
一、学习与探究:
1.一元一次不等式与一次函数之间的关系;
2.做一做(根据函数图象求不等式);
四、课后作业:
圆的性质课件
俗话说,磨刀不误砍柴工。在学习工作中,幼儿园教师有提前准备可能会使用到资料的习惯。资料意义广泛,可以指一些参考素材。资料可以帮助我们更高效地完成各项工作。所以,你有哪些值得推荐的幼师资料内容呢?经过搜索整理,小编为你呈现“圆的性质课件”,不妨参考一下。希望你喜欢!
圆的性质课件 篇1
今天我说课的内容是《分数的基本性质》。下面我将从“说教学理念、说教材、说教法、说学法、说教学程序、说板书设计”六个方面来说课。
一、本课的教学理念有:
1、以学生发展为本,着力强化主体意识。
2、从学生已有的认知发展水平和知识经验出发,为学生提供充分从事数学活动的机会,变“学数学”为“做数学”。
3、致力于改变学生的学习方式,关注过程,让学生经历知识的形成过程,感受验证、转化等数学思想方法。
二、说教材
《分数的基本性质》一课是义务教材六年制数学第十册第四单元的一个内容。这部内容的学习是在学生学习了分数的意义、分数与除法的关系、商不变性质等知识的基础上进行教学的。它是进一步学习约分、通分的基础。
根据教材内容和学生的认识知规律,将本课的教学目标拟定如下:
1、知识与技能:理解和掌握分数的基本性质,知道分数基本性质与整数除法中商不变性质的关系。能运用分数的基本性质把一个分数化成分母相同而大小相等的分数;培养学生观察、比较及动手实践的能力,进一步发展学生的思维。
2、情感、态度:激发学生积极主动的情感状态,养成注意倾听的习惯。
本课的教学重点和难点:理解和掌握分数的基本性质,会运用分数的基本性质。
三、说教法
树立以“以学生发展为本”、“以学定教”、“教为学服务”的思想,因此在教学中,我采用引导自学、合作探索相结合法,让学会运用分数的基本性质把一个分数化成分母不同但大小相等的分数,有效地提高了教学效率。在知识的巩固阶段,我还采用组织练习法,当然以上这些教法并不是孤立存在的,本着“一法为主,多法为辅”的思想,我将多种教法进行优化组合,以达到促进学生学习方式的转变,实现教学目标的目的。
四、说学法
1、学生在运用分数的基本性质时,引导学生采用自主发现法、操作体验法,学生在折纸上画出相应的阴影部分后,必然会对那三个图形进行观察和比较,从中有所发现。之后老师通过启发学生运用分数的基本性质,证明那三个分数大小相等,让尝试中发现,在实践中体验。从而加深学生对分数基本性质的理解。
2、在学习例题的过程中教师先采用启发法,再采用自自学尝试法,独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成做一做,达到检验自学的目的。
五、说教学程序
一、设疑激趣,引入新课
教育学家布朗曾提出:“情境通过活动来合成知识,兴趣最好的老师”。
首先我通过多媒体为学生带来一个和尚分饼的故事。从前有座山,山里有座庙,庙里有个老和尚和三个小和尚。小和尚最喜欢吃老和尚烙的饼了。有一天,老和尚做了三块一样大小的饼,想给小和尚吃,还没给,小和尚就叫开了。矮和尚说:“我要一块!”高和尚说:“我要两块!”胖和尚说:“我不要多,只要四块!”老和尚听了二话没说,立刻把一块饼平均分成四块,取其中的一块给了矮和尚;把第二块饼平均分成八块,取其中的两块给了高和尚;把第三块饼平均分成十六块,取其中的四块给了胖和尚,一一满足了他们的要求。同学们,你知道哪个和尚吃的多吗?
这样通过故事激发学生的学习兴趣,为后面的学习做好了铺垫。
二、自主探索,学习新知
新课标强调,要让学生在实践活动中进行探索性的学习。根据这一理念,我设计了下面的活动。让学生在体验中学习,在学习中体验。
1、小组合作,让学生用一张纸代替饼,试着分分看。经历验证猜想——学生操作验证——集体汇报交流——展示成果四个过程。
2、引导提问:既然三个和尚分得的饼同样多,那么表示他们分得饼的三个分数什么关系呢?这三个分数什么变了,什么没变?
学生得出:这三个分数相等关系,分数的分子和分母变化了,但分数的大小不变。
3、引导学生从左到右观察等式,想一下,这三个分数的分子、分母怎样变化才保证了分数的大小不变的?
师:谁能用一句话把这个变化规律叙述出来呢?
生:从左往右看,分数的分子、分母同时扩大了,也就分子分母都乘了一个相同的数,但三个分数的大小没有变。
师:你们观察的真仔细!请大家给点掌声好吗?(出示课件)老师这样叙述的“分数的分子、分母都乘上同一个数,分数大小不变”。
4、让学生从右到左观察等式分子和分母又如何变化的呢?谁能用一句话把这个变化规律叙述出来?小组讨论后,同样的方法让学生小结规律,并请同学给予评价,让学生抒发自己的见解,体现课堂教学的民主化。然后教师在课件中补充“或者除以”四个字,小结分数的基本性质。
5、接着让学生四人小组一起做游戏,运用分数的基本性质,由一位同学说一个分数,然后其他同学依次说出相等的分数,不能重复,看看谁又快又准。
结束游戏,教师提问,现在我们知道分数的分子、分母都乘上或除以同一个数,分数大小不变。刚刚大家做游戏,有没有人使用了0呢?大家想一想0可以不可以呢?让学生回答:分数的分母不能为零。我在课件中填上“零除外”三个红色的字,以便引起学生的注意。
6、教师引导:“学了分数的基本性质到底有什么用呢?老师告诉你们,根据分数的基本性质,我们就能变魔术一样,把一个分数变成多个跟它大小一样,分子分母却不同的新分数。下面就让我们来变个魔术。”接着让学生练习课本例题2,两名学生上台演板,其他学生点评。学生自己小结方法。
教育家波利亚指出:学习任何新知的最佳途径由学生自己去发现,因为这种发现理解最深,也最容易掌握内在规律和联系。教学中给学生提供自主探究、合作交流的天地,积极为学生创设主动学习的机会,提供尝试探索的空间,学生能主动从不同方面,不同角度思考问题,寻求解决途径。同时还培养学生的合作意识,使不同的想法得到交流,实现知识的学习、互补。
三、分层练习,巩固深化
只有通过相应的练习,才能更好地巩固新知,形成技能。在练习的安排上我注重层次性,渗透多样性,让学生理解用所学的知识可以解决不同类型的问题,进一步提高解题能力。
1、涂一涂练习14,第1、7题。
因为要给空格上色,所以答案并不唯一,通过这两题不仅能让学生回忆探究发现规律的过程,充分体现了“玩中学,学中玩”的新课程理念。
2、说一说完成练习14,第8题
我想通过这道题让学生进一步加深对分数基本性质的形成过程的理解,从而培养学生的语言表达能力。
3、想一想:第5、9、10题(选择一题做为作业)
在这我让同学们充分发挥想象,灵活运用分数的基本性质。为后面学习约分和通分的知识奠定基础。
四、畅谈收获,小结全课
让学生自己总结所学内容,畅谈收获和感受,培养学生的概括能力和语言表达能力。
整节课中,我力求做到始终引导学生主动观察、充分体验、动手实践、积极创新,努力做到既注重学生的独立思考,又注重合作交流,既重视知识与能力的共进,又关注情感和体验的提高,让学生全面、深刻地理解分数的基本性质。
圆的性质课件 篇2
各位老师,同学:
大家上午好!
我说课的资料是:人教版小学数学课标教材五年级下册75页―76页《分数基本性质》。下面我就从教材分析、学情分析、教学目标、教法学法及教学过程五个方面来谈一下教学过程设计及设计意图。
一、教材分析
本节资料属于概念教学。《分数基本性质》在小学数学学习中起
着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习分数的计算、比的基本性质的基础,还是约分、通分的依据。
二、学情分析
学生已经清楚理解分数的好处,明确分数与除法的关系,商不变
性质等知识,这些都为本节课学习做了知识上的铺垫。分数的基本性质是一种规律性知识,分数的分子、分母变了,分数的大小却没变。学生在这种“变”与“不变”中发现规律,掌握新知识。
三、教学目标
综合分析课程标准要求及学生实际,我确定本节教学目标如下:
1、理解和掌握分数的基本性质,并会运用分数的基本性质把不同的分数化成分母(或分子)相同而大小不变的分数。
2、初步养成观察、比较、抽象概括的逻辑思维潜力,并且在自主探究中正确认识和理解变与不变的辩证关系。
3、受到数学思想的熏陶,养成乐于探究的学习态度。
教学重点:理解掌握分数的基本性质,它是约分、通分的依据。
教学难点:让学生自主探索、发现和归纳分数的基本性质,以及应用它解决相关的问题。
四、教法学法
根据本节课的教学目标,思考到学生已有的知识、生活经验和认
知特点,结合教材资料,本课我主要采用猜想验证与探索发现的教学模式。在分数的基本性质过程中,采取学生动手操作、小组讨论、合作探究等方式,引导学生进行比较、观察、分析。透过观察、比较,提出问题并解决问题来进行自主探索与合作交流,充分发挥学生主体参与作用,激发学生学习兴趣,同时让学生获得成功体验。
五、教学过程
本节课的教学过程我分五个部分进行:
第一部分:故事设疑,揭示课题。以唐僧师徒分饼的故事创设问题情境,揭示本节课要研究的问题。
第二部分:组织讨论,动手操作。主要是组织学生动手进行折、画、标等活动,初步理解分数基本性质。
第三部分:合作探究,发现规律。主要的是学生找出规律,并利用规律解决问题。
第四部分:多层练习,巩固深化。主要是巩固所学知识并进行拓展提高。
第五部分:梳理知识,反思小结。主要是总结全课。
其中,第三部分“合作探究,发现规律”能够细化为三个环节:
环节一:动手操作,进行比较
这一环节是在第二部分的基础上进行的,我给每组学生三张大小一样的长条纸,让学生用分数表示涂色部分,并比较大小。此环节的设计主要是培养学生的比较潜力。
环节二:呈现问题,引导观察
这一环节主要呈现给学生这样一个问题,“第一环节中的分数的分子、分母都不一样,为什么大小相等”,引导学生从左到右、从右到左两方面去观察,此环节的设计主要是培养学生的观察潜力。
环节三:交流汇报,得出规律
这一环节主要是学生汇报交流,得出结论。
如果学生没有概括出“0除外”就设计两组练习,分子、分母同乘或除以0,完善结论;如果概括出来了,再追加一个问题“为什么强调0除外”,巩固结论。最终推导出分数的基本性质————分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。此环节的设计主要是培养学生的抽象概括潜力。
就应强调的是,无论学生说的多么好,教师最后的总结和确认是不可缺少的。
以上是我对《分数基本性质》一节的教学设计意图,有不当之处,请各位批评指导。
圆的性质课件 篇3
一、说教材、学情
本次说课的内容是人教版小学数学四年级下册第四单元《小数的性质》。
小数的性质属于数与代数领域的知识,是学生在学习了“小数的意义”的基础上深入学习小数有关知识的开始。掌握小数的性质,不但可以加深对小数意义的理解,而且它也是小数的化简、改写和四则运算的基础。
二、说教学目标
根据课程标准的要求,和对教材内容的分析,我确定了如下教学目标。
(1)知识与技能:使学生理解并掌握小数的性质。
(2)数学思考:培养学生观察、分析、比较、抽象、概括的意识以及简单的推理能力。使学生学会主动思考问题。
(3)问题解决:通过直观推理、自主探究、合作交流,理解和掌握小数的性质,提高学生运用知识进行推理的能力。
(4)情感态度价值观:使学生经历小数的性质探究过程,获得成功的体验,体会数学与实际问题的联系,激发学生的数学学习兴趣。
三、说教学重难点
针对上述教学目标,结合学生的认知基础,我将本节课的教学重难点定位如下:
1、教学重点:理解并掌握小数的性质。
2、教学难点:探究小数性质的知识形成过程。
四、说教法和学法
1、教法
本节课我准备采用的教学方法有:情境教学法,引导发现法,多媒体辅助法等教法。让学生在教师营造的“可探索”的环境里,主动参与,主动探究,主动发现小数的性质。
2、学法
预设的学习方法是:观察发现法、自主探究法、合作交流法、练习法等。让学生在师生互动,生生互动中主动探究,主动发现,主动提高,有效培养学生自主学习的能力。
3、教学准备
为了更好地辅助课堂教学,顺利完成教学任务,达到预期的教学目标,在教具、学具上我准备了米尺,正方形方格纸,多媒体课件等。
五、说教学过程
根据本节课的教学内容,为了切实落实教学目标,有效突破重难点,我设计了以下五个教学环节。分别是:创设情境、激趣引思;体验操作、探究新知;巩固深化、学以致用;课堂总结、回顾反思和作业布置。
(一)第一环节:创设情境,激趣引思
1、多媒体出示超市情境图,将学生带入到具体的生活情境中去:老师昨天想去买一只中性笔,可是两家超市的标价不一样,我要去哪家买更便宜一些呢?(出示中性笔价格图片:一家是2.5元,一家是2.50元)
2、学生会根据已有的知识经验回答:去哪家买都一样。
教师在这时追问为什么,并引导学生说出:因为2.5元表示2元5角,2.50元表示2元50分,5角=50分,所以2.5元=2.50元(教师板书)
3、教师引导学生观察两个小数的区别,学生会发现:小数的末尾多了一个0,大小还没变。
4、教师提出质疑:
那是不是所有的小数都有这样的特点呢?这节课让我们共同来探究一下吧,让学生带着好奇心开始新知识的探究。
设计理念:
通过超市价格标签的具体生活情境引出小数性质的教学,利用学生熟悉的人民币直观感知相等关系,激发学生的学习兴趣,使学生带着对知识的好奇心走进知识的殿堂。
(二)体验操作,探究新知
在这一环节,我设计了以下3个教学层次:
1、小组合作,初步感知
课件出示:0.1m,0.10m,0.100m这三个长度,让学生进行大小比较。
(1)我为每个学习小组都准备了米尺,让学生在尺上先找一找0.1m,0.10m,0.100m这三个长度,并与小组成员说说你是怎么找的,然后在纸上画出来,比较他们的大小。(教师进行随堂指导)
(2)小组探究完成后进行展示交流
每个小组派代表分别展示他们找到的0.1m,0.10m,0.100m的长度,并说说是怎么找的,也就是小数的意义。
学生们得出探究结果:因为这三个长度都相等,所以这3个小数的大小是一样的。
(3)教师让学生观察0.1m,0.10m,0.100m这3个小数,引导学生发现三个小数的区别:三个小数末尾的0不一样多,但是大小一样。
看来像这样大小相等但末尾0不一样多的小数的确存在。
设计理念:
借助长度单位初步体会小数的性质,让学生动手在米尺上找出0.1m/0.10m/0.100m的长度,使学生直观感受到0.1m,0.10m,0.100m的长度相等,所以大小相等,初步感知小数的性质。
2、大胆猜想,独立验证
教师板书0.3和0.30这两个小数,让学生猜一猜这两个小数有什么关系?学生根据刚才的探究会说“相等”。
(1)这时我为学生准备了两个同样大小的正方形,一个正方形平均分成了10份,另一张正方形平均分成了100份,让学生独立验证自己的猜想。(教师进行随堂指导)
(2)学生独立验证后进行汇报展示
找学生投影展示涂方格的方法并说一说自己的想法(引导学生说出小数的意义,因为涂的面积相同,所以两个小数相等)
设计意图:
利用直观图比较0.3和0.30的大小,通过观察,引导学生借助小数的意义发现0.3和0.30的异同点,进而脱离具体的量,进一步理解小数的性质。
3、观察比较,发现规律
(1)教师引导学生观察3组算式:我们先从左往右看,小数的末尾有什么变化?从右往左看呢?他们的大小呢?你有什么发现?
(2)让学生说说自己的发现:
小数的末尾添上“0”或去掉“0”小数的大小不变(板书)
(教师强调并解释:末尾指的是小数点后面最后一个非0的数。帮助学生区分哪些0可以去掉,哪些0不能去掉)
(3)教师强调课题:我们把这个小数所共有的特点叫做小数的性质(板书课题)
设计意图:
让学生在探究验证之后,尝试自己总结规律,培养学生对知识的概括能力。
(三)巩固深化、学以致用
1、对口令游戏:教师说一个小数,学生对出相等的小数。
2、哪些数可以去掉末尾的0(重点区分小数中哪些0可以去掉,整数与小数的区别,强化小数的性质)
3、连线
设计理念:
注重练习设计的层次性,满足不同层次的需要,体现新课标中人人获得必需的数学,人人学有价值的数学,不同的人在数学中得到不同的发展的要求。
(四)课堂总结,回顾反思
俗话说“千金难买回头看”。课的结尾,通过提问:今天你有什么收获?你是怎样获得新知的?你还有什么疑惑?来回顾所学知识,梳理知识。引导学生对本节课所学知识和获取知识的方法进行总结和反思。
(五)作业布置
小游戏:你能只动三笔,使5,50,500,5000四个数相等吗?既检查学生对知识的掌握情况,又带有趣味性,激发了学生在课下探究数学知识的兴趣。
六、说板书设计
板书素有“微型教案”之称,它具有高度的概括性、艺术性和指导性的特征。本节课的板书是随着教学进度依次呈现的,它能体现本节课的教学重难点,对学生整堂课的学习,起着重要的指导作用。
小数的性质
2.5元=2.50元
0.1m=0.10m=0.100m
0.3=0.30
小数的末尾添上“0”或去掉“0”,小数的大小不变。
以上是我对这节课的教学设想,在这堂课的设计中,注重引导学生沿着“实例——猜想——验证——总结——应用”的轨迹去探索、去发现,使学生体验探索、发现数学规律的基本策略和方法。我相信学生能在老师的带领下,完成此节课的教学内容,基本达到教学目标。我的说课完毕,请评委老师们指正,谢谢!
圆的性质课件 篇4
一、教材简析和教材处理
1.教材简析
《分数的基本性质》是九年义务教育六年制小学数学课本(西师大版)第十册第15-16页的内容。在小学数学学习中起着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习分数的计算、比的基本性质的基础。分数的基本性质是一种规律性知识,分数的分子分母变了,分数的大小会变吗?分数的分子分母如何变化,分数的大小不变呢?学生在这种“变”与“不变”中发现规律。
2.教材处理
以前,教师通常把《分数的基本性质》看作一种静态的数学知识,教学时先用几个例子让学生较快地概括出规律,然后更多地通过精心设计的练习巩固应用规律,着眼于规律的结论和应用。随着课程改革的深入,教师们越来越重视学生获取知识的过程,但我们也看到这样的现象:问题较碎,步子较小,放手不够,探究的过程体现不够充分。《分数的基本性质》可不可以有别的教学思路呢?新的课程标准提出:“教师应向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法。根据这一新的理念,我认为教师可以为学生创设一种大问题背景下的探索活动,使学生在一种动态的探索过程中自己发现分数的基本性质,从而体验发现真理的曲折和快乐,感受数学的思想方法,体会科学的学习方法。所以,教师的着眼点,不能只是规律的结论和应用,而应有意识地突出思想和方法。
二、教学课件设计意图
场景一:故事引人,揭示课题。
有位老爷爷把一块地分给三个儿子。老大分到了这块地的三分之一,老二分到了这块地的六分之二。老三分到了这块的九分之三。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈的笑了起来,给他们讲了几句话,三兄弟就停止了争吵。
让学生发表自己的意见,教师出示三块大小一样的纸,通过师生折、观察和验证,得出结论:三兄弟分得的一样多。
一上课,先听讲一段故事,学生非常乐意,并会立即被吸引。思考故事当中提出的问题,学生自然兴趣浓厚。通过故事设疑,激起了学生探求新知的欲望。
场景二:发现问题,突出质疑。
既然三兄弟分得的一样多,那么表示它们分得土地的分数是什么关系呢?这三个分数什么变了,什么没有变?让学生小组讨论后答出:这三个分数是相等关系,它们平均分的份数和表示的份数也就是分数的分子和分母变化了,但分数的大小不变。
3.引入新课:下面算式有什么共同的特点?学生回答后
它们各是按照什么规律变化的呢?场景三:比较归纳,揭示规律。
1.出示思考题。
比较每组分数的分子和分母:
(1)从左往右看,是按照什么规律变化的?
(2)从右往左看,又是按照什么规律变化的?
让学生带着上面的思考题,看一看,想一想,议一议,再翻开教科书看看书上是怎么说的。
2.集体讨论,归纳性质。
(1)从左往右看,由1/4到2/8,分子、分母是怎么变化的?引导学生回答出:把1/4的分子、分母都乘以2,就得到2/8。原来把单位“1”平均分成4份,表示这样的1份,现在把分的份数和表示份数都扩大2倍,就得到2/8。
(2)3/4是怎样变化成9/12的呢?怎么填?学生回答后填空。
(3)引导口述:3/4的分子、分母都乘以2,得到6/8,分数的大小不变。
(4)在其它几组分数中,分子、分母的变化规律怎样?几名学生回答后,要求学生试着归纳变化规律:分数的分子和分母都乘以相同的数,分数的大小不变。
(5)从右往左看,分数的分子和分母又是按照什么规律变化的?通过分析比较每组分数的分子和分母,得出:分数的分子和分母都乘以相同的数,分数的大小不变。
(6)对照教科书中的分数基本性质,让学生说出少了什么?(少了“零除外”)讨论:为什么性质中要规定“零除外”?
出示的思考题是学生探求新知、独立思考的指南,教师环紧扣的提问以及引导学生逐步展开的充分的讨论,帮助学生一步步走向结论。]
3.出示例2:把3/4和15/24化成分母是8而大小不变的分数。
思考:要把3/4和15/24化成分母是8而大小不变的分数,分子怎么不变?变化的依据是什么?
通过举例,沟通分数的基本性质与商不变性质之间的联系。引导学生运用分数与除数的关系,以及整数除法中商不变的性质,说明分数的基本性质。
如:
[有助于学生顺利地运用分数与除法的关系,以及整数除法中商不变性质说明分数的基本性质,实现新知化归旧知。]
场景四:多层练习,巩固深化。
1.口答。
学生口答后,要求说出是怎样想的?
2.判断对错,并说明理由。
运用反馈片判断,错的要求说明与分数的基本性质中哪几个字不相符。
3.在下面()内填上合适的数。
练习设计由易到难,由浅入深,既巩固新知,又发展思维,其间还自然地渗透思想品德教育。师生对出数做题,能够创设民主和谐的学习气氛。通过举例,还渗透了函数思想。
圆的性质课件 篇5
一、说教学理念
1、以学生发展为本,着力强化个人主体意识,同时关注学生学习动机、兴趣等情感态度。
2、从学生已有的认知发展水平和知识经验出发,为学生提供充分从事数学活动的机会和充分的练习空间。
3、致力于改变学生的学习方式,关注过程,让学生经历知识的形成过程,感受验证、转化,以及“用数学学数学”等数学思想方法。
二、说教材
1、教学内容
《分数的基本性质》一课是五年级下册第四单元的一个内容。这部分内容是在学生学习了分数的意义、分数与除法的关系、商不变性质等知识的基础上进行教学的,它是以后学习约分、通分的依据。因此,分数的基本性质是本单元的教学重点之一。在讲解这一知识点时,应注意加强整数商不变性质的回顾,这样既帮助学生理解了分数的基本性质,又沟通了新旧知识的内在联系。
2、学情分析
学生在三年级上学期已经初步认识了分数,知道分数各个部分的名称,会读、写简单的分数,会比较分子是1的分数,以及同分母分数的大小。还学习了简单的同分母分数的加、减法。在本学期又学习了因数、倍数等概念,掌握了2、3、5的倍数的特征,为学习本单元知识打下了基础。另外,本单元的知识内容概念较多,比较抽象,学生的抽象逻辑思维在很大程度上还需要直观形象思维的支撑。在数学教学中,化抽象为具体、直观,对于顺利开展教学是十分必要的。
3、教学目标:
(1)通过教学使学生理解和掌握分数的基本性质,能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数,再应用这一规律解决简单的实际问题。
(2)引导学生在参与观察、比较、猜想、验证等学习活动过程中,有条件、有根据的思考、探究问题,培养学生的抽象概括能力。
(3)渗透初步的辨证唯物主义思想教育,使学生受到数学思想方法的熏陶,培养乐于探究的学习态度。
教学重点:理解和掌握分数的基本性质;教学难点:学习自主探索,发现和归纳分数基本性质,以及应用它解决相应的问题。教具学具:课件,三张同样大小的长方形纸条、彩笔。
三、说教法
“将课堂还给学生,让课堂焕发生命活力”,为营造学生在教学活动中的独立、自主的学习空间,让学生成为课堂的主人,本着这样的指导思想,以及学生的认知规律,我采用的教学方法主要有:
1、实际操作法
指导学生亲自动手折一折,涂一涂,比一比,从这些实践活动中加深学生对分数基本性质的理解,促使学生的感性认识逐步理性化。
2、直观演示法
先让学生充分感知,发现规律,然后比较归纳,最后概括出分数的基本性质,从而使学生的思维从形象思维过渡到抽象思维。
3、启发式教学法
运用知识迁移规律组织教学,用数学学数学,层层深入,促使学生在积极的思维中获取新知。
四、说学法
1、学生在学习分数的基本性质时,引导学生采用自主发现法、操作体验法,学生在纸条上涂出相应的阴影部分后,必然会对那三个图形进行观察和比较,从中有所发现。之后老师通过启发学生运用分数的基本性质,证明那三个分数大小相等,在尝试中发现,在实践中体验,从而加深学生对分数基本性质的理解。
2、在学习例题的过程中教师先采用启发法,再采用学生自学尝试法,独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成练习题,达到检验自学的目的。
五、说教学过程
(一)、新知铺垫
(二)、新知导入
(三)、新知探究
(四)、新知探究
(五)、新知训练
(六)、新知应用
(七)、新知强化
(八)、新知小结
1、新知铺垫和导入
上课伊始我利用分饼的故事来激发学生的学习兴趣,让学生亲自动手折一折、分一分、比一比,从直观上让学生感受到这几个分数大小是相等的,而这几个分数的分子和分母都不相等,这其中有什么规律呢?继而揭示课题。
(设计意图)好奇是学生的天性,通过分地故事能快抓住学生的好奇心,使他们在心理上产生悬念,带着疑问迅速切入正题。
2、新知探究
(1)、动手操作、形象感知
首先让学生用三张同样大小的长方形纸条折一折,再涂色表示出每张纸的1/2,2/4,4/8。观察涂色部分,说说发现了什么?在学生汇报时,说出:涂色部分面积相等,也就说明这三个分数大小相等。然后通过电脑再进一步证实学生的发现:通过观察,我们发现三个阴影部分大小相等,说明三个分数大小相等。
(设计意图)主要是利用学生爱动手以及直观思维的特点,让学生在动手操作过程中不仅复习了分数的意义,为下面导入新知识作好迁移,而且激活了课堂气氛,营造了良好的学习开端。
(2)、观察比较,探究规律
首先,在学生折纸的基础上,通过小组讨论交流总结出分数的基本性质,让学生理解“同时乘上或者除以”的意义,以及为什么要强调“0除外”这个条件。其次,总结出分数的基本性质后,要和以前学过的商不变规律进行对比,找出二者间的联系,使学生更好的理解、运用性质。
(设计意图)这一环节重在培养了学生大胆交流、语言表达的能力,同时学生在汇报交流中使问题逐渐明朗化,最终验证了自己的猜想。要充分放手,让学生畅所欲言。
3、新知训练
在巩固阶段,我安排了三个不同层次的习题。其中“新知训练”是对“分数的基本性质”做进一步的诠释。“新知应用”是导入分饼时的题,难度不大,首尾照应,最后还安排了“新知强化”环节,属于开放性题。整个习题设计部分,题目呈现方式的多样,吸引了学生的注意力,激发了学生兴趣,培养了学生创新意识和解决问题的能力。
圆的性质课件 篇6
一、说教学内容的创新处理
《分数的基本性质》是九年义务教育六年制小学数学第十册第四单元的一个重要内容。该教学内容是以分数的意义、分数与除法的关系以及整数除法中商不变的规律这些知识为基础的。原教材先通过直观使学生了解1/2、2/4、3/6三个分数的分子、分母虽然不同,但是分数的大小是相等的。接着进一步研究这三个分数的分子和分母,思考它们是按照什么规律变化的。最后归纳出分数的基本性质。这样安排教学内容,学生的主体地位不能得到充分体现,不利于培养学生的问题意识。为此,我打算通过"折、画、想、问、用"五个环节对教学内容作如下处理。
1.折--用三张同样大小的长方形纸条分别折出二等分、四等、八等分。
2.画--让学生用色笔在长方形纸条上分别涂出它们的一半,并用分数来表示。
3.想--1/2、2/4、4/8这些分数有什么关系?你还能说出和"1/2"大小相等的其他分数吧?你还能说出和"2/3"大小相等的分数吧?
4.问--ww"1/2=2/4=/4/8"中,你发现什么?
5.用--用已学过的"分数的基本性质"解决有关的数学问题。这样安排教学有以下几点好处:
(1)有利于知识的迁移。
让学生通过动手折、涂,再用分数表示,这样既帮助学生复习了分数的意义,又为学习新知识作了准备。
(2)能发挥学生学习的主动性。
通过学生找和"1/2"大小相等的分数,以及和"2/3"大小相等的分数,发挥学生学习的主动性,体现自主学习的精神。
(3)提高了学生的学习能力。
通过交流,培养学生敢于发表自己的意见,积极思考问题,积极探问题,培养学生概括问题的能力和解决问题的能力。
二、说教学模式
本节课起打算采用"创设情境,复习迁移--设疑激思,获取新知--深化概念,及时反馈"的教学模式进行教学。
1.创设情境,复习迁移。
为了发挥学生学习的主动性,使旧知识起到正向迁移的作用,首先创设了动手操作的情境:起发给每位学生三张同样大小的长方形纸条,让学生折一折。把第一张纸条对折(也就是把这张纸条平均分成2份),把第二张纸条对折再对折(也就是把纸条平均分成4份),再把第三张3次对折(也就是把纸条平均分成8份)。接着,让学生画一画,用彩笔在等分后的纸条上分别涂出它们的一半。告诉学生,如果把每张纸条都看作单位"1",问学生:你能把涂色的部分用分数表示吗?(电脑显示三张涂色的纸条,学生分别用分数1/2、2/4、4/8表示。)
这一情境的设置,主要是让学生在动手操作过程中不仅复习了分数的意义,为下面导入新知识作好铺垫、迁移。并且在教学一开始,就能抓住学生爱动手以及直观思维的特点,激活课堂气氛,营造良好的学习开端。
2.设疑激思,获取新知。
"疑是思之始,学之端"。学,就是学习问题,学怎样问问题。为此,我在上面教学的基上,引导学生逐一讨论以下问题:
(1)1/2、2/4、4/8这些分数有什么关系?
(学生会说这三个分数的大小相等。)
(2)你能说出与"1/2"大小相等的其他分数吗?你还能说出与"2/3"大小相等的分数吗?
(如果学生写错或写不出,待得出分数基本性质后再写)
(3)从"1/2=2/4=4/8"中,你发现了什么?
(让学生分组讨论,充分发表自己的意见,经过归纳,最后得出:分数的分子和分母同时乘以或者除以相同的数,分数的大小不变。并把这句话显示出来。)
(4)你对上面这句话觉得有什么问题吗?
(学生可能会提出地"相同的数"中"0"必须除外。如果学生提出不出,就由教师提出问题:相同的数是不是任何数都行?为什么?)
最后,让学生完整地概括出分数的基本性质。(老师揭示课题)
这样教有利于培养学生的问题意识,师生情感交融、和谐,学生积极参与,思维活跃,学习主动,为学生创设一个良好的学习氛围。
3.深化概念,及时反馈。
为了加深学生对分数基本性质的理解,激发学生的学习兴趣,起设计了如下练习:
1.下面各式对吗?为什么?(让学生用手势表示对错)
(1)3/4=6/8(2)3/8=12/2(3)3/10=1/5
2.在()里填上合适的数。
()/6=()/36=8/12=2/()=()/24
3.把2/3和10/24化成分线是12而大小不变的分数。
4.把下面大小相等的两个分数用线连接起来。
4/51/64/94/612/16
3/42/320/256/368/18
三、说教学目标
以上各个教学环节的设计体现如下几点教学目标:
1.知识技能性目标:让学生亲身经历"分数基本性质"抽象概括的全过程,正确理解和掌握分数的基本性质,使学生能运用分数的基本性质解决有关的数学问题。
2.发展性目标:培养学生观察--探索--抽象--概括的能力以及迁移类推能力,渗透事物是相互联系、发展变化的辩证唯物主义观点,培养学生的数学意识、问题意识、合作意识以及应用意识。
3.创新性目标:让学生在学习的过程中发现问题、解决问题,提高学生探索问题的能力和研究问题的能力。
圆的性质课件 篇7
一、教材分析
分数的基本性质是约分和通分的基础,而约分、通分又是分数四则运算的重要基础,因此,理解分数的基本性质显得尤为重要。而分数与除法的关系以及除法中的商不变的规律与这部分知识紧密联系,是学习这部分内容的基础。
探索分数的基本性质,关键是让学生在活动中主动地观察和发现,在讨论交流的基础上归纳规律。根据我对教材的认识,本课时安排了学习活动和游戏活动让学生寻找相等的分数,使学生初步体验分数的大小相等关系,为观察、发现分数的基本性质提供丰富的学习材料。然后引导学生观察这两组相等的分数,寻找分子、分母的变化规律,并展开充分的交流讨论,在此基础上归纳分数的基本性质。
教学目标:
1、知识目标:经历探索分数的基本性质的过程,理解分数的基本性质。能用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。
2、能力目标:培养学生的观察、比较、归纳、总结概括能力。
3、情感目标:经历观察、操作和讨论等学习活动,体验数学学习的乐趣。
二、说教法
“将课堂还给学生,让课堂焕发生命活力”,为营造学生在教学活动中的独立、自主的学习空间,让学生成为课堂的主人,本着这样的指导思想,根据概念教学的特点,结合教学特点,以及学生的认知规律,我将采用的教学方法主要有:
1、 直观演示法
先让学生充分感知,然后比较归纳,最后概括出分数的基本性质,从而使学生的思维从形象思维过度到抽象思维。
2、 实际操作法
指导学生亲自动一动、折一折,画一画,比一比,多这些实践活动中加深学生对分数基本性质的理解,促使学生的感性认识逐步理性化。
3、 启发式教学法
运用知识迁移规律组织教学,层层深入促使学生在积极的思维
4. 树立以“以学生发展为本”、“以学定教”、“教为学服务”的思想,因此在教学中,我采用引导自学、合作探索相结合法,让学会运用分数的基本性质把一个分数化成分母不同但大小相等的分数,有效地提高了教学效率。在知识的巩固阶段,我还采用分层练习法,当然以上这些教法并不是孤立存在的,本着“一法为主,多法为辅”的思想,我将多种教法进行优化组合,以达到促进学生学习方式的转变,实现教学目标的目的
三、教学组织形式:
师生互动、合作与探索结合
四、教学过程与设计意图
1、故事引入、激发兴趣、揭示课题
以阿凡提讲故事引入,然后小组讨论。
2、动手操作,探索新知
①做一做,折一折。拿出三张同样大的长方形纸,请分别平均折成2份、4份、8份。并按照下图涂色。如果把每张纸都看作“1”,请你把涂色的部分用分数表示出来。学生动手操作、汇报。
根据上面的过程,学生能得到一组相等的分数吗?
②教师引导学生归纳小结:比较这三个分数的分子和分母,它们各是按照什么规律变化的?分数的分子和分母同时乘上或除以相同的数(0除外),分数的大小不变,这就是分数的基本性质。
知识引伸,联系旧知识:根据分数与除法的关系,以及整数除法中商不变的性质,你能说说它与分数的基本性质吗?
设计意图:新知识力求让学生主动探索,逐步获取。借助直观图组织学生进行一个动手操作活动,借助直观图形找出相等的分数,使学生能够直观感知。充分调动孩子们去动手、动脑,培养学生的操作能力和语言表达能力。并充分发扬学生的团结协作的精神, 互相帮助,每个人都能在激励中得到不同的发展。
本次活动的安排为学生提供了丰富的学习材料,引导学生联系以往的学习经验,进行学习内容的迁移,自然得到分数大小的变化规律,教师在此也进行了适当的重点点拨。在这一环节的学习过程中,教师注重学生的观察、比较、归纳概括能力的培养。
3、实践游戏、深化理解、巩固练习:
设计意图:练习设计由易到难,由浅入深,既巩固新知,又发展思维,其间还自然地渗透思想品德教育。师生对出数做题,能够创设民主和谐的学习气氛。学生对于课堂游戏都非常积极,这时,教师应该及时表扬表现出色的学生,也要顾及一些后进生的学习状况,带动后进生的学习激情。
4、全课总结:这节课你有什么收获?
圆的性质课件 篇8
一、说教学内容:
本节课是北师大版数学五年级上册第三单元的内容。
二、说教学目标:
1、理解和掌握分数的基本性质,知道分数基本性质与整数除法中商不变性质的关系。
2、通过动手实践,发现并总结规律,能运用分数的基本性质把一个分数化成分母相同而大小相等的分数;培养学生观察、比较及动手实践的能力,进一步发展学生的思维。
3、激发学生积极主动的情感状态,养成注意倾听的习惯,在实践操作中体验成功的快乐。
三、说教学重、难点:
理解和掌握分数的基本性质,会运用分数的基本性质。
四、说教法、学法
1、创设情景,激发学生的学习兴趣。
通过创设猴王分饼的情境,巧设悬念,激发学生求知欲望,既找到了教学的起点,又调动了学生探究的积极性,这种引课的方式取代了过去的“复旧引新”那种机械的模式。有效性和学生思维震荡的深刻性。
2、创造性地用好课程资源,体现新的教学理念。
教学通过折纸得出分数,认识到分数大小相等,并探究出规律,这一部分内容跳出教材圈子,有机地整合了教材,把教材的做一做作为巩固知识的载体。利用折纸得出的多媒体演示、、三个大小不变的分数,把学生们带入一个探究的空间,感知分数的基本性质的来历,同时学生对分数的分母和分子之间的关系产生疑问,通过引发学生的认知冲突,激发学生探索求知的欲望。
3、整节课力求体现探究学习的基本要求,让学生的学习主体地位得到体现,使学生学习积极性较高涨。
五、说教学过程:
(一)、创设情景,设疑
教师创设猴王分饼的情景:同样大小的饼,第一只小猴分得,第二只小猴分得,第三只小猴分得,它们谁分得多?学了今天的内容你就明白了,引入新课。
(设计意图:故事引入,设置悬念,使学生急于想弄明白谁多谁少,激发学生的求知欲望)
圆的性质课件 篇9
一、说教材
《分数的基本性质》在分数教学中占有重要的地位,在小学数学学习中起着承前启后的作用。它既以分数的意义、分数的大小比较为基础,又与整数除法及商不变的性质有着内在的联系,更分数的约分、通分的依据,也进一步学习分数加减法计算、比的基本性质的基础。因此,分数的基本性质该单元的教学重点之一。
二、说学情
学生在三年级上学期已经初步认识了分数,以及同分母分数的大小。在本学期又学习了因数、倍数等概念,掌握了2、3、5的倍数的特征,为学习本单元知识打下了基础。五年级学生已经养成了合作学习的习惯,并且已经具有了一定的分析和解决问题的能力,再加上他们所具有的一定的生活经验,因此能够在教师的引导下完成“质疑——探索——释疑——应用”这一完整的学习过程。
三、说教学目标
依据新的《数学课程标准》,为了更好地体现数学学习对学生在数学思考、解决问题以及情感与态度等方面的要求。根据本节课的具体内容并结合学生的实际情况,我制定了以下教学目标:
知识与技能:让学生亲身经历“分数基本性质”抽象概括的过程,理解和掌握分数的基本性质,并能初步运用分数的基本性质解决简单的数学问题。
过程与方法:让学生经历发现问题、探究问题、解决问题的全过程,在观察、猜想、验证等探索活动中,培养学生观察--探索--抽象--概括的能力以及合情推理能力,体验解决问题策略的多样性。
情感与态度:使学生在分数基本性质的探究活动中,获得成功的体验,建立自信心,感受到数学的严谨性,及渗透事物相互联系、发展变化的辩证唯物主义观点。
教学重点:理解和掌握分数的基本性质,运用分数的基本性质解决实际问题。
教学难点:让学生经历自主探索,发现和归纳分数的基本性质,并会应用分数的基本性质解决相关问题。
教学准备:三张同样大小的长方形纸张,彩色笔
四、说教学方法
树立以“以学生发展为本”、“以学定教”的思想,为实现教学目标,有效地突出重点、突破难点,我遵循学生的认知规律,以建构主义学习理论为指导,在探究分数的基本性质过程中,采取学生动手操作、小组讨论、合作探究等方式,引导学生进行比较、观察、分析,充分运用知识迁移的规律,在感知的基础上加以抽象、概括,进行归纳整理,采取迁移教学法、引导发现法组织教学。创设了一种“情境导入、动手体验、自主探索”的课堂教学形式,以“自主探究”贯穿全课,引导学生迁移旧知、大胆猜想——实验操作、验证——质疑讨论、完善猜想等,把这一系列探究过程放大,把“过程性目标”凸显出来。
五、学法
有效的数学学习活动,不能单纯模仿与记忆,动手实践、自主探索与合作交流学生学习数学的重要方式。在学习例题的过程中学生主要采用自学尝试法,自主探究法,合作交流的学习方式,让学生通过独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成做一做,达到检验自学的目的。通过观察、比较、提出问题并解决问题来进行自主探索与合作交流,充分发挥学生主体参与作用、激发学生学习爱好,同时让学生获得成功体验。
六、说教学过程
为了全面、准确地引导学生探索发现分数的基本性质,实现教学目标,我努力抓住学生的思维生长点组织教学,设计了以下五步教学环节:
1、创境设疑: 回顾旧知,引发思考
2、自主探究: 动手实践,发现规律
3、交流归纳:揭示规律,巩固深化
4、分层精练:多层练习,多元评价
5、感悟延伸:课堂小结,加深理解
第一环节:创境设疑
结合六一儿童节的到来,创设分蛋糕的情景,妈妈分得公平吗?课始便迅速地抓住了学生的好奇心,使课堂教学有了一个好的开始。鼓励学生当小法官,则极大地调动了学生的积极性,使他们在心理上产生悬念,进一步激发学生的学习兴趣,为后面的学习做好了铺垫。这样设计也从学生已有的经验和情感出发,找准新知的最佳切入点,为学生后面的联想和猜想巧设“孕伏”。
第二环节:自主探究
通过折纸、涂色的动手操作活动,使学生亲身经历并获得非常具体、真切的感知,为探究分子、分母的变化规律提供认知基础。教师通过五个有层次的问题,分层质疑,分层提问,分层评价,尽量地关注到了每一个层次的学生,引导学生逐步在自主探索、合作互助的学习方式中初步理解并能简单概括出分数的基本性质,并及时强调了0除外的意义,使学生体验到解决问题策略的多样性,发展学生的实践能力和创新精神,培养学生的合作意识。
第三环节:交流归纳
在这一环节,教师引导学生在观察与分析、探索与思考分数的基本性质的基础上不断生成新问题,通过质疑,借助知识的迁移,沟通分数的基本性质与商不变性质之间的联系。引导学生应用分数和除法的关系,以及整数除法中商不变的性质,说明分数的基本性质。这样的设计就让学生感受到了数学知识的内在联系,同时渗透“事物之间相互联系”的辨证唯物主义观点,培养学生观察--探索--抽象--概括的能力。
第四环节:分层精练
这个环节让学生对分数的基本性质再一次的体验,感受,研究,同时也整节课的亮点之一,练习分层,评价分层,通过分层练习,关注到每一个层次的学生,让每一个学生都有发展。教师结合本班学生的学习特点,设计了由浅入深,由易到难的练习,基本练习让90%的同学体验到了学习的快乐,综合练习让80%的同学品尝到了成功的喜悦,拓展练习则留到课后,让学生在自主探究中、讨论交流中、知识的沉淀中进一步加深对知识的理解和掌握。
第五环节:感悟延伸
通过小结、反思,查漏补缺,学生在交流收获、互相帮助的过程中,使学生对知识有个系统的回顾和认识,从而进一步培养学生的知识概括能力。
总之,本节课教学坚持了“学生探索的主体”这一教学原则,面向全体学生,充分的引导学生动手实验,自主探索,质疑延伸,合作交流,让每一个学生在探索的过程中感受数学和日常生活的紧密联系,体验学习数学的快乐,培养了创新精神和实践能力。
圆的性质课件 篇10
一、说教材
1、教学内容:六年制小学数学第八册p100例1、2。
2.教材所处的地位
小数的性质是一节概念教学课,是在学习了“小数的意义”的基础上深入学习小数有关知识的开始。掌握小数的性质,不但可以加深对小数意义的理解,而且它是小数四则计算的基础。根据小数的性质可以把末尾有零的小数化简,也可以不改变小数的大小,把一个数改写成指定位数的小数。
3、教材的重点和难点:
掌握小数性质的含义是教学的重点,理解小数性质归纳的过程是教学的难点。
4、教学目标:
(1)利用知识的迁移规律,让学生在自主探究、合作交流中理解和掌握小数的性质,提高学生运用知识进行判断、推理的能力。
(2)让学生进一步体验教学与日常生活的密切联系,体验数学问题的探究性和挑战性,从而激发学习数学的兴趣,以主动参与数学活动。
(3)在教学中渗透事物是普遍联系和相互转化的辩证唯物主义观点。
二、教法
根据教学要求,结合教材的特点,为了更好地突出重点,突破难点,完成教学任务。我采用了:
1、情景教学法。让学生在情景里亲自动手操作、探索,感受知识的形成过程不过如此简单,享受成功的喜悦,激发学生学习数学知识的兴趣。
2、游戏教学法。即是新课改的教学理念“做中学、玩中学”的体现。因为小学生学习活动不再是教师的“说教”,应该更多的时间是在学生自主探索的过程中。这样的教学,更能体现了“学生是学习数学的主人,教师是数学学习的组织者、引导者和合作者”的功能。
3、以小组合作的形式来组织教学。体现了“自主探索、合作交流、实践创新”的数学学习方式,培养了学生互相合作交流的意识,在共同讨论中完成学习任务。
三、学法
通过这节课的教学,主要培养了学生以下学习方法:
1、指导学生观察图画,共同讨论,在自主探索中把感性认识上升到理性认识。
2、在游戏中运用学习成果,把数学知识利用到现实生活中。
3、培养学生共同合作,相互交流的学习方式。
四、说教学程序
(一)情景导入激趣揭题
(课件出示)唐僧师徒一起去西天取经,有一天,他们口渴了,唐僧要把三根甘蔗分给三个徒弟吃,事先他把甘蔗分别装进三个袋子里,上面标注着长度:0.
l米、0.10米、0.100米,馋嘴的八戒抢先一步说:“我的肚子大,我吃长的。”说着拿回了注有“0.100米”的袋子。沙和尚好不服气,上前对师傅说:“八戒好吃懒做,长的应该让给大师兄悟空吃。”悟空笑了笑说:“两位徒弟别吵了,无论哪个袋子都一样呀!”唐僧听了悟空的话,微笑着点了点头。
同学们,你们知道为什么师傅对悟空的话点头微笑呢?这是因为大师兄悟空掌握了小数很重要的性质,学习了这节课,我们就知道其中的奥秘了”。(板书:小数的性质)
这样的设汁,旨在把枯燥的数学知识贯穿在小学生喜闻乐道的故事中,引发起学主的学习兴趣,点燃他们求知欲望的火花,从而进入最佳的学习状态,为主动探究新知识聚集动力。
(二)探索新知
1.
同学们,刚才悟空说无论哪个袋子都一样,是不是这样呢?下面请同学们利用手中的米尺和已有的知识来验证一下,好吗?各小组合作研究。
师巡视并引导学生观察米尺图各小组汇报:
A、0.1米是几分之几米(1/10米)?用整数表示就是多少分米?(l分米)
B、0.10米是几个几分之1米?(10个1/100米)1/100米用整数表示是几厘米(1厘米)?10个1/100米就是多少厘米?(10厘米)
C、0.100米就是几个几分之1米(100个1/1000米)?1/1000米用整数表示是几毫米(1毫米)?那么100个1/1000米就是多少毫米?(100毫米)
结合学生回答,教师板书:
0.1米是1/10米,就是1分米
0.10米是10个1/100米,就是10厘米
0.100米就是10个1/1000米,就是100毫米
因为1分米=10厘米=100毫米
所以0.l米=0.10米=0.100米
这样,学生根据小数的意义,从“0.l米、0.10米、0.100米”出发研究问题。在问题得以解决的过程中,学生锻炼了运用已有知识解答新问题的能力,培养了运用数学知识的意识。《数学课程标准》强调:数学活动必须建立在学生的认知发展水平和已有的知识经验基础上,这样教学,也正是使本节课牢牢地扎根于小数意义的基础上,是小数意义的运用,而不是简单的重复,因而是有意义学习。
接着教师指着“0.l米=0.10米=
0.100米"这个等式,并标上思考符号“→”,先让学生从左往右观察、比较,你们发现了什么?
根据学生的回答板书:在小数的末尾添上0,小数的大小不变)。再标出思考箭头“→”,让学生从右往左观察,发现什么规律,补充板书小数的末尾去掉“0”。
这样教学,把静态的知识结论转化为动态的求知过程,让学生真正成为学习的主人,对所学的内容理解深刻,记忆牢固,不但知其然,而且知其所以然。同时,还培养了学生归纳概括事物本质属性的能力。
2.
为了进一步证明小数性质的可*性出示例2:比较0.30和0.3的大小。放手给学生自己研究,发给各小组平均分成100个小格子的正方形各两个。
汇报交流:
(1)左图把1个正方形平均分成几份?阴影分用分数怎样表示?用小数怎样表示?
(2)右图把同样的正方形平均分成几份?阴影部分用分数怎样表示?用小数怎样表示?
(3)从左图到右图有什么变了,什么没变?(份数变了,正方形的大小和阴影面积的大小没变)
(4)怎样比较0.30和0.3的大小?(0.30是30个1/100,0.3是3个1/10,
因为10个1/100是1个1/10,30个1/100也就是3个1/10,所以两个小数的大小相等)。
这样使学生的思维从形象思维逐步过渡到抽象思维,达到突破难点的目的。培养了学生的合作意识。通过两道例题,让学生进一步掌握规律,全面概括出小数的性质。
3.呼应课始,揭示奥秘:由于悟空掌握了小数的性质,所以他面对两位师弟的争执说:“无论哪一袋都一样”。
4.联系生活,再现新知:还有同学们在商场看到货物的标价为2.50元、3.00元,这样写,不但没有改变小数的大小,而且让顾客很清楚地知道是几元几角几分。
(三)巩固深化拓展思维
这是教学中不可缺少的环节,这一阶段是学生巩固知识,形成技能,技巧,发展智力的重要过程。在这一阶段,特别是抓住学生的求胜心理进行了练习、要进一步激发学生的学习兴趣,确保学习任务的圆满完成。
1、判断下面小数哪些0去掉是对的,哪些0去掉是错的?
8.0808.0880.0080.80800
2.判断下面各组两个数是否相等?为什么?
0.25和0.25000.25和0.2050.7和0.07
3和3003和3.00
3.第2题:把相等的数用线连起来,先在书上填好后,再提问找朋友。一个同学在第一栏里按顺序报数,其他同学准备当朋友。
4.闭眼听判:
“小数点的末尾添上‘0’或去掉“0’,小数大小不变”这种说法对吗?为什么?
这样设计、让学生对新知识的各种误解进行辨析、判断,使得所学知识真正转化为能力。
(四)全课小结
1.这节课你有哪些收获?
2.你对自己或同学有什么评价?
以上是我对小数的性质的简单的设想,请各位领导和老师批评、指正。
圆的性质课件 篇11
一、说教材:
本节内容是小数四则计算的基础。根据小数的性质,可以化简小数,也可以不改变小数的大小,在小数末尾添加“0”将其改写成固定为数的小数,或者可以把整数改写成小数形式。其重点是让学生一步步由形象到抽象地总结概括出小数的性质。在充分了解了小数性质后再进行对其运用的学习,例如化简和改写。
二、说教法:
在教授小数性质的过程中,首先,我利用几个相等的数量关系,让学生慢慢迁移到小数,然后根据几个小数间的数量关系总结出规律。为进一步理解这层关系,又加一个验证——利用涂色表示小数再比较他们的大小,验证规律。完成后加一个小练习;在下来时小数性质的利用。这部分相对简单,介绍什么样的时候会需要进行化简和改写,然后举例说明,接着练习巩固。
三、说目标
1、让学生理解和掌握小数的性质,并能较熟练地熟练地运用这性质对小数进行化简和改写。
2、利用迁移规律,让学生从形象思维逐步过渡到抽象思维,提高学生运用知识进行判断、推理的能力。
四、说重难点
掌握小数性质的含义
归纳小数性质的过程
五、说教学过程
一、导入
1、师:老师今天需要大家帮个忙:我这两天需要一个笔记本,于是去村里的两个小卖部转了转,发现这两家店对同一种本有不同的标价:左边这家标价是
2.5元,右边那家则是2.50元,大家帮我出出主意,我应该选择哪一家去买呢?
[都一样,任意选一家]
师:为什么?为什么2.5元末尾添个0大小不变呢?究竟可以添几个零呢?
这节课我们就来研究这一方面的知识。
【导入部分利用生活实际中的例子,并让学生来帮忙,这样可以激发学生的学习兴趣和探索欲望. 】
二、授新
1.猜想性质
板书三个“1”,让学生判断是相等的,接着在第二个1后面添写上一个0,在第三个1的后面添写上两个0,板书写成:1、10、100,提问:这三个数相等吗?(不相等)
你能想办法使它们相等吗?启发学生回答可以添上长度单位“米、分米、厘米”或“分米、厘米、毫米”就相等了。
板书:1分米=10厘米=100毫米。
思考:(1)你能把它们改用“米”作单位表示吗?
[0.1米0.10米0.100米]
(2)改写成用米作单位表示后,实际长度有没有变化?(没有)说明什么?(三个数量相等)
(3)仔细观察三个小数有什么变化?
根据学生回答总结:小数的末尾添零或去掉零,小数的大小不变。
【这部分利用整数的数量关系到加入长度单位后的关系一直引入到小数的数量关系,一步步使学生了解本节课的内容,并且通过认真观察后可以自己归纳总结出性质。】
2、验证猜想
为了验证我们的这个结论,我们再来做一个实验。
(1)出示做一做:比较0.30与0.3的大小
师:你认为这两个数的大小相等吗?(让学生先应用结论猜一猜)
(2)想一下你用什么办法来比较这两个数的大小呢?
出示课本做一做:在左图中涂出阴影部分表示0.3,右图中涂出阴影表示0.30,发现了两幅图什么相同,什么不同?
(份数不同,正方形的大小和阴影面积的大小相同)
这说明0.30与0.3相等,证明刚才这个结论是对的。
【在简单观察出性质以后,进一步通过之前的知识去进行验证,这样不仅可以让学生更深层次地理解知识,而且可以培养学生治学严谨的态度以及探究问题的一般步骤——先观察猜想,再进行验证。】
师:那如果我们现在说“小数后面添上零或去掉零,小数的大小不变”这句话还对吗?[不对]那如果是“小数点后面添上零或去掉零,小数的大小不变”呢?
[不对]分别举例说明。【这一步主要使学生确切地理解添上零或去掉零的位置,一定要在小数的末尾】
师:那如果我们现在说“小数末尾添上零或去掉零,小数的意义不变”这句话还对吗?【这一步主要使学生确切地理解添上零或去掉零后,一定是小数的大小不变,而意义有很大的不同】
师:那整数有这个性质吗?也就是我们可以说"整数末尾添上零或去掉零,大小不变”吗?【强调出小数与整数的区别】
判断练习。
下面的数中,哪些“0”可以去掉?
3.9 0.300 1.8000 500
5.780 0.0040 102.020 60.06
3、小数性质的利用
(1)根据小数的性质,可以对小数进行化简。(理解化简就是将其简单化)当遇到小数末尾有“0”的时侯,例如,0.30,一般可以去掉末尾的“0”,把小数化简。(0.30=0.3)
化简下面各小数:
0.70 105.0900 2.900 0.50600
0.090 10.830 12.000 0.070
(2)师:有时根据表示意义的需要,可以在小数的末尾添上0;(例如:0.3→0.30)
还可以在整数的个位右下角点上小数点,再添上0,把整数写成小数的形式。比如:我们在商场里看到的2元=2.00元,2.5元=2.50元
出示:不改变数的大小,把0.2、4.08、3改写成小数部分是三位的小数,怎样改写?
提醒:把整数改写成小数形式,在整数的个位右下角点上小数点,再添上“0”。
三、巩固深化
1、下面的每组数中,哪些零可以去掉,用斜杠划掉
(1)3.09 0.300 1.8000 5.00
(2)0.0004 12.002 60.06 500
(3)0.090 12.00001 0.50605060 30.0
2、化简下列小数
102.020 54.300 110.030 200.0300
3、判断题。(打“√”,错的打“×”)
(1)0.080=0.8()
(2)4.01=4.100()
(3)6角=0.60元()
(4)30=30.00()
(5)小数点后面添上“0”或去掉“0”,小数的大小不变。
4、学校小卖部进了一批冷饮,你能帮忙设计一下价格标签吗?(要求都写成两位小数)
盐水棒冰每支5角
随便每支1元5角
可爱多每支2元5角
5、智力游戏:谁能只动两笔,就可以在5、50、500之间划上等号。(50变成5.0,500变成5.00)
四、课堂总结
圆的性质课件 篇12
一、说教材分析
本节内容属于概念教学。《分数基本性质》在小学数学学习中起着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习分数的计算、比的基本性质的基础,还是约分、通分的依据。
二、说学情分析
学生已经清楚理解分数的意义,明确分数与除法的关系,商不变性质等知识,这些都为本节课学习做了知识上的铺垫。分数的基本性质是一种规律性知识,分数的分子、分母变了,分数的大小却没变。学生在这种“变”与“不变”中发现规律,掌握新知识。
三、说教学目标
综合分析课程标准要求及学生实际,我确定本节教学目标如下:
1、理解与掌握分数的基本性质,并会运用分数的基本性质把不同的分数化成分母(或分子)相同而大小不变的分数。
2、初步养成观察、比较、抽象概括的逻辑思维能力,并且在自主探究中正确认识与理解变与不变的辩证关系。
3、受到数学思想的熏陶,养成乐于探究的学习态度。
教学重点:理解掌握分数的基本性质,它是约分、通分的依据。
教学难点:让学生自主探索、发现与归纳分数的基本性质,以及应用它解决相关的问题。
四、说教法学法
根据本节课的教学目标,考虑到学生已有的知识、生活经验和认知特点,结合教材内容,本课我主要采用猜想验证与探索发现的教学模式。在分数的基本性质过程中,采取学生动手操作、小组讨论、合作探究等方式,引导学生进行比较、观察、分析。通过观察、比较,提出问题并解决问题来进行自主探索与合作交流,充分发挥学生主体参与作用,激发学生学习兴趣,同时让学生获得成功体验。
五、说教学过程
本节课的教学过程我分五个部分进行
第一部分:故事设疑,揭示课题。以唐僧师徒分饼的故事创设问题情境,揭示本节课要研究的问题。
第二部分:组织讨论,动手操作。主要是组织学生动手进行折、画、标等活动,初步理解分数基本性质。
第三部分:合作探究,发现规律。主要的是学生找出规律,并利用规律解决问题。
第四部分:多层练习,巩固深化。主要是巩固所学知识并进行拓展提高。
第五部分:梳理知识,反思小结。主要是总结全课。
其中,第三部分“合作探究,发现规律”可以细化为三个环节:
环节一:动手操作,进行比较
这一环节是在第二部分的基础上进行的,我给每组学生三张大小一样的长条纸,让学生用分数表示涂色部分,并比较大小。此环节的设计主要是培养学生的比较能力。
环节二:呈现问题,引导观察
这一环节主要呈现给学生这样一个问题,“第一环节中的分数的.分子、分母都不一样,为什么大小相等”,引导学生从左到右、从右到左两方面去观察,此环节的设计主要是培养学生的观察能力。
环节三:交流汇报,得出规律
这一环节主要是学生汇报交流,得出结论。
如果学生没有概括出“0除外”就设计两组练习,分子、分母同乘或除以0,完善结论;如果概括出来了,再追加一个问题“为什么强调0除外”,巩固结论。最终推导出分数的基本性质――分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。此环节的设计主要是培养学生的抽象概括能力。
2023不等式课件14篇
经验时常告诉我们,做事要提前做好准备。在平日里的学习中,幼儿园教师时常会提前准备好有用的资料。资料可以指人事物的相关多类信息、情报。有了资料才能更好地安排接下来的学习工作!你是否收藏了一些有用的幼师资料内容呢?以下是由小编为大家整理的“2023不等式课件14篇”,仅供参考,欢迎大家阅读。
不等式课件 篇1
七年级数学不等式课件
教学目标:
通过对具体实例的学习,使学生能够了解生活中的不等量关系,理解不等式的概念,知道什么是不等式的解,为以后学习不等式的解法奠定基础.
知识与能力:
1.通过对具体事例的分析和探索,得到生活中不等量的关系.
2.通过理解得到不等式的概念,从而使学生经历实际问题中数量的分析、抽象过程,体会现实中有各种各样错综复杂的数量关系.
3.了解不等式的意义,知道不等式是用来刻画生活中的数量关系的.
4.知道什么是不等式的解.
过程与方法:
1.引导学生分析具体事例,从对具体事例的分析中得到不等量关系.
2.引导并帮助学生列出不等式,分析不等式的成立条件.
3.通过分析、抽象得到不等式的概念和不等式的解的概念.
4.通过习题巩固和加深对概念的理解.
情感、态度与价值观:
1.通过学生的分析和抽象过程使他们体会现实中错综复杂的数量关系,然后从而培养其抽象思维能力.
2.通过分组讨论学习,体会在解决具体问题的过程中与他人合作的重要性,培养学生的团体协作精神,使学生获得合作交流的学习方式.
3.通过联系与发展、对立与统一的思考方法对学生进行辩证唯物主义教育.
4.通过创设问题串,让学生仔细观察、对比、归纳、整理,尝试对有理数进行分类,然后体验教学活动充满着探索性和创造性.
教学重、难点及教学突破
重点:不等式的概念和不等式的解的概念.
难点:对文字表述的数量关系能列出不等式.
教学突破:由于学生在以前已经对数量的大小关系和含数字的不等式有所了解,但还没有接触过含未知数的不等式,在学生分析问题的时候注意引入现实中大量存在的数量间的不等关系,研究它们的变化规律,使学生知道用不等式解决实际问题的方便之处.在本节的教学中能够在组织学生讨论的过程中适当地渗透变量的知识,让学生感受其中的函数思想,并引导学生发现不等式的解与方程的解之间的区别.在处理本节难点时指导学生练习有理数和代数式的知识,准确“译出”不等式.
教学过程:
一.研究问题:
世纪公园的票价是:每人5元,一次购票满30张可少收1元.某班有27名少先队员去世公园进行活动.当领队王小华准备好了零钱到售票处买了27张票时,爱动脑的李敏同纪学喊住了王小华,提议买30张票.但有的同学不明白.明明只有27个人,买30张票,岂不浪费吗?
那么,究竟李敏的提议对不对呢?是不是真的浪费呢
二.新课探究:
分析上面的问题:设有x人要进世纪公园,①若x≥30,应该如何买票?②若x
结论:至少要有多少人进公园时,买30张票才合算?
概括:1、不等式的定义:表示不等关系的式子,叫做不等式.不等式用符号>,
2、不等式的解:能使不等式成立的未知数的值,叫做不等式的解.
3、不等式的分类:⑴恒不等式:-71+4,a+2>a+1.
⑵条件不等式:x+3>6,a+2>3,y-3>-5.
三、基础训练.
例1、用不等式表示:⑴a是正数;⑵b不是负数;⑶c是非负数;⑷x的平方是非负数;⑸x的一半小于-1;⑹y与4的和不小于3.
注:⑴不等式表示代数式之间的不相等关系,与方程表示相等关系相对应;
⑵研究不等关系列不等式的重点是抓关键词,弄清不等关系.
例2、用不等式表示:⑴a与1的和是正数;⑵x的2倍与y的3倍的差是非负数;⑶x的2倍与1的和大于—1;⑷a的一半与4的差的绝对值不小于a.
例3、当x=2时,不等式x-1
注:⑴检验字母的值能否使不等式成立,只要代入不等式的左右两边,如果符合不等号所表示的关系,就成立,否则就不成立.⑵代入法是检验不等式的解的重要方法.
学生练习:课本P42练习1、2、3.
四、能力拓展
学校组织学生观看电影,某电影院票价每张12元,50人以上(含50人)的团体票可享受8折优惠,现有45名学生一起到电影院看电影,为享受8折优惠,必须按50人购团体票.
⑴请问他们购买团体票是否比不打折而按45人购票便宜;
⑵若学生到该电影院人数不足50人,应至少有多少人买团体票比不打折而按实际人数购票便宜.
解:⑴按实际45人购票需付钱_________ 元,然后如果按50人购买团体票则需付钱50×12×80%=480元,所以购买团体票便宜.
⑵设有x人到电影院观看电影,当x_____时,按实际人数买票______张,需付款_______元,而按团体票购票需付款________元,如果买团体票合算,那么应有不等式________________,
由①得,当x=45时,上式成立,让我们再取一些数据试一试,将结果填入下表:
x12x比较480与12x的大小48
由上表可见,至少要__________人时进电影院,购团体票才合算.
五、小结:
⑴不等式的定义,不等式的'解.
⑵对实际问题中探索得到的不等式的解,然后不仅要满足数学式子,而且要注意实际意义.
六、作业课本P42习题8.1第1、2、3题.
补充题:
1.用不等式表示:
(1)与1的和是正数;(2)的与的的差是非负数;
(3)的2倍与1的和大于3;(4)的一半与4的差的绝对值不小于.
(5)的2倍减去1不小于与3的和;(6)与的平方和是非负数;
(7)的2倍加上3的和大于-2且小于4;(8)减去5的差的绝对值不大于
2.小李和小张决定把省下的零用钱存起来.这个月小李存了168元,然后小张存了85元.下个月开始小李每月存16元,小张每月存25元.问几个月后小张的存款数能超过小李?(试根据题意列出不等式,并参照教科书中问题1的探索,找出所列不等式的解)
3.某公司在甲、乙两座仓库分别有农用车12辆和6辆,现需要调往A县10辆,调往B县8辆,已知从甲仓库调运一辆农用车到A县和B县的运费分别为40元和80元,然后从乙仓库调运一辆农用车到A县和B县的运费分别为30元和50元,(1)设从乙仓库调往A县农用车辆,用含的代数式表示总运费W元;(2)请你用尝试的方法,探求总运费不超过900元,共有几种调运方案?你能否求出总运费最低的调运方案.
不等式课件 篇2
(1)本节内容,是在学习了用方程思想解决实际问题和一元一次不等式的性质及其解法等知识的基础上,把实际问题和一元一次不等式结合在一起,既是对已学知识的运用和深化,又为今后用不等式组解决实际问题以及更广泛的应用数学建模的思想方法奠定基础,具有在代数学中承上启下的作用;
(2)通过本节的学习,学生将继续经历把生活中的数和数量关系转化为数学符号的体验过程,体会不等式和方程一样都是刻画现实世界数量关系的重要模型。
(3)在列不等式解决实际问题的探索过程中,引导学生注意估算意识,体会算式结果所对应的实际意义,渗透建立数学模型,分类讨论等数学思想,对提升学生应用数学意识思考和解决问题的能力起到积极的作用。
对于用不等式解决实际问题,学生容易出现的认知困难主要有两个方面:①哪类的实际问题需要用一元一次不等式来解决;②如何将实际问题转化为一元一次不等式并加以解决。
根据以上的分析和《数学课程标准》对本课内容的教学要求,本节课的教学重点是:一元一次不等式在决策类实际问题中的应用;难点是:如何将实际问题中的数量关系符号化,并根据解集和结合实际情况分类讨论得出合理结论。
根据本课教材的特点、《数学课程标准》对本节课的教学要求以及学生的认知水平,我从三个方面确定了以下教学目标:
1、能进一步熟练的解一元一次不等式,能从实际问题中抽象出不等关系的数学模型,并结合解集解决简单的实际问题。
2、通过观察、实践、讨论等活动,积累利用一元一次不等式解决实际问题的经验,提高分类考虑、讨论问题的能力,感知方程与不等式的内在联系,体会不等式和方程同样都是刻画现实世界数量关系的重要模型。
3、在积极参与数学学习活动的过程中,体会实事求是的态度和从数学的角度思考问题的习惯;学会在解决困难时,与其他同学交流,相互启发,培养合作精神。
根据教学内容、教学目标和学生的认知水平,我主要采取教师启发引导,学生自主探究的教学方法.教学过程中,创设适当的教学情境,引导学生独立思考、共同探究,使学生经历将生活中的数和数量关系转化为数学符号的具体建模过程,体会不等式作为刻画现实世界数量关系的重要模型的价值。
教学中使用多媒体投影、计算机辅助教学,目的是充分发挥其快捷、生动、形象的特点,为学生提供直观感性的材料,有助于学生对问题的关注和理解,激发学生的学习兴趣.
为了达到本节课的教学目标,突出重点,突破难点,我把教学过程通过两个实际问题逐步深入;最后归纳小结,布置作业.具体过程如下:
1、课题引入:
我们以前已经学过了一元一次方程以及二元一次方程组的解法,并在解决许多实际问题的过程中感受到:将相等关系用数学符号抽象后所得到的“方程”确实是一种有效数学工具,它能让我们的思维过程更加准确和简明!
但是,生活中除了相等的数量关系以外,还存在着大量的不等关系,通过前几节课的学习,我们也已经基本了解了不等式的性质和简单不等式的解法。今天,就让我们通过一些带有选择“决策”意义的实际问题来共同探讨一下一元一次不等式这种数学模型是如何解决生活中的实际问题的。
实际情景1:在为我校初一年级学生选定营养餐的过程中选中了有两家公司.
这两家公司某种适合初一学生的营养餐的报价均是是6.5元/份,营养含量和服务承诺也均相同,且都表示对学生优惠:甲公司表示每份按报价的90%收费,乙公司表示购买100份以上的部分按报价的80%收费.
结 合新课标对本小节的要求:会用一元一次不等式解决简单的实际问题,我选择的是从数量关系上与教材例题类似的收费问题,并且真实数值与所在年级事情相一致,比书上的例题更能贴近学生的实际生活,引发学生探求的`兴趣。特别的,通常此类题目是不给出具体单价的,因为并不影响最后结论,考虑到学生现阶段的数学抽象 仍以识别数量的具体含义为主,所以我在此处添加了单价,并增设了问题一,用以降低抽象思维的梯度,为后续的设未知数的“代数化抽象”作适当的铺垫。
问题(1)请你判断,我们年级580人用餐,应该选择哪家公司能让每位学生的餐费平均算来更低呢?
预案 一:教师应关注学生能否在讨论中认清“每位学生的餐费平均算来更低”所对应的数量意义,将之转化为“付给公司的总金额少”。在此处不排除学生因生活经历的缺乏,而对题目中所隐含的数量关系抽象能力弱。应关注每一位同学的感受,让同学们充分理解交流,扩大参与思考的广度,获得基本抽象思维的生长点。
预案二:在进行甲乙公司所需费用的计算时,会有分部计算和综合计算两种计算形式,对于那些列综合算式的同学,教师应多给予展示机会,从而帮助其他同学整理思路,理解算式的实际含义;为后续的字母抽象做好铺垫。具体计算学生可以合理使用计算器提高课堂速度。
预案三:学生还有可能不通过计算,直接猜测甲公司合算或者乙公司合算,对于这种有可能产生的声音,教师应从估算的角度加以引导。引导学生体会在580人的前提下,超过100人部分(480人)的甲公司是九折乙公司是八折, 10%的差距,;100人以内(少于100人)甲公司九折,乙公司不打折10%的差距,480的10%明显大于100的10%,所以选乙合算,并引导学生用计算的方法验证估算的准确性。
结论:580人时选择乙公司能让每位学生的餐费平均算来更低。
问题(2)你能否用以前学过的知识,在不知道具体人数的前提下制定一套方案,当其他学校的初一年级也想在这两家公司之间进行选择时,不用重复第一题的计算过程,只要知道人数就马上能根据你方案的结论作出决策呢?
结合以前的训练,学生很容易想到要通过设未知数的方法进行符号表达,将非常关键而题目中并未给出的学生人数设为未知数。由于本题的具体分析过程仍然是由学生分析讨论完成,可能出现的情况是:
预案一:一部分综合能力较强的同学会根据实际意义直接列出综合算式:或
此处教师应该引导学生观察,在化简不等式的过程中单价并未影响结果(利用不等式性质二将其作为公倍数约去),即:题目中没有具体的单价也不会影响本题的决策。
还可以结合小学单位一的思想化简不等式,引导学生体会并不是题目中出现的所有数量都会影响不等关系,有可能引发学生的关于数量关系的深层次思考。
预案 二:还有一部分学生会因为生活经验少的关系,综合思考能力弱,无法快速的理清数量关系,列出综合算式,思考受阻,教师应引导学生体会在第一题的算式意义的提示下,如何分别列出表达甲乙公司所需总费用的过程量代数式。然后在通过将之用不等号连接的方式,来表达两笔费用的大小,降低因综合性所引起的思维梯度, 在过程中让学生体会“分步建模”的思维的条理性。
问题(1)如果你是该企业的高级管理人员,请你设计该企业在购买设备时两种型号有几种不同的组合方案;
问题(2)若按固定产量预算企业每月产生的污水量约为20xx吨,为了节约资金,应选择哪种购买方案?
实际情景2的选择除涉及“角色扮演”和“环保”等人文因素的考虑以外,在在结合本节的教学目标上还有如下考虑,
1、 本题取材于真实的实际生活问题,情景中的符号和数量关系较多,不等关系在文字语言的叙述中显得比第一题更加隐蔽,需要学生更深化的思考才能列出算式,是在第一个情景的基础上的扩展和深化。
2、 在学生的讨论过程中,教师应注重引导学生体会,用图表表示的数字信息比文字表达更便于观察和有序思考,感受“有序表达”在实际中的价值。
3、 结合本题每一个的具体问题的分析和解决,学生必须要从表格中分析筛选相关的有用数据,(例如:在第一问设计方案时未用到“处理污水量”和“年消耗费”,在第二问中未用到“价格”和“年消耗费”)这种分析和筛选的思考经历将有助于加强学生对数据关系的理解和运用能力。
结合以前的训练,在思考问题(1)学生很容易想到要通过设A型或B型设备的
例如:(1)设购买污水处理设备A型 台,则B型(10 – )台,由题意知:
在此处,将“限额为105万元”转化为“≤105”是学生要突破的第一关,教师应在次处多展示同学的对“限额为105万元”语言解释,尽可能多的在具有不同经历基础的同学心中将这个抽象过程生活化、自然化。
因为在实际情景中往往要根据未知数所代表的具体含义为未知数的加一个取值范围的限定,而这个隐含的限制条件往往是学生中所不容易考虑到的,教师应注意引导学生注意这一问题,
例如:本题中的 是设备的台数,应用非负整数的限制,所以 可取0、1、2,因此有三种购买方案:
①购A型0台,B型10台;
②购A型1台,B型9台;
③购A型2台,B型8台。
此处细节性的思考经历,有助于提高学生在建模过程中更全面的考虑数值的实际意义,促进抽象符号与具体意义在头脑中的融合。
特别的,此处的“0”是学生最容易忽视和丢掉的,教师在此处应重点引导学生思考当“ ”时,往往是企业最可能选的方案,因为不同的设备涉及到不同的维护问题,单一品种的设备往往更便于管理,这种思考有助于发散学生的思维,促进其结合实际作更全面的思考。
问题(2)的思维梯度较前几个问题进一步加大,学生必须理解“节约资金”这个目的的达成 一定是在“完成任务”的前提下的,要先通过对(1)中所得的三套方案是否能完成任务加以讨论和验证,然后再涉及计算哪个方案费用更低的问题
在验证三套方案的可行性时,收思维方式的局限,学生往往会选择逐一列举计算的讨论方式,并且由于数量少,很容易得出答案,教师可引导学生思考,如果满足(1)的方案不是三种,而是三十种呢?三百种呢?除了逐一讨论以外还有没有什么更好的方式能帮助我们迅速缩小范围呢?引导学生将所买设备能否完成任务量转化为如下不等关系:
(2)同(1)所设购买污水处理设备A型 台,则B型(10 – )台,
240 +200(10 – )≥20xx;
因此为了节约资金,应选购A型1台,B型9台。
此处的分析和引导有助于学生体会不等式在有效缩小讨论范围时的实际价值。
通过以上问题的解决,学生对不等式和方程一样都是刻画现实世界数量关系的重要模型有了进一部的认识,并感受到不等式确实是从实际问题中提出,又为解决实际问题提供明确的帮助有效数学工具。
本阶段通过学习小结进行课堂教学的反馈,组织和指导学生归纳知识、技能、方法,深化对数学思想方法的认识,为后续学习打好基础。
不等式课件 篇3
(1)本节内容,是在学习了用方程思想解决实际问题和一元一次不等式的性质及其解法等知识的基础上,把实际问题和一元一次不等式结合在一起,既是对已学知识的运用和深化,又为今后用不等式组解决实际问题以及更广泛的应用数学建模的思想方法奠定基础,具有在代数学中承上启下的作用;
(2)通过本节的学习,学生将继续经历把生活中的数和数量关系转化为数学符号的体验过程,体会不等式和方程一样都是刻画现实世界数量关系的重要模型。
(3)在列不等式解决实际问题的探索过程中,引导学生注意估算意识,体会算式结果所对应的实际意义,渗透建立数学模型,分类讨论等数学思想,对提升学生应用数学意识思考和解决问题的能力起到积极的作用。
对于用不等式解决实际问题,学生容易出现的认知困难主要有两个方面:①哪类的实际问题需要用一元一次不等式来解决;②如何将实际问题转化为一元一次不等式并加以解决。
根据以上的分析和《数学课程标准》对本课内容的教学要求,本节课的教学重点是:一元一次不等式在决策类实际问题中的应用;难点是:如何将实际问题中的数量关系符号化,并根据解集和结合实际情况分类讨论得出合理结论。
根据本课教材的特点、《数学课程标准》对本节课的教学要求以及学生的认知水平,我从三个方面确定了以下教学目标:
1.能进一步熟练的解一元一次不等式,能从实际问题中抽象出不等关系的数学模型,并结合解集解决简单的实际问题。
2.通过观察、实践、讨论等活动,积累利用一元一次不等式解决实际问题的经验,提高分类考虑、讨论问题的能力,感知方程与不等式的内在联系,体会不等式和方程同样都是刻画现实世界数量关系的重要模型。
3.在积极参与数学学习活动的过程中,体会实事求是的态度和从数学的角度思考问题的习惯;学会在解决困难时,与其他同学交流,相互启发,培养合作精神。
三、教学方法的选择
根据教学内容、教学目标和学生的认知水平,我主要采取教师启发引导,学生自主探究的教学方法.教学过程中,创设适当的教学情境,引导学生独立思考、共同探究,使学生经历将生活中的数和数量关系转化为数学符号的具体建模过程,体会不等式作为刻画现实世界数量关系的重要模型的价值,
教学中使用多媒体投影、计算机辅助教学,目的是充分发挥其快捷、生动、形象的特点,为学生提供直观感性的材料,有助于学生对问题的.关注和理解,激发学生的学习兴趣.
为了达到本节课的教学目标,突出重点,突破难点,我把教学过程通过两个实际问题逐步深入;最后归纳小结,布置作业.具体过程如下:
1、课题引入:
我们以前已经学过了一元一次方程以及二元一次方程组的解法,并在解决许多实际问题的过程中感受到:将相等关系用数学符号抽象后所得到的“方程”确实是一种有效数学工具,它能让我们的思维过程更加准确和简明!
但是,生活中除了相等的数量关系以外,还存在着大量的不等关系,通过前几节课的学习,我们也已经基本了解了不等式的性质和简单不等式的解法。今天,就让我们通过一些带有选择“决策”意义的实际问题来共同探讨一下一元一次不等式这种数学模型是如何解决生活中的实际问题的。
实际情景1:在为我校初一年级学生选定营养餐的过程中选中了有两家公司.
这两家公司某种适合初一学生的营养餐的报价均是是6.5元/份,营养含量和服务承诺也均相同,且都表示对学生优惠:甲公司表示每份按报价的90%收费,乙公司表示购买100份以上的部分按报价的80%收费.
结 合新课标对本小节的要求:会用一元一次不等式解决简单的实际问题,我选择的是从数量关系上与教材例题类似的收费问题,并且真实数值与所在年级事情相一致,比书上的例题更能贴近学生的实际生活,引发学生探求的兴趣。特别的,通常此类题目是不给出具体单价的,因为并不影响最后结论,考虑到学生现阶段的数学抽象 仍以识别数量的具体含义为主,所以我在此处添加了单价,并增设了问题一,用以降低抽象思维的梯度,为后续的设未知数的“代数化抽象”作适当的铺垫。
问题(1)请你判断,我们年级580人用餐,应该选择哪家公司能让每位学生的餐费平均算来更低呢?
预案 一:教师应关注学生能否在讨论中认清“每位学生的餐费平均算来更低”所对应的数量意义,将之转化为“付给公司的总金额少”。在此处不排除学生因生活经历的缺乏,而对题目中所隐含的数量关系抽象能力弱。应关注每一位同学的感受,让同学们充分理解交流,扩大参与思考的广度,获得基本抽象思维的生长点。
预案二:在进行甲乙公司所需费用的计算时,会有分部计算和综合计算两种计算形式,对于那些列综合算式的同学,教师应多给予展示机会,从而帮助其他同学整理思路,理解算式的实际含义;为后续的字母抽象做好铺垫。具体计算学生可以合理使用计算器提高课堂速度。
预案三:学生还有可能不通过计算,直接猜测甲公司合算或者乙公司合算,对于这种有可能产生的声音,教师应从估算的角度加以引导。引导学生体会在 580人的前提下,超过100人部分(480人)的甲公司是九折乙公司是八折, 10%的差距,;100人以内(少于100人)甲公司九折,乙公司不打折10%的差距,480的10%明显大于100的10%,所以选乙合算,并引导学生用计算的方法验证估算的准确性。
不等式课件 篇4
教学建议
一、知识结构
本书首先结合实例引入一元一次不等式组的解集的概念,然后通过三个例题说明利用数轴解一元一次不等式组的方法,最后对一元一次不等式组的解法步骤进行了总结.
二、重点、难点分析
本节教学的重点是掌握一元一次不等式组的解法步骤并准确地求出解集.难点是正确应用不等式的基本性质对不等式进行变形、求不等式组中各个不等式解集的公共部分.不等式在中学代数中是研究问题的重要工具,例如求函数的定义域、值域、研究函数的单调性,求最大值、最小值,一元二次方程根的讨论等,都要用到不等式的知识.不等式也是进一步学习其他数学内容的基础.学习和掌握不等式的求解和不等式的证明方法,对培养学生逻辑思维能力也有极其重要的作用.在处理解不等式的问题中,一元一次不等式组的解法,具有特别重要的意义.这是因为,解各类不等式的问题都可以归结为解一些由简单不等式所组成的不等式组.
1、在构成不等式组的几个不等式中
①这几个一元一次不等式必须含有同一个未知数;
②这里的“几个”并未确定不等式的个数,只要不是一个,两个,三个,四个……都行.
2、当几个不等式的解集没有公共部分时,我们就说这个不等式组无解.
3、由两个一元一次不等式组成的不等式的解集,共归结为下面四种基本情况:
【注意】①其中第(4)个不等式组,实质上是矛盾不等式组,任何数都不能使两个不等式同时成立。所以说这个不等式组无解或说其解集为空集。②从上面列出的表中,我们可以概括出来不等式组公共解的一规律:同大取大,同小取小,一大一小中间找。
三、教法建议
1.解本节的引例及例1、例2、例3时,注意把解不等式组的思路讲清楚,即先分别解每一个不等式,求出解集,再求这些解集的公共部分.求公共部分的过程一定要结合数轴来讲。
2.这节课的讲解自始至终要突出解不等式组的基本思想以及解一元一次不等式组的步骤这两个重点.准确熟练地解一元一次不等式以及用数轴上的点表示不等式的解集是这节课的基础,因此讲新课之前要复习提问这些内容。
3.求公共解集是这节课的新授内容,教师要充分利用数轴表示不等式解集具有形象、直观、易于说明问题这些优点.解集的公共部分教师可用彩笔在数轴的相应部分描画出来,使学生感到醒目,便于理解记忆。
4.每组不等式不要超过三个,关键是使学生理解和掌握解不等式组的基本思想和两个步骤,不宜做过于难、过于多、重复的机械计算。
不等式课件 篇5
(一)复习提问:
三角形的三边关系?
(二)列一元一次不等式组
问题:现有两根木条a和b,a长10cm,b长3cm.如果要再找一根木条c,用这三根木条钉成一个三角形木框,那么对木条c的长度有什么要求?
注:这个问题是本节的'引入问题,三角形木框的形状不唯一确定,只要能成为三角形即可.
探究:用三根长度分别为14cm,9cm,6cm的木条c1,c2,c3分别试试,其中哪根木条能与木条a和b一起钉成三角形木框?
可以发现,当木条a和b的长度确定后,木条c太长或太短,都不能与a和b一起钉成三角形.
由于“三角形中两边之和大于第三边,两边之差小于第三边”,设木条c长xcm,则x必须同时满足不等式x10+3①和x10-3②
注:木条c必须同时满足两个条件,即ca+b,ca-b.
类似于方程组,把这两个不等式合起来,组成一个一元一次不等式组记作注:这里并未正式给一元一次不等式组下定义,只是说这两个不等式合起来,组成一个一元一次不等式组.实际上,两个或更多的一元一次不等式组合起来,都组成一个一元一次不等式组.
(三)一元一次不等式组的解集
类比方程组的解,怎样确定不等式组中x的可取值的范围呢?
不等式组中的各不等式解集的公共部分,就是不等式组中x可以取值的范围.
注:这里还未正式出现不等式组的解集的概念,但已点出各不等式的解集的公共部分即不等式组中未知数的可取值范围.
由不等式①解得x13.
由不等式②解得x7.
从图9.3—2容易看出,x可以取值的范围为713.
注:利用数轴可以直观形象地认识公共部分.这个公共部分是两端有界的开区间.
这就是说,当木条c比7cm长并且比13cm短时,它能与木条a和b一起钉成三角形木框.
一般地,几个不等式的解集的公共部分,叫做由它们所组成的不等式组的解集.解不等式组就是求它的解集.
注:这里正式给出不等式组的解集以及解不等式组的定义13.注:利用数轴可以直观形象地认识公共部分.这个公共部分是两端有界的开区间.这就是说,当木条c比7cm长并且比13cm短时,它能与木条a和b一起钉成三角形木框.一般地,几个不等式的解集的公共部分,叫做由它们所组成的不等式组的解集.解不等式组就是求它的解集.注:这里正式给出不等式组的解集以及解不等式组的定义。
不等式课件 篇6
一元一次不等式组(2)
文星中学唐波
一、教学目标
(一)知识与技能目标
1、熟练掌握一元一次不等式组的解法,会用一元一次不等式组解决有关的实际问题。
2、理解一元一次不等式组应用题的一般解题步骤,逐步形成分析问题和解决问题的能力。
(二)过程与方法目标
通过利用列一元一次不等式组解答实际问题,初步学会从数学的角度提出问题、理解问题、并能综合运用所学的知识解决问题,发展应用意识。
(三)情感态度与价值观
通过解决实际问题,体验数学学习的乐趣,初步认识数学与人类生活的密切联系。
二、教学重难点
(一)重点:建立用不等式组解决实际问题的数学模型。
(二)难点:正确分析实际问题中的不等关系,根据具体信息列出不等式组。
三、学法引导
(一)教师教法:直观演示、引导探究相结合。
(二)学生学法:观察发现、交流探究、练习巩固相结合。
四、教具准备:多媒体演示
五、教学过程
(一)、设问激趣,引入新课
猜一猜:我属狗,请同学们根据我的实际情况来猜测我的年龄。(学生大胆猜想,利用不等关系分析得出答案。)
(二)、观察发现,竞赛闯关
1、比一比:填表找规律
(学生抢答,教师补充。)2利用发现的规律解不等式组 ?(学生解答,抽生演板。)你可以得到它的整数解吗?
(抽生回答:因为大于11小于14的整数有12和13,所以整数解为12和13。)3填空:三角形三边长分别为2、7、c,则 c的取值范围是__________。如果c是一个偶
数,则 c=__________。
(学生回答,教师补充更正。)
(三)、欣赏图片,探究新知
1、欣赏“五岳看山”。
2、利用欣赏引出例题(教科书P139例2仿编)
例:3名同学计划在10天内到嵩山拍照500张(每天拍照数量相同),按原来的计划,不能完成任务;如果每人每天比原计划多拍1张,就能提前完成任务,每个同学原计划每天............拍多少张?
生齐读,找出题中的已知条件和未知条件;再默读,找一找表示数量关系的句子。师引导分析,并提出问题:
(1)你是怎样理解“不能完成任务”的数量含义的?你是怎样理解“提前完成任务”的数量含义的?
(2)解决这个问题,你打算怎样设未知数?
(3)在本题中,可以找出几个不等关系,可以列出几个不等式?(学生交流讨论,教师指导。)
?7x?98
?7(x?3)?98
解答完成后,学生自学课本例2。
3、由例解题答过程,类比列二元一次方程组解应用题的步骤,总结列一元一次不等式组的解题步骤:
(1)、分析题意,设未知数; .(2)、利用不等关系,列不等式组; .(3)、解不等式组; .
(4)、检验,根据题意写出答案。.(学生总结,抽生回答,教师补充。)
(四)、闯关练习,巩固新知
1练一练:为纪念“5·12”大地震一周年,“五一”部分同学到青城山拍照留念,如果每人拍8张则多于如果每人拍9张则不够问共有多少个同学参加青城山旅游? ..150张;..180张。
教师引导:抓住重点词语,找到不等关系,列出不等式组。学生独立完成,抽生回答。
比较列二元一次方程组和列一元一次不等式组解应用题的区别:
(学生类比找区别,教师补充。)2练一练(教科书P140练习第2题):一本英语书共98页,张力读了一周(7天)还没读完,而李永不到一周就已读完。李永平均每天比张力多读3页,张力平均每天读多少页(答案取整数)?
学生分析列出不等式组,教师指导。(前面的练习已解出不等式组。)
(五)、畅所欲言,归纳小结 学生畅所欲言,谈收获体会 多媒体展示,本课内容小结:
1、解一元一次不等式组的秘笈:同大取大,同小取小,大小小大中间找,大大小小解不了。
2、具有多种不等关系的问题,可通过不等式组解决。
3、列一元一次不等式组解应用题的步骤是:(1)、分析题意,设未知数;(2)、利用不等关系,列不等式组;(3)、解不等式组;
(4)、检验,根据题意写出答案。
(六)、课后演练,终极挑战
必做题:教材习题第4、5、6题;
选做题:一个两位数,它的十位数字比个位数字大1,而且这个两位数大于30小于42,则这个两位数是多少?
六、板书设计
一元一次不等式组(2)
解:设每个同学原计划每天拍x张,得
① ?3?10x?500
?
?3?10(x?1)?500②
1、分析题意,设未知数;
解得x
3根据题意,x应为整数,所以x=16 答:每个同学原计划每天拍16张。
2??
2、找不等关系,列不等式组; ?
?
3、解不等式组; ?步骤
??
?
4、检验并根据题意写出答案。?
不等式课件 篇7
科学合理的教学方法能使教学效果事半功倍,达到教与学的和谐完美统一。
基于此,我准备采用的教法讲授法、讨论法。德国教育学家第斯多慧:差的教师只会奉送真理,好的教师则交给学生如何发现真理,老师的教是为了不教,这才是教学的最高境界,所以我采用的学法是练习法、自主合作法。
在这节课的教学过程中,我注重突出重点,条理清晰,紧凑合理。各项活动的安排也注重互动、交流,最大限度的调动学生参与课堂的积极性、主动性。
首先是导入环节,我采用复习旧知的导入方法。我会让学生回忆不等式的概念以及一元一次方程的概念,明确指出今天学习的内容是《一元一次不等式》。
这样的设计既可以考查学生对之前知识的掌握情况,还能够为今天学习一元一次方程的概念打下基础。而且开门见山的导入方式能够快速地进入主题。
接下来是新知探索环节,首先我请学生类比不等式以及一元一次方程的概念,给一元一次不等式下定义。
能够总结出:含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式。
接下来让学生回忆上节课学习的不等式x-7>26如何解决的,通过学生回忆总结可以得到:通过“不等式的两边都加7,不等号的方向不变”而得到的。
接下来提问学生有没有更加简便的方法解不等式?让学生类比解一元一次方程的步骤进行解题。可以得到相当于可以用“移项”,来解决。
在这个过程中,强调每一个步骤,在第二题最后一步,强调当不等式的两边同时乘以(或除以)同一个负数时,不等号的方向改变。
解完不等式,先让学生回忆解一元一次方程的步骤是什么?并类比解一元一次方程的步骤,总结一下解一元一次不等式的步骤是什么?
从而我们归纳:解一元一次方程,要根据等式的性质,将方程逐步化为x=a的形式;而解一元一次不等式,则要根据不等式的性质,将不等式逐步化为xa的形式。
《数学课程标准》指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者”。根据这一教学理念,在本环节中,我组织学生进行了自主探究活动,让学生在保持高度学习热情和探究欲望的活动过程中,始终以愉悦的心情,亲身经历和体验知识的形成过程。培养学生的探究能力、分析思维能力,激发他们的创新意识、参与意识。
第三个环节是课堂练习环节,出示问题,解不等式,并在数轴上表示数集:5x+15>4x-1
之所以这样设计是因为练习是掌握知识、形成技能、发展思维的重要手段,针对本课的教学重点和难点,上述练习,目的是让学生进一步巩固对新知的理解。可以深化教学内容,培养思维的灵活性。
最后一个环节为小结作业环节,关于课堂小结,我打算让学生自己来总结今天的收获。
这样既发挥了学生的主体性,又可以提高学生的总结概括能力,让我在第一时间得到学习反馈,及时加以疏导。
通过这样的方式能够为本节课学习的知识进行进一步的巩固。
我的板书设计遵循简洁明了突出重点的意图,这是我的板书设计:
不等式课件 篇8
1、了解一元一次不等式组的概念。
2、理解一元一次不等式组的解集,能求一元一次不等式组的解集。
3、会解一元一次不等式组。
通过具体问题得到一元一次不等式组,从而了解一元一次不等式组的概念,解出每个不等式,利用数轴求出各不等式解集的公共部分,从而得到不等式组的解集,通过解几个有代表性的一元一次不等式组,总结出求不等式组解集的法则。
运用数轴确定不等式组的解集是行之有效的方法。这种“数形结合”的方法今后经常用到,锻炼同学们数形结合的能力,提高学习兴趣。
一元一次不等式组的解法。
确定一元一次不等式组的解集。
一、情境导入,初步认识
问题1现有两根木条a和b,a长10cm,b长3cm,如果要再找一根木条c,用这三根木条钉成一个三角形木框,那么木条c的长度有什么要求?
解:由于三角形中两边之____大于第三边,两边之____小于第三边,设c的长为xcm,则x<____,①x>____,②合起来,组成一个__________。
由①解得_____________,由②解得_____________。
在数轴上表示就是________________。
容易看出:x的取值范围是____________________。
这就是说,当木条c比____cm长并且比____cm短时,它能与木条a和b一起钉成三角形木框。
问题2由上面的解不等式组的过程用自己的语言归纳出一元一次不等式组的.解法。
全班同学可独立作业,也可分组自由讨论,10分钟后交流成果,逐步得出结论。
二、思考探究,获取新知
思考什么叫一元一次不等式组,什么叫一元一次不等式组的解集,什么叫解不等式组?
1、定义:
(1)一元一次不等式组:几个含有相同未知数的一元一次不等式合起来组成一个一元一次不等式组。
(2)一元一次不等式组的解集:几个不等式的解集的公共部分,叫做由它们所组成的不等式的解集。
(3)解不等式组:求一元一次不等式组的解集的过程叫解一元一次不等式组。
2、一元一次不等式组的解法:
(1)求出每个一元一次不等式的解集。
(2)求出这些解集的公共部分,便得到一元一次不等式组的解集。
不等式课件 篇9
本节教学的重点是不等式的解集的概念及在数轴上表示不等式的解集的方法.难点为不等式的解集的概念.
相同点:定义方式相同(使方程成立的未知数的值,叫做方程的解);解的表示方法也相同.
不同点:解的个数不同,一般地,一个不等式有无数多个解,而一个方程只有一个或几个解,例如, 能使不等式 成立,那么 是不等式的一个解,类似地 等也能使不等式 成立,它们都是不等式 的解,事实上,当 取大于 的数时,不等式 都成立,所以不等式 有无数多个解.
不等式的解与不等式的解集是两个不同的概念,不等式的解是指满足这个不等式的未知数的某个值,而不等式的解集,是指满足这个不等式的未知数的所有的值,不等式的所有解组成了解集,解集中包括了每一个解.
注意:不等式的解集必须满足两个条件:第一,解集中的任何一个数值,都能使不等式成立;第二,解集外的任何一个数值,都不能使不等式成立.
一般地,一个含未知数的不等式有无数多个解,其解集是某个范围,这个范围可用一个最简单的不等式表示出来,例如,不等式 的解集是 .
如不等式 的解集 ,可以用数轴上表示4的点的左边部分表示,因为 包含 ,所以在表示4的点上画实心圆.
如不等式 的解集 ,可以用数轴上表示4的点的左边部分表示,因为 包含 ,所以在表示4的点上画实心圈.
注意:在数轴上,右边的点表示的数总比左边的点表示的数大,所以在数轴上表示不等式的解集时应牢记:大于向右画,小于向左画;有等号的画实心圆点,无等号的画空心圆圈.
1.使学生了解不等式的解集、解不等式的概念,会在数轴上表示出不等式的解集.
2.知道不等式的“解集”与方程“解”的不同点.
通过教学,使学生能够正确地在数轴上表示出不等式的解集,并且能把数轴上的某部分数集用相应的不等式表示.
通过讲解不等式的“解集”与方程“解”的关系,向学生渗透对立统一的辩证观点.
通过本节课的学习,让学生了解不等式的解集可利用图形来表达,渗透数形结合的数学美.
2.学生学法:明确不等式的解与解集的区别和联系,并能熟练地用数轴表示不等式的解集,在数轴上表示不等式的解集时,要特别注意:大于向右画,小于向左画;有等号的画实心圆点,无等号的画空心圆圈.
不等式课件 篇10
1.了解不等式及一元一次不等式概念。
2.理解不等式的解、解集,能正确表示不等式的解集。
通过类比等式的对应知识,探索不等式的概念和解,体会不等式与等式的异同,初步掌握类比的思想方法。
1.经历把实际问题抽象为不等式的过程,能够列出不等关系式。
2.初步体会不等式(组)是刻画现实世界中不等关系的一种有效数学模型,培养学生的建模意识。
通过对不等式概念及其解集等有关概念的探索,培养学生的知识迁移能力和建模意识,加强同学之间的使用与交流。
活动一:
感知不等关系,了解不等式的概念。
通过实例,让学生认识到不等关系在生活中的存在,通过问题的解答,让学生了解不等式的概念,体会不等式是解决实际问题的有效工具。
活动二:
通过类比方程,继续探索出不等式的解、解集及其表示方法。
通过解决上个环节的问题,得出不等式的解,再引导学生观察解的特点,探索出解集的两种表示方法(符号表示、数轴表示),并且培养学生用估算方法求解集的技能。
活动三:
继续探索,归纳出一元一次不等式的意义。
针对所学的不等式,让学生归纳出特点,得到一元一次不等式的概念,并对概念进行辨析。
运用本节所学的知识,解决实际问题,使学生经历将实际问题转化为数学问题,再加以解决的过程,实现对所学知识的巩固和深化。
让学生通过自我反思和互相质疑提问,归纳总结本节课的主要内容,交流在概念、解及解集学习中的心得和体会,不断积累数学活动经验,教师应主动参与学生小结中,作好引导工作,布置好作业,并作及时反馈。
小强准备随父母乘车去武当山春游。
⑴在车上看到儿童买票所需的测身高标识线。
①x满足______时,他可免票。
②x满足______时,他该买全票。
⑵已知襄樊与武当山的距离为150千米,他们上午10点钟从襄樊出发,汽车匀速行驶。
①若该车计划中午12点准时到达武当山,车速应满足什么条件?
②若该车实际上在中午12点之前已到达武当山,车速应满足什么条件?
用不等式表示:
⑴a是正数;⑵a是负数;⑶a与5的和小于7;⑷a与2的差大于-1;
⑸a的4倍大于8;
⑹a的一半小于3。
学生回答①这两个由实际生活情境设置的问题,应非常容易.问题②相对①难度加大了,难在题意中的条件不象上面那样直接明了,并且可从距离和时间两个角度来分析、解决问题,而七年级学生恰恰缺乏阅读分析题意、多维度思考解决问题的能力,所以采用小组讨论交流的形式解决问题②
学生讨论角度估计大都集中在距离这一角度,教师可深入小组讨论中,认真听听同学们的思路,应鼓励学生多发表意见,并适当点拨,直到得出两种不等式。
此次活动中,教师应重点关注:讨论要有足够的时间和空间,学生在小组讨论交流时,是否敢于发表自己的想法。
再给出不等式概念:
像前面式子一样用“>”或“
教师可要求学生举出一些表示大小的式子,学生举出的不等式中,可能会有一些不含未知数的,如5>3等。教师此时应总结:不等式中可含有未知数,也可不含未知数。
教师根据学生举例给出表示不等关系的第三种符号“≠”,并强调:像前面式子一样用“≠”表示不等关系的式子也是不等式。
巩固练习是让学生用不等式来刻画题中6个简单的不等关系。学生得出答案并不难,所以该环节让学生独立完成、互相评价,教师可深入到学生的解题过程中,观察指导学生的解题思路,倾听学生的评价。
问题1在课本中起导入新课作用,考虑学生实际情况(分析应用题能力尚欠缺)和题目难度,所以设置问题串,降低难度。这样编排教材我认为更能体现知识呈现的序列性,从易到难,让学生“列不等式”能力实现螺旋上升。
问题3作用仅仅起巩固上面所学的知识,所以采用书中的一组习题,让学生独立完成,进一步培养学生列不等式能力。
采用学生熟悉的生活情境作为导入内容,然后层层推进,步步设问,环环相扣,直至推出不等式的概念及概念理解中应注意的地方。这样实现了:让学生从已有的数学经验出发,从生活中建构数学模型,为后面利用“不等式”这一模型解决生活中实际问题作好铺垫,体现了数学生活化、生活
不等式课件 篇11
1、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。
2、解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x项的系数化为1
1、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。
2、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。
3、求不等式组的解集的过程,叫做解不等式组。
4、当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。
3、代数式1-m的值大于-1,又不大于3,则m的取值范围是( )
A.x≥1 B.x≥-1/2 C.x>1 D.x>-1/2
A.5+4>8 B.2x-1 C.2x-5≤1 D.1/x-3x≥0
A. a>0¬ B.a≥0¬ C.a
11、若关于x的不等式组 的解集是x>2a,则a的取值范围是
A. a>4 B. a>2 C. a=2 D.a≥2
12、若方程组 中,若未知数x、y满足x+y>0,则m的取值范围是
13、不等式2(1) x>-3的解集是 。
14、用代数式表示,比x的5倍大1的数不小于x的 与4的差 。
15、若(m-3)x-1,则m .
18、某次个人象棋赛规定:赢一局得2分,平一局得0分,负一局得反扣1分。在12局比赛中,积分超过15分就可以晋升下一轮比赛,小王进入了下一轮比赛,而且在全部12轮比赛中,没有出现平局,问小王最多输 局比赛
1、定义:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点。
2、心对称的两条基本性质:
(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分。
(2)关于中心对称的两个图形是全等图形。
把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。
每上第一次课,我所讲的课程内容都和学生的错题有关。我通常把试卷中的错题摘抄出几个典型题,作为课堂的例题再讲一遍。而学生的反应,或是像没有见过,或是对题目非常熟悉,但没有思路。
这些现象的发生,都是学生没有及时总结的原因。所以第一次课后我都建议我的学生做一个错题本,像写日记一样,记录下自己的错题和感想。
成也审题败也审题。如何审题呢?
(1)这个题目有哪些个已知条件?我能不能把已知条件分开?
(2)求解的目标是什么?对求解有什么要求?
(3)能不能画一个图帮助思考?好多问题是没有看清楚题意致错。审题不清,你做得越多,可能错的就越多。
(4)所给出的已知条件相互之间有什么关系?能不能从中发现隐含条件?
(5)已知条件与求解目标有什么联系?能不能从中获得解题的思路?找到进门的门槛?
不等式课件 篇12
1.使学生感受到生活中存在着大量的不等关系,了解不等式和一元一次不等式的意义;
2.让学生自发地寻找不等式的解,会在数轴上正确地表示出不等式的解集;
3.能够根据题意准确迅速地列出相应的不等式。
1.通过汽车行驶过a地这一实例的研究,使学生体会到数学来源于生活,又服务于生活,培养学生“学数学、用数学”的意识;
2.经历由具体实例建立不等模型的过程,探究不等式的解与解集的不同意义的过程,渗透数形结合的思想。
㈢情感、态度、价值观:
1.通过对不等式、不等式的解与解集的探究,引导学生在独立思考的基础上积极参与对数学问题的讨论,培养他们的合作交流意识;
2.让学生充分体会到生活中处处有数学,并能将它们应用到生活的各个领域中去。
3.培养学生类比的思想方法、数形结合的思想。
1.教学重点:不等式、一元一次不等式、不等式解与解集的意义;在数轴上正确地表示出不等式的解集;
2.教学难点:不等式解集的意义,根据题意列出相应的不等式。
计算机、自制cai课件、实物投影仪、三角板等。
教师创设情境引入,学生交流探讨;师生共同归纳;教师示范画图,课件交互式练习。
〖创设情境——从生活走向数学〗
[多媒体展示]“五·一黄金周”快要到了,芜湖市某两个商场为了促销商品,推行以下促销方案:①甲商场:购物不超过50元者,不优惠;超过50元的,超过部分折优惠。②乙商场:购物不超过100元者,不优惠;超过100元的,超过部分九折优惠。亲爱的同学,如果五·一期间,你去购物,选择到哪个商场,才比较合算呢?
(以上教学内容是向学生设疑,激发学生探索问题、研究问题的积极性,可以让学生讨论一会儿)
教师:要想正确地解决这个问题,我们大家就要学习第九章《不等式和不等式组》,学完本章的内容后,我相信,聪明的你们一定都会作出正确的选择,真正地做到既经济又实惠。
首先,我们来共同学习本章的第一节课——9.1.1节《不等式及其解集》
〖新课学习〗
学习目标:
1.能感受到生活中存在着大量的不等关系,了解不等式和一元一次不等式和意义;
2.会寻找不等式的解,会在数轴上正确地表示出不等式的解集;
3.能够根据题意准确迅速地列出相应的不等式。
[多媒体展示一段动画]:引例:一辆匀速行驶的汽车在11:20距离a地50千米,要在12:00之前驶过a地,车速应满足什么条件?
设车速是x千米/小时,
(1)从时间上看,汽车要在12:00之前驶过a地,则以这个速度行驶50千米所用的时间不到 小时,即
(2)从路程上看,汽车要在12:00之前驶过a地,则以这个速度行驶 小时的路程要超过50千米,即
请同学们观察上面的两个式子,式子左右两边的大小关系是怎样的? 左右两边相等吗?
在学生充分发表自己意见的基础上,师生共同归纳得出:
用“>”或“<”号表示大小关系的式子叫做不等式;
用“≠”表示不等关系的式子也是不等式。
判断下列式子中哪些是不等式,是不等式的请在题后的括号内划“√”,不是的请划“×”
(1)3> 2 ( ) (2)2a+1> 0 ( ) (3)a+b=b+a ( )
(4)x< 2x+1 ( ) (5)x=2x-5 ( ) (6)2x+4x< 3x+1 ( ) (7)15≠7+9 ( )
上面的不等式中,有些不含未知数,有些含有未知数,大家把(2)、(4)、(6)式与(5)式类比,(5)式是一个一元一次方程,能不能给(2)、(4)、(6)式也起个名字呢?
含有一个未知数, 未知数的次数是1的不等式,叫做一元一次不等式.
问题2:车速可以是78千米/小时吗?75千米/小时呢? 72千米/小时呢?
问题3:我们曾经学过“使方程两边相等的未知数的值就是方程的解”,那么我们可以把使不等式成立的未知数的值叫做什么呢?
(师生共同归纳)使不等式成立的未知数的值叫做不等式的解。
2.课堂练习二——动一动脑,动一动手,你一定能算得对。
76, 73, 79, 80, 74.9, 75.1, 90, 60
(学生做完后,师问):你还能找出这个不等式的其他的解吗?这个不等式有多少个解?你从中发现了什么规律?
(学生讨论后,师生共同总结):当x>75时,不等式 x>50总成立;而当x<75或x=75时,不等式 x>50不成立,这就是说,任何一个大于75的数都是不等式 x>50的解,这样的解有无数个。因此,x>75表示了能使不等式 x>50成立的x的取值范围,叫做不等式 x>50的解的集合,简称解集。
我们再回到前面的问题,经过刚才的分析,可以知道,要使汽车在12:00之前驶过a地,车速必须大于75千米/小时。
一个含有未知数的不等式的所有的解,组成了这个不等式的解集。
4.在数轴上表示不等式的解集;
注意:在表示75的点上画空心圆圈,表示不包括这一点.
5.课堂练习三——动一动脑,动一动手,你一定能算得对。
判断下列数中哪些是不等式x+3>6的解? 哪些不是?
-4, -2.5, 0, 1, 2.5, 3, 3.2, 4.8, 8, 12
求不等式的解集的过程叫做解不等式。
7.课堂练习四——看谁算得最快最准。
直接想出不等式的解集,并在数轴上表示出不等式的解集:
(1) x+3>6; (2)2x<8; (3)x-2>0
解:(1)x>3; (2)x<4; (3)x>2。
1.例用不等式表示:
(1)x与1的和是正数; (2)的与的的差是负数;
(3)的2倍与1的和大于3;(4)的一半与4的差小于的3倍.
解:(1)x+1>0; (2)+b<0;
(3)2+1>3; (4)-4<3;
2.课堂练习五——看谁最列得又快又准。
用不等式表示:
(1)是正数; (2)是负数;
(3)与5的和小于7; (4)与2的差大于-1;
(5)的4倍大于8; (6)的一半小于3.
答案;(1)>0; (2)<0; (3)+5>0;
学生小结,师生共同完善:
2.会寻找不等式的解,会在数轴上正确地表示出不等式的解集;
3.能够根据题意准确迅速地列出相应的不等式。
不等式课件 篇13
教学重点:掌握不等式的三条基本性质,尤其是不等式的基本性质3.
教学难点:正确应用不等式的三条基本性质进行不等式变形.
通过观察、分析、讨论,引导学生归纳总结出不等式的三条基本性质,从具体上升到理论,再由理论指导具体的练习,从而强化学生对知识的理解与掌握.
(设计说明:设置以下习题是为了温故而知新,为学习本节内容提供必要的知识准备.)
2、什么是不等式?
3、用“>”或“<”填空.
(教学说明: 复习等式的基本性质后学生自然会联想到,不等式是否有与等式相类似的性质,从而引起学生的探究欲望.接着问题3为学生探究不等式的性质提供了载体,通过观察,寻找规律,得出不等式的性质.)
先让学生独立思考,后合作交流,通过充分讨论,类比等式性质得出不等式的性质.
观察时,引导学生注意不等号的方向,通过(1)题学生容易得出不等式性质1:
不等式基本性质1 不等式两边加(或减)同一个数(或式子),不等号的方向不变.
比较(2)、(3)题,注意观察不等号方向,并思考不等号方向的改变与什么有关?由学生概括总结,教师补充完善得出:
不等式基本性质2 不等式两边乘(或除以)同一个不为零的正数,不等号的方向不变.
不等式基本性质3 不等式两边乘(或除以)同一个不为零的负数,不等号的方向改变.
通过PPT用图形演示不等式的基本性质,让学生更加清楚地认识不等式的基本性质。
不等式有传递性吗?
【学生通过讨论能够比较容易得出结论:不等式有对称性,但要注意其不等号方向的`变化;不等式也有传递性,但要注意的是同向传递性。】
三、巩固训练,熟练技能:
1、(1) a - 3____b - 3;
(3) 0.1a____0.1b;
(5) 2a+3____2b+3;
【本题目采用提问的方式,因为内容相对简单,所以可以迅速得到结论。要让提问者说清楚答案,并说明利用不等式的性质几来进行判定的。】
(1)因为7.5>5.7,所以-7.5<-5.7;
(2)因为a+8>4,所以a>-4;
(3)因为4a>4b,所以a>b;
(4)因为-1>-2,所以-a-1>-a-2;
(5)因为3>2,所以3a>2a.
【学生口答,并说明为什么。本题重点是第5小题,要引导学生总结出a的取值会影响到答案。当a>0时,3a>2a.(不等式基本性质2)
当 a=0时,3a=2a.当a<0时,3a<2a.(不等式基本性质3) 】
学生自己完成以下题目,之后进行集体讲解。
(1)如果x-5>-1,那么______________________,得:x>4
(2)如果-2x>3,那么那么______________________,得X=______
师生共同小结本节课所学重点,不等式的基本性质的具体内容。
不等式课件 篇14
基本不等式是数学中重要的一个概念,它与不等式的证明和应用有着密切的关系。基本不等式的解法和思维方法不仅能让我们更好地掌握不等式的性质和应用,同时也能让我们更好地解决数学中的其他问题。下面,让我们就基本不等式这一主题展开更加深入的探讨。
一、基本不等式的定义、证明和性质
基本不等式定义:对于任意实数$x$,$y$,有$(x^2+y^2)\geq 2xy$,等号成立当且仅当$x=y$时成立。
基本不等式的证明:我们可以通过平方展开和配方进行证明,即:
$(x-y)^2\geq 0$
$x^2-2xy+y^2\geq 0$
$x^2+y^2\geq 2xy$
证毕。
基本不等式的性质:基本不等式可以用于求证其他不等式和解决实际问题,例如可以用基本不等式证明算术平均数$\ge$几何平均数,可以用基本不等式求证要想最小化一个多项式,需要使其中的各项等于彼此等于基本不等式中的相等值等。
二、基本不等式的应用及相关例题
基本不等式的应用广泛,其中最常见的应用就是在证明和求解不等式问题中。下面,我们就通过例题来展示基本不等式的具体应用。
例题一:
已知$a,b,c$均为正实数,求出$abc$与$\frac{(a+b+c)^3}{27}$的大小关系。
解:由于$a,b,c$均为正实数,故可运用基本不等式进行求解,即
$\begin{aligned}
\frac{(a+b+c)}{3}\geq\sqrt[3]{abc}\\
(a+b+c)^3\geq 27abc
\end{aligned}$
因此,
$\frac{(a+b+c)^3}{27}\geq abc$
即$\frac{(a+b+c)^3}{27}\geq abc$
得证。
例题二:
已知$a+b=3$,$a^2+b^2=5$,求出$a,b$的大小关系。
解:由已知条件可得$(a+b)^2=a^2+b^2+2ab$,即
$9=5+2ab$
$ab=\frac{4}{3}$
由基本不等式知得
$2ab=\frac{8}{3}\leq a^2+b^2=5$
即$a^2+b^2>2ab$,因此$a^2>b^2$,
又因为$a+b=3$,所以$b=3-a$,
所以$(3-a)^2
$9+a^2-6a
$a>\frac{3}{2}$
因此,
$a>b>\frac{3}{2}-a$
即$0
例题三:
已知$a,b,c>0$,求证$\frac{(a+b)^2}{c}+\frac{(b+c)^2}{a}+\frac{(c+a)^2}{b}\geq 12(a+b+c)$
解:由基本不等式得
$(a+b)^2\geq 4ab,(b+c)^2\geq 4bc,(c+a)^2\geq 4ac$
将以上三个式子代入原式变化得
$\frac{4ab}{c}+\frac{4bc}{a}+\frac{4ac}{b}\geq 12(a+b+c)$
即$4(ab^2+bc^2+ca^2)\geq 12abc(a+b+c)$
即$(ab^2+bc^2+ca^2)\geq 3abc$
由于$a,b,c>0$,故得证。
三、基本不等式的扩展
除了基本不等式外,还有一些基本不等式的扩展形式,例如平均值不等式和柯西施瓦兹不等式等。这些扩展形式大大丰富了不等式的证明和应用,并为数学研究提供了更加广泛的空间。下面,我们就来简单介绍一下平均值不等式和柯西施瓦兹不等式的相关内容。
平均值不等式:对于$n$个非负实数$x_1,x_2,\cdots,x_n$,有
$\frac{x_1+x_2+\cdots+x_n}{n}\geq\sqrt[n]{x_1x_2\cdots x_n}$
其中等号成立当且仅当$x_1=x_2=\cdots=x_n$时成立。
柯西施瓦兹不等式:对于任意实数$x_1,x_2,\cdots,x_n$和$y_1,y_2,\cdots,y_n$,有
$(x_1^2+x_2^2+\cdots+x_n^2)(y_1^2+y_2^2+\cdots+y_n^2)\geq(x_1y_1+x_2y_2+\cdots+x_ny_n)^2$
其中等号成立当且仅当$\frac{x_1}{y_1}=\frac{x_2}{y_2}=\cdots=\frac{x_n}{y_n}$时成立。
四、总结
综上所述,基本不等式是数学中重要的一个概念,它与不等式的证明和应用有着密切的关系。基本不等式的解法和思维方法不仅能让我们更好地掌握不等式的性质和应用,同时也能让我们更好地解决数学中的其他问题。在学习和应用基本不等式时,我们还需掌握其相关的扩展形式,如平均值不等式和柯西施瓦兹不等式等。只有充分掌握了这些知识点,我们才能更加深入地理解并应用不等式的知识。
$,则 $\sqrt[n]{a_1a_2\cdots a_n}=0$,这时等号成立。
3. 基本不等式可以扩展到实数范围内。
4. 均值不等式不等式对于大于 id="article-content1">
等式的性质课件
发布时间:2023-10-17 等式性质课件 等式课件 等式的性质课件。
老师在教授新课程时,通常会准备教案和课件。然而,在编写教案课件时需要注意一些方面,以使教案具有针对性和突出重点。如果您对“等式的性质课件”感到好奇,请阅读以下精心准备的资料。对于有需求的同学,请务必点击进来!
等式的性质课件【篇1】
一、教材分析:
“等式的基本性质”是在上一节刚刚认识了等式和方程的基础上进行教学的。该部分知识是学生解方程的依据,它是系统学习方程的开始,这节课的内容在简易方程中就起到了承上启下的作用。教材通过让学生观察天平演示实验,由具体实物之间的平衡关系抽象概括出等式的两个基本性质。关注学生由具体实例到一般意义的抽象概括过程,有意识地渗透“等价思想”、“建模思想”。
根据新课程标准的要求和教材的地位以及学生的实际情况,我把本课目标定为:知识与技能目标:理解并能用语言表述等式的基本性质,能利用等式的基本性质解决简单的问题。
本课的数学思考:在观察实验操作、讨论、归纳等活动中,经历探索等式基本性质的过程,渗透“等价”、“建模”等数学思想。
情感态度与价值观:鼓励学生积极参与数学活动,体验探索等式基本性质过程的挑战性和数学结论的确定性。
教学重难点:根据等式的性质在教材中的作用,我把抽象归纳出等式的基本性质作为本节课的重点,也是难点。
二、学情分析
新课标强调学生是数学学习的主人。学生已经了解了方程的意义而且小学五年级的学生,已具备一定的独立思考能力,乐于动手操作、合作探究。因此教学中我引导学生认真观察—独立思考—自主探究—合作交流,遵循由浅入深,由具体到抽象的规律,为学生创设一个和谐的学习环境,让孩子们在探索交流中,感受、理解和概括出等式的基本性质。
三、教学方法
《数学新课程标准》指出:数学教学必须注意从学生的生活情境以及学生感兴趣的事物出发,为他们提供参与的机会,使他们体会到数学就在身边,对数学产生亲切感。因此,在这节课中,教法上采用了观察法、讨论法、归纳法等,让学生通过实验观察和分组讨论探究学习。
四、教学准备
天平、多媒体课件。由于学具有限,所以采用了认识天平和通过多媒体课件展示结果。
五、教学过程
我把教学过程分为以下五个环节:导入新课——引导探究、合作交流——巩固练习、运用新知——课堂小结——板书设计
第一环节:导入新课。引导学生共同列举等式,对等式进行简单回顾,之后观察课件中的天平,用含有字母的等式来表示,由此引出本节课的新知。
第二环节:引导探究、合作交流。
1、猜想、验证。
通过课件展示教材第64页情境图1,先让学生猜想然后再通过课件在天平上演示过程,验证学生的猜想。
第一次猜想验证后引导学生小结出:等式两边同时加上同一个数,左右两边仍然相等。
2、假设数据、验证规律。
得到结论后通过假设物体的具体的数据验证学生自己总结出的规律:等式两边加上同一个数,左右两边仍然相等。
3、小组合作探究、发现规律。
通过课件展示教材情景图让学生小组合作探究:如果天平的两端同时拿掉1个苹果,结果会怎样?学生汇报后,再次通过课件进行演示。引导学生小结出:等式两边同时减去同一个数,左右两边仍然相等。
4、巩固练习、应用规律
通过一些简单的等式问答,应用等式两边同加或同减相同的数以加强规律的应用。
第四环节:课堂总结,布置作业。
让学生分别谈谈自己的收获,以强化巩固所学知识。课后作业安排为开放的任务:和同组的同学互相写10道利用等式的性质解决的问题,例如:如果x=y,x+8=( )+8。
第五环节:板书设计
在板书的设计上以简单明了为主。通过字母等式的同加、减,同乘、除表现出等式的两个基本性质。
等式的性质课件【篇2】
教学目标:
1.通过天平演示保持平衡的几种变换情况,让学生初步认识等式的基本性质。
2.利用观察天平保持平衡所发现的规律能直接判断天平变化后能否保持平衡。
3.培养学生观察与概括、比较与分析的能力。
教学重点:
理解,并能用自己的话来阐述天平保持平衡的几种变换情况,进而发现等式保持不变的规律。
教学难点:
等式性质里除法的推导及理解。
1.昨天学了什么知识?什么叫方程?举例说明。
2.判断下面式子哪些是方程。
3.昨天我们借助什么研究方程?天平在什么条件下才会保持平衡?
4.看这幅图(出示图1),
(1)你知道了什么?请用一句话描述。
(2)告诉你这些物品的质量,列出式子。(200 =100 100)为什么用等号?(用等式表示平衡的状态)
5.天平不仅可以称一些较轻的物品的质量,还可以帮助我们研究相关的数学知识。今天继续利用这个小助手做游戏,探究和等式有关的知识。
二、探究等式两边用加法和乘法的性质。
(一)1.如果要在天平两边放上一些物品,天平仍然要保持平衡,可以放些什么?独立思考。指名回答。
(1)师:随意的杯子吗?杯子有要求吗?对,要相同的杯子。看图,请用算式表示出来。(200 100=100 100 100)
(2)左右两边仍然相等吗?左边等于300,右边也等于300,所以这个等式成立。
(4)我可以放上2个同样的茶杯吗?那这个式子又该如何写?左右两边仍然相等吗?用字母表示是……
4.由此可得出什么结果?平衡的天平两边加上同样的物品,天平保持平衡。再看看这些等式,你有什么话想说?(师评价:我听到他说了一个词,同一个数,说到关键了)
5.等式就像平衡的天平,等式两边加上 同一个数,左右两边仍然相等。(板书,注意空格)
(二)1.刚才有同学说到,在天平左边加上一个茶壶,右边加上2个茶杯,这样也能平衡吗?为什么?能只放1个茶杯吗?不行,必须把2个茶杯看做一个整体,必须2个2个地放。
2.用式子表示出来。(板书:200 200=100 100 100 100)
3.如果天平左边加上2一个茶壶,右边要加上多少个茶杯?加上3个茶壶呢?用式子表示你觉得怎样?(太麻烦了)数学有时候可以偷懒的。想想有什么办法?
4.为什么用乘法?左边茶壶的数量多1个,我们也可以说扩大到原来的2倍,右边的茶杯的数量也要扩大到原来的2倍。写成算式是:200×2=(100 100)×2。为什么加小括号?刚才说过了,把2个茶杯看做一个整体,必须2个2个地放。
4.如果两边的数量分别扩大到原来的3倍、4倍、5倍,天平还保持平衡吗?
5.那在等式上又怎么表示?(等式两边同时乘同一个数,左右两边仍然相等。)
三、探究等式两边用减法和除法的性质。
1.学到这里,等式的左右两边同时加上或乘同一个数的情况研究完了,接着还想继续研究吗?研究什么?(减法和除法)那你猜猜,结论是什么?
2.你们猜对了吗?我们还是用事实来说话。看图(出示例题图二、图四),选择一幅图,研究等式两边用减法和除法时会出现什么情况。小组合作学习。
3.反馈。
4.平衡的天平两边减去同样的物品,天平也保持平衡。用式子说明则是:等式两边同时减去同一个数,左右两边仍然相等。(板书:在加法后加上“或减去”)
5.除法:把两边的球都平均分成2份,也就是左右两边同时除以2,各去掉1份,天平仍然保持平衡。用式子表示为:(300 300)÷2=600÷2。
6.除以任何数都可以吗?应该是除以同一个不为0的数。(板书:在乘法的后面加上“或除以同一个不为0的数”)
7.通过天平,我们又学习了等式的这些知识,这就是等式的性质。读一读。
提问:如果左边最后只留下X的话,等式两边该写什么?
3.练习十四第5题。
4. 天平左边放3个同样重的苹果,右边放9个同样重的梨,天平平衡。一个苹果和( )个梨同样重。
等式的性质课件【篇3】
各位老师:
很高兴有这次机会和大家一起学习交流。今天,我说课的题目是《等式的性质》的教学内容。我将从以下几个方面进行我的教学思路说明。
一、教材分析
本节课的主要内容是等式的基本性质以及运用等式的.基本性质解简单的一元一次方程。本课是在同学们学习了一元一次方程的概念后的授课内容。等式的基本性质是解方程的理论支撑,它为下节的学习铺平了道路。因此本节课内容起到了承上启下的作用。
二、教学目标。
(1)知识与技能:探究等式的性质,并能利用等式的性质进解简单的一元一次方程。
(2)过程与方法:通过观察探究培养学生探索能力、观察能力,归纳能力和应用新知识的能力。
(3)情感态度价值观:培养学生参与数学活动的积极性、自信心.
三、教学重、难点
教学重点:掌握等式的性质,根据等式性质解简单的一元一次方程。教学难点:由具体实例抽象出等式的性质,正确理解等式性质2中除数不能为0。
四、优缺点:
优点:在教学过程中我重视学生学习知识的生成规律,通过直观引导学生发现抽象的规律。重视数学思想和方法对的渗透,本节课运用到的数学方法有:从特殊到一般、类比、转化、化归等思想方法。
缺点:青少年学生都希望受到老师的表扬,有表现自我的机会,所以在教学中应抓住学生这一生理特点,用适当的语言能激发学生参与课堂的积极性。今后我需要在课堂用语上多下一些功夫。
五、课堂重建
在探究等式性质2的除法情况时,我运用的是在直观得出乘法的规律后,把乘法转化为除法来探究得出除法的规律,下次我会尝试采用利用天平直观演示得出这一规律。数学教学要给学生留出大量的习题训练时间,所以在以后的教学中,我会时时提醒自己精讲多练,尽量多给自主练习的时间和空间。
等式的性质课件【篇4】
一、说教材
1、教材所处的地位和作用:本课内容是在学生认识了等式和方程的基础上进行教学的,它是今后学习解多步方程的基础,它是系统学习方程的开始,其核心思想是构建等量关系的数学模型。通过本节课的学习,引导学生探索,思考比较,发现规律,在实验的基础上,掌握等式的两个基本性质,并能利用等式的性质解简单的方程,为今后运用等式的基本性质解较复杂的方程打下基础。
2、教学内容:本节内容主要讲解等式的性质,在掌握等式的性质后,利用等式性质解简单的方程,再进行具体化练习,加深认识。本节分两课时完成,其中第一节课探索等式的性质,并对等式的构建和等式的性质进行具体化练习。
3、教学目标:教案对学习目标的分解是以"学生的全域发展"作为标准进行的,更注重了学生的主体性和目标的可操作性。学习目标首先被分解为"知识和能力"、"过程和方法"、"情感、态度与价值观".不仅解决了"学到什么"和"怎样学习"的问题,尤其解决了"喜欢学"和"主动学"的问题。
二、说教学方法
"教必有法而教无定法",只有方法得当,才会有效。有效的数学学习活动不能单纯的依赖模仿与记忆,动手实践、自主探索、观察与思考、合作交流是学生学习数学的重要方式。因此在本节课的教学中,我利用多媒体演示、实践操作、通过观察法、实验法、合作交流等教学方法,引导学生动手操作—独立思考—自主探索—合作交流,遵循由浅到深,由具体到抽象的规律,为学生创设一个宽松、民主、和谐的学习环境,让孩子们在探索交流中,感受、理解和应用等式的性质。
三、说学法
首先教师创造良好的环境,引导学生从喜欢的、已知的、熟悉的生活内容入手,让学生自己在特定的环境下不知不觉中建立一些等式与方程之间的联系。再通过一系列的实验活动使学生体验到等量的变化关系和等式的性质,并引导学生用数学语言全面总结出来,从而达到培养学生挖掘问题能力、交流能力和归纳总结与口头表达的能力。
四、说教学程序
1、创设情景,引发认知冲突
以前学生解方程习惯用加减法、乘除法互为逆运算的方式解方程,这样的思路只适宜解比较简单的方程,例如:x+3=5、3x=-12等,简单的一元一次方程的解用估算的方法或逆运算的方式我们都可以求出方程的解;而象19+28x=33x-1这样比较复杂的方程我们用上述方法还能求出它的解吗?我利用学生认知上的冲突引入新课。这样既激发了学生的学习兴趣又明确了本节课的教学目的。为等式性质的构建做好铺垫。
2.实验探索,从特殊到一般
等式性质的呈现属于实验探究型课,目的是要学生在活动中体验等量的变化关系和等式的性质。这里我分段逐步呈现等式的特性。首先出示平衡天平的图形,给学生一个天平平衡的印象,引导学生用字母构建一个等式,接着在上一个平衡天平的基础上,两侧同放一个三角形的符号表示物体的重量,让学生观察这时出现什么现象,同时提出问题:怎样做,两边才会保持平衡?通过学生实验得出使天平两边平衡的方法,并用字母式子表示实验的过程,再通过归纳,概括出对象的共同属性加以表述,接着通过几个练习加以巩固,然后借助上一个实验的经验和方法,进一步指导学生完成天平两边成倍变化的实验,最后根据实验情况观察归纳结论。同时注意在总结时先让学生根据实验,把自己所得到的结论叙述出来,然后教师再对学生的结论给予概括得到等式的性质。
上述讲授等式的性质用的是观察实验法,实验观察是科学研究的一种基本的方法,它是根据客观事物和现象找出它具有的客观规律,有助于发现一些数学事实,抽象出对象的属性,再通过归纳,概括出对象的共同属性加以表述。同时也体现了由特殊到一般的思维认知规律。
3.强化概念,指导学生尝试
关于等式概念、等式与方程的联系的引出,教法上采用充分利用学生已有的知识、练习回顾、交流的方式。等式的性质的教学,采用师生共同观察实验,让学生通过对直观图形的观察、实验和猜想,自已发现结论,并用总结的形式表述结论。等式性质的理解和掌握关键在于应用,只有通过大量练习来巩固和提高,练习的速度越快正确越高,说明知识理解和掌握的越好。因此在教学中得到等式性质后,就用三组尝试练习加强巩固和提高,这样既调动了学生学习的趣味性和主动性,增强了学生积极参与教学活动的意识,又很好地培养了学生的动手操作能力、观察能力、逻辑思维能力和总结归纳能力,同时,也向学生渗透了实践——认识——再实践——再认识的一种学习方法,使新旧知识技能得到了有机的结合。
五、小结与练习
本环节是对所学内容作全面的小结,并质疑问难,除小结所学的知识技能外,还对所用到的数学方法进行了概括,使学生既学习了知识,又培养了能力。同时也对使学生能进一步体会等式与方程联系、等式的性质。
布置作业主要是为了达到:
(1)巩固所学概念;
(2)发现和弥补教与学中的遗漏和不足;
(3)强化基本技能训练,培养学生良好的学习习惯和品质。
等式的性质课件【篇5】
一、学情分析:作为初一学生(132班和137班)在小学时已经对等量关系和等式的性质有所了解,通过本节课的学习,目的是要使学生从天平的特点中归纳得出等式的性质。
新课标对本节课的要求是:掌握等式的性质。在前面一节课的学习中,学生掌握了一元一次方程的概念和初步应用后,需要解决的是一元一次方程的解法。本节内容借助于等式的性质这一工具来解一元一次方程。首先,通过天平的实验操作,使学生学会观察。尝试分析归纳等式的性质。然后,利用等式的性质解一元一次方程。通过解方程的学习提高学生的观察问题、解决问题的能力。
2、教育教学目标。
根据以上对教材的理解与内容分析,考虑到学生已有的知识结构和心理特征,制定如下教学目标:
(1)知识与技能:探究等式的性质,并能利用等式的性质进行等式变形、解简单的一元一次方程。
(2)过程与方法:通过实验培养学生探索能力、观察能力,归纳能力和应用新知识的能力。
(3)情感态度价值观:积极参与数学活动,体验探索等式性质过程的挑战性和数学结论的确定性,建立学生学好数学的信心。
为了使学生能比较顺利地达到教学目标,我确定了本节课的教学重、难点:
教学重点:探究等式的性质,能根据等式性质进行等式变形、解简单的一元一次方程。
教学难点:利用等式的性质把简单的一元一次方程变形为x=a(常数)的形式;正确理解等式性质2中除数不能为0。
(一)教学手段:如何突出重点、突破难点,从而实现教学目标,我在教学过程中利用多媒体演示拟计划进行如下操作:
1、读(看)――议――讲结合法。
2、图表分析法。
3、读图讨论法。
4、教学过程中坚持启发式教学的`原则。
坚持“以学生为主体,以教师为主导”的原则。即“以学生活动为主导,教师讲述为辅,学生活动在前,教师点拨评价在后”的原则。根据初一学生的心理发展规律。联系实际安排教学内容,采用学生参与高度的学导式讨论教学法、师生交谈法、图象信号法、问答法、教学课堂讨论法,使学生动口、主动探索、发现问题、解决问题、互动合作、归纳概括、形成能力,突出学生的主体地位。在采用问答法时,特别注重不同难度的问题。
提问不同层次的学生面向全体,使基础差的学生也有表现的机会,培养其自信心,激发学习热情,有效开发各层次学生的潜在能力求使每个学生都在原有基础上得到发展,同时通过课堂练习和课后作业启发学生。在教学中要积极培养学生数学学习兴趣和动机。明确学习目的,教师应在课堂上充分调动学生积极性,激发来自学生主体的最有力的动力。
实际上,青少年好动,注意力易分散,爱发表见解。希望得到老师的表扬所以在教学中应抓住学生这一生理特点。一方面运用直观生动的形象,引发学生兴趣,使他们的注意力始终集中在课堂上。另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。
首先我出了一些可以看出方程解的题目,让学生回答,由易到难,激起学生学习的欲望,紧接着就引入等式的定义,从而使学生明白解方程先要研究等式,从而引入课题。
由于学生的认知结构是由简单到复杂,由具体到抽象的过程,因此在这一环节中,我分两个方面来教学:等式的性质1由老师课件演示,学生观察归纳概括。
我利用多媒体依次展示天平图的各个操作。让学生通过观察,用语言来描述发现,与同桌交流。这样由具体演示到抽象概括,使学生记忆深刻,充分体现了学生为主体,教师为主导的原则。
通过上面的观察,让学生分组讨论:如何用算式表示实验结果?学生交流后,教师进行课件演示。
本节课,让学生经历一种从平衡到不平衡再到新的平衡的过程,体验变化是怎样产生的,怎样从打破平衡,又怎样达到新的平衡。从而培养了学生观察能力和抽象概括能力。
我接着提问:如果天平两边减去相同的质量,天平会有什么变化?
让学生先独立思考,然后教师课件演示。你又发现了什么规律?怎样用等式描述?得出等式两边同时减去同一个数,等式仍然成立。并且由以上两条规律得出:等式的两边同时加上或减去同一个数,等式仍然成立。
如果在天平两边同时加上或减去不同的质量,天平会有什么变化?
学生经过思考得出:等式的两边加上或减去的必须是同一个数,才能使等式成立。这样符合学生的认知规律,从实践认识,再到实践认识的过程。
教师再用课件展示天平图,学生通过观察,归纳得出:等式两边同时乘或除以同一个数(除数不能为0),等式仍然成立。
等式基本性质2的推导在性质1的基础上,让学生自己通过观察探究,运用知识的迁移得出,这样培养了学生逻辑思维能力,抽象概括能力和口头表达能力。
(2)若a=b,则ac=bc,
注意:
(1)等式两边都要参加运算,且是同一种运算。
(2)等式两边加或减,乘或除以的数一定是同一个数或同一个式子。
(3)等式两边不能都除以0,即0不能作除数或分母。
在这个环节中把等式的两个性质展示出来,我特别提到了三个注意:因为这是在等式性质解方程中容易出错的地方,就是希望同学们认真细心,正确利用性质解题。
我在练习中设计了三道题,从简单的填空到判断变形对错,到最后的解方程,方程的四道题也是有简单到复杂,总之练习题的设计,低起点,小台阶,循序渐进,符合学生接受知识的特点,是那些平时不举手的同学也积极参与,竟然问题也答得很好。从这些方面培养了学生的灵活性,使学生获得成功的满足感。
作业设计:
PPT投影出课本第83页习题3.1第4题。
Yjs21.coM更多幼师资料延伸读
等式课件
幼儿教师教育网编辑为大家整理的“等式课件”或许能帮助您解决一些疑惑。教案课件是每个老师在开学前需要准备的东西,每个人都要计划自己的教案课件了。 设计有创意的教学课件可以增加学生的学习趣味。我们提供的样本仅供参考具体操作请根据实际情况做出调整!
等式课件 篇1
【教材分析】
在新课程改革中,教材是重要的教育教学因素。等式的基本性质是学生解方程的依据,它是系统学习方程的开始。这节课的内容在简易方程中就起到了承上启下的作用。原来的教材中对于等式的基本性质只是初步的认识,并没有总结成概念性的东西,但学生实际运用时却需要概念来作支撑,所以在教材中作了调整,让学生通过观察天平演示实验,由具体实物之间的平衡关系抽象概括出等式的两个基本性质就成了本节课的教学重点。本课“等式的基本性质”是在上一节刚刚认识了等式和方程的基础上进行教学的。,其核心思想是构建等量关系的数学模型。课程标准要求学生能“理解等式的性质,会利用等式的性质解简单的方程”。
【教学目标】
1.通过天平演示保持平衡的几种变换情况,初步认识等式的基本性质。
2.利用观察天平保持平衡所发现的规律,能直接判断天平发生变化后能否保持平衡。
3.逐步养成观察与概括。比较与分析的能力。
【教学重点】
掌握等式的基本性质。
【教学难点】
理解并掌握等式的性质,能根据具体情境列出相应的方程。
【数学思想】
转化的思想,数形结合的思想,符号化的思想
【教学过程】
一。创设情境,引出问题
教师活动
学生活动及达成目标
师:同学们,你们做过天平游戏吗?这节课我们要利用天平一起来探索等式的性质。(板书课题:等式的性质)
达成目标:由熟悉的天平引出课题激发学生的兴趣。
二。共同探索,总结方法
教师活动
学生活动及达成目标
(一)等式的基本性质一
1.出示教材第64页情境图1第一个天平图。
让学生仔细观察图,并说一说:通过图你知道了什么?
教师小结:1个茶壶的重量=2个茶杯的重量。
追问:如果设一个茶壶的重量是a克,1个茶杯的重量是b克,能用式子表示吗?
(师板书)
引导学生思考:如果在天平的两边同时再各放上一个茶杯,天平会发生什么变化呢?为什么?
教师先进行实际操作天平验证,再演示这一过程,并明确:两边仍然相等。
提问:如果两边各放上2个茶杯,还保持平衡吗?
两边各放同样的一把茶壶呢?
2.出示教材第64页图2的第一个天平图。
(1)如果用a表示一个花盆的重量,用b表示一个花瓶的重量,怎样用等式来表示这幅图呢?
(2)如果把两边都拿掉1个花瓶,天平还平衡吗?让学生尝试用等式怎样表示?
从图上你能知道什么?(出示教材第64页图2第二个天平图)
3.通过这几个实验,你发现了什么?
4.你能用一句话来表示你的发现吗?
(二)等式的基本性质二
1.猜猜:除了向前面这样的变化,天平仍保持平衡外,还可以怎么做能使天平保持平衡?
这时教师一定要及时强调:这都是把等式的两边加上或减去同一个数,并提示学生如果把等式的两边同时乘或除以一个相同的数(O除外),会怎么样呢?
2.出示教材第65页图1的第一个天平图,让学生观察并说明。
引导学生用a表示墨水的重量,用b表示铅笔盒的重量,用式子怎样表示?
猜一猜:左边墨水的数量扩大到原来的2倍,右边铅笔盒的数量也扩大到原来的2倍,天平还保持平衡吗?
如果把天平的两边物品的数量分别扩大到原来的。3倍。4倍呢?
3.出示教材第65页图2的第一个天平图,让学生观察并说明知道了什么。
质疑:如果把两边的球都平均分成2份,各去掉一份,天平还能平衡吗?
教师演示。
4.通过刚才的试验,你发现了什么?
5.你能用一句话总结一下等式的这个性质吗?
6.为什么等式两边不能除以O?
1.自主回答,学生可能会回答:天平的左边放了一把茶壶,右边放了两个茶杯,天平保持平衡;这说明一个茶壶的重量与2个茶杯的重量相等。
尝试写出:a=2b
先猜一猜,学生可能会猜测出天平仍然平衡,因为两边加上的重量一样多。
观察小结:实验证明1个茶壶+1个茶杯的质量=3个茶杯的质量。
同时学生尝试用字母表示这个式子:a+b=2b+b
学生回答后,教师演示,并让学生分别用式子表示:a+2b=2b+2ba+a=2b+a
观察现在的天平是什么样的?(平衡)
生尝试写出:a+b=4b
先猜一猜,再回答,平衡:a+b-b=4b-b
得出1个花盆和3个花瓶同样重。
3.学生思考后小结:平衡的天平两边加上同样的物品,天平还保持平衡。平衡的天平两边减去同样的物品,天平还保持平衡。
4.学生归纳等式的性质1:等式两边加上或减去同一个数,左右两边仍然相等。
达成目标:通过演示在天平的两边同时放上或拿走同样的物品,天平仍然平衡。给学生思考。感悟天平保持平衡的变化规律,提供了直观的观察材料。从而得出天平平衡的原理,即等式的一条基本性质:等式两边加上或减去相等的数,等式不变。
1.如:学生猜测天平的两边同时放2个。3个杯子;同时减去一把茶壶等。
2.学生观察并说明:
一瓶墨水的重量=一盒铅笔盒的重量
写出等式:a=b。
学生猜测平衡后,教师进行实际天平操作,验证学生的猜测。
学生用等式表示:2a=2b。
天平仍然保持平衡
3.学生观察得出:
2个排球的质量=6个皮球的质量
有了前面的经验学生用a表示排球的重量,用6表示皮球的重量,写出等式:2a=6b。
学生猜测:平衡,并能用等式a=3b表示。
4.学生会发现:平衡的天平两边的物品扩大到原来的相同倍数,天平仍然平衡。平衡的天平两边的物品都缩小到原来的几分之一,天平仍然平衡。
5.学生归纳小结:等式两边乘同一个数,或除以同一个不为0的数,左右两边仍然相等。
达成目标:等式基本性质2的推导在性质1的基础上,让学生自己通过实验探究,运用知识的迁移得出,这样培养了学生的逻辑思维能力,抽象概括能力和口头表达能力。
6.学生交流,汇报:O不能做除数。
三。运用方法,解决问题
教师活动
学生活动及达成目标
出示教材第66页练习十四第4.5题。
学生试做集体订正,注意学生列式计算时的取值是否正确。
四。反馈巩固,分层练习
教师活动
学生活动及达成目标
基础练习:利用等式的性质填空
1.如果2x-5=9,那么2x=9+()
2.如果5=10+x,那么5x-()=10
3.如果3x=7,那么6x=()
4.如果5x=15,那么x=()
拓展练习:见课件
让学生回忆等式的性质,再自主完成填空。
达成目标:等式的基本性质一是简易方程部分重要的概念,不仅要理解,而且还要会应用。
五。课堂总结,提升认识
教师活动
学生活动及达成目标
这节课你运用了哪些,你有什么收获?你对自己这堂课的表现是怎么评价的?
学生总结本节课的收获,在梳理总结过程中提高学生对性质的认识和理解。
等式课件 篇2
教学内容:教科书第3~4页的内容,练习一的4~6题。
教学目标:
1、通过学习,使学生知道等式两边同时加上或减去同一个数,所得的结果仍然是等式。
2、根据等式的性质(一)学会解决含有加、减号的方程。
3、有意识地培养学生的自学能力。
教学过程:
一、教学例3
出示图,学生根据图独立填空。
根据学生的回答,板书:
20=20xx+10=20+10
X=50X+20=50+20
50+a=50+a50+a-a=50+a-a
X+20=70X+20-20=70-20
提问:比较两边的算式,你有什么发现,在小组里说说。
全班交流,引导学生说出:等式两边同时加上或减去同一个数,所得的结果仍然
是等式。这是等式的性质。
独立完成练一练第1题
二、教学例4
学生自学,不懂的问题和同组同学交流,能解决的就小组内交流。
全班交流:例4中还有什么不懂的地方提出来,能由学生解决的就由学生解决,
学生解决不了的教师解决。
一是方法:根据等式的性质把含有未知数的这边化简成就含有一个未知数。
二是检验:把计算的结果代到原式,看左右两边是否相等。
三强调书写的格式。
小结:求方程中未知数值的过程,叫做解方程。
完成试一试练一练的第2题。
学生独立完成后集体订正,重点帮助有困难的学生,针对学生出错的地方及时分
析错误原因,帮助他们弄懂。
三、课堂作业
练习一的第4、5、6题。
第4、6题做在书上,第5题写在作业本上。
板书:
等式两边同时加上或减去同一个数,所得的结果仍然是等式。
这时等式的性质。
X+10=50
解:X+10-10=50-10
X=40
教后小记
等式课件 篇3
《不等式及其基本性质》习题
【教学内容】
课本上不等式的五个基本性质,并学会应用.【教学目标】
1、掌握不等式的五个基本性质并且能正确应用.
2、经历探究不等式基本性质的过程,体会不等式与等式的异同点,发展学生分析问题和解决问题的能力.
3、开展研究性学习,使学生初步体会学习不等式基本性质的价值.
【重点难点】
重点:理解不等式的五个基本性质.难点:对不等式的基本性质3的认识.【教学方法】
本节课采用“类比-实验-交流”的教学方法.【教学过程】
一、回顾交流.
1、等式的基本性质 解一元一次方程的基本步骤
2、问题牵引:
用“﹥”或“﹤”填空,并总结其中的规律:
(1)5>3,5+2
3+2,5-2 3-2 ;
(2)–1
-1+2 3+2,-1-3 3-3 ;
结果:
(1)>、>(2)
当不等式两边加或减去同一个数(正数或负数)时,不等号的方向______
3、继续探究,接着又出示(3)、(4)题: 5 2×5,6×(3)6>2,6×(-5)
2×(-5),6 3×6,(4)2
3×(-6).得到:
当不等式的两边同乘以一个正数时,不等号的方向不变; 当不等式的两边同乘以一个负数时,不等号的方向改变.总结出不等式的性质: 不等式的性质1:不等式的两边加(或减)同一个数(或式子),不等号的方向不变.c
> b±c 字母表示为:如果a>b,那么a±不等式的性质2:不等式的两边乘(或除以)同一个正数,不等号的方向不变.字母表示为:如果a>b,c>0那么ac
> bc,不等式的性质3:不等式的两边乘(或除以)同一个负数,不等号的方向改变.字母表示为:如果a>b,c<0那么ac
不等式的对称性:如果a>b,那么bb,b>c,那么a>c
二、范例学习,应用所学.
1、利用不等式的性质解下列不等式. (1)x-7>26
(2)3x
(4)-4x﹥3
22、逐题分析得出结果.(1)x-7>26 分析:解未知数为x的不等式,就是要使不等式逐步化为x﹥a或x﹤a的形式.
解:(1)为了使不等式x-7>26中不等号的一边变为x,根据不等式的性质1,不等式两边都加7,不等号的方向不变,得 x-7+7﹥26+7 x﹥33(2)3x
为了使不等式3x
23不等号的方向不变,得 x﹥75(4)-4x﹥3
为了使不等式-4x﹥3中的不等号的一边变为x,根据不等式的性质3,不等式两边都除以-4,不等号的方向改变,得x
3 4通过(3)(4)的求解过程,类似于解方程两边都除以未知数的系数(未知数系数化为1),解不等式时要注意未知数系数的正负,以决定是否改变不等号的方向.三、课堂探究.
已知a
四、课堂小结提问.不等式性质的作用.
等式课件 篇4
尊敬的各位老师,下午好!
我叫孙有玺,来自音河中学。很高兴能把《不等式的性质(1)》一课的教学和大家一起探讨。下面我将从学生状况、教学任务、教学过程、设计说明等四个方面加以分析。
一、学生状况分析:
七年级下期的学生活泼好动,有一定合作探究意识,在知识方面已经学习了有理数大小比较,等式及基本性质。这些都为自主探究不等式的性质打下了良好的基础。
二、教学任务分析:
(一)教材地位与作用:
不等式是初中代数的重要内容之一,是已知量与未知量的矛盾统一体。数学关系中的相等与不等是事物运动和平衡的反映,学习研究数量的不等关系,可以更好地认识和掌握事物运动变化的规律。“不等式的性质”是学生学习整个不等式知识的理论基础,为以后学习解不等式(组)起到奠基的作用。
(二)教学目标:
知识目标:
探索不等式的基本性质,并能准确运用不等式的三条性质将不等式变形。
能力目标:
让学生学会类比的思想对等式性质及不等式性质进行了比较,培养学生的观察、分析、归纳的能力。
情感目标:
通过“等”与“不等”的比较使学生进一步领会对立统一的思想,培养学生辨证唯物主义的观点。
(三)教学重点、难点:
不等式的性质是本节不等式变形的基础,也是今后解不等式(组)的依据,所以掌握不等式的基本性质,并能正确运用它们将不等式变形是本节课的重点。
不等式的两边同乘以(或除以)负数,不等号方向改变和等式的性质不同,学生学习起来比较困难,因此,不等式性质3的理解与正确使用是本节课的难点。让学生自己动口、动手、动脑,进行比较、讨论,并加以强化练习达到突破的目的。
(四)教学方法与学法的指导:
本节课属于性质类知识,重在探索,意在应用。因此,我采用启发诱导、实例探究的方法进行教学,这种教学方法以“主动探索”为基础,先“引导发现”后“讲评点拨”,让学生在克服困难与障碍的过程中发展自己的观察力、想象力、思维力。引导学生学会类比、归纳的学习方法,帮助他们在自主探究过程中理解和掌握不等式的性质。
三、教学过程
(一)复习提问、引入新课
为了使学生自己能在教师的指导下,自主探究问题,发现问题,获得结论。而不是把现成的结论告诉学生。对于不等式性质的发现,我采用了下面的作法,我首先带领学生复习等式的性质
等式性质1等式两边加(或减)同一个数或式子,结果仍相等。
等式性质2等式两边乘同一个数,或除以同一个不为零的数,结果仍相等。
(二)合作交流、探究新知
在复习等式性质后,教师提出不等式是否也有类似的性质呢?先引导学生对不等式的两边都加、减同一个数,会发现什么呢?学生通过思考和计算后会说出不等式两边都加、减同一个数,“仍是不等式”。此时,教师抓住学生叙述中的问题予以纠正,不能笼统的说“仍是不等式”,因为“=”没有方向性,而不等号有方向性,所以要改为“不等号的方向不变”。接着,让学生不等式作两边都乘以或除以同一个数的变形,会发现什么呢?学生通过计算和讨论,甚至会发生争执,教师要深入学生,通过共同探讨,学生会发现不等式两边都乘以或除以正数,不等号方向不变,两边都乘以或除以负数,不等号方向改变。最后由学生归纳出不等式的`性质2和性质3。
我这样安排的目的是为了让学生通过动手、动口、动脑发挥合作精神,学会运用类比、归纳的数学思想去探究问题,同时学生也会品尝到成功的喜悦,从而提高他们学习数学的兴趣。
(三)灵活运用、巩固练习
为使学生能够准确运用性质将不等式变形,也为例题的教学做一些铺垫,我先设置了两组抢答题:
抢答:看谁答的快又准
1·设m>n,用“<”或“>”填空:
(1)m—5___n—5
(2)m+4___n+4
(3)6m___6n(4)
—5m___—5n
2·判断:
(1)∵3+x>3+y,∴x>y()
(2)∵3>2,∴n+3>2+n()
(3)∵a<b,∴2a+1<2b+1()
(4)∵—2a<6,∴x>—3()
在学生练习过程中,老师特别强调:当不等式两边同乘以或除以负数时,“不等号的方向改变”。
接着,给出例题:
例1·利用不等式的性质解下列不等式,并在数轴上表示解集:
(1)x+7>10
(2)3x>2x+1
(3)—10x>50
(4)—4x
例2·根据下列已知条件,说出a与b的不等关系:
(1)a—3>b—3
(2)—a>—b
(3)—2a+1
例1由学生分组讨论,写出解题过程,老师展示几个同学的解答并给予讲解。对于例2我采用先引导学生分析解题思路,再让学生口述解题过程,并说明根据不等式的哪一条性质,由师生共同完成。
为了解学生能否独立运用性质将练习三,安排学生演板:
3·利用不等式的性质解不等式。
(1)—3x>12
(2)3x—4
请两位学生演板,其余学生独立完成,并对学生演板的结果作出评价,教师深入小组,发现问题及时纠正,通过学生的互相评价找出应用不等式基本性质进行变形中出现的错误,以防患于未然。
以上练习完成之后,学生已能准确运用不等式的性质,将不等式变形,为培养学生的解题能力,让学生更深层地理解不等式的基本性质,在此基础上我又作出了一些引申和推广。
4·判断正误,并说明理由。
(1)∵5>4,∴5a>4a
(2)不等式2x>5x的两边同除以x,得2>5
(3)若ac2>bc2,则a>b
第4题设计说明,当不等式两边同乘或除以一个字母,而字母的取值不明确时,需对字母分情况讨论。
〔四〕归纳小结、整体把握
为帮助学生从整体把握本节课所学的知识,培养良好的学习习惯,让学生自己对本节课所学知识以及用到的解决问题的方法进行小结。方法是:由学生四人一组互谈本节课的收获,总结解题方法,并说明解题过程中应该注意的问题,然后请一位同学小结,其他学生补充,达到巩固知识的目的。
教学设计说明
学生的学习内容应该是现实的、有趣的和富有挑战性的,而老师则应该创造一个有利于学生主动求知的学习环境。因此,本节课把培养学生的学习兴趣和思维能力放在首位。教学中采用合作学习的方式,互相交流,集思广益,突破创新,以达到共同提高的目的。然后,通过多样化的练习巩固知识,既调动学生的积极性,又使学习伙伴之间进行了思维的碰撞和沟通。使其在轻松的氛围中多层次、多角度地掌握“不等式的性质”。
本节课的设计体现了一个原则:低起点、多练习、勤反馈、快矫正、重能力、以求最大限度提高课堂效率。
等式课件 篇5
均值不等式
教学目标
(一) 知识与技能:明确均值不等式及其使用条件,能用均值不等式解决简单的最值问题.
(二) 过程与方法:通过对问题主动探究,实现定理的发现,体验知识与规律的形成过程.
(三) 情感态度与价值观:通过问题的解决以及自身的探索研究领略获取新知的喜悦.教学重点:均值不等式的推导与证明,均值不等式的应用.教学难点:均值不等式的应用 教学过程
创设情境如图,AB是圆的直径,D是CAB上与A、B不重合的一点,AD=a,DB=b,过点D作垂直于AB的弦CD,连AC,BC,AaODbB则CD=__,半径OC=____E 讨论 :(1)CD OC (2)文字叙述(几何意义): (3)试用含a、b的表达式来表示上述关系 注意:(1)当 时, (2)a、b的取值范围
探求新知:均值不等式的内容及证明
均值定理:
证明:(比较作差法)
变形应用:(1)
(2)
讨论释疑:
牛刀小试:已知x0,则x1x 例
1、已知ab0,求证:baab2并推导出式中等号成立的条件
例
2、求函数f(x)x22x3x(x0)的最值,以及此时x的值
精炼巩固:
t2 1.设t0,则函数f(t)4t1的最小值为此时t的值
4 2.已知正数a,b满足ab1,则ab有最值为
点拨提高:
总结本节课的你的收获。
课堂小测:
1 .已知正数a,b满足ab1,则1a1b有最值为。 2 .设x3,则函数f(x)(x3)2x3的最小值为此时x的值3.已知a、bR,求证:(a11a)(bb)4
课堂小测:
1 .已知正数a,b满足ab1,则1a1b有最值为。 2 .设x3,则函数f(x)(x3)2x3的最小值为此时x的值3.已知a、bR,求证:(a11a)(bb)4
课堂小测:
1
.已知正数a,b满足ab1,则1a1b有最值为。 2 .设x3,则函数f(x)(x3)2x3的最小值为此时x的值3.已知a、bR,求证:(a11a)(bb)4
课堂小测:
1
.已知正数a,b满足ab1,则1a1b有最值为。 2 .设x3,则函数f(x)(x3)2x3的最小值为此时x的值3.已知a、bR,求证:(a11a)(bb)4
不等式基本性质教学设计
《等式的性质》教学设计
《等式的性质》教学设计
等式性质教学设计(共8篇)
基本不等式教学设计
等式课件 篇6
教学内容:教科书第3~4页的内容,练习一的4~6题。
教学目标:1、通过学习,使学生知道等式两边同时加上或减去同一个数,所得的结果仍然是等式。
2、有意识地培养学生的自学能力。
教学重点与难点:根据等式的性质(一)学会解决含有加、减号的方程。
教学流程:
一、教学例3
出示图,学生根据图独立填空。
根据学生的回答,板书:
20=20xx+10=20+10
X=50X+20=50+20
50+a=50+a50+a-a=50+a-a
X+20=70X+20-20=70-20
提问:比较两边的算式,你有什么发现,在小组里说说。
全班交流,引导学生说出:等式两边同时加上或减去同一个数,所得的结果仍然
是等式。这是等式的性质。
独立完成练一练第1题
二、教学例4
学生自学,不懂的问题和同组同学交流,能解决的就小组内交流。
全班交流:例4中还有什么不懂的地方提出来,能由学生解决的就由学生解决,学生解决不了的教师解决。
一是方法:根据等式的性质把含有未知数的这边化简成就含有一个未知数。
二是检验:把计算的结果代到原式,看左右两边是否相等。
三强调书写的格式。
小结:求方程中未知数值的过程,叫做解方程。
完成试一试练一练的第2题。
学生独立完成后集体订正,重点帮助有困难的学生,针对学生出错的地方及时分
析错误原因,帮助他们弄懂。
三、课堂作业
练习一的第5题。
板书:
等式两边同时加上或减去同一个数,所得的结果仍然是等式。
这时等式的性质。
X+10=50
解:X+10-10=50-10
X=40
等式课件 篇7
1、具体情境,感受天平平衡
通过课件展示情境图引导学生小结出等式并用字母表示。
2、猜想假设、小结规律
先让学生猜想然后再通过课件在天平上演示过程。验证学生的猜想,用字母表示。引导学生小结出:等式两边同时加上同一个数,左右两边仍然相等。
3、观察思考、总结发现
通过课件对教材第64页图2的演示过程让学生独立思考,再通过小组合作讨论总结出发现的规律。等式的性质1:等式两边加上或减去同一个数,左右两边仍然相等。
4、假设数据、验证规律
得到结论后通过假设物体的具体的数据验证学生自己总结出的规律。
5、口算练习、应用规律
通过一些简单的等式问答应用等式两边同加或同减相同的数以加强规律的应用。
6、设疑思考
提出问题让学生思考还有没有其他的运算也能使等式左右两边相等。留给学生思维的空间,再通过课件引导学生一步步总结出等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,左右两边仍然相等。
等式课件 篇8
1、创设情景,引发认知冲突
以前学生解方程习惯用加减法、乘除法互为逆运算的方式解方程,这样的思路只适宜解比较简单的方程,例如:x+3=5、3x=-12等,简单的一元一次方程的解用估算的方法或逆运算的方式我们都可以求出方程的解;而象19+28x=33x-1这样比较复杂的方程我们用上述方法还能求出它的解吗?我利用学生认知上的冲突引入新课。这样既激发了学生的学习兴趣又明确了本节课的教学目的。为等式性质的构建做好铺垫。
2、实验探索,从特殊到一般
等式性质的呈现属于实验探究型课,目的是要学生在活动中体验等量的变化关系和等式的性质。这里我分段逐步呈现等式的特性。首先出示平衡天平的图形,给学生一个天平平衡的印象,引导学生用字母构建一个等式,接着在上一个平衡天平的基础上,两侧同放一个三角形的符号表示物体的重量,让学生观察这时出现什么现象,同时提出问题:怎样做,两边才会保持平衡?通过学生实验得出使天平两边平衡的方法,并用字母式子表示实验的过程,再通过归纳,概括出对象的共同属性加以表述,接着通过几个练习加以巩固,然后借助上一个实验的经验和方法,进一步指导学生完成天平两边成倍变化的实验,最后根据实验情况观察归纳结论。同时注意在总结时先让学生根据实验,把自己所得到的结论叙述出来,然后教师再对学生的结论给予概括得到等式的性质。
上述讲授等式的性质用的是观察实验法,实验观察是科学研究的一种基本的方法,它是根据客观事物和现象找出它具有的客观规律,有助于发现一些数学事实,抽象出对象的属性,再通过归纳,概括出对象的共同属性加以表述。同时也体现了由特殊到一般的思维认知规律。
3、强化概念,指导学生尝试
关于等式概念、等式与方程的联系的引出,教法上采用充分利用学生已有的知识、练习回顾、交流的方式。等式的性质的教学,采用师生共同观察实验,让学生通过对直观图形的观察、实验和猜想,自已发现结论,并用总结的形式表述结论。等式性质的理解和掌握关键在于应用,只有通过大量练习来巩固和提高,练习的速度越快正确越高,说明知识理解和掌握的越好。因此在教学中得到等式性质后,就用三组尝试练习加强巩固和提高,这样既调动了学生学习的趣味性和主动性,增强了学生积极参与教学活动的意识,又很好地培养了学生的动手操作能力、观察能力、逻辑思维能力和总结归纳能力,同时,也向学生渗透了实践——认识——再实践——再认识的一种学习方法,使新旧知识技能得到了有机的结合。
等式课件 篇9
教学内容:教科书第3~4页的内容,练习一的4~6题。
教学目标:1、通过学习,使学生知道等式两边同时加上或减去同一个数,所得的结果仍然是等式。
2、根据等式的性质(一)学会解决含有加、减号的方程。
3、有意识地培养学生的自学能力。
教学过程:
一、教学例3
出示图,学生根据图独立填空。
根据学生的回答,板书:
20=2020+10=20+10
X=50X+20=50+20
50+a=50+a50+a-a=50+a-a
X+20=70X+20-20=70-20
提问:比较两边的算式,你有什么发现,在小组里说说。
全班交流,引导学生说出:等式两边同时加上或减去同一个数,所得的结果仍然
是等式。这是等式的性质。
独立完成练一练第1题
二、教学例4
学生自学,不懂的问题和同组同学交流,能解决的就小组内交流。
全班交流:例4中还有什么不懂的地方提出来,能由学生解决的就由学生解决,
学生解决不了的教师解决。
一是方法:根据等式的性质把含有未知数的这边化简成就含有一个未知数。
二是检验:把计算的结果代到原式,看左右两边是否相等。
三强调书写的格式。
小结:求方程中未知数值的过程,叫做解方程。
完成试一试练一练的第2题。
学生独立完成后集体订正,重点帮助有困难的学生,针对学生出错的地方及时分
析错误原因,帮助他们弄懂。
三、课堂作业
练习一的第4、5、6题。
第4、6题做在书上,第5题写在作业本上。
等式课件 篇10
一、学情分析:作为初一学生(132班和137班)在小学时已经对等量关系和等式的性质有所了解,通过本节课的学习,目的是要使学生从天平的特点中归纳得出等式的性质。
新课标对本节课的要求是:掌握等式的性质。在前面一节课的学习中,学生掌握了一元一次方程的概念和初步应用后,需要解决的是一元一次方程的解法。本节内容借助于等式的性质这一工具来解一元一次方程。首先,通过天平的实验操作,使学生学会观察。尝试分析归纳等式的性质。然后,利用等式的性质解一元一次方程。通过解方程的学习提高学生的观察问题、解决问题的能力。
2、教育教学目标。
根据以上对教材的理解与内容分析,考虑到学生已有的知识结构和心理特征,制定如下教学目标:
(1)知识与技能:探究等式的性质,并能利用等式的性质进行等式变形、解简单的一元一次方程。
(2)过程与方法:通过实验培养学生探索能力、观察能力,归纳能力和应用新知识的能力。
(3)情感态度价值观:积极参与数学活动,体验探索等式性质过程的挑战性和数学结论的确定性,建立学生学好数学的信心。
为了使学生能比较顺利地达到教学目标,我确定了本节课的教学重、难点:
教学重点:探究等式的性质,能根据等式性质进行等式变形、解简单的一元一次方程。
教学难点:利用等式的性质把简单的一元一次方程变形为x=a(常数)的形式;正确理解等式性质2中除数不能为0。
(一)教学手段:如何突出重点、突破难点,从而实现教学目标,我在教学过程中利用多媒体演示拟计划进行如下操作:
1、读(看)――议――讲结合法。
2、图表分析法。
3、读图讨论法。
4、教学过程中坚持启发式教学的`原则。
坚持“以学生为主体,以教师为主导”的原则。即“以学生活动为主导,教师讲述为辅,学生活动在前,教师点拨评价在后”的原则。根据初一学生的心理发展规律。联系实际安排教学内容,采用学生参与高度的学导式讨论教学法、师生交谈法、图象信号法、问答法、教学课堂讨论法,使学生动口、主动探索、发现问题、解决问题、互动合作、归纳概括、形成能力,突出学生的主体地位。在采用问答法时,特别注重不同难度的问题。
提问不同层次的学生面向全体,使基础差的学生也有表现的机会,培养其自信心,激发学习热情,有效开发各层次学生的潜在能力求使每个学生都在原有基础上得到发展,同时通过课堂练习和课后作业启发学生。在教学中要积极培养学生数学学习兴趣和动机。明确学习目的,教师应在课堂上充分调动学生积极性,激发来自学生主体的最有力的动力。
实际上,青少年好动,注意力易分散,爱发表见解。希望得到老师的表扬所以在教学中应抓住学生这一生理特点。一方面运用直观生动的形象,引发学生兴趣,使他们的注意力始终集中在课堂上。另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。
首先我出了一些可以看出方程解的题目,让学生回答,由易到难,激起学生学习的欲望,紧接着就引入等式的定义,从而使学生明白解方程先要研究等式,从而引入课题。
由于学生的认知结构是由简单到复杂,由具体到抽象的过程,因此在这一环节中,我分两个方面来教学:等式的性质1由老师课件演示,学生观察归纳概括。
我利用多媒体依次展示天平图的各个操作。让学生通过观察,用语言来描述发现,与同桌交流。这样由具体演示到抽象概括,使学生记忆深刻,充分体现了学生为主体,教师为主导的原则。
通过上面的观察,让学生分组讨论:如何用算式表示实验结果?学生交流后,教师进行课件演示。
本节课,让学生经历一种从平衡到不平衡再到新的平衡的过程,体验变化是怎样产生的,怎样从打破平衡,又怎样达到新的平衡。从而培养了学生观察能力和抽象概括能力。
我接着提问:如果天平两边减去相同的质量,天平会有什么变化?
让学生先独立思考,然后教师课件演示。你又发现了什么规律?怎样用等式描述?得出等式两边同时减去同一个数,等式仍然成立。并且由以上两条规律得出:等式的两边同时加上或减去同一个数,等式仍然成立。
如果在天平两边同时加上或减去不同的质量,天平会有什么变化?
学生经过思考得出:等式的两边加上或减去的必须是同一个数,才能使等式成立。这样符合学生的认知规律,从实践认识,再到实践认识的过程。
教师再用课件展示天平图,学生通过观察,归纳得出:等式两边同时乘或除以同一个数(除数不能为0),等式仍然成立。
等式基本性质2的推导在性质1的基础上,让学生自己通过观察探究,运用知识的迁移得出,这样培养了学生逻辑思维能力,抽象概括能力和口头表达能力。
(2)若a=b,则ac=bc,
注意:
(1)等式两边都要参加运算,且是同一种运算。
(2)等式两边加或减,乘或除以的数一定是同一个数或同一个式子。
(3)等式两边不能都除以0,即0不能作除数或分母。
在这个环节中把等式的两个性质展示出来,我特别提到了三个注意:因为这是在等式性质解方程中容易出错的地方,就是希望同学们认真细心,正确利用性质解题。
我在练习中设计了三道题,从简单的填空到判断变形对错,到最后的解方程,方程的四道题也是有简单到复杂,总之练习题的设计,低起点,小台阶,循序渐进,符合学生接受知识的特点,是那些平时不举手的同学也积极参与,竟然问题也答得很好。从这些方面培养了学生的灵活性,使学生获得成功的满足感。
作业设计:
PPT投影出课本第83页习题3.1第4题。
等式课件 篇11
一、教材分析
等式的基本性质是学生在刚刚认识了等式与方程的基础上进行教学的。它是系统学习方程的开始,其核心思想是构建等量关系的数学模型。本节课的学习是学生在实验的基础上,掌握等式的两个基本性质,引导学生通过比较,发现规律,并为今后运用等式的基本性质解方程打基础。同时培养学生数学思维能力。
二、教学目标:
知识与技能:理解并能用语言表述等式的基本性质,能用等式的基本性质解决简单问题。
过程与方法:在用算式表示实验结果、讨论、归纳等活动中,经历探索等式基本性质的过程。
情感态度价值观:积极参与数学活动,体验探索等式基本性质过程的挑战性和数学结论的确定性。
三、教学重点是:
引导学生探索发现等式的基本性质,利用等式的基本性质解决简单问题。
教学难点是抽象归纳出等式的基本性质。
四、教学程序(分三部分教学)
(一)联系实际,激趣引入
首先激发探究兴趣:提出问题:“同学们,你用天平做过游戏吗?”这节课我们就利用天平一起来探索天平游戏中所包含的数学知识。”
(二)自主探索,合作交流
学习等式的基本性质1
1、具体情境,感受天平平衡
利用多媒体依次展示天平图的各个操作。让学生通过观察,用语言来描述发现,与同桌交流。这样由具体演示到抽象概括,使学生记忆深刻,充分体现了学生为主体,教师为主导的原则。
图1、图2的教学模式:先让学生观察,问:你发现了什么?然后提问:怎样变换,能使天平仍然保持平衡呢?待学生思考片刻,再进一步提问:往两边各放1个杯子,天平会发生什么变化?生口答,验证。接下去,继续提问:如果两边各放上2个茶杯,天平还会保持平衡吗?两边各放上同样的一把茶壶呢?生答,再一一演示验证。
图3、图4的教学模式和前面一样。
板书如下:
2、总结抽象,认识规律
通过上面的观察,先用一句话归纳图1和图2的内容。(1、等式的两边都加上或减去相同的数,等式不变。)再以第一句话为基础归纳出图3和图4的内容。(2、等式的两边都乘或除以相同的数(0除外)等式不变。)
教师指出这是等式的一个非常重要的性质。板书:等式的基本性质
(三)巩固练习,深化认识
练习题的设计,低起点,小台阶,循序渐进,符合学生接受知识的特点,培养了学生的灵活性,使学生获得成功的满足感。
1、根据图(1)在下面每幅图的括号里填上适当的符号或数字,使天平平衡。
2、课堂作业。(当堂完成)
填一填。(a、b均不为0)
(1) 如果x+a=b,那么x+a-a=b○
(2) 如果x-a=b,那么x-a+a=b○
(3) 如果ax=b,那么a x÷a=b○
(4) 如果x÷a =b,那么x÷a×a=b○
3、拓展训练。
五、最后,关注学生的和感受,提出:通过本节课的学习你有什么收获?
不等式的课件
老师在开学前需要把教案课件准备好,每个人都要计划自己的教案课件了。教案是实现高效教学的不可或缺要素之一。如果您想深入理解这一话题不妨看看“不等式的课件”,本文的内容必将给您带来很多有用的收获!
不等式的课件 篇1
【教学目标】
1、知识与技能目标
(1)掌握基本不等式 ,认识其运算结构;
(2)了解基本不等式的几何意义及代数意义;
(3)能够利用基本不等式求简单的最值。
2、过程与方法目标
(1)经历由几何图形抽象出基本不等式的过程;
(2)体验数形结合思想。
3、情感、态度和价值观目标
(1)感悟数学的发展过程,学会用数学的眼光观察、分析事物;
(2)体会多角度探索、解决问题。
【能力培养】
培养学生严谨、规范的学习能力,辩证地分析问题的能力,学以致用的能力,分析问题、解决问题的能力。
【教学重点】
应用数形结合的思想理解不等式,并从不同角度探索不等式 的证明过程。
【教学难点】
基本不等式 等号成立条件。
【教学方法】
教师启发引导与学生自主探索相结合
【教学工具】
课件辅助教学、实物演示实验
【教学流程】
SHAPE MERGEFORMAT
【教学过程设计】
创设情景,引入新课
如图是在北京召开的第24届国际数学家大会的会标, 这是根据赵爽弦图而设计的。用课前折好的赵爽弦图示范,比较 4个直角三角形的面积和与大正方形的面积,你会得到怎样的相 等和不等关系?
赵爽弦图
1.探究图形中的不等关系
将图中的“风车”抽象成如图,在正方形ABCD中右个全等的直角三角形。
设直角三角形的两条直角边长为a,b那么正方形的边长为 。这样,4个直角三角形的面积的和是2ab,正方形的面积为 。由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式: 。
当直角三角形变为等腰直角三角形,即a=b时,正方形EFGH缩为一个点,这时有 。
2.得到结论:一般的,如果
3.思考证明:你能给出它的证明吗?
证明:因为
当
所以, ,即
4.基本不等式
1)特别的,如果a>0,b>0,我们用分别代替a、b ,可得 ,通常我们把上式写作:
2)从不等式的性质推导基本不等式
用分析法证明:
要证 (1)
只要证 (2)
要证(2),只要证 a+b- 0 (3)
要证(3),只要证 ( - ) (4)
显然,(4)是成立的。当且仅当a=b时,(4)中的等号成立。
3)理解基本不等式 的几何意义
不等式的课件 篇2
基本不等式教学设计
数学与应用数学 钟林
课题:人教A版必修5第3章4节,基本不等式
【教学目标】
1.通过两个探究实例,引导学生从几何图形中获得两个基本不等式,了解基本不等式的几何背景,体会数形结合的思想。
2.进一步提炼、完善基本不等式,并从代数角度给出不等式的证明,组织学生分析证明方法,加深对基本不等式的认识,提高逻辑推理论证能力。 3.结合课本的探究图形,引导学生进一步探究基本不等式的几何解释,强化数形结合的思想。
4.借助例1尝试用基本不等式解决简单的最值问题,通过例2及其变式引导学生
ab领会运用基本不等式ab的三个限制条件(一正二定三相等)在解决最
2值中的作用,提升解决问题的能力,体会方法与策略。
【重点难点】
重点:应用数形结合的思想理解基本不等式,并从不同角度探索不等式abab的证明过程。
2难点:在几何背景下抽象出基本不等式,并理解基本不等式。
【教学设计】
(一)问题导入
欣赏2002年国际数学家大会会徽,会徽是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。你能发现它是什么图形构成的吗?请根据会徽探索一些常见相等或不等关系。
探究一:在这张“弦图”中能找出一些相等关系和不等关系吗? 在正方形ABCD中有4个全等的直角三角形.设直角三角形两条直角边长为,a,b。
22ab那么正方形的边长为。
于是,4个直角三角形的面积之和S12ab。 正方形的面积S2a2b2。 由图可知S2S1,即a2b22ab。
当直角三角形变为等腰直角三角形,即时,正方形EFGH缩为一个点,这时 a2b22ab
所以a2b22ab。
探究二:如下图所示的梯形中,EF是梯形ABCD的中位线,梯形ABGH相似于梯 形GHDC。
梯形ABCD的上底是a,下底是b。让同学们自主研究GH和EF的大小关系。
ab因为EF是中位线,所以EF,
2由相似,可以得出GHab, 同样因为相似,有
AGABa, GDGHb又因为ab,所以AGGD,即AGAE,
ab。 2显然,当AB逐渐趋近CD的时候,GH也逐渐向EF靠近, 当AB=CD的时候,即ABCD是矩形的时候,GH与EF重合。
ab即,当且仅当ab时,ab。
2ab所以,ab,当且仅当ab时,等号成立。
2所以GHEF,即ab
(二)概念深入
根据上述两个几何背景,初步形成不等式结论:
若a,bR,则a2b22ab。(当且仅当a=b时,等号成立)
ab。(当且仅当a=b时,等号成立) 2请同学们运用代数法证明: 作法一(作差法): 若a,bR,则aba2b22ab(ab)20ab2ab22
当且仅当a=b时,等号成立。且发现这里且a和b可以是全体实数、单项式、多项式。
作法二(分析法):
要证明abab, 2只需证明ab2ab, 即证ab-2ab0, 即为a-b20,该式显然成立,所以,当ab时取等号。
于是有这样的结论:
称ab为a,b的几何平均数;称基本不等式abab为a,b的算术平均数, 2ab又可叙述为: 2两个正数的几何平均数不大于它们的算术平均数
作法三(几何法):
如图,AB是圆O的直径,点C是AB上一点,AC=a,BC=b.过点C作 垂直于AB的弦DE,连接AD,BD。 从而有CDab,ODab。 2ab。 2ab当且仅当C点与圆心O点重合时,即a=b时,ab
2故再次证明:
aba0,b0,ab,当且仅当a=b时,等号成立。
2ab也说明了ab的几何意义:半径不小于半弦。
2由于直角三角形COD中,直角边CD
(三)例题讲解
例1.(1)用篱笆围一个面积为100平方米的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短,最短的篱笆是多少?
(2)一段长为36米的篱笆围成一个矩形菜园,问这个矩形的长、宽为多少时,菜园的面积最大,最大面积是多少?
(通过例1的讲解,总结归纳利用基本不等式求最值问题的特征,实现积与和的转化)
对于x,yR,
(1)若xyp(定值),则当且仅当xy时,xy有最小值2p;
s2(2)若xys(定值),则当且仅当xy时,xy有最大值。
4(鼓励学生自己探索推导,不但可使他们加深基本不等式的理解,还锻炼了他们的思维,培养了勇于探索的精神。)
1例2.求yx(x0)的值域。
x1变式1.若x2,求x的最小值.
x21在运用基本不等式解题的基础上,利用几何画板展示yx(x0)的函数
x图象,使学生再次感受数形结合的数学思想。
ab并通过例2及其变式引导学生领会运用基本不等式ab的三个限制
2条件(一正二定三相等)在解决最值问题中的作用,提升解决问题的能力,体会方法与策略。
(四)归纳小结&课后作业 基本不等式:
若a,bR,则a2b22ab。(当且仅当a=b时,等号成立)
ab。(当且仅当a=b时,等号成立) 2(1)基本不等式的几何解释(数形结合思想); (2)运用基本不等式解决简单最值问题的基本方法。
作业:A组第4题,B组第1题,第2题
若a,bR,则ab
不等式的课件 篇3
课题:3.4.3 基本不等式 的应用(二) 科目:数学 教学对象:高二(290)学生 课时:1课时 提供者:刘和安 单位: 姚安一中 一、教学内容分析 本节课的研究是起到了对学生以前所学知识与方法的复习、应用,进而构建他们更完善的知识网络。数学建模能力的培养与锻炼是数学教学的一项长期而艰苦的任务,这一点,在本节课是真正得到了体现和落实。?
根据本节课的教学内容,应用观察、阅读、归纳、逻辑分析、思考、合作交流、探究,对基本不等式展开实际应用,进行启发、探究式教学并使用投影仪辅助。? 二、教学目标 (一)知识目标:构建基本不等式解决函数的值域、最值问题;
(二)能力目标:让学生探究用基本不等式解决实际问题
(三)情感、态度和价值观目标:
通过具体问题的解决,让学生去感受、体验现实世界和日常生活中存在着大量的不等量关系并需要从理性的角度去思考,鼓励学生用数学观点进行类比、归纳、抽象,使学生感受数 学、走进数学、培养学生严谨的数学学习习惯和良好的思维习惯;? 三、学习者特征分析 在本节课的教学过程中,仍应强调不等式的现实背景和实际应用,真正地把不等式作为刻画现实世界中不等关系的工具。通过实际问题的分析解决,让学生去体会基本不等式所具有的广泛的实用价值,同时,也让学生去感受数学的应用价值,从而激发学生去热爱数学、研究数学。而不是觉得数学只是一门枯燥无味的推理学科。在解决实际问题的过程中,既要求学生能用数学的眼光、观点去看待现实生活中的许多问题,又会涉及与函数、方程、三角等许多数学本身的知识与方法的处理 四、教学策略选择与设计 1.采用探究法,按照观察、阅读、归纳、思考、交流、逻辑分析、抽象应用的方法进行启发式教学;?
2.教师提供问题、素材,并及时点拨,发挥老师的主导作用和学生的主体作用;?
3.设计较典型的具有挑战性的问题,激发学生去积极思考,从而培养他们的数学学习兴趣。?? 五、教学重点及难点 教学重点:1.构建基本不等式解决函数的值域、最值问题。?
2.让学生探究用基本不等式解决实际问题;?
教学难点:1.让学生探究用基本不等式解决实际问题;?
2.基本不等式应用时等号成立条件的考查;?
六、教学过程 教师活动 学生活动 设计意图 (一)导入新课
(二)推进新课
已知 ,若ab为常数k,那么a+b的值如何变化?
若a+b为常数s,那么ab的值如何变化?
老师用投影仪给出本节课的第一组问题
(1)求函数y=2x2+ (x>0)的最小值。?
(2)求函数y=x2+ (x>0)的最小值。?
(3)求函数y=3x2-2x3(0
(4)求函数y=x(1-x2)(0
(5)设a>0,b>0,且a2+ =1,求 的最大值。?
(三)合作探究 我们来考虑运用正数的算术平均数与几何平均数之间的关系来解答这些问题。根据函数最值的含义,我们不难发现若平均值不等式的某一端为常数,则当等号能够取到时,这个常数即为另一端的一个最值。 ?
(四)例题精析?
【例】某工厂要建造一个长方体形无盖贮水池,其容积为4 800 m3,深为 3 m.如果池底每平方米的造价为150元,池壁每平方米的造价为120元,怎样设计水池能使总造价最低?最低总造价是多少?
当且仅当a=b时,a+b就有最小值为2k.?
当且仅当a=b时,ab就有最大值 (或ab有 最大值 ).?
学生完成
留五分钟的时间让学生思考,合作交流
(根据学生完成的典型情况,找五位学生到黑板板演,然后老师根据学生到黑板板演的完成情况再一次作点评)?
学生思考、回答,
不等式的课件 篇4
不等式
教材分析:本课由实际问题中的不等关系引出不等式的概念;类比方程的解,明确不等式解和解集的概念,以及不等式解集的两种表示方法。
教学目标:了解不等式概念,理解不等式的解和解集。 教学重难点:不等式及解集概念的理解。 教学过程: 一:引出新知。
现实世界中存在大量的数量关系,包括相等关系和不等关系。用等式(包括方程),我们可以研究相等关系,而研究不等关系需要用本章的不等式,如引言中选择购物商场问题.二:探索新知。
问题1 一辆匀速行驶的汽车在11:20距离A地50 km,要在12:00之前驶过A地.你能用式子表示出车速应满足的条件吗?
1、汽车在12:00之前驶过A地的意思是什么? 从时间上看,汽车要在12:00之前驶过A地,则 以这个速度行驶50 km所用的时间不到。
从路程上看,汽车要在12:00之前驶过A地,则以这个速度行驶的路程要超过50 km。
2、如何用式子表示以上不等关系? 设:车速为x km/h. 从时间上看: 从路程上看:
(1)对于不等式 而言,车速可以是80 km/h吗?78 km/h呢?75 km/h呢?72 km/h呢?
(2)类比方程的解,什么叫不等式的解?
使不等式成立的未知数的值.(3)不等式还有其他解吗?如果有,这些解应满足什么条件?
一般地,一个含有未知数的不等式的所有的解,组成这个不等式的解集.求不等式的解集的过程叫做解不等式. (4)除了用不等式表示取值范围,还有其他表示方法吗? 数轴
三、运用新知。 例1 请用不等式表示:
(1) 是负数;
(2) 与5的和小于-7;
(3) 的一半大于3.例2 直接说出不等式的解集,并在数轴上表
示出来.
四、归纳总结 (1)什么叫不等式?
(2)什么叫不等式的解?不等式的解和方程的解的区别? (3)什么叫不等式的解集?不等式的解和不等式的解集的区别?
五、布置作业
教科书 习题 第
1、
2、3题。
不等式的课件 篇5
[教学目标]
依据《新标准》对《不等式》学段的目标要求和本班学生实际情况,特确定如下目标:
1、知识与能力目标:理解掌握基本不等式,并能运用基本不等式解决一些简单问题(求最值、证明不等式);培养学生探究能力以及分析问题解决问题的能力。
2、过程与方法目标:按照创设情景,提出问题→ 剖析归纳证明→ 几何解释→ 应用(最值的求法、不等式的证明)的过程呈现。启动观察、分析、归纳、总结、抽象概括等思维活动,培养学生的思维能力,体会数学概念的学习方法,通过运用多媒体的教学手段,引领学生主动探索基本不等式性质,体会学习数学规律的方法,体验成功的乐趣。
3、情感与态度目标:通过问题情境的设置,使学生认识到数学是从实际中来,培养学生用数学的眼光看世界,通过数学思维认知世界,从而培养学生善于思考、勤于动手的良好品质。
二、 [教学重点]
基本不等式 的证明过程及应用。
三、 [教学难点]
1、基本不等式成立时的三个限制条件(简称一正、二定、三相等)的正确理解;
2、灵活利用基本不等式求解实际问题中的最大值和最小值。
四、 [教学方法]
本节课采启发诱导、讲练结合的教学方法,结合现代信息技术多媒体课件、几何画板作为教学辅助手段,加深学生对基本不等式的理解。
[教学用具]
多媒体、几何画板
六、 [教学过程]
教学过程设计以问题为中心,以探究解决问题的方法为主线展开。这种安排强调过程,符合学生的认知规律,使数学教学过程成为学生对知识的再创造、再发现的过程,从而培养学生的创新意识。
具体过程安排如下:
(一)、创设情景,提出问题;
上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客。
[问]你能在这个图中找出一些相等关系或不等关系吗?
利用图中相关面积间存在的数量关系,抽象出不等式 。在此基础上,引导学生认识基本不等式。
同时,(几何画板辅助教学)通过几何画板演示,
让学生更直观的抽象、归纳出结论:
(二)、抽象归纳:
一般地,对于任意实数 ,有 ,当且仅当 时,等号成立。
[问] 你能给出它的证明吗?
学生在黑板上板书。
特别地,当 时,在不等式 中,以 、 分别代替 ,得到什么?
答案: 。
【归纳总结】
如果 都是正数,那么 ,当且仅当 时,等号成立。
我们称此不等式为基本不等式。 其中 称为 的算术平均数, 称为 的几何平均数。
(三)、理解升华:
1、文字语言叙述:
两个正数的算术平均数不小于它们的几何平均数。
2、符号语言叙述:
若 ,则有 ,当且仅当 时, 。
[问] 怎样理解“当且仅当”?
3、探究基本不等式证明方法:
[问] 如何证明基本不等式?
方法一:作差比较或由 展开证明。
方法二:分析法。
分析法,实际上是寻找结论的充分条件,执果索因的一种思维方法。
4、探究基本不等式的几何意义:
读书破万卷下笔如有神,以上就是一米范文范文为大家带来的3篇《2023高中数学基本不等式教学教案》,希望对您有一些参考价值。
不等式的课件 篇6
不等式和不等式组复习课教学设计
一、设计思想:
“不等式”是初中数学核心内容之一。就不等式的解法来说,它是一种重要的数学技能;而就不等式的广泛作用来说,不管是与实际相关的问题,还是纯粹的数学问题,不管是代数方面的问题,还是几何图形方面的问题,乃至更为一般化的问题,只要是求未知数的值或范围的问题,经常要借助于不等式,可见学好不等式具有非常重要的意义。
这节课是中考前的专题复习课,知识点不多。由于学生已经学过本章内容,因此在本节复习中主要以提问的形式进行知识要点的复习,以学生自主探索和合作探究的学习方法学习本节内容。教师主要在习题的设计上选好典型例题,复习的知识尽量全面。教学效果上使不同的学生有不同的收获。
二、教学内容分析:
1.《课程标准》对本专题教学内容的要求:
(1)结合具体问题,了解不等式的意义,探索不等式的基本性质。 (2)能解简单的一元一次不等式,并能在数轴上表示出解集;会用数轴确定由两个一元一次不等式组成的不等式组的解集。
(3)能根据具体问题中的数量关系,列出一元一次不等式,解决简单的问题。 2.本节内容在中考中的地位和作用。
本部分内容在中考中大约6~12分,约占全卷分数的5%~8%左右。而且,近几年考试中,经常与方程、函数三角函数、几何等内容一起综合考查,因此学好本节内容对于解决这些综合问题起着举足轻重的作用。
三、教学目标:
1、知识技能:
①掌握不等式的概念和性质,能根据不等式的性质解决有关问题;
②掌握不等式(组)的解法,会求不等式(组)的解集,特别是不等式组的整数解;
③能根据不等式组的解集确定字母系数的范围;
④会列不等式(组)解决简单的实际问题,特别是方案设计问题。
2、数学思考:通过列不等式或不等式组解决具有不等关系的实际问题,让学生体会不等式是解决实际问题的有效的数学模型。
3、解决问题:通过不等式(组)描述不等关系解决实际问题,发展学生由实际问题转化为数学问题的能力。
4、情感态度:①通过复习教学,继续强化用数学的意识,从而使学生乐于接触社会环境中的数学信息,愿意谈论某些数学话题,能够在数学活动中发挥积极作用。
②.通过探索,增进学生之间的配合,使学生敢于面对数学活动中的困难,并有克服困难和运用知识解决问题的成功体验,树立学好数学的自信心。
教学重点:不等式(组)的解法的规范性及实际应用
教学难点:不等式组有无解的问题中字母系数的确定和实际问题中不等式(组)的列出
教学方法:依托多媒体平台,启发、谈论、互动探究法(学生讨论、教师点拨)、讲练结合。
教学手段:计算机多媒体辅助教学。 教学时间:1课时
教学准备:1.学生准备:预习教材,了解本节的知识要点。
2.教师准备:将学生分组,选好组长;制作多媒体课件。
教学设计
一 情境设计
导入新课
出示多媒体课件
1、问题情境:问题:某化妆品店老板到厂家选购A、B两种品牌的化妆品,若销售1套A品牌的化妆品可获利30元,销售1套B品牌的化妆品可获利20元,根据市场需求,化妆品店老板决定,购进B品牌化妆品的数量比购进A品牌化妆品数量的2倍还多4套,且B品牌化妆品最多可购进40套,这样化妆品全部售出后,可使总的获利不少于1200元,问有几种进货方案?如何进货? 教师:同学们,如果你是这个化妆品店的老板,你怎么解决进货方案问题? (学生思考):
教师:如何用数学符号表示标有下划线的词语?应该考查我们哪部分知识? 学生:最多 —— ≤;不少于—— -≥。 教师:我们学过的哪章知识与它们联系最密切?由此我们想到了哪部分知识? 学生:不等式和不等式组
教师:下面我们就来复习有关这方面的内容,“专题复习
(二)方程和不等式-----------不等式和不等式”。 (板书课题)
(多媒体出示教学目标。图略)
二、展示教学目标、教学重点和难点:(让学生学有目的,学有依据)
三、回顾知识要点:
1.知识网络出示;(使学生对本节知识的复习内容一目了然,从总体把握知识间的内在联系)
实际问题
3、知识要点复习不等关系不等式不等式的性质解不等式解集一元一次不等式一元一次不等式组解法解法数轴表示解集数轴表示实际应用解集数轴表示 2.知识要点复习:(通过提问由学生回答) ①基本概念复习
(澄清基本概念,对知识间的内在联系更明确。)
3、知识要点复习
一、基本概念:
1、不等式:
2、不等号:
3、不等式的解:
4、不等式的解集:
5、解不等式:
6、一元一次不等式:
7、一元一次不等式组:
8、一元一次不等式组的解集:
9、解一元一次不等式组: ②不等式性质复习:(它是解不等式和不等式组的重要依据,特别注意第3条性质,不等号方向改变问题,提醒学生,此处易错,提起注意)
3、知识要点复习
二、不等式的性质:(1)如果a>b,那么a+c>b+c,a-c>b-c不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。ab(2)如果a>b,并且c>0,那么ac>bc,cc不等式两边都乘以(或除以)同一个正数,不等号的方向不变。(3)如果a>b,并且c
3、知识要点复习三,规律与方法:1,不等式的解法:2,解不等式组的方法:3,不等式的解集在数轴上的表示:大向右,小向左,有等号是实心,无等号是空心.4,求几个不等式的解的公共部分的方法和规律:(1)数轴法(2)口诀法同大取大同小取小一大一小中间找 ④用一元一次不等式组解决实际问题的步骤:(为解决实际问题提供依据,这是本节的重点知识,学生可能会类比前边复习的方程和方程组的知识说出。)
3、知识要点复习
5、用一元一次不等式组解决实际问题的步骤:实际问题设未知数,列不等式(组)数学问题(不等式或不等式组)解不等式组实际问题的解答检验数学问题的解(不等式(组)的解集)
四、典型例题解析:(这一环节也是学生要达到的知识技能目标的重要一环,学生解题的顺利与否,是教师关注的重点。学生能够独立解出的,关注其过程是否规范,思路是否清晰,方法是否得当。不能解出的,先由小组合作探究,看是否能找到解题的思路,得出问题的答案;如果仍不能得出,教师加以点拨,引导,帮助学生找到解题思路,得出问题的答案。)
例1.(本题是一元一次不等式的解法的考查,是本节的基本题型,估计学生都能独立解出,可让中游的学生板演,这样解题步骤展现在大家面前,如果规范,起个示范作用;不规范,示范改正,起警示作用。把重点放在解题步骤是否规范上。)
4、典型例题:例1.解一元一次不等式解:3 (x-1) ≤6 –2(x-2)3x –3 ≤6 –2x+43x+2x ≤6+4+35x ≤13x ≤135自然数解非负整数解正整数解最大解最大整数解 (右边的云形图中是在学生解完不等式后先后出示的五种特殊情况,这样进
行变式教学,展示了一题多解的典型题目,同时又使学生锻炼了仔细审题的能力。)
4、典型例题:例1.解一元一次不等式解一元一次方程一元一次不解:3 (x-1) = 6 –2(x-2)解:3 (x-1) ≤6 –2(x-2)3x –3 = 6 –2x+43x –3 ≤6 –2x+4等式和一元一次3x+2x =6+4+3方程有何共同点3x+2x ≤6+4+35x =13和不同点?5x ≤x =x≤55 (通过这种一元一次不等式和一元一次方程解法的类比,使学生明确知识间的内在联系,同时发现其中的异同,对两者的区别更加清晰)
例2.(考查不等式的变形,解决问题的关键是正确理解不等式的概念和基本性质。重点关注基本性质的灵活掌握)
例3.(把平面直角坐标系的象限问题转化成不等式组问题,既体现了转化的数学思想方法,又见识了不等式组的广泛应用。可以帮学生回忆坐标系的有关知识。)
4、典型例题:a例2.若a1;b1a③a+b
3、在直角坐标系中,P(2x-6,x-5)在第四象限,则x的取值范围是3
例4.(把不等式中的相等问题出示,体现了相等和不等可以互相转化的数学思想。并与数与式中的乘方问题相联系,具有一定的综合性。)
例5.(借助数轴确定不等式组的解集,对于解这类题非常有效,学生容易做错,特别是是否包括界点问题,有一定难度,让学生小组合作探究,共同寻找问题的答案。教师巡视,给有困难小组点拨,指导。)
4、典型例题:xa2例
4、(2009凉山)若不等式组集是-1
例题分析:问题5问题分析:本题存在两个不等关系,一是购买B品牌化妆品不超过40套;二是两种化妆品的获利不少于1200元。根据这两个不等关系,可列不等式组求解。 (学生写出解题过程后,教师可出示规范的解题过程,体现数学学科的严谨性。)
4例题讲解:、典型例题:解:设A品牌化妆品购进m套,则B品牌化妆品购进(2m+4)套。根据题意得:解得:16≤m≤18.因为m为正整数,所以m=16,17,18,所以2m+4=
36、
38、40.所以有三种进货方案:(1)A种品牌的化妆品的购进16套,B种品牌的化妆品购进36套;(1)A种品牌的化妆品的购进16套,B种品牌的化妆品购进36套;(1)A种品牌的化妆品的购进16套,B种品牌的化妆品购进36套; (通过方案设计题的解决,使学生能够由实际问题建立数学模型,从而增强解决实际问题的能力。)
五、
归纳小结(先由学生自己归纳总结本节课的收获,从而把课堂传授的知识尽快化为学生的素质,以培养和增强学生的归纳总结能力;然后老师予以补充和归纳,为学生良好学习习惯的养成继续进行指导。)
5、归纳小结你会了吗?这节课你学到了什么?你有什么收获?你还有什么问题?
六、达标检测:(在这一环节,我设计了几个有梯度的题目,这样可使不同层次的学生都能有所收获,都能感受到成功的喜悦,使他们“在数学上都能有不同的发展”。)
6.达标检测(1)若2x=3+k的解集是负数,那么k的取值范围是______.K
3、不等式组数解为(A的最小整)A,-1 B,0 C,2 D,3 9
6.达标检测
4、跃壮五金商店准备从宁云机械厂购进甲、乙两种零件进行销售。若每个甲种零件的进价比每个乙种零件的进价少2元,且用80元购进甲种零件的数量与用100元购进乙种零件的数量相同。(1)求每个甲种零件、每个乙种零件的进价分别为多少元?(2)若该五金商店本次购进甲种零件的数量比购进乙种零件的数量的3倍还少5个,购进两种零件的总数量不超过95个,该五金商店每个甲种零件的销售价格为12元,每个乙种零件的销售价格为15元,则将本次购进的甲、乙两种零件全部售出后,可使销售两种零件的总利润(利润=售价-进价超过371元,通过计算求出跃壮五金商店本次从宁云机械厂购进甲、乙两种零件有几种方案?请你设计出来。 6.达标检测选做题•若不等式组xa012xx2有解,则a的取•值范围是(A)。•>-1 ≥-1 ≤1 <1
七、教学设计的理论依据
1.“理论联系实际”的原则,联系学生身边的生活,引导学生学习运用理论知识分析、解决实际问题。
2.新课程标准中的“学生是学习的主人”的主体教育思想。
本节课努力构建师生互动、生生互动的新的教学模式,创设情境引领教学,引导学生的合作学习,让其在思考讨论中自主学习,真正落实以学生为中心、以学生发展为根本,注重学生道德和能力的培养。
不等式的课件 篇7
《基本不等式》教学设计
基本不等式
开江中学 魏江兰
目标分析
依据《新课程标准》对《不等式》学段的目标要求和学生的实际情况,特确定如下目标:
1、知识与能力目标:理解掌握基本不等式,并能运用基本不等式解决一些简单的求最值问题;理解算数平均数与几何平均数的概念,学会构造条件使用基本不等式;培养学生探究能力以及分析问题解决问题的能力。
2、过程与方法目标:按照创设情景,提出问题→ 剖析归纳证明→ 几何解释→ 应用(最值的求法、实际问题的解决)的过程呈现。启动观察、分析、归纳、总结、抽象概括等思维活动,培养学生的思维能力,体会数学概念的学习方法,通过运用多媒体的教学手段,引领学生主动探索基本不等式性质,体会学习数学规律的方法,体验成功的乐趣。
3、情感与态度目标:通过问题情境的设置,使学生认识到数学是从实际中来,培养学生用数学的眼光看世界,通过数学思维认知世界,从而培养学生善于思考、勤于动手的良好品质。
教学重、难点分析
重点:应用数形结合的思想理解基本不等式,并从不同角度探索基本不等式abab的证明过程及应用。 2难点:
1、基本不等式成立时的三个限制条件(简称一正、二定、三相等);
2、利用基本不等式求解实际问题中的最大值和最小值。
教法分析
本节课采用观察——感知——抽象——归纳——探究;启发诱导、讲练结合的教学方法,以学生为主体,以基本不等式为主线,从实际问题出发,放手让学生探究思索。以现代信息技术多媒体课件作为教学辅助手段,加深学生对基本不等式的理解。
《基本不等式》教学设计
教学准备
多媒体课件、板书
教学过程
教学过程设计以问题为中心,以探究解决问题的方法为主线展开。这种安排强调过程,符合学生的认知规律,使数学教学过程成为学生对知识的再创造、再发现的过程,从而培养学生的创新意识。 具体过程安排如下:
一、创设情景,提出问题;
设计意图:数学教育必须基于学生的“数学现实”,现实情境问题是数学教学的平台,数学教师的任务之一就是帮助学生构造数学现实,并在此基础上发展他们的数学现实.基于此,设置如下情境: 上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客。
[问]你能在这个图中找出一些相等关系或不等关系吗?
本背景意图在于利用图中相关面积间存在的数量关系,抽象出不等式a2b22ab。在此基础上,引导学生认识基本不等式。
二、抽象归纳:
一般地,对于任意实数a,b,有a2b22ab,当且仅当a=b时,等号成立。 [问] 你能给出它的证明吗?
证明:因为a2b22ab(ab)20,即a2b22ab.(当ab时取等号)
特别地,当a>0,b>0时,在不等式a2b22ab中,以a、b分别代替a、b,得到什么?
设计依据:类比是学习数学的一种重要方法,此环节不仅让学生理解了基本不等式不等式的来源,突破了重点和难点,而且感受了其中的函数思想,为今后学习奠定基础.
《基本不等式》教学设计
答案: abab(a,b0)。 2你能用不等式的性质直接推导这个不等式吗? 证明:(分析法):由于a,bR,于是要证明 ab2ab,
只要证明 ab2即证
2ab,
ab2ab0,即 (ab)20,
所以abab,(当ab时取等号)
【归纳总结】
如果a,b都是正数,那么abab,当且仅当a=b时,等号成立。 2ab称为a,b的算术平均数,ab称2我们称此不等式为基本不等式。 其中为a,b的几何平均数。
文字语言叙述:两个正数的算术平均数不小于它们的几何平均数。
探究基本不等式的几何意义:借助初中阶段学生熟知的几何图形,引导学生探究abab(a,b0)2的几何解释,通过数形结合,赋予不等式不等式abab(a,b0)2几何直观。进一步领悟不等式中等号成立的条件。
如图:AB是圆的直径,点C是AB上一点,CD⊥AB,AC=a,CB=b,CD
Dab
abab2abOCAB几何解释实质可认为是:在同一半圆中,半径不小于半弦(直径是最长的弦);或者认为是,直角三角形斜边的一半不小于斜边上的高。
《基本不等式》教学设计
4.应用举例,巩固提高
我们可以用两个重要不等式来解决什么样的问题呢?
例1(1)用篱笆围一个面积为100平方米的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短,最短的篱笆是多少? (2)一段长为36米的篱笆围成一个矩形菜园,问这个矩形的长、宽为多少时,菜园的面积最大,最大面积是多少?
(通过例1的讲解,总结归纳利用基本不等式求最值问题的特征,实现积与和的转化) 对于(1)若(2)若,
(定值),则当且仅当(定值),则当且仅当
时,时,
有最小值有最大值
; .
(鼓励学生自己探索推导,不但可使他们加深基本不等式的理解,还锻炼了他们的思维,培养了勇于探索的精神.)
1例 2:当x0时,求yx的最小值?x1变式1:当x0时,yx有最值吗?
x1变式2:当x1时,yx有最值吗?
x通过例2及其变式引导学生领会运用基本不等式的三个限制条件(一正二定三相等)在解决最值问题中的作用,提升解决问题的能力,体会方法与策略.
练一练(自主练习):课本练习 5.归纳小结,反思提高
《基本不等式》教学设计
基本不等式:若若
,则,则
(当且仅当(当且仅当
时,等号成立) 时,等号成立)
(1)基本不等式的几何解释(数形结合思想);(2)运用基本不等式解决简单最值问题的基本方法(一正二定三相等). 6.布置作业,课后延拓
(1)基本作业:课本P100习题组
1、
2、3题
(2)拓展作业:请同学们课外到阅览室或网上查找基本不等式的其他几何解释,整理并相互交流.
基本不等式教学设计
《等式的性质》教学设计
《等式的性质》教学设计
等式性质教学设计(共8篇)
等式的基本性质的课后教学反思
不等式的课件 篇8
一、教学目标:
(一)知识与能力目标:(课件第2张)
1.体会解不等式的步骤,体会比较、转化的作用。
2.学生理解、巩固一元一次不等式的解法.
3.用数轴表示解集,加深对数形结合思想的进一步理解和掌握。
4.在解决实际问题中能够体会将文字语言转化成数学语言,学会用数学语言表示实际的数量关系。
(二)过程与方法目标:
1.介绍一元一次不等式的概念。
2.通过对一元一次方程的解法的复习和对不等式性质的利用,导入对解不等式的讨论。
3.学生体会通过综合利用不等式的概念和基本性质解不等式的方法。
4.学生将文字表达转化为数学语言,从而解决实际问题。
5.练习巩固,将本节和上节内容联系起来。
(三)情感、态度与价值目标:(课件第3张)
1.在教学过程中,学生体会数学中的比较和转化思想。
2.通过类比一元一次方程的解法,从而更好的掌握一元一次不等式的解法,树立辩证统一思想。
3.通过学生的讨论,学生进一步体会集体的作用,培养其集体合作的精神。
4.通过本节的学习,学生体会不等式解集的奇异的数学美。
二、教学重、难点:
1.掌握一元一次不等式的解法。
2.掌握解一元一次不等式的阶梯步骤,并能准确求出解集。
3.能将文字叙述转化为数学语言,从而完成对应用问题的解决。
三、教学突破:
教材中没有给出解法的一般步骤,所以在教学中要注意让学生经历将所给的不等式转化为简单不等式的过程,并通过学生的讨论交流使学生经历知识的形成和巩固过程。在解不等式的过程中,与上节课联系起来,重视将解集表示在数轴上,从而指导学生体会用数形结合的方法解决问题。在研究中,鼓励学生用多种方法求解,从而锻炼他们活跃的思维。
四、教 具:计算机辅助教学.
五、教学流程:
(一)、复习:
教学环节
教 师 活 动
学 生 活 动
设 计 意 图
不等式课件
不为明天做好准备的人是没有未来的,当幼儿园教师的工作遇到难题时,我们经常会用提前准备好的资料进行参考。资料通常是指书籍、报刊、图表、图片等。有了资料才能更好的在接下来的工作轻装上阵!所以,关于幼师资料你究竟了解多少呢?在这里,你不妨读读不等式课件,欢迎阅读,希望对你有帮助。
不等式课件【篇1】
教学目标:
了解一元一次不等式的概念,掌握一元一次不等式的解法。
教学重点:
是掌握解一元一次不等式的步骤
教学难点:
是必须切实注意遇到要在不等式两边都乘以(或除以)同一负数时,必须改变不等号的方向。
教学过程:
一、问题导入
复习:
1、不等式的基本性质有哪些?什么是一元一次方程?并举出两个例子。
2、观察不等式x+3<5与x<2,说明解x<2是x+3<5依据什么变形得到的?
3、解一元一次方程:6x+5=7-2x,目的是为了与下面所学的解一元一次不等式进行类比,找到它们的联系与区别。
二、指导自学,小组合作交流
请同学们根据以下提问进行自学,先个人思考,后小组合作学习。
1、观察下列不等式,说一说这些不等式有哪些共同特点?
(1)2x+5≥8(2)x+1≤—4(3)x<2(4)6—3x>43(x+1)≤0
观察上面不等式有哪些共同特点,让学生通过交流,再总结一元一次不等式的概念。老师板书定义。
2、让学生举出2或3个一元一次不等式的例子,小组交流。
3、让学生通过比较解一元一次方程:6x+5=7-2x的解法试解一元一次不等式:6x+5<7-2x,并将解集在数轴上表示出来。
4、思考:一元一次不等式与一元一次方程的解法有哪些类似之处?有什么不同?
5、解下列不等式,并把它们的解集在数轴上表示出来。
(1)3-x<2x+9(2)2-4(x-1)>3(x+2)-x
(3)(x-1)/3≥(2-x)/2+1
总结:解一元一次不等式的依据和解一元一次不等式的步骤。
三、互动交流,教师点拨
(一)、学生易出错的问题和注意的事项:
1、确定一个不等式是不是一元一次不等式,要抓住三个要点:左右两边都是整式,只有一个未知数,未知数的次数是1。
2、对于(1),让学生说明不等式3-x<2x+9的每一步变形的依据是什么,特别注意的是:解不等式的移项和解方程的移项一样。即移项要变号(培养学生运用类比的数学思想)。
3、不等式两边同时除以(-3)时,不等号的方向改变。
2、重点点拨(2)和(3),先让学生到黑板上板演。老师再讲评。
(2)易出错的地方是:去括号时漏乘,括号前是负号,去掉括号后括号里的项没变号,还有移项没有变号;(3)易出错的地方是:去分母时漏乘无分母的项。
3、归纳解一元一次不等式的步骤(与解一元一次方程的步骤类比):去分母,去括号,移项,合并同类项,系数化为1。(在系数化为1这一步要特别提醒学生注意当系数为负数时,要记住改变不等号的方向。)
四、巩固练习
1、判断下列不等式是不是一元一次不等式,为什么?
(1)2/x—3
(2)5x+3x–1
(4)x(2x+1)
(5)X+2≥x
2、解下列不等式,并把它们的解集在数轴上表示出来
(1)3x–8
(2)2(x–1)≥x+3
(3)x/5≥1+(x–3)/2
3、[思考]当x取何值时,代数式(x–2)/2的值比(3x+1)/3的值大?
小结:
(1)不等式两边同时除以负数时,不等号的方向要改变。
(2)注意去括号时不要漏乘,括号前是负号,去掉括号后括号里的项要变号,还有移项一定要变号
(3)去分母时不要漏乘无分母的项。
不等式课件【篇2】
一、教学目标
(一)知识与技能
1.了解从实际情境中抽象出二元一次不等式(组)模型的过程
2.掌握简单的二元线性规划问题的解法
3.了解数学建模的整个过程
(二)过程与方法
1.通过对实际问题的探索,培养学生用数学眼光去观察生活、并且能提出问题、分析问题、解决问题的能力.
2.增强学生的协作能力.
(三)情感、态度与价值观
1.通过学生自主探索、合作交流,亲身体验数学模型的发现,培养学生勇于探索、善于发现、不畏艰辛的品质,增强学习的成功心理,激发学习数学的兴趣,深刻体会数学是有用的.
2.通过实例的社会意义,培养学生爱护环境的责任心.
二、教学重点、难点
重点:从具体生活情境中提炼出简单的二元线性规划问题,并且用数学方法解决问题.
难点:从具体生活情境中提炼出约束条件和目标函数.
三、教学设想
本节课采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以二元一次不等式(组)模型的发现为基本探究内容,以周围世界和生活实际为对象,为学生提供充分自由表达、质疑、探究、讨论问题的机会,让学生通过个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对实际问题的深入探讨.让学生在“活动”中学习,在“主动”中发展,在“合作”中增知,在“探究”中创新.设计思路如下:
创设情境→方案讨论→数据筛选→建立模型→解决模型→反馈实际
四、教学过程:
引入
(1)如图,小明与小聪玩跷跷板,大家都不用力时,跷跷板左低右高.小明的身体质量为p(kg),小聪的身体质量为q(kg),书包的质量为2kg,怎样表示p、q之间的关系?
(2)上图是公路上对汽车的限速标志,表示汽车在该路段行使的速度不得超过40km/h.若用v(km/h)表示车的速度,那么v与40之间的数量关系用怎样的式子表示?
(3)据科学家测定,太阳表面的温度不低于6000℃.设太阳表面的温度为t(℃),怎样表示t与6000之间的关系?
归纳:数学作用之一,我们可以用数学语言描述客观世界的某些现象
当然,数学作用不仅于此,我们还可以通过数学解决现实生活中的问题.
(一)情景设置
我校环境优美,毗邻江水,校园内四季常青,但是远眺围墙外,有一座小山,那是一座垃圾山.杨府山垃圾场有他的.历史作用和意义,现在已经完成了它的历史使命,而且现在有了负面影响,市委市政府打算对其进行改造.经过专家论证,有如下方案可行:发电、制砖
(二)处理方案讨论
现同时用两种措施对垃圾山进行改造处理,如果你是项目经理,给你500万采购发电设备以及制砖设备,你该如何去实施?
(学生自主发言)
学生问题一、怎样安排资金?买几台发电设备,几台制砖设备?如何决策?
引导:问题转化为如何安排资金,能取得最大效益?即两种方案生产产品的利润(售价减去成本)
学生问题二、如何知道这些信息?(产品售价、设备的单价等)
引导(先提问学生):上网查询、市场调查、向已建厂取经、参观展销会等等.
(三)数据的筛选
由于教室条件限制,不能现场查取,所以老师帮你们收集了一些资料,希望对你们有所帮助.请分析以下信息,提取你认为有用的数据.
信息一、
信息二、
焚烧垃圾重量直接关系到垃圾发电企业的经济效益.在BOT的模式下,企业的效益这样来保障:
1.每处理1吨垃圾,政府补贴发电企业73.8元,
2.保证以0.52元/千瓦时的价格收购全部垃圾发电量,
3.一台发电设备每处理1吨垃圾平均费用为123元
4.一台发电设备日处理垃圾能力为225吨,
5.1吨垃圾可发电300千瓦时,其中30%为自用电
信息三、
发电设备:120万/台制砖设备:35万/台
机房总面积为7亩,每台设备有各自平均占地,其中发电设备每台平均占地1亩,制砖机每台平占地1亩
(四)建立模型
你能从以上信息中提炼出你所需要的信息,并用数学语言表示出来吗?
(学生动手)
引导:我们刚才处理的问题即应用题:
例一工厂欲生产甲乙两种产品,已知生产一件甲产品利润为60元,一台甲设备价格为120万,占地1亩,年生产能力为82125件;生产一件乙产品利润为0.12元,一台乙设备价格为35万,占地1亩,年生产能力为15000000件.现有资金500万,厂房7亩,该厂该如何添置甲乙两种设备,使得年利润最大?
(五)解决模型
该问题即我们上节课刚学过的线性规划问题,请大家动手解决.
(六)反馈实际
我们可以将我们的成果发到市长信箱,为城市建设出谋划策,贡献自己的一份力量.
五、归纳小结
(一)解决生活问题的步骤:
创设情境→方案讨论→数据筛选→建立模型→解决模型→反馈实际
现实问题:给你资金和地皮,购置设备
方案讨论:通过1.上网查询2.市场调查3.吸收已建厂经验等方法收集信息.
数据筛选及建立模型:将收集到的信息用数学语言表示出来.
解决模型:用已学过的数学知识进行分析、处理,得出结论.
反馈实际:将结论应用于实际问题当中.
(二)顺利解决生活问题体要具备的能力
我们要具备信息收集及处理能力、生活语言转化成数学语言的能力以及扎实的数学解题能力.
不等式课件【篇3】
各位领导
你们好!
今天我要为大家讲的课题是 : 《 不等式及其解集 》 。
首先,我对本节教材进行一些分析:
一、教材分析:
1.教材所处的地位和作用:
本节内容在全书及章节的地位是:《 不等式及其解集 》是 新人教版 初中数学教材第 七 册第 九 章第 1 节内容。 学生已初步体会到生活中的量与量之间的关系,有相等与不等的情形,就是有大小之分…… 在此之前,学生已学习了 等式 基础上,这为过渡到本节的学习起着铺垫作用。
2教学目标:
根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:
(1)知识目标:
了解不等式及一元一次不等式概念。
理解不等式的解、解集,能正确表示不等式的解集。
(2)能力目标:
通过教学初步培养学生分析问题,解决实际问题,读图分析、收集处理信息、团结协作、语言表达的能力,以及通过师生 互动 ,初步培养学生运用知识的能力,培养学生加强理论联系实际的能力。
(3)情感目标:
通过对 《不等式及其解集》 的教学,引导学生从现实生活的经历与体验出发,激发学生对地理问题的兴趣,使学生了解地理知识的功能与价值,形成主动学习的态度,让学生初步认识到地理知识的优越性,同时渗透 安全教育 ;通过理论联系实际的方式,通过知识的应用,培养学生唯物主义的思想观点。
3.重点,难点以及确定的依据:
本课中 不等式相关概念的理解和不等式的解集的表 是重点, 不等式解集的理解 是本课的难点,但由于学生年龄小,解决实际问题能力弱,对理论联系实际的问题的理解难度大。下面,为了讲清重难点,使学生能达到本节课设定的教学目标,我再从教法和学法上谈谈:
二、教学策略(说教法):
(一)教学手段:
如何突出重点,突破难点,从而实现教学目标。我在教学过程中拟计划进行如下操作:
1.“读(看)——议——讲”结合法
2 .读图讨论法
3 .教学过程中坚持启发式教学的原则
基于本节课的特点: 第一节知识性特点 ,应着重采用 自主探讨 的教学方法。
(二)教学方法及其理论依据:
坚持“以学生为主体,以教师为主导”的原则,即“以学生活动为主,教师讲述为辅,学生活动在前,教师点拨评价在后”的原则,根据学生的心理发展规律,联系实 际安排教学内容。采用学生参与程度高的学导式讨论教学法。在学生看图片 、讨论基础上,在教师启发引导下,运用问题解决式教学法,师生交谈法、问答法、课堂讨论法,引导学生根据现实生活的经历和体验及收集到的信息(感性材料)来理解课文中的理论知识。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现的机会,培养其自信心,激发其学习热情。有效地开发各层次学生的潜在智能,力求使每个学生都能在原有的基础上得到发展。同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践,学以致用,落实教学目标。
使学生学习对生活有用的数学,学习对终身发展有用的数学的基本理念。提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的知识和技能,在教学中要积极培养学生学习兴趣和动机,明确的学习目的。教师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力
三、学情分析:(说学法) :
1.学生特点分析:
中学生心理学研究指出,初中阶段是智力发展的关键年龄,学生逻辑思维从经验型逐步向理论型发展,观察能力、记忆能力和想象能力也随着迅速发展。从年龄特点来看,初中学生好动、好奇、好表现,抓住学生特点,积极采用形象生动、形式多样的教学方法和学生广泛的、积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。生理上,青少年好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中应抓住学生这一生理特点,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。
2.知识障碍上:
(1)知识掌握上,学生原有的知识 等式 ,许多学生出现知识遗忘,所以应 更学生更过的时间分组预习讨论 。
(2)学生学习本节课的知识障碍。 不等式解集的表示方法
知识,学生不易理解,所以教学中教师应予以简单明白、深入浅出的分析。
3.动机和兴趣上:
明确的学习目的。教师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。
最后我来具体谈一谈这一堂课的教学过程:
四、教学程序及设想:
教学程序:
(一)课堂结构: 出示学习目标,预习展示 , 练习反馈 , 课堂自测, 布置作业 五 个部分。
(二)教学简要过程:
1、 出示学习目标,课前预习
出示学习目标,学生观察学习目标,自主预习。
设计意图:有了明确的学习目标才能激发起学生的学习热情,才能充分调动学生学习的积极性。
学生分小组进行自主探究学习,同学之间进行合作交流,教师巡视指导,观察学生的探究方法,并倾听学生之间的探讨。
【设计意图】:本次任务为本节课的核心任务,其目的是通过学生的自主学习,理解本节几个概念,并通过学生的举例回答,从具体的实例中去掌握这几个概念。
2 、预习反馈
让学生自己来讲解,有利于提高学生的语言表达能力,学生用语言来概括这几个概念,培养学生的数学语言表达能力及抽象概念能力。
3 、老师归纳,练习反馈
归纳补充知识点,并进行练习反馈。针对每个知识点设置不同的练习。如
1 ) 、不等式的定义设置 , (判断)下列各式是否为不等式;
(1)-2<5 (2)x+3> 2x (3)4x-2y<0 (4)a-2b
(5)x2-2x+1<0 (6) a+b≠c (7)5m+3=8 (8)x≤-4
2 ) 、 用不等式表示:
⑴ a与1的和是正数;
⑵ y的2倍与1的和小于3;
⑶ y的3倍与x的2倍的和是非负数 ;
⑷ x乘以3的积加上2最多为5.
3 ) 、下列说法正确的是( )
A. x=3是2x>1的解
B. x=3是2x>1的唯一解
C. x=3不是2x>1的解
D. x=3是2x>1的解集
及认识不等式解集的表示方法有两种:最简形式与在数轴上表示。分组讨论找规律,记口诀。(定界点,定方向)相关题型:
用数轴表示不等式的解集:
(1)x>-2; (2)x≤3; (3)y≤0
找三名同学上台展示。
展示学生的成果,让学生在学习过程中感受学习的乐趣和成功的喜悦,增强学生的学习兴趣。
体会不等式是解决实际问题的有效工具。
4 、课堂自测
检测学习本节课的掌握情况。
5 、布置作业
分层作业。针对学生的学习情况,让每一名同学都 能完成 老师布置的任务,增强成就感及学习数学的兴趣。 A类: 教科书P119,120:1,2,3;B 类: 卷:能力提高作业。
五、 反思:
本节教学,有以下几点特别值得回味的地方。
1、从生活中来回到生活中去的教学设计
新课标指出:“数学的教学活动必须建立在学生的认知发展水平和已有知识经验基础上。”心理学的研究表明,学习内容和学生生活背景、知识背景越接近,学生自觉接纳知识懂得的程度就越高。导入的恰当、合理会引起学生极大的学习兴趣,对知识的衔接和理顺起到画龙点睛的作用,又对新知识起到设疑、点拔的作用。用学生身边感兴趣的实例 过马路、跷跷板体验生活中的不等式 ,一方面引起学生的参与欲,另一方面也体现了知识拓展的需要。因为这样既可引出一元一次不等式的意义,又让学生产生学习不等式的需求,也使学生对解不等式 的方法有了很自然的联想 让学生充分感受到学习一元一次不等式的必要性。使学生进一步认识到“数学来源于生活,反过来又为生活服务”,增强学好数学的信心与决定。
2、重视数学思想方法的渗透
数学思想方法是数学的灵魂,知识转化为能力的桥梁。在整节课的教学中都非常重视数学思想方法的渗透。学习不等式时,类比方程、不等式解集的概念,渗透“类比”思想。使学生在已有知识上进行迁移,在主动参与、探索交流中不知不觉学到了新知识。利用数轴求不等式的解集,渗透“数形结合”思想。掌握不等式的解集 在数轴上的表示 ,利用数轴把解集 讲解得非常透彻,使学生充分认识到“数形结合”思想方法的用处。列不等式解决实际问题,渗透“建模”思想,培养学生应用数学的意识。最后的小结,不是流俗的学习内容小结,而是思想方法的小结,它起到了提纲挈领,梳理总结的目的。
3、重视数学的“再创造”
课堂教学改革的宗旨和根本出发点是:改善和促进学生全面、持续、和谐地发展。建构主义理论强调学习的主动性、社会性和情景性,认为学习者不是知识信息的被动吸收者,而是主动积极的建构者。留给学生的作业:完成课外探究题,借助数轴归纳求不等式的解集一般规律。教学时重视了数学的“再创造”,由学生本人把需学的东西自己去发现和创造出来。学生的学习不再是一种被动地吸收知识,反复练习,强化储存知识的过程,而是通过反复研究、探索、思考、概括,亲身经历“再创造”的探究性学习过程,从而自主获得知识。
总之,教学设计时体现新课程标准的思想和理念,注重知识与能力并重,培养发展学生自主探索的独立思考精神。
不等式课件【篇4】
一教材分析
1、教材地位和作用
均值不等式又叫做基本不等式,选自人教B版(必修5)的3章的2节的内容,是在上节不等式性质的基础上对不等式的进一步研究.同时也是为了以后学习中的几种重要不等式,以及不等式的证明作铺垫,起着承上启下的作用。
本节内容具有变通灵活性、应用广泛性、条件约束性等特点,所以本节课可以培养学生应用数学知识灵活解决实际问题的能力。
“均值不等式”在不等式的证明和求最值过程中有着广泛的应用。求最值是高考的热点。它在科学研究、经济管理、工程设计上都有广泛的作用。
2、教学目标
A.知识目标:学会推导并掌握均值不等式,理解这个均值不等式的几何意义,并掌握定理中取等号的条件.B.能力目标:通过对均值不等式的推导过程,提高学生探究问题,分析与解决问题的能力。参透类比思想,数形结合的思想,优化了学生的思维品质。
C.情感目标:(1)通过探索均值不等式的证明过程,培养探索、研究精神。(2)通过对均值不等式成立的条件的分析,养成严谨的科学态,并形成勇于提出问题、分析问题的习惯。
3、教学重点、难点:
重点:
通过对新课程标准的解读,教材内容的解析,我认为结果固然重要,但数学学习过程更重要,它有利于培养学生的数学思维和探究能力,所以均值不等式的推导是本节课的重点
难点:
很多同学对均值不等式成立的条件的认识不深刻,在应用时候常常出错误,所以,均值不等式成立的条件是本节课的难点
二教法学法分析
1.教法
本节课主要采用探究归纳,启发诱导,讲练结合的教学方法。以学生为主体,以均值不等式为主线,从实际问题出发,放手让学生探究思索。
2、教学手段
为了使抽象变为具体,我使用了多媒体。为了突出重点我使用了彩色粉笔。3,学法
从实际生活出发,通过创设问题情境,让学生经历由实际问题出发,探求均值不等式,发现均值不等式的实质,利用均值不等式解决实际问题的过程。使学生从代数证明和几何证明两方面理解并掌握基本不等式。
三教学过程
(一)、创设情景,引入课题
从古至今中国人有很多发明创造推动了和推动着世界的前进,在这璀璨的星空里,最耀眼的一颗就是被奉为2002年北京国际数学家大会会徽的《赵爽弦图》(动画打出)。
如图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。这就是公元前1000多年前我国数学家赵爽发现并记录在《周脾算经》中的发现和证明勾股定理的《赵爽弦图》;它比欧洲毕达哥拉斯学派的发现早了500多年。
你能在这个图案中找出一些相等关系或不等关系吗?
设计意图:勾起学生强烈的民族自豪感和强烈的求知欲,并对学生渗透爱国主义教育,同时告诉学生记住我国光辉而灿烂的历史。
探究图形中的不等关系(用提问题的方式)
将图中的“风车”抽象成如图,在正方形ABCD中有4个全等的直角三角形。
设直角三角形的两条直角边长为a,b
4个直角
22三角形的面积的和是2ab,正方形的面积为ab。
由于4个直角三角形的面积和小于正方形的面积,22我们就得到了一个不等式:ab2ab。
当直角三角形变为等腰直角三角形,即a=b时,22正方形EFGH缩为一个点,这时有ab2ab。
22a,bR,那么ab2ab(当且仅当ab时取“”号)得到结论:重要不等式:如果
具有这种形式的式子就是我们今天要讨论的问题.(二)新课讲授。
1给出均值定理(在老师写均值不等式定理时,要求同学在课本上了解均值定理,并思考怎样证明。),师生一起证明均值不等式。
aba0,b0)2要证:„„„„„„„„„①
即证:ab„„„„„„„„„„„②
要证②,只要证:ab0„„„„③
2要证③,只要证:(-)0 „„④
点评,强调取等条件;
2.ab2的几何意义 aba0,b0)2当a≠b时,OC>CD,即
ab当a=b时,OC=CD,即
2我们是否能从图中看见当D向O点移动时CD是逐渐变长了,当D,O重合时CD最长,并且a=b.ab
3.在数学中,我们称2为正数a、b的算术平均数,称ab为正数a、b的几何平均数.均值不等式还可叙述为:两个正数的几何平均数不大于它们的算术平均数.设计意图:探索发现,观察归纳,形成概念,加深对均值不等式的认识和理解;培养学生数形结合的思想方法和对比的数学思想,多方面思考问题的能力.让学生积极的参与到学习中来,激发学生的学习兴趣。
(三)例题讲解(精讲第一题)
例,矩形的面积为100 m2,问这个矩形的长、宽各为多少时,矩形周长最短。最短周长是多少?
用波利亚的4环节来进行解题
1:审题(把实际问题数学化)
2:分析(矩形的长与宽的乘积是一个常数,求长与宽的和的2倍的最小值;)3:解题
4:回顾(给出规律:规律:两个正数的积为常数时,它们的和有最小值)。
设计意图:这个例题体现了基本不等式的实用价值。随着高考综合科目的确定,联系各个学科的试题将会不断出现,数学作为工具性的学科,学好数学,也增强了攻读好其他学科的信心。
为了体现夸美纽斯的巩固性原则,我设计了下面练习。
练习:已知矩形的周长是36m,问这个矩形的长、宽各为多少时,矩形的面积最大?最大面积是多少?
先老师对该练习进行提示,再抽一位同学在黑板上来练习,其他同学在下面练习。做完后大家一起点评该练习,不让同学通过上面的回顾来终结下面的规律:
两个正数的和为常数时,它们的积有最大值
四小结(教师引导学生小结本节课):
知识:均值定理及其成立的条件,及其均值定理的应用
方法:一正,二定,三相等。
思想:类比和数形结合的思想。
设计意图:培养学生对所学知识进行概括归纳的能力,巩固所学知识.
五作业:
基础题:课本 第77页A组 1.提高题:课本 第77页A组 3.4研究题:设正数a、b,试尽可能多的给出含有a和b的两个元素的不等式
板书设计:
为了更好的板书本节课的内容,使整个板面重点突出,层次分明,我将黑板分为四版.定理例题练习副版
定理的证明讲解讲解
不等式课件【篇5】
课题:§3.2.3均值不等式课时:第3课时 授课时间:授课类型:新授课
【教学目标】
1.知识与技能:了解均值不等式在证明不等式中的简单应用。
2.过程与方法:培养学生的探究能力以及分析问题、解决问题的能力。
3.情态与价值:激发学习数学的热情,培养善于思考、勤于动手的学习品质。
【教学重点】了解均值不等式在证明不等式中的简单应用。
【教学难点】了解均值不等式在证明不等式中的简单应用。
【教学过程】
例
1、已知a、b、c∈R,求证:
不等式的左边是根式,而右边是整式,应设法通过适当的放缩变换将左边各根式的被开方式转化为完全平方式,再利用不等式的性质证得原命题。
a2b2c
2abc 例
2、若a,b,cR,则bca
本题若用“求差法”证明,计算量较大,难以获得成功,注意到a , b , c∈R,从结论的特点出发,均值不等式,问题是不难获证的。
+
例
3、已知a,b,c为两两不相等的实数,求证:abcabbcca 证明:∵ab2abbc2bcca2ca
以上三式相加:2(abc)2ab2bc2ca
∴abcabbcca
例
4、已知a,b,c,d都是正数,求证:(abcd)(acbd)4abcd
分析:此题要求学生注意与均值不等式定理的“形”上发生联系,从而正确运用,同22222222222222
2证明:∵a,b,c,d都是正数,∴ab>0,cd>0,ac>0,bd>
得abcdacbd0,0.22
(abcd)(acbd)abcd.4由不等式的性质定理4的推论1,得
即(abcd)(acbd)4abcd
小结:正数的算术平均数不小于它们的几何平均数
课堂练习:第73页习题B 3、4课后作业:第73页习题B 5、6
板书设计:
教学反思:
不等式课件【篇6】
《均值不等式》说课稿
山东陵县一中 燕继龙李国星
尊敬的各位评委、老师们:
大家好!我今天说课的题目是 《均值不等式》,下面我从教材分析,教学目标,教学重点、难点,教学方法,学生学法,教学过程,板书设计,效果分析八个方面说说我对这堂课的设计。
一、教材分析:
均值不等式又称基本不等式,选自普通高中课程标准实验教科书(人教B版)必修5第三章第3节内容。是不等式这一章的核心,在高中数学中有着比较重要的地位。对于不等式的证明及利用均值不等式求最值等实际问题都起到工具性作用。通过本节的学习有利于学生对后面不等式的证明及前面函数的一些最值值域进一步研究,起到承前启后的作用。
二、教学目标:
1、知识与技能:
(1)掌握均值不等式以及其成立的条件;
(2)能运用均值不等式解决一些较为简单的问题。
2、过程与方法:
(1)探索并了解均值不等式的证明过程、体会均值不等式的证明方法;
(2)培养探究能力以及分析问题、解决问题的能力。
3、情感态度与价值观:
(1)通过探索均值不等式的证明过程,培养探索、钻研、合作精神;
(2)通过对均值不等式成立条件的分析,养成严谨的科学态度;
(3)认识到数学是从实际中来,通过数学思维认知世界。
三、教学重点和难点:
重点:通过对新课程标准的解读,教材内容的解析,我认为结果固然重要,但数学学习过程更重要,它有利于培养学生的数学思维和探究能力,所以均值不等式的推导是本节课的重点之一;再者,均值不等式有比较广泛的应用,需重点掌握,而用好均值不等式,关键是对不等式成立条件的准确理解,因此,均值不等式及其成立的条件也是教学重点。
难点:很多同学对均值不等式成立的条件的认识不深刻,在应用时候常常出现错误,所以,均值不等式成立的条件是本节课的难点。
四、教学方法:
为了达到目标、突出重点、突破难点、解决疑点,我本着以教师为主导的原则,再结合本节的实际特点,确定本节课的教学方法。
突出重点的方法:我将通过引导启发、学生展示来突出均值不等式的推导;通过多媒体展示、来突出均值不等式及其成立的条件。
突破难点的方法:我将采用重复法(在课堂的每一环节,以各种方式进行强调均值不等式和
来突破均值不等式成立的条件这个难点。
此外还将继续采用个人和小组积分法,调动学生积极参与的热情。
五、学生学法:
在学生的学习中,注重知识与能力,过程与方法,情感态度和价值观三个方面的共同发展。充分体现学生是主体,具体如下:
1、课前预习----学会;、明确重点、解决疑点;
2、分组讨论
3、积极参与----敢于展示、大胆质疑、争相回答;
4、自主探究----学生实践,巩固提高;
六、教学过程:
采取“三步骤四环节和谐高效课堂”教学模式,运用学案导学开展本节课的教学,首先进行
:课前预习
(一)成果反馈
1.对课前小组合作完成的现实生活中的问题:
“今有一台天平,两臂不等长,要用它称物体质量,将物体放在左、右托盘各称一次,称得的质量分别为a,b,问:能否用a,b的平均值表示物体的真实质量?若不能,这二者是什么关系?”
进行多媒体情景演示,抽小组派代表回答,从而引出均值不等式抽出两名同学上黑板完成2、32.均值定理:_____________________________________
ab
2。
预备定理:a2b22ab(a,bR),仿照预备定理的证明证明均值定理 3.已知ab>0,求证:
ab
ab2,并推导出式中等号成立的条件。
与此同时,其他同学分组合作探究和均值定理有关的以下问题,教师巡视并参与讨论,适时点拨。
① 适用范围a,b________,x0,x
1x2
对吗?
② 等号成立的条件,当且仅当__________时,________=_________ ③ 语言表述:两个___数的____平均数_____它们的_______平均数 ④ 把不等式_________________又称为均值或________不等式 ⑤ 数列观点:两个正数的______中项不小于它们的_____中项
。⑥ 几何解释(见右图):________________
⑦常见变形ab_______
________,即ab
___________。例:
4、(1)一个矩形的面积为100 m,问这个矩形的长、宽各为多少时,矩形的周长最短?最短周长是多少?(2)已知矩形的周长是36m,问这个矩形的长、宽各为多少时,矩形的面积最大?最大面积是多少?
由此题可以得出两条重要规律:
两个正数的积为常数时,它们的和有______值; 两个正数的和为常数时,它们的积有______值。
等待两名同学做完后,适时终止讨论,学生各就各位。首先针对黑板上这两道题发动学生上来捉错(用不同色粉笔),然后再由老师完善,以此加深学生对定理及应用条件的认识。其次,老师根据刚才巡视掌握的情况,结合多媒体进行有针对性的讲解(重点应强调均值定理的几何解释:半径不小于半弦,以及用三角形相似或射影定理的几何证明过程,使定理“形化”),进一步加深学生对定理的认识及应用能力,初步掌握用均值定理求函数最值时要注意“一正、二定、三相等”
第二步:课内探究
(二)精讲点拨 1.例:求函数f(x)
2xx
3x
(x0)的最大值,及此时x的值。
先和学生们一起探讨该问题的解题思路,先拆分再提出“-”号,为使用均值定理创造条件,后由学生们独立完成,教师通过巡视或提问发现问题,通过多媒体演示来解决问题,该例题主要让学生注意定理的应用条件及一些变形技巧。
2.多媒体展示辨析对错:
这几道辨析题先让学生们捉错,再由
多媒体给出答案,创设情境加深学生对用均值定理求函数最值时注意“一正、二定、三相等”的认识
(三)有效训练
1.(独立完成)下列函数的最小值为2的是()
A、yx
1x
B、ysinx
1sinx
(0x
)
C、y
1D、ytanx
本题意在巩固用均值定理求函数最值时要注意“一正、二定、三相等”,待学生完成后,随机抽取几名学生说一下答案,选D,应该不会有问题。
2.(小组合作探究)一扇形中心角为α,所在圆半径为R。若扇形周长为一常值C(C>0),当α为何值时,扇形面积最大,并求此最大值。
本题若直接运用均值不等式不会出现定值,需要拼凑。待学生讨论过后,先通答案,2时扇形面积最大值为
c
tanx
(0x
)
。若有必要,抽派小组代表到讲台上讲解,及时反馈矫正。
(四)本节小结
小结本节课主要内容,知识点,由学生总结,教师完善,不外乎: 1.两个重要不等式
ab2ab(a,bR,当且仅当ab时取“”)
2ab2
a,bR,当且仅当ab时取“”)
2.用均值定理求函数最值时要注意“一正、二定、三相等”。
(一)、双基达标(必做,独立完成):
1、课本第71页练习A、B;
2、已知x1,求yx6
x
1的最值;
(二)、拓展提高(供选做, 可小组合作完成):
23、若a,bR且a
b
1,求a最大值及此时a,b的值.4、a0,b0,且
5、求函数f(x)
1a
9b
1,求ab最小值.x3x1x
1(x1)的最小值。
通过作业使学生进一步巩固本节课所学内容,注重分层次设计题目,更加关注学生的差异。
七、板书设计:
由于本节采用多媒体教学,板书比较简单,且大部分是学生的展示。
八、效果分析:
本节课采取了我校推行的“三步骤四环节和谐高效课堂”教学模式,通过学案导学,多媒体展示,师生互动,生生互动。学生基本能掌握均值不等式以及其成立的条件;能运用均值不等式解决一些较为简单的问题。但用均值定理求函数最值时要注意“一正、二定、三相等”,说起来容易做起来难,学生还得通过反思和课后训练进一步体会。
我的说课到此结束,恳请各位评委和老师们批评指正,谢谢!
不等式课件【篇7】
【教学目标】
1.通过具体情境让学生感受和体验现实世界和日常生活中存在着大量的不等关系,鼓励学生用数学观点进行观察、归纳、抽象,使学生感受数学、走进数学、改变学生的数学学习态度。
2.建立不等观念,并能用不等式或不等式组表示不等关系。
3.了解不等式或不等式组的实际背景。
4.能用不等式或不等式组解决简单的实际问题。
【重点难点】
重点:
1.通过具体的问题情景,让学生体会不等量关系存在的普遍性及研究的必要性。
2.用不等式或不等式组表示实际问题中的不等关系,并用不等式或不等式组研究含有简单的不等关系的问题。
3.理解不等式或不等式组对于刻画不等关系的意义和价值。
难点:
1.用不等式或不等式组准确地表示不等关系。
2.用不等式或不等式组解决简单的含有不等关系的实际问题。
【方法手段】
1.采用探究法,按照阅读、思考、交流、分析,抽象归纳出数学模型,从具体到抽象再从抽象到具体的方法进行启发式教学。
2.教师提供问题、素材,并及时点拨,发挥老师的主导作用和学生的主体作用。
3.设计教典型的现实问题,激发学生的学习兴趣和积极性。
【教学过程】
教学环节
教师活动
学生活动
设计意图
导入新课
日常生活中,同学们发现了哪些数量关系。你能举出一些例子吗?
实例1.某天的天气预报报道,最高气温35℃,最低气温29℃。
实例2.若一个数是非负数,则这个数大于或等于零。
实例3.两点之间线段最短。
实例4.三角形两边之和大于第三边,两边之差小于第三边。
引导学生想生活中的例子和学过的数学中的例子。在老师的引导下,学生肯定会迫不及待的能说出很多个例子来。即活跃了课堂气氛,又激发了学生学习数学的兴趣。
推进新课
同学们所举的这些例子联系了现实生活,又考虑到数学上常见的数量关系,非常好。而且大家已经考虑到本节课的标题《不等关系与不等式》,所举的实例都是反映不等量的关系。
(下面利用电脑投影展示两个实例)
实例5:限时40km/h的路标,指示司机在前方路段行使时,应使汽车的速度v不超过40km/h。
实例6:某品牌酸奶的质量检查规定,酸奶中脂肪的含量f应不少于2.5%,蛋白质的含量p应不少于2.3%.
同学们认真观看显示屏幕上老师所举的例子。
让学生们边看边思考:生活中有许多的事情的描述可以采用不等的数量关系来描述
过程引导
能够发现身边的数学当然很好,这说明同学们已经走进了数学这门学科,但是我们还要能用数学的眼光、数学的观点、进行观察、归纳、抽象,完成这些量与量的比较过程,那么我们用什么知识来表示这些不等关系呢?
什么是不等式呢?
用大屏幕展示一组不等式-71+4;2x≤6;a+2≥0;3≠4.
能用不等式及不等式组把这些不等关系表示出来,也就是建立不等式数学模型的过程通过对不等式数学模型的'研究,反过来作用于现实生活,这才是学习数学的最终目的。
思考并回答老师的问题:可以用不等式或不等式组来表示不等关系。
经过老师的启发和点拨,学生可以自己总结出:用不等号将两个解析试连接起来所成的式子叫不等式。
目的是让学生回忆不等式的一些基本形式,并说明不等号≤,≥的含义,是或的关系。回忆了不等式的概念,不等式组学生自然而然就清楚了。
此时学生已经迫不及待地想说出自己的观点了。
合作探究
(一)。下面我们把上述实例中的不等量的关系用不等式或不等式组一一的表示出来,那应该怎么表示呢?
这两位同学的观点是否正确?
老师要表扬学生:“很好!这样思考问题很严密。”应该用不等式组来表示此实际问题中的不等量关系,也可以用“且”的形式来表达。
(二)。问题一:设点A与平面的距离为d,B为平面上的任意一点。
请同学们用不等式或不等式组来表示出此问题中的不等量的关系。
老师提示:借助于图形,这个问题是不是可以解决?
(下面让学生板演,结合三角形草图来表达)
问题(二):某种杂志原以每本2。5元的价格销售,可以售出8万本,据市场调查,若单价每提高0。1元,销售量就可能相应减少20xx本。若把提价后杂志的定价设为x元,怎样用不等式表示销售的总收入仍不低于20万元呢?
是不是还有其他的思路?
为什么可以这样设?
很好,请继续讲。
这位学生回答的很好,表述得很准确。请同学们对两种解法作比较。
问题(三):某钢铁厂要把长度为4000mm的钢管截成500mm和600mm两种,按照生产的要求,600mm钢管的数量不超过500mm钢管的3倍。怎样写出满足上述所有不等式关系的不等式?
假设截得500mm的钢管x根,截得600mm的钢管y根。根据题意,应当有什么样的不等量关系呢?
右边的三个不等关系是“或”还是“且”的关系呢?
这位学生回答得很好,思维很严密,那么该用怎样的不等式组来表示此问题中的不等关系呢?
通过上述三个问题的探究,同学们对如何用不等式或不等式组把实际问题中隐藏的不等量关系表示出来,这一点掌握得很好。请同学们完成书本练习第74页1,2。
课堂小结:
1.学习数学可以帮助我们解决实际生活中的问题。
2.数学和我们的生活联系非常密切。
3.本节课巩固了二元一次不等式及二元一次不等式组,并且能用它来解决现实生活中存在的大量不等量关系的实际问题。还要注意思维要严密,规范,并且要注意数形结合等思想方法的综合应用。
布置作业:
第75页习题3.1 A组4,5。
29℃≤t≤35℃
x≥0
|AC|+|BC|>|AB|
|AB|+|BC|>|AC|、|AC|+|BC|>|AB|、|AB|+|AC|>|BC|.
|AB|-|BC|
|AB|-|AC|
如果用表示速度,则v≤40km/h.
f≥2.5%或p≥2.3%
学生自己纠正了错误:这种表达是错误的,因为两个不等量关系要同时满足,所以应该用不等式组来表示次实际问题中的不等量关系,即可以表示为也可表示为f≥2.5%且p≥2.3%.
过点A作AC⊥平面于点C,则d=|AC|≤|AB|
可设杂志的定价为x元,则销售量就减少万本。销售量变为(8-)万本,则总收入为(8-)x万元。即销售的总收入为不低于20万元的不等式表示为(8-)x≥20.
解法二:可设杂志的单价提高了0.1n元,(n)
我只考虑单价的增量。
那么销售量减少了0.2n万本,单价为(2.5+0.1n)元,则也可得销售的总收入为不低于20万元的不等式,表示为(2.5+0.1n)(8-0.2n)≥20.
截得两种钢管的总长度不能超过4000mm。
截得600mm钢管的数量不能超过500mm钢管的3倍。
截得两种钢管的数量都不能为负数。
它们是同时满足条件,应该是且的关系。由实际问题的意义,还应有x,y要同时满足上述三个不等关系,可以用下面的不等式组来表示:
如果学生没有想到的话,老师可以在黑板上板演示意图,启发学生考虑三边的大小关系。
此时启发学生“或”字可以吗?学生没有了声音,他们在思考着。到底行不行呢?有的回答“行”,有的回答“不行”。
此时学生们在思考,时间长的话,老师要及时点拨。
让学生知道,在解决问题时应该贯穿数形结合的思想,以形助数,下面有学生的声音,有学生在讨论,有的学生还有疑问。老师注意关注学生的思维状况,并且及时的加以指导。
此时学生已经真正进入本节课的学习状态,老师再给出问题(三)使学生一直处于跟随老师积极思考和解决问题的状态。问题是教学研究的核心,以问题展示的形式来培养学生的问题意识与探究意识。
【教学反思】(【设计说明】)
本节课内容很多,都是不等式和不等式组的有关问题,还有很多是生活中的实例,学生学习起来很感兴趣,课堂的气氛也很好,大多数学生都能很积极地回答问题,使课堂的学习气氛很浓,确实也做到了愉快教学。设计是按照老师引导式教学,边讲授边引导,启发学习思考问题及能自己解决问题,锻炼学习能自主的学习能力。
【交流评析】
一是课堂容量适中,二是实例很好,接近生活,学生感兴趣。三是学生回答问题积极踊跃,和老师配合很好。四是多媒体应用的恰到好处,教学设备很完善,老师也能很熟练的应用。
不等式课件【篇8】
3.2均值不等式 教案(3)
(第三课时)
教学目标:
了解均值不等式在证明不等式中的简单应用
教学重点:
了解均值不等式在证明不等式中的简单应用
教学过程
例
1、已知a、b、c∈R,求证:
不等式的左边是根式,而右边是整式,应设法通过适当的放缩变换将左边各根式的被开方式转化为完全平方式,再利用不等式的性质证得原命题.
a2b2c
2abc 例
2、若a,b,cR,则bca
本题若用“求差法”证明,计算量较大,难以获得成功,注意到a , b , c∈R,从结论的特点出发,均值不等式,问题是不难获证的.
+
例
3、已知a,b,c为两两不相等的实数,求证:abcabbcca 证明:∵ab2abbc2bcca2ca
以上三式相加:2(abc)2ab2bc2ca
∴abcabbcca
例
4、已知a,b,c,d都是正数,求证:(abcd)(acbd)4abcd 22222222222222
2分析:此题要求学生注意与均值不等式定理的“形”上发生联系,从而正确运用,同时证明:∵a,b,c,d都是正数,∴ab>0,cd>0,ac>0,bd>得
abcdacbd0,0.22
由不等式的性质定理4的推论1,得
(abcd)(acbd)abcd.4即(abcd)(acbd)4abcd
小结:正数的算术平均数不小于它们的几何平均数
课堂练习:第77页练习A、B
课后作业:略
不等式课件【篇9】
教材分析:
上节课认识了不等式,知道了什么叫不等式和不等式的解。本节主要学习不等式的解集,这是学好利用不等式解决实际问题的关键,同时要求学生会用数轴表示不等式的解集,使学生感受到数形结合的作用。并且本课也通过让学生经历实验、观察、分析、概括过程,自主探索不等式的解集等概念,培学生的思维能力。在情感态度、价值观方面要培养学生与他人合作学习的习惯。
教学重点:
理解不等式的解集的含义,明确不等式的解是在某个范围内的所有解。
教学难点:
对不等式的解集含义的理解。
教学难点突破办法:
通过实验、观察,分析、概括过程,使学生对不等式的解集有了初步的理解,然后通过数轴直观地表示出不等式的解集,从而加深了学生对不等式的解集的理解。
教学方法:
1、采用复习法查缺补漏,引导发现法培养学生类比推理能力,尝试指导法逐步培养学生独立思考能力及语言表达能力。充分发挥学生的主体作用,使学生在轻松愉快的气氛中掌握知识。
2、让学生充分发表自己的见解,给学生一定的时间和空间自主探究每一个问题,而不是急于告诉学生结论。
3、尊重学生的个体差异,注意分层教学,满足学生多样化的学习需要。
学习方法:
1、学生要深刻思考,把实际问题转化为数学模型,养成认真思考的好习惯。
2、合作类推法:学习过程中学生共同讨论,并用类比推理的方法学习。
教学步骤设计如下:
(一)创设问题情境,引入新课:
实验:将如下重量的砝码分别放入天平的左边。
请大家仔细观察,哪些砝码放入天平左边后能使天平向左边倾斜?如果砝码重x克,要使x+2>5,即:天平左边放入x克砝码后使天平向左边倾斜。那么这样的x取应取什么数?这样的数是有限个还是无限个?
学生活动:
1、让学生观察实验,寻找数量关系回答问题;
2、让学生采取小组合作的学习方式。
(二)讲授新课
通过实验、讨论、交流、归纳得到:大于心不甘的每个数都是不等式x+2>5的解,而小于3的每一个数都不是不等式x+2>5的解,因此不等式x+2>5的解有无限多个,它们组成集合,称为一元不等式x+2>5的解集。即表示为x>3。
由实例概括出不等式的解集以及解不等式的概念:一个不等式的所有解,组成这个不等式的解的集合,简称为这个不等式的解集;求不等式的解集过程,叫做解不等式。
我们知道解不等式不能只求个别解,而应求它的解集.一般而言,不等式的解集不是由一个数或几个数组成的,而是由无限多个数组成的,如x>3.那么如何在数轴上直观地表示不等式x+2>5的解集x>3呢?
不等式解集x>3,在数轴上可以直观地表示出来。如图8.2.1
如果某个不等式x≤-2,也可在数轴上直观地表示出来,如图8.2.2
说明:8.2.1在表示范表演的点画空心圆圈,表不包括这一点,表示大时就往右拐;图8.2.2在表示-2的点画黑点表示包括这一点,表示小时不向左拐。
(三)知识拓展
将数轴上x的范围用不等式来表示:
(四)尝试反馈:
课本第44页“练习”第1、2题。
(五)归纳小结:
这节课主要学习了不等式的解集的有关概念,并会用数轴表示不等式的解集。
不等式课件【篇10】
《不等式的基本性质》它是北师大版八年级下册第一章第二节的内容。今天我将从教材分析,教学目标,教学重难点,教法学法,教学过程这五个方面谈谈我对这节课处理的一些不成熟的看法:
本节内容不等式,它是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应用,所以对不等式的学习有着重要的实际意义。同时,不等式的基本性质也为学生以后顺利学习解一元一次不等式和解一元一次不等式组的有关内容的理论基础,起到重要的奠基作用。
根据《新课程标准》的要求,教材的内容兼顾我校八年级学生的特点,我制定了如下教学目标:
知识与技能:
1. 感受生活中存在的不等关系,了解不等式的意义。
2. 掌握不等式的基本性质。
过程与方法:经历不等式的基本性质的探索过程,初步体会不等式与等式的异同。
情感态度与价值观:经历由具体实例建立不等式模型的过程,进一步符号感与数学化的能力。
教学重难点:
重点:不等式概念及其基本性质
难点:不等式基本性质3
教法与学法:
1. 教学理念: “ 人人学有用的数学”
2. 教学方法:观察法、引导发现法、讨论法.
3. 教学手段:多媒体应用教学
4. 学法指导:尝试,猜想,归纳,总结
根据《数学课程标准》的要求,教材和学生的特点,我制定了以下四个教学环节。
下面我将具体的教学过程阐述一下:
一、创设情境,导入新课
上课伊始,我将用一个公园买门票如何才划算的例子导入课题。
世纪公园的票价是:每人5元;一次购票满30张,每张可少收1元。某班有27名团员去世纪公园进行活动。当领队王小华准备好了零钱到售票处买27张票时,爱动脑筋的李敏同学喊住了王小华,提议买30张票。但有的同学不明白,明明我们只有27个人,买30张票,岂不是“浪费”吗?
(此处学生是很容易得出买30张门票需要4X30=120(元), 买27张门票需要5X27=135(元),由于120〈135,所以买30张门票比买27张还要划算。由此建立了一个数与数之间的不等关系式)
紧接着进一步提问:若人数是x时,又当如何买票划算?
二、探求新知,讲授新课
引例列出了数与数之间的不等关系和含有未知量120
接下来我用一组例题来巩固一下对不等式概念的认知,把表示不等量关系的常用关键词提出。
(1)a是负数;
(2)a是非负数;
(3) a与b的和小于5;
(4) x与2的差大于-1;
(5) x的4倍不大于7;
(6) 的一半不小于3
关键词:非负数,非正数,不大于,不小于,不超过,至少
回到引入课题时的门票问题120
难点突破:通过上面三组算式,学生已经尝试着归纳出不等式的三条基本性质了。不等式性质3是本节的难点。在不等式性质3用数探讨出以后,换一个角度让学生想一想,是否能在数轴上任取两个点,用相反数的相关知识挖掘一下,乘以或除以一个负数时,任意两个数比较是否性质3都成立。通过“数形结合”的思想,使数的取值从特殊化到一般化,从对具体数的感知完成到字母代替数的升华。让学生用实例对一些数学猜想作出检验,从而增加猜想的可信程度。同时,让学生尝试从不同角度寻求解决问题的方法并能有效地解决问题。
反馈练习:用一个小练习巩固三条性质。
如果a>b,那么
(1) a-3 b-3 (2) 2a 2b (3) -3a -3b
提出疑问,我们讨论性质2,3是好象遗忘了一个数0。
引出让学生归纳,等式与不等式的区别与联系
三、拓展训练
根据不等式基本性质,将下列不等式化为“”的形式
(1)x-13
再次回到开头的门票问题,让学生解出相应的x的取值范围
四、小结
1.新知识
一个数学概念;两种数学思想;三条基本性质
2.与旧知识的联系
等式性质与不等式性质的异同
五、作业的布置
以上是我对这节课的教学的看法,希望各位专家指正。谢谢!
“让学生主动参与数学教学的全过程,真正成为学习的主人”
不等式课件【篇11】
教材分析
本节课是在系统的学习了不等关系和不等式性质,掌握了不等式性质的基础上展开的,作为重要的基本不等式之一,为后续的学习奠定基础。要进一步了解不等式的性质及运用,研究最值问题,此时基本不等式是必不可缺的。基本不等式在知识体系中起了承上启下的作用,同时在生活及生产实际中有着广泛的应用,因此它也是对学生进行情感价值观教育的好素材,所以基本不等式应重点研究。
教学中注意用新课程理念处理教材,学生的数学学习活动不仅要接受、记忆、模仿和练习,而且要自主探索、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程。通过本节学习体会数学来源于生活,提高学习数学的乐趣。
课程目标分析
依据《新课程标准》对《不等式》学段的目标要求和学生的实际情况,特确定如下目标:
1、知识与能力目标:理解掌握基本不等式,并能运用基本不等式解决一些简单的求最值问题;理解算数平均数与几何平均数的概念,学会构造条件使用基本不等式;培养学生探究能力以及分析问题解决问题的能力。
2、过程与方法目标:按照创设情景,提出问题→剖析归纳证明→几何解释→应用(最值的求法、实际问题的解决)的过程呈现。启动观察、分析、归纳、总结、抽象概括等思维活动,培养学生的思维能力,体会数学概念的学习方法,通过运用多媒体的教学手段,引领学生主动探索基本不等式性质,体会学习数学规律的方法,体验成功的乐趣。
3、情感与态度目标:通过问题情境的设置,使学生认识到数学是从实际中来,培养学生用数学的眼光看世界,通过数学思维认知世界,从而培养学生善于思考、勤于动手的良好品质。
教学重、难点分析
重点:应用数形结合的思想理解基本不等式,并从不同角度探索基本不等式的证明过程及应用。
难点:1、基本不等式成立时的三个限制条件(简称一正、二定、三相等);
2、利用基本不等式求解实际问题中的最大值和最小值。
教法分析
本节课采用观察——感知——抽象——归纳——探究;启发诱导、讲练结合的教学方法,以学生为主体,以基本不等式为主线,从实际问题出发,放手让学生探究思索。以现代信息技术多媒体课件作为教学辅助手段,加深学生对基本不等式的理解。
教学准备
多媒体课件、板书
教学过程
教学过程设计以问题为中心,以探究解决问题的方法为主线展开。这种安排强调过程,符合学生的认知规律,使数学教学过程成为学生对知识的再创造、再发现的过程,从而培养学生的创新意识。
具体过程安排如下:
创设情景,提出问题;
设计意图:数学教育必须基于学生的“数学现实”,现实情境问题是数学教学的平台,数学教师的任务之一就是帮助学生构造数学现实,并在此基础上发展他们的数学现实.基于此,设置如下情境:
上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客。
[问]你能在这个图中找出一些相等关系或不等关系吗?
本背景意图在于利用图中相关面积间存在的数量关系,抽象出不等式。在此基础上,引导学生认识基本不等式。
二、抽象归纳:
一般地,对于任意实数a,b,有,当且仅当a=b时,等号成立。
[问]你能给出它的证明吗?
学生在黑板上板书。
特别地,当a>0,b>0时,在不等式中,以、分别代替a、b,得到什么?
设计依据:类比是学习数学的一种重要方法,此环节不仅让学生理解了基本不等式不等式的来源,突破了重点和难点,而且感受了其中的函数思想,为今后学习奠定基础.
答案:。
【归纳总结】
如果a,b都是正数,那么,当且仅当a=b时,等号成立。
我们称此不等式为基本不等式。其中称为a,b的算术平均数,称为a,b的几何平均数。
三、理解升华:
1、文字语言叙述:
两个正数的算术平均数不小于它们的几何平均数。
2、联想数列的知识理解基本不等式
已知a,b是正数,A是a,b的等差中项,G是a,b的正的等比中项,A与G有无确定的大小关系?
两个正数的等差中项不小于它们正的等比中项。
3、符号语言叙述:
若,则有,当且仅当a=b时,。
[问]怎样理解“当且仅当”?(学生小组讨论,交流看法,师生总结)
“当且仅当a=b时,等号成立”的含义是:
不等式的课件收藏
经验时常告诉我们,做事要提前做好准备。在幼儿教育工作中,我们都有会准备一写需要用到资料。资料包含着人类在社会实践,科学实验和研究过程中所汇集的经验。有了资料的协助我们的工作会变得更加顺利!所以,关于幼师资料你究竟了解多少呢?小编现在推荐你阅读一下不等式的课件收藏,相信能对大家有所帮助。
不等式的课件 篇1
基本不等式是初中数学比较重要的一个概念,对于求解不等式问题有非常大的作用。在教学中,老师可以通过多学示例,呈现形式多样,让学生深刻理解基本不等式的本质和应用,使学生在解决实际问题中灵活掌握相关知识。本文将结合基本不等式的定义、性质和应用,探讨其相关主题。
一、基本不等式的定义和性质
基本不等式是在解决实际问题时常用到的一种数学方法,它可以有效地帮助我们解决很多实际问题。在数学中,一般把基本不等式定义为,对于任何正整数a和b,有下列不等关系:
(a+b)^2>=4ab
这个不等式在初中数学中非常重要,我们还可以把它解释成下面的形式:对于任何两个正数a和b,有下列不等式:
a/b+b/a>=2
这个式子实际上就是基本不等式的一个特例,也说明了基本不等式中的a和b可以指任何两个正数。
基本不等式的一些性质:
1、两边同时乘以正数或是开根号(即不改变不等关系的实质)是允许的。
2、当a=b时等号成立。
3、当a不等于b时,不等号成立。
这些性质是我们用基本不等式时需要注意的几个关键点。如果我们了解了这些基本的性质,就可以更加灵活地运用基本不等式解决实际问题。
二、基本不等式的应用
基本不等式的应用非常广泛,例如可以用它来解决以下问题:
1、证明
√(a^2+b^2)>=a/√2+b/√2
这个问题就可以使用基本不等式来证明,首先得到(a+b)^2>=2(a^2+b^2),将式子化简可得√(a^2+b^2)>=a/√2+b/√2,这就是想要证明的结论。
2、解决一些最值问题。例如:如何使a+b的值最小?这个问题可以用基本不等式来解决,我们设a+b=k,那么a+b的平方就是k^2,代入基本不等式中可得出:
k^2>=4ab,即(a+b)^2>=4ab
这个不等式右边是4ab,左边则是(a+b)^2,因此a+b的值取得最小值时,应当使(a+b)^2=4ab,所以a=b,因此a+b的最小值就是2a或是2b。
3、证明一些平方和不等式的结论。例如:
(a/b)^2+(b/a)^2>=2
这个问题可以通过基本不等式进行证明,首先我们设x=a/b,y=b/a,很显然有x+y>=2,然后通过简单的运算可得:x^2+y^2>=2,也即(a/b)^2+(b/a)^2>=2。
综上所述,基本不等式作为初中数学比较重要的一部分,其定义、性质和应用都与实际问题密切相关。在解决实际问题时,我们可以通过多学示例,灵活运用基本不等式的性质和应用,进而更好地理解其本质和应用,从而使初中数学知识更加牢固。
不等式的课件 篇2
(1)运用问题的形式帮助学生整理全章的内容,建立知识体系。
(2)在独立思考的基础上,鼓励学生开展小组和全班的交流,使学生通过交流和反思加强对所学知识的理解和掌握,并逐步建立知识体系。
通过问题情境的设立,使学生再现已学知识,锻炼抽象、概括的能力。解决问题
通过具体问题来体会知识间的联系和学习本章所采用的主要思想方法。
通过独立思考获取学习的成功体验,通过小组交流培养合作交流意识,通过大胆发表自己的观点,增强自信心。
重点:对一元一次不等式基本性质的掌握;理解不等式(组)解及解集的含义,会解简单的一元一不等式(组),并会在数轴上表示其解集;会解相关的问题,建立起相关的知识体系。
不等式有哪些基本性质?它与等式的性质有什么相同和不同之处?
解一元一次不等式和解一元一次方程有什么异同?引导学生回忆解一元一次方程的步骤.比较两者之间的不同学生举例回答.
举例说明在数轴上如何表示一元一不等式(组)的解集分组竞赛.看哪一组出的题型好,全班一起解答.
举例说明不等式、函数、方程的联系.引导学生回忆函数的有关内容.举例说明三者之间的关系.小组讨论,合作回答.函数性质、图象
小组交流、讨论不等式和函数、函数和方程等之间的关系,分别举例说明.
布置作业开动脑筋,勇于表达自己的'想法.
(1)在运用所学知识解决具体问题的同时,加深对全章知识体系理解。
(2)发展学生抽象能力、推理能力和有条理表达自己想法的能力.
教学思考:
体会数学的应用价值,并学会在解决问题过程中与他人合作.解决问题。在独立思考的基础上,积极参与问题的讨论,从交流中学习,并敢于发表自己的观点和主张,同时尊重与理解别人的观点。
情感态度与价值观:
进一步尝试学习数学的成功体验,认识到不等式是解决实际问题的重要工具,逐渐形成对数学活动积极参与的意识。
重点:
对一元一次不等式基本性质的掌握;理解不等式(组)解及解集的含义,会解简单的一元一次不等式(组),并会在数轴上表示其解集;会解相关的问题,建立起相关的知识体系。
↓ ↓
安排一组练习让学生充分充分讨论解决.
(1)当X取何值时,Y>0(2)当X取何值时,Y=0(3)当X取何值时,Y
3.某工人制造机器零件,如果每天比预定多做一件,那么8天所做零件超过100件;如果每天比预定少做一件,那么8天所做零件不到90件,这个工人预定每天做几个零件?
不等式的课件 篇3
一元二次不等式是高中数学中的一个重要概念,是指一个带有二次项的不等式。在数学学习中,我们经常需要利用二次不等式来解决问题,掌握这个概念对于深入了解高中数学知识是至关重要的。因此,学习一元二次不等式是高中数学学习中的一大难点,需要认真对待。
一元二次不等式的概念和性质
一元二次不等式可以写成如下形式:
ax² + bx + c > 0
或
ax² + bx + c
其中a、b、c都是实数,a ≠ 0。
我们可以通过一些方法求出不等式的根,比如将其转化为标准形式。将不等式变形,我们可以得到如下形式:
ax² + bx
或
ax² + bx > – c
然后,我们再用求一元二次方程根的方法求出不等式的解,就能够得到它的解集。
对于不等式ax² + bx + c > 0,其图像为二次函数的上凸形,即开口向上的抛物线,而对于不等式ax² + bx + c
一元二次不等式的解法
解一元二次不等式的方法有很多,下面我们介绍其中的两种:
方法一:化为标准形式,再利用求一元二次方程根的方法求解。
方法二:利用符号法将不等式中的式子化简,得到一系列不等式,然后将这些不等式求解即可。
实际上,解一元二次不等式还有很多其他的方法,比如绝对值法、图形法等等。在解题时,我们要根据具体的情况选择最合适的方法来求解。
一元二次不等式的应用
一元二次不等式广泛应用于数学学习以及生活中的各个领域,比如物理学、经济学、社会学等。下面我们以生活中的一个例子来说明一元二次不等式的应用。
假设你要购买一台电视机,商家提供了两种方案供你选择。方案一:首付1500元,每月还款100元;方案二:首付3500元,每月还款80元。那么,你需要比较两个方案的总花费,来决定哪个方案更加划算。
我们假设电视机的总价格为x元。那么,方案一的总花费为:
C1 = 1500 + 100×n
而方案二的总花费为:
C2 = 3500 + 80×n
这里n为分期的期数,即你需要还款的总期数。为了比较两种方案的划算程度,我们可以列出一个一元二次不等式:
1500 + 100×n
经过化简,我们可以得到:
20n > 2000
n > 100
因此,当还款期数大于100期时,方案一比方案二更加划算。这个例子很好地展示了一元二次不等式的应用,它能够帮助我们在日常生活中做出明智的选择,也能够更加深入地理解数学知识。
总结
一元二次不等式是高中数学学习中的重要概念,它在数学中和生活中都有广泛的应用。学习一元二次不等式需要我们认真对待,掌握其概念、性质和解法,同时也需要我们理解其实际应用,这样才能够更好地掌握高中数学的知识。
不等式的课件 篇4
本节课的研究是对初中不等式学习的延续和拓展,也是实数理论的进一步发展.在本节课的学习过程中,将让学生回忆实数的基本理论,并能用实数的基本理论来比较两个代数式的大小.
通过本节课的学习,让学生从一系列的具体问题情境中,感受到在现实世界和日常生活中存在着大量的不等关系,并充分认识不等关系的存在与应用.对不等关系的相关素材,用数学观点进行观察、归纳、抽象,完成量与量的比较过程.即能用不等式或不等式组把这些不等关系表示出来.
在本节课的学习过程中还安排了一些简单的、学生易于处理的问题,其用意在于让学生注意对数学知识和方法的应用,同时也能激发学生的学习兴趣,并由衷地产生用数学工具研究不等关系的愿望.根据本节课的教学内容,应用再现、回忆得出实数的基本理论,并能用实数的基本理论来比较两个代数式的大小.
在本节教学中,教师可让学生阅读书中实例,充分利用数轴这一简单的数形结合工具,直接用实数与数轴上点的一一对应关系,从数与形两方面建立实数的顺序关系.要在温故知新的基础上提高学生对不等式的认识.
1.在学生了解不等式产生的实际背景下,利用数轴回忆实数的基本理论,理解实数的大小关系,理解实数大小与数轴上对应点位置间的关系.
2.会用作差法判断实数与代数式的大小,会用配方法判断二次式的大小和范围.
3.通过温故知新,提高学生对不等式的认识,激发学生的学习兴趣,体会数学的奥秘与数学的结构美.
教学重点:比较实数与代数式的大小关系,判断二次式的大小和范围.
思路1.(章头图导入)通过多媒体展示卫星、飞船和一幅山峦重叠起伏的壮观画面,它将学生带入“横看成岭侧成峰,远近高低各不同”的大自然和浩瀚的宇宙中,使学生在具体情境中感受到不等关系在现实世界和日常生活中是大量存在的,由此产生用数学研究不等关系的强烈愿望,自然地引入新课.
思路2.(情境导入)列举出学生身体的高矮、身体的轻重、距离学校路程的远近、百米赛跑的时间、数学成绩的多少等现实生活中学生身边熟悉的事例,描述出某种客观事物在数量上存在的不等关系.这些不等关系怎样在数学上表示出来呢?让学生自由地展开联想,教师组织不等关系的相关素材,让学生用数学的观点进行观察、归纳,使学生在具体情境中感受到不等关系与相等关系一样,在现实世界和日常生活中大量存在着.这样学生会由衷地产生用数学工具研究不等关系的愿望,从而进入进一步的探究学习,由此引入新课.
1回忆初中学过的不等式,让学生说出“不等关系”与“不等式”的异同.怎样利用不等式研究及表示不等关系?
2在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系.你能举出一些实际例子吗?
3数轴上的任意两点与对应的两实数具有怎样的关系?
4任意两个实数具有怎样的关系?用逻辑用语怎样表达这个关系?
活动:教师引导学生回忆初中学过的不等式概念,使学生明确“不等关系”与“不等式”的异同.不等关系强调的是关系,可用符号“>”“b”“a
教师与学生一起举出我们日常生活中不等关系的例子,可让学生充分合作讨论,使学生感受到现实世界中存在着大量的不等关系.在学生了解了一些不等式产生的实际背景的前提下,进一步学习不等式的有关内容.
实例1:某天的天气预报报道,最高气温32 ℃,最低气温26 ℃.
实例2:对于数轴上任意不同的两点A、B,若点A在点B的左边,则xA
实例5:三角形两边之和大于第三边,两边之差小于第三边.
实例6:限速40 km/h的路标指示司机在前方路段行驶时,应使汽车的速度v不超过40 km/h.
实例7:某品牌酸奶的质量检查规定,酸奶中脂肪的含量f应不少于2.5%,蛋白质的含量p应不少于2.3%.
教师进一步点拨:能够发现身边的数学当然很好,这说明同学们已经走进了数学这门学科,但作为我们研究数学的人来说,能用数学的眼光、数学的观点进行观察、归纳、抽象,完成这些量与量的比较过程,这是我们每个研究数学的人必须要做的,那么,我们可以用我们所研究过的什么知识来表示这些不等关系呢?学生很容易想到,用不等式或不等式组来表示这些不等关系.那么不等式就是用不等号将两个代数式连结起来所成的式子.如-71+4,2x≤6,a+2≥0,3≠4,0≤5等.
教师引导学生将上述的7个实例用不等式表示出来.实例1,若用t表示某天的气温,则26 ℃≤t≤32 ℃.实例3,若用x表示一个非负数,则x≥0.实例5,|AC|+|BC|>|AB|,如下图.
|AB|+|BC|>|AC|、|AC|+|BC|>|AB|、|AB|+|AC|>|BC|.
|AB|-|BC|
实例6,若用v表示速度,则v≤40 km/h.实例7,f≥2.5%,p≥2.3%.对于实例7,教师应点拨学生注意酸奶中的脂肪含量与蛋白质含量需同时满足,避免写成f≥2.5%或p≥2.3%,这是不对的.但可表示为f≥2.5%且p≥2.3%.
对以上问题,教师让学生轮流回答,再用投影仪给出课本上的两个结论.
讨论结果:
(1)(2)略;(3)数轴上任意两点中,右边点对应的实数比左边点对应的实数大.
(4)对于任意两个实数a和b,在a=b,a>b,a0a>b;a-b=0a=b;a-b
活动:通过两例让学生熟悉两个代数式的大小比较的基本方法:作差,配方法.
点评:本节两例的求解,是借助因式分解和应用配方法完成的,这两种方法是代数式变形时经常使用的方法,应让学生熟练掌握.
1.若f(x)=3x2-x+1,g(x)=2x2+x-1,则f(x)与g(x)的大小关系是( )
解析:f(x)-g(x)=x2-2x+2=(x-1)2+1≥1>0,∴f(x)>g(x).
2.已知x≠0,比较(x2+1)2与x4+x2+1的大小.
解:由(x2+1)2-(x4+x2+1)=x4+2x2+1-x4-x2-1=x2.
∵x≠0,得x2>0.从而(x2+1)2>x4+x2+1.
例2比较下列各组数的大小(a≠b).
(1)a+b2与21a+1b(a>0,b>0);
(2)a4-b4与4a3(a-b).
活动:比较两个实数的大小,常根据实数的运算性质与大小顺序的关系,归结为判断它们的差的符号来确定.本例可由学生独立完成,但要点拨学生在最后的符号判断说理中,要理由充分,不可忽略这点.
解:(1)a+b2-21a+1b=a+b2-2aba+b=a+b2-4ab2a+b=a-b22a+b.
∵a>0,b>0且a≠b,∴a+b>0,(a-b)2>0.∴a-b22a+b>0,即a+b2>21a+1b.
(2)a4-b4-4a3(a-b)=(a-b)(a+b)(a2+b2)-4a3(a-b)
=(a-b)(a3+a2b+ab2+b3-4a3)=(a-b)[(a2b-a3)+(ab2-a3)+(b3-a3)]
=-(a-b)2(3a2+2ab+b2)=-(a-b)2[2a2+(a+b)2].
∵2a2+(a+b)2≥0(当且仅当a=b=0时取等号),
又a≠b,∴(a-b)2>0,2a2+(a+b)2>0.∴-(a-b)2[2a2+(a+b)2]
∴a4-b4
点评:比较大小常用作差法,一般步骤是作差——变形——判断符号.变形常用的手段是分解因式和配方,前者将“差”变为“积”,后者将“差”化为一个或几个完全平方式的“和”,也可两者并用.
已知x>y,且y≠0,比较xy与1的大小.
活动:要比较任意两个数或式的大小关系,只需确定它们的差与0的大小关系.
∵x>y,∴x-y>0.
当y
当y>0时,x-yy>0,即xy-1>0.∴xy>1.
点评:当字母y取不同范围的值时,差xy-1的正负情况不同,所以需对y分类讨论.
例3建筑设计规定,民用住宅的窗户面积必须小于地板面积.但按采光标准,窗户面积与地板面积的比值应不小于10%,且这个比值越大,住宅的采光条件越好.试问:同时增加相等的窗户面积和地板面积,住宅的采光条件是变好了,还是变坏了?请说明理由.
活动:解题关键首先是把文字语言转换成数学语言,然后比较前后比值的大小,采用作差法.
解:设住宅窗户面积和地板面积分别为a、b,同时增加的面积为m,根据问题的要求a
由于a+mb+m-ab=mb-abb+m>0,于是a+mb+m>ab.又ab≥10%,
因此a+mb+m>ab≥10%.
所以同时增加相等的窗户面积和地板面积后,住宅的采光条件变好了.
点评:一般地,设a、b为正实数,且a0,则a+mb+m>ab.
已知a1,a2,…为各项都大于零的等比数列,公比q≠1,则( )
C.a1+a8=a4+a5 D.a1+a8与a4+a5大小不确定
解析:(a1+a8)-(a4+a5)=a1+a1q7-a1q3-a1q4
=a1[(1-q3)-q4(1-q3)]=a1(1-q)2(1+q+q2)(1+q)(1+q2).
∵{an}各项都大于零,∴q>0,即1+q>0.
又∵q≠1,∴(a1+a8)-(a4+a5)>0,即a1+a8>a4+a5.
1.下列不等式:①a2+3>2a;②a2+b2>2(a-b-1);③x2+y2>2xy.其中恒成立的不等式的个数为( )
2.比较2x2+5x+9与x2+5x+6的大小.
答案:
1.C解析:∵②a2+b2-2(a-b-1)=(a-1)2+(b+1)2≥0,
③x2+y2-2xy=(x-y)2≥0.
∴只有①恒成立.
2.解:因为2x2+5x+9-(x2+5x+6)=x2+3>0,
所以2x2+5x+9>x2+5x+6.
1.教师与学生共同完成本节课的小结,从实数的基本性质的回顾,到两个实数大小的比较方法;从例题的活动探究点评,到紧跟着的变式训练,让学生去繁就简,联系旧知,将本节课所学纳入已有的知识体系中.
2.教师画龙点睛,点拨利用实数的基本性质对两个实数大小比较时易错的地方.鼓励学有余力的学生对节末的思考与讨论在课后作进一步的探究.
1.本节设计关注了教学方法的优化.经验告诉我们:课堂上应根据具体情况,选择、设计最能体现教学规律的教学过程,不宜长期使用一种固定的教学方法,或原封不动地照搬一种实验模式.各种教学方法中,没有一种能很好地适应一切教学活动.也就是说,世上没有万能的教学方法.针对个性,灵活变化,因材施教才是成功的施教灵药.
2.本节设计注重了难度控制.不等式内容应用面广,可以说与其他所有内容都有交汇,历来是高考的重点与热点.作为本章开始,可以适当开阔一些,算作抛砖引玉,让学生有个自由探究联想的平台,但不宜过多向外拓展,以免对学生产生负面影响.
3.本节设计关注了学生思维能力的训练.训练学生的思维能力,提升思维的品质,是数学教师直面的重要课题,也是中学数学教育的主线.采用一题多解有助于思维的发散性及灵活性,克服思维的僵化.变式训练教学又可以拓展学生思维视野的广度,解题后的点拨反思有助于学生思维批判性品质的提升.
1.比较(x-3)2与(x-2)(x-4)的大小.
2.试判断下列各对整式的大小:(1)m2-2m+5和-2m+5;(2)a2-4a+3和-4a+1.
5.设a>0,b>0,且a≠b,试比较aabb与abba的大小.
∴(x-3)2>(x-2)(x-4).
=m2.
∵m2≥0,∴(m2-2m+5)-(-2m+5)≥0.
∴m2-2m+5≥-2m+5.
=a2+2.
∵a2≥0,∴a2+2≥2>0.
∴a2-4a+3>-4a+1.
=x24,
又∵x>0,∴x24>0.
∴(1+x2)2>(1+x)2.
由x>0,得1+x2>1+x.
=(x-y)[(x2+y2)-(x+y)2]
=-2xy(x-y).
∵x0,x-y
∴-2xy(x-y)>0.
∴(x2+y2)(x-y)>(x2-y2)(x+y).
5.解:∵aabbabba=aa-bbb-a=(ab)a-b,且a≠b,
当a>b>0时,ab>1,a-b>0,
则(ab)a-b>1,于是aabb>abba.
则(ab)a-b>1.
于是aabb>abb a.
综上所述,对于不相等的正数a、b,都有aabb>abba.
不等式的课件 篇5
基本不等式是初中数学中重要的一章内容,也是高中数学和竞赛数学的基础。基本不等式的学习不仅有助于提高学生的数学素养和解题能力,同时也能帮助他们提高逻辑思维能力。本文旨在探讨“基本不等式”这一主题。
一、基本不等式的定义与性质
基本不等式是说:对于正实数x1,x2,…,xn,有
(x1+x2+…+xn)/n≥√(x1x2…xn),当且仅当x1=x2=…=xn时等号成立。
基本不等式的性质有以下几条:
(1)当n为偶数时,等号成立;
(2)当n为奇数时,当且仅当所有数相等时等号成立;
(3)两个数的平均数不小于它们的几何平均数,即(a+b)/2≥√(ab),其中a,b均为正实数且a≠b;
(4)当n≥3时,三个数的平均数不小于它们的几何平均数,即(a+b+c)/3≥√(abc),其中a,b,c均为正实数且a≠b≠c。
二、基本不等式的应用
基本不等式作为一种重要的数学工具,可以应用于众多问题之中。以下是基本不等式的一些常见应用。
1. 求和式的最小值
例题1:已知-x1+x2+x3+x4+x5=-18,其中x1,x2,x3,x4,x5均为正数,并且x1+x2+x3+x4+x5≥5,则x1x2x3x4x5的最小值为多少?
解法:根据已知条件,设x1+x2+x3+x4+x5=5+m(其中m≥0),则有x1+x2+x3+x4+x5+m=5+2m。代入到基本不等式中可得:
(x1+x2+x3+x4+x5+m)/5≥√(x1x2x3x4x5)m/5≥√(x1x2x3x4x5)/5
移项得到x1x2x3x4x5≥1,则x1x2x3x4x5的最小值为1。
2. 比较函数大小
例题2:比较函数f(x)=√(a²+x²)+√(b²+(c-x)²)(a,b,c>0)在[0,c]上的最小和最大值。
解法:根据已知条件和基本不等式,将f(x)分解成两个正数的平均数不小于它们的几何平均数的形式,即
f(x)=[√(a²+x²)+√(b²+(c-x)²)]/2+1/2[√(a²+x²)+√(b²+(c-x)²)]
≥√[(√(a²+x²)×√(b²+(c-x)²)]+1/2(2c)
=√(a²+b²+c²+ab-ac-bc)+c
当x=c/3时等号成立,即f(x)的最小值为√(a²+b²+c²+ab-ac-bc)+c,最大值为√(a²+b²+c²+ab+ac+bc)+c。
3. 求极限
例题3:已知数列{a_n}(n≥1)的通项公式为a_n=(√n+1)/(n+1),则求∑(n从1到∞)a_n的极限。
解法:根据基本不等式,有
a_1+a_2+…+a_n≥n(√(a_1a_2…a_n))^1/n
代入已知条件,可得:
a_1+a_2+…+a_n≥n[(√(1+1)×√(2+1)×…×√(n+1))/((1+1)×(2+1)×…×(n+1))]^(1/n)
= n[√(n+1)/2×1/3×…×1/(n+1)]^(1/n) =n[(n+1)/[2(n+1)]]^(1/n)
极限为1/2。
4. 求证不等式
例题4:已知a,b,c为正实数,且a+b+c=1,证明∑(a/(1-a))≥3(a²+b²+c²)/(ab+bc+ca)。
解法:将不等式化简,得:
∑(a/(1-a))≥3(a²+b²+c²)/(ab+bc+ca)
⇔(a/(1-a))+(b/(1-b))+(c/(1-c))≥3(a²+b²+c²)/(ab+bc+ca)
⇔(a/(1-a))+(b/(1-b))+(c/(1-c))≥3[(a+b+c)²-(ab+bc+ca)]/(ab+bc+ca)
由于a+b+c=1,有
(ab+bc+ca)≤a²+b²+c²,
(a/(1-a))+(b/(1-b))+(c/(1-c))≥(a+b+c)²/(a(1-a)+b(1-b)+c(1-c))≥3(a²+b²+c²)/(ab+bc+ca)
其中第一个不等式成立是因为当a=b=c=1/3时,等号成立;第二个不等式用到了基本不等式的形式。
综上所述,基本不等式是数学中的重要概念,掌握了基本不等式的定义、性质和应用方法,将有助于提高人们的数学素养和解题能力。在日常生活和学习中,要重视基本不等式的学习和应用,逐步提高自己的数学水平。
不等式的课件 篇6
学生初步接触了一点代数知识(如用字母表示定律,用符号表示数),是在学生学习了用字母表示数以后基础上进行学习。应用方程是解决问题的基础,有关的几个概念,教材只作描述不下定义。在教学设计中仍然把理念作为教学的重点,理解方程的意义,判断“等式”和“方程”知道方程是一个“含有未知数的等式”,才有可能明确所谓解方程。
学生不够活泼,学习积极性不是很高,学生数学基础不好。方程对学生来说还是比较陌生的,在他们头脑中还没有过方程这样的表象,所以授新课就要从学生原有的`基础开始,因为在前面学习用字母表示数的这部分内容时,有了基础,我想在学习简易方程应该没什么大的问题。
1、使学生初步理解和辨析“等式”“不等式”的意义。
2、会按要求用方程表示出数量关系,
3、培养学生的观察、比较、分析能力。
教学重点: 用字母表示常见的数量关系,会用方程的意义去判断一个式子是否是方程。
教师介绍天平各部分名称。让学生操作当天平两端托盘的物体的质量相等时,天平就会平衡,指针指向中。根据这这个原理来称物体的质量。(让学生操作,激发学生的兴趣,借助实物演示的优势。初步感受平衡与不平衡的表象)
1、实物演示,引出方程:
(1)在天平称出100克的左边空杯,让学生观察是否平衡,感受1只空杯=100克。
(2)往空杯里倒入果汁,另一边加100克法码,问学生发现了什么? (让学生感受天平慢慢倾斜,水是未知数)引出100+X>200,往右加100克法码, 问:哪边重些?(学生初步感受平衡和不平衡的表象) 问:怎样用式子表示?100+X<300
(3)教学100+X=250 问:如果是天平平衡怎么办?(让学生讨论交流平衡的方案)把100克法码换成50克的砝码,这时会怎样?(引导学生观察这时天平出现平衡), 问:现在两边的质量怎样?现在水有多重知道吗?如果用字母X表示怎样用式子表示?得出:100+X=250
示题:100+X<250100+X=2504X+50>10040+40=80 X÷2=45X-12=27
请学生观察合作交流分类:
(一)引出(1)两边不相等,叫做不等式。(2)两边相等叫做等式。
(2)含有未知数的等式100+X=250 X÷2=4 揭示:(2)这样的含有未知数等式叫做方程(通过分类,培养学生对方程意义的了解) 问:方程的具备条件是什么?(感知必须是等式,而一定含有未知数)你能写出一些方程吗?(同桌交流检查)
(三)练习判断那些是方程?那些不是方程?
6+2X=14103+X250÷2=1256+X>251÷A=3X+Y=180 (让学生加深对方程的意义的认识,培养学生的判断能力。)
教师:我们能够判断什么是方程了,方程和等式有很密切的关系,你能画图来表示他们的关系吗?(小组合作讨论交流)
方程 等式 (让学生通过观察、思考、分析、归类,自主发现获得对方程和等式的关系理解,同时初步渗透教学中的集合思想。)
不等式的课件 篇7
基本不等式作为高中数学必修内容之一,在学生学习中扮演着极为重要的角色。本篇文章将围绕基本不等式,探讨它的概念、性质、证明方法及应用,并展示基本不等式的魅力和实用性。
一、基本不等式的概念
基本不等式是指对于任意正实数 $a_1,a_2,\cdots,a_n$ 和任意正整数 $n$,有以下不等式成立:
$\dfrac{a_1}{n}+\dfrac{a_2}{n}+\cdots+\dfrac{a_n}{n}\geq\sqrt[n]{a_1a_2\cdots a_n}$
这个不等式也被称为均值不等式或AM-GM不等式。其中,$\dfrac{a_1}{n}+\dfrac{a_2}{n}+\cdots+\dfrac{a_n}{n}$ 表示这些数的算术平均值,而 $\sqrt[n]{a_1a_2\cdots a_n}$ 表示这些数的几何平均值。均值不等式的意义在于,算术平均数大于等于几何平均数。
二、基本不等式的性质
基本不等式有以下几个性质:
1. 当且仅当 $a_1=a_2=\cdots=a_n$ 时等号成立。
2. 如果 $a_1,a_2,\cdots,a_n$ 中至少有一个数为 $0$,则 $\sqrt[n]{a_1a_2\cdots a_n}=0$,这时等号成立。
3. 基本不等式可以扩展到实数范围内。
4. 均值不等式不等式对于大于 $0$ 的实数都成立。
三、基本不等式的证明方法
基本不等式有多种证明方法,下面列举其中两种:
方法一:数学归纳法
假设基本不等式对于 $n=k$ 时成立,即对于 $k$ 个正实数 $a_1,a_2,\cdots,a_k$,有以下不等式成立:
$\dfrac{a_1}{k}+\dfrac{a_2}{k}+\cdots+\dfrac{a_k}{k}\geq\sqrt[k]{a_1a_2\cdots a_k}$
现证明它对于 $n=k+1$ 时也成立。将 $a_{k+1}$ 插入到原来的不等式中,得到:
$\dfrac{a_1}{k+1}+\dfrac{a_2}{k+1}+\cdots+\dfrac{a_k}{k+1}+\dfrac{a_{k+1}}{k+1}\geq\sqrt[k+1]{a_1a_2\cdots a_k a_{k+1}}$
由于:
$\dfrac{a_1}{k+1}+\dfrac{a_2}{k+1}+\cdots+\dfrac{a_k}{k+1}\geq\sqrt[k]{a_1a_2\cdots a_k}$
因此,我们只需证明以下不等式:
$\dfrac{(k+1)\sqrt[k]{a_1a_2\cdots a_k}\cdot a_{k+1}}{k+1}\geq\sqrt[k+1]{a_1a_2\cdots a_k a_{k+1}}$
经过变形化简,可以得到:
$\sqrt[k]{a_1a_2\cdots a_k} \geq \sqrt[k+1]{a_1a_2\cdots a_k a_{k+1}}$
显然,这是成立的。
因此,按照归纳法的证明方式,基本不等式对于所有的正整数 $n$ 都成立。
方法二:对数函数的应用
对于 $a_1,a_2,\cdots,a_n$,我们可以定义函数:
$f(x)=\ln{x}$
显然,函数 $f(x)$ 是连续的、单调递增的。根据式子:
$\dfrac{a_1}{n}+\dfrac{a_2}{n}+\cdots+\dfrac{a_n}{n}\geq\sqrt[n]{a_1a_2\cdots a_n}$
可以得到:
$\ln\left(\dfrac{a_1}{n}\right)+\ln\left(\dfrac{a_2}{n}\right)+\cdots+\ln\left(\dfrac{a_n}{n}\right)\geq\dfrac{1}{n} (\ln a_1+\ln a_2+\cdots+\ln a_n)$
即:
$\ln\left(\sqrt[n]{a_1a_2\cdots a_n}\right)\leq\dfrac{\ln a_1+\ln a_2+\cdots+\ln a_n}{n}$
对于左边的式子,有:
$\ln\left(\sqrt[n]{a_1a_2\cdots a_n}\right)=\dfrac{1}{n}\ln(a_1a_2\cdots a_n)$
对于右边的式子,有:
$\dfrac{\ln a_1+\ln a_2+\cdots+\ln a_n}{n}=\ln\left(\sqrt[n]{a_1a_2\cdots a_n}\right)$
因此,我们可以得到:
$\ln(a_1a_2\cdots a_n)\geq n\ln\left(\sqrt[n]{a_1a_2\cdots a_n}\right)$
即:
$a_1a_2\cdots a_n\geq\left(\sqrt[n]{a_1a_2\cdots a_n}\right)^n$
这正是均值不等式的形式。因此,基本不等式得证。
四、基本不等式的应用
基本不等式在数学和物理学中有广泛的应用。下面介绍几个常见的应用场景:
1. 最小值求解
如果有 $n$ 个正实数 $a_1,a_2,\cdots,a_n$,它们的和为 $k$,求它们的积的最大值,即:
$\max(a_1a_2\cdots a_n)$
根据基本不等式,有:
$\dfrac{a_1+a_2+\cdots+a_n}{n}\geq\sqrt[n]{a_1a_2\cdots a_n}$
因此,可以得到:
$\dfrac{k}{n}\geq\sqrt[n]{a_1a_2\cdots a_n}$
两边同时取幂,可以得到:
$\dfrac{k^n}{n^n}\geq a_1a_2\cdots a_n$
即:
$\max(a_1a_2\cdots a_n)=\dfrac{k^n}{n^n}$
2. 凸函数的优化问题
如果 $f(x)$ 是一个凸函数,$a_1,a_2,\cdots,a_n$ 是正实数,$b_1,b_2,\cdots,b_n$ 是任意实数且 $\sum_{i=1}^n b_i=1$,则有:
$f(b_1a_1+b_2a_2+\cdots+b_na_n)\leq b_1f(a_1)+b_2f(a_2)+\cdots+b_nf(a_n)$
这是凸函数的优化问题中常用的基本不等式形式。它可以通过Jensen不等式或基本不等式证明。
3. 三角形求证
如果我们可以用 $a,b,c$ 表示一个三角形的三边长,则有:
$\sqrt{(a+b+c)(a+b-c)(a-b+c)(-a+b+c)}\leq\dfrac{(a+b+c)^2}{4\sqrt{3}}$
这个不等式在三角形求证中也被广泛应用。
五、结语
基本不等式是高中数学必修内容之一,但其实它的应用范围远不止于此。在实际问题中,基本不等式常常能给我们提供有效的解决方案。通过本文的介绍,希望读者能够更加深入地理解基本不等式的概念、性质、证明方法及应用,并能在实际问题中灵活运用。
不等式的课件 篇8
关于基本不等式的主题范文:
基本不等式是数学中非常重要的一道课题,所以我们需要从以下几个方面来对基本不等式进行介绍。
一、基本不等式是什么
基本不等式是指数学中的一个重要定理,它表述的是任意正整数n及n个正数a1,a2,…,an的积与它们的和之间的关系。也就是说,对于任意正整数n和n个正数a1,a2,…,an,有以下不等式成立:
(a1+a2+…+an)/n ≥ (a1×a2×…×an)1/n
其中,等式成立当且仅当a1 = a2 = … = an。
二、基本不等式的证明
下面我们来看一下基本不等式的证明过程。
首先,如果我们令Ai = nai和G = (a1 × a2 × … × an)1/n,则我们可以将原不等式转化为:
(a1+a2+…+an)/n ≥ G
接下来,我们来看一下如果证明G ≤ (a1+a2+…+an)/n,那么我们就可以证明基本不等式,因为不等式具有对称性,即如果G ≤ (a1+a2+…+an)/n,则(a1+a2+…+an)/n ≥ G也成立。
接下来,我们证明G ≤ (a1+a2+…+an)/n,即:
(a1+a2+…+an)/n ≥ (a1 × a2 × … × an)1/n
将不等式右边两边平方,得到:
(a1+a2+…+an)/n ≥ (a1 × a2 × … × an)2/n
这时,我们来观察右边的式子,将式子中的每一项都乘以(n-1),得到:
(a1 × (n-1) + a2 × (n-1) + … + an × (n-1)) / n ≥ (a1 × a2 × … × an)2/n
继续进行简化,得到:
[(a1 × (n-1)) + (a2 × (n-1)) + … + (an × (n-1))] / n ≥ (n-1) × a1 × a2 × … × an / n
左边乘以1/n,右边除以(n-1),得到:
(a1 + a2 + … + an) / n ≥ (a1 × a2 × … × an)1/n
这样我们就完成了基本不等式的证明。
三、基本不等式在实际中的应用
基本不等式在实际中的应用非常广泛,下面我们来看一下其中的几个例子。
1. 求平均数
如果我们已知n个正数的积,需要求它们的平均数,那么根据基本不等式,我们可以得到:
(a1 + a2 + … + an) / n ≥ (a1 × a2 × … × an)1/n
等式两边都乘以n-1,得到:
a1 + a2 + … + an ≥ (n-1) × (a1 × a2 × … × an)1/n
这样我们就可以求得平均数:
(a1 + a2 + … + an) / n ≥ (n-1) × (a1 × a2 × … × an)1/n / n
2. 求数列中n个数的积的最大值
假设我们需要从数列{a1, a2, …, an}中选取n个数,求它们的积的最大值。根据基本不等式,我们有:
(a1 + a2 + … + an) / n ≥ (a1 × a2 × … × an)1/n
因为我们需要求积的最大值,所以当等式左边的和恰好等于n个数的积时,这个积才能取到最大值。因此,我们可以得到:
a1 = a2 = … = an
这样,我们就得到了求数列中n个数的积的最大值的方法。
三、结论
通过对基本不等式的介绍,我们可以发现它不仅仅是一道看似简单的数学题目,而是一个非常重要的定理,有着广泛的应用价值。希望大家能够在今后的学习中更加重视基本不等式,并能够深刻理解它的实际应用。
不等式的课件 篇9
基本不等式是高中数学中重要的一部分,也是初学者比较难掌握的一个概念。通过学习基本不等式,可以帮助学生理解不等式的基本概念、性质和运算。同时,对于高中数学,基本不等式还有很多相关的题型需要掌握,比如极值问题、夹逼定理等。本文将从基本不等式的定义开始,探讨其相关概念、性质和应用。
一、基本不等式的定义
基本不等式是指对于任意正实数a、b,有以下不等式成立:
(a + b)² ≥ 4ab
这个不等式也可以写成:
a² + b² ≥ 2ab
这个不等式的含义是:对于任意两个正实数a、b,它们的平均数一定大于等于它们的几何平均数。
二、基本不等式的证明
对于任意实数x,y,可以用(x-y)²≥0来证明基本不等式:
(x-y)²≥0
x²-2xy+y²≥0
x²+y²≥2xy
将x换成a、y换成b,即可得到基本不等式。
三、基本不等式的相关概念
1. 等式条件:
当且仅当a=b时,等式成立。
2. 平均数与几何平均数:
平均数指的是两个数的和的一半,即(a+b)/2;几何平均数指的是两个数的积的二分之一,即√(ab)。由于基本不等式的成立,可以得出平均数大于等于几何平均数的结论。
3. 关于两个数之和与两个数的比值的关系:
从基本不等式得到如下两个等式:
(a+b)²=4ab+(a-b)²;ab≥(a+b)/2
以上两个式子给出了两个关于两个数之和与两个数的比值的关系。
四、基本不等式的性质
1. 交换律和结合律:基本不等式满足交换律和结合律。
2. 反比例函数:若f(x)=1/x,x>0,则f(a)+f(b)≤2f((a+b)/2)对于a,b>0成立。
3. 带约束的基本不等式:若a,b>0,且a+b=k,则(a+b)/2≥√(ab),即k/2≥√(ab)。
五、基本不等式的应用
1. 求证夹逼定理:如果a1≤b1≤c1,且a2≤b2≤c2,则(a1a2+b1b2+c1c2)/3≥(a1b2+b1c2+c1a2)/3≥√(a1b1c1a2b2c2)。
2. 判断一个二次函数的最大值或最小值:由于二次函数的导数为一次函数,可以通过求导得到函数的极值。而基本不等式可以用于判断二次函数的极值点是否合理,即是否在定义域内。
3. 算术平均数和几何平均数之间的关系:通过基本不等式可以证明,当两个数的和固定时,它们的平均数越大,它们的几何平均数就越小。
总的来说,基本不等式是高中数学不可缺少的一部分,不仅在考试中占有重要地位,而且还具有很重要的理论意义。希望本文对初学者掌握基本不等式有所帮助。
不等式的课件 篇10
教学目标:
1.一元一次不等式与一次函数的关系.
2.会根据题意列出函数关系式,画出函数图象,并利用不等关系进行比较.
1.通过一元一次不等式与一次函数的图象之间的结合,培养学生的数形结合意识.
2.训练大家能利用数学知识去解决实际问题的能力.
体验数、图形是有效地描述现实世界的重要手段,认识到数学是解决问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用.
自己根据题意列函数关系式,并能把函数关系式与一元一次不等式联系起来作答.
1.张大爷买了一个手机,想办理一张电话卡,开米广场移动通讯公司业务员对张大爷介绍说:移动通讯公司开设了两种有关神州行的通讯业务:甲类使用者先缴15元基础费,然后每通话1分钟付话费0.2元;乙类不交月基础费,每通话1分钟付话费0.3元。你能帮帮张大爷选择一种电话卡吗?
2.展示学习目标:
(1)、理解一次函数图象与一元一次不等式的关系。
(2)、能够用图像法解一元一次不等式。
(3)、理解两种方法的关系,会选择适当的方法解一元一次不等式。
积极思考,尝试回答问题,导出本节课题。
阅读学习目标,明确探究方向。
问题1:结合函数y=2x-5的图象,观察图象回答下列问题:
问题2:如果y=-2x-5,那么当x取何值时,y>0?当x取何值时,y
巡回每个小组之间,鼓励学生用不同方法进行尝试,寻找最佳方案。答疑展示中存在的问题。
问题3.兄弟俩赛跑,哥哥先让弟弟跑9m,然后自己才开始跑,已知弟弟每秒跑3m,哥哥每秒跑4m,列出函数关系式,画出函数图象,观察图象回答下列问题:
(1)何时哥哥分追上弟弟?
(2)何时弟弟跑在哥哥前面?
(3)何时哥哥跑在弟弟前面?
(4)谁先跑过20m?谁先跑过100m?
你是怎样求解的?与同伴交流。
问题4:已知y1=-x+3,y2=3x-4,当x取何值时,y1>y2?你是怎样做的?与同伴交流.
让学生体会数形结合的魅力所在。理解函数和不等式的联系。
移动通讯公司开设了两种长途通讯业务:全球通使用者先缴50元基础费,然后每通话1分钟付话费0.4元;神州行不交月基础费,每通话1分钟付话费0.6元。若设一个月内通话x分钟,两种通讯方式的费用分别为y1元和y2元,那么
(1)写出y1、y2与x之间的函数关系式;
(2)在同一直角坐标系中画出两函数的图象;
(3)求出或寻求出一个月内通话多少分钟,两种通讯方式费用相同;
(4)若某人预计一个月内使用话费200元,应选择哪种通讯方式较合算?
在共同探究的过程中加强理解,体会数学在生活中的重大应用,进行能力提升。
积极完成导学案上的检测内容,相互点评。
学生回顾总结学习收获,交流学习心得。
教材P51.习题2.6知识技能1;问题解决2,3.
一、学习与探究:
1.一元一次不等式与一次函数之间的关系;
2.做一做(根据函数图象求不等式);
四、课后作业:
圆的性质课件
俗话说,磨刀不误砍柴工。在学习工作中,幼儿园教师有提前准备可能会使用到资料的习惯。资料意义广泛,可以指一些参考素材。资料可以帮助我们更高效地完成各项工作。所以,你有哪些值得推荐的幼师资料内容呢?经过搜索整理,小编为你呈现“圆的性质课件”,不妨参考一下。希望你喜欢!
圆的性质课件 篇1
今天我说课的内容是《分数的基本性质》。下面我将从“说教学理念、说教材、说教法、说学法、说教学程序、说板书设计”六个方面来说课。
一、本课的教学理念有:
1、以学生发展为本,着力强化主体意识。
2、从学生已有的认知发展水平和知识经验出发,为学生提供充分从事数学活动的机会,变“学数学”为“做数学”。
3、致力于改变学生的学习方式,关注过程,让学生经历知识的形成过程,感受验证、转化等数学思想方法。
二、说教材
《分数的基本性质》一课是义务教材六年制数学第十册第四单元的一个内容。这部内容的学习是在学生学习了分数的意义、分数与除法的关系、商不变性质等知识的基础上进行教学的。它是进一步学习约分、通分的基础。
根据教材内容和学生的认识知规律,将本课的教学目标拟定如下:
1、知识与技能:理解和掌握分数的基本性质,知道分数基本性质与整数除法中商不变性质的关系。能运用分数的基本性质把一个分数化成分母相同而大小相等的分数;培养学生观察、比较及动手实践的能力,进一步发展学生的思维。
2、情感、态度:激发学生积极主动的情感状态,养成注意倾听的习惯。
本课的教学重点和难点:理解和掌握分数的基本性质,会运用分数的基本性质。
三、说教法
树立以“以学生发展为本”、“以学定教”、“教为学服务”的思想,因此在教学中,我采用引导自学、合作探索相结合法,让学会运用分数的基本性质把一个分数化成分母不同但大小相等的分数,有效地提高了教学效率。在知识的巩固阶段,我还采用组织练习法,当然以上这些教法并不是孤立存在的,本着“一法为主,多法为辅”的思想,我将多种教法进行优化组合,以达到促进学生学习方式的转变,实现教学目标的目的。
四、说学法
1、学生在运用分数的基本性质时,引导学生采用自主发现法、操作体验法,学生在折纸上画出相应的阴影部分后,必然会对那三个图形进行观察和比较,从中有所发现。之后老师通过启发学生运用分数的基本性质,证明那三个分数大小相等,让尝试中发现,在实践中体验。从而加深学生对分数基本性质的理解。
2、在学习例题的过程中教师先采用启发法,再采用自自学尝试法,独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成做一做,达到检验自学的目的。
五、说教学程序
一、设疑激趣,引入新课
教育学家布朗曾提出:“情境通过活动来合成知识,兴趣最好的老师”。
首先我通过多媒体为学生带来一个和尚分饼的故事。从前有座山,山里有座庙,庙里有个老和尚和三个小和尚。小和尚最喜欢吃老和尚烙的饼了。有一天,老和尚做了三块一样大小的饼,想给小和尚吃,还没给,小和尚就叫开了。矮和尚说:“我要一块!”高和尚说:“我要两块!”胖和尚说:“我不要多,只要四块!”老和尚听了二话没说,立刻把一块饼平均分成四块,取其中的一块给了矮和尚;把第二块饼平均分成八块,取其中的两块给了高和尚;把第三块饼平均分成十六块,取其中的四块给了胖和尚,一一满足了他们的要求。同学们,你知道哪个和尚吃的多吗?
这样通过故事激发学生的学习兴趣,为后面的学习做好了铺垫。
二、自主探索,学习新知
新课标强调,要让学生在实践活动中进行探索性的学习。根据这一理念,我设计了下面的活动。让学生在体验中学习,在学习中体验。
1、小组合作,让学生用一张纸代替饼,试着分分看。经历验证猜想——学生操作验证——集体汇报交流——展示成果四个过程。
2、引导提问:既然三个和尚分得的饼同样多,那么表示他们分得饼的三个分数什么关系呢?这三个分数什么变了,什么没变?
学生得出:这三个分数相等关系,分数的分子和分母变化了,但分数的大小不变。
3、引导学生从左到右观察等式,想一下,这三个分数的分子、分母怎样变化才保证了分数的大小不变的?
师:谁能用一句话把这个变化规律叙述出来呢?
生:从左往右看,分数的分子、分母同时扩大了,也就分子分母都乘了一个相同的数,但三个分数的大小没有变。
师:你们观察的真仔细!请大家给点掌声好吗?(出示课件)老师这样叙述的“分数的分子、分母都乘上同一个数,分数大小不变”。
4、让学生从右到左观察等式分子和分母又如何变化的呢?谁能用一句话把这个变化规律叙述出来?小组讨论后,同样的方法让学生小结规律,并请同学给予评价,让学生抒发自己的见解,体现课堂教学的民主化。然后教师在课件中补充“或者除以”四个字,小结分数的基本性质。
5、接着让学生四人小组一起做游戏,运用分数的基本性质,由一位同学说一个分数,然后其他同学依次说出相等的分数,不能重复,看看谁又快又准。
结束游戏,教师提问,现在我们知道分数的分子、分母都乘上或除以同一个数,分数大小不变。刚刚大家做游戏,有没有人使用了0呢?大家想一想0可以不可以呢?让学生回答:分数的分母不能为零。我在课件中填上“零除外”三个红色的字,以便引起学生的注意。
6、教师引导:“学了分数的基本性质到底有什么用呢?老师告诉你们,根据分数的基本性质,我们就能变魔术一样,把一个分数变成多个跟它大小一样,分子分母却不同的新分数。下面就让我们来变个魔术。”接着让学生练习课本例题2,两名学生上台演板,其他学生点评。学生自己小结方法。
教育家波利亚指出:学习任何新知的最佳途径由学生自己去发现,因为这种发现理解最深,也最容易掌握内在规律和联系。教学中给学生提供自主探究、合作交流的天地,积极为学生创设主动学习的机会,提供尝试探索的空间,学生能主动从不同方面,不同角度思考问题,寻求解决途径。同时还培养学生的合作意识,使不同的想法得到交流,实现知识的学习、互补。
三、分层练习,巩固深化
只有通过相应的练习,才能更好地巩固新知,形成技能。在练习的安排上我注重层次性,渗透多样性,让学生理解用所学的知识可以解决不同类型的问题,进一步提高解题能力。
1、涂一涂练习14,第1、7题。
因为要给空格上色,所以答案并不唯一,通过这两题不仅能让学生回忆探究发现规律的过程,充分体现了“玩中学,学中玩”的新课程理念。
2、说一说完成练习14,第8题
我想通过这道题让学生进一步加深对分数基本性质的形成过程的理解,从而培养学生的语言表达能力。
3、想一想:第5、9、10题(选择一题做为作业)
在这我让同学们充分发挥想象,灵活运用分数的基本性质。为后面学习约分和通分的知识奠定基础。
四、畅谈收获,小结全课
让学生自己总结所学内容,畅谈收获和感受,培养学生的概括能力和语言表达能力。
整节课中,我力求做到始终引导学生主动观察、充分体验、动手实践、积极创新,努力做到既注重学生的独立思考,又注重合作交流,既重视知识与能力的共进,又关注情感和体验的提高,让学生全面、深刻地理解分数的基本性质。
圆的性质课件 篇2
各位老师,同学:
大家上午好!
我说课的资料是:人教版小学数学课标教材五年级下册75页―76页《分数基本性质》。下面我就从教材分析、学情分析、教学目标、教法学法及教学过程五个方面来谈一下教学过程设计及设计意图。
一、教材分析
本节资料属于概念教学。《分数基本性质》在小学数学学习中起
着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习分数的计算、比的基本性质的基础,还是约分、通分的依据。
二、学情分析
学生已经清楚理解分数的好处,明确分数与除法的关系,商不变
性质等知识,这些都为本节课学习做了知识上的铺垫。分数的基本性质是一种规律性知识,分数的分子、分母变了,分数的大小却没变。学生在这种“变”与“不变”中发现规律,掌握新知识。
三、教学目标
综合分析课程标准要求及学生实际,我确定本节教学目标如下:
1、理解和掌握分数的基本性质,并会运用分数的基本性质把不同的分数化成分母(或分子)相同而大小不变的分数。
2、初步养成观察、比较、抽象概括的逻辑思维潜力,并且在自主探究中正确认识和理解变与不变的辩证关系。
3、受到数学思想的熏陶,养成乐于探究的学习态度。
教学重点:理解掌握分数的基本性质,它是约分、通分的依据。
教学难点:让学生自主探索、发现和归纳分数的基本性质,以及应用它解决相关的问题。
四、教法学法
根据本节课的教学目标,思考到学生已有的知识、生活经验和认
知特点,结合教材资料,本课我主要采用猜想验证与探索发现的教学模式。在分数的基本性质过程中,采取学生动手操作、小组讨论、合作探究等方式,引导学生进行比较、观察、分析。透过观察、比较,提出问题并解决问题来进行自主探索与合作交流,充分发挥学生主体参与作用,激发学生学习兴趣,同时让学生获得成功体验。
五、教学过程
本节课的教学过程我分五个部分进行:
第一部分:故事设疑,揭示课题。以唐僧师徒分饼的故事创设问题情境,揭示本节课要研究的问题。
第二部分:组织讨论,动手操作。主要是组织学生动手进行折、画、标等活动,初步理解分数基本性质。
第三部分:合作探究,发现规律。主要的是学生找出规律,并利用规律解决问题。
第四部分:多层练习,巩固深化。主要是巩固所学知识并进行拓展提高。
第五部分:梳理知识,反思小结。主要是总结全课。
其中,第三部分“合作探究,发现规律”能够细化为三个环节:
环节一:动手操作,进行比较
这一环节是在第二部分的基础上进行的,我给每组学生三张大小一样的长条纸,让学生用分数表示涂色部分,并比较大小。此环节的设计主要是培养学生的比较潜力。
环节二:呈现问题,引导观察
这一环节主要呈现给学生这样一个问题,“第一环节中的分数的分子、分母都不一样,为什么大小相等”,引导学生从左到右、从右到左两方面去观察,此环节的设计主要是培养学生的观察潜力。
环节三:交流汇报,得出规律
这一环节主要是学生汇报交流,得出结论。
如果学生没有概括出“0除外”就设计两组练习,分子、分母同乘或除以0,完善结论;如果概括出来了,再追加一个问题“为什么强调0除外”,巩固结论。最终推导出分数的基本性质————分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。此环节的设计主要是培养学生的抽象概括潜力。
就应强调的是,无论学生说的多么好,教师最后的总结和确认是不可缺少的。
以上是我对《分数基本性质》一节的教学设计意图,有不当之处,请各位批评指导。
圆的性质课件 篇3
一、说教材、学情
本次说课的内容是人教版小学数学四年级下册第四单元《小数的性质》。
小数的性质属于数与代数领域的知识,是学生在学习了“小数的意义”的基础上深入学习小数有关知识的开始。掌握小数的性质,不但可以加深对小数意义的理解,而且它也是小数的化简、改写和四则运算的基础。
二、说教学目标
根据课程标准的要求,和对教材内容的分析,我确定了如下教学目标。
(1)知识与技能:使学生理解并掌握小数的性质。
(2)数学思考:培养学生观察、分析、比较、抽象、概括的意识以及简单的推理能力。使学生学会主动思考问题。
(3)问题解决:通过直观推理、自主探究、合作交流,理解和掌握小数的性质,提高学生运用知识进行推理的能力。
(4)情感态度价值观:使学生经历小数的性质探究过程,获得成功的体验,体会数学与实际问题的联系,激发学生的数学学习兴趣。
三、说教学重难点
针对上述教学目标,结合学生的认知基础,我将本节课的教学重难点定位如下:
1、教学重点:理解并掌握小数的性质。
2、教学难点:探究小数性质的知识形成过程。
四、说教法和学法
1、教法
本节课我准备采用的教学方法有:情境教学法,引导发现法,多媒体辅助法等教法。让学生在教师营造的“可探索”的环境里,主动参与,主动探究,主动发现小数的性质。
2、学法
预设的学习方法是:观察发现法、自主探究法、合作交流法、练习法等。让学生在师生互动,生生互动中主动探究,主动发现,主动提高,有效培养学生自主学习的能力。
3、教学准备
为了更好地辅助课堂教学,顺利完成教学任务,达到预期的教学目标,在教具、学具上我准备了米尺,正方形方格纸,多媒体课件等。
五、说教学过程
根据本节课的教学内容,为了切实落实教学目标,有效突破重难点,我设计了以下五个教学环节。分别是:创设情境、激趣引思;体验操作、探究新知;巩固深化、学以致用;课堂总结、回顾反思和作业布置。
(一)第一环节:创设情境,激趣引思
1、多媒体出示超市情境图,将学生带入到具体的生活情境中去:老师昨天想去买一只中性笔,可是两家超市的标价不一样,我要去哪家买更便宜一些呢?(出示中性笔价格图片:一家是2.5元,一家是2.50元)
2、学生会根据已有的知识经验回答:去哪家买都一样。
教师在这时追问为什么,并引导学生说出:因为2.5元表示2元5角,2.50元表示2元50分,5角=50分,所以2.5元=2.50元(教师板书)
3、教师引导学生观察两个小数的区别,学生会发现:小数的末尾多了一个0,大小还没变。
4、教师提出质疑:
那是不是所有的小数都有这样的特点呢?这节课让我们共同来探究一下吧,让学生带着好奇心开始新知识的探究。
设计理念:
通过超市价格标签的具体生活情境引出小数性质的教学,利用学生熟悉的人民币直观感知相等关系,激发学生的学习兴趣,使学生带着对知识的好奇心走进知识的殿堂。
(二)体验操作,探究新知
在这一环节,我设计了以下3个教学层次:
1、小组合作,初步感知
课件出示:0.1m,0.10m,0.100m这三个长度,让学生进行大小比较。
(1)我为每个学习小组都准备了米尺,让学生在尺上先找一找0.1m,0.10m,0.100m这三个长度,并与小组成员说说你是怎么找的,然后在纸上画出来,比较他们的大小。(教师进行随堂指导)
(2)小组探究完成后进行展示交流
每个小组派代表分别展示他们找到的0.1m,0.10m,0.100m的长度,并说说是怎么找的,也就是小数的意义。
学生们得出探究结果:因为这三个长度都相等,所以这3个小数的大小是一样的。
(3)教师让学生观察0.1m,0.10m,0.100m这3个小数,引导学生发现三个小数的区别:三个小数末尾的0不一样多,但是大小一样。
看来像这样大小相等但末尾0不一样多的小数的确存在。
设计理念:
借助长度单位初步体会小数的性质,让学生动手在米尺上找出0.1m/0.10m/0.100m的长度,使学生直观感受到0.1m,0.10m,0.100m的长度相等,所以大小相等,初步感知小数的性质。
2、大胆猜想,独立验证
教师板书0.3和0.30这两个小数,让学生猜一猜这两个小数有什么关系?学生根据刚才的探究会说“相等”。
(1)这时我为学生准备了两个同样大小的正方形,一个正方形平均分成了10份,另一张正方形平均分成了100份,让学生独立验证自己的猜想。(教师进行随堂指导)
(2)学生独立验证后进行汇报展示
找学生投影展示涂方格的方法并说一说自己的想法(引导学生说出小数的意义,因为涂的面积相同,所以两个小数相等)
设计意图:
利用直观图比较0.3和0.30的大小,通过观察,引导学生借助小数的意义发现0.3和0.30的异同点,进而脱离具体的量,进一步理解小数的性质。
3、观察比较,发现规律
(1)教师引导学生观察3组算式:我们先从左往右看,小数的末尾有什么变化?从右往左看呢?他们的大小呢?你有什么发现?
(2)让学生说说自己的发现:
小数的末尾添上“0”或去掉“0”小数的大小不变(板书)
(教师强调并解释:末尾指的是小数点后面最后一个非0的数。帮助学生区分哪些0可以去掉,哪些0不能去掉)
(3)教师强调课题:我们把这个小数所共有的特点叫做小数的性质(板书课题)
设计意图:
让学生在探究验证之后,尝试自己总结规律,培养学生对知识的概括能力。
(三)巩固深化、学以致用
1、对口令游戏:教师说一个小数,学生对出相等的小数。
2、哪些数可以去掉末尾的0(重点区分小数中哪些0可以去掉,整数与小数的区别,强化小数的性质)
3、连线
设计理念:
注重练习设计的层次性,满足不同层次的需要,体现新课标中人人获得必需的数学,人人学有价值的数学,不同的人在数学中得到不同的发展的要求。
(四)课堂总结,回顾反思
俗话说“千金难买回头看”。课的结尾,通过提问:今天你有什么收获?你是怎样获得新知的?你还有什么疑惑?来回顾所学知识,梳理知识。引导学生对本节课所学知识和获取知识的方法进行总结和反思。
(五)作业布置
小游戏:你能只动三笔,使5,50,500,5000四个数相等吗?既检查学生对知识的掌握情况,又带有趣味性,激发了学生在课下探究数学知识的兴趣。
六、说板书设计
板书素有“微型教案”之称,它具有高度的概括性、艺术性和指导性的特征。本节课的板书是随着教学进度依次呈现的,它能体现本节课的教学重难点,对学生整堂课的学习,起着重要的指导作用。
小数的性质
2.5元=2.50元
0.1m=0.10m=0.100m
0.3=0.30
小数的末尾添上“0”或去掉“0”,小数的大小不变。
以上是我对这节课的教学设想,在这堂课的设计中,注重引导学生沿着“实例——猜想——验证——总结——应用”的轨迹去探索、去发现,使学生体验探索、发现数学规律的基本策略和方法。我相信学生能在老师的带领下,完成此节课的教学内容,基本达到教学目标。我的说课完毕,请评委老师们指正,谢谢!
圆的性质课件 篇4
一、教材简析和教材处理
1.教材简析
《分数的基本性质》是九年义务教育六年制小学数学课本(西师大版)第十册第15-16页的内容。在小学数学学习中起着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习分数的计算、比的基本性质的基础。分数的基本性质是一种规律性知识,分数的分子分母变了,分数的大小会变吗?分数的分子分母如何变化,分数的大小不变呢?学生在这种“变”与“不变”中发现规律。
2.教材处理
以前,教师通常把《分数的基本性质》看作一种静态的数学知识,教学时先用几个例子让学生较快地概括出规律,然后更多地通过精心设计的练习巩固应用规律,着眼于规律的结论和应用。随着课程改革的深入,教师们越来越重视学生获取知识的过程,但我们也看到这样的现象:问题较碎,步子较小,放手不够,探究的过程体现不够充分。《分数的基本性质》可不可以有别的教学思路呢?新的课程标准提出:“教师应向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法。根据这一新的理念,我认为教师可以为学生创设一种大问题背景下的探索活动,使学生在一种动态的探索过程中自己发现分数的基本性质,从而体验发现真理的曲折和快乐,感受数学的思想方法,体会科学的学习方法。所以,教师的着眼点,不能只是规律的结论和应用,而应有意识地突出思想和方法。
二、教学课件设计意图
场景一:故事引人,揭示课题。
有位老爷爷把一块地分给三个儿子。老大分到了这块地的三分之一,老二分到了这块地的六分之二。老三分到了这块的九分之三。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈的笑了起来,给他们讲了几句话,三兄弟就停止了争吵。
让学生发表自己的意见,教师出示三块大小一样的纸,通过师生折、观察和验证,得出结论:三兄弟分得的一样多。
一上课,先听讲一段故事,学生非常乐意,并会立即被吸引。思考故事当中提出的问题,学生自然兴趣浓厚。通过故事设疑,激起了学生探求新知的欲望。
场景二:发现问题,突出质疑。
既然三兄弟分得的一样多,那么表示它们分得土地的分数是什么关系呢?这三个分数什么变了,什么没有变?让学生小组讨论后答出:这三个分数是相等关系,它们平均分的份数和表示的份数也就是分数的分子和分母变化了,但分数的大小不变。
3.引入新课:下面算式有什么共同的特点?学生回答后
它们各是按照什么规律变化的呢?场景三:比较归纳,揭示规律。
1.出示思考题。
比较每组分数的分子和分母:
(1)从左往右看,是按照什么规律变化的?
(2)从右往左看,又是按照什么规律变化的?
让学生带着上面的思考题,看一看,想一想,议一议,再翻开教科书看看书上是怎么说的。
2.集体讨论,归纳性质。
(1)从左往右看,由1/4到2/8,分子、分母是怎么变化的?引导学生回答出:把1/4的分子、分母都乘以2,就得到2/8。原来把单位“1”平均分成4份,表示这样的1份,现在把分的份数和表示份数都扩大2倍,就得到2/8。
(2)3/4是怎样变化成9/12的呢?怎么填?学生回答后填空。
(3)引导口述:3/4的分子、分母都乘以2,得到6/8,分数的大小不变。
(4)在其它几组分数中,分子、分母的变化规律怎样?几名学生回答后,要求学生试着归纳变化规律:分数的分子和分母都乘以相同的数,分数的大小不变。
(5)从右往左看,分数的分子和分母又是按照什么规律变化的?通过分析比较每组分数的分子和分母,得出:分数的分子和分母都乘以相同的数,分数的大小不变。
(6)对照教科书中的分数基本性质,让学生说出少了什么?(少了“零除外”)讨论:为什么性质中要规定“零除外”?
出示的思考题是学生探求新知、独立思考的指南,教师环紧扣的提问以及引导学生逐步展开的充分的讨论,帮助学生一步步走向结论。]
3.出示例2:把3/4和15/24化成分母是8而大小不变的分数。
思考:要把3/4和15/24化成分母是8而大小不变的分数,分子怎么不变?变化的依据是什么?
通过举例,沟通分数的基本性质与商不变性质之间的联系。引导学生运用分数与除数的关系,以及整数除法中商不变的性质,说明分数的基本性质。
如:
[有助于学生顺利地运用分数与除法的关系,以及整数除法中商不变性质说明分数的基本性质,实现新知化归旧知。]
场景四:多层练习,巩固深化。
1.口答。
学生口答后,要求说出是怎样想的?
2.判断对错,并说明理由。
运用反馈片判断,错的要求说明与分数的基本性质中哪几个字不相符。
3.在下面()内填上合适的数。
练习设计由易到难,由浅入深,既巩固新知,又发展思维,其间还自然地渗透思想品德教育。师生对出数做题,能够创设民主和谐的学习气氛。通过举例,还渗透了函数思想。
圆的性质课件 篇5
一、说教学理念
1、以学生发展为本,着力强化个人主体意识,同时关注学生学习动机、兴趣等情感态度。
2、从学生已有的认知发展水平和知识经验出发,为学生提供充分从事数学活动的机会和充分的练习空间。
3、致力于改变学生的学习方式,关注过程,让学生经历知识的形成过程,感受验证、转化,以及“用数学学数学”等数学思想方法。
二、说教材
1、教学内容
《分数的基本性质》一课是五年级下册第四单元的一个内容。这部分内容是在学生学习了分数的意义、分数与除法的关系、商不变性质等知识的基础上进行教学的,它是以后学习约分、通分的依据。因此,分数的基本性质是本单元的教学重点之一。在讲解这一知识点时,应注意加强整数商不变性质的回顾,这样既帮助学生理解了分数的基本性质,又沟通了新旧知识的内在联系。
2、学情分析
学生在三年级上学期已经初步认识了分数,知道分数各个部分的名称,会读、写简单的分数,会比较分子是1的分数,以及同分母分数的大小。还学习了简单的同分母分数的加、减法。在本学期又学习了因数、倍数等概念,掌握了2、3、5的倍数的特征,为学习本单元知识打下了基础。另外,本单元的知识内容概念较多,比较抽象,学生的抽象逻辑思维在很大程度上还需要直观形象思维的支撑。在数学教学中,化抽象为具体、直观,对于顺利开展教学是十分必要的。
3、教学目标:
(1)通过教学使学生理解和掌握分数的基本性质,能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数,再应用这一规律解决简单的实际问题。
(2)引导学生在参与观察、比较、猜想、验证等学习活动过程中,有条件、有根据的思考、探究问题,培养学生的抽象概括能力。
(3)渗透初步的辨证唯物主义思想教育,使学生受到数学思想方法的熏陶,培养乐于探究的学习态度。
教学重点:理解和掌握分数的基本性质;教学难点:学习自主探索,发现和归纳分数基本性质,以及应用它解决相应的问题。教具学具:课件,三张同样大小的长方形纸条、彩笔。
三、说教法
“将课堂还给学生,让课堂焕发生命活力”,为营造学生在教学活动中的独立、自主的学习空间,让学生成为课堂的主人,本着这样的指导思想,以及学生的认知规律,我采用的教学方法主要有:
1、实际操作法
指导学生亲自动手折一折,涂一涂,比一比,从这些实践活动中加深学生对分数基本性质的理解,促使学生的感性认识逐步理性化。
2、直观演示法
先让学生充分感知,发现规律,然后比较归纳,最后概括出分数的基本性质,从而使学生的思维从形象思维过渡到抽象思维。
3、启发式教学法
运用知识迁移规律组织教学,用数学学数学,层层深入,促使学生在积极的思维中获取新知。
四、说学法
1、学生在学习分数的基本性质时,引导学生采用自主发现法、操作体验法,学生在纸条上涂出相应的阴影部分后,必然会对那三个图形进行观察和比较,从中有所发现。之后老师通过启发学生运用分数的基本性质,证明那三个分数大小相等,在尝试中发现,在实践中体验,从而加深学生对分数基本性质的理解。
2、在学习例题的过程中教师先采用启发法,再采用学生自学尝试法,独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成练习题,达到检验自学的目的。
五、说教学过程
(一)、新知铺垫
(二)、新知导入
(三)、新知探究
(四)、新知探究
(五)、新知训练
(六)、新知应用
(七)、新知强化
(八)、新知小结
1、新知铺垫和导入
上课伊始我利用分饼的故事来激发学生的学习兴趣,让学生亲自动手折一折、分一分、比一比,从直观上让学生感受到这几个分数大小是相等的,而这几个分数的分子和分母都不相等,这其中有什么规律呢?继而揭示课题。
(设计意图)好奇是学生的天性,通过分地故事能快抓住学生的好奇心,使他们在心理上产生悬念,带着疑问迅速切入正题。
2、新知探究
(1)、动手操作、形象感知
首先让学生用三张同样大小的长方形纸条折一折,再涂色表示出每张纸的1/2,2/4,4/8。观察涂色部分,说说发现了什么?在学生汇报时,说出:涂色部分面积相等,也就说明这三个分数大小相等。然后通过电脑再进一步证实学生的发现:通过观察,我们发现三个阴影部分大小相等,说明三个分数大小相等。
(设计意图)主要是利用学生爱动手以及直观思维的特点,让学生在动手操作过程中不仅复习了分数的意义,为下面导入新知识作好迁移,而且激活了课堂气氛,营造了良好的学习开端。
(2)、观察比较,探究规律
首先,在学生折纸的基础上,通过小组讨论交流总结出分数的基本性质,让学生理解“同时乘上或者除以”的意义,以及为什么要强调“0除外”这个条件。其次,总结出分数的基本性质后,要和以前学过的商不变规律进行对比,找出二者间的联系,使学生更好的理解、运用性质。
(设计意图)这一环节重在培养了学生大胆交流、语言表达的能力,同时学生在汇报交流中使问题逐渐明朗化,最终验证了自己的猜想。要充分放手,让学生畅所欲言。
3、新知训练
在巩固阶段,我安排了三个不同层次的习题。其中“新知训练”是对“分数的基本性质”做进一步的诠释。“新知应用”是导入分饼时的题,难度不大,首尾照应,最后还安排了“新知强化”环节,属于开放性题。整个习题设计部分,题目呈现方式的多样,吸引了学生的注意力,激发了学生兴趣,培养了学生创新意识和解决问题的能力。
圆的性质课件 篇6
一、说教学内容的创新处理
《分数的基本性质》是九年义务教育六年制小学数学第十册第四单元的一个重要内容。该教学内容是以分数的意义、分数与除法的关系以及整数除法中商不变的规律这些知识为基础的。原教材先通过直观使学生了解1/2、2/4、3/6三个分数的分子、分母虽然不同,但是分数的大小是相等的。接着进一步研究这三个分数的分子和分母,思考它们是按照什么规律变化的。最后归纳出分数的基本性质。这样安排教学内容,学生的主体地位不能得到充分体现,不利于培养学生的问题意识。为此,我打算通过"折、画、想、问、用"五个环节对教学内容作如下处理。
1.折--用三张同样大小的长方形纸条分别折出二等分、四等、八等分。
2.画--让学生用色笔在长方形纸条上分别涂出它们的一半,并用分数来表示。
3.想--1/2、2/4、4/8这些分数有什么关系?你还能说出和"1/2"大小相等的其他分数吧?你还能说出和"2/3"大小相等的分数吧?
4.问--ww"1/2=2/4=/4/8"中,你发现什么?
5.用--用已学过的"分数的基本性质"解决有关的数学问题。这样安排教学有以下几点好处:
(1)有利于知识的迁移。
让学生通过动手折、涂,再用分数表示,这样既帮助学生复习了分数的意义,又为学习新知识作了准备。
(2)能发挥学生学习的主动性。
通过学生找和"1/2"大小相等的分数,以及和"2/3"大小相等的分数,发挥学生学习的主动性,体现自主学习的精神。
(3)提高了学生的学习能力。
通过交流,培养学生敢于发表自己的意见,积极思考问题,积极探问题,培养学生概括问题的能力和解决问题的能力。
二、说教学模式
本节课起打算采用"创设情境,复习迁移--设疑激思,获取新知--深化概念,及时反馈"的教学模式进行教学。
1.创设情境,复习迁移。
为了发挥学生学习的主动性,使旧知识起到正向迁移的作用,首先创设了动手操作的情境:起发给每位学生三张同样大小的长方形纸条,让学生折一折。把第一张纸条对折(也就是把这张纸条平均分成2份),把第二张纸条对折再对折(也就是把纸条平均分成4份),再把第三张3次对折(也就是把纸条平均分成8份)。接着,让学生画一画,用彩笔在等分后的纸条上分别涂出它们的一半。告诉学生,如果把每张纸条都看作单位"1",问学生:你能把涂色的部分用分数表示吗?(电脑显示三张涂色的纸条,学生分别用分数1/2、2/4、4/8表示。)
这一情境的设置,主要是让学生在动手操作过程中不仅复习了分数的意义,为下面导入新知识作好铺垫、迁移。并且在教学一开始,就能抓住学生爱动手以及直观思维的特点,激活课堂气氛,营造良好的学习开端。
2.设疑激思,获取新知。
"疑是思之始,学之端"。学,就是学习问题,学怎样问问题。为此,我在上面教学的基上,引导学生逐一讨论以下问题:
(1)1/2、2/4、4/8这些分数有什么关系?
(学生会说这三个分数的大小相等。)
(2)你能说出与"1/2"大小相等的其他分数吗?你还能说出与"2/3"大小相等的分数吗?
(如果学生写错或写不出,待得出分数基本性质后再写)
(3)从"1/2=2/4=4/8"中,你发现了什么?
(让学生分组讨论,充分发表自己的意见,经过归纳,最后得出:分数的分子和分母同时乘以或者除以相同的数,分数的大小不变。并把这句话显示出来。)
(4)你对上面这句话觉得有什么问题吗?
(学生可能会提出地"相同的数"中"0"必须除外。如果学生提出不出,就由教师提出问题:相同的数是不是任何数都行?为什么?)
最后,让学生完整地概括出分数的基本性质。(老师揭示课题)
这样教有利于培养学生的问题意识,师生情感交融、和谐,学生积极参与,思维活跃,学习主动,为学生创设一个良好的学习氛围。
3.深化概念,及时反馈。
为了加深学生对分数基本性质的理解,激发学生的学习兴趣,起设计了如下练习:
1.下面各式对吗?为什么?(让学生用手势表示对错)
(1)3/4=6/8(2)3/8=12/2(3)3/10=1/5
2.在()里填上合适的数。
()/6=()/36=8/12=2/()=()/24
3.把2/3和10/24化成分线是12而大小不变的分数。
4.把下面大小相等的两个分数用线连接起来。
4/51/64/94/612/16
3/42/320/256/368/18
三、说教学目标
以上各个教学环节的设计体现如下几点教学目标:
1.知识技能性目标:让学生亲身经历"分数基本性质"抽象概括的全过程,正确理解和掌握分数的基本性质,使学生能运用分数的基本性质解决有关的数学问题。
2.发展性目标:培养学生观察--探索--抽象--概括的能力以及迁移类推能力,渗透事物是相互联系、发展变化的辩证唯物主义观点,培养学生的数学意识、问题意识、合作意识以及应用意识。
3.创新性目标:让学生在学习的过程中发现问题、解决问题,提高学生探索问题的能力和研究问题的能力。
圆的性质课件 篇7
一、教材分析
分数的基本性质是约分和通分的基础,而约分、通分又是分数四则运算的重要基础,因此,理解分数的基本性质显得尤为重要。而分数与除法的关系以及除法中的商不变的规律与这部分知识紧密联系,是学习这部分内容的基础。
探索分数的基本性质,关键是让学生在活动中主动地观察和发现,在讨论交流的基础上归纳规律。根据我对教材的认识,本课时安排了学习活动和游戏活动让学生寻找相等的分数,使学生初步体验分数的大小相等关系,为观察、发现分数的基本性质提供丰富的学习材料。然后引导学生观察这两组相等的分数,寻找分子、分母的变化规律,并展开充分的交流讨论,在此基础上归纳分数的基本性质。
教学目标:
1、知识目标:经历探索分数的基本性质的过程,理解分数的基本性质。能用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。
2、能力目标:培养学生的观察、比较、归纳、总结概括能力。
3、情感目标:经历观察、操作和讨论等学习活动,体验数学学习的乐趣。
二、说教法
“将课堂还给学生,让课堂焕发生命活力”,为营造学生在教学活动中的独立、自主的学习空间,让学生成为课堂的主人,本着这样的指导思想,根据概念教学的特点,结合教学特点,以及学生的认知规律,我将采用的教学方法主要有:
1、 直观演示法
先让学生充分感知,然后比较归纳,最后概括出分数的基本性质,从而使学生的思维从形象思维过度到抽象思维。
2、 实际操作法
指导学生亲自动一动、折一折,画一画,比一比,多这些实践活动中加深学生对分数基本性质的理解,促使学生的感性认识逐步理性化。
3、 启发式教学法
运用知识迁移规律组织教学,层层深入促使学生在积极的思维
4. 树立以“以学生发展为本”、“以学定教”、“教为学服务”的思想,因此在教学中,我采用引导自学、合作探索相结合法,让学会运用分数的基本性质把一个分数化成分母不同但大小相等的分数,有效地提高了教学效率。在知识的巩固阶段,我还采用分层练习法,当然以上这些教法并不是孤立存在的,本着“一法为主,多法为辅”的思想,我将多种教法进行优化组合,以达到促进学生学习方式的转变,实现教学目标的目的
三、教学组织形式:
师生互动、合作与探索结合
四、教学过程与设计意图
1、故事引入、激发兴趣、揭示课题
以阿凡提讲故事引入,然后小组讨论。
2、动手操作,探索新知
①做一做,折一折。拿出三张同样大的长方形纸,请分别平均折成2份、4份、8份。并按照下图涂色。如果把每张纸都看作“1”,请你把涂色的部分用分数表示出来。学生动手操作、汇报。
根据上面的过程,学生能得到一组相等的分数吗?
②教师引导学生归纳小结:比较这三个分数的分子和分母,它们各是按照什么规律变化的?分数的分子和分母同时乘上或除以相同的数(0除外),分数的大小不变,这就是分数的基本性质。
知识引伸,联系旧知识:根据分数与除法的关系,以及整数除法中商不变的性质,你能说说它与分数的基本性质吗?
设计意图:新知识力求让学生主动探索,逐步获取。借助直观图组织学生进行一个动手操作活动,借助直观图形找出相等的分数,使学生能够直观感知。充分调动孩子们去动手、动脑,培养学生的操作能力和语言表达能力。并充分发扬学生的团结协作的精神, 互相帮助,每个人都能在激励中得到不同的发展。
本次活动的安排为学生提供了丰富的学习材料,引导学生联系以往的学习经验,进行学习内容的迁移,自然得到分数大小的变化规律,教师在此也进行了适当的重点点拨。在这一环节的学习过程中,教师注重学生的观察、比较、归纳概括能力的培养。
3、实践游戏、深化理解、巩固练习:
设计意图:练习设计由易到难,由浅入深,既巩固新知,又发展思维,其间还自然地渗透思想品德教育。师生对出数做题,能够创设民主和谐的学习气氛。学生对于课堂游戏都非常积极,这时,教师应该及时表扬表现出色的学生,也要顾及一些后进生的学习状况,带动后进生的学习激情。
4、全课总结:这节课你有什么收获?
圆的性质课件 篇8
一、说教学内容:
本节课是北师大版数学五年级上册第三单元的内容。
二、说教学目标:
1、理解和掌握分数的基本性质,知道分数基本性质与整数除法中商不变性质的关系。
2、通过动手实践,发现并总结规律,能运用分数的基本性质把一个分数化成分母相同而大小相等的分数;培养学生观察、比较及动手实践的能力,进一步发展学生的思维。
3、激发学生积极主动的情感状态,养成注意倾听的习惯,在实践操作中体验成功的快乐。
三、说教学重、难点:
理解和掌握分数的基本性质,会运用分数的基本性质。
四、说教法、学法
1、创设情景,激发学生的学习兴趣。
通过创设猴王分饼的情境,巧设悬念,激发学生求知欲望,既找到了教学的起点,又调动了学生探究的积极性,这种引课的方式取代了过去的“复旧引新”那种机械的模式。有效性和学生思维震荡的深刻性。
2、创造性地用好课程资源,体现新的教学理念。
教学通过折纸得出分数,认识到分数大小相等,并探究出规律,这一部分内容跳出教材圈子,有机地整合了教材,把教材的做一做作为巩固知识的载体。利用折纸得出的多媒体演示、、三个大小不变的分数,把学生们带入一个探究的空间,感知分数的基本性质的来历,同时学生对分数的分母和分子之间的关系产生疑问,通过引发学生的认知冲突,激发学生探索求知的欲望。
3、整节课力求体现探究学习的基本要求,让学生的学习主体地位得到体现,使学生学习积极性较高涨。
五、说教学过程:
(一)、创设情景,设疑
教师创设猴王分饼的情景:同样大小的饼,第一只小猴分得,第二只小猴分得,第三只小猴分得,它们谁分得多?学了今天的内容你就明白了,引入新课。
(设计意图:故事引入,设置悬念,使学生急于想弄明白谁多谁少,激发学生的求知欲望)
圆的性质课件 篇9
一、说教材
《分数的基本性质》在分数教学中占有重要的地位,在小学数学学习中起着承前启后的作用。它既以分数的意义、分数的大小比较为基础,又与整数除法及商不变的性质有着内在的联系,更分数的约分、通分的依据,也进一步学习分数加减法计算、比的基本性质的基础。因此,分数的基本性质该单元的教学重点之一。
二、说学情
学生在三年级上学期已经初步认识了分数,以及同分母分数的大小。在本学期又学习了因数、倍数等概念,掌握了2、3、5的倍数的特征,为学习本单元知识打下了基础。五年级学生已经养成了合作学习的习惯,并且已经具有了一定的分析和解决问题的能力,再加上他们所具有的一定的生活经验,因此能够在教师的引导下完成“质疑——探索——释疑——应用”这一完整的学习过程。
三、说教学目标
依据新的《数学课程标准》,为了更好地体现数学学习对学生在数学思考、解决问题以及情感与态度等方面的要求。根据本节课的具体内容并结合学生的实际情况,我制定了以下教学目标:
知识与技能:让学生亲身经历“分数基本性质”抽象概括的过程,理解和掌握分数的基本性质,并能初步运用分数的基本性质解决简单的数学问题。
过程与方法:让学生经历发现问题、探究问题、解决问题的全过程,在观察、猜想、验证等探索活动中,培养学生观察--探索--抽象--概括的能力以及合情推理能力,体验解决问题策略的多样性。
情感与态度:使学生在分数基本性质的探究活动中,获得成功的体验,建立自信心,感受到数学的严谨性,及渗透事物相互联系、发展变化的辩证唯物主义观点。
教学重点:理解和掌握分数的基本性质,运用分数的基本性质解决实际问题。
教学难点:让学生经历自主探索,发现和归纳分数的基本性质,并会应用分数的基本性质解决相关问题。
教学准备:三张同样大小的长方形纸张,彩色笔
四、说教学方法
树立以“以学生发展为本”、“以学定教”的思想,为实现教学目标,有效地突出重点、突破难点,我遵循学生的认知规律,以建构主义学习理论为指导,在探究分数的基本性质过程中,采取学生动手操作、小组讨论、合作探究等方式,引导学生进行比较、观察、分析,充分运用知识迁移的规律,在感知的基础上加以抽象、概括,进行归纳整理,采取迁移教学法、引导发现法组织教学。创设了一种“情境导入、动手体验、自主探索”的课堂教学形式,以“自主探究”贯穿全课,引导学生迁移旧知、大胆猜想——实验操作、验证——质疑讨论、完善猜想等,把这一系列探究过程放大,把“过程性目标”凸显出来。
五、学法
有效的数学学习活动,不能单纯模仿与记忆,动手实践、自主探索与合作交流学生学习数学的重要方式。在学习例题的过程中学生主要采用自学尝试法,自主探究法,合作交流的学习方式,让学生通过独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成做一做,达到检验自学的目的。通过观察、比较、提出问题并解决问题来进行自主探索与合作交流,充分发挥学生主体参与作用、激发学生学习爱好,同时让学生获得成功体验。
六、说教学过程
为了全面、准确地引导学生探索发现分数的基本性质,实现教学目标,我努力抓住学生的思维生长点组织教学,设计了以下五步教学环节:
1、创境设疑: 回顾旧知,引发思考
2、自主探究: 动手实践,发现规律
3、交流归纳:揭示规律,巩固深化
4、分层精练:多层练习,多元评价
5、感悟延伸:课堂小结,加深理解
第一环节:创境设疑
结合六一儿童节的到来,创设分蛋糕的情景,妈妈分得公平吗?课始便迅速地抓住了学生的好奇心,使课堂教学有了一个好的开始。鼓励学生当小法官,则极大地调动了学生的积极性,使他们在心理上产生悬念,进一步激发学生的学习兴趣,为后面的学习做好了铺垫。这样设计也从学生已有的经验和情感出发,找准新知的最佳切入点,为学生后面的联想和猜想巧设“孕伏”。
第二环节:自主探究
通过折纸、涂色的动手操作活动,使学生亲身经历并获得非常具体、真切的感知,为探究分子、分母的变化规律提供认知基础。教师通过五个有层次的问题,分层质疑,分层提问,分层评价,尽量地关注到了每一个层次的学生,引导学生逐步在自主探索、合作互助的学习方式中初步理解并能简单概括出分数的基本性质,并及时强调了0除外的意义,使学生体验到解决问题策略的多样性,发展学生的实践能力和创新精神,培养学生的合作意识。
第三环节:交流归纳
在这一环节,教师引导学生在观察与分析、探索与思考分数的基本性质的基础上不断生成新问题,通过质疑,借助知识的迁移,沟通分数的基本性质与商不变性质之间的联系。引导学生应用分数和除法的关系,以及整数除法中商不变的性质,说明分数的基本性质。这样的设计就让学生感受到了数学知识的内在联系,同时渗透“事物之间相互联系”的辨证唯物主义观点,培养学生观察--探索--抽象--概括的能力。
第四环节:分层精练
这个环节让学生对分数的基本性质再一次的体验,感受,研究,同时也整节课的亮点之一,练习分层,评价分层,通过分层练习,关注到每一个层次的学生,让每一个学生都有发展。教师结合本班学生的学习特点,设计了由浅入深,由易到难的练习,基本练习让90%的同学体验到了学习的快乐,综合练习让80%的同学品尝到了成功的喜悦,拓展练习则留到课后,让学生在自主探究中、讨论交流中、知识的沉淀中进一步加深对知识的理解和掌握。
第五环节:感悟延伸
通过小结、反思,查漏补缺,学生在交流收获、互相帮助的过程中,使学生对知识有个系统的回顾和认识,从而进一步培养学生的知识概括能力。
总之,本节课教学坚持了“学生探索的主体”这一教学原则,面向全体学生,充分的引导学生动手实验,自主探索,质疑延伸,合作交流,让每一个学生在探索的过程中感受数学和日常生活的紧密联系,体验学习数学的快乐,培养了创新精神和实践能力。
圆的性质课件 篇10
一、说教材
1、教学内容:六年制小学数学第八册p100例1、2。
2.教材所处的地位
小数的性质是一节概念教学课,是在学习了“小数的意义”的基础上深入学习小数有关知识的开始。掌握小数的性质,不但可以加深对小数意义的理解,而且它是小数四则计算的基础。根据小数的性质可以把末尾有零的小数化简,也可以不改变小数的大小,把一个数改写成指定位数的小数。
3、教材的重点和难点:
掌握小数性质的含义是教学的重点,理解小数性质归纳的过程是教学的难点。
4、教学目标:
(1)利用知识的迁移规律,让学生在自主探究、合作交流中理解和掌握小数的性质,提高学生运用知识进行判断、推理的能力。
(2)让学生进一步体验教学与日常生活的密切联系,体验数学问题的探究性和挑战性,从而激发学习数学的兴趣,以主动参与数学活动。
(3)在教学中渗透事物是普遍联系和相互转化的辩证唯物主义观点。
二、教法
根据教学要求,结合教材的特点,为了更好地突出重点,突破难点,完成教学任务。我采用了:
1、情景教学法。让学生在情景里亲自动手操作、探索,感受知识的形成过程不过如此简单,享受成功的喜悦,激发学生学习数学知识的兴趣。
2、游戏教学法。即是新课改的教学理念“做中学、玩中学”的体现。因为小学生学习活动不再是教师的“说教”,应该更多的时间是在学生自主探索的过程中。这样的教学,更能体现了“学生是学习数学的主人,教师是数学学习的组织者、引导者和合作者”的功能。
3、以小组合作的形式来组织教学。体现了“自主探索、合作交流、实践创新”的数学学习方式,培养了学生互相合作交流的意识,在共同讨论中完成学习任务。
三、学法
通过这节课的教学,主要培养了学生以下学习方法:
1、指导学生观察图画,共同讨论,在自主探索中把感性认识上升到理性认识。
2、在游戏中运用学习成果,把数学知识利用到现实生活中。
3、培养学生共同合作,相互交流的学习方式。
四、说教学程序
(一)情景导入激趣揭题
(课件出示)唐僧师徒一起去西天取经,有一天,他们口渴了,唐僧要把三根甘蔗分给三个徒弟吃,事先他把甘蔗分别装进三个袋子里,上面标注着长度:0.
l米、0.10米、0.100米,馋嘴的八戒抢先一步说:“我的肚子大,我吃长的。”说着拿回了注有“0.100米”的袋子。沙和尚好不服气,上前对师傅说:“八戒好吃懒做,长的应该让给大师兄悟空吃。”悟空笑了笑说:“两位徒弟别吵了,无论哪个袋子都一样呀!”唐僧听了悟空的话,微笑着点了点头。
同学们,你们知道为什么师傅对悟空的话点头微笑呢?这是因为大师兄悟空掌握了小数很重要的性质,学习了这节课,我们就知道其中的奥秘了”。(板书:小数的性质)
这样的设汁,旨在把枯燥的数学知识贯穿在小学生喜闻乐道的故事中,引发起学主的学习兴趣,点燃他们求知欲望的火花,从而进入最佳的学习状态,为主动探究新知识聚集动力。
(二)探索新知
1.
同学们,刚才悟空说无论哪个袋子都一样,是不是这样呢?下面请同学们利用手中的米尺和已有的知识来验证一下,好吗?各小组合作研究。
师巡视并引导学生观察米尺图各小组汇报:
A、0.1米是几分之几米(1/10米)?用整数表示就是多少分米?(l分米)
B、0.10米是几个几分之1米?(10个1/100米)1/100米用整数表示是几厘米(1厘米)?10个1/100米就是多少厘米?(10厘米)
C、0.100米就是几个几分之1米(100个1/1000米)?1/1000米用整数表示是几毫米(1毫米)?那么100个1/1000米就是多少毫米?(100毫米)
结合学生回答,教师板书:
0.1米是1/10米,就是1分米
0.10米是10个1/100米,就是10厘米
0.100米就是10个1/1000米,就是100毫米
因为1分米=10厘米=100毫米
所以0.l米=0.10米=0.100米
这样,学生根据小数的意义,从“0.l米、0.10米、0.100米”出发研究问题。在问题得以解决的过程中,学生锻炼了运用已有知识解答新问题的能力,培养了运用数学知识的意识。《数学课程标准》强调:数学活动必须建立在学生的认知发展水平和已有的知识经验基础上,这样教学,也正是使本节课牢牢地扎根于小数意义的基础上,是小数意义的运用,而不是简单的重复,因而是有意义学习。
接着教师指着“0.l米=0.10米=
0.100米"这个等式,并标上思考符号“→”,先让学生从左往右观察、比较,你们发现了什么?
根据学生的回答板书:在小数的末尾添上0,小数的大小不变)。再标出思考箭头“→”,让学生从右往左观察,发现什么规律,补充板书小数的末尾去掉“0”。
这样教学,把静态的知识结论转化为动态的求知过程,让学生真正成为学习的主人,对所学的内容理解深刻,记忆牢固,不但知其然,而且知其所以然。同时,还培养了学生归纳概括事物本质属性的能力。
2.
为了进一步证明小数性质的可*性出示例2:比较0.30和0.3的大小。放手给学生自己研究,发给各小组平均分成100个小格子的正方形各两个。
汇报交流:
(1)左图把1个正方形平均分成几份?阴影分用分数怎样表示?用小数怎样表示?
(2)右图把同样的正方形平均分成几份?阴影部分用分数怎样表示?用小数怎样表示?
(3)从左图到右图有什么变了,什么没变?(份数变了,正方形的大小和阴影面积的大小没变)
(4)怎样比较0.30和0.3的大小?(0.30是30个1/100,0.3是3个1/10,
因为10个1/100是1个1/10,30个1/100也就是3个1/10,所以两个小数的大小相等)。
这样使学生的思维从形象思维逐步过渡到抽象思维,达到突破难点的目的。培养了学生的合作意识。通过两道例题,让学生进一步掌握规律,全面概括出小数的性质。
3.呼应课始,揭示奥秘:由于悟空掌握了小数的性质,所以他面对两位师弟的争执说:“无论哪一袋都一样”。
4.联系生活,再现新知:还有同学们在商场看到货物的标价为2.50元、3.00元,这样写,不但没有改变小数的大小,而且让顾客很清楚地知道是几元几角几分。
(三)巩固深化拓展思维
这是教学中不可缺少的环节,这一阶段是学生巩固知识,形成技能,技巧,发展智力的重要过程。在这一阶段,特别是抓住学生的求胜心理进行了练习、要进一步激发学生的学习兴趣,确保学习任务的圆满完成。
1、判断下面小数哪些0去掉是对的,哪些0去掉是错的?
8.0808.0880.0080.80800
2.判断下面各组两个数是否相等?为什么?
0.25和0.25000.25和0.2050.7和0.07
3和3003和3.00
3.第2题:把相等的数用线连起来,先在书上填好后,再提问找朋友。一个同学在第一栏里按顺序报数,其他同学准备当朋友。
4.闭眼听判:
“小数点的末尾添上‘0’或去掉“0’,小数大小不变”这种说法对吗?为什么?
这样设计、让学生对新知识的各种误解进行辨析、判断,使得所学知识真正转化为能力。
(四)全课小结
1.这节课你有哪些收获?
2.你对自己或同学有什么评价?
以上是我对小数的性质的简单的设想,请各位领导和老师批评、指正。
圆的性质课件 篇11
一、说教材:
本节内容是小数四则计算的基础。根据小数的性质,可以化简小数,也可以不改变小数的大小,在小数末尾添加“0”将其改写成固定为数的小数,或者可以把整数改写成小数形式。其重点是让学生一步步由形象到抽象地总结概括出小数的性质。在充分了解了小数性质后再进行对其运用的学习,例如化简和改写。
二、说教法:
在教授小数性质的过程中,首先,我利用几个相等的数量关系,让学生慢慢迁移到小数,然后根据几个小数间的数量关系总结出规律。为进一步理解这层关系,又加一个验证——利用涂色表示小数再比较他们的大小,验证规律。完成后加一个小练习;在下来时小数性质的利用。这部分相对简单,介绍什么样的时候会需要进行化简和改写,然后举例说明,接着练习巩固。
三、说目标
1、让学生理解和掌握小数的性质,并能较熟练地熟练地运用这性质对小数进行化简和改写。
2、利用迁移规律,让学生从形象思维逐步过渡到抽象思维,提高学生运用知识进行判断、推理的能力。
四、说重难点
掌握小数性质的含义
归纳小数性质的过程
五、说教学过程
一、导入
1、师:老师今天需要大家帮个忙:我这两天需要一个笔记本,于是去村里的两个小卖部转了转,发现这两家店对同一种本有不同的标价:左边这家标价是
2.5元,右边那家则是2.50元,大家帮我出出主意,我应该选择哪一家去买呢?
[都一样,任意选一家]
师:为什么?为什么2.5元末尾添个0大小不变呢?究竟可以添几个零呢?
这节课我们就来研究这一方面的知识。
【导入部分利用生活实际中的例子,并让学生来帮忙,这样可以激发学生的学习兴趣和探索欲望. 】
二、授新
1.猜想性质
板书三个“1”,让学生判断是相等的,接着在第二个1后面添写上一个0,在第三个1的后面添写上两个0,板书写成:1、10、100,提问:这三个数相等吗?(不相等)
你能想办法使它们相等吗?启发学生回答可以添上长度单位“米、分米、厘米”或“分米、厘米、毫米”就相等了。
板书:1分米=10厘米=100毫米。
思考:(1)你能把它们改用“米”作单位表示吗?
[0.1米0.10米0.100米]
(2)改写成用米作单位表示后,实际长度有没有变化?(没有)说明什么?(三个数量相等)
(3)仔细观察三个小数有什么变化?
根据学生回答总结:小数的末尾添零或去掉零,小数的大小不变。
【这部分利用整数的数量关系到加入长度单位后的关系一直引入到小数的数量关系,一步步使学生了解本节课的内容,并且通过认真观察后可以自己归纳总结出性质。】
2、验证猜想
为了验证我们的这个结论,我们再来做一个实验。
(1)出示做一做:比较0.30与0.3的大小
师:你认为这两个数的大小相等吗?(让学生先应用结论猜一猜)
(2)想一下你用什么办法来比较这两个数的大小呢?
出示课本做一做:在左图中涂出阴影部分表示0.3,右图中涂出阴影表示0.30,发现了两幅图什么相同,什么不同?
(份数不同,正方形的大小和阴影面积的大小相同)
这说明0.30与0.3相等,证明刚才这个结论是对的。
【在简单观察出性质以后,进一步通过之前的知识去进行验证,这样不仅可以让学生更深层次地理解知识,而且可以培养学生治学严谨的态度以及探究问题的一般步骤——先观察猜想,再进行验证。】
师:那如果我们现在说“小数后面添上零或去掉零,小数的大小不变”这句话还对吗?[不对]那如果是“小数点后面添上零或去掉零,小数的大小不变”呢?
[不对]分别举例说明。【这一步主要使学生确切地理解添上零或去掉零的位置,一定要在小数的末尾】
师:那如果我们现在说“小数末尾添上零或去掉零,小数的意义不变”这句话还对吗?【这一步主要使学生确切地理解添上零或去掉零后,一定是小数的大小不变,而意义有很大的不同】
师:那整数有这个性质吗?也就是我们可以说"整数末尾添上零或去掉零,大小不变”吗?【强调出小数与整数的区别】
判断练习。
下面的数中,哪些“0”可以去掉?
3.9 0.300 1.8000 500
5.780 0.0040 102.020 60.06
3、小数性质的利用
(1)根据小数的性质,可以对小数进行化简。(理解化简就是将其简单化)当遇到小数末尾有“0”的时侯,例如,0.30,一般可以去掉末尾的“0”,把小数化简。(0.30=0.3)
化简下面各小数:
0.70 105.0900 2.900 0.50600
0.090 10.830 12.000 0.070
(2)师:有时根据表示意义的需要,可以在小数的末尾添上0;(例如:0.3→0.30)
还可以在整数的个位右下角点上小数点,再添上0,把整数写成小数的形式。比如:我们在商场里看到的2元=2.00元,2.5元=2.50元
出示:不改变数的大小,把0.2、4.08、3改写成小数部分是三位的小数,怎样改写?
提醒:把整数改写成小数形式,在整数的个位右下角点上小数点,再添上“0”。
三、巩固深化
1、下面的每组数中,哪些零可以去掉,用斜杠划掉
(1)3.09 0.300 1.8000 5.00
(2)0.0004 12.002 60.06 500
(3)0.090 12.00001 0.50605060 30.0
2、化简下列小数
102.020 54.300 110.030 200.0300
3、判断题。(打“√”,错的打“×”)
(1)0.080=0.8()
(2)4.01=4.100()
(3)6角=0.60元()
(4)30=30.00()
(5)小数点后面添上“0”或去掉“0”,小数的大小不变。
4、学校小卖部进了一批冷饮,你能帮忙设计一下价格标签吗?(要求都写成两位小数)
盐水棒冰每支5角
随便每支1元5角
可爱多每支2元5角
5、智力游戏:谁能只动两笔,就可以在5、50、500之间划上等号。(50变成5.0,500变成5.00)
四、课堂总结
圆的性质课件 篇12
一、说教材分析
本节内容属于概念教学。《分数基本性质》在小学数学学习中起着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习分数的计算、比的基本性质的基础,还是约分、通分的依据。
二、说学情分析
学生已经清楚理解分数的意义,明确分数与除法的关系,商不变性质等知识,这些都为本节课学习做了知识上的铺垫。分数的基本性质是一种规律性知识,分数的分子、分母变了,分数的大小却没变。学生在这种“变”与“不变”中发现规律,掌握新知识。
三、说教学目标
综合分析课程标准要求及学生实际,我确定本节教学目标如下:
1、理解与掌握分数的基本性质,并会运用分数的基本性质把不同的分数化成分母(或分子)相同而大小不变的分数。
2、初步养成观察、比较、抽象概括的逻辑思维能力,并且在自主探究中正确认识与理解变与不变的辩证关系。
3、受到数学思想的熏陶,养成乐于探究的学习态度。
教学重点:理解掌握分数的基本性质,它是约分、通分的依据。
教学难点:让学生自主探索、发现与归纳分数的基本性质,以及应用它解决相关的问题。
四、说教法学法
根据本节课的教学目标,考虑到学生已有的知识、生活经验和认知特点,结合教材内容,本课我主要采用猜想验证与探索发现的教学模式。在分数的基本性质过程中,采取学生动手操作、小组讨论、合作探究等方式,引导学生进行比较、观察、分析。通过观察、比较,提出问题并解决问题来进行自主探索与合作交流,充分发挥学生主体参与作用,激发学生学习兴趣,同时让学生获得成功体验。
五、说教学过程
本节课的教学过程我分五个部分进行
第一部分:故事设疑,揭示课题。以唐僧师徒分饼的故事创设问题情境,揭示本节课要研究的问题。
第二部分:组织讨论,动手操作。主要是组织学生动手进行折、画、标等活动,初步理解分数基本性质。
第三部分:合作探究,发现规律。主要的是学生找出规律,并利用规律解决问题。
第四部分:多层练习,巩固深化。主要是巩固所学知识并进行拓展提高。
第五部分:梳理知识,反思小结。主要是总结全课。
其中,第三部分“合作探究,发现规律”可以细化为三个环节:
环节一:动手操作,进行比较
这一环节是在第二部分的基础上进行的,我给每组学生三张大小一样的长条纸,让学生用分数表示涂色部分,并比较大小。此环节的设计主要是培养学生的比较能力。
环节二:呈现问题,引导观察
这一环节主要呈现给学生这样一个问题,“第一环节中的分数的.分子、分母都不一样,为什么大小相等”,引导学生从左到右、从右到左两方面去观察,此环节的设计主要是培养学生的观察能力。
环节三:交流汇报,得出规律
这一环节主要是学生汇报交流,得出结论。
如果学生没有概括出“0除外”就设计两组练习,分子、分母同乘或除以0,完善结论;如果概括出来了,再追加一个问题“为什么强调0除外”,巩固结论。最终推导出分数的基本性质――分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。此环节的设计主要是培养学生的抽象概括能力。
2023不等式课件14篇
经验时常告诉我们,做事要提前做好准备。在平日里的学习中,幼儿园教师时常会提前准备好有用的资料。资料可以指人事物的相关多类信息、情报。有了资料才能更好地安排接下来的学习工作!你是否收藏了一些有用的幼师资料内容呢?以下是由小编为大家整理的“2023不等式课件14篇”,仅供参考,欢迎大家阅读。
不等式课件 篇1
七年级数学不等式课件
教学目标:
通过对具体实例的学习,使学生能够了解生活中的不等量关系,理解不等式的概念,知道什么是不等式的解,为以后学习不等式的解法奠定基础.
知识与能力:
1.通过对具体事例的分析和探索,得到生活中不等量的关系.
2.通过理解得到不等式的概念,从而使学生经历实际问题中数量的分析、抽象过程,体会现实中有各种各样错综复杂的数量关系.
3.了解不等式的意义,知道不等式是用来刻画生活中的数量关系的.
4.知道什么是不等式的解.
过程与方法:
1.引导学生分析具体事例,从对具体事例的分析中得到不等量关系.
2.引导并帮助学生列出不等式,分析不等式的成立条件.
3.通过分析、抽象得到不等式的概念和不等式的解的概念.
4.通过习题巩固和加深对概念的理解.
情感、态度与价值观:
1.通过学生的分析和抽象过程使他们体会现实中错综复杂的数量关系,然后从而培养其抽象思维能力.
2.通过分组讨论学习,体会在解决具体问题的过程中与他人合作的重要性,培养学生的团体协作精神,使学生获得合作交流的学习方式.
3.通过联系与发展、对立与统一的思考方法对学生进行辩证唯物主义教育.
4.通过创设问题串,让学生仔细观察、对比、归纳、整理,尝试对有理数进行分类,然后体验教学活动充满着探索性和创造性.
教学重、难点及教学突破
重点:不等式的概念和不等式的解的概念.
难点:对文字表述的数量关系能列出不等式.
教学突破:由于学生在以前已经对数量的大小关系和含数字的不等式有所了解,但还没有接触过含未知数的不等式,在学生分析问题的时候注意引入现实中大量存在的数量间的不等关系,研究它们的变化规律,使学生知道用不等式解决实际问题的方便之处.在本节的教学中能够在组织学生讨论的过程中适当地渗透变量的知识,让学生感受其中的函数思想,并引导学生发现不等式的解与方程的解之间的区别.在处理本节难点时指导学生练习有理数和代数式的知识,准确“译出”不等式.
教学过程:
一.研究问题:
世纪公园的票价是:每人5元,一次购票满30张可少收1元.某班有27名少先队员去世公园进行活动.当领队王小华准备好了零钱到售票处买了27张票时,爱动脑的李敏同纪学喊住了王小华,提议买30张票.但有的同学不明白.明明只有27个人,买30张票,岂不浪费吗?
那么,究竟李敏的提议对不对呢?是不是真的浪费呢
二.新课探究:
分析上面的问题:设有x人要进世纪公园,①若x≥30,应该如何买票?②若x
结论:至少要有多少人进公园时,买30张票才合算?
概括:1、不等式的定义:表示不等关系的式子,叫做不等式.不等式用符号>,
2、不等式的解:能使不等式成立的未知数的值,叫做不等式的解.
3、不等式的分类:⑴恒不等式:-71+4,a+2>a+1.
⑵条件不等式:x+3>6,a+2>3,y-3>-5.
三、基础训练.
例1、用不等式表示:⑴a是正数;⑵b不是负数;⑶c是非负数;⑷x的平方是非负数;⑸x的一半小于-1;⑹y与4的和不小于3.
注:⑴不等式表示代数式之间的不相等关系,与方程表示相等关系相对应;
⑵研究不等关系列不等式的重点是抓关键词,弄清不等关系.
例2、用不等式表示:⑴a与1的和是正数;⑵x的2倍与y的3倍的差是非负数;⑶x的2倍与1的和大于—1;⑷a的一半与4的差的绝对值不小于a.
例3、当x=2时,不等式x-1
注:⑴检验字母的值能否使不等式成立,只要代入不等式的左右两边,如果符合不等号所表示的关系,就成立,否则就不成立.⑵代入法是检验不等式的解的重要方法.
学生练习:课本P42练习1、2、3.
四、能力拓展
学校组织学生观看电影,某电影院票价每张12元,50人以上(含50人)的团体票可享受8折优惠,现有45名学生一起到电影院看电影,为享受8折优惠,必须按50人购团体票.
⑴请问他们购买团体票是否比不打折而按45人购票便宜;
⑵若学生到该电影院人数不足50人,应至少有多少人买团体票比不打折而按实际人数购票便宜.
解:⑴按实际45人购票需付钱_________ 元,然后如果按50人购买团体票则需付钱50×12×80%=480元,所以购买团体票便宜.
⑵设有x人到电影院观看电影,当x_____时,按实际人数买票______张,需付款_______元,而按团体票购票需付款________元,如果买团体票合算,那么应有不等式________________,
由①得,当x=45时,上式成立,让我们再取一些数据试一试,将结果填入下表:
x12x比较480与12x的大小48
由上表可见,至少要__________人时进电影院,购团体票才合算.
五、小结:
⑴不等式的定义,不等式的'解.
⑵对实际问题中探索得到的不等式的解,然后不仅要满足数学式子,而且要注意实际意义.
六、作业课本P42习题8.1第1、2、3题.
补充题:
1.用不等式表示:
(1)与1的和是正数;(2)的与的的差是非负数;
(3)的2倍与1的和大于3;(4)的一半与4的差的绝对值不小于.
(5)的2倍减去1不小于与3的和;(6)与的平方和是非负数;
(7)的2倍加上3的和大于-2且小于4;(8)减去5的差的绝对值不大于
2.小李和小张决定把省下的零用钱存起来.这个月小李存了168元,然后小张存了85元.下个月开始小李每月存16元,小张每月存25元.问几个月后小张的存款数能超过小李?(试根据题意列出不等式,并参照教科书中问题1的探索,找出所列不等式的解)
3.某公司在甲、乙两座仓库分别有农用车12辆和6辆,现需要调往A县10辆,调往B县8辆,已知从甲仓库调运一辆农用车到A县和B县的运费分别为40元和80元,然后从乙仓库调运一辆农用车到A县和B县的运费分别为30元和50元,(1)设从乙仓库调往A县农用车辆,用含的代数式表示总运费W元;(2)请你用尝试的方法,探求总运费不超过900元,共有几种调运方案?你能否求出总运费最低的调运方案.
不等式课件 篇2
(1)本节内容,是在学习了用方程思想解决实际问题和一元一次不等式的性质及其解法等知识的基础上,把实际问题和一元一次不等式结合在一起,既是对已学知识的运用和深化,又为今后用不等式组解决实际问题以及更广泛的应用数学建模的思想方法奠定基础,具有在代数学中承上启下的作用;
(2)通过本节的学习,学生将继续经历把生活中的数和数量关系转化为数学符号的体验过程,体会不等式和方程一样都是刻画现实世界数量关系的重要模型。
(3)在列不等式解决实际问题的探索过程中,引导学生注意估算意识,体会算式结果所对应的实际意义,渗透建立数学模型,分类讨论等数学思想,对提升学生应用数学意识思考和解决问题的能力起到积极的作用。
对于用不等式解决实际问题,学生容易出现的认知困难主要有两个方面:①哪类的实际问题需要用一元一次不等式来解决;②如何将实际问题转化为一元一次不等式并加以解决。
根据以上的分析和《数学课程标准》对本课内容的教学要求,本节课的教学重点是:一元一次不等式在决策类实际问题中的应用;难点是:如何将实际问题中的数量关系符号化,并根据解集和结合实际情况分类讨论得出合理结论。
根据本课教材的特点、《数学课程标准》对本节课的教学要求以及学生的认知水平,我从三个方面确定了以下教学目标:
1、能进一步熟练的解一元一次不等式,能从实际问题中抽象出不等关系的数学模型,并结合解集解决简单的实际问题。
2、通过观察、实践、讨论等活动,积累利用一元一次不等式解决实际问题的经验,提高分类考虑、讨论问题的能力,感知方程与不等式的内在联系,体会不等式和方程同样都是刻画现实世界数量关系的重要模型。
3、在积极参与数学学习活动的过程中,体会实事求是的态度和从数学的角度思考问题的习惯;学会在解决困难时,与其他同学交流,相互启发,培养合作精神。
根据教学内容、教学目标和学生的认知水平,我主要采取教师启发引导,学生自主探究的教学方法.教学过程中,创设适当的教学情境,引导学生独立思考、共同探究,使学生经历将生活中的数和数量关系转化为数学符号的具体建模过程,体会不等式作为刻画现实世界数量关系的重要模型的价值。
教学中使用多媒体投影、计算机辅助教学,目的是充分发挥其快捷、生动、形象的特点,为学生提供直观感性的材料,有助于学生对问题的关注和理解,激发学生的学习兴趣.
为了达到本节课的教学目标,突出重点,突破难点,我把教学过程通过两个实际问题逐步深入;最后归纳小结,布置作业.具体过程如下:
1、课题引入:
我们以前已经学过了一元一次方程以及二元一次方程组的解法,并在解决许多实际问题的过程中感受到:将相等关系用数学符号抽象后所得到的“方程”确实是一种有效数学工具,它能让我们的思维过程更加准确和简明!
但是,生活中除了相等的数量关系以外,还存在着大量的不等关系,通过前几节课的学习,我们也已经基本了解了不等式的性质和简单不等式的解法。今天,就让我们通过一些带有选择“决策”意义的实际问题来共同探讨一下一元一次不等式这种数学模型是如何解决生活中的实际问题的。
实际情景1:在为我校初一年级学生选定营养餐的过程中选中了有两家公司.
这两家公司某种适合初一学生的营养餐的报价均是是6.5元/份,营养含量和服务承诺也均相同,且都表示对学生优惠:甲公司表示每份按报价的90%收费,乙公司表示购买100份以上的部分按报价的80%收费.
结 合新课标对本小节的要求:会用一元一次不等式解决简单的实际问题,我选择的是从数量关系上与教材例题类似的收费问题,并且真实数值与所在年级事情相一致,比书上的例题更能贴近学生的实际生活,引发学生探求的`兴趣。特别的,通常此类题目是不给出具体单价的,因为并不影响最后结论,考虑到学生现阶段的数学抽象 仍以识别数量的具体含义为主,所以我在此处添加了单价,并增设了问题一,用以降低抽象思维的梯度,为后续的设未知数的“代数化抽象”作适当的铺垫。
问题(1)请你判断,我们年级580人用餐,应该选择哪家公司能让每位学生的餐费平均算来更低呢?
预案 一:教师应关注学生能否在讨论中认清“每位学生的餐费平均算来更低”所对应的数量意义,将之转化为“付给公司的总金额少”。在此处不排除学生因生活经历的缺乏,而对题目中所隐含的数量关系抽象能力弱。应关注每一位同学的感受,让同学们充分理解交流,扩大参与思考的广度,获得基本抽象思维的生长点。
预案二:在进行甲乙公司所需费用的计算时,会有分部计算和综合计算两种计算形式,对于那些列综合算式的同学,教师应多给予展示机会,从而帮助其他同学整理思路,理解算式的实际含义;为后续的字母抽象做好铺垫。具体计算学生可以合理使用计算器提高课堂速度。
预案三:学生还有可能不通过计算,直接猜测甲公司合算或者乙公司合算,对于这种有可能产生的声音,教师应从估算的角度加以引导。引导学生体会在580人的前提下,超过100人部分(480人)的甲公司是九折乙公司是八折, 10%的差距,;100人以内(少于100人)甲公司九折,乙公司不打折10%的差距,480的10%明显大于100的10%,所以选乙合算,并引导学生用计算的方法验证估算的准确性。
结论:580人时选择乙公司能让每位学生的餐费平均算来更低。
问题(2)你能否用以前学过的知识,在不知道具体人数的前提下制定一套方案,当其他学校的初一年级也想在这两家公司之间进行选择时,不用重复第一题的计算过程,只要知道人数就马上能根据你方案的结论作出决策呢?
结合以前的训练,学生很容易想到要通过设未知数的方法进行符号表达,将非常关键而题目中并未给出的学生人数设为未知数。由于本题的具体分析过程仍然是由学生分析讨论完成,可能出现的情况是:
预案一:一部分综合能力较强的同学会根据实际意义直接列出综合算式:或
此处教师应该引导学生观察,在化简不等式的过程中单价并未影响结果(利用不等式性质二将其作为公倍数约去),即:题目中没有具体的单价也不会影响本题的决策。
还可以结合小学单位一的思想化简不等式,引导学生体会并不是题目中出现的所有数量都会影响不等关系,有可能引发学生的关于数量关系的深层次思考。
预案 二:还有一部分学生会因为生活经验少的关系,综合思考能力弱,无法快速的理清数量关系,列出综合算式,思考受阻,教师应引导学生体会在第一题的算式意义的提示下,如何分别列出表达甲乙公司所需总费用的过程量代数式。然后在通过将之用不等号连接的方式,来表达两笔费用的大小,降低因综合性所引起的思维梯度, 在过程中让学生体会“分步建模”的思维的条理性。
问题(1)如果你是该企业的高级管理人员,请你设计该企业在购买设备时两种型号有几种不同的组合方案;
问题(2)若按固定产量预算企业每月产生的污水量约为20xx吨,为了节约资金,应选择哪种购买方案?
实际情景2的选择除涉及“角色扮演”和“环保”等人文因素的考虑以外,在在结合本节的教学目标上还有如下考虑,
1、 本题取材于真实的实际生活问题,情景中的符号和数量关系较多,不等关系在文字语言的叙述中显得比第一题更加隐蔽,需要学生更深化的思考才能列出算式,是在第一个情景的基础上的扩展和深化。
2、 在学生的讨论过程中,教师应注重引导学生体会,用图表表示的数字信息比文字表达更便于观察和有序思考,感受“有序表达”在实际中的价值。
3、 结合本题每一个的具体问题的分析和解决,学生必须要从表格中分析筛选相关的有用数据,(例如:在第一问设计方案时未用到“处理污水量”和“年消耗费”,在第二问中未用到“价格”和“年消耗费”)这种分析和筛选的思考经历将有助于加强学生对数据关系的理解和运用能力。
结合以前的训练,在思考问题(1)学生很容易想到要通过设A型或B型设备的
例如:(1)设购买污水处理设备A型 台,则B型(10 – )台,由题意知:
在此处,将“限额为105万元”转化为“≤105”是学生要突破的第一关,教师应在次处多展示同学的对“限额为105万元”语言解释,尽可能多的在具有不同经历基础的同学心中将这个抽象过程生活化、自然化。
因为在实际情景中往往要根据未知数所代表的具体含义为未知数的加一个取值范围的限定,而这个隐含的限制条件往往是学生中所不容易考虑到的,教师应注意引导学生注意这一问题,
例如:本题中的 是设备的台数,应用非负整数的限制,所以 可取0、1、2,因此有三种购买方案:
①购A型0台,B型10台;
②购A型1台,B型9台;
③购A型2台,B型8台。
此处细节性的思考经历,有助于提高学生在建模过程中更全面的考虑数值的实际意义,促进抽象符号与具体意义在头脑中的融合。
特别的,此处的“0”是学生最容易忽视和丢掉的,教师在此处应重点引导学生思考当“ ”时,往往是企业最可能选的方案,因为不同的设备涉及到不同的维护问题,单一品种的设备往往更便于管理,这种思考有助于发散学生的思维,促进其结合实际作更全面的思考。
问题(2)的思维梯度较前几个问题进一步加大,学生必须理解“节约资金”这个目的的达成 一定是在“完成任务”的前提下的,要先通过对(1)中所得的三套方案是否能完成任务加以讨论和验证,然后再涉及计算哪个方案费用更低的问题
在验证三套方案的可行性时,收思维方式的局限,学生往往会选择逐一列举计算的讨论方式,并且由于数量少,很容易得出答案,教师可引导学生思考,如果满足(1)的方案不是三种,而是三十种呢?三百种呢?除了逐一讨论以外还有没有什么更好的方式能帮助我们迅速缩小范围呢?引导学生将所买设备能否完成任务量转化为如下不等关系:
(2)同(1)所设购买污水处理设备A型 台,则B型(10 – )台,
240 +200(10 – )≥20xx;
因此为了节约资金,应选购A型1台,B型9台。
此处的分析和引导有助于学生体会不等式在有效缩小讨论范围时的实际价值。
通过以上问题的解决,学生对不等式和方程一样都是刻画现实世界数量关系的重要模型有了进一部的认识,并感受到不等式确实是从实际问题中提出,又为解决实际问题提供明确的帮助有效数学工具。
本阶段通过学习小结进行课堂教学的反馈,组织和指导学生归纳知识、技能、方法,深化对数学思想方法的认识,为后续学习打好基础。
不等式课件 篇3
(1)本节内容,是在学习了用方程思想解决实际问题和一元一次不等式的性质及其解法等知识的基础上,把实际问题和一元一次不等式结合在一起,既是对已学知识的运用和深化,又为今后用不等式组解决实际问题以及更广泛的应用数学建模的思想方法奠定基础,具有在代数学中承上启下的作用;
(2)通过本节的学习,学生将继续经历把生活中的数和数量关系转化为数学符号的体验过程,体会不等式和方程一样都是刻画现实世界数量关系的重要模型。
(3)在列不等式解决实际问题的探索过程中,引导学生注意估算意识,体会算式结果所对应的实际意义,渗透建立数学模型,分类讨论等数学思想,对提升学生应用数学意识思考和解决问题的能力起到积极的作用。
对于用不等式解决实际问题,学生容易出现的认知困难主要有两个方面:①哪类的实际问题需要用一元一次不等式来解决;②如何将实际问题转化为一元一次不等式并加以解决。
根据以上的分析和《数学课程标准》对本课内容的教学要求,本节课的教学重点是:一元一次不等式在决策类实际问题中的应用;难点是:如何将实际问题中的数量关系符号化,并根据解集和结合实际情况分类讨论得出合理结论。
根据本课教材的特点、《数学课程标准》对本节课的教学要求以及学生的认知水平,我从三个方面确定了以下教学目标:
1.能进一步熟练的解一元一次不等式,能从实际问题中抽象出不等关系的数学模型,并结合解集解决简单的实际问题。
2.通过观察、实践、讨论等活动,积累利用一元一次不等式解决实际问题的经验,提高分类考虑、讨论问题的能力,感知方程与不等式的内在联系,体会不等式和方程同样都是刻画现实世界数量关系的重要模型。
3.在积极参与数学学习活动的过程中,体会实事求是的态度和从数学的角度思考问题的习惯;学会在解决困难时,与其他同学交流,相互启发,培养合作精神。
三、教学方法的选择
根据教学内容、教学目标和学生的认知水平,我主要采取教师启发引导,学生自主探究的教学方法.教学过程中,创设适当的教学情境,引导学生独立思考、共同探究,使学生经历将生活中的数和数量关系转化为数学符号的具体建模过程,体会不等式作为刻画现实世界数量关系的重要模型的价值,
教学中使用多媒体投影、计算机辅助教学,目的是充分发挥其快捷、生动、形象的特点,为学生提供直观感性的材料,有助于学生对问题的.关注和理解,激发学生的学习兴趣.
为了达到本节课的教学目标,突出重点,突破难点,我把教学过程通过两个实际问题逐步深入;最后归纳小结,布置作业.具体过程如下:
1、课题引入:
我们以前已经学过了一元一次方程以及二元一次方程组的解法,并在解决许多实际问题的过程中感受到:将相等关系用数学符号抽象后所得到的“方程”确实是一种有效数学工具,它能让我们的思维过程更加准确和简明!
但是,生活中除了相等的数量关系以外,还存在着大量的不等关系,通过前几节课的学习,我们也已经基本了解了不等式的性质和简单不等式的解法。今天,就让我们通过一些带有选择“决策”意义的实际问题来共同探讨一下一元一次不等式这种数学模型是如何解决生活中的实际问题的。
实际情景1:在为我校初一年级学生选定营养餐的过程中选中了有两家公司.
这两家公司某种适合初一学生的营养餐的报价均是是6.5元/份,营养含量和服务承诺也均相同,且都表示对学生优惠:甲公司表示每份按报价的90%收费,乙公司表示购买100份以上的部分按报价的80%收费.
结 合新课标对本小节的要求:会用一元一次不等式解决简单的实际问题,我选择的是从数量关系上与教材例题类似的收费问题,并且真实数值与所在年级事情相一致,比书上的例题更能贴近学生的实际生活,引发学生探求的兴趣。特别的,通常此类题目是不给出具体单价的,因为并不影响最后结论,考虑到学生现阶段的数学抽象 仍以识别数量的具体含义为主,所以我在此处添加了单价,并增设了问题一,用以降低抽象思维的梯度,为后续的设未知数的“代数化抽象”作适当的铺垫。
问题(1)请你判断,我们年级580人用餐,应该选择哪家公司能让每位学生的餐费平均算来更低呢?
预案 一:教师应关注学生能否在讨论中认清“每位学生的餐费平均算来更低”所对应的数量意义,将之转化为“付给公司的总金额少”。在此处不排除学生因生活经历的缺乏,而对题目中所隐含的数量关系抽象能力弱。应关注每一位同学的感受,让同学们充分理解交流,扩大参与思考的广度,获得基本抽象思维的生长点。
预案二:在进行甲乙公司所需费用的计算时,会有分部计算和综合计算两种计算形式,对于那些列综合算式的同学,教师应多给予展示机会,从而帮助其他同学整理思路,理解算式的实际含义;为后续的字母抽象做好铺垫。具体计算学生可以合理使用计算器提高课堂速度。
预案三:学生还有可能不通过计算,直接猜测甲公司合算或者乙公司合算,对于这种有可能产生的声音,教师应从估算的角度加以引导。引导学生体会在 580人的前提下,超过100人部分(480人)的甲公司是九折乙公司是八折, 10%的差距,;100人以内(少于100人)甲公司九折,乙公司不打折10%的差距,480的10%明显大于100的10%,所以选乙合算,并引导学生用计算的方法验证估算的准确性。
不等式课件 篇4
教学建议
一、知识结构
本书首先结合实例引入一元一次不等式组的解集的概念,然后通过三个例题说明利用数轴解一元一次不等式组的方法,最后对一元一次不等式组的解法步骤进行了总结.
二、重点、难点分析
本节教学的重点是掌握一元一次不等式组的解法步骤并准确地求出解集.难点是正确应用不等式的基本性质对不等式进行变形、求不等式组中各个不等式解集的公共部分.不等式在中学代数中是研究问题的重要工具,例如求函数的定义域、值域、研究函数的单调性,求最大值、最小值,一元二次方程根的讨论等,都要用到不等式的知识.不等式也是进一步学习其他数学内容的基础.学习和掌握不等式的求解和不等式的证明方法,对培养学生逻辑思维能力也有极其重要的作用.在处理解不等式的问题中,一元一次不等式组的解法,具有特别重要的意义.这是因为,解各类不等式的问题都可以归结为解一些由简单不等式所组成的不等式组.
1、在构成不等式组的几个不等式中
①这几个一元一次不等式必须含有同一个未知数;
②这里的“几个”并未确定不等式的个数,只要不是一个,两个,三个,四个……都行.
2、当几个不等式的解集没有公共部分时,我们就说这个不等式组无解.
3、由两个一元一次不等式组成的不等式的解集,共归结为下面四种基本情况:
【注意】①其中第(4)个不等式组,实质上是矛盾不等式组,任何数都不能使两个不等式同时成立。所以说这个不等式组无解或说其解集为空集。②从上面列出的表中,我们可以概括出来不等式组公共解的一规律:同大取大,同小取小,一大一小中间找。
三、教法建议
1.解本节的引例及例1、例2、例3时,注意把解不等式组的思路讲清楚,即先分别解每一个不等式,求出解集,再求这些解集的公共部分.求公共部分的过程一定要结合数轴来讲。
2.这节课的讲解自始至终要突出解不等式组的基本思想以及解一元一次不等式组的步骤这两个重点.准确熟练地解一元一次不等式以及用数轴上的点表示不等式的解集是这节课的基础,因此讲新课之前要复习提问这些内容。
3.求公共解集是这节课的新授内容,教师要充分利用数轴表示不等式解集具有形象、直观、易于说明问题这些优点.解集的公共部分教师可用彩笔在数轴的相应部分描画出来,使学生感到醒目,便于理解记忆。
4.每组不等式不要超过三个,关键是使学生理解和掌握解不等式组的基本思想和两个步骤,不宜做过于难、过于多、重复的机械计算。
不等式课件 篇5
(一)复习提问:
三角形的三边关系?
(二)列一元一次不等式组
问题:现有两根木条a和b,a长10cm,b长3cm.如果要再找一根木条c,用这三根木条钉成一个三角形木框,那么对木条c的长度有什么要求?
注:这个问题是本节的'引入问题,三角形木框的形状不唯一确定,只要能成为三角形即可.
探究:用三根长度分别为14cm,9cm,6cm的木条c1,c2,c3分别试试,其中哪根木条能与木条a和b一起钉成三角形木框?
可以发现,当木条a和b的长度确定后,木条c太长或太短,都不能与a和b一起钉成三角形.
由于“三角形中两边之和大于第三边,两边之差小于第三边”,设木条c长xcm,则x必须同时满足不等式x10+3①和x10-3②
注:木条c必须同时满足两个条件,即ca+b,ca-b.
类似于方程组,把这两个不等式合起来,组成一个一元一次不等式组记作注:这里并未正式给一元一次不等式组下定义,只是说这两个不等式合起来,组成一个一元一次不等式组.实际上,两个或更多的一元一次不等式组合起来,都组成一个一元一次不等式组.
(三)一元一次不等式组的解集
类比方程组的解,怎样确定不等式组中x的可取值的范围呢?
不等式组中的各不等式解集的公共部分,就是不等式组中x可以取值的范围.
注:这里还未正式出现不等式组的解集的概念,但已点出各不等式的解集的公共部分即不等式组中未知数的可取值范围.
由不等式①解得x13.
由不等式②解得x7.
从图9.3—2容易看出,x可以取值的范围为713.
注:利用数轴可以直观形象地认识公共部分.这个公共部分是两端有界的开区间.
这就是说,当木条c比7cm长并且比13cm短时,它能与木条a和b一起钉成三角形木框.
一般地,几个不等式的解集的公共部分,叫做由它们所组成的不等式组的解集.解不等式组就是求它的解集.
注:这里正式给出不等式组的解集以及解不等式组的定义13.注:利用数轴可以直观形象地认识公共部分.这个公共部分是两端有界的开区间.这就是说,当木条c比7cm长并且比13cm短时,它能与木条a和b一起钉成三角形木框.一般地,几个不等式的解集的公共部分,叫做由它们所组成的不等式组的解集.解不等式组就是求它的解集.注:这里正式给出不等式组的解集以及解不等式组的定义。
不等式课件 篇6
一元一次不等式组(2)
文星中学唐波
一、教学目标
(一)知识与技能目标
1、熟练掌握一元一次不等式组的解法,会用一元一次不等式组解决有关的实际问题。
2、理解一元一次不等式组应用题的一般解题步骤,逐步形成分析问题和解决问题的能力。
(二)过程与方法目标
通过利用列一元一次不等式组解答实际问题,初步学会从数学的角度提出问题、理解问题、并能综合运用所学的知识解决问题,发展应用意识。
(三)情感态度与价值观
通过解决实际问题,体验数学学习的乐趣,初步认识数学与人类生活的密切联系。
二、教学重难点
(一)重点:建立用不等式组解决实际问题的数学模型。
(二)难点:正确分析实际问题中的不等关系,根据具体信息列出不等式组。
三、学法引导
(一)教师教法:直观演示、引导探究相结合。
(二)学生学法:观察发现、交流探究、练习巩固相结合。
四、教具准备:多媒体演示
五、教学过程
(一)、设问激趣,引入新课
猜一猜:我属狗,请同学们根据我的实际情况来猜测我的年龄。(学生大胆猜想,利用不等关系分析得出答案。)
(二)、观察发现,竞赛闯关
1、比一比:填表找规律
(学生抢答,教师补充。)2利用发现的规律解不等式组 ?(学生解答,抽生演板。)你可以得到它的整数解吗?
(抽生回答:因为大于11小于14的整数有12和13,所以整数解为12和13。)3填空:三角形三边长分别为2、7、c,则 c的取值范围是__________。如果c是一个偶
数,则 c=__________。
(学生回答,教师补充更正。)
(三)、欣赏图片,探究新知
1、欣赏“五岳看山”。
2、利用欣赏引出例题(教科书P139例2仿编)
例:3名同学计划在10天内到嵩山拍照500张(每天拍照数量相同),按原来的计划,不能完成任务;如果每人每天比原计划多拍1张,就能提前完成任务,每个同学原计划每天............拍多少张?
生齐读,找出题中的已知条件和未知条件;再默读,找一找表示数量关系的句子。师引导分析,并提出问题:
(1)你是怎样理解“不能完成任务”的数量含义的?你是怎样理解“提前完成任务”的数量含义的?
(2)解决这个问题,你打算怎样设未知数?
(3)在本题中,可以找出几个不等关系,可以列出几个不等式?(学生交流讨论,教师指导。)
?7x?98
?7(x?3)?98
解答完成后,学生自学课本例2。
3、由例解题答过程,类比列二元一次方程组解应用题的步骤,总结列一元一次不等式组的解题步骤:
(1)、分析题意,设未知数; .(2)、利用不等关系,列不等式组; .(3)、解不等式组; .
(4)、检验,根据题意写出答案。.(学生总结,抽生回答,教师补充。)
(四)、闯关练习,巩固新知
1练一练:为纪念“5·12”大地震一周年,“五一”部分同学到青城山拍照留念,如果每人拍8张则多于如果每人拍9张则不够问共有多少个同学参加青城山旅游? ..150张;..180张。
教师引导:抓住重点词语,找到不等关系,列出不等式组。学生独立完成,抽生回答。
比较列二元一次方程组和列一元一次不等式组解应用题的区别:
(学生类比找区别,教师补充。)2练一练(教科书P140练习第2题):一本英语书共98页,张力读了一周(7天)还没读完,而李永不到一周就已读完。李永平均每天比张力多读3页,张力平均每天读多少页(答案取整数)?
学生分析列出不等式组,教师指导。(前面的练习已解出不等式组。)
(五)、畅所欲言,归纳小结 学生畅所欲言,谈收获体会 多媒体展示,本课内容小结:
1、解一元一次不等式组的秘笈:同大取大,同小取小,大小小大中间找,大大小小解不了。
2、具有多种不等关系的问题,可通过不等式组解决。
3、列一元一次不等式组解应用题的步骤是:(1)、分析题意,设未知数;(2)、利用不等关系,列不等式组;(3)、解不等式组;
(4)、检验,根据题意写出答案。
(六)、课后演练,终极挑战
必做题:教材习题第4、5、6题;
选做题:一个两位数,它的十位数字比个位数字大1,而且这个两位数大于30小于42,则这个两位数是多少?
六、板书设计
一元一次不等式组(2)
解:设每个同学原计划每天拍x张,得
① ?3?10x?500
?
?3?10(x?1)?500②
1、分析题意,设未知数;
解得x
3根据题意,x应为整数,所以x=16 答:每个同学原计划每天拍16张。
2??
2、找不等关系,列不等式组; ?
?
3、解不等式组; ?步骤
??
?
4、检验并根据题意写出答案。?
不等式课件 篇7
科学合理的教学方法能使教学效果事半功倍,达到教与学的和谐完美统一。
基于此,我准备采用的教法讲授法、讨论法。德国教育学家第斯多慧:差的教师只会奉送真理,好的教师则交给学生如何发现真理,老师的教是为了不教,这才是教学的最高境界,所以我采用的学法是练习法、自主合作法。
在这节课的教学过程中,我注重突出重点,条理清晰,紧凑合理。各项活动的安排也注重互动、交流,最大限度的调动学生参与课堂的积极性、主动性。
首先是导入环节,我采用复习旧知的导入方法。我会让学生回忆不等式的概念以及一元一次方程的概念,明确指出今天学习的内容是《一元一次不等式》。
这样的设计既可以考查学生对之前知识的掌握情况,还能够为今天学习一元一次方程的概念打下基础。而且开门见山的导入方式能够快速地进入主题。
接下来是新知探索环节,首先我请学生类比不等式以及一元一次方程的概念,给一元一次不等式下定义。
能够总结出:含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式。
接下来让学生回忆上节课学习的不等式x-7>26如何解决的,通过学生回忆总结可以得到:通过“不等式的两边都加7,不等号的方向不变”而得到的。
接下来提问学生有没有更加简便的方法解不等式?让学生类比解一元一次方程的步骤进行解题。可以得到相当于可以用“移项”,来解决。
在这个过程中,强调每一个步骤,在第二题最后一步,强调当不等式的两边同时乘以(或除以)同一个负数时,不等号的方向改变。
解完不等式,先让学生回忆解一元一次方程的步骤是什么?并类比解一元一次方程的步骤,总结一下解一元一次不等式的步骤是什么?
从而我们归纳:解一元一次方程,要根据等式的性质,将方程逐步化为x=a的形式;而解一元一次不等式,则要根据不等式的性质,将不等式逐步化为xa的形式。
《数学课程标准》指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者”。根据这一教学理念,在本环节中,我组织学生进行了自主探究活动,让学生在保持高度学习热情和探究欲望的活动过程中,始终以愉悦的心情,亲身经历和体验知识的形成过程。培养学生的探究能力、分析思维能力,激发他们的创新意识、参与意识。
第三个环节是课堂练习环节,出示问题,解不等式,并在数轴上表示数集:5x+15>4x-1
之所以这样设计是因为练习是掌握知识、形成技能、发展思维的重要手段,针对本课的教学重点和难点,上述练习,目的是让学生进一步巩固对新知的理解。可以深化教学内容,培养思维的灵活性。
最后一个环节为小结作业环节,关于课堂小结,我打算让学生自己来总结今天的收获。
这样既发挥了学生的主体性,又可以提高学生的总结概括能力,让我在第一时间得到学习反馈,及时加以疏导。
通过这样的方式能够为本节课学习的知识进行进一步的巩固。
我的板书设计遵循简洁明了突出重点的意图,这是我的板书设计:
不等式课件 篇8
1、了解一元一次不等式组的概念。
2、理解一元一次不等式组的解集,能求一元一次不等式组的解集。
3、会解一元一次不等式组。
通过具体问题得到一元一次不等式组,从而了解一元一次不等式组的概念,解出每个不等式,利用数轴求出各不等式解集的公共部分,从而得到不等式组的解集,通过解几个有代表性的一元一次不等式组,总结出求不等式组解集的法则。
运用数轴确定不等式组的解集是行之有效的方法。这种“数形结合”的方法今后经常用到,锻炼同学们数形结合的能力,提高学习兴趣。
一元一次不等式组的解法。
确定一元一次不等式组的解集。
一、情境导入,初步认识
问题1现有两根木条a和b,a长10cm,b长3cm,如果要再找一根木条c,用这三根木条钉成一个三角形木框,那么木条c的长度有什么要求?
解:由于三角形中两边之____大于第三边,两边之____小于第三边,设c的长为xcm,则x<____,①x>____,②合起来,组成一个__________。
由①解得_____________,由②解得_____________。
在数轴上表示就是________________。
容易看出:x的取值范围是____________________。
这就是说,当木条c比____cm长并且比____cm短时,它能与木条a和b一起钉成三角形木框。
问题2由上面的解不等式组的过程用自己的语言归纳出一元一次不等式组的.解法。
全班同学可独立作业,也可分组自由讨论,10分钟后交流成果,逐步得出结论。
二、思考探究,获取新知
思考什么叫一元一次不等式组,什么叫一元一次不等式组的解集,什么叫解不等式组?
1、定义:
(1)一元一次不等式组:几个含有相同未知数的一元一次不等式合起来组成一个一元一次不等式组。
(2)一元一次不等式组的解集:几个不等式的解集的公共部分,叫做由它们所组成的不等式的解集。
(3)解不等式组:求一元一次不等式组的解集的过程叫解一元一次不等式组。
2、一元一次不等式组的解法:
(1)求出每个一元一次不等式的解集。
(2)求出这些解集的公共部分,便得到一元一次不等式组的解集。
不等式课件 篇9
本节教学的重点是不等式的解集的概念及在数轴上表示不等式的解集的方法.难点为不等式的解集的概念.
相同点:定义方式相同(使方程成立的未知数的值,叫做方程的解);解的表示方法也相同.
不同点:解的个数不同,一般地,一个不等式有无数多个解,而一个方程只有一个或几个解,例如, 能使不等式 成立,那么 是不等式的一个解,类似地 等也能使不等式 成立,它们都是不等式 的解,事实上,当 取大于 的数时,不等式 都成立,所以不等式 有无数多个解.
不等式的解与不等式的解集是两个不同的概念,不等式的解是指满足这个不等式的未知数的某个值,而不等式的解集,是指满足这个不等式的未知数的所有的值,不等式的所有解组成了解集,解集中包括了每一个解.
注意:不等式的解集必须满足两个条件:第一,解集中的任何一个数值,都能使不等式成立;第二,解集外的任何一个数值,都不能使不等式成立.
一般地,一个含未知数的不等式有无数多个解,其解集是某个范围,这个范围可用一个最简单的不等式表示出来,例如,不等式 的解集是 .
如不等式 的解集 ,可以用数轴上表示4的点的左边部分表示,因为 包含 ,所以在表示4的点上画实心圆.
如不等式 的解集 ,可以用数轴上表示4的点的左边部分表示,因为 包含 ,所以在表示4的点上画实心圈.
注意:在数轴上,右边的点表示的数总比左边的点表示的数大,所以在数轴上表示不等式的解集时应牢记:大于向右画,小于向左画;有等号的画实心圆点,无等号的画空心圆圈.
1.使学生了解不等式的解集、解不等式的概念,会在数轴上表示出不等式的解集.
2.知道不等式的“解集”与方程“解”的不同点.
通过教学,使学生能够正确地在数轴上表示出不等式的解集,并且能把数轴上的某部分数集用相应的不等式表示.
通过讲解不等式的“解集”与方程“解”的关系,向学生渗透对立统一的辩证观点.
通过本节课的学习,让学生了解不等式的解集可利用图形来表达,渗透数形结合的数学美.
2.学生学法:明确不等式的解与解集的区别和联系,并能熟练地用数轴表示不等式的解集,在数轴上表示不等式的解集时,要特别注意:大于向右画,小于向左画;有等号的画实心圆点,无等号的画空心圆圈.
不等式课件 篇10
1.了解不等式及一元一次不等式概念。
2.理解不等式的解、解集,能正确表示不等式的解集。
通过类比等式的对应知识,探索不等式的概念和解,体会不等式与等式的异同,初步掌握类比的思想方法。
1.经历把实际问题抽象为不等式的过程,能够列出不等关系式。
2.初步体会不等式(组)是刻画现实世界中不等关系的一种有效数学模型,培养学生的建模意识。
通过对不等式概念及其解集等有关概念的探索,培养学生的知识迁移能力和建模意识,加强同学之间的使用与交流。
活动一:
感知不等关系,了解不等式的概念。
通过实例,让学生认识到不等关系在生活中的存在,通过问题的解答,让学生了解不等式的概念,体会不等式是解决实际问题的有效工具。
活动二:
通过类比方程,继续探索出不等式的解、解集及其表示方法。
通过解决上个环节的问题,得出不等式的解,再引导学生观察解的特点,探索出解集的两种表示方法(符号表示、数轴表示),并且培养学生用估算方法求解集的技能。
活动三:
继续探索,归纳出一元一次不等式的意义。
针对所学的不等式,让学生归纳出特点,得到一元一次不等式的概念,并对概念进行辨析。
运用本节所学的知识,解决实际问题,使学生经历将实际问题转化为数学问题,再加以解决的过程,实现对所学知识的巩固和深化。
让学生通过自我反思和互相质疑提问,归纳总结本节课的主要内容,交流在概念、解及解集学习中的心得和体会,不断积累数学活动经验,教师应主动参与学生小结中,作好引导工作,布置好作业,并作及时反馈。
小强准备随父母乘车去武当山春游。
⑴在车上看到儿童买票所需的测身高标识线。
①x满足______时,他可免票。
②x满足______时,他该买全票。
⑵已知襄樊与武当山的距离为150千米,他们上午10点钟从襄樊出发,汽车匀速行驶。
①若该车计划中午12点准时到达武当山,车速应满足什么条件?
②若该车实际上在中午12点之前已到达武当山,车速应满足什么条件?
用不等式表示:
⑴a是正数;⑵a是负数;⑶a与5的和小于7;⑷a与2的差大于-1;
⑸a的4倍大于8;
⑹a的一半小于3。
学生回答①这两个由实际生活情境设置的问题,应非常容易.问题②相对①难度加大了,难在题意中的条件不象上面那样直接明了,并且可从距离和时间两个角度来分析、解决问题,而七年级学生恰恰缺乏阅读分析题意、多维度思考解决问题的能力,所以采用小组讨论交流的形式解决问题②
学生讨论角度估计大都集中在距离这一角度,教师可深入小组讨论中,认真听听同学们的思路,应鼓励学生多发表意见,并适当点拨,直到得出两种不等式。
此次活动中,教师应重点关注:讨论要有足够的时间和空间,学生在小组讨论交流时,是否敢于发表自己的想法。
再给出不等式概念:
像前面式子一样用“>”或“
教师可要求学生举出一些表示大小的式子,学生举出的不等式中,可能会有一些不含未知数的,如5>3等。教师此时应总结:不等式中可含有未知数,也可不含未知数。
教师根据学生举例给出表示不等关系的第三种符号“≠”,并强调:像前面式子一样用“≠”表示不等关系的式子也是不等式。
巩固练习是让学生用不等式来刻画题中6个简单的不等关系。学生得出答案并不难,所以该环节让学生独立完成、互相评价,教师可深入到学生的解题过程中,观察指导学生的解题思路,倾听学生的评价。
问题1在课本中起导入新课作用,考虑学生实际情况(分析应用题能力尚欠缺)和题目难度,所以设置问题串,降低难度。这样编排教材我认为更能体现知识呈现的序列性,从易到难,让学生“列不等式”能力实现螺旋上升。
问题3作用仅仅起巩固上面所学的知识,所以采用书中的一组习题,让学生独立完成,进一步培养学生列不等式能力。
采用学生熟悉的生活情境作为导入内容,然后层层推进,步步设问,环环相扣,直至推出不等式的概念及概念理解中应注意的地方。这样实现了:让学生从已有的数学经验出发,从生活中建构数学模型,为后面利用“不等式”这一模型解决生活中实际问题作好铺垫,体现了数学生活化、生活
不等式课件 篇11
1、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。
2、解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x项的系数化为1
1、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。
2、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。
3、求不等式组的解集的过程,叫做解不等式组。
4、当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。
3、代数式1-m的值大于-1,又不大于3,则m的取值范围是( )
A.x≥1 B.x≥-1/2 C.x>1 D.x>-1/2
A.5+4>8 B.2x-1 C.2x-5≤1 D.1/x-3x≥0
A. a>0¬ B.a≥0¬ C.a
11、若关于x的不等式组 的解集是x>2a,则a的取值范围是
A. a>4 B. a>2 C. a=2 D.a≥2
12、若方程组 中,若未知数x、y满足x+y>0,则m的取值范围是
13、不等式2(1) x>-3的解集是 。
14、用代数式表示,比x的5倍大1的数不小于x的 与4的差 。
15、若(m-3)x-1,则m .
18、某次个人象棋赛规定:赢一局得2分,平一局得0分,负一局得反扣1分。在12局比赛中,积分超过15分就可以晋升下一轮比赛,小王进入了下一轮比赛,而且在全部12轮比赛中,没有出现平局,问小王最多输 局比赛
1、定义:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点。
2、心对称的两条基本性质:
(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分。
(2)关于中心对称的两个图形是全等图形。
把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。
每上第一次课,我所讲的课程内容都和学生的错题有关。我通常把试卷中的错题摘抄出几个典型题,作为课堂的例题再讲一遍。而学生的反应,或是像没有见过,或是对题目非常熟悉,但没有思路。
这些现象的发生,都是学生没有及时总结的原因。所以第一次课后我都建议我的学生做一个错题本,像写日记一样,记录下自己的错题和感想。
成也审题败也审题。如何审题呢?
(1)这个题目有哪些个已知条件?我能不能把已知条件分开?
(2)求解的目标是什么?对求解有什么要求?
(3)能不能画一个图帮助思考?好多问题是没有看清楚题意致错。审题不清,你做得越多,可能错的就越多。
(4)所给出的已知条件相互之间有什么关系?能不能从中发现隐含条件?
(5)已知条件与求解目标有什么联系?能不能从中获得解题的思路?找到进门的门槛?
不等式课件 篇12
1.使学生感受到生活中存在着大量的不等关系,了解不等式和一元一次不等式的意义;
2.让学生自发地寻找不等式的解,会在数轴上正确地表示出不等式的解集;
3.能够根据题意准确迅速地列出相应的不等式。
1.通过汽车行驶过a地这一实例的研究,使学生体会到数学来源于生活,又服务于生活,培养学生“学数学、用数学”的意识;
2.经历由具体实例建立不等模型的过程,探究不等式的解与解集的不同意义的过程,渗透数形结合的思想。
㈢情感、态度、价值观:
1.通过对不等式、不等式的解与解集的探究,引导学生在独立思考的基础上积极参与对数学问题的讨论,培养他们的合作交流意识;
2.让学生充分体会到生活中处处有数学,并能将它们应用到生活的各个领域中去。
3.培养学生类比的思想方法、数形结合的思想。
1.教学重点:不等式、一元一次不等式、不等式解与解集的意义;在数轴上正确地表示出不等式的解集;
2.教学难点:不等式解集的意义,根据题意列出相应的不等式。
计算机、自制cai课件、实物投影仪、三角板等。
教师创设情境引入,学生交流探讨;师生共同归纳;教师示范画图,课件交互式练习。
〖创设情境——从生活走向数学〗
[多媒体展示]“五·一黄金周”快要到了,芜湖市某两个商场为了促销商品,推行以下促销方案:①甲商场:购物不超过50元者,不优惠;超过50元的,超过部分折优惠。②乙商场:购物不超过100元者,不优惠;超过100元的,超过部分九折优惠。亲爱的同学,如果五·一期间,你去购物,选择到哪个商场,才比较合算呢?
(以上教学内容是向学生设疑,激发学生探索问题、研究问题的积极性,可以让学生讨论一会儿)
教师:要想正确地解决这个问题,我们大家就要学习第九章《不等式和不等式组》,学完本章的内容后,我相信,聪明的你们一定都会作出正确的选择,真正地做到既经济又实惠。
首先,我们来共同学习本章的第一节课——9.1.1节《不等式及其解集》
〖新课学习〗
学习目标:
1.能感受到生活中存在着大量的不等关系,了解不等式和一元一次不等式和意义;
2.会寻找不等式的解,会在数轴上正确地表示出不等式的解集;
3.能够根据题意准确迅速地列出相应的不等式。
[多媒体展示一段动画]:引例:一辆匀速行驶的汽车在11:20距离a地50千米,要在12:00之前驶过a地,车速应满足什么条件?
设车速是x千米/小时,
(1)从时间上看,汽车要在12:00之前驶过a地,则以这个速度行驶50千米所用的时间不到 小时,即
(2)从路程上看,汽车要在12:00之前驶过a地,则以这个速度行驶 小时的路程要超过50千米,即
请同学们观察上面的两个式子,式子左右两边的大小关系是怎样的? 左右两边相等吗?
在学生充分发表自己意见的基础上,师生共同归纳得出:
用“>”或“<”号表示大小关系的式子叫做不等式;
用“≠”表示不等关系的式子也是不等式。
判断下列式子中哪些是不等式,是不等式的请在题后的括号内划“√”,不是的请划“×”
(1)3> 2 ( ) (2)2a+1> 0 ( ) (3)a+b=b+a ( )
(4)x< 2x+1 ( ) (5)x=2x-5 ( ) (6)2x+4x< 3x+1 ( ) (7)15≠7+9 ( )
上面的不等式中,有些不含未知数,有些含有未知数,大家把(2)、(4)、(6)式与(5)式类比,(5)式是一个一元一次方程,能不能给(2)、(4)、(6)式也起个名字呢?
含有一个未知数, 未知数的次数是1的不等式,叫做一元一次不等式.
问题2:车速可以是78千米/小时吗?75千米/小时呢? 72千米/小时呢?
问题3:我们曾经学过“使方程两边相等的未知数的值就是方程的解”,那么我们可以把使不等式成立的未知数的值叫做什么呢?
(师生共同归纳)使不等式成立的未知数的值叫做不等式的解。
2.课堂练习二——动一动脑,动一动手,你一定能算得对。
76, 73, 79, 80, 74.9, 75.1, 90, 60
(学生做完后,师问):你还能找出这个不等式的其他的解吗?这个不等式有多少个解?你从中发现了什么规律?
(学生讨论后,师生共同总结):当x>75时,不等式 x>50总成立;而当x<75或x=75时,不等式 x>50不成立,这就是说,任何一个大于75的数都是不等式 x>50的解,这样的解有无数个。因此,x>75表示了能使不等式 x>50成立的x的取值范围,叫做不等式 x>50的解的集合,简称解集。
我们再回到前面的问题,经过刚才的分析,可以知道,要使汽车在12:00之前驶过a地,车速必须大于75千米/小时。
一个含有未知数的不等式的所有的解,组成了这个不等式的解集。
4.在数轴上表示不等式的解集;
注意:在表示75的点上画空心圆圈,表示不包括这一点.
5.课堂练习三——动一动脑,动一动手,你一定能算得对。
判断下列数中哪些是不等式x+3>6的解? 哪些不是?
-4, -2.5, 0, 1, 2.5, 3, 3.2, 4.8, 8, 12
求不等式的解集的过程叫做解不等式。
7.课堂练习四——看谁算得最快最准。
直接想出不等式的解集,并在数轴上表示出不等式的解集:
(1) x+3>6; (2)2x<8; (3)x-2>0
解:(1)x>3; (2)x<4; (3)x>2。
1.例用不等式表示:
(1)x与1的和是正数; (2)的与的的差是负数;
(3)的2倍与1的和大于3;(4)的一半与4的差小于的3倍.
解:(1)x+1>0; (2)+b<0;
(3)2+1>3; (4)-4<3;
2.课堂练习五——看谁最列得又快又准。
用不等式表示:
(1)是正数; (2)是负数;
(3)与5的和小于7; (4)与2的差大于-1;
(5)的4倍大于8; (6)的一半小于3.
答案;(1)>0; (2)<0; (3)+5>0;
学生小结,师生共同完善:
2.会寻找不等式的解,会在数轴上正确地表示出不等式的解集;
3.能够根据题意准确迅速地列出相应的不等式。
不等式课件 篇13
教学重点:掌握不等式的三条基本性质,尤其是不等式的基本性质3.
教学难点:正确应用不等式的三条基本性质进行不等式变形.
通过观察、分析、讨论,引导学生归纳总结出不等式的三条基本性质,从具体上升到理论,再由理论指导具体的练习,从而强化学生对知识的理解与掌握.
(设计说明:设置以下习题是为了温故而知新,为学习本节内容提供必要的知识准备.)
2、什么是不等式?
3、用“>”或“<”填空.
(教学说明: 复习等式的基本性质后学生自然会联想到,不等式是否有与等式相类似的性质,从而引起学生的探究欲望.接着问题3为学生探究不等式的性质提供了载体,通过观察,寻找规律,得出不等式的性质.)
先让学生独立思考,后合作交流,通过充分讨论,类比等式性质得出不等式的性质.
观察时,引导学生注意不等号的方向,通过(1)题学生容易得出不等式性质1:
不等式基本性质1 不等式两边加(或减)同一个数(或式子),不等号的方向不变.
比较(2)、(3)题,注意观察不等号方向,并思考不等号方向的改变与什么有关?由学生概括总结,教师补充完善得出:
不等式基本性质2 不等式两边乘(或除以)同一个不为零的正数,不等号的方向不变.
不等式基本性质3 不等式两边乘(或除以)同一个不为零的负数,不等号的方向改变.
通过PPT用图形演示不等式的基本性质,让学生更加清楚地认识不等式的基本性质。
不等式有传递性吗?
【学生通过讨论能够比较容易得出结论:不等式有对称性,但要注意其不等号方向的`变化;不等式也有传递性,但要注意的是同向传递性。】
三、巩固训练,熟练技能:
1、(1) a - 3____b - 3;
(3) 0.1a____0.1b;
(5) 2a+3____2b+3;
【本题目采用提问的方式,因为内容相对简单,所以可以迅速得到结论。要让提问者说清楚答案,并说明利用不等式的性质几来进行判定的。】
(1)因为7.5>5.7,所以-7.5<-5.7;
(2)因为a+8>4,所以a>-4;
(3)因为4a>4b,所以a>b;
(4)因为-1>-2,所以-a-1>-a-2;
(5)因为3>2,所以3a>2a.
【学生口答,并说明为什么。本题重点是第5小题,要引导学生总结出a的取值会影响到答案。当a>0时,3a>2a.(不等式基本性质2)
当 a=0时,3a=2a.当a<0时,3a<2a.(不等式基本性质3) 】
学生自己完成以下题目,之后进行集体讲解。
(1)如果x-5>-1,那么______________________,得:x>4
(2)如果-2x>3,那么那么______________________,得X=______
师生共同小结本节课所学重点,不等式的基本性质的具体内容。
不等式课件 篇14
基本不等式是数学中重要的一个概念,它与不等式的证明和应用有着密切的关系。基本不等式的解法和思维方法不仅能让我们更好地掌握不等式的性质和应用,同时也能让我们更好地解决数学中的其他问题。下面,让我们就基本不等式这一主题展开更加深入的探讨。
一、基本不等式的定义、证明和性质
基本不等式定义:对于任意实数$x$,$y$,有$(x^2+y^2)\geq 2xy$,等号成立当且仅当$x=y$时成立。
基本不等式的证明:我们可以通过平方展开和配方进行证明,即:
$(x-y)^2\geq 0$
$x^2-2xy+y^2\geq 0$
$x^2+y^2\geq 2xy$
证毕。
基本不等式的性质:基本不等式可以用于求证其他不等式和解决实际问题,例如可以用基本不等式证明算术平均数$\ge$几何平均数,可以用基本不等式求证要想最小化一个多项式,需要使其中的各项等于彼此等于基本不等式中的相等值等。
二、基本不等式的应用及相关例题
基本不等式的应用广泛,其中最常见的应用就是在证明和求解不等式问题中。下面,我们就通过例题来展示基本不等式的具体应用。
例题一:
已知$a,b,c$均为正实数,求出$abc$与$\frac{(a+b+c)^3}{27}$的大小关系。
解:由于$a,b,c$均为正实数,故可运用基本不等式进行求解,即
$\begin{aligned}
\frac{(a+b+c)}{3}\geq\sqrt[3]{abc}\\
(a+b+c)^3\geq 27abc
\end{aligned}$
因此,
$\frac{(a+b+c)^3}{27}\geq abc$
即$\frac{(a+b+c)^3}{27}\geq abc$
得证。
例题二:
已知$a+b=3$,$a^2+b^2=5$,求出$a,b$的大小关系。
解:由已知条件可得$(a+b)^2=a^2+b^2+2ab$,即
$9=5+2ab$
$ab=\frac{4}{3}$
由基本不等式知得
$2ab=\frac{8}{3}\leq a^2+b^2=5$
即$a^2+b^2>2ab$,因此$a^2>b^2$,
又因为$a+b=3$,所以$b=3-a$,
所以$(3-a)^2
$9+a^2-6a
$a>\frac{3}{2}$
因此,
$a>b>\frac{3}{2}-a$
即$0
例题三:
已知$a,b,c>0$,求证$\frac{(a+b)^2}{c}+\frac{(b+c)^2}{a}+\frac{(c+a)^2}{b}\geq 12(a+b+c)$
解:由基本不等式得
$(a+b)^2\geq 4ab,(b+c)^2\geq 4bc,(c+a)^2\geq 4ac$
将以上三个式子代入原式变化得
$\frac{4ab}{c}+\frac{4bc}{a}+\frac{4ac}{b}\geq 12(a+b+c)$
即$4(ab^2+bc^2+ca^2)\geq 12abc(a+b+c)$
即$(ab^2+bc^2+ca^2)\geq 3abc$
由于$a,b,c>0$,故得证。
三、基本不等式的扩展
除了基本不等式外,还有一些基本不等式的扩展形式,例如平均值不等式和柯西施瓦兹不等式等。这些扩展形式大大丰富了不等式的证明和应用,并为数学研究提供了更加广泛的空间。下面,我们就来简单介绍一下平均值不等式和柯西施瓦兹不等式的相关内容。
平均值不等式:对于$n$个非负实数$x_1,x_2,\cdots,x_n$,有
$\frac{x_1+x_2+\cdots+x_n}{n}\geq\sqrt[n]{x_1x_2\cdots x_n}$
其中等号成立当且仅当$x_1=x_2=\cdots=x_n$时成立。
柯西施瓦兹不等式:对于任意实数$x_1,x_2,\cdots,x_n$和$y_1,y_2,\cdots,y_n$,有
$(x_1^2+x_2^2+\cdots+x_n^2)(y_1^2+y_2^2+\cdots+y_n^2)\geq(x_1y_1+x_2y_2+\cdots+x_ny_n)^2$
其中等号成立当且仅当$\frac{x_1}{y_1}=\frac{x_2}{y_2}=\cdots=\frac{x_n}{y_n}$时成立。
四、总结
综上所述,基本不等式是数学中重要的一个概念,它与不等式的证明和应用有着密切的关系。基本不等式的解法和思维方法不仅能让我们更好地掌握不等式的性质和应用,同时也能让我们更好地解决数学中的其他问题。在学习和应用基本不等式时,我们还需掌握其相关的扩展形式,如平均值不等式和柯西施瓦兹不等式等。只有充分掌握了这些知识点,我们才能更加深入地理解并应用不等式的知识。
$ 的实数都成立。
三、基本不等式的证明方法
基本不等式有多种证明方法,下面列举其中两种:
方法一:数学归纳法
假设基本不等式对于 $n=k$ 时成立,即对于 $k$ 个正实数 $a_1,a_2,\cdots,a_k$,有以下不等式成立:
$\dfrac{a_1}{k}+\dfrac{a_2}{k}+\cdots+\dfrac{a_k}{k}\geq\sqrt[k]{a_1a_2\cdots a_k}$
现证明它对于 $n=k+1$ 时也成立。将 $a_{k+1}$ 插入到原来的不等式中,得到:
$\dfrac{a_1}{k+1}+\dfrac{a_2}{k+1}+\cdots+\dfrac{a_k}{k+1}+\dfrac{a_{k+1}}{k+1}\geq\sqrt[k+1]{a_1a_2\cdots a_k a_{k+1}}$
由于:
$\dfrac{a_1}{k+1}+\dfrac{a_2}{k+1}+\cdots+\dfrac{a_k}{k+1}\geq\sqrt[k]{a_1a_2\cdots a_k}$
因此,我们只需证明以下不等式:
$\dfrac{(k+1)\sqrt[k]{a_1a_2\cdots a_k}\cdot a_{k+1}}{k+1}\geq\sqrt[k+1]{a_1a_2\cdots a_k a_{k+1}}$
经过变形化简,可以得到:
$\sqrt[k]{a_1a_2\cdots a_k} \geq \sqrt[k+1]{a_1a_2\cdots a_k a_{k+1}}$
显然,这是成立的。
因此,按照归纳法的证明方式,基本不等式对于所有的正整数 $n$ 都成立。
方法二:对数函数的应用
对于 $a_1,a_2,\cdots,a_n$,我们可以定义函数:
$f(x)=\ln{x}$
显然,函数 $f(x)$ 是连续的、单调递增的。根据式子:
$\dfrac{a_1}{n}+\dfrac{a_2}{n}+\cdots+\dfrac{a_n}{n}\geq\sqrt[n]{a_1a_2\cdots a_n}$
可以得到:
$\ln\left(\dfrac{a_1}{n}\right)+\ln\left(\dfrac{a_2}{n}\right)+\cdots+\ln\left(\dfrac{a_n}{n}\right)\geq\dfrac{1}{n} (\ln a_1+\ln a_2+\cdots+\ln a_n)$
即:
$\ln\left(\sqrt[n]{a_1a_2\cdots a_n}\right)\leq\dfrac{\ln a_1+\ln a_2+\cdots+\ln a_n}{n}$
对于左边的式子,有:
$\ln\left(\sqrt[n]{a_1a_2\cdots a_n}\right)=\dfrac{1}{n}\ln(a_1a_2\cdots a_n)$
对于右边的式子,有:
$\dfrac{\ln a_1+\ln a_2+\cdots+\ln a_n}{n}=\ln\left(\sqrt[n]{a_1a_2\cdots a_n}\right)$
因此,我们可以得到:
$\ln(a_1a_2\cdots a_n)\geq n\ln\left(\sqrt[n]{a_1a_2\cdots a_n}\right)$
即:
$a_1a_2\cdots a_n\geq\left(\sqrt[n]{a_1a_2\cdots a_n}\right)^n$
这正是均值不等式的形式。因此,基本不等式得证。
四、基本不等式的应用
基本不等式在数学和物理学中有广泛的应用。下面介绍几个常见的应用场景:
1. 最小值求解
如果有 $n$ 个正实数 $a_1,a_2,\cdots,a_n$,它们的和为 $k$,求它们的积的最大值,即:
$\max(a_1a_2\cdots a_n)$
根据基本不等式,有:
$\dfrac{a_1+a_2+\cdots+a_n}{n}\geq\sqrt[n]{a_1a_2\cdots a_n}$
因此,可以得到:
$\dfrac{k}{n}\geq\sqrt[n]{a_1a_2\cdots a_n}$
两边同时取幂,可以得到:
$\dfrac{k^n}{n^n}\geq a_1a_2\cdots a_n$
即:
$\max(a_1a_2\cdots a_n)=\dfrac{k^n}{n^n}$
2. 凸函数的优化问题
如果 $f(x)$ 是一个凸函数,$a_1,a_2,\cdots,a_n$ 是正实数,$b_1,b_2,\cdots,b_n$ 是任意实数且 $\sum_{i=1}^n b_i=1$,则有:
$f(b_1a_1+b_2a_2+\cdots+b_na_n)\leq b_1f(a_1)+b_2f(a_2)+\cdots+b_nf(a_n)$
这是凸函数的优化问题中常用的基本不等式形式。它可以通过Jensen不等式或基本不等式证明。
3. 三角形求证
如果我们可以用 $a,b,c$ 表示一个三角形的三边长,则有:
$\sqrt{(a+b+c)(a+b-c)(a-b+c)(-a+b+c)}\leq\dfrac{(a+b+c)^2}{4\sqrt{3}}$
这个不等式在三角形求证中也被广泛应用。
五、结语
基本不等式是高中数学必修内容之一,但其实它的应用范围远不止于此。在实际问题中,基本不等式常常能给我们提供有效的解决方案。通过本文的介绍,希望读者能够更加深入地理解基本不等式的概念、性质、证明方法及应用,并能在实际问题中灵活运用。
不等式的课件 篇8
关于基本不等式的主题范文:
基本不等式是数学中非常重要的一道课题,所以我们需要从以下几个方面来对基本不等式进行介绍。
一、基本不等式是什么
基本不等式是指数学中的一个重要定理,它表述的是任意正整数n及n个正数a1,a2,…,an的积与它们的和之间的关系。也就是说,对于任意正整数n和n个正数a1,a2,…,an,有以下不等式成立:
(a1+a2+…+an)/n ≥ (a1×a2×…×an)1/n
其中,等式成立当且仅当a1 = a2 = … = an。
二、基本不等式的证明
下面我们来看一下基本不等式的证明过程。
首先,如果我们令Ai = nai和G = (a1 × a2 × … × an)1/n,则我们可以将原不等式转化为:
(a1+a2+…+an)/n ≥ G
接下来,我们来看一下如果证明G ≤ (a1+a2+…+an)/n,那么我们就可以证明基本不等式,因为不等式具有对称性,即如果G ≤ (a1+a2+…+an)/n,则(a1+a2+…+an)/n ≥ G也成立。
接下来,我们证明G ≤ (a1+a2+…+an)/n,即:
(a1+a2+…+an)/n ≥ (a1 × a2 × … × an)1/n
将不等式右边两边平方,得到:
(a1+a2+…+an)/n ≥ (a1 × a2 × … × an)2/n
这时,我们来观察右边的式子,将式子中的每一项都乘以(n-1),得到:
(a1 × (n-1) + a2 × (n-1) + … + an × (n-1)) / n ≥ (a1 × a2 × … × an)2/n
继续进行简化,得到:
[(a1 × (n-1)) + (a2 × (n-1)) + … + (an × (n-1))] / n ≥ (n-1) × a1 × a2 × … × an / n
左边乘以1/n,右边除以(n-1),得到:
(a1 + a2 + … + an) / n ≥ (a1 × a2 × … × an)1/n
这样我们就完成了基本不等式的证明。
三、基本不等式在实际中的应用
基本不等式在实际中的应用非常广泛,下面我们来看一下其中的几个例子。
1. 求平均数
如果我们已知n个正数的积,需要求它们的平均数,那么根据基本不等式,我们可以得到:
(a1 + a2 + … + an) / n ≥ (a1 × a2 × … × an)1/n
等式两边都乘以n-1,得到:
a1 + a2 + … + an ≥ (n-1) × (a1 × a2 × … × an)1/n
这样我们就可以求得平均数:
(a1 + a2 + … + an) / n ≥ (n-1) × (a1 × a2 × … × an)1/n / n
2. 求数列中n个数的积的最大值
假设我们需要从数列{a1, a2, …, an}中选取n个数,求它们的积的最大值。根据基本不等式,我们有:
(a1 + a2 + … + an) / n ≥ (a1 × a2 × … × an)1/n
因为我们需要求积的最大值,所以当等式左边的和恰好等于n个数的积时,这个积才能取到最大值。因此,我们可以得到:
a1 = a2 = … = an
这样,我们就得到了求数列中n个数的积的最大值的方法。
三、结论
通过对基本不等式的介绍,我们可以发现它不仅仅是一道看似简单的数学题目,而是一个非常重要的定理,有着广泛的应用价值。希望大家能够在今后的学习中更加重视基本不等式,并能够深刻理解它的实际应用。
不等式的课件 篇9
基本不等式是高中数学中重要的一部分,也是初学者比较难掌握的一个概念。通过学习基本不等式,可以帮助学生理解不等式的基本概念、性质和运算。同时,对于高中数学,基本不等式还有很多相关的题型需要掌握,比如极值问题、夹逼定理等。本文将从基本不等式的定义开始,探讨其相关概念、性质和应用。
一、基本不等式的定义
基本不等式是指对于任意正实数a、b,有以下不等式成立:
(a + b)² ≥ 4ab
这个不等式也可以写成:
a² + b² ≥ 2ab
这个不等式的含义是:对于任意两个正实数a、b,它们的平均数一定大于等于它们的几何平均数。
二、基本不等式的证明
对于任意实数x,y,可以用(x-y)²≥0来证明基本不等式:
(x-y)²≥0
x²-2xy+y²≥0
x²+y²≥2xy
将x换成a、y换成b,即可得到基本不等式。
三、基本不等式的相关概念
1. 等式条件:
当且仅当a=b时,等式成立。
2. 平均数与几何平均数:
平均数指的是两个数的和的一半,即(a+b)/2;几何平均数指的是两个数的积的二分之一,即√(ab)。由于基本不等式的成立,可以得出平均数大于等于几何平均数的结论。
3. 关于两个数之和与两个数的比值的关系:
从基本不等式得到如下两个等式:
(a+b)²=4ab+(a-b)²;ab≥(a+b)/2
以上两个式子给出了两个关于两个数之和与两个数的比值的关系。
四、基本不等式的性质
1. 交换律和结合律:基本不等式满足交换律和结合律。
2. 反比例函数:若f(x)=1/x,x>0,则f(a)+f(b)≤2f((a+b)/2)对于a,b>0成立。
3. 带约束的基本不等式:若a,b>0,且a+b=k,则(a+b)/2≥√(ab),即k/2≥√(ab)。
五、基本不等式的应用
1. 求证夹逼定理:如果a1≤b1≤c1,且a2≤b2≤c2,则(a1a2+b1b2+c1c2)/3≥(a1b2+b1c2+c1a2)/3≥√(a1b1c1a2b2c2)。
2. 判断一个二次函数的最大值或最小值:由于二次函数的导数为一次函数,可以通过求导得到函数的极值。而基本不等式可以用于判断二次函数的极值点是否合理,即是否在定义域内。
3. 算术平均数和几何平均数之间的关系:通过基本不等式可以证明,当两个数的和固定时,它们的平均数越大,它们的几何平均数就越小。
总的来说,基本不等式是高中数学不可缺少的一部分,不仅在考试中占有重要地位,而且还具有很重要的理论意义。希望本文对初学者掌握基本不等式有所帮助。
不等式的课件 篇10
教学目标:
1.一元一次不等式与一次函数的关系.
2.会根据题意列出函数关系式,画出函数图象,并利用不等关系进行比较.
1.通过一元一次不等式与一次函数的图象之间的结合,培养学生的数形结合意识.
2.训练大家能利用数学知识去解决实际问题的能力.
体验数、图形是有效地描述现实世界的重要手段,认识到数学是解决问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用.
自己根据题意列函数关系式,并能把函数关系式与一元一次不等式联系起来作答.
1.张大爷买了一个手机,想办理一张电话卡,开米广场移动通讯公司业务员对张大爷介绍说:移动通讯公司开设了两种有关神州行的通讯业务:甲类使用者先缴15元基础费,然后每通话1分钟付话费0.2元;乙类不交月基础费,每通话1分钟付话费0.3元。你能帮帮张大爷选择一种电话卡吗?
2.展示学习目标:
(1)、理解一次函数图象与一元一次不等式的关系。
(2)、能够用图像法解一元一次不等式。
(3)、理解两种方法的关系,会选择适当的方法解一元一次不等式。
积极思考,尝试回答问题,导出本节课题。
阅读学习目标,明确探究方向。
问题1:结合函数y=2x-5的图象,观察图象回答下列问题:
问题2:如果y=-2x-5,那么当x取何值时,y>0?当x取何值时,y
巡回每个小组之间,鼓励学生用不同方法进行尝试,寻找最佳方案。答疑展示中存在的问题。
问题3.兄弟俩赛跑,哥哥先让弟弟跑9m,然后自己才开始跑,已知弟弟每秒跑3m,哥哥每秒跑4m,列出函数关系式,画出函数图象,观察图象回答下列问题:
(1)何时哥哥分追上弟弟?
(2)何时弟弟跑在哥哥前面?
(3)何时哥哥跑在弟弟前面?
(4)谁先跑过20m?谁先跑过100m?
你是怎样求解的?与同伴交流。
问题4:已知y1=-x+3,y2=3x-4,当x取何值时,y1>y2?你是怎样做的?与同伴交流.
让学生体会数形结合的魅力所在。理解函数和不等式的联系。
移动通讯公司开设了两种长途通讯业务:全球通使用者先缴50元基础费,然后每通话1分钟付话费0.4元;神州行不交月基础费,每通话1分钟付话费0.6元。若设一个月内通话x分钟,两种通讯方式的费用分别为y1元和y2元,那么
(1)写出y1、y2与x之间的函数关系式;
(2)在同一直角坐标系中画出两函数的图象;
(3)求出或寻求出一个月内通话多少分钟,两种通讯方式费用相同;
(4)若某人预计一个月内使用话费200元,应选择哪种通讯方式较合算?
在共同探究的过程中加强理解,体会数学在生活中的重大应用,进行能力提升。
积极完成导学案上的检测内容,相互点评。
学生回顾总结学习收获,交流学习心得。
教材P51.习题2.6知识技能1;问题解决2,3.
一、学习与探究:
1.一元一次不等式与一次函数之间的关系;
2.做一做(根据函数图象求不等式);
四、课后作业:
圆的性质课件
俗话说,磨刀不误砍柴工。在学习工作中,幼儿园教师有提前准备可能会使用到资料的习惯。资料意义广泛,可以指一些参考素材。资料可以帮助我们更高效地完成各项工作。所以,你有哪些值得推荐的幼师资料内容呢?经过搜索整理,小编为你呈现“圆的性质课件”,不妨参考一下。希望你喜欢!
圆的性质课件 篇1
今天我说课的内容是《分数的基本性质》。下面我将从“说教学理念、说教材、说教法、说学法、说教学程序、说板书设计”六个方面来说课。
一、本课的教学理念有:
1、以学生发展为本,着力强化主体意识。
2、从学生已有的认知发展水平和知识经验出发,为学生提供充分从事数学活动的机会,变“学数学”为“做数学”。
3、致力于改变学生的学习方式,关注过程,让学生经历知识的形成过程,感受验证、转化等数学思想方法。
二、说教材
《分数的基本性质》一课是义务教材六年制数学第十册第四单元的一个内容。这部内容的学习是在学生学习了分数的意义、分数与除法的关系、商不变性质等知识的基础上进行教学的。它是进一步学习约分、通分的基础。
根据教材内容和学生的认识知规律,将本课的教学目标拟定如下:
1、知识与技能:理解和掌握分数的基本性质,知道分数基本性质与整数除法中商不变性质的关系。能运用分数的基本性质把一个分数化成分母相同而大小相等的分数;培养学生观察、比较及动手实践的能力,进一步发展学生的思维。
2、情感、态度:激发学生积极主动的情感状态,养成注意倾听的习惯。
本课的教学重点和难点:理解和掌握分数的基本性质,会运用分数的基本性质。
三、说教法
树立以“以学生发展为本”、“以学定教”、“教为学服务”的思想,因此在教学中,我采用引导自学、合作探索相结合法,让学会运用分数的基本性质把一个分数化成分母不同但大小相等的分数,有效地提高了教学效率。在知识的巩固阶段,我还采用组织练习法,当然以上这些教法并不是孤立存在的,本着“一法为主,多法为辅”的思想,我将多种教法进行优化组合,以达到促进学生学习方式的转变,实现教学目标的目的。
四、说学法
1、学生在运用分数的基本性质时,引导学生采用自主发现法、操作体验法,学生在折纸上画出相应的阴影部分后,必然会对那三个图形进行观察和比较,从中有所发现。之后老师通过启发学生运用分数的基本性质,证明那三个分数大小相等,让尝试中发现,在实践中体验。从而加深学生对分数基本性质的理解。
2、在学习例题的过程中教师先采用启发法,再采用自自学尝试法,独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成做一做,达到检验自学的目的。
五、说教学程序
一、设疑激趣,引入新课
教育学家布朗曾提出:“情境通过活动来合成知识,兴趣最好的老师”。
首先我通过多媒体为学生带来一个和尚分饼的故事。从前有座山,山里有座庙,庙里有个老和尚和三个小和尚。小和尚最喜欢吃老和尚烙的饼了。有一天,老和尚做了三块一样大小的饼,想给小和尚吃,还没给,小和尚就叫开了。矮和尚说:“我要一块!”高和尚说:“我要两块!”胖和尚说:“我不要多,只要四块!”老和尚听了二话没说,立刻把一块饼平均分成四块,取其中的一块给了矮和尚;把第二块饼平均分成八块,取其中的两块给了高和尚;把第三块饼平均分成十六块,取其中的四块给了胖和尚,一一满足了他们的要求。同学们,你知道哪个和尚吃的多吗?
这样通过故事激发学生的学习兴趣,为后面的学习做好了铺垫。
二、自主探索,学习新知
新课标强调,要让学生在实践活动中进行探索性的学习。根据这一理念,我设计了下面的活动。让学生在体验中学习,在学习中体验。
1、小组合作,让学生用一张纸代替饼,试着分分看。经历验证猜想——学生操作验证——集体汇报交流——展示成果四个过程。
2、引导提问:既然三个和尚分得的饼同样多,那么表示他们分得饼的三个分数什么关系呢?这三个分数什么变了,什么没变?
学生得出:这三个分数相等关系,分数的分子和分母变化了,但分数的大小不变。
3、引导学生从左到右观察等式,想一下,这三个分数的分子、分母怎样变化才保证了分数的大小不变的?
师:谁能用一句话把这个变化规律叙述出来呢?
生:从左往右看,分数的分子、分母同时扩大了,也就分子分母都乘了一个相同的数,但三个分数的大小没有变。
师:你们观察的真仔细!请大家给点掌声好吗?(出示课件)老师这样叙述的“分数的分子、分母都乘上同一个数,分数大小不变”。
4、让学生从右到左观察等式分子和分母又如何变化的呢?谁能用一句话把这个变化规律叙述出来?小组讨论后,同样的方法让学生小结规律,并请同学给予评价,让学生抒发自己的见解,体现课堂教学的民主化。然后教师在课件中补充“或者除以”四个字,小结分数的基本性质。
5、接着让学生四人小组一起做游戏,运用分数的基本性质,由一位同学说一个分数,然后其他同学依次说出相等的分数,不能重复,看看谁又快又准。
结束游戏,教师提问,现在我们知道分数的分子、分母都乘上或除以同一个数,分数大小不变。刚刚大家做游戏,有没有人使用了0呢?大家想一想0可以不可以呢?让学生回答:分数的分母不能为零。我在课件中填上“零除外”三个红色的字,以便引起学生的注意。
6、教师引导:“学了分数的基本性质到底有什么用呢?老师告诉你们,根据分数的基本性质,我们就能变魔术一样,把一个分数变成多个跟它大小一样,分子分母却不同的新分数。下面就让我们来变个魔术。”接着让学生练习课本例题2,两名学生上台演板,其他学生点评。学生自己小结方法。
教育家波利亚指出:学习任何新知的最佳途径由学生自己去发现,因为这种发现理解最深,也最容易掌握内在规律和联系。教学中给学生提供自主探究、合作交流的天地,积极为学生创设主动学习的机会,提供尝试探索的空间,学生能主动从不同方面,不同角度思考问题,寻求解决途径。同时还培养学生的合作意识,使不同的想法得到交流,实现知识的学习、互补。
三、分层练习,巩固深化
只有通过相应的练习,才能更好地巩固新知,形成技能。在练习的安排上我注重层次性,渗透多样性,让学生理解用所学的知识可以解决不同类型的问题,进一步提高解题能力。
1、涂一涂练习14,第1、7题。
因为要给空格上色,所以答案并不唯一,通过这两题不仅能让学生回忆探究发现规律的过程,充分体现了“玩中学,学中玩”的新课程理念。
2、说一说完成练习14,第8题
我想通过这道题让学生进一步加深对分数基本性质的形成过程的理解,从而培养学生的语言表达能力。
3、想一想:第5、9、10题(选择一题做为作业)
在这我让同学们充分发挥想象,灵活运用分数的基本性质。为后面学习约分和通分的知识奠定基础。
四、畅谈收获,小结全课
让学生自己总结所学内容,畅谈收获和感受,培养学生的概括能力和语言表达能力。
整节课中,我力求做到始终引导学生主动观察、充分体验、动手实践、积极创新,努力做到既注重学生的独立思考,又注重合作交流,既重视知识与能力的共进,又关注情感和体验的提高,让学生全面、深刻地理解分数的基本性质。
圆的性质课件 篇2
各位老师,同学:
大家上午好!
我说课的资料是:人教版小学数学课标教材五年级下册75页―76页《分数基本性质》。下面我就从教材分析、学情分析、教学目标、教法学法及教学过程五个方面来谈一下教学过程设计及设计意图。
一、教材分析
本节资料属于概念教学。《分数基本性质》在小学数学学习中起
着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习分数的计算、比的基本性质的基础,还是约分、通分的依据。
二、学情分析
学生已经清楚理解分数的好处,明确分数与除法的关系,商不变
性质等知识,这些都为本节课学习做了知识上的铺垫。分数的基本性质是一种规律性知识,分数的分子、分母变了,分数的大小却没变。学生在这种“变”与“不变”中发现规律,掌握新知识。
三、教学目标
综合分析课程标准要求及学生实际,我确定本节教学目标如下:
1、理解和掌握分数的基本性质,并会运用分数的基本性质把不同的分数化成分母(或分子)相同而大小不变的分数。
2、初步养成观察、比较、抽象概括的逻辑思维潜力,并且在自主探究中正确认识和理解变与不变的辩证关系。
3、受到数学思想的熏陶,养成乐于探究的学习态度。
教学重点:理解掌握分数的基本性质,它是约分、通分的依据。
教学难点:让学生自主探索、发现和归纳分数的基本性质,以及应用它解决相关的问题。
四、教法学法
根据本节课的教学目标,思考到学生已有的知识、生活经验和认
知特点,结合教材资料,本课我主要采用猜想验证与探索发现的教学模式。在分数的基本性质过程中,采取学生动手操作、小组讨论、合作探究等方式,引导学生进行比较、观察、分析。透过观察、比较,提出问题并解决问题来进行自主探索与合作交流,充分发挥学生主体参与作用,激发学生学习兴趣,同时让学生获得成功体验。
五、教学过程
本节课的教学过程我分五个部分进行:
第一部分:故事设疑,揭示课题。以唐僧师徒分饼的故事创设问题情境,揭示本节课要研究的问题。
第二部分:组织讨论,动手操作。主要是组织学生动手进行折、画、标等活动,初步理解分数基本性质。
第三部分:合作探究,发现规律。主要的是学生找出规律,并利用规律解决问题。
第四部分:多层练习,巩固深化。主要是巩固所学知识并进行拓展提高。
第五部分:梳理知识,反思小结。主要是总结全课。
其中,第三部分“合作探究,发现规律”能够细化为三个环节:
环节一:动手操作,进行比较
这一环节是在第二部分的基础上进行的,我给每组学生三张大小一样的长条纸,让学生用分数表示涂色部分,并比较大小。此环节的设计主要是培养学生的比较潜力。
环节二:呈现问题,引导观察
这一环节主要呈现给学生这样一个问题,“第一环节中的分数的分子、分母都不一样,为什么大小相等”,引导学生从左到右、从右到左两方面去观察,此环节的设计主要是培养学生的观察潜力。
环节三:交流汇报,得出规律
这一环节主要是学生汇报交流,得出结论。
如果学生没有概括出“0除外”就设计两组练习,分子、分母同乘或除以0,完善结论;如果概括出来了,再追加一个问题“为什么强调0除外”,巩固结论。最终推导出分数的基本性质————分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。此环节的设计主要是培养学生的抽象概括潜力。
就应强调的是,无论学生说的多么好,教师最后的总结和确认是不可缺少的。
以上是我对《分数基本性质》一节的教学设计意图,有不当之处,请各位批评指导。
圆的性质课件 篇3
一、说教材、学情
本次说课的内容是人教版小学数学四年级下册第四单元《小数的性质》。
小数的性质属于数与代数领域的知识,是学生在学习了“小数的意义”的基础上深入学习小数有关知识的开始。掌握小数的性质,不但可以加深对小数意义的理解,而且它也是小数的化简、改写和四则运算的基础。
二、说教学目标
根据课程标准的要求,和对教材内容的分析,我确定了如下教学目标。
(1)知识与技能:使学生理解并掌握小数的性质。
(2)数学思考:培养学生观察、分析、比较、抽象、概括的意识以及简单的推理能力。使学生学会主动思考问题。
(3)问题解决:通过直观推理、自主探究、合作交流,理解和掌握小数的性质,提高学生运用知识进行推理的能力。
(4)情感态度价值观:使学生经历小数的性质探究过程,获得成功的体验,体会数学与实际问题的联系,激发学生的数学学习兴趣。
三、说教学重难点
针对上述教学目标,结合学生的认知基础,我将本节课的教学重难点定位如下:
1、教学重点:理解并掌握小数的性质。
2、教学难点:探究小数性质的知识形成过程。
四、说教法和学法
1、教法
本节课我准备采用的教学方法有:情境教学法,引导发现法,多媒体辅助法等教法。让学生在教师营造的“可探索”的环境里,主动参与,主动探究,主动发现小数的性质。
2、学法
预设的学习方法是:观察发现法、自主探究法、合作交流法、练习法等。让学生在师生互动,生生互动中主动探究,主动发现,主动提高,有效培养学生自主学习的能力。
3、教学准备
为了更好地辅助课堂教学,顺利完成教学任务,达到预期的教学目标,在教具、学具上我准备了米尺,正方形方格纸,多媒体课件等。
五、说教学过程
根据本节课的教学内容,为了切实落实教学目标,有效突破重难点,我设计了以下五个教学环节。分别是:创设情境、激趣引思;体验操作、探究新知;巩固深化、学以致用;课堂总结、回顾反思和作业布置。
(一)第一环节:创设情境,激趣引思
1、多媒体出示超市情境图,将学生带入到具体的生活情境中去:老师昨天想去买一只中性笔,可是两家超市的标价不一样,我要去哪家买更便宜一些呢?(出示中性笔价格图片:一家是2.5元,一家是2.50元)
2、学生会根据已有的知识经验回答:去哪家买都一样。
教师在这时追问为什么,并引导学生说出:因为2.5元表示2元5角,2.50元表示2元50分,5角=50分,所以2.5元=2.50元(教师板书)
3、教师引导学生观察两个小数的区别,学生会发现:小数的末尾多了一个0,大小还没变。
4、教师提出质疑:
那是不是所有的小数都有这样的特点呢?这节课让我们共同来探究一下吧,让学生带着好奇心开始新知识的探究。
设计理念:
通过超市价格标签的具体生活情境引出小数性质的教学,利用学生熟悉的人民币直观感知相等关系,激发学生的学习兴趣,使学生带着对知识的好奇心走进知识的殿堂。
(二)体验操作,探究新知
在这一环节,我设计了以下3个教学层次:
1、小组合作,初步感知
课件出示:0.1m,0.10m,0.100m这三个长度,让学生进行大小比较。
(1)我为每个学习小组都准备了米尺,让学生在尺上先找一找0.1m,0.10m,0.100m这三个长度,并与小组成员说说你是怎么找的,然后在纸上画出来,比较他们的大小。(教师进行随堂指导)
(2)小组探究完成后进行展示交流
每个小组派代表分别展示他们找到的0.1m,0.10m,0.100m的长度,并说说是怎么找的,也就是小数的意义。
学生们得出探究结果:因为这三个长度都相等,所以这3个小数的大小是一样的。
(3)教师让学生观察0.1m,0.10m,0.100m这3个小数,引导学生发现三个小数的区别:三个小数末尾的0不一样多,但是大小一样。
看来像这样大小相等但末尾0不一样多的小数的确存在。
设计理念:
借助长度单位初步体会小数的性质,让学生动手在米尺上找出0.1m/0.10m/0.100m的长度,使学生直观感受到0.1m,0.10m,0.100m的长度相等,所以大小相等,初步感知小数的性质。
2、大胆猜想,独立验证
教师板书0.3和0.30这两个小数,让学生猜一猜这两个小数有什么关系?学生根据刚才的探究会说“相等”。
(1)这时我为学生准备了两个同样大小的正方形,一个正方形平均分成了10份,另一张正方形平均分成了100份,让学生独立验证自己的猜想。(教师进行随堂指导)
(2)学生独立验证后进行汇报展示
找学生投影展示涂方格的方法并说一说自己的想法(引导学生说出小数的意义,因为涂的面积相同,所以两个小数相等)
设计意图:
利用直观图比较0.3和0.30的大小,通过观察,引导学生借助小数的意义发现0.3和0.30的异同点,进而脱离具体的量,进一步理解小数的性质。
3、观察比较,发现规律
(1)教师引导学生观察3组算式:我们先从左往右看,小数的末尾有什么变化?从右往左看呢?他们的大小呢?你有什么发现?
(2)让学生说说自己的发现:
小数的末尾添上“0”或去掉“0”小数的大小不变(板书)
(教师强调并解释:末尾指的是小数点后面最后一个非0的数。帮助学生区分哪些0可以去掉,哪些0不能去掉)
(3)教师强调课题:我们把这个小数所共有的特点叫做小数的性质(板书课题)
设计意图:
让学生在探究验证之后,尝试自己总结规律,培养学生对知识的概括能力。
(三)巩固深化、学以致用
1、对口令游戏:教师说一个小数,学生对出相等的小数。
2、哪些数可以去掉末尾的0(重点区分小数中哪些0可以去掉,整数与小数的区别,强化小数的性质)
3、连线
设计理念:
注重练习设计的层次性,满足不同层次的需要,体现新课标中人人获得必需的数学,人人学有价值的数学,不同的人在数学中得到不同的发展的要求。
(四)课堂总结,回顾反思
俗话说“千金难买回头看”。课的结尾,通过提问:今天你有什么收获?你是怎样获得新知的?你还有什么疑惑?来回顾所学知识,梳理知识。引导学生对本节课所学知识和获取知识的方法进行总结和反思。
(五)作业布置
小游戏:你能只动三笔,使5,50,500,5000四个数相等吗?既检查学生对知识的掌握情况,又带有趣味性,激发了学生在课下探究数学知识的兴趣。
六、说板书设计
板书素有“微型教案”之称,它具有高度的概括性、艺术性和指导性的特征。本节课的板书是随着教学进度依次呈现的,它能体现本节课的教学重难点,对学生整堂课的学习,起着重要的指导作用。
小数的性质
2.5元=2.50元
0.1m=0.10m=0.100m
0.3=0.30
小数的末尾添上“0”或去掉“0”,小数的大小不变。
以上是我对这节课的教学设想,在这堂课的设计中,注重引导学生沿着“实例——猜想——验证——总结——应用”的轨迹去探索、去发现,使学生体验探索、发现数学规律的基本策略和方法。我相信学生能在老师的带领下,完成此节课的教学内容,基本达到教学目标。我的说课完毕,请评委老师们指正,谢谢!
圆的性质课件 篇4
一、教材简析和教材处理
1.教材简析
《分数的基本性质》是九年义务教育六年制小学数学课本(西师大版)第十册第15-16页的内容。在小学数学学习中起着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习分数的计算、比的基本性质的基础。分数的基本性质是一种规律性知识,分数的分子分母变了,分数的大小会变吗?分数的分子分母如何变化,分数的大小不变呢?学生在这种“变”与“不变”中发现规律。
2.教材处理
以前,教师通常把《分数的基本性质》看作一种静态的数学知识,教学时先用几个例子让学生较快地概括出规律,然后更多地通过精心设计的练习巩固应用规律,着眼于规律的结论和应用。随着课程改革的深入,教师们越来越重视学生获取知识的过程,但我们也看到这样的现象:问题较碎,步子较小,放手不够,探究的过程体现不够充分。《分数的基本性质》可不可以有别的教学思路呢?新的课程标准提出:“教师应向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法。根据这一新的理念,我认为教师可以为学生创设一种大问题背景下的探索活动,使学生在一种动态的探索过程中自己发现分数的基本性质,从而体验发现真理的曲折和快乐,感受数学的思想方法,体会科学的学习方法。所以,教师的着眼点,不能只是规律的结论和应用,而应有意识地突出思想和方法。
二、教学课件设计意图
场景一:故事引人,揭示课题。
有位老爷爷把一块地分给三个儿子。老大分到了这块地的三分之一,老二分到了这块地的六分之二。老三分到了这块的九分之三。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈的笑了起来,给他们讲了几句话,三兄弟就停止了争吵。
让学生发表自己的意见,教师出示三块大小一样的纸,通过师生折、观察和验证,得出结论:三兄弟分得的一样多。
一上课,先听讲一段故事,学生非常乐意,并会立即被吸引。思考故事当中提出的问题,学生自然兴趣浓厚。通过故事设疑,激起了学生探求新知的欲望。
场景二:发现问题,突出质疑。
既然三兄弟分得的一样多,那么表示它们分得土地的分数是什么关系呢?这三个分数什么变了,什么没有变?让学生小组讨论后答出:这三个分数是相等关系,它们平均分的份数和表示的份数也就是分数的分子和分母变化了,但分数的大小不变。
3.引入新课:下面算式有什么共同的特点?学生回答后
它们各是按照什么规律变化的呢?场景三:比较归纳,揭示规律。
1.出示思考题。
比较每组分数的分子和分母:
(1)从左往右看,是按照什么规律变化的?
(2)从右往左看,又是按照什么规律变化的?
让学生带着上面的思考题,看一看,想一想,议一议,再翻开教科书看看书上是怎么说的。
2.集体讨论,归纳性质。
(1)从左往右看,由1/4到2/8,分子、分母是怎么变化的?引导学生回答出:把1/4的分子、分母都乘以2,就得到2/8。原来把单位“1”平均分成4份,表示这样的1份,现在把分的份数和表示份数都扩大2倍,就得到2/8。
(2)3/4是怎样变化成9/12的呢?怎么填?学生回答后填空。
(3)引导口述:3/4的分子、分母都乘以2,得到6/8,分数的大小不变。
(4)在其它几组分数中,分子、分母的变化规律怎样?几名学生回答后,要求学生试着归纳变化规律:分数的分子和分母都乘以相同的数,分数的大小不变。
(5)从右往左看,分数的分子和分母又是按照什么规律变化的?通过分析比较每组分数的分子和分母,得出:分数的分子和分母都乘以相同的数,分数的大小不变。
(6)对照教科书中的分数基本性质,让学生说出少了什么?(少了“零除外”)讨论:为什么性质中要规定“零除外”?
出示的思考题是学生探求新知、独立思考的指南,教师环紧扣的提问以及引导学生逐步展开的充分的讨论,帮助学生一步步走向结论。]
3.出示例2:把3/4和15/24化成分母是8而大小不变的分数。
思考:要把3/4和15/24化成分母是8而大小不变的分数,分子怎么不变?变化的依据是什么?
通过举例,沟通分数的基本性质与商不变性质之间的联系。引导学生运用分数与除数的关系,以及整数除法中商不变的性质,说明分数的基本性质。
如:
[有助于学生顺利地运用分数与除法的关系,以及整数除法中商不变性质说明分数的基本性质,实现新知化归旧知。]
场景四:多层练习,巩固深化。
1.口答。
学生口答后,要求说出是怎样想的?
2.判断对错,并说明理由。
运用反馈片判断,错的要求说明与分数的基本性质中哪几个字不相符。
3.在下面()内填上合适的数。
练习设计由易到难,由浅入深,既巩固新知,又发展思维,其间还自然地渗透思想品德教育。师生对出数做题,能够创设民主和谐的学习气氛。通过举例,还渗透了函数思想。
圆的性质课件 篇5
一、说教学理念
1、以学生发展为本,着力强化个人主体意识,同时关注学生学习动机、兴趣等情感态度。
2、从学生已有的认知发展水平和知识经验出发,为学生提供充分从事数学活动的机会和充分的练习空间。
3、致力于改变学生的学习方式,关注过程,让学生经历知识的形成过程,感受验证、转化,以及“用数学学数学”等数学思想方法。
二、说教材
1、教学内容
《分数的基本性质》一课是五年级下册第四单元的一个内容。这部分内容是在学生学习了分数的意义、分数与除法的关系、商不变性质等知识的基础上进行教学的,它是以后学习约分、通分的依据。因此,分数的基本性质是本单元的教学重点之一。在讲解这一知识点时,应注意加强整数商不变性质的回顾,这样既帮助学生理解了分数的基本性质,又沟通了新旧知识的内在联系。
2、学情分析
学生在三年级上学期已经初步认识了分数,知道分数各个部分的名称,会读、写简单的分数,会比较分子是1的分数,以及同分母分数的大小。还学习了简单的同分母分数的加、减法。在本学期又学习了因数、倍数等概念,掌握了2、3、5的倍数的特征,为学习本单元知识打下了基础。另外,本单元的知识内容概念较多,比较抽象,学生的抽象逻辑思维在很大程度上还需要直观形象思维的支撑。在数学教学中,化抽象为具体、直观,对于顺利开展教学是十分必要的。
3、教学目标:
(1)通过教学使学生理解和掌握分数的基本性质,能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数,再应用这一规律解决简单的实际问题。
(2)引导学生在参与观察、比较、猜想、验证等学习活动过程中,有条件、有根据的思考、探究问题,培养学生的抽象概括能力。
(3)渗透初步的辨证唯物主义思想教育,使学生受到数学思想方法的熏陶,培养乐于探究的学习态度。
教学重点:理解和掌握分数的基本性质;教学难点:学习自主探索,发现和归纳分数基本性质,以及应用它解决相应的问题。教具学具:课件,三张同样大小的长方形纸条、彩笔。
三、说教法
“将课堂还给学生,让课堂焕发生命活力”,为营造学生在教学活动中的独立、自主的学习空间,让学生成为课堂的主人,本着这样的指导思想,以及学生的认知规律,我采用的教学方法主要有:
1、实际操作法
指导学生亲自动手折一折,涂一涂,比一比,从这些实践活动中加深学生对分数基本性质的理解,促使学生的感性认识逐步理性化。
2、直观演示法
先让学生充分感知,发现规律,然后比较归纳,最后概括出分数的基本性质,从而使学生的思维从形象思维过渡到抽象思维。
3、启发式教学法
运用知识迁移规律组织教学,用数学学数学,层层深入,促使学生在积极的思维中获取新知。
四、说学法
1、学生在学习分数的基本性质时,引导学生采用自主发现法、操作体验法,学生在纸条上涂出相应的阴影部分后,必然会对那三个图形进行观察和比较,从中有所发现。之后老师通过启发学生运用分数的基本性质,证明那三个分数大小相等,在尝试中发现,在实践中体验,从而加深学生对分数基本性质的理解。
2、在学习例题的过程中教师先采用启发法,再采用学生自学尝试法,独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成练习题,达到检验自学的目的。
五、说教学过程
(一)、新知铺垫
(二)、新知导入
(三)、新知探究
(四)、新知探究
(五)、新知训练
(六)、新知应用
(七)、新知强化
(八)、新知小结
1、新知铺垫和导入
上课伊始我利用分饼的故事来激发学生的学习兴趣,让学生亲自动手折一折、分一分、比一比,从直观上让学生感受到这几个分数大小是相等的,而这几个分数的分子和分母都不相等,这其中有什么规律呢?继而揭示课题。
(设计意图)好奇是学生的天性,通过分地故事能快抓住学生的好奇心,使他们在心理上产生悬念,带着疑问迅速切入正题。
2、新知探究
(1)、动手操作、形象感知
首先让学生用三张同样大小的长方形纸条折一折,再涂色表示出每张纸的1/2,2/4,4/8。观察涂色部分,说说发现了什么?在学生汇报时,说出:涂色部分面积相等,也就说明这三个分数大小相等。然后通过电脑再进一步证实学生的发现:通过观察,我们发现三个阴影部分大小相等,说明三个分数大小相等。
(设计意图)主要是利用学生爱动手以及直观思维的特点,让学生在动手操作过程中不仅复习了分数的意义,为下面导入新知识作好迁移,而且激活了课堂气氛,营造了良好的学习开端。
(2)、观察比较,探究规律
首先,在学生折纸的基础上,通过小组讨论交流总结出分数的基本性质,让学生理解“同时乘上或者除以”的意义,以及为什么要强调“0除外”这个条件。其次,总结出分数的基本性质后,要和以前学过的商不变规律进行对比,找出二者间的联系,使学生更好的理解、运用性质。
(设计意图)这一环节重在培养了学生大胆交流、语言表达的能力,同时学生在汇报交流中使问题逐渐明朗化,最终验证了自己的猜想。要充分放手,让学生畅所欲言。
3、新知训练
在巩固阶段,我安排了三个不同层次的习题。其中“新知训练”是对“分数的基本性质”做进一步的诠释。“新知应用”是导入分饼时的题,难度不大,首尾照应,最后还安排了“新知强化”环节,属于开放性题。整个习题设计部分,题目呈现方式的多样,吸引了学生的注意力,激发了学生兴趣,培养了学生创新意识和解决问题的能力。
圆的性质课件 篇6
一、说教学内容的创新处理
《分数的基本性质》是九年义务教育六年制小学数学第十册第四单元的一个重要内容。该教学内容是以分数的意义、分数与除法的关系以及整数除法中商不变的规律这些知识为基础的。原教材先通过直观使学生了解1/2、2/4、3/6三个分数的分子、分母虽然不同,但是分数的大小是相等的。接着进一步研究这三个分数的分子和分母,思考它们是按照什么规律变化的。最后归纳出分数的基本性质。这样安排教学内容,学生的主体地位不能得到充分体现,不利于培养学生的问题意识。为此,我打算通过"折、画、想、问、用"五个环节对教学内容作如下处理。
1.折--用三张同样大小的长方形纸条分别折出二等分、四等、八等分。
2.画--让学生用色笔在长方形纸条上分别涂出它们的一半,并用分数来表示。
3.想--1/2、2/4、4/8这些分数有什么关系?你还能说出和"1/2"大小相等的其他分数吧?你还能说出和"2/3"大小相等的分数吧?
4.问--ww"1/2=2/4=/4/8"中,你发现什么?
5.用--用已学过的"分数的基本性质"解决有关的数学问题。这样安排教学有以下几点好处:
(1)有利于知识的迁移。
让学生通过动手折、涂,再用分数表示,这样既帮助学生复习了分数的意义,又为学习新知识作了准备。
(2)能发挥学生学习的主动性。
通过学生找和"1/2"大小相等的分数,以及和"2/3"大小相等的分数,发挥学生学习的主动性,体现自主学习的精神。
(3)提高了学生的学习能力。
通过交流,培养学生敢于发表自己的意见,积极思考问题,积极探问题,培养学生概括问题的能力和解决问题的能力。
二、说教学模式
本节课起打算采用"创设情境,复习迁移--设疑激思,获取新知--深化概念,及时反馈"的教学模式进行教学。
1.创设情境,复习迁移。
为了发挥学生学习的主动性,使旧知识起到正向迁移的作用,首先创设了动手操作的情境:起发给每位学生三张同样大小的长方形纸条,让学生折一折。把第一张纸条对折(也就是把这张纸条平均分成2份),把第二张纸条对折再对折(也就是把纸条平均分成4份),再把第三张3次对折(也就是把纸条平均分成8份)。接着,让学生画一画,用彩笔在等分后的纸条上分别涂出它们的一半。告诉学生,如果把每张纸条都看作单位"1",问学生:你能把涂色的部分用分数表示吗?(电脑显示三张涂色的纸条,学生分别用分数1/2、2/4、4/8表示。)
这一情境的设置,主要是让学生在动手操作过程中不仅复习了分数的意义,为下面导入新知识作好铺垫、迁移。并且在教学一开始,就能抓住学生爱动手以及直观思维的特点,激活课堂气氛,营造良好的学习开端。
2.设疑激思,获取新知。
"疑是思之始,学之端"。学,就是学习问题,学怎样问问题。为此,我在上面教学的基上,引导学生逐一讨论以下问题:
(1)1/2、2/4、4/8这些分数有什么关系?
(学生会说这三个分数的大小相等。)
(2)你能说出与"1/2"大小相等的其他分数吗?你还能说出与"2/3"大小相等的分数吗?
(如果学生写错或写不出,待得出分数基本性质后再写)
(3)从"1/2=2/4=4/8"中,你发现了什么?
(让学生分组讨论,充分发表自己的意见,经过归纳,最后得出:分数的分子和分母同时乘以或者除以相同的数,分数的大小不变。并把这句话显示出来。)
(4)你对上面这句话觉得有什么问题吗?
(学生可能会提出地"相同的数"中"0"必须除外。如果学生提出不出,就由教师提出问题:相同的数是不是任何数都行?为什么?)
最后,让学生完整地概括出分数的基本性质。(老师揭示课题)
这样教有利于培养学生的问题意识,师生情感交融、和谐,学生积极参与,思维活跃,学习主动,为学生创设一个良好的学习氛围。
3.深化概念,及时反馈。
为了加深学生对分数基本性质的理解,激发学生的学习兴趣,起设计了如下练习:
1.下面各式对吗?为什么?(让学生用手势表示对错)
(1)3/4=6/8(2)3/8=12/2(3)3/10=1/5
2.在()里填上合适的数。
()/6=()/36=8/12=2/()=()/24
3.把2/3和10/24化成分线是12而大小不变的分数。
4.把下面大小相等的两个分数用线连接起来。
4/51/64/94/612/16
3/42/320/256/368/18
三、说教学目标
以上各个教学环节的设计体现如下几点教学目标:
1.知识技能性目标:让学生亲身经历"分数基本性质"抽象概括的全过程,正确理解和掌握分数的基本性质,使学生能运用分数的基本性质解决有关的数学问题。
2.发展性目标:培养学生观察--探索--抽象--概括的能力以及迁移类推能力,渗透事物是相互联系、发展变化的辩证唯物主义观点,培养学生的数学意识、问题意识、合作意识以及应用意识。
3.创新性目标:让学生在学习的过程中发现问题、解决问题,提高学生探索问题的能力和研究问题的能力。
圆的性质课件 篇7
一、教材分析
分数的基本性质是约分和通分的基础,而约分、通分又是分数四则运算的重要基础,因此,理解分数的基本性质显得尤为重要。而分数与除法的关系以及除法中的商不变的规律与这部分知识紧密联系,是学习这部分内容的基础。
探索分数的基本性质,关键是让学生在活动中主动地观察和发现,在讨论交流的基础上归纳规律。根据我对教材的认识,本课时安排了学习活动和游戏活动让学生寻找相等的分数,使学生初步体验分数的大小相等关系,为观察、发现分数的基本性质提供丰富的学习材料。然后引导学生观察这两组相等的分数,寻找分子、分母的变化规律,并展开充分的交流讨论,在此基础上归纳分数的基本性质。
教学目标:
1、知识目标:经历探索分数的基本性质的过程,理解分数的基本性质。能用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。
2、能力目标:培养学生的观察、比较、归纳、总结概括能力。
3、情感目标:经历观察、操作和讨论等学习活动,体验数学学习的乐趣。
二、说教法
“将课堂还给学生,让课堂焕发生命活力”,为营造学生在教学活动中的独立、自主的学习空间,让学生成为课堂的主人,本着这样的指导思想,根据概念教学的特点,结合教学特点,以及学生的认知规律,我将采用的教学方法主要有:
1、 直观演示法
先让学生充分感知,然后比较归纳,最后概括出分数的基本性质,从而使学生的思维从形象思维过度到抽象思维。
2、 实际操作法
指导学生亲自动一动、折一折,画一画,比一比,多这些实践活动中加深学生对分数基本性质的理解,促使学生的感性认识逐步理性化。
3、 启发式教学法
运用知识迁移规律组织教学,层层深入促使学生在积极的思维
4. 树立以“以学生发展为本”、“以学定教”、“教为学服务”的思想,因此在教学中,我采用引导自学、合作探索相结合法,让学会运用分数的基本性质把一个分数化成分母不同但大小相等的分数,有效地提高了教学效率。在知识的巩固阶段,我还采用分层练习法,当然以上这些教法并不是孤立存在的,本着“一法为主,多法为辅”的思想,我将多种教法进行优化组合,以达到促进学生学习方式的转变,实现教学目标的目的
三、教学组织形式:
师生互动、合作与探索结合
四、教学过程与设计意图
1、故事引入、激发兴趣、揭示课题
以阿凡提讲故事引入,然后小组讨论。
2、动手操作,探索新知
①做一做,折一折。拿出三张同样大的长方形纸,请分别平均折成2份、4份、8份。并按照下图涂色。如果把每张纸都看作“1”,请你把涂色的部分用分数表示出来。学生动手操作、汇报。
根据上面的过程,学生能得到一组相等的分数吗?
②教师引导学生归纳小结:比较这三个分数的分子和分母,它们各是按照什么规律变化的?分数的分子和分母同时乘上或除以相同的数(0除外),分数的大小不变,这就是分数的基本性质。
知识引伸,联系旧知识:根据分数与除法的关系,以及整数除法中商不变的性质,你能说说它与分数的基本性质吗?
设计意图:新知识力求让学生主动探索,逐步获取。借助直观图组织学生进行一个动手操作活动,借助直观图形找出相等的分数,使学生能够直观感知。充分调动孩子们去动手、动脑,培养学生的操作能力和语言表达能力。并充分发扬学生的团结协作的精神, 互相帮助,每个人都能在激励中得到不同的发展。
本次活动的安排为学生提供了丰富的学习材料,引导学生联系以往的学习经验,进行学习内容的迁移,自然得到分数大小的变化规律,教师在此也进行了适当的重点点拨。在这一环节的学习过程中,教师注重学生的观察、比较、归纳概括能力的培养。
3、实践游戏、深化理解、巩固练习:
设计意图:练习设计由易到难,由浅入深,既巩固新知,又发展思维,其间还自然地渗透思想品德教育。师生对出数做题,能够创设民主和谐的学习气氛。学生对于课堂游戏都非常积极,这时,教师应该及时表扬表现出色的学生,也要顾及一些后进生的学习状况,带动后进生的学习激情。
4、全课总结:这节课你有什么收获?
圆的性质课件 篇8
一、说教学内容:
本节课是北师大版数学五年级上册第三单元的内容。
二、说教学目标:
1、理解和掌握分数的基本性质,知道分数基本性质与整数除法中商不变性质的关系。
2、通过动手实践,发现并总结规律,能运用分数的基本性质把一个分数化成分母相同而大小相等的分数;培养学生观察、比较及动手实践的能力,进一步发展学生的思维。
3、激发学生积极主动的情感状态,养成注意倾听的习惯,在实践操作中体验成功的快乐。
三、说教学重、难点:
理解和掌握分数的基本性质,会运用分数的基本性质。
四、说教法、学法
1、创设情景,激发学生的学习兴趣。
通过创设猴王分饼的情境,巧设悬念,激发学生求知欲望,既找到了教学的起点,又调动了学生探究的积极性,这种引课的方式取代了过去的“复旧引新”那种机械的模式。有效性和学生思维震荡的深刻性。
2、创造性地用好课程资源,体现新的教学理念。
教学通过折纸得出分数,认识到分数大小相等,并探究出规律,这一部分内容跳出教材圈子,有机地整合了教材,把教材的做一做作为巩固知识的载体。利用折纸得出的多媒体演示、、三个大小不变的分数,把学生们带入一个探究的空间,感知分数的基本性质的来历,同时学生对分数的分母和分子之间的关系产生疑问,通过引发学生的认知冲突,激发学生探索求知的欲望。
3、整节课力求体现探究学习的基本要求,让学生的学习主体地位得到体现,使学生学习积极性较高涨。
五、说教学过程:
(一)、创设情景,设疑
教师创设猴王分饼的情景:同样大小的饼,第一只小猴分得,第二只小猴分得,第三只小猴分得,它们谁分得多?学了今天的内容你就明白了,引入新课。
(设计意图:故事引入,设置悬念,使学生急于想弄明白谁多谁少,激发学生的求知欲望)
圆的性质课件 篇9
一、说教材
《分数的基本性质》在分数教学中占有重要的地位,在小学数学学习中起着承前启后的作用。它既以分数的意义、分数的大小比较为基础,又与整数除法及商不变的性质有着内在的联系,更分数的约分、通分的依据,也进一步学习分数加减法计算、比的基本性质的基础。因此,分数的基本性质该单元的教学重点之一。
二、说学情
学生在三年级上学期已经初步认识了分数,以及同分母分数的大小。在本学期又学习了因数、倍数等概念,掌握了2、3、5的倍数的特征,为学习本单元知识打下了基础。五年级学生已经养成了合作学习的习惯,并且已经具有了一定的分析和解决问题的能力,再加上他们所具有的一定的生活经验,因此能够在教师的引导下完成“质疑——探索——释疑——应用”这一完整的学习过程。
三、说教学目标
依据新的《数学课程标准》,为了更好地体现数学学习对学生在数学思考、解决问题以及情感与态度等方面的要求。根据本节课的具体内容并结合学生的实际情况,我制定了以下教学目标:
知识与技能:让学生亲身经历“分数基本性质”抽象概括的过程,理解和掌握分数的基本性质,并能初步运用分数的基本性质解决简单的数学问题。
过程与方法:让学生经历发现问题、探究问题、解决问题的全过程,在观察、猜想、验证等探索活动中,培养学生观察--探索--抽象--概括的能力以及合情推理能力,体验解决问题策略的多样性。
情感与态度:使学生在分数基本性质的探究活动中,获得成功的体验,建立自信心,感受到数学的严谨性,及渗透事物相互联系、发展变化的辩证唯物主义观点。
教学重点:理解和掌握分数的基本性质,运用分数的基本性质解决实际问题。
教学难点:让学生经历自主探索,发现和归纳分数的基本性质,并会应用分数的基本性质解决相关问题。
教学准备:三张同样大小的长方形纸张,彩色笔
四、说教学方法
树立以“以学生发展为本”、“以学定教”的思想,为实现教学目标,有效地突出重点、突破难点,我遵循学生的认知规律,以建构主义学习理论为指导,在探究分数的基本性质过程中,采取学生动手操作、小组讨论、合作探究等方式,引导学生进行比较、观察、分析,充分运用知识迁移的规律,在感知的基础上加以抽象、概括,进行归纳整理,采取迁移教学法、引导发现法组织教学。创设了一种“情境导入、动手体验、自主探索”的课堂教学形式,以“自主探究”贯穿全课,引导学生迁移旧知、大胆猜想——实验操作、验证——质疑讨论、完善猜想等,把这一系列探究过程放大,把“过程性目标”凸显出来。
五、学法
有效的数学学习活动,不能单纯模仿与记忆,动手实践、自主探索与合作交流学生学习数学的重要方式。在学习例题的过程中学生主要采用自学尝试法,自主探究法,合作交流的学习方式,让学生通过独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成做一做,达到检验自学的目的。通过观察、比较、提出问题并解决问题来进行自主探索与合作交流,充分发挥学生主体参与作用、激发学生学习爱好,同时让学生获得成功体验。
六、说教学过程
为了全面、准确地引导学生探索发现分数的基本性质,实现教学目标,我努力抓住学生的思维生长点组织教学,设计了以下五步教学环节:
1、创境设疑: 回顾旧知,引发思考
2、自主探究: 动手实践,发现规律
3、交流归纳:揭示规律,巩固深化
4、分层精练:多层练习,多元评价
5、感悟延伸:课堂小结,加深理解
第一环节:创境设疑
结合六一儿童节的到来,创设分蛋糕的情景,妈妈分得公平吗?课始便迅速地抓住了学生的好奇心,使课堂教学有了一个好的开始。鼓励学生当小法官,则极大地调动了学生的积极性,使他们在心理上产生悬念,进一步激发学生的学习兴趣,为后面的学习做好了铺垫。这样设计也从学生已有的经验和情感出发,找准新知的最佳切入点,为学生后面的联想和猜想巧设“孕伏”。
第二环节:自主探究
通过折纸、涂色的动手操作活动,使学生亲身经历并获得非常具体、真切的感知,为探究分子、分母的变化规律提供认知基础。教师通过五个有层次的问题,分层质疑,分层提问,分层评价,尽量地关注到了每一个层次的学生,引导学生逐步在自主探索、合作互助的学习方式中初步理解并能简单概括出分数的基本性质,并及时强调了0除外的意义,使学生体验到解决问题策略的多样性,发展学生的实践能力和创新精神,培养学生的合作意识。
第三环节:交流归纳
在这一环节,教师引导学生在观察与分析、探索与思考分数的基本性质的基础上不断生成新问题,通过质疑,借助知识的迁移,沟通分数的基本性质与商不变性质之间的联系。引导学生应用分数和除法的关系,以及整数除法中商不变的性质,说明分数的基本性质。这样的设计就让学生感受到了数学知识的内在联系,同时渗透“事物之间相互联系”的辨证唯物主义观点,培养学生观察--探索--抽象--概括的能力。
第四环节:分层精练
这个环节让学生对分数的基本性质再一次的体验,感受,研究,同时也整节课的亮点之一,练习分层,评价分层,通过分层练习,关注到每一个层次的学生,让每一个学生都有发展。教师结合本班学生的学习特点,设计了由浅入深,由易到难的练习,基本练习让90%的同学体验到了学习的快乐,综合练习让80%的同学品尝到了成功的喜悦,拓展练习则留到课后,让学生在自主探究中、讨论交流中、知识的沉淀中进一步加深对知识的理解和掌握。
第五环节:感悟延伸
通过小结、反思,查漏补缺,学生在交流收获、互相帮助的过程中,使学生对知识有个系统的回顾和认识,从而进一步培养学生的知识概括能力。
总之,本节课教学坚持了“学生探索的主体”这一教学原则,面向全体学生,充分的引导学生动手实验,自主探索,质疑延伸,合作交流,让每一个学生在探索的过程中感受数学和日常生活的紧密联系,体验学习数学的快乐,培养了创新精神和实践能力。
圆的性质课件 篇10
一、说教材
1、教学内容:六年制小学数学第八册p100例1、2。
2.教材所处的地位
小数的性质是一节概念教学课,是在学习了“小数的意义”的基础上深入学习小数有关知识的开始。掌握小数的性质,不但可以加深对小数意义的理解,而且它是小数四则计算的基础。根据小数的性质可以把末尾有零的小数化简,也可以不改变小数的大小,把一个数改写成指定位数的小数。
3、教材的重点和难点:
掌握小数性质的含义是教学的重点,理解小数性质归纳的过程是教学的难点。
4、教学目标:
(1)利用知识的迁移规律,让学生在自主探究、合作交流中理解和掌握小数的性质,提高学生运用知识进行判断、推理的能力。
(2)让学生进一步体验教学与日常生活的密切联系,体验数学问题的探究性和挑战性,从而激发学习数学的兴趣,以主动参与数学活动。
(3)在教学中渗透事物是普遍联系和相互转化的辩证唯物主义观点。
二、教法
根据教学要求,结合教材的特点,为了更好地突出重点,突破难点,完成教学任务。我采用了:
1、情景教学法。让学生在情景里亲自动手操作、探索,感受知识的形成过程不过如此简单,享受成功的喜悦,激发学生学习数学知识的兴趣。
2、游戏教学法。即是新课改的教学理念“做中学、玩中学”的体现。因为小学生学习活动不再是教师的“说教”,应该更多的时间是在学生自主探索的过程中。这样的教学,更能体现了“学生是学习数学的主人,教师是数学学习的组织者、引导者和合作者”的功能。
3、以小组合作的形式来组织教学。体现了“自主探索、合作交流、实践创新”的数学学习方式,培养了学生互相合作交流的意识,在共同讨论中完成学习任务。
三、学法
通过这节课的教学,主要培养了学生以下学习方法:
1、指导学生观察图画,共同讨论,在自主探索中把感性认识上升到理性认识。
2、在游戏中运用学习成果,把数学知识利用到现实生活中。
3、培养学生共同合作,相互交流的学习方式。
四、说教学程序
(一)情景导入激趣揭题
(课件出示)唐僧师徒一起去西天取经,有一天,他们口渴了,唐僧要把三根甘蔗分给三个徒弟吃,事先他把甘蔗分别装进三个袋子里,上面标注着长度:0.
l米、0.10米、0.100米,馋嘴的八戒抢先一步说:“我的肚子大,我吃长的。”说着拿回了注有“0.100米”的袋子。沙和尚好不服气,上前对师傅说:“八戒好吃懒做,长的应该让给大师兄悟空吃。”悟空笑了笑说:“两位徒弟别吵了,无论哪个袋子都一样呀!”唐僧听了悟空的话,微笑着点了点头。
同学们,你们知道为什么师傅对悟空的话点头微笑呢?这是因为大师兄悟空掌握了小数很重要的性质,学习了这节课,我们就知道其中的奥秘了”。(板书:小数的性质)
这样的设汁,旨在把枯燥的数学知识贯穿在小学生喜闻乐道的故事中,引发起学主的学习兴趣,点燃他们求知欲望的火花,从而进入最佳的学习状态,为主动探究新知识聚集动力。
(二)探索新知
1.
同学们,刚才悟空说无论哪个袋子都一样,是不是这样呢?下面请同学们利用手中的米尺和已有的知识来验证一下,好吗?各小组合作研究。
师巡视并引导学生观察米尺图各小组汇报:
A、0.1米是几分之几米(1/10米)?用整数表示就是多少分米?(l分米)
B、0.10米是几个几分之1米?(10个1/100米)1/100米用整数表示是几厘米(1厘米)?10个1/100米就是多少厘米?(10厘米)
C、0.100米就是几个几分之1米(100个1/1000米)?1/1000米用整数表示是几毫米(1毫米)?那么100个1/1000米就是多少毫米?(100毫米)
结合学生回答,教师板书:
0.1米是1/10米,就是1分米
0.10米是10个1/100米,就是10厘米
0.100米就是10个1/1000米,就是100毫米
因为1分米=10厘米=100毫米
所以0.l米=0.10米=0.100米
这样,学生根据小数的意义,从“0.l米、0.10米、0.100米”出发研究问题。在问题得以解决的过程中,学生锻炼了运用已有知识解答新问题的能力,培养了运用数学知识的意识。《数学课程标准》强调:数学活动必须建立在学生的认知发展水平和已有的知识经验基础上,这样教学,也正是使本节课牢牢地扎根于小数意义的基础上,是小数意义的运用,而不是简单的重复,因而是有意义学习。
接着教师指着“0.l米=0.10米=
0.100米"这个等式,并标上思考符号“→”,先让学生从左往右观察、比较,你们发现了什么?
根据学生的回答板书:在小数的末尾添上0,小数的大小不变)。再标出思考箭头“→”,让学生从右往左观察,发现什么规律,补充板书小数的末尾去掉“0”。
这样教学,把静态的知识结论转化为动态的求知过程,让学生真正成为学习的主人,对所学的内容理解深刻,记忆牢固,不但知其然,而且知其所以然。同时,还培养了学生归纳概括事物本质属性的能力。
2.
为了进一步证明小数性质的可*性出示例2:比较0.30和0.3的大小。放手给学生自己研究,发给各小组平均分成100个小格子的正方形各两个。
汇报交流:
(1)左图把1个正方形平均分成几份?阴影分用分数怎样表示?用小数怎样表示?
(2)右图把同样的正方形平均分成几份?阴影部分用分数怎样表示?用小数怎样表示?
(3)从左图到右图有什么变了,什么没变?(份数变了,正方形的大小和阴影面积的大小没变)
(4)怎样比较0.30和0.3的大小?(0.30是30个1/100,0.3是3个1/10,
因为10个1/100是1个1/10,30个1/100也就是3个1/10,所以两个小数的大小相等)。
这样使学生的思维从形象思维逐步过渡到抽象思维,达到突破难点的目的。培养了学生的合作意识。通过两道例题,让学生进一步掌握规律,全面概括出小数的性质。
3.呼应课始,揭示奥秘:由于悟空掌握了小数的性质,所以他面对两位师弟的争执说:“无论哪一袋都一样”。
4.联系生活,再现新知:还有同学们在商场看到货物的标价为2.50元、3.00元,这样写,不但没有改变小数的大小,而且让顾客很清楚地知道是几元几角几分。
(三)巩固深化拓展思维
这是教学中不可缺少的环节,这一阶段是学生巩固知识,形成技能,技巧,发展智力的重要过程。在这一阶段,特别是抓住学生的求胜心理进行了练习、要进一步激发学生的学习兴趣,确保学习任务的圆满完成。
1、判断下面小数哪些0去掉是对的,哪些0去掉是错的?
8.0808.0880.0080.80800
2.判断下面各组两个数是否相等?为什么?
0.25和0.25000.25和0.2050.7和0.07
3和3003和3.00
3.第2题:把相等的数用线连起来,先在书上填好后,再提问找朋友。一个同学在第一栏里按顺序报数,其他同学准备当朋友。
4.闭眼听判:
“小数点的末尾添上‘0’或去掉“0’,小数大小不变”这种说法对吗?为什么?
这样设计、让学生对新知识的各种误解进行辨析、判断,使得所学知识真正转化为能力。
(四)全课小结
1.这节课你有哪些收获?
2.你对自己或同学有什么评价?
以上是我对小数的性质的简单的设想,请各位领导和老师批评、指正。
圆的性质课件 篇11
一、说教材:
本节内容是小数四则计算的基础。根据小数的性质,可以化简小数,也可以不改变小数的大小,在小数末尾添加“0”将其改写成固定为数的小数,或者可以把整数改写成小数形式。其重点是让学生一步步由形象到抽象地总结概括出小数的性质。在充分了解了小数性质后再进行对其运用的学习,例如化简和改写。
二、说教法:
在教授小数性质的过程中,首先,我利用几个相等的数量关系,让学生慢慢迁移到小数,然后根据几个小数间的数量关系总结出规律。为进一步理解这层关系,又加一个验证——利用涂色表示小数再比较他们的大小,验证规律。完成后加一个小练习;在下来时小数性质的利用。这部分相对简单,介绍什么样的时候会需要进行化简和改写,然后举例说明,接着练习巩固。
三、说目标
1、让学生理解和掌握小数的性质,并能较熟练地熟练地运用这性质对小数进行化简和改写。
2、利用迁移规律,让学生从形象思维逐步过渡到抽象思维,提高学生运用知识进行判断、推理的能力。
四、说重难点
掌握小数性质的含义
归纳小数性质的过程
五、说教学过程
一、导入
1、师:老师今天需要大家帮个忙:我这两天需要一个笔记本,于是去村里的两个小卖部转了转,发现这两家店对同一种本有不同的标价:左边这家标价是
2.5元,右边那家则是2.50元,大家帮我出出主意,我应该选择哪一家去买呢?
[都一样,任意选一家]
师:为什么?为什么2.5元末尾添个0大小不变呢?究竟可以添几个零呢?
这节课我们就来研究这一方面的知识。
【导入部分利用生活实际中的例子,并让学生来帮忙,这样可以激发学生的学习兴趣和探索欲望. 】
二、授新
1.猜想性质
板书三个“1”,让学生判断是相等的,接着在第二个1后面添写上一个0,在第三个1的后面添写上两个0,板书写成:1、10、100,提问:这三个数相等吗?(不相等)
你能想办法使它们相等吗?启发学生回答可以添上长度单位“米、分米、厘米”或“分米、厘米、毫米”就相等了。
板书:1分米=10厘米=100毫米。
思考:(1)你能把它们改用“米”作单位表示吗?
[0.1米0.10米0.100米]
(2)改写成用米作单位表示后,实际长度有没有变化?(没有)说明什么?(三个数量相等)
(3)仔细观察三个小数有什么变化?
根据学生回答总结:小数的末尾添零或去掉零,小数的大小不变。
【这部分利用整数的数量关系到加入长度单位后的关系一直引入到小数的数量关系,一步步使学生了解本节课的内容,并且通过认真观察后可以自己归纳总结出性质。】
2、验证猜想
为了验证我们的这个结论,我们再来做一个实验。
(1)出示做一做:比较0.30与0.3的大小
师:你认为这两个数的大小相等吗?(让学生先应用结论猜一猜)
(2)想一下你用什么办法来比较这两个数的大小呢?
出示课本做一做:在左图中涂出阴影部分表示0.3,右图中涂出阴影表示0.30,发现了两幅图什么相同,什么不同?
(份数不同,正方形的大小和阴影面积的大小相同)
这说明0.30与0.3相等,证明刚才这个结论是对的。
【在简单观察出性质以后,进一步通过之前的知识去进行验证,这样不仅可以让学生更深层次地理解知识,而且可以培养学生治学严谨的态度以及探究问题的一般步骤——先观察猜想,再进行验证。】
师:那如果我们现在说“小数后面添上零或去掉零,小数的大小不变”这句话还对吗?[不对]那如果是“小数点后面添上零或去掉零,小数的大小不变”呢?
[不对]分别举例说明。【这一步主要使学生确切地理解添上零或去掉零的位置,一定要在小数的末尾】
师:那如果我们现在说“小数末尾添上零或去掉零,小数的意义不变”这句话还对吗?【这一步主要使学生确切地理解添上零或去掉零后,一定是小数的大小不变,而意义有很大的不同】
师:那整数有这个性质吗?也就是我们可以说"整数末尾添上零或去掉零,大小不变”吗?【强调出小数与整数的区别】
判断练习。
下面的数中,哪些“0”可以去掉?
3.9 0.300 1.8000 500
5.780 0.0040 102.020 60.06
3、小数性质的利用
(1)根据小数的性质,可以对小数进行化简。(理解化简就是将其简单化)当遇到小数末尾有“0”的时侯,例如,0.30,一般可以去掉末尾的“0”,把小数化简。(0.30=0.3)
化简下面各小数:
0.70 105.0900 2.900 0.50600
0.090 10.830 12.000 0.070
(2)师:有时根据表示意义的需要,可以在小数的末尾添上0;(例如:0.3→0.30)
还可以在整数的个位右下角点上小数点,再添上0,把整数写成小数的形式。比如:我们在商场里看到的2元=2.00元,2.5元=2.50元
出示:不改变数的大小,把0.2、4.08、3改写成小数部分是三位的小数,怎样改写?
提醒:把整数改写成小数形式,在整数的个位右下角点上小数点,再添上“0”。
三、巩固深化
1、下面的每组数中,哪些零可以去掉,用斜杠划掉
(1)3.09 0.300 1.8000 5.00
(2)0.0004 12.002 60.06 500
(3)0.090 12.00001 0.50605060 30.0
2、化简下列小数
102.020 54.300 110.030 200.0300
3、判断题。(打“√”,错的打“×”)
(1)0.080=0.8()
(2)4.01=4.100()
(3)6角=0.60元()
(4)30=30.00()
(5)小数点后面添上“0”或去掉“0”,小数的大小不变。
4、学校小卖部进了一批冷饮,你能帮忙设计一下价格标签吗?(要求都写成两位小数)
盐水棒冰每支5角
随便每支1元5角
可爱多每支2元5角
5、智力游戏:谁能只动两笔,就可以在5、50、500之间划上等号。(50变成5.0,500变成5.00)
四、课堂总结
圆的性质课件 篇12
一、说教材分析
本节内容属于概念教学。《分数基本性质》在小学数学学习中起着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习分数的计算、比的基本性质的基础,还是约分、通分的依据。
二、说学情分析
学生已经清楚理解分数的意义,明确分数与除法的关系,商不变性质等知识,这些都为本节课学习做了知识上的铺垫。分数的基本性质是一种规律性知识,分数的分子、分母变了,分数的大小却没变。学生在这种“变”与“不变”中发现规律,掌握新知识。
三、说教学目标
综合分析课程标准要求及学生实际,我确定本节教学目标如下:
1、理解与掌握分数的基本性质,并会运用分数的基本性质把不同的分数化成分母(或分子)相同而大小不变的分数。
2、初步养成观察、比较、抽象概括的逻辑思维能力,并且在自主探究中正确认识与理解变与不变的辩证关系。
3、受到数学思想的熏陶,养成乐于探究的学习态度。
教学重点:理解掌握分数的基本性质,它是约分、通分的依据。
教学难点:让学生自主探索、发现与归纳分数的基本性质,以及应用它解决相关的问题。
四、说教法学法
根据本节课的教学目标,考虑到学生已有的知识、生活经验和认知特点,结合教材内容,本课我主要采用猜想验证与探索发现的教学模式。在分数的基本性质过程中,采取学生动手操作、小组讨论、合作探究等方式,引导学生进行比较、观察、分析。通过观察、比较,提出问题并解决问题来进行自主探索与合作交流,充分发挥学生主体参与作用,激发学生学习兴趣,同时让学生获得成功体验。
五、说教学过程
本节课的教学过程我分五个部分进行
第一部分:故事设疑,揭示课题。以唐僧师徒分饼的故事创设问题情境,揭示本节课要研究的问题。
第二部分:组织讨论,动手操作。主要是组织学生动手进行折、画、标等活动,初步理解分数基本性质。
第三部分:合作探究,发现规律。主要的是学生找出规律,并利用规律解决问题。
第四部分:多层练习,巩固深化。主要是巩固所学知识并进行拓展提高。
第五部分:梳理知识,反思小结。主要是总结全课。
其中,第三部分“合作探究,发现规律”可以细化为三个环节:
环节一:动手操作,进行比较
这一环节是在第二部分的基础上进行的,我给每组学生三张大小一样的长条纸,让学生用分数表示涂色部分,并比较大小。此环节的设计主要是培养学生的比较能力。
环节二:呈现问题,引导观察
这一环节主要呈现给学生这样一个问题,“第一环节中的分数的.分子、分母都不一样,为什么大小相等”,引导学生从左到右、从右到左两方面去观察,此环节的设计主要是培养学生的观察能力。
环节三:交流汇报,得出规律
这一环节主要是学生汇报交流,得出结论。
如果学生没有概括出“0除外”就设计两组练习,分子、分母同乘或除以0,完善结论;如果概括出来了,再追加一个问题“为什么强调0除外”,巩固结论。最终推导出分数的基本性质――分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。此环节的设计主要是培养学生的抽象概括能力。
2023不等式课件14篇
经验时常告诉我们,做事要提前做好准备。在平日里的学习中,幼儿园教师时常会提前准备好有用的资料。资料可以指人事物的相关多类信息、情报。有了资料才能更好地安排接下来的学习工作!你是否收藏了一些有用的幼师资料内容呢?以下是由小编为大家整理的“2023不等式课件14篇”,仅供参考,欢迎大家阅读。
不等式课件 篇1
七年级数学不等式课件
教学目标:
通过对具体实例的学习,使学生能够了解生活中的不等量关系,理解不等式的概念,知道什么是不等式的解,为以后学习不等式的解法奠定基础.
知识与能力:
1.通过对具体事例的分析和探索,得到生活中不等量的关系.
2.通过理解得到不等式的概念,从而使学生经历实际问题中数量的分析、抽象过程,体会现实中有各种各样错综复杂的数量关系.
3.了解不等式的意义,知道不等式是用来刻画生活中的数量关系的.
4.知道什么是不等式的解.
过程与方法:
1.引导学生分析具体事例,从对具体事例的分析中得到不等量关系.
2.引导并帮助学生列出不等式,分析不等式的成立条件.
3.通过分析、抽象得到不等式的概念和不等式的解的概念.
4.通过习题巩固和加深对概念的理解.
情感、态度与价值观:
1.通过学生的分析和抽象过程使他们体会现实中错综复杂的数量关系,然后从而培养其抽象思维能力.
2.通过分组讨论学习,体会在解决具体问题的过程中与他人合作的重要性,培养学生的团体协作精神,使学生获得合作交流的学习方式.
3.通过联系与发展、对立与统一的思考方法对学生进行辩证唯物主义教育.
4.通过创设问题串,让学生仔细观察、对比、归纳、整理,尝试对有理数进行分类,然后体验教学活动充满着探索性和创造性.
教学重、难点及教学突破
重点:不等式的概念和不等式的解的概念.
难点:对文字表述的数量关系能列出不等式.
教学突破:由于学生在以前已经对数量的大小关系和含数字的不等式有所了解,但还没有接触过含未知数的不等式,在学生分析问题的时候注意引入现实中大量存在的数量间的不等关系,研究它们的变化规律,使学生知道用不等式解决实际问题的方便之处.在本节的教学中能够在组织学生讨论的过程中适当地渗透变量的知识,让学生感受其中的函数思想,并引导学生发现不等式的解与方程的解之间的区别.在处理本节难点时指导学生练习有理数和代数式的知识,准确“译出”不等式.
教学过程:
一.研究问题:
世纪公园的票价是:每人5元,一次购票满30张可少收1元.某班有27名少先队员去世公园进行活动.当领队王小华准备好了零钱到售票处买了27张票时,爱动脑的李敏同纪学喊住了王小华,提议买30张票.但有的同学不明白.明明只有27个人,买30张票,岂不浪费吗?
那么,究竟李敏的提议对不对呢?是不是真的浪费呢
二.新课探究:
分析上面的问题:设有x人要进世纪公园,①若x≥30,应该如何买票?②若x
结论:至少要有多少人进公园时,买30张票才合算?
概括:1、不等式的定义:表示不等关系的式子,叫做不等式.不等式用符号>,
2、不等式的解:能使不等式成立的未知数的值,叫做不等式的解.
3、不等式的分类:⑴恒不等式:-71+4,a+2>a+1.
⑵条件不等式:x+3>6,a+2>3,y-3>-5.
三、基础训练.
例1、用不等式表示:⑴a是正数;⑵b不是负数;⑶c是非负数;⑷x的平方是非负数;⑸x的一半小于-1;⑹y与4的和不小于3.
注:⑴不等式表示代数式之间的不相等关系,与方程表示相等关系相对应;
⑵研究不等关系列不等式的重点是抓关键词,弄清不等关系.
例2、用不等式表示:⑴a与1的和是正数;⑵x的2倍与y的3倍的差是非负数;⑶x的2倍与1的和大于—1;⑷a的一半与4的差的绝对值不小于a.
例3、当x=2时,不等式x-1
注:⑴检验字母的值能否使不等式成立,只要代入不等式的左右两边,如果符合不等号所表示的关系,就成立,否则就不成立.⑵代入法是检验不等式的解的重要方法.
学生练习:课本P42练习1、2、3.
四、能力拓展
学校组织学生观看电影,某电影院票价每张12元,50人以上(含50人)的团体票可享受8折优惠,现有45名学生一起到电影院看电影,为享受8折优惠,必须按50人购团体票.
⑴请问他们购买团体票是否比不打折而按45人购票便宜;
⑵若学生到该电影院人数不足50人,应至少有多少人买团体票比不打折而按实际人数购票便宜.
解:⑴按实际45人购票需付钱_________ 元,然后如果按50人购买团体票则需付钱50×12×80%=480元,所以购买团体票便宜.
⑵设有x人到电影院观看电影,当x_____时,按实际人数买票______张,需付款_______元,而按团体票购票需付款________元,如果买团体票合算,那么应有不等式________________,
由①得,当x=45时,上式成立,让我们再取一些数据试一试,将结果填入下表:
x12x比较480与12x的大小48
由上表可见,至少要__________人时进电影院,购团体票才合算.
五、小结:
⑴不等式的定义,不等式的'解.
⑵对实际问题中探索得到的不等式的解,然后不仅要满足数学式子,而且要注意实际意义.
六、作业课本P42习题8.1第1、2、3题.
补充题:
1.用不等式表示:
(1)与1的和是正数;(2)的与的的差是非负数;
(3)的2倍与1的和大于3;(4)的一半与4的差的绝对值不小于.
(5)的2倍减去1不小于与3的和;(6)与的平方和是非负数;
(7)的2倍加上3的和大于-2且小于4;(8)减去5的差的绝对值不大于
2.小李和小张决定把省下的零用钱存起来.这个月小李存了168元,然后小张存了85元.下个月开始小李每月存16元,小张每月存25元.问几个月后小张的存款数能超过小李?(试根据题意列出不等式,并参照教科书中问题1的探索,找出所列不等式的解)
3.某公司在甲、乙两座仓库分别有农用车12辆和6辆,现需要调往A县10辆,调往B县8辆,已知从甲仓库调运一辆农用车到A县和B县的运费分别为40元和80元,然后从乙仓库调运一辆农用车到A县和B县的运费分别为30元和50元,(1)设从乙仓库调往A县农用车辆,用含的代数式表示总运费W元;(2)请你用尝试的方法,探求总运费不超过900元,共有几种调运方案?你能否求出总运费最低的调运方案.
不等式课件 篇2
(1)本节内容,是在学习了用方程思想解决实际问题和一元一次不等式的性质及其解法等知识的基础上,把实际问题和一元一次不等式结合在一起,既是对已学知识的运用和深化,又为今后用不等式组解决实际问题以及更广泛的应用数学建模的思想方法奠定基础,具有在代数学中承上启下的作用;
(2)通过本节的学习,学生将继续经历把生活中的数和数量关系转化为数学符号的体验过程,体会不等式和方程一样都是刻画现实世界数量关系的重要模型。
(3)在列不等式解决实际问题的探索过程中,引导学生注意估算意识,体会算式结果所对应的实际意义,渗透建立数学模型,分类讨论等数学思想,对提升学生应用数学意识思考和解决问题的能力起到积极的作用。
对于用不等式解决实际问题,学生容易出现的认知困难主要有两个方面:①哪类的实际问题需要用一元一次不等式来解决;②如何将实际问题转化为一元一次不等式并加以解决。
根据以上的分析和《数学课程标准》对本课内容的教学要求,本节课的教学重点是:一元一次不等式在决策类实际问题中的应用;难点是:如何将实际问题中的数量关系符号化,并根据解集和结合实际情况分类讨论得出合理结论。
根据本课教材的特点、《数学课程标准》对本节课的教学要求以及学生的认知水平,我从三个方面确定了以下教学目标:
1、能进一步熟练的解一元一次不等式,能从实际问题中抽象出不等关系的数学模型,并结合解集解决简单的实际问题。
2、通过观察、实践、讨论等活动,积累利用一元一次不等式解决实际问题的经验,提高分类考虑、讨论问题的能力,感知方程与不等式的内在联系,体会不等式和方程同样都是刻画现实世界数量关系的重要模型。
3、在积极参与数学学习活动的过程中,体会实事求是的态度和从数学的角度思考问题的习惯;学会在解决困难时,与其他同学交流,相互启发,培养合作精神。
根据教学内容、教学目标和学生的认知水平,我主要采取教师启发引导,学生自主探究的教学方法.教学过程中,创设适当的教学情境,引导学生独立思考、共同探究,使学生经历将生活中的数和数量关系转化为数学符号的具体建模过程,体会不等式作为刻画现实世界数量关系的重要模型的价值。
教学中使用多媒体投影、计算机辅助教学,目的是充分发挥其快捷、生动、形象的特点,为学生提供直观感性的材料,有助于学生对问题的关注和理解,激发学生的学习兴趣.
为了达到本节课的教学目标,突出重点,突破难点,我把教学过程通过两个实际问题逐步深入;最后归纳小结,布置作业.具体过程如下:
1、课题引入:
我们以前已经学过了一元一次方程以及二元一次方程组的解法,并在解决许多实际问题的过程中感受到:将相等关系用数学符号抽象后所得到的“方程”确实是一种有效数学工具,它能让我们的思维过程更加准确和简明!
但是,生活中除了相等的数量关系以外,还存在着大量的不等关系,通过前几节课的学习,我们也已经基本了解了不等式的性质和简单不等式的解法。今天,就让我们通过一些带有选择“决策”意义的实际问题来共同探讨一下一元一次不等式这种数学模型是如何解决生活中的实际问题的。
实际情景1:在为我校初一年级学生选定营养餐的过程中选中了有两家公司.
这两家公司某种适合初一学生的营养餐的报价均是是6.5元/份,营养含量和服务承诺也均相同,且都表示对学生优惠:甲公司表示每份按报价的90%收费,乙公司表示购买100份以上的部分按报价的80%收费.
结 合新课标对本小节的要求:会用一元一次不等式解决简单的实际问题,我选择的是从数量关系上与教材例题类似的收费问题,并且真实数值与所在年级事情相一致,比书上的例题更能贴近学生的实际生活,引发学生探求的`兴趣。特别的,通常此类题目是不给出具体单价的,因为并不影响最后结论,考虑到学生现阶段的数学抽象 仍以识别数量的具体含义为主,所以我在此处添加了单价,并增设了问题一,用以降低抽象思维的梯度,为后续的设未知数的“代数化抽象”作适当的铺垫。
问题(1)请你判断,我们年级580人用餐,应该选择哪家公司能让每位学生的餐费平均算来更低呢?
预案 一:教师应关注学生能否在讨论中认清“每位学生的餐费平均算来更低”所对应的数量意义,将之转化为“付给公司的总金额少”。在此处不排除学生因生活经历的缺乏,而对题目中所隐含的数量关系抽象能力弱。应关注每一位同学的感受,让同学们充分理解交流,扩大参与思考的广度,获得基本抽象思维的生长点。
预案二:在进行甲乙公司所需费用的计算时,会有分部计算和综合计算两种计算形式,对于那些列综合算式的同学,教师应多给予展示机会,从而帮助其他同学整理思路,理解算式的实际含义;为后续的字母抽象做好铺垫。具体计算学生可以合理使用计算器提高课堂速度。
预案三:学生还有可能不通过计算,直接猜测甲公司合算或者乙公司合算,对于这种有可能产生的声音,教师应从估算的角度加以引导。引导学生体会在580人的前提下,超过100人部分(480人)的甲公司是九折乙公司是八折, 10%的差距,;100人以内(少于100人)甲公司九折,乙公司不打折10%的差距,480的10%明显大于100的10%,所以选乙合算,并引导学生用计算的方法验证估算的准确性。
结论:580人时选择乙公司能让每位学生的餐费平均算来更低。
问题(2)你能否用以前学过的知识,在不知道具体人数的前提下制定一套方案,当其他学校的初一年级也想在这两家公司之间进行选择时,不用重复第一题的计算过程,只要知道人数就马上能根据你方案的结论作出决策呢?
结合以前的训练,学生很容易想到要通过设未知数的方法进行符号表达,将非常关键而题目中并未给出的学生人数设为未知数。由于本题的具体分析过程仍然是由学生分析讨论完成,可能出现的情况是:
预案一:一部分综合能力较强的同学会根据实际意义直接列出综合算式:或
此处教师应该引导学生观察,在化简不等式的过程中单价并未影响结果(利用不等式性质二将其作为公倍数约去),即:题目中没有具体的单价也不会影响本题的决策。
还可以结合小学单位一的思想化简不等式,引导学生体会并不是题目中出现的所有数量都会影响不等关系,有可能引发学生的关于数量关系的深层次思考。
预案 二:还有一部分学生会因为生活经验少的关系,综合思考能力弱,无法快速的理清数量关系,列出综合算式,思考受阻,教师应引导学生体会在第一题的算式意义的提示下,如何分别列出表达甲乙公司所需总费用的过程量代数式。然后在通过将之用不等号连接的方式,来表达两笔费用的大小,降低因综合性所引起的思维梯度, 在过程中让学生体会“分步建模”的思维的条理性。
问题(1)如果你是该企业的高级管理人员,请你设计该企业在购买设备时两种型号有几种不同的组合方案;
问题(2)若按固定产量预算企业每月产生的污水量约为20xx吨,为了节约资金,应选择哪种购买方案?
实际情景2的选择除涉及“角色扮演”和“环保”等人文因素的考虑以外,在在结合本节的教学目标上还有如下考虑,
1、 本题取材于真实的实际生活问题,情景中的符号和数量关系较多,不等关系在文字语言的叙述中显得比第一题更加隐蔽,需要学生更深化的思考才能列出算式,是在第一个情景的基础上的扩展和深化。
2、 在学生的讨论过程中,教师应注重引导学生体会,用图表表示的数字信息比文字表达更便于观察和有序思考,感受“有序表达”在实际中的价值。
3、 结合本题每一个的具体问题的分析和解决,学生必须要从表格中分析筛选相关的有用数据,(例如:在第一问设计方案时未用到“处理污水量”和“年消耗费”,在第二问中未用到“价格”和“年消耗费”)这种分析和筛选的思考经历将有助于加强学生对数据关系的理解和运用能力。
结合以前的训练,在思考问题(1)学生很容易想到要通过设A型或B型设备的
例如:(1)设购买污水处理设备A型 台,则B型(10 – )台,由题意知:
在此处,将“限额为105万元”转化为“≤105”是学生要突破的第一关,教师应在次处多展示同学的对“限额为105万元”语言解释,尽可能多的在具有不同经历基础的同学心中将这个抽象过程生活化、自然化。
因为在实际情景中往往要根据未知数所代表的具体含义为未知数的加一个取值范围的限定,而这个隐含的限制条件往往是学生中所不容易考虑到的,教师应注意引导学生注意这一问题,
例如:本题中的 是设备的台数,应用非负整数的限制,所以 可取0、1、2,因此有三种购买方案:
①购A型0台,B型10台;
②购A型1台,B型9台;
③购A型2台,B型8台。
此处细节性的思考经历,有助于提高学生在建模过程中更全面的考虑数值的实际意义,促进抽象符号与具体意义在头脑中的融合。
特别的,此处的“0”是学生最容易忽视和丢掉的,教师在此处应重点引导学生思考当“ ”时,往往是企业最可能选的方案,因为不同的设备涉及到不同的维护问题,单一品种的设备往往更便于管理,这种思考有助于发散学生的思维,促进其结合实际作更全面的思考。
问题(2)的思维梯度较前几个问题进一步加大,学生必须理解“节约资金”这个目的的达成 一定是在“完成任务”的前提下的,要先通过对(1)中所得的三套方案是否能完成任务加以讨论和验证,然后再涉及计算哪个方案费用更低的问题
在验证三套方案的可行性时,收思维方式的局限,学生往往会选择逐一列举计算的讨论方式,并且由于数量少,很容易得出答案,教师可引导学生思考,如果满足(1)的方案不是三种,而是三十种呢?三百种呢?除了逐一讨论以外还有没有什么更好的方式能帮助我们迅速缩小范围呢?引导学生将所买设备能否完成任务量转化为如下不等关系:
(2)同(1)所设购买污水处理设备A型 台,则B型(10 – )台,
240 +200(10 – )≥20xx;
因此为了节约资金,应选购A型1台,B型9台。
此处的分析和引导有助于学生体会不等式在有效缩小讨论范围时的实际价值。
通过以上问题的解决,学生对不等式和方程一样都是刻画现实世界数量关系的重要模型有了进一部的认识,并感受到不等式确实是从实际问题中提出,又为解决实际问题提供明确的帮助有效数学工具。
本阶段通过学习小结进行课堂教学的反馈,组织和指导学生归纳知识、技能、方法,深化对数学思想方法的认识,为后续学习打好基础。
不等式课件 篇3
(1)本节内容,是在学习了用方程思想解决实际问题和一元一次不等式的性质及其解法等知识的基础上,把实际问题和一元一次不等式结合在一起,既是对已学知识的运用和深化,又为今后用不等式组解决实际问题以及更广泛的应用数学建模的思想方法奠定基础,具有在代数学中承上启下的作用;
(2)通过本节的学习,学生将继续经历把生活中的数和数量关系转化为数学符号的体验过程,体会不等式和方程一样都是刻画现实世界数量关系的重要模型。
(3)在列不等式解决实际问题的探索过程中,引导学生注意估算意识,体会算式结果所对应的实际意义,渗透建立数学模型,分类讨论等数学思想,对提升学生应用数学意识思考和解决问题的能力起到积极的作用。
对于用不等式解决实际问题,学生容易出现的认知困难主要有两个方面:①哪类的实际问题需要用一元一次不等式来解决;②如何将实际问题转化为一元一次不等式并加以解决。
根据以上的分析和《数学课程标准》对本课内容的教学要求,本节课的教学重点是:一元一次不等式在决策类实际问题中的应用;难点是:如何将实际问题中的数量关系符号化,并根据解集和结合实际情况分类讨论得出合理结论。
根据本课教材的特点、《数学课程标准》对本节课的教学要求以及学生的认知水平,我从三个方面确定了以下教学目标:
1.能进一步熟练的解一元一次不等式,能从实际问题中抽象出不等关系的数学模型,并结合解集解决简单的实际问题。
2.通过观察、实践、讨论等活动,积累利用一元一次不等式解决实际问题的经验,提高分类考虑、讨论问题的能力,感知方程与不等式的内在联系,体会不等式和方程同样都是刻画现实世界数量关系的重要模型。
3.在积极参与数学学习活动的过程中,体会实事求是的态度和从数学的角度思考问题的习惯;学会在解决困难时,与其他同学交流,相互启发,培养合作精神。
三、教学方法的选择
根据教学内容、教学目标和学生的认知水平,我主要采取教师启发引导,学生自主探究的教学方法.教学过程中,创设适当的教学情境,引导学生独立思考、共同探究,使学生经历将生活中的数和数量关系转化为数学符号的具体建模过程,体会不等式作为刻画现实世界数量关系的重要模型的价值,
教学中使用多媒体投影、计算机辅助教学,目的是充分发挥其快捷、生动、形象的特点,为学生提供直观感性的材料,有助于学生对问题的.关注和理解,激发学生的学习兴趣.
为了达到本节课的教学目标,突出重点,突破难点,我把教学过程通过两个实际问题逐步深入;最后归纳小结,布置作业.具体过程如下:
1、课题引入:
我们以前已经学过了一元一次方程以及二元一次方程组的解法,并在解决许多实际问题的过程中感受到:将相等关系用数学符号抽象后所得到的“方程”确实是一种有效数学工具,它能让我们的思维过程更加准确和简明!
但是,生活中除了相等的数量关系以外,还存在着大量的不等关系,通过前几节课的学习,我们也已经基本了解了不等式的性质和简单不等式的解法。今天,就让我们通过一些带有选择“决策”意义的实际问题来共同探讨一下一元一次不等式这种数学模型是如何解决生活中的实际问题的。
实际情景1:在为我校初一年级学生选定营养餐的过程中选中了有两家公司.
这两家公司某种适合初一学生的营养餐的报价均是是6.5元/份,营养含量和服务承诺也均相同,且都表示对学生优惠:甲公司表示每份按报价的90%收费,乙公司表示购买100份以上的部分按报价的80%收费.
结 合新课标对本小节的要求:会用一元一次不等式解决简单的实际问题,我选择的是从数量关系上与教材例题类似的收费问题,并且真实数值与所在年级事情相一致,比书上的例题更能贴近学生的实际生活,引发学生探求的兴趣。特别的,通常此类题目是不给出具体单价的,因为并不影响最后结论,考虑到学生现阶段的数学抽象 仍以识别数量的具体含义为主,所以我在此处添加了单价,并增设了问题一,用以降低抽象思维的梯度,为后续的设未知数的“代数化抽象”作适当的铺垫。
问题(1)请你判断,我们年级580人用餐,应该选择哪家公司能让每位学生的餐费平均算来更低呢?
预案 一:教师应关注学生能否在讨论中认清“每位学生的餐费平均算来更低”所对应的数量意义,将之转化为“付给公司的总金额少”。在此处不排除学生因生活经历的缺乏,而对题目中所隐含的数量关系抽象能力弱。应关注每一位同学的感受,让同学们充分理解交流,扩大参与思考的广度,获得基本抽象思维的生长点。
预案二:在进行甲乙公司所需费用的计算时,会有分部计算和综合计算两种计算形式,对于那些列综合算式的同学,教师应多给予展示机会,从而帮助其他同学整理思路,理解算式的实际含义;为后续的字母抽象做好铺垫。具体计算学生可以合理使用计算器提高课堂速度。
预案三:学生还有可能不通过计算,直接猜测甲公司合算或者乙公司合算,对于这种有可能产生的声音,教师应从估算的角度加以引导。引导学生体会在 580人的前提下,超过100人部分(480人)的甲公司是九折乙公司是八折, 10%的差距,;100人以内(少于100人)甲公司九折,乙公司不打折10%的差距,480的10%明显大于100的10%,所以选乙合算,并引导学生用计算的方法验证估算的准确性。
不等式课件 篇4
教学建议
一、知识结构
本书首先结合实例引入一元一次不等式组的解集的概念,然后通过三个例题说明利用数轴解一元一次不等式组的方法,最后对一元一次不等式组的解法步骤进行了总结.
二、重点、难点分析
本节教学的重点是掌握一元一次不等式组的解法步骤并准确地求出解集.难点是正确应用不等式的基本性质对不等式进行变形、求不等式组中各个不等式解集的公共部分.不等式在中学代数中是研究问题的重要工具,例如求函数的定义域、值域、研究函数的单调性,求最大值、最小值,一元二次方程根的讨论等,都要用到不等式的知识.不等式也是进一步学习其他数学内容的基础.学习和掌握不等式的求解和不等式的证明方法,对培养学生逻辑思维能力也有极其重要的作用.在处理解不等式的问题中,一元一次不等式组的解法,具有特别重要的意义.这是因为,解各类不等式的问题都可以归结为解一些由简单不等式所组成的不等式组.
1、在构成不等式组的几个不等式中
①这几个一元一次不等式必须含有同一个未知数;
②这里的“几个”并未确定不等式的个数,只要不是一个,两个,三个,四个……都行.
2、当几个不等式的解集没有公共部分时,我们就说这个不等式组无解.
3、由两个一元一次不等式组成的不等式的解集,共归结为下面四种基本情况:
【注意】①其中第(4)个不等式组,实质上是矛盾不等式组,任何数都不能使两个不等式同时成立。所以说这个不等式组无解或说其解集为空集。②从上面列出的表中,我们可以概括出来不等式组公共解的一规律:同大取大,同小取小,一大一小中间找。
三、教法建议
1.解本节的引例及例1、例2、例3时,注意把解不等式组的思路讲清楚,即先分别解每一个不等式,求出解集,再求这些解集的公共部分.求公共部分的过程一定要结合数轴来讲。
2.这节课的讲解自始至终要突出解不等式组的基本思想以及解一元一次不等式组的步骤这两个重点.准确熟练地解一元一次不等式以及用数轴上的点表示不等式的解集是这节课的基础,因此讲新课之前要复习提问这些内容。
3.求公共解集是这节课的新授内容,教师要充分利用数轴表示不等式解集具有形象、直观、易于说明问题这些优点.解集的公共部分教师可用彩笔在数轴的相应部分描画出来,使学生感到醒目,便于理解记忆。
4.每组不等式不要超过三个,关键是使学生理解和掌握解不等式组的基本思想和两个步骤,不宜做过于难、过于多、重复的机械计算。
不等式课件 篇5
(一)复习提问:
三角形的三边关系?
(二)列一元一次不等式组
问题:现有两根木条a和b,a长10cm,b长3cm.如果要再找一根木条c,用这三根木条钉成一个三角形木框,那么对木条c的长度有什么要求?
注:这个问题是本节的'引入问题,三角形木框的形状不唯一确定,只要能成为三角形即可.
探究:用三根长度分别为14cm,9cm,6cm的木条c1,c2,c3分别试试,其中哪根木条能与木条a和b一起钉成三角形木框?
可以发现,当木条a和b的长度确定后,木条c太长或太短,都不能与a和b一起钉成三角形.
由于“三角形中两边之和大于第三边,两边之差小于第三边”,设木条c长xcm,则x必须同时满足不等式x10+3①和x10-3②
注:木条c必须同时满足两个条件,即ca+b,ca-b.
类似于方程组,把这两个不等式合起来,组成一个一元一次不等式组记作注:这里并未正式给一元一次不等式组下定义,只是说这两个不等式合起来,组成一个一元一次不等式组.实际上,两个或更多的一元一次不等式组合起来,都组成一个一元一次不等式组.
(三)一元一次不等式组的解集
类比方程组的解,怎样确定不等式组中x的可取值的范围呢?
不等式组中的各不等式解集的公共部分,就是不等式组中x可以取值的范围.
注:这里还未正式出现不等式组的解集的概念,但已点出各不等式的解集的公共部分即不等式组中未知数的可取值范围.
由不等式①解得x13.
由不等式②解得x7.
从图9.3—2容易看出,x可以取值的范围为713.
注:利用数轴可以直观形象地认识公共部分.这个公共部分是两端有界的开区间.
这就是说,当木条c比7cm长并且比13cm短时,它能与木条a和b一起钉成三角形木框.
一般地,几个不等式的解集的公共部分,叫做由它们所组成的不等式组的解集.解不等式组就是求它的解集.
注:这里正式给出不等式组的解集以及解不等式组的定义13.注:利用数轴可以直观形象地认识公共部分.这个公共部分是两端有界的开区间.这就是说,当木条c比7cm长并且比13cm短时,它能与木条a和b一起钉成三角形木框.一般地,几个不等式的解集的公共部分,叫做由它们所组成的不等式组的解集.解不等式组就是求它的解集.注:这里正式给出不等式组的解集以及解不等式组的定义。
不等式课件 篇6
一元一次不等式组(2)
文星中学唐波
一、教学目标
(一)知识与技能目标
1、熟练掌握一元一次不等式组的解法,会用一元一次不等式组解决有关的实际问题。
2、理解一元一次不等式组应用题的一般解题步骤,逐步形成分析问题和解决问题的能力。
(二)过程与方法目标
通过利用列一元一次不等式组解答实际问题,初步学会从数学的角度提出问题、理解问题、并能综合运用所学的知识解决问题,发展应用意识。
(三)情感态度与价值观
通过解决实际问题,体验数学学习的乐趣,初步认识数学与人类生活的密切联系。
二、教学重难点
(一)重点:建立用不等式组解决实际问题的数学模型。
(二)难点:正确分析实际问题中的不等关系,根据具体信息列出不等式组。
三、学法引导
(一)教师教法:直观演示、引导探究相结合。
(二)学生学法:观察发现、交流探究、练习巩固相结合。
四、教具准备:多媒体演示
五、教学过程
(一)、设问激趣,引入新课
猜一猜:我属狗,请同学们根据我的实际情况来猜测我的年龄。(学生大胆猜想,利用不等关系分析得出答案。)
(二)、观察发现,竞赛闯关
1、比一比:填表找规律
(学生抢答,教师补充。)2利用发现的规律解不等式组 ?(学生解答,抽生演板。)你可以得到它的整数解吗?
(抽生回答:因为大于11小于14的整数有12和13,所以整数解为12和13。)3填空:三角形三边长分别为2、7、c,则 c的取值范围是__________。如果c是一个偶
数,则 c=__________。
(学生回答,教师补充更正。)
(三)、欣赏图片,探究新知
1、欣赏“五岳看山”。
2、利用欣赏引出例题(教科书P139例2仿编)
例:3名同学计划在10天内到嵩山拍照500张(每天拍照数量相同),按原来的计划,不能完成任务;如果每人每天比原计划多拍1张,就能提前完成任务,每个同学原计划每天............拍多少张?
生齐读,找出题中的已知条件和未知条件;再默读,找一找表示数量关系的句子。师引导分析,并提出问题:
(1)你是怎样理解“不能完成任务”的数量含义的?你是怎样理解“提前完成任务”的数量含义的?
(2)解决这个问题,你打算怎样设未知数?
(3)在本题中,可以找出几个不等关系,可以列出几个不等式?(学生交流讨论,教师指导。)
?7x?98
?7(x?3)?98
解答完成后,学生自学课本例2。
3、由例解题答过程,类比列二元一次方程组解应用题的步骤,总结列一元一次不等式组的解题步骤:
(1)、分析题意,设未知数; .(2)、利用不等关系,列不等式组; .(3)、解不等式组; .
(4)、检验,根据题意写出答案。.(学生总结,抽生回答,教师补充。)
(四)、闯关练习,巩固新知
1练一练:为纪念“5·12”大地震一周年,“五一”部分同学到青城山拍照留念,如果每人拍8张则多于如果每人拍9张则不够问共有多少个同学参加青城山旅游? ..150张;..180张。
教师引导:抓住重点词语,找到不等关系,列出不等式组。学生独立完成,抽生回答。
比较列二元一次方程组和列一元一次不等式组解应用题的区别:
(学生类比找区别,教师补充。)2练一练(教科书P140练习第2题):一本英语书共98页,张力读了一周(7天)还没读完,而李永不到一周就已读完。李永平均每天比张力多读3页,张力平均每天读多少页(答案取整数)?
学生分析列出不等式组,教师指导。(前面的练习已解出不等式组。)
(五)、畅所欲言,归纳小结 学生畅所欲言,谈收获体会 多媒体展示,本课内容小结:
1、解一元一次不等式组的秘笈:同大取大,同小取小,大小小大中间找,大大小小解不了。
2、具有多种不等关系的问题,可通过不等式组解决。
3、列一元一次不等式组解应用题的步骤是:(1)、分析题意,设未知数;(2)、利用不等关系,列不等式组;(3)、解不等式组;
(4)、检验,根据题意写出答案。
(六)、课后演练,终极挑战
必做题:教材习题第4、5、6题;
选做题:一个两位数,它的十位数字比个位数字大1,而且这个两位数大于30小于42,则这个两位数是多少?
六、板书设计
一元一次不等式组(2)
解:设每个同学原计划每天拍x张,得
① ?3?10x?500
?
?3?10(x?1)?500②
1、分析题意,设未知数;
解得x
3根据题意,x应为整数,所以x=16 答:每个同学原计划每天拍16张。
2??
2、找不等关系,列不等式组; ?
?
3、解不等式组; ?步骤
??
?
4、检验并根据题意写出答案。?
不等式课件 篇7
科学合理的教学方法能使教学效果事半功倍,达到教与学的和谐完美统一。
基于此,我准备采用的教法讲授法、讨论法。德国教育学家第斯多慧:差的教师只会奉送真理,好的教师则交给学生如何发现真理,老师的教是为了不教,这才是教学的最高境界,所以我采用的学法是练习法、自主合作法。
在这节课的教学过程中,我注重突出重点,条理清晰,紧凑合理。各项活动的安排也注重互动、交流,最大限度的调动学生参与课堂的积极性、主动性。
首先是导入环节,我采用复习旧知的导入方法。我会让学生回忆不等式的概念以及一元一次方程的概念,明确指出今天学习的内容是《一元一次不等式》。
这样的设计既可以考查学生对之前知识的掌握情况,还能够为今天学习一元一次方程的概念打下基础。而且开门见山的导入方式能够快速地进入主题。
接下来是新知探索环节,首先我请学生类比不等式以及一元一次方程的概念,给一元一次不等式下定义。
能够总结出:含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式。
接下来让学生回忆上节课学习的不等式x-7>26如何解决的,通过学生回忆总结可以得到:通过“不等式的两边都加7,不等号的方向不变”而得到的。
接下来提问学生有没有更加简便的方法解不等式?让学生类比解一元一次方程的步骤进行解题。可以得到相当于可以用“移项”,来解决。
在这个过程中,强调每一个步骤,在第二题最后一步,强调当不等式的两边同时乘以(或除以)同一个负数时,不等号的方向改变。
解完不等式,先让学生回忆解一元一次方程的步骤是什么?并类比解一元一次方程的步骤,总结一下解一元一次不等式的步骤是什么?
从而我们归纳:解一元一次方程,要根据等式的性质,将方程逐步化为x=a的形式;而解一元一次不等式,则要根据不等式的性质,将不等式逐步化为xa的形式。
《数学课程标准》指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者”。根据这一教学理念,在本环节中,我组织学生进行了自主探究活动,让学生在保持高度学习热情和探究欲望的活动过程中,始终以愉悦的心情,亲身经历和体验知识的形成过程。培养学生的探究能力、分析思维能力,激发他们的创新意识、参与意识。
第三个环节是课堂练习环节,出示问题,解不等式,并在数轴上表示数集:5x+15>4x-1
之所以这样设计是因为练习是掌握知识、形成技能、发展思维的重要手段,针对本课的教学重点和难点,上述练习,目的是让学生进一步巩固对新知的理解。可以深化教学内容,培养思维的灵活性。
最后一个环节为小结作业环节,关于课堂小结,我打算让学生自己来总结今天的收获。
这样既发挥了学生的主体性,又可以提高学生的总结概括能力,让我在第一时间得到学习反馈,及时加以疏导。
通过这样的方式能够为本节课学习的知识进行进一步的巩固。
我的板书设计遵循简洁明了突出重点的意图,这是我的板书设计:
不等式课件 篇8
1、了解一元一次不等式组的概念。
2、理解一元一次不等式组的解集,能求一元一次不等式组的解集。
3、会解一元一次不等式组。
通过具体问题得到一元一次不等式组,从而了解一元一次不等式组的概念,解出每个不等式,利用数轴求出各不等式解集的公共部分,从而得到不等式组的解集,通过解几个有代表性的一元一次不等式组,总结出求不等式组解集的法则。
运用数轴确定不等式组的解集是行之有效的方法。这种“数形结合”的方法今后经常用到,锻炼同学们数形结合的能力,提高学习兴趣。
一元一次不等式组的解法。
确定一元一次不等式组的解集。
一、情境导入,初步认识
问题1现有两根木条a和b,a长10cm,b长3cm,如果要再找一根木条c,用这三根木条钉成一个三角形木框,那么木条c的长度有什么要求?
解:由于三角形中两边之____大于第三边,两边之____小于第三边,设c的长为xcm,则x<____,①x>____,②合起来,组成一个__________。
由①解得_____________,由②解得_____________。
在数轴上表示就是________________。
容易看出:x的取值范围是____________________。
这就是说,当木条c比____cm长并且比____cm短时,它能与木条a和b一起钉成三角形木框。
问题2由上面的解不等式组的过程用自己的语言归纳出一元一次不等式组的.解法。
全班同学可独立作业,也可分组自由讨论,10分钟后交流成果,逐步得出结论。
二、思考探究,获取新知
思考什么叫一元一次不等式组,什么叫一元一次不等式组的解集,什么叫解不等式组?
1、定义:
(1)一元一次不等式组:几个含有相同未知数的一元一次不等式合起来组成一个一元一次不等式组。
(2)一元一次不等式组的解集:几个不等式的解集的公共部分,叫做由它们所组成的不等式的解集。
(3)解不等式组:求一元一次不等式组的解集的过程叫解一元一次不等式组。
2、一元一次不等式组的解法:
(1)求出每个一元一次不等式的解集。
(2)求出这些解集的公共部分,便得到一元一次不等式组的解集。
不等式课件 篇9
本节教学的重点是不等式的解集的概念及在数轴上表示不等式的解集的方法.难点为不等式的解集的概念.
相同点:定义方式相同(使方程成立的未知数的值,叫做方程的解);解的表示方法也相同.
不同点:解的个数不同,一般地,一个不等式有无数多个解,而一个方程只有一个或几个解,例如, 能使不等式 成立,那么 是不等式的一个解,类似地 等也能使不等式 成立,它们都是不等式 的解,事实上,当 取大于 的数时,不等式 都成立,所以不等式 有无数多个解.
不等式的解与不等式的解集是两个不同的概念,不等式的解是指满足这个不等式的未知数的某个值,而不等式的解集,是指满足这个不等式的未知数的所有的值,不等式的所有解组成了解集,解集中包括了每一个解.
注意:不等式的解集必须满足两个条件:第一,解集中的任何一个数值,都能使不等式成立;第二,解集外的任何一个数值,都不能使不等式成立.
一般地,一个含未知数的不等式有无数多个解,其解集是某个范围,这个范围可用一个最简单的不等式表示出来,例如,不等式 的解集是 .
如不等式 的解集 ,可以用数轴上表示4的点的左边部分表示,因为 包含 ,所以在表示4的点上画实心圆.
如不等式 的解集 ,可以用数轴上表示4的点的左边部分表示,因为 包含 ,所以在表示4的点上画实心圈.
注意:在数轴上,右边的点表示的数总比左边的点表示的数大,所以在数轴上表示不等式的解集时应牢记:大于向右画,小于向左画;有等号的画实心圆点,无等号的画空心圆圈.
1.使学生了解不等式的解集、解不等式的概念,会在数轴上表示出不等式的解集.
2.知道不等式的“解集”与方程“解”的不同点.
通过教学,使学生能够正确地在数轴上表示出不等式的解集,并且能把数轴上的某部分数集用相应的不等式表示.
通过讲解不等式的“解集”与方程“解”的关系,向学生渗透对立统一的辩证观点.
通过本节课的学习,让学生了解不等式的解集可利用图形来表达,渗透数形结合的数学美.
2.学生学法:明确不等式的解与解集的区别和联系,并能熟练地用数轴表示不等式的解集,在数轴上表示不等式的解集时,要特别注意:大于向右画,小于向左画;有等号的画实心圆点,无等号的画空心圆圈.
不等式课件 篇10
1.了解不等式及一元一次不等式概念。
2.理解不等式的解、解集,能正确表示不等式的解集。
通过类比等式的对应知识,探索不等式的概念和解,体会不等式与等式的异同,初步掌握类比的思想方法。
1.经历把实际问题抽象为不等式的过程,能够列出不等关系式。
2.初步体会不等式(组)是刻画现实世界中不等关系的一种有效数学模型,培养学生的建模意识。
通过对不等式概念及其解集等有关概念的探索,培养学生的知识迁移能力和建模意识,加强同学之间的使用与交流。
活动一:
感知不等关系,了解不等式的概念。
通过实例,让学生认识到不等关系在生活中的存在,通过问题的解答,让学生了解不等式的概念,体会不等式是解决实际问题的有效工具。
活动二:
通过类比方程,继续探索出不等式的解、解集及其表示方法。
通过解决上个环节的问题,得出不等式的解,再引导学生观察解的特点,探索出解集的两种表示方法(符号表示、数轴表示),并且培养学生用估算方法求解集的技能。
活动三:
继续探索,归纳出一元一次不等式的意义。
针对所学的不等式,让学生归纳出特点,得到一元一次不等式的概念,并对概念进行辨析。
运用本节所学的知识,解决实际问题,使学生经历将实际问题转化为数学问题,再加以解决的过程,实现对所学知识的巩固和深化。
让学生通过自我反思和互相质疑提问,归纳总结本节课的主要内容,交流在概念、解及解集学习中的心得和体会,不断积累数学活动经验,教师应主动参与学生小结中,作好引导工作,布置好作业,并作及时反馈。
小强准备随父母乘车去武当山春游。
⑴在车上看到儿童买票所需的测身高标识线。
①x满足______时,他可免票。
②x满足______时,他该买全票。
⑵已知襄樊与武当山的距离为150千米,他们上午10点钟从襄樊出发,汽车匀速行驶。
①若该车计划中午12点准时到达武当山,车速应满足什么条件?
②若该车实际上在中午12点之前已到达武当山,车速应满足什么条件?
用不等式表示:
⑴a是正数;⑵a是负数;⑶a与5的和小于7;⑷a与2的差大于-1;
⑸a的4倍大于8;
⑹a的一半小于3。
学生回答①这两个由实际生活情境设置的问题,应非常容易.问题②相对①难度加大了,难在题意中的条件不象上面那样直接明了,并且可从距离和时间两个角度来分析、解决问题,而七年级学生恰恰缺乏阅读分析题意、多维度思考解决问题的能力,所以采用小组讨论交流的形式解决问题②
学生讨论角度估计大都集中在距离这一角度,教师可深入小组讨论中,认真听听同学们的思路,应鼓励学生多发表意见,并适当点拨,直到得出两种不等式。
此次活动中,教师应重点关注:讨论要有足够的时间和空间,学生在小组讨论交流时,是否敢于发表自己的想法。
再给出不等式概念:
像前面式子一样用“>”或“
教师可要求学生举出一些表示大小的式子,学生举出的不等式中,可能会有一些不含未知数的,如5>3等。教师此时应总结:不等式中可含有未知数,也可不含未知数。
教师根据学生举例给出表示不等关系的第三种符号“≠”,并强调:像前面式子一样用“≠”表示不等关系的式子也是不等式。
巩固练习是让学生用不等式来刻画题中6个简单的不等关系。学生得出答案并不难,所以该环节让学生独立完成、互相评价,教师可深入到学生的解题过程中,观察指导学生的解题思路,倾听学生的评价。
问题1在课本中起导入新课作用,考虑学生实际情况(分析应用题能力尚欠缺)和题目难度,所以设置问题串,降低难度。这样编排教材我认为更能体现知识呈现的序列性,从易到难,让学生“列不等式”能力实现螺旋上升。
问题3作用仅仅起巩固上面所学的知识,所以采用书中的一组习题,让学生独立完成,进一步培养学生列不等式能力。
采用学生熟悉的生活情境作为导入内容,然后层层推进,步步设问,环环相扣,直至推出不等式的概念及概念理解中应注意的地方。这样实现了:让学生从已有的数学经验出发,从生活中建构数学模型,为后面利用“不等式”这一模型解决生活中实际问题作好铺垫,体现了数学生活化、生活
不等式课件 篇11
1、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。
2、解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x项的系数化为1
1、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。
2、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。
3、求不等式组的解集的过程,叫做解不等式组。
4、当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。
3、代数式1-m的值大于-1,又不大于3,则m的取值范围是( )
A.x≥1 B.x≥-1/2 C.x>1 D.x>-1/2
A.5+4>8 B.2x-1 C.2x-5≤1 D.1/x-3x≥0
A. a>0¬ B.a≥0¬ C.a
11、若关于x的不等式组 的解集是x>2a,则a的取值范围是
A. a>4 B. a>2 C. a=2 D.a≥2
12、若方程组 中,若未知数x、y满足x+y>0,则m的取值范围是
13、不等式2(1) x>-3的解集是 。
14、用代数式表示,比x的5倍大1的数不小于x的 与4的差 。
15、若(m-3)x-1,则m .
18、某次个人象棋赛规定:赢一局得2分,平一局得0分,负一局得反扣1分。在12局比赛中,积分超过15分就可以晋升下一轮比赛,小王进入了下一轮比赛,而且在全部12轮比赛中,没有出现平局,问小王最多输 局比赛
1、定义:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点。
2、心对称的两条基本性质:
(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分。
(2)关于中心对称的两个图形是全等图形。
把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。
每上第一次课,我所讲的课程内容都和学生的错题有关。我通常把试卷中的错题摘抄出几个典型题,作为课堂的例题再讲一遍。而学生的反应,或是像没有见过,或是对题目非常熟悉,但没有思路。
这些现象的发生,都是学生没有及时总结的原因。所以第一次课后我都建议我的学生做一个错题本,像写日记一样,记录下自己的错题和感想。
成也审题败也审题。如何审题呢?
(1)这个题目有哪些个已知条件?我能不能把已知条件分开?
(2)求解的目标是什么?对求解有什么要求?
(3)能不能画一个图帮助思考?好多问题是没有看清楚题意致错。审题不清,你做得越多,可能错的就越多。
(4)所给出的已知条件相互之间有什么关系?能不能从中发现隐含条件?
(5)已知条件与求解目标有什么联系?能不能从中获得解题的思路?找到进门的门槛?
不等式课件 篇12
1.使学生感受到生活中存在着大量的不等关系,了解不等式和一元一次不等式的意义;
2.让学生自发地寻找不等式的解,会在数轴上正确地表示出不等式的解集;
3.能够根据题意准确迅速地列出相应的不等式。
1.通过汽车行驶过a地这一实例的研究,使学生体会到数学来源于生活,又服务于生活,培养学生“学数学、用数学”的意识;
2.经历由具体实例建立不等模型的过程,探究不等式的解与解集的不同意义的过程,渗透数形结合的思想。
㈢情感、态度、价值观:
1.通过对不等式、不等式的解与解集的探究,引导学生在独立思考的基础上积极参与对数学问题的讨论,培养他们的合作交流意识;
2.让学生充分体会到生活中处处有数学,并能将它们应用到生活的各个领域中去。
3.培养学生类比的思想方法、数形结合的思想。
1.教学重点:不等式、一元一次不等式、不等式解与解集的意义;在数轴上正确地表示出不等式的解集;
2.教学难点:不等式解集的意义,根据题意列出相应的不等式。
计算机、自制cai课件、实物投影仪、三角板等。
教师创设情境引入,学生交流探讨;师生共同归纳;教师示范画图,课件交互式练习。
〖创设情境——从生活走向数学〗
[多媒体展示]“五·一黄金周”快要到了,芜湖市某两个商场为了促销商品,推行以下促销方案:①甲商场:购物不超过50元者,不优惠;超过50元的,超过部分折优惠。②乙商场:购物不超过100元者,不优惠;超过100元的,超过部分九折优惠。亲爱的同学,如果五·一期间,你去购物,选择到哪个商场,才比较合算呢?
(以上教学内容是向学生设疑,激发学生探索问题、研究问题的积极性,可以让学生讨论一会儿)
教师:要想正确地解决这个问题,我们大家就要学习第九章《不等式和不等式组》,学完本章的内容后,我相信,聪明的你们一定都会作出正确的选择,真正地做到既经济又实惠。
首先,我们来共同学习本章的第一节课——9.1.1节《不等式及其解集》
〖新课学习〗
学习目标:
1.能感受到生活中存在着大量的不等关系,了解不等式和一元一次不等式和意义;
2.会寻找不等式的解,会在数轴上正确地表示出不等式的解集;
3.能够根据题意准确迅速地列出相应的不等式。
[多媒体展示一段动画]:引例:一辆匀速行驶的汽车在11:20距离a地50千米,要在12:00之前驶过a地,车速应满足什么条件?
设车速是x千米/小时,
(1)从时间上看,汽车要在12:00之前驶过a地,则以这个速度行驶50千米所用的时间不到 小时,即
(2)从路程上看,汽车要在12:00之前驶过a地,则以这个速度行驶 小时的路程要超过50千米,即
请同学们观察上面的两个式子,式子左右两边的大小关系是怎样的? 左右两边相等吗?
在学生充分发表自己意见的基础上,师生共同归纳得出:
用“>”或“<”号表示大小关系的式子叫做不等式;
用“≠”表示不等关系的式子也是不等式。
判断下列式子中哪些是不等式,是不等式的请在题后的括号内划“√”,不是的请划“×”
(1)3> 2 ( ) (2)2a+1> 0 ( ) (3)a+b=b+a ( )
(4)x< 2x+1 ( ) (5)x=2x-5 ( ) (6)2x+4x< 3x+1 ( ) (7)15≠7+9 ( )
上面的不等式中,有些不含未知数,有些含有未知数,大家把(2)、(4)、(6)式与(5)式类比,(5)式是一个一元一次方程,能不能给(2)、(4)、(6)式也起个名字呢?
含有一个未知数, 未知数的次数是1的不等式,叫做一元一次不等式.
问题2:车速可以是78千米/小时吗?75千米/小时呢? 72千米/小时呢?
问题3:我们曾经学过“使方程两边相等的未知数的值就是方程的解”,那么我们可以把使不等式成立的未知数的值叫做什么呢?
(师生共同归纳)使不等式成立的未知数的值叫做不等式的解。
2.课堂练习二——动一动脑,动一动手,你一定能算得对。
76, 73, 79, 80, 74.9, 75.1, 90, 60
(学生做完后,师问):你还能找出这个不等式的其他的解吗?这个不等式有多少个解?你从中发现了什么规律?
(学生讨论后,师生共同总结):当x>75时,不等式 x>50总成立;而当x<75或x=75时,不等式 x>50不成立,这就是说,任何一个大于75的数都是不等式 x>50的解,这样的解有无数个。因此,x>75表示了能使不等式 x>50成立的x的取值范围,叫做不等式 x>50的解的集合,简称解集。
我们再回到前面的问题,经过刚才的分析,可以知道,要使汽车在12:00之前驶过a地,车速必须大于75千米/小时。
一个含有未知数的不等式的所有的解,组成了这个不等式的解集。
4.在数轴上表示不等式的解集;
注意:在表示75的点上画空心圆圈,表示不包括这一点.
5.课堂练习三——动一动脑,动一动手,你一定能算得对。
判断下列数中哪些是不等式x+3>6的解? 哪些不是?
-4, -2.5, 0, 1, 2.5, 3, 3.2, 4.8, 8, 12
求不等式的解集的过程叫做解不等式。
7.课堂练习四——看谁算得最快最准。
直接想出不等式的解集,并在数轴上表示出不等式的解集:
(1) x+3>6; (2)2x<8; (3)x-2>0
解:(1)x>3; (2)x<4; (3)x>2。
1.例用不等式表示:
(1)x与1的和是正数; (2)的与的的差是负数;
(3)的2倍与1的和大于3;(4)的一半与4的差小于的3倍.
解:(1)x+1>0; (2)+b<0;
(3)2+1>3; (4)-4<3;
2.课堂练习五——看谁最列得又快又准。
用不等式表示:
(1)是正数; (2)是负数;
(3)与5的和小于7; (4)与2的差大于-1;
(5)的4倍大于8; (6)的一半小于3.
答案;(1)>0; (2)<0; (3)+5>0;
学生小结,师生共同完善:
2.会寻找不等式的解,会在数轴上正确地表示出不等式的解集;
3.能够根据题意准确迅速地列出相应的不等式。
不等式课件 篇13
教学重点:掌握不等式的三条基本性质,尤其是不等式的基本性质3.
教学难点:正确应用不等式的三条基本性质进行不等式变形.
通过观察、分析、讨论,引导学生归纳总结出不等式的三条基本性质,从具体上升到理论,再由理论指导具体的练习,从而强化学生对知识的理解与掌握.
(设计说明:设置以下习题是为了温故而知新,为学习本节内容提供必要的知识准备.)
2、什么是不等式?
3、用“>”或“<”填空.
(教学说明: 复习等式的基本性质后学生自然会联想到,不等式是否有与等式相类似的性质,从而引起学生的探究欲望.接着问题3为学生探究不等式的性质提供了载体,通过观察,寻找规律,得出不等式的性质.)
先让学生独立思考,后合作交流,通过充分讨论,类比等式性质得出不等式的性质.
观察时,引导学生注意不等号的方向,通过(1)题学生容易得出不等式性质1:
不等式基本性质1 不等式两边加(或减)同一个数(或式子),不等号的方向不变.
比较(2)、(3)题,注意观察不等号方向,并思考不等号方向的改变与什么有关?由学生概括总结,教师补充完善得出:
不等式基本性质2 不等式两边乘(或除以)同一个不为零的正数,不等号的方向不变.
不等式基本性质3 不等式两边乘(或除以)同一个不为零的负数,不等号的方向改变.
通过PPT用图形演示不等式的基本性质,让学生更加清楚地认识不等式的基本性质。
不等式有传递性吗?
【学生通过讨论能够比较容易得出结论:不等式有对称性,但要注意其不等号方向的`变化;不等式也有传递性,但要注意的是同向传递性。】
三、巩固训练,熟练技能:
1、(1) a - 3____b - 3;
(3) 0.1a____0.1b;
(5) 2a+3____2b+3;
【本题目采用提问的方式,因为内容相对简单,所以可以迅速得到结论。要让提问者说清楚答案,并说明利用不等式的性质几来进行判定的。】
(1)因为7.5>5.7,所以-7.5<-5.7;
(2)因为a+8>4,所以a>-4;
(3)因为4a>4b,所以a>b;
(4)因为-1>-2,所以-a-1>-a-2;
(5)因为3>2,所以3a>2a.
【学生口答,并说明为什么。本题重点是第5小题,要引导学生总结出a的取值会影响到答案。当a>0时,3a>2a.(不等式基本性质2)
当 a=0时,3a=2a.当a<0时,3a<2a.(不等式基本性质3) 】
学生自己完成以下题目,之后进行集体讲解。
(1)如果x-5>-1,那么______________________,得:x>4
(2)如果-2x>3,那么那么______________________,得X=______
师生共同小结本节课所学重点,不等式的基本性质的具体内容。
不等式课件 篇14
基本不等式是数学中重要的一个概念,它与不等式的证明和应用有着密切的关系。基本不等式的解法和思维方法不仅能让我们更好地掌握不等式的性质和应用,同时也能让我们更好地解决数学中的其他问题。下面,让我们就基本不等式这一主题展开更加深入的探讨。
一、基本不等式的定义、证明和性质
基本不等式定义:对于任意实数$x$,$y$,有$(x^2+y^2)\geq 2xy$,等号成立当且仅当$x=y$时成立。
基本不等式的证明:我们可以通过平方展开和配方进行证明,即:
$(x-y)^2\geq 0$
$x^2-2xy+y^2\geq 0$
$x^2+y^2\geq 2xy$
证毕。
基本不等式的性质:基本不等式可以用于求证其他不等式和解决实际问题,例如可以用基本不等式证明算术平均数$\ge$几何平均数,可以用基本不等式求证要想最小化一个多项式,需要使其中的各项等于彼此等于基本不等式中的相等值等。
二、基本不等式的应用及相关例题
基本不等式的应用广泛,其中最常见的应用就是在证明和求解不等式问题中。下面,我们就通过例题来展示基本不等式的具体应用。
例题一:
已知$a,b,c$均为正实数,求出$abc$与$\frac{(a+b+c)^3}{27}$的大小关系。
解:由于$a,b,c$均为正实数,故可运用基本不等式进行求解,即
$\begin{aligned}
\frac{(a+b+c)}{3}\geq\sqrt[3]{abc}\
(a+b+c)^3\geq 27abc
\end{aligned}$
因此,
$\frac{(a+b+c)^3}{27}\geq abc$
即$\frac{(a+b+c)^3}{27}\geq abc$
得证。
例题二:
已知$a+b=3$,$a^2+b^2=5$,求出$a,b$的大小关系。
解:由已知条件可得$(a+b)^2=a^2+b^2+2ab$,即
=5+2ab$
$ab=\frac{4}{3}$
由基本不等式知得
ab=\frac{8}{3}\leq a^2+b^2=5$
即$a^2+b^2>2ab$,因此$a^2>b^2$,
又因为$a+b=3$,所以$b=3-a$,
所以$(3-a)^2
+a^2-6a
$a>\frac{3}{2}$
因此,
$a>b>\frac{3}{2}-a$
即id="article-content1">
等式的性质课件
发布时间:2023-10-17 等式性质课件 等式课件 等式的性质课件。
老师在教授新课程时,通常会准备教案和课件。然而,在编写教案课件时需要注意一些方面,以使教案具有针对性和突出重点。如果您对“等式的性质课件”感到好奇,请阅读以下精心准备的资料。对于有需求的同学,请务必点击进来!
等式的性质课件【篇1】
一、教材分析:
“等式的基本性质”是在上一节刚刚认识了等式和方程的基础上进行教学的。该部分知识是学生解方程的依据,它是系统学习方程的开始,这节课的内容在简易方程中就起到了承上启下的作用。教材通过让学生观察天平演示实验,由具体实物之间的平衡关系抽象概括出等式的两个基本性质。关注学生由具体实例到一般意义的抽象概括过程,有意识地渗透“等价思想”、“建模思想”。
根据新课程标准的要求和教材的地位以及学生的实际情况,我把本课目标定为:知识与技能目标:理解并能用语言表述等式的基本性质,能利用等式的基本性质解决简单的问题。
本课的数学思考:在观察实验操作、讨论、归纳等活动中,经历探索等式基本性质的过程,渗透“等价”、“建模”等数学思想。
情感态度与价值观:鼓励学生积极参与数学活动,体验探索等式基本性质过程的挑战性和数学结论的确定性。
教学重难点:根据等式的性质在教材中的作用,我把抽象归纳出等式的基本性质作为本节课的重点,也是难点。
二、学情分析
新课标强调学生是数学学习的主人。学生已经了解了方程的意义而且小学五年级的学生,已具备一定的独立思考能力,乐于动手操作、合作探究。因此教学中我引导学生认真观察—独立思考—自主探究—合作交流,遵循由浅入深,由具体到抽象的规律,为学生创设一个和谐的学习环境,让孩子们在探索交流中,感受、理解和概括出等式的基本性质。
三、教学方法
《数学新课程标准》指出:数学教学必须注意从学生的生活情境以及学生感兴趣的事物出发,为他们提供参与的机会,使他们体会到数学就在身边,对数学产生亲切感。因此,在这节课中,教法上采用了观察法、讨论法、归纳法等,让学生通过实验观察和分组讨论探究学习。
四、教学准备
天平、多媒体课件。由于学具有限,所以采用了认识天平和通过多媒体课件展示结果。
五、教学过程
我把教学过程分为以下五个环节:导入新课——引导探究、合作交流——巩固练习、运用新知——课堂小结——板书设计
第一环节:导入新课。引导学生共同列举等式,对等式进行简单回顾,之后观察课件中的天平,用含有字母的等式来表示,由此引出本节课的新知。
第二环节:引导探究、合作交流。
1、猜想、验证。
通过课件展示教材第64页情境图1,先让学生猜想然后再通过课件在天平上演示过程,验证学生的猜想。
第一次猜想验证后引导学生小结出:等式两边同时加上同一个数,左右两边仍然相等。
2、假设数据、验证规律。
得到结论后通过假设物体的具体的数据验证学生自己总结出的规律:等式两边加上同一个数,左右两边仍然相等。
3、小组合作探究、发现规律。
通过课件展示教材情景图让学生小组合作探究:如果天平的两端同时拿掉1个苹果,结果会怎样?学生汇报后,再次通过课件进行演示。引导学生小结出:等式两边同时减去同一个数,左右两边仍然相等。
4、巩固练习、应用规律
通过一些简单的等式问答,应用等式两边同加或同减相同的数以加强规律的应用。
第四环节:课堂总结,布置作业。
让学生分别谈谈自己的收获,以强化巩固所学知识。课后作业安排为开放的任务:和同组的同学互相写10道利用等式的性质解决的问题,例如:如果x=y,x+8=( )+8。
第五环节:板书设计
在板书的设计上以简单明了为主。通过字母等式的同加、减,同乘、除表现出等式的两个基本性质。
等式的性质课件【篇2】
教学目标:
1.通过天平演示保持平衡的几种变换情况,让学生初步认识等式的基本性质。
2.利用观察天平保持平衡所发现的规律能直接判断天平变化后能否保持平衡。
3.培养学生观察与概括、比较与分析的能力。
教学重点:
理解,并能用自己的话来阐述天平保持平衡的几种变换情况,进而发现等式保持不变的规律。
教学难点:
等式性质里除法的推导及理解。
1.昨天学了什么知识?什么叫方程?举例说明。
2.判断下面式子哪些是方程。
3.昨天我们借助什么研究方程?天平在什么条件下才会保持平衡?
4.看这幅图(出示图1),
(1)你知道了什么?请用一句话描述。
(2)告诉你这些物品的质量,列出式子。(200 =100 100)为什么用等号?(用等式表示平衡的状态)
5.天平不仅可以称一些较轻的物品的质量,还可以帮助我们研究相关的数学知识。今天继续利用这个小助手做游戏,探究和等式有关的知识。
二、探究等式两边用加法和乘法的性质。
(一)1.如果要在天平两边放上一些物品,天平仍然要保持平衡,可以放些什么?独立思考。指名回答。
(1)师:随意的杯子吗?杯子有要求吗?对,要相同的杯子。看图,请用算式表示出来。(200 100=100 100 100)
(2)左右两边仍然相等吗?左边等于300,右边也等于300,所以这个等式成立。
(4)我可以放上2个同样的茶杯吗?那这个式子又该如何写?左右两边仍然相等吗?用字母表示是……
4.由此可得出什么结果?平衡的天平两边加上同样的物品,天平保持平衡。再看看这些等式,你有什么话想说?(师评价:我听到他说了一个词,同一个数,说到关键了)
5.等式就像平衡的天平,等式两边加上 同一个数,左右两边仍然相等。(板书,注意空格)
(二)1.刚才有同学说到,在天平左边加上一个茶壶,右边加上2个茶杯,这样也能平衡吗?为什么?能只放1个茶杯吗?不行,必须把2个茶杯看做一个整体,必须2个2个地放。
2.用式子表示出来。(板书:200 200=100 100 100 100)
3.如果天平左边加上2一个茶壶,右边要加上多少个茶杯?加上3个茶壶呢?用式子表示你觉得怎样?(太麻烦了)数学有时候可以偷懒的。想想有什么办法?
4.为什么用乘法?左边茶壶的数量多1个,我们也可以说扩大到原来的2倍,右边的茶杯的数量也要扩大到原来的2倍。写成算式是:200×2=(100 100)×2。为什么加小括号?刚才说过了,把2个茶杯看做一个整体,必须2个2个地放。
4.如果两边的数量分别扩大到原来的3倍、4倍、5倍,天平还保持平衡吗?
5.那在等式上又怎么表示?(等式两边同时乘同一个数,左右两边仍然相等。)
三、探究等式两边用减法和除法的性质。
1.学到这里,等式的左右两边同时加上或乘同一个数的情况研究完了,接着还想继续研究吗?研究什么?(减法和除法)那你猜猜,结论是什么?
2.你们猜对了吗?我们还是用事实来说话。看图(出示例题图二、图四),选择一幅图,研究等式两边用减法和除法时会出现什么情况。小组合作学习。
3.反馈。
4.平衡的天平两边减去同样的物品,天平也保持平衡。用式子说明则是:等式两边同时减去同一个数,左右两边仍然相等。(板书:在加法后加上“或减去”)
5.除法:把两边的球都平均分成2份,也就是左右两边同时除以2,各去掉1份,天平仍然保持平衡。用式子表示为:(300 300)÷2=600÷2。
6.除以任何数都可以吗?应该是除以同一个不为0的数。(板书:在乘法的后面加上“或除以同一个不为0的数”)
7.通过天平,我们又学习了等式的这些知识,这就是等式的性质。读一读。
提问:如果左边最后只留下X的话,等式两边该写什么?
3.练习十四第5题。
4. 天平左边放3个同样重的苹果,右边放9个同样重的梨,天平平衡。一个苹果和( )个梨同样重。
等式的性质课件【篇3】
各位老师:
很高兴有这次机会和大家一起学习交流。今天,我说课的题目是《等式的性质》的教学内容。我将从以下几个方面进行我的教学思路说明。
一、教材分析
本节课的主要内容是等式的基本性质以及运用等式的.基本性质解简单的一元一次方程。本课是在同学们学习了一元一次方程的概念后的授课内容。等式的基本性质是解方程的理论支撑,它为下节的学习铺平了道路。因此本节课内容起到了承上启下的作用。
二、教学目标。
(1)知识与技能:探究等式的性质,并能利用等式的性质进解简单的一元一次方程。
(2)过程与方法:通过观察探究培养学生探索能力、观察能力,归纳能力和应用新知识的能力。
(3)情感态度价值观:培养学生参与数学活动的积极性、自信心.
三、教学重、难点
教学重点:掌握等式的性质,根据等式性质解简单的一元一次方程。教学难点:由具体实例抽象出等式的性质,正确理解等式性质2中除数不能为0。
四、优缺点:
优点:在教学过程中我重视学生学习知识的生成规律,通过直观引导学生发现抽象的规律。重视数学思想和方法对的渗透,本节课运用到的数学方法有:从特殊到一般、类比、转化、化归等思想方法。
缺点:青少年学生都希望受到老师的表扬,有表现自我的机会,所以在教学中应抓住学生这一生理特点,用适当的语言能激发学生参与课堂的积极性。今后我需要在课堂用语上多下一些功夫。
五、课堂重建
在探究等式性质2的除法情况时,我运用的是在直观得出乘法的规律后,把乘法转化为除法来探究得出除法的规律,下次我会尝试采用利用天平直观演示得出这一规律。数学教学要给学生留出大量的习题训练时间,所以在以后的教学中,我会时时提醒自己精讲多练,尽量多给自主练习的时间和空间。
等式的性质课件【篇4】
一、说教材
1、教材所处的地位和作用:本课内容是在学生认识了等式和方程的基础上进行教学的,它是今后学习解多步方程的基础,它是系统学习方程的开始,其核心思想是构建等量关系的数学模型。通过本节课的学习,引导学生探索,思考比较,发现规律,在实验的基础上,掌握等式的两个基本性质,并能利用等式的性质解简单的方程,为今后运用等式的基本性质解较复杂的方程打下基础。
2、教学内容:本节内容主要讲解等式的性质,在掌握等式的性质后,利用等式性质解简单的方程,再进行具体化练习,加深认识。本节分两课时完成,其中第一节课探索等式的性质,并对等式的构建和等式的性质进行具体化练习。
3、教学目标:教案对学习目标的分解是以"学生的全域发展"作为标准进行的,更注重了学生的主体性和目标的可操作性。学习目标首先被分解为"知识和能力"、"过程和方法"、"情感、态度与价值观".不仅解决了"学到什么"和"怎样学习"的问题,尤其解决了"喜欢学"和"主动学"的问题。
二、说教学方法
"教必有法而教无定法",只有方法得当,才会有效。有效的数学学习活动不能单纯的依赖模仿与记忆,动手实践、自主探索、观察与思考、合作交流是学生学习数学的重要方式。因此在本节课的教学中,我利用多媒体演示、实践操作、通过观察法、实验法、合作交流等教学方法,引导学生动手操作—独立思考—自主探索—合作交流,遵循由浅到深,由具体到抽象的规律,为学生创设一个宽松、民主、和谐的学习环境,让孩子们在探索交流中,感受、理解和应用等式的性质。
三、说学法
首先教师创造良好的环境,引导学生从喜欢的、已知的、熟悉的生活内容入手,让学生自己在特定的环境下不知不觉中建立一些等式与方程之间的联系。再通过一系列的实验活动使学生体验到等量的变化关系和等式的性质,并引导学生用数学语言全面总结出来,从而达到培养学生挖掘问题能力、交流能力和归纳总结与口头表达的能力。
四、说教学程序
1、创设情景,引发认知冲突
以前学生解方程习惯用加减法、乘除法互为逆运算的方式解方程,这样的思路只适宜解比较简单的方程,例如:x+3=5、3x=-12等,简单的一元一次方程的解用估算的方法或逆运算的方式我们都可以求出方程的解;而象19+28x=33x-1这样比较复杂的方程我们用上述方法还能求出它的解吗?我利用学生认知上的冲突引入新课。这样既激发了学生的学习兴趣又明确了本节课的教学目的。为等式性质的构建做好铺垫。
2.实验探索,从特殊到一般
等式性质的呈现属于实验探究型课,目的是要学生在活动中体验等量的变化关系和等式的性质。这里我分段逐步呈现等式的特性。首先出示平衡天平的图形,给学生一个天平平衡的印象,引导学生用字母构建一个等式,接着在上一个平衡天平的基础上,两侧同放一个三角形的符号表示物体的重量,让学生观察这时出现什么现象,同时提出问题:怎样做,两边才会保持平衡?通过学生实验得出使天平两边平衡的方法,并用字母式子表示实验的过程,再通过归纳,概括出对象的共同属性加以表述,接着通过几个练习加以巩固,然后借助上一个实验的经验和方法,进一步指导学生完成天平两边成倍变化的实验,最后根据实验情况观察归纳结论。同时注意在总结时先让学生根据实验,把自己所得到的结论叙述出来,然后教师再对学生的结论给予概括得到等式的性质。
上述讲授等式的性质用的是观察实验法,实验观察是科学研究的一种基本的方法,它是根据客观事物和现象找出它具有的客观规律,有助于发现一些数学事实,抽象出对象的属性,再通过归纳,概括出对象的共同属性加以表述。同时也体现了由特殊到一般的思维认知规律。
3.强化概念,指导学生尝试
关于等式概念、等式与方程的联系的引出,教法上采用充分利用学生已有的知识、练习回顾、交流的方式。等式的性质的教学,采用师生共同观察实验,让学生通过对直观图形的观察、实验和猜想,自已发现结论,并用总结的形式表述结论。等式性质的理解和掌握关键在于应用,只有通过大量练习来巩固和提高,练习的速度越快正确越高,说明知识理解和掌握的越好。因此在教学中得到等式性质后,就用三组尝试练习加强巩固和提高,这样既调动了学生学习的趣味性和主动性,增强了学生积极参与教学活动的意识,又很好地培养了学生的动手操作能力、观察能力、逻辑思维能力和总结归纳能力,同时,也向学生渗透了实践——认识——再实践——再认识的一种学习方法,使新旧知识技能得到了有机的结合。
五、小结与练习
本环节是对所学内容作全面的小结,并质疑问难,除小结所学的知识技能外,还对所用到的数学方法进行了概括,使学生既学习了知识,又培养了能力。同时也对使学生能进一步体会等式与方程联系、等式的性质。
布置作业主要是为了达到:
(1)巩固所学概念;
(2)发现和弥补教与学中的遗漏和不足;
(3)强化基本技能训练,培养学生良好的学习习惯和品质。
等式的性质课件【篇5】
一、学情分析:作为初一学生(132班和137班)在小学时已经对等量关系和等式的性质有所了解,通过本节课的学习,目的是要使学生从天平的特点中归纳得出等式的性质。
新课标对本节课的要求是:掌握等式的性质。在前面一节课的学习中,学生掌握了一元一次方程的概念和初步应用后,需要解决的是一元一次方程的解法。本节内容借助于等式的性质这一工具来解一元一次方程。首先,通过天平的实验操作,使学生学会观察。尝试分析归纳等式的性质。然后,利用等式的性质解一元一次方程。通过解方程的学习提高学生的观察问题、解决问题的能力。
2、教育教学目标。
根据以上对教材的理解与内容分析,考虑到学生已有的知识结构和心理特征,制定如下教学目标:
(1)知识与技能:探究等式的性质,并能利用等式的性质进行等式变形、解简单的一元一次方程。
(2)过程与方法:通过实验培养学生探索能力、观察能力,归纳能力和应用新知识的能力。
(3)情感态度价值观:积极参与数学活动,体验探索等式性质过程的挑战性和数学结论的确定性,建立学生学好数学的信心。
为了使学生能比较顺利地达到教学目标,我确定了本节课的教学重、难点:
教学重点:探究等式的性质,能根据等式性质进行等式变形、解简单的一元一次方程。
教学难点:利用等式的性质把简单的一元一次方程变形为x=a(常数)的形式;正确理解等式性质2中除数不能为0。
(一)教学手段:如何突出重点、突破难点,从而实现教学目标,我在教学过程中利用多媒体演示拟计划进行如下操作:
1、读(看)――议――讲结合法。
2、图表分析法。
3、读图讨论法。
4、教学过程中坚持启发式教学的`原则。
坚持“以学生为主体,以教师为主导”的原则。即“以学生活动为主导,教师讲述为辅,学生活动在前,教师点拨评价在后”的原则。根据初一学生的心理发展规律。联系实际安排教学内容,采用学生参与高度的学导式讨论教学法、师生交谈法、图象信号法、问答法、教学课堂讨论法,使学生动口、主动探索、发现问题、解决问题、互动合作、归纳概括、形成能力,突出学生的主体地位。在采用问答法时,特别注重不同难度的问题。
提问不同层次的学生面向全体,使基础差的学生也有表现的机会,培养其自信心,激发学习热情,有效开发各层次学生的潜在能力求使每个学生都在原有基础上得到发展,同时通过课堂练习和课后作业启发学生。在教学中要积极培养学生数学学习兴趣和动机。明确学习目的,教师应在课堂上充分调动学生积极性,激发来自学生主体的最有力的动力。
实际上,青少年好动,注意力易分散,爱发表见解。希望得到老师的表扬所以在教学中应抓住学生这一生理特点。一方面运用直观生动的形象,引发学生兴趣,使他们的注意力始终集中在课堂上。另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。
首先我出了一些可以看出方程解的题目,让学生回答,由易到难,激起学生学习的欲望,紧接着就引入等式的定义,从而使学生明白解方程先要研究等式,从而引入课题。
由于学生的认知结构是由简单到复杂,由具体到抽象的过程,因此在这一环节中,我分两个方面来教学:等式的性质1由老师课件演示,学生观察归纳概括。
我利用多媒体依次展示天平图的各个操作。让学生通过观察,用语言来描述发现,与同桌交流。这样由具体演示到抽象概括,使学生记忆深刻,充分体现了学生为主体,教师为主导的原则。
通过上面的观察,让学生分组讨论:如何用算式表示实验结果?学生交流后,教师进行课件演示。
本节课,让学生经历一种从平衡到不平衡再到新的平衡的过程,体验变化是怎样产生的,怎样从打破平衡,又怎样达到新的平衡。从而培养了学生观察能力和抽象概括能力。
我接着提问:如果天平两边减去相同的质量,天平会有什么变化?
让学生先独立思考,然后教师课件演示。你又发现了什么规律?怎样用等式描述?得出等式两边同时减去同一个数,等式仍然成立。并且由以上两条规律得出:等式的两边同时加上或减去同一个数,等式仍然成立。
如果在天平两边同时加上或减去不同的质量,天平会有什么变化?
学生经过思考得出:等式的两边加上或减去的必须是同一个数,才能使等式成立。这样符合学生的认知规律,从实践认识,再到实践认识的过程。
教师再用课件展示天平图,学生通过观察,归纳得出:等式两边同时乘或除以同一个数(除数不能为0),等式仍然成立。
等式基本性质2的推导在性质1的基础上,让学生自己通过观察探究,运用知识的迁移得出,这样培养了学生逻辑思维能力,抽象概括能力和口头表达能力。
(2)若a=b,则ac=bc,
注意:
(1)等式两边都要参加运算,且是同一种运算。
(2)等式两边加或减,乘或除以的数一定是同一个数或同一个式子。
(3)等式两边不能都除以0,即0不能作除数或分母。
在这个环节中把等式的两个性质展示出来,我特别提到了三个注意:因为这是在等式性质解方程中容易出错的地方,就是希望同学们认真细心,正确利用性质解题。
我在练习中设计了三道题,从简单的填空到判断变形对错,到最后的解方程,方程的四道题也是有简单到复杂,总之练习题的设计,低起点,小台阶,循序渐进,符合学生接受知识的特点,是那些平时不举手的同学也积极参与,竟然问题也答得很好。从这些方面培养了学生的灵活性,使学生获得成功的满足感。
作业设计:
PPT投影出课本第83页习题3.1第4题。
Yjs21.coM更多幼师资料延伸读
等式课件
幼儿教师教育网编辑为大家整理的“等式课件”或许能帮助您解决一些疑惑。教案课件是每个老师在开学前需要准备的东西,每个人都要计划自己的教案课件了。 设计有创意的教学课件可以增加学生的学习趣味。我们提供的样本仅供参考具体操作请根据实际情况做出调整!
等式课件 篇1
【教材分析】
在新课程改革中,教材是重要的教育教学因素。等式的基本性质是学生解方程的依据,它是系统学习方程的开始。这节课的内容在简易方程中就起到了承上启下的作用。原来的教材中对于等式的基本性质只是初步的认识,并没有总结成概念性的东西,但学生实际运用时却需要概念来作支撑,所以在教材中作了调整,让学生通过观察天平演示实验,由具体实物之间的平衡关系抽象概括出等式的两个基本性质就成了本节课的教学重点。本课“等式的基本性质”是在上一节刚刚认识了等式和方程的基础上进行教学的。,其核心思想是构建等量关系的数学模型。课程标准要求学生能“理解等式的性质,会利用等式的性质解简单的方程”。
【教学目标】
1.通过天平演示保持平衡的几种变换情况,初步认识等式的基本性质。
2.利用观察天平保持平衡所发现的规律,能直接判断天平发生变化后能否保持平衡。
3.逐步养成观察与概括。比较与分析的能力。
【教学重点】
掌握等式的基本性质。
【教学难点】
理解并掌握等式的性质,能根据具体情境列出相应的方程。
【数学思想】
转化的思想,数形结合的思想,符号化的思想
【教学过程】
一。创设情境,引出问题
教师活动
学生活动及达成目标
师:同学们,你们做过天平游戏吗?这节课我们要利用天平一起来探索等式的性质。(板书课题:等式的性质)
达成目标:由熟悉的天平引出课题激发学生的兴趣。
二。共同探索,总结方法
教师活动
学生活动及达成目标
(一)等式的基本性质一
1.出示教材第64页情境图1第一个天平图。
让学生仔细观察图,并说一说:通过图你知道了什么?
教师小结:1个茶壶的重量=2个茶杯的重量。
追问:如果设一个茶壶的重量是a克,1个茶杯的重量是b克,能用式子表示吗?
(师板书)
引导学生思考:如果在天平的两边同时再各放上一个茶杯,天平会发生什么变化呢?为什么?
教师先进行实际操作天平验证,再演示这一过程,并明确:两边仍然相等。
提问:如果两边各放上2个茶杯,还保持平衡吗?
两边各放同样的一把茶壶呢?
2.出示教材第64页图2的第一个天平图。
(1)如果用a表示一个花盆的重量,用b表示一个花瓶的重量,怎样用等式来表示这幅图呢?
(2)如果把两边都拿掉1个花瓶,天平还平衡吗?让学生尝试用等式怎样表示?
从图上你能知道什么?(出示教材第64页图2第二个天平图)
3.通过这几个实验,你发现了什么?
4.你能用一句话来表示你的发现吗?
(二)等式的基本性质二
1.猜猜:除了向前面这样的变化,天平仍保持平衡外,还可以怎么做能使天平保持平衡?
这时教师一定要及时强调:这都是把等式的两边加上或减去同一个数,并提示学生如果把等式的两边同时乘或除以一个相同的数(O除外),会怎么样呢?
2.出示教材第65页图1的第一个天平图,让学生观察并说明。
引导学生用a表示墨水的重量,用b表示铅笔盒的重量,用式子怎样表示?
猜一猜:左边墨水的数量扩大到原来的2倍,右边铅笔盒的数量也扩大到原来的2倍,天平还保持平衡吗?
如果把天平的两边物品的数量分别扩大到原来的。3倍。4倍呢?
3.出示教材第65页图2的第一个天平图,让学生观察并说明知道了什么。
质疑:如果把两边的球都平均分成2份,各去掉一份,天平还能平衡吗?
教师演示。
4.通过刚才的试验,你发现了什么?
5.你能用一句话总结一下等式的这个性质吗?
6.为什么等式两边不能除以O?
1.自主回答,学生可能会回答:天平的左边放了一把茶壶,右边放了两个茶杯,天平保持平衡;这说明一个茶壶的重量与2个茶杯的重量相等。
尝试写出:a=2b
先猜一猜,学生可能会猜测出天平仍然平衡,因为两边加上的重量一样多。
观察小结:实验证明1个茶壶+1个茶杯的质量=3个茶杯的质量。
同时学生尝试用字母表示这个式子:a+b=2b+b
学生回答后,教师演示,并让学生分别用式子表示:a+2b=2b+2ba+a=2b+a
观察现在的天平是什么样的?(平衡)
生尝试写出:a+b=4b
先猜一猜,再回答,平衡:a+b-b=4b-b
得出1个花盆和3个花瓶同样重。
3.学生思考后小结:平衡的天平两边加上同样的物品,天平还保持平衡。平衡的天平两边减去同样的物品,天平还保持平衡。
4.学生归纳等式的性质1:等式两边加上或减去同一个数,左右两边仍然相等。
达成目标:通过演示在天平的两边同时放上或拿走同样的物品,天平仍然平衡。给学生思考。感悟天平保持平衡的变化规律,提供了直观的观察材料。从而得出天平平衡的原理,即等式的一条基本性质:等式两边加上或减去相等的数,等式不变。
1.如:学生猜测天平的两边同时放2个。3个杯子;同时减去一把茶壶等。
2.学生观察并说明:
一瓶墨水的重量=一盒铅笔盒的重量
写出等式:a=b。
学生猜测平衡后,教师进行实际天平操作,验证学生的猜测。
学生用等式表示:2a=2b。
天平仍然保持平衡
3.学生观察得出:
2个排球的质量=6个皮球的质量
有了前面的经验学生用a表示排球的重量,用6表示皮球的重量,写出等式:2a=6b。
学生猜测:平衡,并能用等式a=3b表示。
4.学生会发现:平衡的天平两边的物品扩大到原来的相同倍数,天平仍然平衡。平衡的天平两边的物品都缩小到原来的几分之一,天平仍然平衡。
5.学生归纳小结:等式两边乘同一个数,或除以同一个不为0的数,左右两边仍然相等。
达成目标:等式基本性质2的推导在性质1的基础上,让学生自己通过实验探究,运用知识的迁移得出,这样培养了学生的逻辑思维能力,抽象概括能力和口头表达能力。
6.学生交流,汇报:O不能做除数。
三。运用方法,解决问题
教师活动
学生活动及达成目标
出示教材第66页练习十四第4.5题。
学生试做集体订正,注意学生列式计算时的取值是否正确。
四。反馈巩固,分层练习
教师活动
学生活动及达成目标
基础练习:利用等式的性质填空
1.如果2x-5=9,那么2x=9+()
2.如果5=10+x,那么5x-()=10
3.如果3x=7,那么6x=()
4.如果5x=15,那么x=()
拓展练习:见课件
让学生回忆等式的性质,再自主完成填空。
达成目标:等式的基本性质一是简易方程部分重要的概念,不仅要理解,而且还要会应用。
五。课堂总结,提升认识
教师活动
学生活动及达成目标
这节课你运用了哪些,你有什么收获?你对自己这堂课的表现是怎么评价的?
学生总结本节课的收获,在梳理总结过程中提高学生对性质的认识和理解。
等式课件 篇2
教学内容:教科书第3~4页的内容,练习一的4~6题。
教学目标:
1、通过学习,使学生知道等式两边同时加上或减去同一个数,所得的结果仍然是等式。
2、根据等式的性质(一)学会解决含有加、减号的方程。
3、有意识地培养学生的自学能力。
教学过程:
一、教学例3
出示图,学生根据图独立填空。
根据学生的回答,板书:
20=20xx+10=20+10
X=50X+20=50+20
50+a=50+a50+a-a=50+a-a
X+20=70X+20-20=70-20
提问:比较两边的算式,你有什么发现,在小组里说说。
全班交流,引导学生说出:等式两边同时加上或减去同一个数,所得的结果仍然
是等式。这是等式的性质。
独立完成练一练第1题
二、教学例4
学生自学,不懂的问题和同组同学交流,能解决的就小组内交流。
全班交流:例4中还有什么不懂的地方提出来,能由学生解决的就由学生解决,
学生解决不了的教师解决。
一是方法:根据等式的性质把含有未知数的这边化简成就含有一个未知数。
二是检验:把计算的结果代到原式,看左右两边是否相等。
三强调书写的格式。
小结:求方程中未知数值的过程,叫做解方程。
完成试一试练一练的第2题。
学生独立完成后集体订正,重点帮助有困难的学生,针对学生出错的地方及时分
析错误原因,帮助他们弄懂。
三、课堂作业
练习一的第4、5、6题。
第4、6题做在书上,第5题写在作业本上。
板书:
等式两边同时加上或减去同一个数,所得的结果仍然是等式。
这时等式的性质。
X+10=50
解:X+10-10=50-10
X=40
教后小记
等式课件 篇3
《不等式及其基本性质》习题
【教学内容】
课本上不等式的五个基本性质,并学会应用.【教学目标】
1、掌握不等式的五个基本性质并且能正确应用.
2、经历探究不等式基本性质的过程,体会不等式与等式的异同点,发展学生分析问题和解决问题的能力.
3、开展研究性学习,使学生初步体会学习不等式基本性质的价值.
【重点难点】
重点:理解不等式的五个基本性质.难点:对不等式的基本性质3的认识.【教学方法】
本节课采用“类比-实验-交流”的教学方法.【教学过程】
一、回顾交流.
1、等式的基本性质 解一元一次方程的基本步骤
2、问题牵引:
用“﹥”或“﹤”填空,并总结其中的规律:
(1)5>3,5+2
3+2,5-2 3-2 ;
(2)–1
-1+2 3+2,-1-3 3-3 ;
结果:
(1)>、>(2)
当不等式两边加或减去同一个数(正数或负数)时,不等号的方向______
3、继续探究,接着又出示(3)、(4)题: 5 2×5,6×(3)6>2,6×(-5)
2×(-5),6 3×6,(4)2
3×(-6).得到:
当不等式的两边同乘以一个正数时,不等号的方向不变; 当不等式的两边同乘以一个负数时,不等号的方向改变.总结出不等式的性质: 不等式的性质1:不等式的两边加(或减)同一个数(或式子),不等号的方向不变.c
> b±c 字母表示为:如果a>b,那么a±不等式的性质2:不等式的两边乘(或除以)同一个正数,不等号的方向不变.字母表示为:如果a>b,c>0那么ac
> bc,不等式的性质3:不等式的两边乘(或除以)同一个负数,不等号的方向改变.字母表示为:如果a>b,c<0那么ac
不等式的对称性:如果a>b,那么bb,b>c,那么a>c
二、范例学习,应用所学.
1、利用不等式的性质解下列不等式. (1)x-7>26
(2)3x
(4)-4x﹥3
22、逐题分析得出结果.(1)x-7>26 分析:解未知数为x的不等式,就是要使不等式逐步化为x﹥a或x﹤a的形式.
解:(1)为了使不等式x-7>26中不等号的一边变为x,根据不等式的性质1,不等式两边都加7,不等号的方向不变,得 x-7+7﹥26+7 x﹥33(2)3x
为了使不等式3x
23不等号的方向不变,得 x﹥75(4)-4x﹥3
为了使不等式-4x﹥3中的不等号的一边变为x,根据不等式的性质3,不等式两边都除以-4,不等号的方向改变,得x
3 4通过(3)(4)的求解过程,类似于解方程两边都除以未知数的系数(未知数系数化为1),解不等式时要注意未知数系数的正负,以决定是否改变不等号的方向.三、课堂探究.
已知a
四、课堂小结提问.不等式性质的作用.
等式课件 篇4
尊敬的各位老师,下午好!
我叫孙有玺,来自音河中学。很高兴能把《不等式的性质(1)》一课的教学和大家一起探讨。下面我将从学生状况、教学任务、教学过程、设计说明等四个方面加以分析。
一、学生状况分析:
七年级下期的学生活泼好动,有一定合作探究意识,在知识方面已经学习了有理数大小比较,等式及基本性质。这些都为自主探究不等式的性质打下了良好的基础。
二、教学任务分析:
(一)教材地位与作用:
不等式是初中代数的重要内容之一,是已知量与未知量的矛盾统一体。数学关系中的相等与不等是事物运动和平衡的反映,学习研究数量的不等关系,可以更好地认识和掌握事物运动变化的规律。“不等式的性质”是学生学习整个不等式知识的理论基础,为以后学习解不等式(组)起到奠基的作用。
(二)教学目标:
知识目标:
探索不等式的基本性质,并能准确运用不等式的三条性质将不等式变形。
能力目标:
让学生学会类比的思想对等式性质及不等式性质进行了比较,培养学生的观察、分析、归纳的能力。
情感目标:
通过“等”与“不等”的比较使学生进一步领会对立统一的思想,培养学生辨证唯物主义的观点。
(三)教学重点、难点:
不等式的性质是本节不等式变形的基础,也是今后解不等式(组)的依据,所以掌握不等式的基本性质,并能正确运用它们将不等式变形是本节课的重点。
不等式的两边同乘以(或除以)负数,不等号方向改变和等式的性质不同,学生学习起来比较困难,因此,不等式性质3的理解与正确使用是本节课的难点。让学生自己动口、动手、动脑,进行比较、讨论,并加以强化练习达到突破的目的。
(四)教学方法与学法的指导:
本节课属于性质类知识,重在探索,意在应用。因此,我采用启发诱导、实例探究的方法进行教学,这种教学方法以“主动探索”为基础,先“引导发现”后“讲评点拨”,让学生在克服困难与障碍的过程中发展自己的观察力、想象力、思维力。引导学生学会类比、归纳的学习方法,帮助他们在自主探究过程中理解和掌握不等式的性质。
三、教学过程
(一)复习提问、引入新课
为了使学生自己能在教师的指导下,自主探究问题,发现问题,获得结论。而不是把现成的结论告诉学生。对于不等式性质的发现,我采用了下面的作法,我首先带领学生复习等式的性质
等式性质1等式两边加(或减)同一个数或式子,结果仍相等。
等式性质2等式两边乘同一个数,或除以同一个不为零的数,结果仍相等。
(二)合作交流、探究新知
在复习等式性质后,教师提出不等式是否也有类似的性质呢?先引导学生对不等式的两边都加、减同一个数,会发现什么呢?学生通过思考和计算后会说出不等式两边都加、减同一个数,“仍是不等式”。此时,教师抓住学生叙述中的问题予以纠正,不能笼统的说“仍是不等式”,因为“=”没有方向性,而不等号有方向性,所以要改为“不等号的方向不变”。接着,让学生不等式作两边都乘以或除以同一个数的变形,会发现什么呢?学生通过计算和讨论,甚至会发生争执,教师要深入学生,通过共同探讨,学生会发现不等式两边都乘以或除以正数,不等号方向不变,两边都乘以或除以负数,不等号方向改变。最后由学生归纳出不等式的`性质2和性质3。
我这样安排的目的是为了让学生通过动手、动口、动脑发挥合作精神,学会运用类比、归纳的数学思想去探究问题,同时学生也会品尝到成功的喜悦,从而提高他们学习数学的兴趣。
(三)灵活运用、巩固练习
为使学生能够准确运用性质将不等式变形,也为例题的教学做一些铺垫,我先设置了两组抢答题:
抢答:看谁答的快又准
1·设m>n,用“<”或“>”填空:
(1)m—5___n—5
(2)m+4___n+4
(3)6m___6n(4)
—5m___—5n
2·判断:
(1)∵3+x>3+y,∴x>y()
(2)∵3>2,∴n+3>2+n()
(3)∵a<b,∴2a+1<2b+1()
(4)∵—2a<6,∴x>—3()
在学生练习过程中,老师特别强调:当不等式两边同乘以或除以负数时,“不等号的方向改变”。
接着,给出例题:
例1·利用不等式的性质解下列不等式,并在数轴上表示解集:
(1)x+7>10
(2)3x>2x+1
(3)—10x>50
(4)—4x
例2·根据下列已知条件,说出a与b的不等关系:
(1)a—3>b—3
(2)—a>—b
(3)—2a+1
例1由学生分组讨论,写出解题过程,老师展示几个同学的解答并给予讲解。对于例2我采用先引导学生分析解题思路,再让学生口述解题过程,并说明根据不等式的哪一条性质,由师生共同完成。
为了解学生能否独立运用性质将练习三,安排学生演板:
3·利用不等式的性质解不等式。
(1)—3x>12
(2)3x—4
请两位学生演板,其余学生独立完成,并对学生演板的结果作出评价,教师深入小组,发现问题及时纠正,通过学生的互相评价找出应用不等式基本性质进行变形中出现的错误,以防患于未然。
以上练习完成之后,学生已能准确运用不等式的性质,将不等式变形,为培养学生的解题能力,让学生更深层地理解不等式的基本性质,在此基础上我又作出了一些引申和推广。
4·判断正误,并说明理由。
(1)∵5>4,∴5a>4a
(2)不等式2x>5x的两边同除以x,得2>5
(3)若ac2>bc2,则a>b
第4题设计说明,当不等式两边同乘或除以一个字母,而字母的取值不明确时,需对字母分情况讨论。
〔四〕归纳小结、整体把握
为帮助学生从整体把握本节课所学的知识,培养良好的学习习惯,让学生自己对本节课所学知识以及用到的解决问题的方法进行小结。方法是:由学生四人一组互谈本节课的收获,总结解题方法,并说明解题过程中应该注意的问题,然后请一位同学小结,其他学生补充,达到巩固知识的目的。
教学设计说明
学生的学习内容应该是现实的、有趣的和富有挑战性的,而老师则应该创造一个有利于学生主动求知的学习环境。因此,本节课把培养学生的学习兴趣和思维能力放在首位。教学中采用合作学习的方式,互相交流,集思广益,突破创新,以达到共同提高的目的。然后,通过多样化的练习巩固知识,既调动学生的积极性,又使学习伙伴之间进行了思维的碰撞和沟通。使其在轻松的氛围中多层次、多角度地掌握“不等式的性质”。
本节课的设计体现了一个原则:低起点、多练习、勤反馈、快矫正、重能力、以求最大限度提高课堂效率。
等式课件 篇5
均值不等式
教学目标
(一) 知识与技能:明确均值不等式及其使用条件,能用均值不等式解决简单的最值问题.
(二) 过程与方法:通过对问题主动探究,实现定理的发现,体验知识与规律的形成过程.
(三) 情感态度与价值观:通过问题的解决以及自身的探索研究领略获取新知的喜悦.教学重点:均值不等式的推导与证明,均值不等式的应用.教学难点:均值不等式的应用 教学过程
创设情境如图,AB是圆的直径,D是CAB上与A、B不重合的一点,AD=a,DB=b,过点D作垂直于AB的弦CD,连AC,BC,AaODbB则CD=__,半径OC=____E 讨论 :(1)CD OC (2)文字叙述(几何意义): (3)试用含a、b的表达式来表示上述关系 注意:(1)当 时, (2)a、b的取值范围
探求新知:均值不等式的内容及证明
均值定理:
证明:(比较作差法)
变形应用:(1)
(2)
讨论释疑:
牛刀小试:已知x0,则x1x 例
1、已知ab0,求证:baab2并推导出式中等号成立的条件
例
2、求函数f(x)x22x3x(x0)的最值,以及此时x的值
精炼巩固:
t2 1.设t0,则函数f(t)4t1的最小值为此时t的值
4 2.已知正数a,b满足ab1,则ab有最值为
点拨提高:
总结本节课的你的收获。
课堂小测:
1 .已知正数a,b满足ab1,则1a1b有最值为。 2 .设x3,则函数f(x)(x3)2x3的最小值为此时x的值3.已知a、bR,求证:(a11a)(bb)4
课堂小测:
1 .已知正数a,b满足ab1,则1a1b有最值为。 2 .设x3,则函数f(x)(x3)2x3的最小值为此时x的值3.已知a、bR,求证:(a11a)(bb)4
课堂小测:
1
.已知正数a,b满足ab1,则1a1b有最值为。 2 .设x3,则函数f(x)(x3)2x3的最小值为此时x的值3.已知a、bR,求证:(a11a)(bb)4
课堂小测:
1
.已知正数a,b满足ab1,则1a1b有最值为。 2 .设x3,则函数f(x)(x3)2x3的最小值为此时x的值3.已知a、bR,求证:(a11a)(bb)4
不等式基本性质教学设计
《等式的性质》教学设计
《等式的性质》教学设计
等式性质教学设计(共8篇)
基本不等式教学设计
等式课件 篇6
教学内容:教科书第3~4页的内容,练习一的4~6题。
教学目标:1、通过学习,使学生知道等式两边同时加上或减去同一个数,所得的结果仍然是等式。
2、有意识地培养学生的自学能力。
教学重点与难点:根据等式的性质(一)学会解决含有加、减号的方程。
教学流程:
一、教学例3
出示图,学生根据图独立填空。
根据学生的回答,板书:
20=20xx+10=20+10
X=50X+20=50+20
50+a=50+a50+a-a=50+a-a
X+20=70X+20-20=70-20
提问:比较两边的算式,你有什么发现,在小组里说说。
全班交流,引导学生说出:等式两边同时加上或减去同一个数,所得的结果仍然
是等式。这是等式的性质。
独立完成练一练第1题
二、教学例4
学生自学,不懂的问题和同组同学交流,能解决的就小组内交流。
全班交流:例4中还有什么不懂的地方提出来,能由学生解决的就由学生解决,学生解决不了的教师解决。
一是方法:根据等式的性质把含有未知数的这边化简成就含有一个未知数。
二是检验:把计算的结果代到原式,看左右两边是否相等。
三强调书写的格式。
小结:求方程中未知数值的过程,叫做解方程。
完成试一试练一练的第2题。
学生独立完成后集体订正,重点帮助有困难的学生,针对学生出错的地方及时分
析错误原因,帮助他们弄懂。
三、课堂作业
练习一的第5题。
板书:
等式两边同时加上或减去同一个数,所得的结果仍然是等式。
这时等式的性质。
X+10=50
解:X+10-10=50-10
X=40
等式课件 篇7
1、具体情境,感受天平平衡
通过课件展示情境图引导学生小结出等式并用字母表示。
2、猜想假设、小结规律
先让学生猜想然后再通过课件在天平上演示过程。验证学生的猜想,用字母表示。引导学生小结出:等式两边同时加上同一个数,左右两边仍然相等。
3、观察思考、总结发现
通过课件对教材第64页图2的演示过程让学生独立思考,再通过小组合作讨论总结出发现的规律。等式的性质1:等式两边加上或减去同一个数,左右两边仍然相等。
4、假设数据、验证规律
得到结论后通过假设物体的具体的数据验证学生自己总结出的规律。
5、口算练习、应用规律
通过一些简单的等式问答应用等式两边同加或同减相同的数以加强规律的应用。
6、设疑思考
提出问题让学生思考还有没有其他的运算也能使等式左右两边相等。留给学生思维的空间,再通过课件引导学生一步步总结出等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,左右两边仍然相等。
等式课件 篇8
1、创设情景,引发认知冲突
以前学生解方程习惯用加减法、乘除法互为逆运算的方式解方程,这样的思路只适宜解比较简单的方程,例如:x+3=5、3x=-12等,简单的一元一次方程的解用估算的方法或逆运算的方式我们都可以求出方程的解;而象19+28x=33x-1这样比较复杂的方程我们用上述方法还能求出它的解吗?我利用学生认知上的冲突引入新课。这样既激发了学生的学习兴趣又明确了本节课的教学目的。为等式性质的构建做好铺垫。
2、实验探索,从特殊到一般
等式性质的呈现属于实验探究型课,目的是要学生在活动中体验等量的变化关系和等式的性质。这里我分段逐步呈现等式的特性。首先出示平衡天平的图形,给学生一个天平平衡的印象,引导学生用字母构建一个等式,接着在上一个平衡天平的基础上,两侧同放一个三角形的符号表示物体的重量,让学生观察这时出现什么现象,同时提出问题:怎样做,两边才会保持平衡?通过学生实验得出使天平两边平衡的方法,并用字母式子表示实验的过程,再通过归纳,概括出对象的共同属性加以表述,接着通过几个练习加以巩固,然后借助上一个实验的经验和方法,进一步指导学生完成天平两边成倍变化的实验,最后根据实验情况观察归纳结论。同时注意在总结时先让学生根据实验,把自己所得到的结论叙述出来,然后教师再对学生的结论给予概括得到等式的性质。
上述讲授等式的性质用的是观察实验法,实验观察是科学研究的一种基本的方法,它是根据客观事物和现象找出它具有的客观规律,有助于发现一些数学事实,抽象出对象的属性,再通过归纳,概括出对象的共同属性加以表述。同时也体现了由特殊到一般的思维认知规律。
3、强化概念,指导学生尝试
关于等式概念、等式与方程的联系的引出,教法上采用充分利用学生已有的知识、练习回顾、交流的方式。等式的性质的教学,采用师生共同观察实验,让学生通过对直观图形的观察、实验和猜想,自已发现结论,并用总结的形式表述结论。等式性质的理解和掌握关键在于应用,只有通过大量练习来巩固和提高,练习的速度越快正确越高,说明知识理解和掌握的越好。因此在教学中得到等式性质后,就用三组尝试练习加强巩固和提高,这样既调动了学生学习的趣味性和主动性,增强了学生积极参与教学活动的意识,又很好地培养了学生的动手操作能力、观察能力、逻辑思维能力和总结归纳能力,同时,也向学生渗透了实践——认识——再实践——再认识的一种学习方法,使新旧知识技能得到了有机的结合。
等式课件 篇9
教学内容:教科书第3~4页的内容,练习一的4~6题。
教学目标:1、通过学习,使学生知道等式两边同时加上或减去同一个数,所得的结果仍然是等式。
2、根据等式的性质(一)学会解决含有加、减号的方程。
3、有意识地培养学生的自学能力。
教学过程:
一、教学例3
出示图,学生根据图独立填空。
根据学生的回答,板书:
20=2020+10=20+10
X=50X+20=50+20
50+a=50+a50+a-a=50+a-a
X+20=70X+20-20=70-20
提问:比较两边的算式,你有什么发现,在小组里说说。
全班交流,引导学生说出:等式两边同时加上或减去同一个数,所得的结果仍然
是等式。这是等式的性质。
独立完成练一练第1题
二、教学例4
学生自学,不懂的问题和同组同学交流,能解决的就小组内交流。
全班交流:例4中还有什么不懂的地方提出来,能由学生解决的就由学生解决,
学生解决不了的教师解决。
一是方法:根据等式的性质把含有未知数的这边化简成就含有一个未知数。
二是检验:把计算的结果代到原式,看左右两边是否相等。
三强调书写的格式。
小结:求方程中未知数值的过程,叫做解方程。
完成试一试练一练的第2题。
学生独立完成后集体订正,重点帮助有困难的学生,针对学生出错的地方及时分
析错误原因,帮助他们弄懂。
三、课堂作业
练习一的第4、5、6题。
第4、6题做在书上,第5题写在作业本上。
等式课件 篇10
一、学情分析:作为初一学生(132班和137班)在小学时已经对等量关系和等式的性质有所了解,通过本节课的学习,目的是要使学生从天平的特点中归纳得出等式的性质。
新课标对本节课的要求是:掌握等式的性质。在前面一节课的学习中,学生掌握了一元一次方程的概念和初步应用后,需要解决的是一元一次方程的解法。本节内容借助于等式的性质这一工具来解一元一次方程。首先,通过天平的实验操作,使学生学会观察。尝试分析归纳等式的性质。然后,利用等式的性质解一元一次方程。通过解方程的学习提高学生的观察问题、解决问题的能力。
2、教育教学目标。
根据以上对教材的理解与内容分析,考虑到学生已有的知识结构和心理特征,制定如下教学目标:
(1)知识与技能:探究等式的性质,并能利用等式的性质进行等式变形、解简单的一元一次方程。
(2)过程与方法:通过实验培养学生探索能力、观察能力,归纳能力和应用新知识的能力。
(3)情感态度价值观:积极参与数学活动,体验探索等式性质过程的挑战性和数学结论的确定性,建立学生学好数学的信心。
为了使学生能比较顺利地达到教学目标,我确定了本节课的教学重、难点:
教学重点:探究等式的性质,能根据等式性质进行等式变形、解简单的一元一次方程。
教学难点:利用等式的性质把简单的一元一次方程变形为x=a(常数)的形式;正确理解等式性质2中除数不能为0。
(一)教学手段:如何突出重点、突破难点,从而实现教学目标,我在教学过程中利用多媒体演示拟计划进行如下操作:
1、读(看)――议――讲结合法。
2、图表分析法。
3、读图讨论法。
4、教学过程中坚持启发式教学的`原则。
坚持“以学生为主体,以教师为主导”的原则。即“以学生活动为主导,教师讲述为辅,学生活动在前,教师点拨评价在后”的原则。根据初一学生的心理发展规律。联系实际安排教学内容,采用学生参与高度的学导式讨论教学法、师生交谈法、图象信号法、问答法、教学课堂讨论法,使学生动口、主动探索、发现问题、解决问题、互动合作、归纳概括、形成能力,突出学生的主体地位。在采用问答法时,特别注重不同难度的问题。
提问不同层次的学生面向全体,使基础差的学生也有表现的机会,培养其自信心,激发学习热情,有效开发各层次学生的潜在能力求使每个学生都在原有基础上得到发展,同时通过课堂练习和课后作业启发学生。在教学中要积极培养学生数学学习兴趣和动机。明确学习目的,教师应在课堂上充分调动学生积极性,激发来自学生主体的最有力的动力。
实际上,青少年好动,注意力易分散,爱发表见解。希望得到老师的表扬所以在教学中应抓住学生这一生理特点。一方面运用直观生动的形象,引发学生兴趣,使他们的注意力始终集中在课堂上。另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。
首先我出了一些可以看出方程解的题目,让学生回答,由易到难,激起学生学习的欲望,紧接着就引入等式的定义,从而使学生明白解方程先要研究等式,从而引入课题。
由于学生的认知结构是由简单到复杂,由具体到抽象的过程,因此在这一环节中,我分两个方面来教学:等式的性质1由老师课件演示,学生观察归纳概括。
我利用多媒体依次展示天平图的各个操作。让学生通过观察,用语言来描述发现,与同桌交流。这样由具体演示到抽象概括,使学生记忆深刻,充分体现了学生为主体,教师为主导的原则。
通过上面的观察,让学生分组讨论:如何用算式表示实验结果?学生交流后,教师进行课件演示。
本节课,让学生经历一种从平衡到不平衡再到新的平衡的过程,体验变化是怎样产生的,怎样从打破平衡,又怎样达到新的平衡。从而培养了学生观察能力和抽象概括能力。
我接着提问:如果天平两边减去相同的质量,天平会有什么变化?
让学生先独立思考,然后教师课件演示。你又发现了什么规律?怎样用等式描述?得出等式两边同时减去同一个数,等式仍然成立。并且由以上两条规律得出:等式的两边同时加上或减去同一个数,等式仍然成立。
如果在天平两边同时加上或减去不同的质量,天平会有什么变化?
学生经过思考得出:等式的两边加上或减去的必须是同一个数,才能使等式成立。这样符合学生的认知规律,从实践认识,再到实践认识的过程。
教师再用课件展示天平图,学生通过观察,归纳得出:等式两边同时乘或除以同一个数(除数不能为0),等式仍然成立。
等式基本性质2的推导在性质1的基础上,让学生自己通过观察探究,运用知识的迁移得出,这样培养了学生逻辑思维能力,抽象概括能力和口头表达能力。
(2)若a=b,则ac=bc,
注意:
(1)等式两边都要参加运算,且是同一种运算。
(2)等式两边加或减,乘或除以的数一定是同一个数或同一个式子。
(3)等式两边不能都除以0,即0不能作除数或分母。
在这个环节中把等式的两个性质展示出来,我特别提到了三个注意:因为这是在等式性质解方程中容易出错的地方,就是希望同学们认真细心,正确利用性质解题。
我在练习中设计了三道题,从简单的填空到判断变形对错,到最后的解方程,方程的四道题也是有简单到复杂,总之练习题的设计,低起点,小台阶,循序渐进,符合学生接受知识的特点,是那些平时不举手的同学也积极参与,竟然问题也答得很好。从这些方面培养了学生的灵活性,使学生获得成功的满足感。
作业设计:
PPT投影出课本第83页习题3.1第4题。
等式课件 篇11
一、教材分析
等式的基本性质是学生在刚刚认识了等式与方程的基础上进行教学的。它是系统学习方程的开始,其核心思想是构建等量关系的数学模型。本节课的学习是学生在实验的基础上,掌握等式的两个基本性质,引导学生通过比较,发现规律,并为今后运用等式的基本性质解方程打基础。同时培养学生数学思维能力。
二、教学目标:
知识与技能:理解并能用语言表述等式的基本性质,能用等式的基本性质解决简单问题。
过程与方法:在用算式表示实验结果、讨论、归纳等活动中,经历探索等式基本性质的过程。
情感态度价值观:积极参与数学活动,体验探索等式基本性质过程的挑战性和数学结论的确定性。
三、教学重点是:
引导学生探索发现等式的基本性质,利用等式的基本性质解决简单问题。
教学难点是抽象归纳出等式的基本性质。
四、教学程序(分三部分教学)
(一)联系实际,激趣引入
首先激发探究兴趣:提出问题:“同学们,你用天平做过游戏吗?”这节课我们就利用天平一起来探索天平游戏中所包含的数学知识。”
(二)自主探索,合作交流
学习等式的基本性质1
1、具体情境,感受天平平衡
利用多媒体依次展示天平图的各个操作。让学生通过观察,用语言来描述发现,与同桌交流。这样由具体演示到抽象概括,使学生记忆深刻,充分体现了学生为主体,教师为主导的原则。
图1、图2的教学模式:先让学生观察,问:你发现了什么?然后提问:怎样变换,能使天平仍然保持平衡呢?待学生思考片刻,再进一步提问:往两边各放1个杯子,天平会发生什么变化?生口答,验证。接下去,继续提问:如果两边各放上2个茶杯,天平还会保持平衡吗?两边各放上同样的一把茶壶呢?生答,再一一演示验证。
图3、图4的教学模式和前面一样。
板书如下:
2、总结抽象,认识规律
通过上面的观察,先用一句话归纳图1和图2的内容。(1、等式的两边都加上或减去相同的数,等式不变。)再以第一句话为基础归纳出图3和图4的内容。(2、等式的两边都乘或除以相同的数(0除外)等式不变。)
教师指出这是等式的一个非常重要的性质。板书:等式的基本性质
(三)巩固练习,深化认识
练习题的设计,低起点,小台阶,循序渐进,符合学生接受知识的特点,培养了学生的灵活性,使学生获得成功的满足感。
1、根据图(1)在下面每幅图的括号里填上适当的符号或数字,使天平平衡。
2、课堂作业。(当堂完成)
填一填。(a、b均不为0)
(1) 如果x+a=b,那么x+a-a=b○
(2) 如果x-a=b,那么x-a+a=b○
(3) 如果ax=b,那么a x÷a=b○
(4) 如果x÷a =b,那么x÷a×a=b○
3、拓展训练。
五、最后,关注学生的和感受,提出:通过本节课的学习你有什么收获?
不等式的课件
老师在开学前需要把教案课件准备好,每个人都要计划自己的教案课件了。教案是实现高效教学的不可或缺要素之一。如果您想深入理解这一话题不妨看看“不等式的课件”,本文的内容必将给您带来很多有用的收获!
不等式的课件 篇1
【教学目标】
1、知识与技能目标
(1)掌握基本不等式 ,认识其运算结构;
(2)了解基本不等式的几何意义及代数意义;
(3)能够利用基本不等式求简单的最值。
2、过程与方法目标
(1)经历由几何图形抽象出基本不等式的过程;
(2)体验数形结合思想。
3、情感、态度和价值观目标
(1)感悟数学的发展过程,学会用数学的眼光观察、分析事物;
(2)体会多角度探索、解决问题。
【能力培养】
培养学生严谨、规范的学习能力,辩证地分析问题的能力,学以致用的能力,分析问题、解决问题的能力。
【教学重点】
应用数形结合的思想理解不等式,并从不同角度探索不等式 的证明过程。
【教学难点】
基本不等式 等号成立条件。
【教学方法】
教师启发引导与学生自主探索相结合
【教学工具】
课件辅助教学、实物演示实验
【教学流程】
SHAPE MERGEFORMAT
【教学过程设计】
创设情景,引入新课
如图是在北京召开的第24届国际数学家大会的会标, 这是根据赵爽弦图而设计的。用课前折好的赵爽弦图示范,比较 4个直角三角形的面积和与大正方形的面积,你会得到怎样的相 等和不等关系?
赵爽弦图
1.探究图形中的不等关系
将图中的“风车”抽象成如图,在正方形ABCD中右个全等的直角三角形。
设直角三角形的两条直角边长为a,b那么正方形的边长为 。这样,4个直角三角形的面积的和是2ab,正方形的面积为 。由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式: 。
当直角三角形变为等腰直角三角形,即a=b时,正方形EFGH缩为一个点,这时有 。
2.得到结论:一般的,如果
3.思考证明:你能给出它的证明吗?
证明:因为
当
所以, ,即
4.基本不等式
1)特别的,如果a>0,b>0,我们用分别代替a、b ,可得 ,通常我们把上式写作:
2)从不等式的性质推导基本不等式
用分析法证明:
要证 (1)
只要证 (2)
要证(2),只要证 a+b- 0 (3)
要证(3),只要证 ( - ) (4)
显然,(4)是成立的。当且仅当a=b时,(4)中的等号成立。
3)理解基本不等式 的几何意义
不等式的课件 篇2
基本不等式教学设计
数学与应用数学 钟林
课题:人教A版必修5第3章4节,基本不等式
【教学目标】
1.通过两个探究实例,引导学生从几何图形中获得两个基本不等式,了解基本不等式的几何背景,体会数形结合的思想。
2.进一步提炼、完善基本不等式,并从代数角度给出不等式的证明,组织学生分析证明方法,加深对基本不等式的认识,提高逻辑推理论证能力。 3.结合课本的探究图形,引导学生进一步探究基本不等式的几何解释,强化数形结合的思想。
4.借助例1尝试用基本不等式解决简单的最值问题,通过例2及其变式引导学生
ab领会运用基本不等式ab的三个限制条件(一正二定三相等)在解决最
2值中的作用,提升解决问题的能力,体会方法与策略。
【重点难点】
重点:应用数形结合的思想理解基本不等式,并从不同角度探索不等式abab的证明过程。
2难点:在几何背景下抽象出基本不等式,并理解基本不等式。
【教学设计】
(一)问题导入
欣赏2002年国际数学家大会会徽,会徽是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。你能发现它是什么图形构成的吗?请根据会徽探索一些常见相等或不等关系。
探究一:在这张“弦图”中能找出一些相等关系和不等关系吗? 在正方形ABCD中有4个全等的直角三角形.设直角三角形两条直角边长为,a,b。
22ab那么正方形的边长为。
于是,4个直角三角形的面积之和S12ab。 正方形的面积S2a2b2。 由图可知S2S1,即a2b22ab。
当直角三角形变为等腰直角三角形,即时,正方形EFGH缩为一个点,这时 a2b22ab
所以a2b22ab。
探究二:如下图所示的梯形中,EF是梯形ABCD的中位线,梯形ABGH相似于梯 形GHDC。
梯形ABCD的上底是a,下底是b。让同学们自主研究GH和EF的大小关系。
ab因为EF是中位线,所以EF,
2由相似,可以得出GHab, 同样因为相似,有
AGABa, GDGHb又因为ab,所以AGGD,即AGAE,
ab。 2显然,当AB逐渐趋近CD的时候,GH也逐渐向EF靠近, 当AB=CD的时候,即ABCD是矩形的时候,GH与EF重合。
ab即,当且仅当ab时,ab。
2ab所以,ab,当且仅当ab时,等号成立。
2所以GHEF,即ab
(二)概念深入
根据上述两个几何背景,初步形成不等式结论:
若a,bR,则a2b22ab。(当且仅当a=b时,等号成立)
ab。(当且仅当a=b时,等号成立) 2请同学们运用代数法证明: 作法一(作差法): 若a,bR,则aba2b22ab(ab)20ab2ab22
当且仅当a=b时,等号成立。且发现这里且a和b可以是全体实数、单项式、多项式。
作法二(分析法):
要证明abab, 2只需证明ab2ab, 即证ab-2ab0, 即为a-b20,该式显然成立,所以,当ab时取等号。
于是有这样的结论:
称ab为a,b的几何平均数;称基本不等式abab为a,b的算术平均数, 2ab又可叙述为: 2两个正数的几何平均数不大于它们的算术平均数
作法三(几何法):
如图,AB是圆O的直径,点C是AB上一点,AC=a,BC=b.过点C作 垂直于AB的弦DE,连接AD,BD。 从而有CDab,ODab。 2ab。 2ab当且仅当C点与圆心O点重合时,即a=b时,ab
2故再次证明:
aba0,b0,ab,当且仅当a=b时,等号成立。
2ab也说明了ab的几何意义:半径不小于半弦。
2由于直角三角形COD中,直角边CD
(三)例题讲解
例1.(1)用篱笆围一个面积为100平方米的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短,最短的篱笆是多少?
(2)一段长为36米的篱笆围成一个矩形菜园,问这个矩形的长、宽为多少时,菜园的面积最大,最大面积是多少?
(通过例1的讲解,总结归纳利用基本不等式求最值问题的特征,实现积与和的转化)
对于x,yR,
(1)若xyp(定值),则当且仅当xy时,xy有最小值2p;
s2(2)若xys(定值),则当且仅当xy时,xy有最大值。
4(鼓励学生自己探索推导,不但可使他们加深基本不等式的理解,还锻炼了他们的思维,培养了勇于探索的精神。)
1例2.求yx(x0)的值域。
x1变式1.若x2,求x的最小值.
x21在运用基本不等式解题的基础上,利用几何画板展示yx(x0)的函数
x图象,使学生再次感受数形结合的数学思想。
ab并通过例2及其变式引导学生领会运用基本不等式ab的三个限制
2条件(一正二定三相等)在解决最值问题中的作用,提升解决问题的能力,体会方法与策略。
(四)归纳小结&课后作业 基本不等式:
若a,bR,则a2b22ab。(当且仅当a=b时,等号成立)
ab。(当且仅当a=b时,等号成立) 2(1)基本不等式的几何解释(数形结合思想); (2)运用基本不等式解决简单最值问题的基本方法。
作业:A组第4题,B组第1题,第2题
若a,bR,则ab
不等式的课件 篇3
课题:3.4.3 基本不等式 的应用(二) 科目:数学 教学对象:高二(290)学生 课时:1课时 提供者:刘和安 单位: 姚安一中 一、教学内容分析 本节课的研究是起到了对学生以前所学知识与方法的复习、应用,进而构建他们更完善的知识网络。数学建模能力的培养与锻炼是数学教学的一项长期而艰苦的任务,这一点,在本节课是真正得到了体现和落实。?
根据本节课的教学内容,应用观察、阅读、归纳、逻辑分析、思考、合作交流、探究,对基本不等式展开实际应用,进行启发、探究式教学并使用投影仪辅助。? 二、教学目标 (一)知识目标:构建基本不等式解决函数的值域、最值问题;
(二)能力目标:让学生探究用基本不等式解决实际问题
(三)情感、态度和价值观目标:
通过具体问题的解决,让学生去感受、体验现实世界和日常生活中存在着大量的不等量关系并需要从理性的角度去思考,鼓励学生用数学观点进行类比、归纳、抽象,使学生感受数 学、走进数学、培养学生严谨的数学学习习惯和良好的思维习惯;? 三、学习者特征分析 在本节课的教学过程中,仍应强调不等式的现实背景和实际应用,真正地把不等式作为刻画现实世界中不等关系的工具。通过实际问题的分析解决,让学生去体会基本不等式所具有的广泛的实用价值,同时,也让学生去感受数学的应用价值,从而激发学生去热爱数学、研究数学。而不是觉得数学只是一门枯燥无味的推理学科。在解决实际问题的过程中,既要求学生能用数学的眼光、观点去看待现实生活中的许多问题,又会涉及与函数、方程、三角等许多数学本身的知识与方法的处理 四、教学策略选择与设计 1.采用探究法,按照观察、阅读、归纳、思考、交流、逻辑分析、抽象应用的方法进行启发式教学;?
2.教师提供问题、素材,并及时点拨,发挥老师的主导作用和学生的主体作用;?
3.设计较典型的具有挑战性的问题,激发学生去积极思考,从而培养他们的数学学习兴趣。?? 五、教学重点及难点 教学重点:1.构建基本不等式解决函数的值域、最值问题。?
2.让学生探究用基本不等式解决实际问题;?
教学难点:1.让学生探究用基本不等式解决实际问题;?
2.基本不等式应用时等号成立条件的考查;?
六、教学过程 教师活动 学生活动 设计意图 (一)导入新课
(二)推进新课
已知 ,若ab为常数k,那么a+b的值如何变化?
若a+b为常数s,那么ab的值如何变化?
老师用投影仪给出本节课的第一组问题
(1)求函数y=2x2+ (x>0)的最小值。?
(2)求函数y=x2+ (x>0)的最小值。?
(3)求函数y=3x2-2x3(0
(4)求函数y=x(1-x2)(0
(5)设a>0,b>0,且a2+ =1,求 的最大值。?
(三)合作探究 我们来考虑运用正数的算术平均数与几何平均数之间的关系来解答这些问题。根据函数最值的含义,我们不难发现若平均值不等式的某一端为常数,则当等号能够取到时,这个常数即为另一端的一个最值。 ?
(四)例题精析?
【例】某工厂要建造一个长方体形无盖贮水池,其容积为4 800 m3,深为 3 m.如果池底每平方米的造价为150元,池壁每平方米的造价为120元,怎样设计水池能使总造价最低?最低总造价是多少?
当且仅当a=b时,a+b就有最小值为2k.?
当且仅当a=b时,ab就有最大值 (或ab有 最大值 ).?
学生完成
留五分钟的时间让学生思考,合作交流
(根据学生完成的典型情况,找五位学生到黑板板演,然后老师根据学生到黑板板演的完成情况再一次作点评)?
学生思考、回答,
不等式的课件 篇4
不等式
教材分析:本课由实际问题中的不等关系引出不等式的概念;类比方程的解,明确不等式解和解集的概念,以及不等式解集的两种表示方法。
教学目标:了解不等式概念,理解不等式的解和解集。 教学重难点:不等式及解集概念的理解。 教学过程: 一:引出新知。
现实世界中存在大量的数量关系,包括相等关系和不等关系。用等式(包括方程),我们可以研究相等关系,而研究不等关系需要用本章的不等式,如引言中选择购物商场问题.二:探索新知。
问题1 一辆匀速行驶的汽车在11:20距离A地50 km,要在12:00之前驶过A地.你能用式子表示出车速应满足的条件吗?
1、汽车在12:00之前驶过A地的意思是什么? 从时间上看,汽车要在12:00之前驶过A地,则 以这个速度行驶50 km所用的时间不到。
从路程上看,汽车要在12:00之前驶过A地,则以这个速度行驶的路程要超过50 km。
2、如何用式子表示以上不等关系? 设:车速为x km/h. 从时间上看: 从路程上看:
(1)对于不等式 而言,车速可以是80 km/h吗?78 km/h呢?75 km/h呢?72 km/h呢?
(2)类比方程的解,什么叫不等式的解?
使不等式成立的未知数的值.(3)不等式还有其他解吗?如果有,这些解应满足什么条件?
一般地,一个含有未知数的不等式的所有的解,组成这个不等式的解集.求不等式的解集的过程叫做解不等式. (4)除了用不等式表示取值范围,还有其他表示方法吗? 数轴
三、运用新知。 例1 请用不等式表示:
(1) 是负数;
(2) 与5的和小于-7;
(3) 的一半大于3.例2 直接说出不等式的解集,并在数轴上表
示出来.
四、归纳总结 (1)什么叫不等式?
(2)什么叫不等式的解?不等式的解和方程的解的区别? (3)什么叫不等式的解集?不等式的解和不等式的解集的区别?
五、布置作业
教科书 习题 第
1、
2、3题。
不等式的课件 篇5
[教学目标]
依据《新标准》对《不等式》学段的目标要求和本班学生实际情况,特确定如下目标:
1、知识与能力目标:理解掌握基本不等式,并能运用基本不等式解决一些简单问题(求最值、证明不等式);培养学生探究能力以及分析问题解决问题的能力。
2、过程与方法目标:按照创设情景,提出问题→ 剖析归纳证明→ 几何解释→ 应用(最值的求法、不等式的证明)的过程呈现。启动观察、分析、归纳、总结、抽象概括等思维活动,培养学生的思维能力,体会数学概念的学习方法,通过运用多媒体的教学手段,引领学生主动探索基本不等式性质,体会学习数学规律的方法,体验成功的乐趣。
3、情感与态度目标:通过问题情境的设置,使学生认识到数学是从实际中来,培养学生用数学的眼光看世界,通过数学思维认知世界,从而培养学生善于思考、勤于动手的良好品质。
二、 [教学重点]
基本不等式 的证明过程及应用。
三、 [教学难点]
1、基本不等式成立时的三个限制条件(简称一正、二定、三相等)的正确理解;
2、灵活利用基本不等式求解实际问题中的最大值和最小值。
四、 [教学方法]
本节课采启发诱导、讲练结合的教学方法,结合现代信息技术多媒体课件、几何画板作为教学辅助手段,加深学生对基本不等式的理解。
[教学用具]
多媒体、几何画板
六、 [教学过程]
教学过程设计以问题为中心,以探究解决问题的方法为主线展开。这种安排强调过程,符合学生的认知规律,使数学教学过程成为学生对知识的再创造、再发现的过程,从而培养学生的创新意识。
具体过程安排如下:
(一)、创设情景,提出问题;
上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客。
[问]你能在这个图中找出一些相等关系或不等关系吗?
利用图中相关面积间存在的数量关系,抽象出不等式 。在此基础上,引导学生认识基本不等式。
同时,(几何画板辅助教学)通过几何画板演示,
让学生更直观的抽象、归纳出结论:
(二)、抽象归纳:
一般地,对于任意实数 ,有 ,当且仅当 时,等号成立。
[问] 你能给出它的证明吗?
学生在黑板上板书。
特别地,当 时,在不等式 中,以 、 分别代替 ,得到什么?
答案: 。
【归纳总结】
如果 都是正数,那么 ,当且仅当 时,等号成立。
我们称此不等式为基本不等式。 其中 称为 的算术平均数, 称为 的几何平均数。
(三)、理解升华:
1、文字语言叙述:
两个正数的算术平均数不小于它们的几何平均数。
2、符号语言叙述:
若 ,则有 ,当且仅当 时, 。
[问] 怎样理解“当且仅当”?
3、探究基本不等式证明方法:
[问] 如何证明基本不等式?
方法一:作差比较或由 展开证明。
方法二:分析法。
分析法,实际上是寻找结论的充分条件,执果索因的一种思维方法。
4、探究基本不等式的几何意义:
读书破万卷下笔如有神,以上就是一米范文范文为大家带来的3篇《2023高中数学基本不等式教学教案》,希望对您有一些参考价值。
不等式的课件 篇6
不等式和不等式组复习课教学设计
一、设计思想:
“不等式”是初中数学核心内容之一。就不等式的解法来说,它是一种重要的数学技能;而就不等式的广泛作用来说,不管是与实际相关的问题,还是纯粹的数学问题,不管是代数方面的问题,还是几何图形方面的问题,乃至更为一般化的问题,只要是求未知数的值或范围的问题,经常要借助于不等式,可见学好不等式具有非常重要的意义。
这节课是中考前的专题复习课,知识点不多。由于学生已经学过本章内容,因此在本节复习中主要以提问的形式进行知识要点的复习,以学生自主探索和合作探究的学习方法学习本节内容。教师主要在习题的设计上选好典型例题,复习的知识尽量全面。教学效果上使不同的学生有不同的收获。
二、教学内容分析:
1.《课程标准》对本专题教学内容的要求:
(1)结合具体问题,了解不等式的意义,探索不等式的基本性质。 (2)能解简单的一元一次不等式,并能在数轴上表示出解集;会用数轴确定由两个一元一次不等式组成的不等式组的解集。
(3)能根据具体问题中的数量关系,列出一元一次不等式,解决简单的问题。 2.本节内容在中考中的地位和作用。
本部分内容在中考中大约6~12分,约占全卷分数的5%~8%左右。而且,近几年考试中,经常与方程、函数三角函数、几何等内容一起综合考查,因此学好本节内容对于解决这些综合问题起着举足轻重的作用。
三、教学目标:
1、知识技能:
①掌握不等式的概念和性质,能根据不等式的性质解决有关问题;
②掌握不等式(组)的解法,会求不等式(组)的解集,特别是不等式组的整数解;
③能根据不等式组的解集确定字母系数的范围;
④会列不等式(组)解决简单的实际问题,特别是方案设计问题。
2、数学思考:通过列不等式或不等式组解决具有不等关系的实际问题,让学生体会不等式是解决实际问题的有效的数学模型。
3、解决问题:通过不等式(组)描述不等关系解决实际问题,发展学生由实际问题转化为数学问题的能力。
4、情感态度:①通过复习教学,继续强化用数学的意识,从而使学生乐于接触社会环境中的数学信息,愿意谈论某些数学话题,能够在数学活动中发挥积极作用。
②.通过探索,增进学生之间的配合,使学生敢于面对数学活动中的困难,并有克服困难和运用知识解决问题的成功体验,树立学好数学的自信心。
教学重点:不等式(组)的解法的规范性及实际应用
教学难点:不等式组有无解的问题中字母系数的确定和实际问题中不等式(组)的列出
教学方法:依托多媒体平台,启发、谈论、互动探究法(学生讨论、教师点拨)、讲练结合。
教学手段:计算机多媒体辅助教学。 教学时间:1课时
教学准备:1.学生准备:预习教材,了解本节的知识要点。
2.教师准备:将学生分组,选好组长;制作多媒体课件。
教学设计
一 情境设计
导入新课
出示多媒体课件
1、问题情境:问题:某化妆品店老板到厂家选购A、B两种品牌的化妆品,若销售1套A品牌的化妆品可获利30元,销售1套B品牌的化妆品可获利20元,根据市场需求,化妆品店老板决定,购进B品牌化妆品的数量比购进A品牌化妆品数量的2倍还多4套,且B品牌化妆品最多可购进40套,这样化妆品全部售出后,可使总的获利不少于1200元,问有几种进货方案?如何进货? 教师:同学们,如果你是这个化妆品店的老板,你怎么解决进货方案问题? (学生思考):
教师:如何用数学符号表示标有下划线的词语?应该考查我们哪部分知识? 学生:最多 —— ≤;不少于—— -≥。 教师:我们学过的哪章知识与它们联系最密切?由此我们想到了哪部分知识? 学生:不等式和不等式组
教师:下面我们就来复习有关这方面的内容,“专题复习
(二)方程和不等式-----------不等式和不等式”。 (板书课题)
(多媒体出示教学目标。图略)
二、展示教学目标、教学重点和难点:(让学生学有目的,学有依据)
三、回顾知识要点:
1.知识网络出示;(使学生对本节知识的复习内容一目了然,从总体把握知识间的内在联系)
实际问题
3、知识要点复习不等关系不等式不等式的性质解不等式解集一元一次不等式一元一次不等式组解法解法数轴表示解集数轴表示实际应用解集数轴表示 2.知识要点复习:(通过提问由学生回答) ①基本概念复习
(澄清基本概念,对知识间的内在联系更明确。)
3、知识要点复习
一、基本概念:
1、不等式:
2、不等号:
3、不等式的解:
4、不等式的解集:
5、解不等式:
6、一元一次不等式:
7、一元一次不等式组:
8、一元一次不等式组的解集:
9、解一元一次不等式组: ②不等式性质复习:(它是解不等式和不等式组的重要依据,特别注意第3条性质,不等号方向改变问题,提醒学生,此处易错,提起注意)
3、知识要点复习
二、不等式的性质:(1)如果a>b,那么a+c>b+c,a-c>b-c不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。ab(2)如果a>b,并且c>0,那么ac>bc,cc不等式两边都乘以(或除以)同一个正数,不等号的方向不变。(3)如果a>b,并且c
3、知识要点复习三,规律与方法:1,不等式的解法:2,解不等式组的方法:3,不等式的解集在数轴上的表示:大向右,小向左,有等号是实心,无等号是空心.4,求几个不等式的解的公共部分的方法和规律:(1)数轴法(2)口诀法同大取大同小取小一大一小中间找 ④用一元一次不等式组解决实际问题的步骤:(为解决实际问题提供依据,这是本节的重点知识,学生可能会类比前边复习的方程和方程组的知识说出。)
3、知识要点复习
5、用一元一次不等式组解决实际问题的步骤:实际问题设未知数,列不等式(组)数学问题(不等式或不等式组)解不等式组实际问题的解答检验数学问题的解(不等式(组)的解集)
四、典型例题解析:(这一环节也是学生要达到的知识技能目标的重要一环,学生解题的顺利与否,是教师关注的重点。学生能够独立解出的,关注其过程是否规范,思路是否清晰,方法是否得当。不能解出的,先由小组合作探究,看是否能找到解题的思路,得出问题的答案;如果仍不能得出,教师加以点拨,引导,帮助学生找到解题思路,得出问题的答案。)
例1.(本题是一元一次不等式的解法的考查,是本节的基本题型,估计学生都能独立解出,可让中游的学生板演,这样解题步骤展现在大家面前,如果规范,起个示范作用;不规范,示范改正,起警示作用。把重点放在解题步骤是否规范上。)
4、典型例题:例1.解一元一次不等式解:3 (x-1) ≤6 –2(x-2)3x –3 ≤6 –2x+43x+2x ≤6+4+35x ≤13x ≤135自然数解非负整数解正整数解最大解最大整数解 (右边的云形图中是在学生解完不等式后先后出示的五种特殊情况,这样进
行变式教学,展示了一题多解的典型题目,同时又使学生锻炼了仔细审题的能力。)
4、典型例题:例1.解一元一次不等式解一元一次方程一元一次不解:3 (x-1) = 6 –2(x-2)解:3 (x-1) ≤6 –2(x-2)3x –3 = 6 –2x+43x –3 ≤6 –2x+4等式和一元一次3x+2x =6+4+3方程有何共同点3x+2x ≤6+4+35x =13和不同点?5x ≤x =x≤55 (通过这种一元一次不等式和一元一次方程解法的类比,使学生明确知识间的内在联系,同时发现其中的异同,对两者的区别更加清晰)
例2.(考查不等式的变形,解决问题的关键是正确理解不等式的概念和基本性质。重点关注基本性质的灵活掌握)
例3.(把平面直角坐标系的象限问题转化成不等式组问题,既体现了转化的数学思想方法,又见识了不等式组的广泛应用。可以帮学生回忆坐标系的有关知识。)
4、典型例题:a例2.若a1;b1a③a+b
3、在直角坐标系中,P(2x-6,x-5)在第四象限,则x的取值范围是3
例4.(把不等式中的相等问题出示,体现了相等和不等可以互相转化的数学思想。并与数与式中的乘方问题相联系,具有一定的综合性。)
例5.(借助数轴确定不等式组的解集,对于解这类题非常有效,学生容易做错,特别是是否包括界点问题,有一定难度,让学生小组合作探究,共同寻找问题的答案。教师巡视,给有困难小组点拨,指导。)
4、典型例题:xa2例
4、(2009凉山)若不等式组集是-1
例题分析:问题5问题分析:本题存在两个不等关系,一是购买B品牌化妆品不超过40套;二是两种化妆品的获利不少于1200元。根据这两个不等关系,可列不等式组求解。 (学生写出解题过程后,教师可出示规范的解题过程,体现数学学科的严谨性。)
4例题讲解:、典型例题:解:设A品牌化妆品购进m套,则B品牌化妆品购进(2m+4)套。根据题意得:解得:16≤m≤18.因为m为正整数,所以m=16,17,18,所以2m+4=
36、
38、40.所以有三种进货方案:(1)A种品牌的化妆品的购进16套,B种品牌的化妆品购进36套;(1)A种品牌的化妆品的购进16套,B种品牌的化妆品购进36套;(1)A种品牌的化妆品的购进16套,B种品牌的化妆品购进36套; (通过方案设计题的解决,使学生能够由实际问题建立数学模型,从而增强解决实际问题的能力。)
五、
归纳小结(先由学生自己归纳总结本节课的收获,从而把课堂传授的知识尽快化为学生的素质,以培养和增强学生的归纳总结能力;然后老师予以补充和归纳,为学生良好学习习惯的养成继续进行指导。)
5、归纳小结你会了吗?这节课你学到了什么?你有什么收获?你还有什么问题?
六、达标检测:(在这一环节,我设计了几个有梯度的题目,这样可使不同层次的学生都能有所收获,都能感受到成功的喜悦,使他们“在数学上都能有不同的发展”。)
6.达标检测(1)若2x=3+k的解集是负数,那么k的取值范围是______.K
3、不等式组数解为(A的最小整)A,-1 B,0 C,2 D,3 9
6.达标检测
4、跃壮五金商店准备从宁云机械厂购进甲、乙两种零件进行销售。若每个甲种零件的进价比每个乙种零件的进价少2元,且用80元购进甲种零件的数量与用100元购进乙种零件的数量相同。(1)求每个甲种零件、每个乙种零件的进价分别为多少元?(2)若该五金商店本次购进甲种零件的数量比购进乙种零件的数量的3倍还少5个,购进两种零件的总数量不超过95个,该五金商店每个甲种零件的销售价格为12元,每个乙种零件的销售价格为15元,则将本次购进的甲、乙两种零件全部售出后,可使销售两种零件的总利润(利润=售价-进价超过371元,通过计算求出跃壮五金商店本次从宁云机械厂购进甲、乙两种零件有几种方案?请你设计出来。 6.达标检测选做题•若不等式组xa012xx2有解,则a的取•值范围是(A)。•>-1 ≥-1 ≤1 <1
七、教学设计的理论依据
1.“理论联系实际”的原则,联系学生身边的生活,引导学生学习运用理论知识分析、解决实际问题。
2.新课程标准中的“学生是学习的主人”的主体教育思想。
本节课努力构建师生互动、生生互动的新的教学模式,创设情境引领教学,引导学生的合作学习,让其在思考讨论中自主学习,真正落实以学生为中心、以学生发展为根本,注重学生道德和能力的培养。
不等式的课件 篇7
《基本不等式》教学设计
基本不等式
开江中学 魏江兰
目标分析
依据《新课程标准》对《不等式》学段的目标要求和学生的实际情况,特确定如下目标:
1、知识与能力目标:理解掌握基本不等式,并能运用基本不等式解决一些简单的求最值问题;理解算数平均数与几何平均数的概念,学会构造条件使用基本不等式;培养学生探究能力以及分析问题解决问题的能力。
2、过程与方法目标:按照创设情景,提出问题→ 剖析归纳证明→ 几何解释→ 应用(最值的求法、实际问题的解决)的过程呈现。启动观察、分析、归纳、总结、抽象概括等思维活动,培养学生的思维能力,体会数学概念的学习方法,通过运用多媒体的教学手段,引领学生主动探索基本不等式性质,体会学习数学规律的方法,体验成功的乐趣。
3、情感与态度目标:通过问题情境的设置,使学生认识到数学是从实际中来,培养学生用数学的眼光看世界,通过数学思维认知世界,从而培养学生善于思考、勤于动手的良好品质。
教学重、难点分析
重点:应用数形结合的思想理解基本不等式,并从不同角度探索基本不等式abab的证明过程及应用。 2难点:
1、基本不等式成立时的三个限制条件(简称一正、二定、三相等);
2、利用基本不等式求解实际问题中的最大值和最小值。
教法分析
本节课采用观察——感知——抽象——归纳——探究;启发诱导、讲练结合的教学方法,以学生为主体,以基本不等式为主线,从实际问题出发,放手让学生探究思索。以现代信息技术多媒体课件作为教学辅助手段,加深学生对基本不等式的理解。
《基本不等式》教学设计
教学准备
多媒体课件、板书
教学过程
教学过程设计以问题为中心,以探究解决问题的方法为主线展开。这种安排强调过程,符合学生的认知规律,使数学教学过程成为学生对知识的再创造、再发现的过程,从而培养学生的创新意识。 具体过程安排如下:
一、创设情景,提出问题;
设计意图:数学教育必须基于学生的“数学现实”,现实情境问题是数学教学的平台,数学教师的任务之一就是帮助学生构造数学现实,并在此基础上发展他们的数学现实.基于此,设置如下情境: 上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客。
[问]你能在这个图中找出一些相等关系或不等关系吗?
本背景意图在于利用图中相关面积间存在的数量关系,抽象出不等式a2b22ab。在此基础上,引导学生认识基本不等式。
二、抽象归纳:
一般地,对于任意实数a,b,有a2b22ab,当且仅当a=b时,等号成立。 [问] 你能给出它的证明吗?
证明:因为a2b22ab(ab)20,即a2b22ab.(当ab时取等号)
特别地,当a>0,b>0时,在不等式a2b22ab中,以a、b分别代替a、b,得到什么?
设计依据:类比是学习数学的一种重要方法,此环节不仅让学生理解了基本不等式不等式的来源,突破了重点和难点,而且感受了其中的函数思想,为今后学习奠定基础.
《基本不等式》教学设计
答案: abab(a,b0)。 2你能用不等式的性质直接推导这个不等式吗? 证明:(分析法):由于a,bR,于是要证明 ab2ab,
只要证明 ab2即证
2ab,
ab2ab0,即 (ab)20,
所以abab,(当ab时取等号)
【归纳总结】
如果a,b都是正数,那么abab,当且仅当a=b时,等号成立。 2ab称为a,b的算术平均数,ab称2我们称此不等式为基本不等式。 其中为a,b的几何平均数。
文字语言叙述:两个正数的算术平均数不小于它们的几何平均数。
探究基本不等式的几何意义:借助初中阶段学生熟知的几何图形,引导学生探究abab(a,b0)2的几何解释,通过数形结合,赋予不等式不等式abab(a,b0)2几何直观。进一步领悟不等式中等号成立的条件。
如图:AB是圆的直径,点C是AB上一点,CD⊥AB,AC=a,CB=b,CD
Dab
abab2abOCAB几何解释实质可认为是:在同一半圆中,半径不小于半弦(直径是最长的弦);或者认为是,直角三角形斜边的一半不小于斜边上的高。
《基本不等式》教学设计
4.应用举例,巩固提高
我们可以用两个重要不等式来解决什么样的问题呢?
例1(1)用篱笆围一个面积为100平方米的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短,最短的篱笆是多少? (2)一段长为36米的篱笆围成一个矩形菜园,问这个矩形的长、宽为多少时,菜园的面积最大,最大面积是多少?
(通过例1的讲解,总结归纳利用基本不等式求最值问题的特征,实现积与和的转化) 对于(1)若(2)若,
(定值),则当且仅当(定值),则当且仅当
时,时,
有最小值有最大值
; .
(鼓励学生自己探索推导,不但可使他们加深基本不等式的理解,还锻炼了他们的思维,培养了勇于探索的精神.)
1例 2:当x0时,求yx的最小值?x1变式1:当x0时,yx有最值吗?
x1变式2:当x1时,yx有最值吗?
x通过例2及其变式引导学生领会运用基本不等式的三个限制条件(一正二定三相等)在解决最值问题中的作用,提升解决问题的能力,体会方法与策略.
练一练(自主练习):课本练习 5.归纳小结,反思提高
《基本不等式》教学设计
基本不等式:若若
,则,则
(当且仅当(当且仅当
时,等号成立) 时,等号成立)
(1)基本不等式的几何解释(数形结合思想);(2)运用基本不等式解决简单最值问题的基本方法(一正二定三相等). 6.布置作业,课后延拓
(1)基本作业:课本P100习题组
1、
2、3题
(2)拓展作业:请同学们课外到阅览室或网上查找基本不等式的其他几何解释,整理并相互交流.
基本不等式教学设计
《等式的性质》教学设计
《等式的性质》教学设计
等式性质教学设计(共8篇)
等式的基本性质的课后教学反思
不等式的课件 篇8
一、教学目标:
(一)知识与能力目标:(课件第2张)
1.体会解不等式的步骤,体会比较、转化的作用。
2.学生理解、巩固一元一次不等式的解法.
3.用数轴表示解集,加深对数形结合思想的进一步理解和掌握。
4.在解决实际问题中能够体会将文字语言转化成数学语言,学会用数学语言表示实际的数量关系。
(二)过程与方法目标:
1.介绍一元一次不等式的概念。
2.通过对一元一次方程的解法的复习和对不等式性质的利用,导入对解不等式的讨论。
3.学生体会通过综合利用不等式的概念和基本性质解不等式的方法。
4.学生将文字表达转化为数学语言,从而解决实际问题。
5.练习巩固,将本节和上节内容联系起来。
(三)情感、态度与价值目标:(课件第3张)
1.在教学过程中,学生体会数学中的比较和转化思想。
2.通过类比一元一次方程的解法,从而更好的掌握一元一次不等式的解法,树立辩证统一思想。
3.通过学生的讨论,学生进一步体会集体的作用,培养其集体合作的精神。
4.通过本节的学习,学生体会不等式解集的奇异的数学美。
二、教学重、难点:
1.掌握一元一次不等式的解法。
2.掌握解一元一次不等式的阶梯步骤,并能准确求出解集。
3.能将文字叙述转化为数学语言,从而完成对应用问题的解决。
三、教学突破:
教材中没有给出解法的一般步骤,所以在教学中要注意让学生经历将所给的不等式转化为简单不等式的过程,并通过学生的讨论交流使学生经历知识的形成和巩固过程。在解不等式的过程中,与上节课联系起来,重视将解集表示在数轴上,从而指导学生体会用数形结合的方法解决问题。在研究中,鼓励学生用多种方法求解,从而锻炼他们活跃的思维。
四、教 具:计算机辅助教学.
五、教学流程:
(一)、复习:
教学环节
教 师 活 动
学 生 活 动
设 计 意 图
不等式课件
不为明天做好准备的人是没有未来的,当幼儿园教师的工作遇到难题时,我们经常会用提前准备好的资料进行参考。资料通常是指书籍、报刊、图表、图片等。有了资料才能更好的在接下来的工作轻装上阵!所以,关于幼师资料你究竟了解多少呢?在这里,你不妨读读不等式课件,欢迎阅读,希望对你有帮助。
不等式课件【篇1】
教学目标:
了解一元一次不等式的概念,掌握一元一次不等式的解法。
教学重点:
是掌握解一元一次不等式的步骤
教学难点:
是必须切实注意遇到要在不等式两边都乘以(或除以)同一负数时,必须改变不等号的方向。
教学过程:
一、问题导入
复习:
1、不等式的基本性质有哪些?什么是一元一次方程?并举出两个例子。
2、观察不等式x+3<5与x<2,说明解x<2是x+3<5依据什么变形得到的?
3、解一元一次方程:6x+5=7-2x,目的是为了与下面所学的解一元一次不等式进行类比,找到它们的联系与区别。
二、指导自学,小组合作交流
请同学们根据以下提问进行自学,先个人思考,后小组合作学习。
1、观察下列不等式,说一说这些不等式有哪些共同特点?
(1)2x+5≥8(2)x+1≤—4(3)x<2(4)6—3x>43(x+1)≤0
观察上面不等式有哪些共同特点,让学生通过交流,再总结一元一次不等式的概念。老师板书定义。
2、让学生举出2或3个一元一次不等式的例子,小组交流。
3、让学生通过比较解一元一次方程:6x+5=7-2x的解法试解一元一次不等式:6x+5<7-2x,并将解集在数轴上表示出来。
4、思考:一元一次不等式与一元一次方程的解法有哪些类似之处?有什么不同?
5、解下列不等式,并把它们的解集在数轴上表示出来。
(1)3-x<2x+9(2)2-4(x-1)>3(x+2)-x
(3)(x-1)/3≥(2-x)/2+1
总结:解一元一次不等式的依据和解一元一次不等式的步骤。
三、互动交流,教师点拨
(一)、学生易出错的问题和注意的事项:
1、确定一个不等式是不是一元一次不等式,要抓住三个要点:左右两边都是整式,只有一个未知数,未知数的次数是1。
2、对于(1),让学生说明不等式3-x<2x+9的每一步变形的依据是什么,特别注意的是:解不等式的移项和解方程的移项一样。即移项要变号(培养学生运用类比的数学思想)。
3、不等式两边同时除以(-3)时,不等号的方向改变。
2、重点点拨(2)和(3),先让学生到黑板上板演。老师再讲评。
(2)易出错的地方是:去括号时漏乘,括号前是负号,去掉括号后括号里的项没变号,还有移项没有变号;(3)易出错的地方是:去分母时漏乘无分母的项。
3、归纳解一元一次不等式的步骤(与解一元一次方程的步骤类比):去分母,去括号,移项,合并同类项,系数化为1。(在系数化为1这一步要特别提醒学生注意当系数为负数时,要记住改变不等号的方向。)
四、巩固练习
1、判断下列不等式是不是一元一次不等式,为什么?
(1)2/x—3
(2)5x+3x–1
(4)x(2x+1)
(5)X+2≥x
2、解下列不等式,并把它们的解集在数轴上表示出来
(1)3x–8
(2)2(x–1)≥x+3
(3)x/5≥1+(x–3)/2
3、[思考]当x取何值时,代数式(x–2)/2的值比(3x+1)/3的值大?
小结:
(1)不等式两边同时除以负数时,不等号的方向要改变。
(2)注意去括号时不要漏乘,括号前是负号,去掉括号后括号里的项要变号,还有移项一定要变号
(3)去分母时不要漏乘无分母的项。
不等式课件【篇2】
一、教学目标
(一)知识与技能
1.了解从实际情境中抽象出二元一次不等式(组)模型的过程
2.掌握简单的二元线性规划问题的解法
3.了解数学建模的整个过程
(二)过程与方法
1.通过对实际问题的探索,培养学生用数学眼光去观察生活、并且能提出问题、分析问题、解决问题的能力.
2.增强学生的协作能力.
(三)情感、态度与价值观
1.通过学生自主探索、合作交流,亲身体验数学模型的发现,培养学生勇于探索、善于发现、不畏艰辛的品质,增强学习的成功心理,激发学习数学的兴趣,深刻体会数学是有用的.
2.通过实例的社会意义,培养学生爱护环境的责任心.
二、教学重点、难点
重点:从具体生活情境中提炼出简单的二元线性规划问题,并且用数学方法解决问题.
难点:从具体生活情境中提炼出约束条件和目标函数.
三、教学设想
本节课采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以二元一次不等式(组)模型的发现为基本探究内容,以周围世界和生活实际为对象,为学生提供充分自由表达、质疑、探究、讨论问题的机会,让学生通过个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对实际问题的深入探讨.让学生在“活动”中学习,在“主动”中发展,在“合作”中增知,在“探究”中创新.设计思路如下:
创设情境→方案讨论→数据筛选→建立模型→解决模型→反馈实际
四、教学过程:
引入
(1)如图,小明与小聪玩跷跷板,大家都不用力时,跷跷板左低右高.小明的身体质量为p(kg),小聪的身体质量为q(kg),书包的质量为2kg,怎样表示p、q之间的关系?
(2)上图是公路上对汽车的限速标志,表示汽车在该路段行使的速度不得超过40km/h.若用v(km/h)表示车的速度,那么v与40之间的数量关系用怎样的式子表示?
(3)据科学家测定,太阳表面的温度不低于6000℃.设太阳表面的温度为t(℃),怎样表示t与6000之间的关系?
归纳:数学作用之一,我们可以用数学语言描述客观世界的某些现象
当然,数学作用不仅于此,我们还可以通过数学解决现实生活中的问题.
(一)情景设置
我校环境优美,毗邻江水,校园内四季常青,但是远眺围墙外,有一座小山,那是一座垃圾山.杨府山垃圾场有他的.历史作用和意义,现在已经完成了它的历史使命,而且现在有了负面影响,市委市政府打算对其进行改造.经过专家论证,有如下方案可行:发电、制砖
(二)处理方案讨论
现同时用两种措施对垃圾山进行改造处理,如果你是项目经理,给你500万采购发电设备以及制砖设备,你该如何去实施?
(学生自主发言)
学生问题一、怎样安排资金?买几台发电设备,几台制砖设备?如何决策?
引导:问题转化为如何安排资金,能取得最大效益?即两种方案生产产品的利润(售价减去成本)
学生问题二、如何知道这些信息?(产品售价、设备的单价等)
引导(先提问学生):上网查询、市场调查、向已建厂取经、参观展销会等等.
(三)数据的筛选
由于教室条件限制,不能现场查取,所以老师帮你们收集了一些资料,希望对你们有所帮助.请分析以下信息,提取你认为有用的数据.
信息一、
信息二、
焚烧垃圾重量直接关系到垃圾发电企业的经济效益.在BOT的模式下,企业的效益这样来保障:
1.每处理1吨垃圾,政府补贴发电企业73.8元,
2.保证以0.52元/千瓦时的价格收购全部垃圾发电量,
3.一台发电设备每处理1吨垃圾平均费用为123元
4.一台发电设备日处理垃圾能力为225吨,
5.1吨垃圾可发电300千瓦时,其中30%为自用电
信息三、
发电设备:120万/台制砖设备:35万/台
机房总面积为7亩,每台设备有各自平均占地,其中发电设备每台平均占地1亩,制砖机每台平占地1亩
(四)建立模型
你能从以上信息中提炼出你所需要的信息,并用数学语言表示出来吗?
(学生动手)
引导:我们刚才处理的问题即应用题:
例一工厂欲生产甲乙两种产品,已知生产一件甲产品利润为60元,一台甲设备价格为120万,占地1亩,年生产能力为82125件;生产一件乙产品利润为0.12元,一台乙设备价格为35万,占地1亩,年生产能力为15000000件.现有资金500万,厂房7亩,该厂该如何添置甲乙两种设备,使得年利润最大?
(五)解决模型
该问题即我们上节课刚学过的线性规划问题,请大家动手解决.
(六)反馈实际
我们可以将我们的成果发到市长信箱,为城市建设出谋划策,贡献自己的一份力量.
五、归纳小结
(一)解决生活问题的步骤:
创设情境→方案讨论→数据筛选→建立模型→解决模型→反馈实际
现实问题:给你资金和地皮,购置设备
方案讨论:通过1.上网查询2.市场调查3.吸收已建厂经验等方法收集信息.
数据筛选及建立模型:将收集到的信息用数学语言表示出来.
解决模型:用已学过的数学知识进行分析、处理,得出结论.
反馈实际:将结论应用于实际问题当中.
(二)顺利解决生活问题体要具备的能力
我们要具备信息收集及处理能力、生活语言转化成数学语言的能力以及扎实的数学解题能力.
不等式课件【篇3】
各位领导
你们好!
今天我要为大家讲的课题是 : 《 不等式及其解集 》 。
首先,我对本节教材进行一些分析:
一、教材分析:
1.教材所处的地位和作用:
本节内容在全书及章节的地位是:《 不等式及其解集 》是 新人教版 初中数学教材第 七 册第 九 章第 1 节内容。 学生已初步体会到生活中的量与量之间的关系,有相等与不等的情形,就是有大小之分…… 在此之前,学生已学习了 等式 基础上,这为过渡到本节的学习起着铺垫作用。
2教学目标:
根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:
(1)知识目标:
了解不等式及一元一次不等式概念。
理解不等式的解、解集,能正确表示不等式的解集。
(2)能力目标:
通过教学初步培养学生分析问题,解决实际问题,读图分析、收集处理信息、团结协作、语言表达的能力,以及通过师生 互动 ,初步培养学生运用知识的能力,培养学生加强理论联系实际的能力。
(3)情感目标:
通过对 《不等式及其解集》 的教学,引导学生从现实生活的经历与体验出发,激发学生对地理问题的兴趣,使学生了解地理知识的功能与价值,形成主动学习的态度,让学生初步认识到地理知识的优越性,同时渗透 安全教育 ;通过理论联系实际的方式,通过知识的应用,培养学生唯物主义的思想观点。
3.重点,难点以及确定的依据:
本课中 不等式相关概念的理解和不等式的解集的表 是重点, 不等式解集的理解 是本课的难点,但由于学生年龄小,解决实际问题能力弱,对理论联系实际的问题的理解难度大。下面,为了讲清重难点,使学生能达到本节课设定的教学目标,我再从教法和学法上谈谈:
二、教学策略(说教法):
(一)教学手段:
如何突出重点,突破难点,从而实现教学目标。我在教学过程中拟计划进行如下操作:
1.“读(看)——议——讲”结合法
2 .读图讨论法
3 .教学过程中坚持启发式教学的原则
基于本节课的特点: 第一节知识性特点 ,应着重采用 自主探讨 的教学方法。
(二)教学方法及其理论依据:
坚持“以学生为主体,以教师为主导”的原则,即“以学生活动为主,教师讲述为辅,学生活动在前,教师点拨评价在后”的原则,根据学生的心理发展规律,联系实 际安排教学内容。采用学生参与程度高的学导式讨论教学法。在学生看图片 、讨论基础上,在教师启发引导下,运用问题解决式教学法,师生交谈法、问答法、课堂讨论法,引导学生根据现实生活的经历和体验及收集到的信息(感性材料)来理解课文中的理论知识。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现的机会,培养其自信心,激发其学习热情。有效地开发各层次学生的潜在智能,力求使每个学生都能在原有的基础上得到发展。同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践,学以致用,落实教学目标。
使学生学习对生活有用的数学,学习对终身发展有用的数学的基本理念。提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的知识和技能,在教学中要积极培养学生学习兴趣和动机,明确的学习目的。教师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力
三、学情分析:(说学法) :
1.学生特点分析:
中学生心理学研究指出,初中阶段是智力发展的关键年龄,学生逻辑思维从经验型逐步向理论型发展,观察能力、记忆能力和想象能力也随着迅速发展。从年龄特点来看,初中学生好动、好奇、好表现,抓住学生特点,积极采用形象生动、形式多样的教学方法和学生广泛的、积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。生理上,青少年好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中应抓住学生这一生理特点,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。
2.知识障碍上:
(1)知识掌握上,学生原有的知识 等式 ,许多学生出现知识遗忘,所以应 更学生更过的时间分组预习讨论 。
(2)学生学习本节课的知识障碍。 不等式解集的表示方法
知识,学生不易理解,所以教学中教师应予以简单明白、深入浅出的分析。
3.动机和兴趣上:
明确的学习目的。教师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。
最后我来具体谈一谈这一堂课的教学过程:
四、教学程序及设想:
教学程序:
(一)课堂结构: 出示学习目标,预习展示 , 练习反馈 , 课堂自测, 布置作业 五 个部分。
(二)教学简要过程:
1、 出示学习目标,课前预习
出示学习目标,学生观察学习目标,自主预习。
设计意图:有了明确的学习目标才能激发起学生的学习热情,才能充分调动学生学习的积极性。
学生分小组进行自主探究学习,同学之间进行合作交流,教师巡视指导,观察学生的探究方法,并倾听学生之间的探讨。
【设计意图】:本次任务为本节课的核心任务,其目的是通过学生的自主学习,理解本节几个概念,并通过学生的举例回答,从具体的实例中去掌握这几个概念。
2 、预习反馈
让学生自己来讲解,有利于提高学生的语言表达能力,学生用语言来概括这几个概念,培养学生的数学语言表达能力及抽象概念能力。
3 、老师归纳,练习反馈
归纳补充知识点,并进行练习反馈。针对每个知识点设置不同的练习。如
1 ) 、不等式的定义设置 , (判断)下列各式是否为不等式;
(1)-2<5 (2)x+3> 2x (3)4x-2y<0 (4)a-2b
(5)x2-2x+1<0 (6) a+b≠c (7)5m+3=8 (8)x≤-4
2 ) 、 用不等式表示:
⑴ a与1的和是正数;
⑵ y的2倍与1的和小于3;
⑶ y的3倍与x的2倍的和是非负数 ;
⑷ x乘以3的积加上2最多为5.
3 ) 、下列说法正确的是( )
A. x=3是2x>1的解
B. x=3是2x>1的唯一解
C. x=3不是2x>1的解
D. x=3是2x>1的解集
及认识不等式解集的表示方法有两种:最简形式与在数轴上表示。分组讨论找规律,记口诀。(定界点,定方向)相关题型:
用数轴表示不等式的解集:
(1)x>-2; (2)x≤3; (3)y≤0
找三名同学上台展示。
展示学生的成果,让学生在学习过程中感受学习的乐趣和成功的喜悦,增强学生的学习兴趣。
体会不等式是解决实际问题的有效工具。
4 、课堂自测
检测学习本节课的掌握情况。
5 、布置作业
分层作业。针对学生的学习情况,让每一名同学都 能完成 老师布置的任务,增强成就感及学习数学的兴趣。 A类: 教科书P119,120:1,2,3;B 类: 卷:能力提高作业。
五、 反思:
本节教学,有以下几点特别值得回味的地方。
1、从生活中来回到生活中去的教学设计
新课标指出:“数学的教学活动必须建立在学生的认知发展水平和已有知识经验基础上。”心理学的研究表明,学习内容和学生生活背景、知识背景越接近,学生自觉接纳知识懂得的程度就越高。导入的恰当、合理会引起学生极大的学习兴趣,对知识的衔接和理顺起到画龙点睛的作用,又对新知识起到设疑、点拔的作用。用学生身边感兴趣的实例 过马路、跷跷板体验生活中的不等式 ,一方面引起学生的参与欲,另一方面也体现了知识拓展的需要。因为这样既可引出一元一次不等式的意义,又让学生产生学习不等式的需求,也使学生对解不等式 的方法有了很自然的联想 让学生充分感受到学习一元一次不等式的必要性。使学生进一步认识到“数学来源于生活,反过来又为生活服务”,增强学好数学的信心与决定。
2、重视数学思想方法的渗透
数学思想方法是数学的灵魂,知识转化为能力的桥梁。在整节课的教学中都非常重视数学思想方法的渗透。学习不等式时,类比方程、不等式解集的概念,渗透“类比”思想。使学生在已有知识上进行迁移,在主动参与、探索交流中不知不觉学到了新知识。利用数轴求不等式的解集,渗透“数形结合”思想。掌握不等式的解集 在数轴上的表示 ,利用数轴把解集 讲解得非常透彻,使学生充分认识到“数形结合”思想方法的用处。列不等式解决实际问题,渗透“建模”思想,培养学生应用数学的意识。最后的小结,不是流俗的学习内容小结,而是思想方法的小结,它起到了提纲挈领,梳理总结的目的。
3、重视数学的“再创造”
课堂教学改革的宗旨和根本出发点是:改善和促进学生全面、持续、和谐地发展。建构主义理论强调学习的主动性、社会性和情景性,认为学习者不是知识信息的被动吸收者,而是主动积极的建构者。留给学生的作业:完成课外探究题,借助数轴归纳求不等式的解集一般规律。教学时重视了数学的“再创造”,由学生本人把需学的东西自己去发现和创造出来。学生的学习不再是一种被动地吸收知识,反复练习,强化储存知识的过程,而是通过反复研究、探索、思考、概括,亲身经历“再创造”的探究性学习过程,从而自主获得知识。
总之,教学设计时体现新课程标准的思想和理念,注重知识与能力并重,培养发展学生自主探索的独立思考精神。
不等式课件【篇4】
一教材分析
1、教材地位和作用
均值不等式又叫做基本不等式,选自人教B版(必修5)的3章的2节的内容,是在上节不等式性质的基础上对不等式的进一步研究.同时也是为了以后学习中的几种重要不等式,以及不等式的证明作铺垫,起着承上启下的作用。
本节内容具有变通灵活性、应用广泛性、条件约束性等特点,所以本节课可以培养学生应用数学知识灵活解决实际问题的能力。
“均值不等式”在不等式的证明和求最值过程中有着广泛的应用。求最值是高考的热点。它在科学研究、经济管理、工程设计上都有广泛的作用。
2、教学目标
A.知识目标:学会推导并掌握均值不等式,理解这个均值不等式的几何意义,并掌握定理中取等号的条件.B.能力目标:通过对均值不等式的推导过程,提高学生探究问题,分析与解决问题的能力。参透类比思想,数形结合的思想,优化了学生的思维品质。
C.情感目标:(1)通过探索均值不等式的证明过程,培养探索、研究精神。(2)通过对均值不等式成立的条件的分析,养成严谨的科学态,并形成勇于提出问题、分析问题的习惯。
3、教学重点、难点:
重点:
通过对新课程标准的解读,教材内容的解析,我认为结果固然重要,但数学学习过程更重要,它有利于培养学生的数学思维和探究能力,所以均值不等式的推导是本节课的重点
难点:
很多同学对均值不等式成立的条件的认识不深刻,在应用时候常常出错误,所以,均值不等式成立的条件是本节课的难点
二教法学法分析
1.教法
本节课主要采用探究归纳,启发诱导,讲练结合的教学方法。以学生为主体,以均值不等式为主线,从实际问题出发,放手让学生探究思索。
2、教学手段
为了使抽象变为具体,我使用了多媒体。为了突出重点我使用了彩色粉笔。3,学法
从实际生活出发,通过创设问题情境,让学生经历由实际问题出发,探求均值不等式,发现均值不等式的实质,利用均值不等式解决实际问题的过程。使学生从代数证明和几何证明两方面理解并掌握基本不等式。
三教学过程
(一)、创设情景,引入课题
从古至今中国人有很多发明创造推动了和推动着世界的前进,在这璀璨的星空里,最耀眼的一颗就是被奉为2002年北京国际数学家大会会徽的《赵爽弦图》(动画打出)。
如图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。这就是公元前1000多年前我国数学家赵爽发现并记录在《周脾算经》中的发现和证明勾股定理的《赵爽弦图》;它比欧洲毕达哥拉斯学派的发现早了500多年。
你能在这个图案中找出一些相等关系或不等关系吗?
设计意图:勾起学生强烈的民族自豪感和强烈的求知欲,并对学生渗透爱国主义教育,同时告诉学生记住我国光辉而灿烂的历史。
探究图形中的不等关系(用提问题的方式)
将图中的“风车”抽象成如图,在正方形ABCD中有4个全等的直角三角形。
设直角三角形的两条直角边长为a,b
4个直角
22三角形的面积的和是2ab,正方形的面积为ab。
由于4个直角三角形的面积和小于正方形的面积,22我们就得到了一个不等式:ab2ab。
当直角三角形变为等腰直角三角形,即a=b时,22正方形EFGH缩为一个点,这时有ab2ab。
22a,bR,那么ab2ab(当且仅当ab时取“”号)得到结论:重要不等式:如果
具有这种形式的式子就是我们今天要讨论的问题.(二)新课讲授。
1给出均值定理(在老师写均值不等式定理时,要求同学在课本上了解均值定理,并思考怎样证明。),师生一起证明均值不等式。
aba0,b0)2要证:„„„„„„„„„①
即证:ab„„„„„„„„„„„②
要证②,只要证:ab0„„„„③
2要证③,只要证:(-)0 „„④
点评,强调取等条件;
2.ab2的几何意义 aba0,b0)2当a≠b时,OC>CD,即
ab当a=b时,OC=CD,即
2我们是否能从图中看见当D向O点移动时CD是逐渐变长了,当D,O重合时CD最长,并且a=b.ab
3.在数学中,我们称2为正数a、b的算术平均数,称ab为正数a、b的几何平均数.均值不等式还可叙述为:两个正数的几何平均数不大于它们的算术平均数.设计意图:探索发现,观察归纳,形成概念,加深对均值不等式的认识和理解;培养学生数形结合的思想方法和对比的数学思想,多方面思考问题的能力.让学生积极的参与到学习中来,激发学生的学习兴趣。
(三)例题讲解(精讲第一题)
例,矩形的面积为100 m2,问这个矩形的长、宽各为多少时,矩形周长最短。最短周长是多少?
用波利亚的4环节来进行解题
1:审题(把实际问题数学化)
2:分析(矩形的长与宽的乘积是一个常数,求长与宽的和的2倍的最小值;)3:解题
4:回顾(给出规律:规律:两个正数的积为常数时,它们的和有最小值)。
设计意图:这个例题体现了基本不等式的实用价值。随着高考综合科目的确定,联系各个学科的试题将会不断出现,数学作为工具性的学科,学好数学,也增强了攻读好其他学科的信心。
为了体现夸美纽斯的巩固性原则,我设计了下面练习。
练习:已知矩形的周长是36m,问这个矩形的长、宽各为多少时,矩形的面积最大?最大面积是多少?
先老师对该练习进行提示,再抽一位同学在黑板上来练习,其他同学在下面练习。做完后大家一起点评该练习,不让同学通过上面的回顾来终结下面的规律:
两个正数的和为常数时,它们的积有最大值
四小结(教师引导学生小结本节课):
知识:均值定理及其成立的条件,及其均值定理的应用
方法:一正,二定,三相等。
思想:类比和数形结合的思想。
设计意图:培养学生对所学知识进行概括归纳的能力,巩固所学知识.
五作业:
基础题:课本 第77页A组 1.提高题:课本 第77页A组 3.4研究题:设正数a、b,试尽可能多的给出含有a和b的两个元素的不等式
板书设计:
为了更好的板书本节课的内容,使整个板面重点突出,层次分明,我将黑板分为四版.定理例题练习副版
定理的证明讲解讲解
不等式课件【篇5】
课题:§3.2.3均值不等式课时:第3课时 授课时间:授课类型:新授课
【教学目标】
1.知识与技能:了解均值不等式在证明不等式中的简单应用。
2.过程与方法:培养学生的探究能力以及分析问题、解决问题的能力。
3.情态与价值:激发学习数学的热情,培养善于思考、勤于动手的学习品质。
【教学重点】了解均值不等式在证明不等式中的简单应用。
【教学难点】了解均值不等式在证明不等式中的简单应用。
【教学过程】
例
1、已知a、b、c∈R,求证:
不等式的左边是根式,而右边是整式,应设法通过适当的放缩变换将左边各根式的被开方式转化为完全平方式,再利用不等式的性质证得原命题。
a2b2c
2abc 例
2、若a,b,cR,则bca
本题若用“求差法”证明,计算量较大,难以获得成功,注意到a , b , c∈R,从结论的特点出发,均值不等式,问题是不难获证的。
+
例
3、已知a,b,c为两两不相等的实数,求证:abcabbcca 证明:∵ab2abbc2bcca2ca
以上三式相加:2(abc)2ab2bc2ca
∴abcabbcca
例
4、已知a,b,c,d都是正数,求证:(abcd)(acbd)4abcd
分析:此题要求学生注意与均值不等式定理的“形”上发生联系,从而正确运用,同22222222222222
2证明:∵a,b,c,d都是正数,∴ab>0,cd>0,ac>0,bd>
得abcdacbd0,0.22
(abcd)(acbd)abcd.4由不等式的性质定理4的推论1,得
即(abcd)(acbd)4abcd
小结:正数的算术平均数不小于它们的几何平均数
课堂练习:第73页习题B 3、4课后作业:第73页习题B 5、6
板书设计:
教学反思:
不等式课件【篇6】
《均值不等式》说课稿
山东陵县一中 燕继龙李国星
尊敬的各位评委、老师们:
大家好!我今天说课的题目是 《均值不等式》,下面我从教材分析,教学目标,教学重点、难点,教学方法,学生学法,教学过程,板书设计,效果分析八个方面说说我对这堂课的设计。
一、教材分析:
均值不等式又称基本不等式,选自普通高中课程标准实验教科书(人教B版)必修5第三章第3节内容。是不等式这一章的核心,在高中数学中有着比较重要的地位。对于不等式的证明及利用均值不等式求最值等实际问题都起到工具性作用。通过本节的学习有利于学生对后面不等式的证明及前面函数的一些最值值域进一步研究,起到承前启后的作用。
二、教学目标:
1、知识与技能:
(1)掌握均值不等式以及其成立的条件;
(2)能运用均值不等式解决一些较为简单的问题。
2、过程与方法:
(1)探索并了解均值不等式的证明过程、体会均值不等式的证明方法;
(2)培养探究能力以及分析问题、解决问题的能力。
3、情感态度与价值观:
(1)通过探索均值不等式的证明过程,培养探索、钻研、合作精神;
(2)通过对均值不等式成立条件的分析,养成严谨的科学态度;
(3)认识到数学是从实际中来,通过数学思维认知世界。
三、教学重点和难点:
重点:通过对新课程标准的解读,教材内容的解析,我认为结果固然重要,但数学学习过程更重要,它有利于培养学生的数学思维和探究能力,所以均值不等式的推导是本节课的重点之一;再者,均值不等式有比较广泛的应用,需重点掌握,而用好均值不等式,关键是对不等式成立条件的准确理解,因此,均值不等式及其成立的条件也是教学重点。
难点:很多同学对均值不等式成立的条件的认识不深刻,在应用时候常常出现错误,所以,均值不等式成立的条件是本节课的难点。
四、教学方法:
为了达到目标、突出重点、突破难点、解决疑点,我本着以教师为主导的原则,再结合本节的实际特点,确定本节课的教学方法。
突出重点的方法:我将通过引导启发、学生展示来突出均值不等式的推导;通过多媒体展示、来突出均值不等式及其成立的条件。
突破难点的方法:我将采用重复法(在课堂的每一环节,以各种方式进行强调均值不等式和
来突破均值不等式成立的条件这个难点。
此外还将继续采用个人和小组积分法,调动学生积极参与的热情。
五、学生学法:
在学生的学习中,注重知识与能力,过程与方法,情感态度和价值观三个方面的共同发展。充分体现学生是主体,具体如下:
1、课前预习----学会;、明确重点、解决疑点;
2、分组讨论
3、积极参与----敢于展示、大胆质疑、争相回答;
4、自主探究----学生实践,巩固提高;
六、教学过程:
采取“三步骤四环节和谐高效课堂”教学模式,运用学案导学开展本节课的教学,首先进行
:课前预习
(一)成果反馈
1.对课前小组合作完成的现实生活中的问题:
“今有一台天平,两臂不等长,要用它称物体质量,将物体放在左、右托盘各称一次,称得的质量分别为a,b,问:能否用a,b的平均值表示物体的真实质量?若不能,这二者是什么关系?”
进行多媒体情景演示,抽小组派代表回答,从而引出均值不等式抽出两名同学上黑板完成2、32.均值定理:_____________________________________
ab
2。
预备定理:a2b22ab(a,bR),仿照预备定理的证明证明均值定理 3.已知ab>0,求证:
ab
ab2,并推导出式中等号成立的条件。
与此同时,其他同学分组合作探究和均值定理有关的以下问题,教师巡视并参与讨论,适时点拨。
① 适用范围a,b________,x0,x
1x2
对吗?
② 等号成立的条件,当且仅当__________时,________=_________ ③ 语言表述:两个___数的____平均数_____它们的_______平均数 ④ 把不等式_________________又称为均值或________不等式 ⑤ 数列观点:两个正数的______中项不小于它们的_____中项
。⑥ 几何解释(见右图):________________
⑦常见变形ab_______
________,即ab
___________。例:
4、(1)一个矩形的面积为100 m,问这个矩形的长、宽各为多少时,矩形的周长最短?最短周长是多少?(2)已知矩形的周长是36m,问这个矩形的长、宽各为多少时,矩形的面积最大?最大面积是多少?
由此题可以得出两条重要规律:
两个正数的积为常数时,它们的和有______值; 两个正数的和为常数时,它们的积有______值。
等待两名同学做完后,适时终止讨论,学生各就各位。首先针对黑板上这两道题发动学生上来捉错(用不同色粉笔),然后再由老师完善,以此加深学生对定理及应用条件的认识。其次,老师根据刚才巡视掌握的情况,结合多媒体进行有针对性的讲解(重点应强调均值定理的几何解释:半径不小于半弦,以及用三角形相似或射影定理的几何证明过程,使定理“形化”),进一步加深学生对定理的认识及应用能力,初步掌握用均值定理求函数最值时要注意“一正、二定、三相等”
第二步:课内探究
(二)精讲点拨 1.例:求函数f(x)
2xx
3x
(x0)的最大值,及此时x的值。
先和学生们一起探讨该问题的解题思路,先拆分再提出“-”号,为使用均值定理创造条件,后由学生们独立完成,教师通过巡视或提问发现问题,通过多媒体演示来解决问题,该例题主要让学生注意定理的应用条件及一些变形技巧。
2.多媒体展示辨析对错:
这几道辨析题先让学生们捉错,再由
多媒体给出答案,创设情境加深学生对用均值定理求函数最值时注意“一正、二定、三相等”的认识
(三)有效训练
1.(独立完成)下列函数的最小值为2的是()
A、yx
1x
B、ysinx
1sinx
(0x
)
C、y
1D、ytanx
本题意在巩固用均值定理求函数最值时要注意“一正、二定、三相等”,待学生完成后,随机抽取几名学生说一下答案,选D,应该不会有问题。
2.(小组合作探究)一扇形中心角为α,所在圆半径为R。若扇形周长为一常值C(C>0),当α为何值时,扇形面积最大,并求此最大值。
本题若直接运用均值不等式不会出现定值,需要拼凑。待学生讨论过后,先通答案,2时扇形面积最大值为
c
tanx
(0x
)
。若有必要,抽派小组代表到讲台上讲解,及时反馈矫正。
(四)本节小结
小结本节课主要内容,知识点,由学生总结,教师完善,不外乎: 1.两个重要不等式
ab2ab(a,bR,当且仅当ab时取“”)
2ab2
a,bR,当且仅当ab时取“”)
2.用均值定理求函数最值时要注意“一正、二定、三相等”。
(一)、双基达标(必做,独立完成):
1、课本第71页练习A、B;
2、已知x1,求yx6
x
1的最值;
(二)、拓展提高(供选做, 可小组合作完成):
23、若a,bR且a
b
1,求a最大值及此时a,b的值.4、a0,b0,且
5、求函数f(x)
1a
9b
1,求ab最小值.x3x1x
1(x1)的最小值。
通过作业使学生进一步巩固本节课所学内容,注重分层次设计题目,更加关注学生的差异。
七、板书设计:
由于本节采用多媒体教学,板书比较简单,且大部分是学生的展示。
八、效果分析:
本节课采取了我校推行的“三步骤四环节和谐高效课堂”教学模式,通过学案导学,多媒体展示,师生互动,生生互动。学生基本能掌握均值不等式以及其成立的条件;能运用均值不等式解决一些较为简单的问题。但用均值定理求函数最值时要注意“一正、二定、三相等”,说起来容易做起来难,学生还得通过反思和课后训练进一步体会。
我的说课到此结束,恳请各位评委和老师们批评指正,谢谢!
不等式课件【篇7】
【教学目标】
1.通过具体情境让学生感受和体验现实世界和日常生活中存在着大量的不等关系,鼓励学生用数学观点进行观察、归纳、抽象,使学生感受数学、走进数学、改变学生的数学学习态度。
2.建立不等观念,并能用不等式或不等式组表示不等关系。
3.了解不等式或不等式组的实际背景。
4.能用不等式或不等式组解决简单的实际问题。
【重点难点】
重点:
1.通过具体的问题情景,让学生体会不等量关系存在的普遍性及研究的必要性。
2.用不等式或不等式组表示实际问题中的不等关系,并用不等式或不等式组研究含有简单的不等关系的问题。
3.理解不等式或不等式组对于刻画不等关系的意义和价值。
难点:
1.用不等式或不等式组准确地表示不等关系。
2.用不等式或不等式组解决简单的含有不等关系的实际问题。
【方法手段】
1.采用探究法,按照阅读、思考、交流、分析,抽象归纳出数学模型,从具体到抽象再从抽象到具体的方法进行启发式教学。
2.教师提供问题、素材,并及时点拨,发挥老师的主导作用和学生的主体作用。
3.设计教典型的现实问题,激发学生的学习兴趣和积极性。
【教学过程】
教学环节
教师活动
学生活动
设计意图
导入新课
日常生活中,同学们发现了哪些数量关系。你能举出一些例子吗?
实例1.某天的天气预报报道,最高气温35℃,最低气温29℃。
实例2.若一个数是非负数,则这个数大于或等于零。
实例3.两点之间线段最短。
实例4.三角形两边之和大于第三边,两边之差小于第三边。
引导学生想生活中的例子和学过的数学中的例子。在老师的引导下,学生肯定会迫不及待的能说出很多个例子来。即活跃了课堂气氛,又激发了学生学习数学的兴趣。
推进新课
同学们所举的这些例子联系了现实生活,又考虑到数学上常见的数量关系,非常好。而且大家已经考虑到本节课的标题《不等关系与不等式》,所举的实例都是反映不等量的关系。
(下面利用电脑投影展示两个实例)
实例5:限时40km/h的路标,指示司机在前方路段行使时,应使汽车的速度v不超过40km/h。
实例6:某品牌酸奶的质量检查规定,酸奶中脂肪的含量f应不少于2.5%,蛋白质的含量p应不少于2.3%.
同学们认真观看显示屏幕上老师所举的例子。
让学生们边看边思考:生活中有许多的事情的描述可以采用不等的数量关系来描述
过程引导
能够发现身边的数学当然很好,这说明同学们已经走进了数学这门学科,但是我们还要能用数学的眼光、数学的观点、进行观察、归纳、抽象,完成这些量与量的比较过程,那么我们用什么知识来表示这些不等关系呢?
什么是不等式呢?
用大屏幕展示一组不等式-71+4;2x≤6;a+2≥0;3≠4.
能用不等式及不等式组把这些不等关系表示出来,也就是建立不等式数学模型的过程通过对不等式数学模型的'研究,反过来作用于现实生活,这才是学习数学的最终目的。
思考并回答老师的问题:可以用不等式或不等式组来表示不等关系。
经过老师的启发和点拨,学生可以自己总结出:用不等号将两个解析试连接起来所成的式子叫不等式。
目的是让学生回忆不等式的一些基本形式,并说明不等号≤,≥的含义,是或的关系。回忆了不等式的概念,不等式组学生自然而然就清楚了。
此时学生已经迫不及待地想说出自己的观点了。
合作探究
(一)。下面我们把上述实例中的不等量的关系用不等式或不等式组一一的表示出来,那应该怎么表示呢?
这两位同学的观点是否正确?
老师要表扬学生:“很好!这样思考问题很严密。”应该用不等式组来表示此实际问题中的不等量关系,也可以用“且”的形式来表达。
(二)。问题一:设点A与平面的距离为d,B为平面上的任意一点。
请同学们用不等式或不等式组来表示出此问题中的不等量的关系。
老师提示:借助于图形,这个问题是不是可以解决?
(下面让学生板演,结合三角形草图来表达)
问题(二):某种杂志原以每本2。5元的价格销售,可以售出8万本,据市场调查,若单价每提高0。1元,销售量就可能相应减少20xx本。若把提价后杂志的定价设为x元,怎样用不等式表示销售的总收入仍不低于20万元呢?
是不是还有其他的思路?
为什么可以这样设?
很好,请继续讲。
这位学生回答的很好,表述得很准确。请同学们对两种解法作比较。
问题(三):某钢铁厂要把长度为4000mm的钢管截成500mm和600mm两种,按照生产的要求,600mm钢管的数量不超过500mm钢管的3倍。怎样写出满足上述所有不等式关系的不等式?
假设截得500mm的钢管x根,截得600mm的钢管y根。根据题意,应当有什么样的不等量关系呢?
右边的三个不等关系是“或”还是“且”的关系呢?
这位学生回答得很好,思维很严密,那么该用怎样的不等式组来表示此问题中的不等关系呢?
通过上述三个问题的探究,同学们对如何用不等式或不等式组把实际问题中隐藏的不等量关系表示出来,这一点掌握得很好。请同学们完成书本练习第74页1,2。
课堂小结:
1.学习数学可以帮助我们解决实际生活中的问题。
2.数学和我们的生活联系非常密切。
3.本节课巩固了二元一次不等式及二元一次不等式组,并且能用它来解决现实生活中存在的大量不等量关系的实际问题。还要注意思维要严密,规范,并且要注意数形结合等思想方法的综合应用。
布置作业:
第75页习题3.1 A组4,5。
29℃≤t≤35℃
x≥0
|AC|+|BC|>|AB|
|AB|+|BC|>|AC|、|AC|+|BC|>|AB|、|AB|+|AC|>|BC|.
|AB|-|BC|
|AB|-|AC|
如果用表示速度,则v≤40km/h.
f≥2.5%或p≥2.3%
学生自己纠正了错误:这种表达是错误的,因为两个不等量关系要同时满足,所以应该用不等式组来表示次实际问题中的不等量关系,即可以表示为也可表示为f≥2.5%且p≥2.3%.
过点A作AC⊥平面于点C,则d=|AC|≤|AB|
可设杂志的定价为x元,则销售量就减少万本。销售量变为(8-)万本,则总收入为(8-)x万元。即销售的总收入为不低于20万元的不等式表示为(8-)x≥20.
解法二:可设杂志的单价提高了0.1n元,(n)
我只考虑单价的增量。
那么销售量减少了0.2n万本,单价为(2.5+0.1n)元,则也可得销售的总收入为不低于20万元的不等式,表示为(2.5+0.1n)(8-0.2n)≥20.
截得两种钢管的总长度不能超过4000mm。
截得600mm钢管的数量不能超过500mm钢管的3倍。
截得两种钢管的数量都不能为负数。
它们是同时满足条件,应该是且的关系。由实际问题的意义,还应有x,y要同时满足上述三个不等关系,可以用下面的不等式组来表示:
如果学生没有想到的话,老师可以在黑板上板演示意图,启发学生考虑三边的大小关系。
此时启发学生“或”字可以吗?学生没有了声音,他们在思考着。到底行不行呢?有的回答“行”,有的回答“不行”。
此时学生们在思考,时间长的话,老师要及时点拨。
让学生知道,在解决问题时应该贯穿数形结合的思想,以形助数,下面有学生的声音,有学生在讨论,有的学生还有疑问。老师注意关注学生的思维状况,并且及时的加以指导。
此时学生已经真正进入本节课的学习状态,老师再给出问题(三)使学生一直处于跟随老师积极思考和解决问题的状态。问题是教学研究的核心,以问题展示的形式来培养学生的问题意识与探究意识。
【教学反思】(【设计说明】)
本节课内容很多,都是不等式和不等式组的有关问题,还有很多是生活中的实例,学生学习起来很感兴趣,课堂的气氛也很好,大多数学生都能很积极地回答问题,使课堂的学习气氛很浓,确实也做到了愉快教学。设计是按照老师引导式教学,边讲授边引导,启发学习思考问题及能自己解决问题,锻炼学习能自主的学习能力。
【交流评析】
一是课堂容量适中,二是实例很好,接近生活,学生感兴趣。三是学生回答问题积极踊跃,和老师配合很好。四是多媒体应用的恰到好处,教学设备很完善,老师也能很熟练的应用。
不等式课件【篇8】
3.2均值不等式 教案(3)
(第三课时)
教学目标:
了解均值不等式在证明不等式中的简单应用
教学重点:
了解均值不等式在证明不等式中的简单应用
教学过程
例
1、已知a、b、c∈R,求证:
不等式的左边是根式,而右边是整式,应设法通过适当的放缩变换将左边各根式的被开方式转化为完全平方式,再利用不等式的性质证得原命题.
a2b2c
2abc 例
2、若a,b,cR,则bca
本题若用“求差法”证明,计算量较大,难以获得成功,注意到a , b , c∈R,从结论的特点出发,均值不等式,问题是不难获证的.
+
例
3、已知a,b,c为两两不相等的实数,求证:abcabbcca 证明:∵ab2abbc2bcca2ca
以上三式相加:2(abc)2ab2bc2ca
∴abcabbcca
例
4、已知a,b,c,d都是正数,求证:(abcd)(acbd)4abcd 22222222222222
2分析:此题要求学生注意与均值不等式定理的“形”上发生联系,从而正确运用,同时证明:∵a,b,c,d都是正数,∴ab>0,cd>0,ac>0,bd>得
abcdacbd0,0.22
由不等式的性质定理4的推论1,得
(abcd)(acbd)abcd.4即(abcd)(acbd)4abcd
小结:正数的算术平均数不小于它们的几何平均数
课堂练习:第77页练习A、B
课后作业:略
不等式课件【篇9】
教材分析:
上节课认识了不等式,知道了什么叫不等式和不等式的解。本节主要学习不等式的解集,这是学好利用不等式解决实际问题的关键,同时要求学生会用数轴表示不等式的解集,使学生感受到数形结合的作用。并且本课也通过让学生经历实验、观察、分析、概括过程,自主探索不等式的解集等概念,培学生的思维能力。在情感态度、价值观方面要培养学生与他人合作学习的习惯。
教学重点:
理解不等式的解集的含义,明确不等式的解是在某个范围内的所有解。
教学难点:
对不等式的解集含义的理解。
教学难点突破办法:
通过实验、观察,分析、概括过程,使学生对不等式的解集有了初步的理解,然后通过数轴直观地表示出不等式的解集,从而加深了学生对不等式的解集的理解。
教学方法:
1、采用复习法查缺补漏,引导发现法培养学生类比推理能力,尝试指导法逐步培养学生独立思考能力及语言表达能力。充分发挥学生的主体作用,使学生在轻松愉快的气氛中掌握知识。
2、让学生充分发表自己的见解,给学生一定的时间和空间自主探究每一个问题,而不是急于告诉学生结论。
3、尊重学生的个体差异,注意分层教学,满足学生多样化的学习需要。
学习方法:
1、学生要深刻思考,把实际问题转化为数学模型,养成认真思考的好习惯。
2、合作类推法:学习过程中学生共同讨论,并用类比推理的方法学习。
教学步骤设计如下:
(一)创设问题情境,引入新课:
实验:将如下重量的砝码分别放入天平的左边。
请大家仔细观察,哪些砝码放入天平左边后能使天平向左边倾斜?如果砝码重x克,要使x+2>5,即:天平左边放入x克砝码后使天平向左边倾斜。那么这样的x取应取什么数?这样的数是有限个还是无限个?
学生活动:
1、让学生观察实验,寻找数量关系回答问题;
2、让学生采取小组合作的学习方式。
(二)讲授新课
通过实验、讨论、交流、归纳得到:大于心不甘的每个数都是不等式x+2>5的解,而小于3的每一个数都不是不等式x+2>5的解,因此不等式x+2>5的解有无限多个,它们组成集合,称为一元不等式x+2>5的解集。即表示为x>3。
由实例概括出不等式的解集以及解不等式的概念:一个不等式的所有解,组成这个不等式的解的集合,简称为这个不等式的解集;求不等式的解集过程,叫做解不等式。
我们知道解不等式不能只求个别解,而应求它的解集.一般而言,不等式的解集不是由一个数或几个数组成的,而是由无限多个数组成的,如x>3.那么如何在数轴上直观地表示不等式x+2>5的解集x>3呢?
不等式解集x>3,在数轴上可以直观地表示出来。如图8.2.1
如果某个不等式x≤-2,也可在数轴上直观地表示出来,如图8.2.2
说明:8.2.1在表示范表演的点画空心圆圈,表不包括这一点,表示大时就往右拐;图8.2.2在表示-2的点画黑点表示包括这一点,表示小时不向左拐。
(三)知识拓展
将数轴上x的范围用不等式来表示:
(四)尝试反馈:
课本第44页“练习”第1、2题。
(五)归纳小结:
这节课主要学习了不等式的解集的有关概念,并会用数轴表示不等式的解集。
不等式课件【篇10】
《不等式的基本性质》它是北师大版八年级下册第一章第二节的内容。今天我将从教材分析,教学目标,教学重难点,教法学法,教学过程这五个方面谈谈我对这节课处理的一些不成熟的看法:
本节内容不等式,它是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应用,所以对不等式的学习有着重要的实际意义。同时,不等式的基本性质也为学生以后顺利学习解一元一次不等式和解一元一次不等式组的有关内容的理论基础,起到重要的奠基作用。
根据《新课程标准》的要求,教材的内容兼顾我校八年级学生的特点,我制定了如下教学目标:
知识与技能:
1. 感受生活中存在的不等关系,了解不等式的意义。
2. 掌握不等式的基本性质。
过程与方法:经历不等式的基本性质的探索过程,初步体会不等式与等式的异同。
情感态度与价值观:经历由具体实例建立不等式模型的过程,进一步符号感与数学化的能力。
教学重难点:
重点:不等式概念及其基本性质
难点:不等式基本性质3
教法与学法:
1. 教学理念: “ 人人学有用的数学”
2. 教学方法:观察法、引导发现法、讨论法.
3. 教学手段:多媒体应用教学
4. 学法指导:尝试,猜想,归纳,总结
根据《数学课程标准》的要求,教材和学生的特点,我制定了以下四个教学环节。
下面我将具体的教学过程阐述一下:
一、创设情境,导入新课
上课伊始,我将用一个公园买门票如何才划算的例子导入课题。
世纪公园的票价是:每人5元;一次购票满30张,每张可少收1元。某班有27名团员去世纪公园进行活动。当领队王小华准备好了零钱到售票处买27张票时,爱动脑筋的李敏同学喊住了王小华,提议买30张票。但有的同学不明白,明明我们只有27个人,买30张票,岂不是“浪费”吗?
(此处学生是很容易得出买30张门票需要4X30=120(元), 买27张门票需要5X27=135(元),由于120〈135,所以买30张门票比买27张还要划算。由此建立了一个数与数之间的不等关系式)
紧接着进一步提问:若人数是x时,又当如何买票划算?
二、探求新知,讲授新课
引例列出了数与数之间的不等关系和含有未知量120
接下来我用一组例题来巩固一下对不等式概念的认知,把表示不等量关系的常用关键词提出。
(1)a是负数;
(2)a是非负数;
(3) a与b的和小于5;
(4) x与2的差大于-1;
(5) x的4倍不大于7;
(6) 的一半不小于3
关键词:非负数,非正数,不大于,不小于,不超过,至少
回到引入课题时的门票问题120
难点突破:通过上面三组算式,学生已经尝试着归纳出不等式的三条基本性质了。不等式性质3是本节的难点。在不等式性质3用数探讨出以后,换一个角度让学生想一想,是否能在数轴上任取两个点,用相反数的相关知识挖掘一下,乘以或除以一个负数时,任意两个数比较是否性质3都成立。通过“数形结合”的思想,使数的取值从特殊化到一般化,从对具体数的感知完成到字母代替数的升华。让学生用实例对一些数学猜想作出检验,从而增加猜想的可信程度。同时,让学生尝试从不同角度寻求解决问题的方法并能有效地解决问题。
反馈练习:用一个小练习巩固三条性质。
如果a>b,那么
(1) a-3 b-3 (2) 2a 2b (3) -3a -3b
提出疑问,我们讨论性质2,3是好象遗忘了一个数0。
引出让学生归纳,等式与不等式的区别与联系
三、拓展训练
根据不等式基本性质,将下列不等式化为“”的形式
(1)x-13
再次回到开头的门票问题,让学生解出相应的x的取值范围
四、小结
1.新知识
一个数学概念;两种数学思想;三条基本性质
2.与旧知识的联系
等式性质与不等式性质的异同
五、作业的布置
以上是我对这节课的教学的看法,希望各位专家指正。谢谢!
“让学生主动参与数学教学的全过程,真正成为学习的主人”
不等式课件【篇11】
教材分析
本节课是在系统的学习了不等关系和不等式性质,掌握了不等式性质的基础上展开的,作为重要的基本不等式之一,为后续的学习奠定基础。要进一步了解不等式的性质及运用,研究最值问题,此时基本不等式是必不可缺的。基本不等式在知识体系中起了承上启下的作用,同时在生活及生产实际中有着广泛的应用,因此它也是对学生进行情感价值观教育的好素材,所以基本不等式应重点研究。
教学中注意用新课程理念处理教材,学生的数学学习活动不仅要接受、记忆、模仿和练习,而且要自主探索、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程。通过本节学习体会数学来源于生活,提高学习数学的乐趣。
课程目标分析
依据《新课程标准》对《不等式》学段的目标要求和学生的实际情况,特确定如下目标:
1、知识与能力目标:理解掌握基本不等式,并能运用基本不等式解决一些简单的求最值问题;理解算数平均数与几何平均数的概念,学会构造条件使用基本不等式;培养学生探究能力以及分析问题解决问题的能力。
2、过程与方法目标:按照创设情景,提出问题→剖析归纳证明→几何解释→应用(最值的求法、实际问题的解决)的过程呈现。启动观察、分析、归纳、总结、抽象概括等思维活动,培养学生的思维能力,体会数学概念的学习方法,通过运用多媒体的教学手段,引领学生主动探索基本不等式性质,体会学习数学规律的方法,体验成功的乐趣。
3、情感与态度目标:通过问题情境的设置,使学生认识到数学是从实际中来,培养学生用数学的眼光看世界,通过数学思维认知世界,从而培养学生善于思考、勤于动手的良好品质。
教学重、难点分析
重点:应用数形结合的思想理解基本不等式,并从不同角度探索基本不等式的证明过程及应用。
难点:1、基本不等式成立时的三个限制条件(简称一正、二定、三相等);
2、利用基本不等式求解实际问题中的最大值和最小值。
教法分析
本节课采用观察——感知——抽象——归纳——探究;启发诱导、讲练结合的教学方法,以学生为主体,以基本不等式为主线,从实际问题出发,放手让学生探究思索。以现代信息技术多媒体课件作为教学辅助手段,加深学生对基本不等式的理解。
教学准备
多媒体课件、板书
教学过程
教学过程设计以问题为中心,以探究解决问题的方法为主线展开。这种安排强调过程,符合学生的认知规律,使数学教学过程成为学生对知识的再创造、再发现的过程,从而培养学生的创新意识。
具体过程安排如下:
创设情景,提出问题;
设计意图:数学教育必须基于学生的“数学现实”,现实情境问题是数学教学的平台,数学教师的任务之一就是帮助学生构造数学现实,并在此基础上发展他们的数学现实.基于此,设置如下情境:
上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客。
[问]你能在这个图中找出一些相等关系或不等关系吗?
本背景意图在于利用图中相关面积间存在的数量关系,抽象出不等式。在此基础上,引导学生认识基本不等式。
二、抽象归纳:
一般地,对于任意实数a,b,有,当且仅当a=b时,等号成立。
[问]你能给出它的证明吗?
学生在黑板上板书。
特别地,当a>0,b>0时,在不等式中,以、分别代替a、b,得到什么?
设计依据:类比是学习数学的一种重要方法,此环节不仅让学生理解了基本不等式不等式的来源,突破了重点和难点,而且感受了其中的函数思想,为今后学习奠定基础.
答案:。
【归纳总结】
如果a,b都是正数,那么,当且仅当a=b时,等号成立。
我们称此不等式为基本不等式。其中称为a,b的算术平均数,称为a,b的几何平均数。
三、理解升华:
1、文字语言叙述:
两个正数的算术平均数不小于它们的几何平均数。
2、联想数列的知识理解基本不等式
已知a,b是正数,A是a,b的等差中项,G是a,b的正的等比中项,A与G有无确定的大小关系?
两个正数的等差中项不小于它们正的等比中项。
3、符号语言叙述:
若,则有,当且仅当a=b时,。
[问]怎样理解“当且仅当”?(学生小组讨论,交流看法,师生总结)
“当且仅当a=b时,等号成立”的含义是:
不等式的课件收藏
经验时常告诉我们,做事要提前做好准备。在幼儿教育工作中,我们都有会准备一写需要用到资料。资料包含着人类在社会实践,科学实验和研究过程中所汇集的经验。有了资料的协助我们的工作会变得更加顺利!所以,关于幼师资料你究竟了解多少呢?小编现在推荐你阅读一下不等式的课件收藏,相信能对大家有所帮助。
不等式的课件 篇1
基本不等式是初中数学比较重要的一个概念,对于求解不等式问题有非常大的作用。在教学中,老师可以通过多学示例,呈现形式多样,让学生深刻理解基本不等式的本质和应用,使学生在解决实际问题中灵活掌握相关知识。本文将结合基本不等式的定义、性质和应用,探讨其相关主题。
一、基本不等式的定义和性质
基本不等式是在解决实际问题时常用到的一种数学方法,它可以有效地帮助我们解决很多实际问题。在数学中,一般把基本不等式定义为,对于任何正整数a和b,有下列不等关系:
(a+b)^2>=4ab
这个不等式在初中数学中非常重要,我们还可以把它解释成下面的形式:对于任何两个正数a和b,有下列不等式:
a/b+b/a>=2
这个式子实际上就是基本不等式的一个特例,也说明了基本不等式中的a和b可以指任何两个正数。
基本不等式的一些性质:
1、两边同时乘以正数或是开根号(即不改变不等关系的实质)是允许的。
2、当a=b时等号成立。
3、当a不等于b时,不等号成立。
这些性质是我们用基本不等式时需要注意的几个关键点。如果我们了解了这些基本的性质,就可以更加灵活地运用基本不等式解决实际问题。
二、基本不等式的应用
基本不等式的应用非常广泛,例如可以用它来解决以下问题:
1、证明
√(a^2+b^2)>=a/√2+b/√2
这个问题就可以使用基本不等式来证明,首先得到(a+b)^2>=2(a^2+b^2),将式子化简可得√(a^2+b^2)>=a/√2+b/√2,这就是想要证明的结论。
2、解决一些最值问题。例如:如何使a+b的值最小?这个问题可以用基本不等式来解决,我们设a+b=k,那么a+b的平方就是k^2,代入基本不等式中可得出:
k^2>=4ab,即(a+b)^2>=4ab
这个不等式右边是4ab,左边则是(a+b)^2,因此a+b的值取得最小值时,应当使(a+b)^2=4ab,所以a=b,因此a+b的最小值就是2a或是2b。
3、证明一些平方和不等式的结论。例如:
(a/b)^2+(b/a)^2>=2
这个问题可以通过基本不等式进行证明,首先我们设x=a/b,y=b/a,很显然有x+y>=2,然后通过简单的运算可得:x^2+y^2>=2,也即(a/b)^2+(b/a)^2>=2。
综上所述,基本不等式作为初中数学比较重要的一部分,其定义、性质和应用都与实际问题密切相关。在解决实际问题时,我们可以通过多学示例,灵活运用基本不等式的性质和应用,进而更好地理解其本质和应用,从而使初中数学知识更加牢固。
不等式的课件 篇2
(1)运用问题的形式帮助学生整理全章的内容,建立知识体系。
(2)在独立思考的基础上,鼓励学生开展小组和全班的交流,使学生通过交流和反思加强对所学知识的理解和掌握,并逐步建立知识体系。
通过问题情境的设立,使学生再现已学知识,锻炼抽象、概括的能力。解决问题
通过具体问题来体会知识间的联系和学习本章所采用的主要思想方法。
通过独立思考获取学习的成功体验,通过小组交流培养合作交流意识,通过大胆发表自己的观点,增强自信心。
重点:对一元一次不等式基本性质的掌握;理解不等式(组)解及解集的含义,会解简单的一元一不等式(组),并会在数轴上表示其解集;会解相关的问题,建立起相关的知识体系。
不等式有哪些基本性质?它与等式的性质有什么相同和不同之处?
解一元一次不等式和解一元一次方程有什么异同?引导学生回忆解一元一次方程的步骤.比较两者之间的不同学生举例回答.
举例说明在数轴上如何表示一元一不等式(组)的解集分组竞赛.看哪一组出的题型好,全班一起解答.
举例说明不等式、函数、方程的联系.引导学生回忆函数的有关内容.举例说明三者之间的关系.小组讨论,合作回答.函数性质、图象
小组交流、讨论不等式和函数、函数和方程等之间的关系,分别举例说明.
布置作业开动脑筋,勇于表达自己的'想法.
(1)在运用所学知识解决具体问题的同时,加深对全章知识体系理解。
(2)发展学生抽象能力、推理能力和有条理表达自己想法的能力.
教学思考:
体会数学的应用价值,并学会在解决问题过程中与他人合作.解决问题。在独立思考的基础上,积极参与问题的讨论,从交流中学习,并敢于发表自己的观点和主张,同时尊重与理解别人的观点。
情感态度与价值观:
进一步尝试学习数学的成功体验,认识到不等式是解决实际问题的重要工具,逐渐形成对数学活动积极参与的意识。
重点:
对一元一次不等式基本性质的掌握;理解不等式(组)解及解集的含义,会解简单的一元一次不等式(组),并会在数轴上表示其解集;会解相关的问题,建立起相关的知识体系。
↓ ↓
安排一组练习让学生充分充分讨论解决.
(1)当X取何值时,Y>0(2)当X取何值时,Y=0(3)当X取何值时,Y
3.某工人制造机器零件,如果每天比预定多做一件,那么8天所做零件超过100件;如果每天比预定少做一件,那么8天所做零件不到90件,这个工人预定每天做几个零件?
不等式的课件 篇3
一元二次不等式是高中数学中的一个重要概念,是指一个带有二次项的不等式。在数学学习中,我们经常需要利用二次不等式来解决问题,掌握这个概念对于深入了解高中数学知识是至关重要的。因此,学习一元二次不等式是高中数学学习中的一大难点,需要认真对待。
一元二次不等式的概念和性质
一元二次不等式可以写成如下形式:
ax² + bx + c > 0
或
ax² + bx + c
其中a、b、c都是实数,a ≠ 0。
我们可以通过一些方法求出不等式的根,比如将其转化为标准形式。将不等式变形,我们可以得到如下形式:
ax² + bx
或
ax² + bx > – c
然后,我们再用求一元二次方程根的方法求出不等式的解,就能够得到它的解集。
对于不等式ax² + bx + c > 0,其图像为二次函数的上凸形,即开口向上的抛物线,而对于不等式ax² + bx + c
一元二次不等式的解法
解一元二次不等式的方法有很多,下面我们介绍其中的两种:
方法一:化为标准形式,再利用求一元二次方程根的方法求解。
方法二:利用符号法将不等式中的式子化简,得到一系列不等式,然后将这些不等式求解即可。
实际上,解一元二次不等式还有很多其他的方法,比如绝对值法、图形法等等。在解题时,我们要根据具体的情况选择最合适的方法来求解。
一元二次不等式的应用
一元二次不等式广泛应用于数学学习以及生活中的各个领域,比如物理学、经济学、社会学等。下面我们以生活中的一个例子来说明一元二次不等式的应用。
假设你要购买一台电视机,商家提供了两种方案供你选择。方案一:首付1500元,每月还款100元;方案二:首付3500元,每月还款80元。那么,你需要比较两个方案的总花费,来决定哪个方案更加划算。
我们假设电视机的总价格为x元。那么,方案一的总花费为:
C1 = 1500 + 100×n
而方案二的总花费为:
C2 = 3500 + 80×n
这里n为分期的期数,即你需要还款的总期数。为了比较两种方案的划算程度,我们可以列出一个一元二次不等式:
1500 + 100×n
经过化简,我们可以得到:
20n > 2000
n > 100
因此,当还款期数大于100期时,方案一比方案二更加划算。这个例子很好地展示了一元二次不等式的应用,它能够帮助我们在日常生活中做出明智的选择,也能够更加深入地理解数学知识。
总结
一元二次不等式是高中数学学习中的重要概念,它在数学中和生活中都有广泛的应用。学习一元二次不等式需要我们认真对待,掌握其概念、性质和解法,同时也需要我们理解其实际应用,这样才能够更好地掌握高中数学的知识。
不等式的课件 篇4
本节课的研究是对初中不等式学习的延续和拓展,也是实数理论的进一步发展.在本节课的学习过程中,将让学生回忆实数的基本理论,并能用实数的基本理论来比较两个代数式的大小.
通过本节课的学习,让学生从一系列的具体问题情境中,感受到在现实世界和日常生活中存在着大量的不等关系,并充分认识不等关系的存在与应用.对不等关系的相关素材,用数学观点进行观察、归纳、抽象,完成量与量的比较过程.即能用不等式或不等式组把这些不等关系表示出来.
在本节课的学习过程中还安排了一些简单的、学生易于处理的问题,其用意在于让学生注意对数学知识和方法的应用,同时也能激发学生的学习兴趣,并由衷地产生用数学工具研究不等关系的愿望.根据本节课的教学内容,应用再现、回忆得出实数的基本理论,并能用实数的基本理论来比较两个代数式的大小.
在本节教学中,教师可让学生阅读书中实例,充分利用数轴这一简单的数形结合工具,直接用实数与数轴上点的一一对应关系,从数与形两方面建立实数的顺序关系.要在温故知新的基础上提高学生对不等式的认识.
1.在学生了解不等式产生的实际背景下,利用数轴回忆实数的基本理论,理解实数的大小关系,理解实数大小与数轴上对应点位置间的关系.
2.会用作差法判断实数与代数式的大小,会用配方法判断二次式的大小和范围.
3.通过温故知新,提高学生对不等式的认识,激发学生的学习兴趣,体会数学的奥秘与数学的结构美.
教学重点:比较实数与代数式的大小关系,判断二次式的大小和范围.
思路1.(章头图导入)通过多媒体展示卫星、飞船和一幅山峦重叠起伏的壮观画面,它将学生带入“横看成岭侧成峰,远近高低各不同”的大自然和浩瀚的宇宙中,使学生在具体情境中感受到不等关系在现实世界和日常生活中是大量存在的,由此产生用数学研究不等关系的强烈愿望,自然地引入新课.
思路2.(情境导入)列举出学生身体的高矮、身体的轻重、距离学校路程的远近、百米赛跑的时间、数学成绩的多少等现实生活中学生身边熟悉的事例,描述出某种客观事物在数量上存在的不等关系.这些不等关系怎样在数学上表示出来呢?让学生自由地展开联想,教师组织不等关系的相关素材,让学生用数学的观点进行观察、归纳,使学生在具体情境中感受到不等关系与相等关系一样,在现实世界和日常生活中大量存在着.这样学生会由衷地产生用数学工具研究不等关系的愿望,从而进入进一步的探究学习,由此引入新课.
1回忆初中学过的不等式,让学生说出“不等关系”与“不等式”的异同.怎样利用不等式研究及表示不等关系?
2在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系.你能举出一些实际例子吗?
3数轴上的任意两点与对应的两实数具有怎样的关系?
4任意两个实数具有怎样的关系?用逻辑用语怎样表达这个关系?
活动:教师引导学生回忆初中学过的不等式概念,使学生明确“不等关系”与“不等式”的异同.不等关系强调的是关系,可用符号“>”“b”“a
教师与学生一起举出我们日常生活中不等关系的例子,可让学生充分合作讨论,使学生感受到现实世界中存在着大量的不等关系.在学生了解了一些不等式产生的实际背景的前提下,进一步学习不等式的有关内容.
实例1:某天的天气预报报道,最高气温32 ℃,最低气温26 ℃.
实例2:对于数轴上任意不同的两点A、B,若点A在点B的左边,则xA
实例5:三角形两边之和大于第三边,两边之差小于第三边.
实例6:限速40 km/h的路标指示司机在前方路段行驶时,应使汽车的速度v不超过40 km/h.
实例7:某品牌酸奶的质量检查规定,酸奶中脂肪的含量f应不少于2.5%,蛋白质的含量p应不少于2.3%.
教师进一步点拨:能够发现身边的数学当然很好,这说明同学们已经走进了数学这门学科,但作为我们研究数学的人来说,能用数学的眼光、数学的观点进行观察、归纳、抽象,完成这些量与量的比较过程,这是我们每个研究数学的人必须要做的,那么,我们可以用我们所研究过的什么知识来表示这些不等关系呢?学生很容易想到,用不等式或不等式组来表示这些不等关系.那么不等式就是用不等号将两个代数式连结起来所成的式子.如-71+4,2x≤6,a+2≥0,3≠4,0≤5等.
教师引导学生将上述的7个实例用不等式表示出来.实例1,若用t表示某天的气温,则26 ℃≤t≤32 ℃.实例3,若用x表示一个非负数,则x≥0.实例5,|AC|+|BC|>|AB|,如下图.
|AB|+|BC|>|AC|、|AC|+|BC|>|AB|、|AB|+|AC|>|BC|.
|AB|-|BC|
实例6,若用v表示速度,则v≤40 km/h.实例7,f≥2.5%,p≥2.3%.对于实例7,教师应点拨学生注意酸奶中的脂肪含量与蛋白质含量需同时满足,避免写成f≥2.5%或p≥2.3%,这是不对的.但可表示为f≥2.5%且p≥2.3%.
对以上问题,教师让学生轮流回答,再用投影仪给出课本上的两个结论.
讨论结果:
(1)(2)略;(3)数轴上任意两点中,右边点对应的实数比左边点对应的实数大.
(4)对于任意两个实数a和b,在a=b,a>b,a0a>b;a-b=0a=b;a-b
活动:通过两例让学生熟悉两个代数式的大小比较的基本方法:作差,配方法.
点评:本节两例的求解,是借助因式分解和应用配方法完成的,这两种方法是代数式变形时经常使用的方法,应让学生熟练掌握.
1.若f(x)=3x2-x+1,g(x)=2x2+x-1,则f(x)与g(x)的大小关系是( )
解析:f(x)-g(x)=x2-2x+2=(x-1)2+1≥1>0,∴f(x)>g(x).
2.已知x≠0,比较(x2+1)2与x4+x2+1的大小.
解:由(x2+1)2-(x4+x2+1)=x4+2x2+1-x4-x2-1=x2.
∵x≠0,得x2>0.从而(x2+1)2>x4+x2+1.
例2比较下列各组数的大小(a≠b).
(1)a+b2与21a+1b(a>0,b>0);
(2)a4-b4与4a3(a-b).
活动:比较两个实数的大小,常根据实数的运算性质与大小顺序的关系,归结为判断它们的差的符号来确定.本例可由学生独立完成,但要点拨学生在最后的符号判断说理中,要理由充分,不可忽略这点.
解:(1)a+b2-21a+1b=a+b2-2aba+b=a+b2-4ab2a+b=a-b22a+b.
∵a>0,b>0且a≠b,∴a+b>0,(a-b)2>0.∴a-b22a+b>0,即a+b2>21a+1b.
(2)a4-b4-4a3(a-b)=(a-b)(a+b)(a2+b2)-4a3(a-b)
=(a-b)(a3+a2b+ab2+b3-4a3)=(a-b)[(a2b-a3)+(ab2-a3)+(b3-a3)]
=-(a-b)2(3a2+2ab+b2)=-(a-b)2[2a2+(a+b)2].
∵2a2+(a+b)2≥0(当且仅当a=b=0时取等号),
又a≠b,∴(a-b)2>0,2a2+(a+b)2>0.∴-(a-b)2[2a2+(a+b)2]
∴a4-b4
点评:比较大小常用作差法,一般步骤是作差——变形——判断符号.变形常用的手段是分解因式和配方,前者将“差”变为“积”,后者将“差”化为一个或几个完全平方式的“和”,也可两者并用.
已知x>y,且y≠0,比较xy与1的大小.
活动:要比较任意两个数或式的大小关系,只需确定它们的差与0的大小关系.
∵x>y,∴x-y>0.
当y
当y>0时,x-yy>0,即xy-1>0.∴xy>1.
点评:当字母y取不同范围的值时,差xy-1的正负情况不同,所以需对y分类讨论.
例3建筑设计规定,民用住宅的窗户面积必须小于地板面积.但按采光标准,窗户面积与地板面积的比值应不小于10%,且这个比值越大,住宅的采光条件越好.试问:同时增加相等的窗户面积和地板面积,住宅的采光条件是变好了,还是变坏了?请说明理由.
活动:解题关键首先是把文字语言转换成数学语言,然后比较前后比值的大小,采用作差法.
解:设住宅窗户面积和地板面积分别为a、b,同时增加的面积为m,根据问题的要求a
由于a+mb+m-ab=mb-abb+m>0,于是a+mb+m>ab.又ab≥10%,
因此a+mb+m>ab≥10%.
所以同时增加相等的窗户面积和地板面积后,住宅的采光条件变好了.
点评:一般地,设a、b为正实数,且a0,则a+mb+m>ab.
已知a1,a2,…为各项都大于零的等比数列,公比q≠1,则( )
C.a1+a8=a4+a5 D.a1+a8与a4+a5大小不确定
解析:(a1+a8)-(a4+a5)=a1+a1q7-a1q3-a1q4
=a1[(1-q3)-q4(1-q3)]=a1(1-q)2(1+q+q2)(1+q)(1+q2).
∵{an}各项都大于零,∴q>0,即1+q>0.
又∵q≠1,∴(a1+a8)-(a4+a5)>0,即a1+a8>a4+a5.
1.下列不等式:①a2+3>2a;②a2+b2>2(a-b-1);③x2+y2>2xy.其中恒成立的不等式的个数为( )
2.比较2x2+5x+9与x2+5x+6的大小.
答案:
1.C解析:∵②a2+b2-2(a-b-1)=(a-1)2+(b+1)2≥0,
③x2+y2-2xy=(x-y)2≥0.
∴只有①恒成立.
2.解:因为2x2+5x+9-(x2+5x+6)=x2+3>0,
所以2x2+5x+9>x2+5x+6.
1.教师与学生共同完成本节课的小结,从实数的基本性质的回顾,到两个实数大小的比较方法;从例题的活动探究点评,到紧跟着的变式训练,让学生去繁就简,联系旧知,将本节课所学纳入已有的知识体系中.
2.教师画龙点睛,点拨利用实数的基本性质对两个实数大小比较时易错的地方.鼓励学有余力的学生对节末的思考与讨论在课后作进一步的探究.
1.本节设计关注了教学方法的优化.经验告诉我们:课堂上应根据具体情况,选择、设计最能体现教学规律的教学过程,不宜长期使用一种固定的教学方法,或原封不动地照搬一种实验模式.各种教学方法中,没有一种能很好地适应一切教学活动.也就是说,世上没有万能的教学方法.针对个性,灵活变化,因材施教才是成功的施教灵药.
2.本节设计注重了难度控制.不等式内容应用面广,可以说与其他所有内容都有交汇,历来是高考的重点与热点.作为本章开始,可以适当开阔一些,算作抛砖引玉,让学生有个自由探究联想的平台,但不宜过多向外拓展,以免对学生产生负面影响.
3.本节设计关注了学生思维能力的训练.训练学生的思维能力,提升思维的品质,是数学教师直面的重要课题,也是中学数学教育的主线.采用一题多解有助于思维的发散性及灵活性,克服思维的僵化.变式训练教学又可以拓展学生思维视野的广度,解题后的点拨反思有助于学生思维批判性品质的提升.
1.比较(x-3)2与(x-2)(x-4)的大小.
2.试判断下列各对整式的大小:(1)m2-2m+5和-2m+5;(2)a2-4a+3和-4a+1.
5.设a>0,b>0,且a≠b,试比较aabb与abba的大小.
∴(x-3)2>(x-2)(x-4).
=m2.
∵m2≥0,∴(m2-2m+5)-(-2m+5)≥0.
∴m2-2m+5≥-2m+5.
=a2+2.
∵a2≥0,∴a2+2≥2>0.
∴a2-4a+3>-4a+1.
=x24,
又∵x>0,∴x24>0.
∴(1+x2)2>(1+x)2.
由x>0,得1+x2>1+x.
=(x-y)[(x2+y2)-(x+y)2]
=-2xy(x-y).
∵x0,x-y
∴-2xy(x-y)>0.
∴(x2+y2)(x-y)>(x2-y2)(x+y).
5.解:∵aabbabba=aa-bbb-a=(ab)a-b,且a≠b,
当a>b>0时,ab>1,a-b>0,
则(ab)a-b>1,于是aabb>abba.
则(ab)a-b>1.
于是aabb>abb a.
综上所述,对于不相等的正数a、b,都有aabb>abba.
不等式的课件 篇5
基本不等式是初中数学中重要的一章内容,也是高中数学和竞赛数学的基础。基本不等式的学习不仅有助于提高学生的数学素养和解题能力,同时也能帮助他们提高逻辑思维能力。本文旨在探讨“基本不等式”这一主题。
一、基本不等式的定义与性质
基本不等式是说:对于正实数x1,x2,…,xn,有
(x1+x2+…+xn)/n≥√(x1x2…xn),当且仅当x1=x2=…=xn时等号成立。
基本不等式的性质有以下几条:
(1)当n为偶数时,等号成立;
(2)当n为奇数时,当且仅当所有数相等时等号成立;
(3)两个数的平均数不小于它们的几何平均数,即(a+b)/2≥√(ab),其中a,b均为正实数且a≠b;
(4)当n≥3时,三个数的平均数不小于它们的几何平均数,即(a+b+c)/3≥√(abc),其中a,b,c均为正实数且a≠b≠c。
二、基本不等式的应用
基本不等式作为一种重要的数学工具,可以应用于众多问题之中。以下是基本不等式的一些常见应用。
1. 求和式的最小值
例题1:已知-x1+x2+x3+x4+x5=-18,其中x1,x2,x3,x4,x5均为正数,并且x1+x2+x3+x4+x5≥5,则x1x2x3x4x5的最小值为多少?
解法:根据已知条件,设x1+x2+x3+x4+x5=5+m(其中m≥0),则有x1+x2+x3+x4+x5+m=5+2m。代入到基本不等式中可得:
(x1+x2+x3+x4+x5+m)/5≥√(x1x2x3x4x5)m/5≥√(x1x2x3x4x5)/5
移项得到x1x2x3x4x5≥1,则x1x2x3x4x5的最小值为1。
2. 比较函数大小
例题2:比较函数f(x)=√(a²+x²)+√(b²+(c-x)²)(a,b,c>0)在[0,c]上的最小和最大值。
解法:根据已知条件和基本不等式,将f(x)分解成两个正数的平均数不小于它们的几何平均数的形式,即
f(x)=[√(a²+x²)+√(b²+(c-x)²)]/2+1/2[√(a²+x²)+√(b²+(c-x)²)]
≥√[(√(a²+x²)×√(b²+(c-x)²)]+1/2(2c)
=√(a²+b²+c²+ab-ac-bc)+c
当x=c/3时等号成立,即f(x)的最小值为√(a²+b²+c²+ab-ac-bc)+c,最大值为√(a²+b²+c²+ab+ac+bc)+c。
3. 求极限
例题3:已知数列{a_n}(n≥1)的通项公式为a_n=(√n+1)/(n+1),则求∑(n从1到∞)a_n的极限。
解法:根据基本不等式,有
a_1+a_2+…+a_n≥n(√(a_1a_2…a_n))^1/n
代入已知条件,可得:
a_1+a_2+…+a_n≥n[(√(1+1)×√(2+1)×…×√(n+1))/((1+1)×(2+1)×…×(n+1))]^(1/n)
= n[√(n+1)/2×1/3×…×1/(n+1)]^(1/n) =n[(n+1)/[2(n+1)]]^(1/n)
极限为1/2。
4. 求证不等式
例题4:已知a,b,c为正实数,且a+b+c=1,证明∑(a/(1-a))≥3(a²+b²+c²)/(ab+bc+ca)。
解法:将不等式化简,得:
∑(a/(1-a))≥3(a²+b²+c²)/(ab+bc+ca)
⇔(a/(1-a))+(b/(1-b))+(c/(1-c))≥3(a²+b²+c²)/(ab+bc+ca)
⇔(a/(1-a))+(b/(1-b))+(c/(1-c))≥3[(a+b+c)²-(ab+bc+ca)]/(ab+bc+ca)
由于a+b+c=1,有
(ab+bc+ca)≤a²+b²+c²,
(a/(1-a))+(b/(1-b))+(c/(1-c))≥(a+b+c)²/(a(1-a)+b(1-b)+c(1-c))≥3(a²+b²+c²)/(ab+bc+ca)
其中第一个不等式成立是因为当a=b=c=1/3时,等号成立;第二个不等式用到了基本不等式的形式。
综上所述,基本不等式是数学中的重要概念,掌握了基本不等式的定义、性质和应用方法,将有助于提高人们的数学素养和解题能力。在日常生活和学习中,要重视基本不等式的学习和应用,逐步提高自己的数学水平。
不等式的课件 篇6
学生初步接触了一点代数知识(如用字母表示定律,用符号表示数),是在学生学习了用字母表示数以后基础上进行学习。应用方程是解决问题的基础,有关的几个概念,教材只作描述不下定义。在教学设计中仍然把理念作为教学的重点,理解方程的意义,判断“等式”和“方程”知道方程是一个“含有未知数的等式”,才有可能明确所谓解方程。
学生不够活泼,学习积极性不是很高,学生数学基础不好。方程对学生来说还是比较陌生的,在他们头脑中还没有过方程这样的表象,所以授新课就要从学生原有的`基础开始,因为在前面学习用字母表示数的这部分内容时,有了基础,我想在学习简易方程应该没什么大的问题。
1、使学生初步理解和辨析“等式”“不等式”的意义。
2、会按要求用方程表示出数量关系,
3、培养学生的观察、比较、分析能力。
教学重点: 用字母表示常见的数量关系,会用方程的意义去判断一个式子是否是方程。
教师介绍天平各部分名称。让学生操作当天平两端托盘的物体的质量相等时,天平就会平衡,指针指向中。根据这这个原理来称物体的质量。(让学生操作,激发学生的兴趣,借助实物演示的优势。初步感受平衡与不平衡的表象)
1、实物演示,引出方程:
(1)在天平称出100克的左边空杯,让学生观察是否平衡,感受1只空杯=100克。
(2)往空杯里倒入果汁,另一边加100克法码,问学生发现了什么? (让学生感受天平慢慢倾斜,水是未知数)引出100+X>200,往右加100克法码, 问:哪边重些?(学生初步感受平衡和不平衡的表象) 问:怎样用式子表示?100+X<300
(3)教学100+X=250 问:如果是天平平衡怎么办?(让学生讨论交流平衡的方案)把100克法码换成50克的砝码,这时会怎样?(引导学生观察这时天平出现平衡), 问:现在两边的质量怎样?现在水有多重知道吗?如果用字母X表示怎样用式子表示?得出:100+X=250
示题:100+X<250100+X=2504X+50>10040+40=80 X÷2=45X-12=27
请学生观察合作交流分类:
(一)引出(1)两边不相等,叫做不等式。(2)两边相等叫做等式。
(2)含有未知数的等式100+X=250 X÷2=4 揭示:(2)这样的含有未知数等式叫做方程(通过分类,培养学生对方程意义的了解) 问:方程的具备条件是什么?(感知必须是等式,而一定含有未知数)你能写出一些方程吗?(同桌交流检查)
(三)练习判断那些是方程?那些不是方程?
6+2X=14103+X250÷2=1256+X>251÷A=3X+Y=180 (让学生加深对方程的意义的认识,培养学生的判断能力。)
教师:我们能够判断什么是方程了,方程和等式有很密切的关系,你能画图来表示他们的关系吗?(小组合作讨论交流)
方程 等式 (让学生通过观察、思考、分析、归类,自主发现获得对方程和等式的关系理解,同时初步渗透教学中的集合思想。)
不等式的课件 篇7
基本不等式作为高中数学必修内容之一,在学生学习中扮演着极为重要的角色。本篇文章将围绕基本不等式,探讨它的概念、性质、证明方法及应用,并展示基本不等式的魅力和实用性。
一、基本不等式的概念
基本不等式是指对于任意正实数 $a_1,a_2,\cdots,a_n$ 和任意正整数 $n$,有以下不等式成立:
$\dfrac{a_1}{n}+\dfrac{a_2}{n}+\cdots+\dfrac{a_n}{n}\geq\sqrt[n]{a_1a_2\cdots a_n}$
这个不等式也被称为均值不等式或AM-GM不等式。其中,$\dfrac{a_1}{n}+\dfrac{a_2}{n}+\cdots+\dfrac{a_n}{n}$ 表示这些数的算术平均值,而 $\sqrt[n]{a_1a_2\cdots a_n}$ 表示这些数的几何平均值。均值不等式的意义在于,算术平均数大于等于几何平均数。
二、基本不等式的性质
基本不等式有以下几个性质:
1. 当且仅当 $a_1=a_2=\cdots=a_n$ 时等号成立。
2. 如果 $a_1,a_2,\cdots,a_n$ 中至少有一个数为 $0$,则 $\sqrt[n]{a_1a_2\cdots a_n}=0$,这时等号成立。
3. 基本不等式可以扩展到实数范围内。
4. 均值不等式不等式对于大于 $0$ 的实数都成立。
三、基本不等式的证明方法
基本不等式有多种证明方法,下面列举其中两种:
方法一:数学归纳法
假设基本不等式对于 $n=k$ 时成立,即对于 $k$ 个正实数 $a_1,a_2,\cdots,a_k$,有以下不等式成立:
$\dfrac{a_1}{k}+\dfrac{a_2}{k}+\cdots+\dfrac{a_k}{k}\geq\sqrt[k]{a_1a_2\cdots a_k}$
现证明它对于 $n=k+1$ 时也成立。将 $a_{k+1}$ 插入到原来的不等式中,得到:
$\dfrac{a_1}{k+1}+\dfrac{a_2}{k+1}+\cdots+\dfrac{a_k}{k+1}+\dfrac{a_{k+1}}{k+1}\geq\sqrt[k+1]{a_1a_2\cdots a_k a_{k+1}}$
由于:
$\dfrac{a_1}{k+1}+\dfrac{a_2}{k+1}+\cdots+\dfrac{a_k}{k+1}\geq\sqrt[k]{a_1a_2\cdots a_k}$
因此,我们只需证明以下不等式:
$\dfrac{(k+1)\sqrt[k]{a_1a_2\cdots a_k}\cdot a_{k+1}}{k+1}\geq\sqrt[k+1]{a_1a_2\cdots a_k a_{k+1}}$
经过变形化简,可以得到:
$\sqrt[k]{a_1a_2\cdots a_k} \geq \sqrt[k+1]{a_1a_2\cdots a_k a_{k+1}}$
显然,这是成立的。
因此,按照归纳法的证明方式,基本不等式对于所有的正整数 $n$ 都成立。
方法二:对数函数的应用
对于 $a_1,a_2,\cdots,a_n$,我们可以定义函数:
$f(x)=\ln{x}$
显然,函数 $f(x)$ 是连续的、单调递增的。根据式子:
$\dfrac{a_1}{n}+\dfrac{a_2}{n}+\cdots+\dfrac{a_n}{n}\geq\sqrt[n]{a_1a_2\cdots a_n}$
可以得到:
$\ln\left(\dfrac{a_1}{n}\right)+\ln\left(\dfrac{a_2}{n}\right)+\cdots+\ln\left(\dfrac{a_n}{n}\right)\geq\dfrac{1}{n} (\ln a_1+\ln a_2+\cdots+\ln a_n)$
即:
$\ln\left(\sqrt[n]{a_1a_2\cdots a_n}\right)\leq\dfrac{\ln a_1+\ln a_2+\cdots+\ln a_n}{n}$
对于左边的式子,有:
$\ln\left(\sqrt[n]{a_1a_2\cdots a_n}\right)=\dfrac{1}{n}\ln(a_1a_2\cdots a_n)$
对于右边的式子,有:
$\dfrac{\ln a_1+\ln a_2+\cdots+\ln a_n}{n}=\ln\left(\sqrt[n]{a_1a_2\cdots a_n}\right)$
因此,我们可以得到:
$\ln(a_1a_2\cdots a_n)\geq n\ln\left(\sqrt[n]{a_1a_2\cdots a_n}\right)$
即:
$a_1a_2\cdots a_n\geq\left(\sqrt[n]{a_1a_2\cdots a_n}\right)^n$
这正是均值不等式的形式。因此,基本不等式得证。
四、基本不等式的应用
基本不等式在数学和物理学中有广泛的应用。下面介绍几个常见的应用场景:
1. 最小值求解
如果有 $n$ 个正实数 $a_1,a_2,\cdots,a_n$,它们的和为 $k$,求它们的积的最大值,即:
$\max(a_1a_2\cdots a_n)$
根据基本不等式,有:
$\dfrac{a_1+a_2+\cdots+a_n}{n}\geq\sqrt[n]{a_1a_2\cdots a_n}$
因此,可以得到:
$\dfrac{k}{n}\geq\sqrt[n]{a_1a_2\cdots a_n}$
两边同时取幂,可以得到:
$\dfrac{k^n}{n^n}\geq a_1a_2\cdots a_n$
即:
$\max(a_1a_2\cdots a_n)=\dfrac{k^n}{n^n}$
2. 凸函数的优化问题
如果 $f(x)$ 是一个凸函数,$a_1,a_2,\cdots,a_n$ 是正实数,$b_1,b_2,\cdots,b_n$ 是任意实数且 $\sum_{i=1}^n b_i=1$,则有:
$f(b_1a_1+b_2a_2+\cdots+b_na_n)\leq b_1f(a_1)+b_2f(a_2)+\cdots+b_nf(a_n)$
这是凸函数的优化问题中常用的基本不等式形式。它可以通过Jensen不等式或基本不等式证明。
3. 三角形求证
如果我们可以用 $a,b,c$ 表示一个三角形的三边长,则有:
$\sqrt{(a+b+c)(a+b-c)(a-b+c)(-a+b+c)}\leq\dfrac{(a+b+c)^2}{4\sqrt{3}}$
这个不等式在三角形求证中也被广泛应用。
五、结语
基本不等式是高中数学必修内容之一,但其实它的应用范围远不止于此。在实际问题中,基本不等式常常能给我们提供有效的解决方案。通过本文的介绍,希望读者能够更加深入地理解基本不等式的概念、性质、证明方法及应用,并能在实际问题中灵活运用。
不等式的课件 篇8
关于基本不等式的主题范文:
基本不等式是数学中非常重要的一道课题,所以我们需要从以下几个方面来对基本不等式进行介绍。
一、基本不等式是什么
基本不等式是指数学中的一个重要定理,它表述的是任意正整数n及n个正数a1,a2,…,an的积与它们的和之间的关系。也就是说,对于任意正整数n和n个正数a1,a2,…,an,有以下不等式成立:
(a1+a2+…+an)/n ≥ (a1×a2×…×an)1/n
其中,等式成立当且仅当a1 = a2 = … = an。
二、基本不等式的证明
下面我们来看一下基本不等式的证明过程。
首先,如果我们令Ai = nai和G = (a1 × a2 × … × an)1/n,则我们可以将原不等式转化为:
(a1+a2+…+an)/n ≥ G
接下来,我们来看一下如果证明G ≤ (a1+a2+…+an)/n,那么我们就可以证明基本不等式,因为不等式具有对称性,即如果G ≤ (a1+a2+…+an)/n,则(a1+a2+…+an)/n ≥ G也成立。
接下来,我们证明G ≤ (a1+a2+…+an)/n,即:
(a1+a2+…+an)/n ≥ (a1 × a2 × … × an)1/n
将不等式右边两边平方,得到:
(a1+a2+…+an)/n ≥ (a1 × a2 × … × an)2/n
这时,我们来观察右边的式子,将式子中的每一项都乘以(n-1),得到:
(a1 × (n-1) + a2 × (n-1) + … + an × (n-1)) / n ≥ (a1 × a2 × … × an)2/n
继续进行简化,得到:
[(a1 × (n-1)) + (a2 × (n-1)) + … + (an × (n-1))] / n ≥ (n-1) × a1 × a2 × … × an / n
左边乘以1/n,右边除以(n-1),得到:
(a1 + a2 + … + an) / n ≥ (a1 × a2 × … × an)1/n
这样我们就完成了基本不等式的证明。
三、基本不等式在实际中的应用
基本不等式在实际中的应用非常广泛,下面我们来看一下其中的几个例子。
1. 求平均数
如果我们已知n个正数的积,需要求它们的平均数,那么根据基本不等式,我们可以得到:
(a1 + a2 + … + an) / n ≥ (a1 × a2 × … × an)1/n
等式两边都乘以n-1,得到:
a1 + a2 + … + an ≥ (n-1) × (a1 × a2 × … × an)1/n
这样我们就可以求得平均数:
(a1 + a2 + … + an) / n ≥ (n-1) × (a1 × a2 × … × an)1/n / n
2. 求数列中n个数的积的最大值
假设我们需要从数列{a1, a2, …, an}中选取n个数,求它们的积的最大值。根据基本不等式,我们有:
(a1 + a2 + … + an) / n ≥ (a1 × a2 × … × an)1/n
因为我们需要求积的最大值,所以当等式左边的和恰好等于n个数的积时,这个积才能取到最大值。因此,我们可以得到:
a1 = a2 = … = an
这样,我们就得到了求数列中n个数的积的最大值的方法。
三、结论
通过对基本不等式的介绍,我们可以发现它不仅仅是一道看似简单的数学题目,而是一个非常重要的定理,有着广泛的应用价值。希望大家能够在今后的学习中更加重视基本不等式,并能够深刻理解它的实际应用。
不等式的课件 篇9
基本不等式是高中数学中重要的一部分,也是初学者比较难掌握的一个概念。通过学习基本不等式,可以帮助学生理解不等式的基本概念、性质和运算。同时,对于高中数学,基本不等式还有很多相关的题型需要掌握,比如极值问题、夹逼定理等。本文将从基本不等式的定义开始,探讨其相关概念、性质和应用。
一、基本不等式的定义
基本不等式是指对于任意正实数a、b,有以下不等式成立:
(a + b)² ≥ 4ab
这个不等式也可以写成:
a² + b² ≥ 2ab
这个不等式的含义是:对于任意两个正实数a、b,它们的平均数一定大于等于它们的几何平均数。
二、基本不等式的证明
对于任意实数x,y,可以用(x-y)²≥0来证明基本不等式:
(x-y)²≥0
x²-2xy+y²≥0
x²+y²≥2xy
将x换成a、y换成b,即可得到基本不等式。
三、基本不等式的相关概念
1. 等式条件:
当且仅当a=b时,等式成立。
2. 平均数与几何平均数:
平均数指的是两个数的和的一半,即(a+b)/2;几何平均数指的是两个数的积的二分之一,即√(ab)。由于基本不等式的成立,可以得出平均数大于等于几何平均数的结论。
3. 关于两个数之和与两个数的比值的关系:
从基本不等式得到如下两个等式:
(a+b)²=4ab+(a-b)²;ab≥(a+b)/2
以上两个式子给出了两个关于两个数之和与两个数的比值的关系。
四、基本不等式的性质
1. 交换律和结合律:基本不等式满足交换律和结合律。
2. 反比例函数:若f(x)=1/x,x>0,则f(a)+f(b)≤2f((a+b)/2)对于a,b>0成立。
3. 带约束的基本不等式:若a,b>0,且a+b=k,则(a+b)/2≥√(ab),即k/2≥√(ab)。
五、基本不等式的应用
1. 求证夹逼定理:如果a1≤b1≤c1,且a2≤b2≤c2,则(a1a2+b1b2+c1c2)/3≥(a1b2+b1c2+c1a2)/3≥√(a1b1c1a2b2c2)。
2. 判断一个二次函数的最大值或最小值:由于二次函数的导数为一次函数,可以通过求导得到函数的极值。而基本不等式可以用于判断二次函数的极值点是否合理,即是否在定义域内。
3. 算术平均数和几何平均数之间的关系:通过基本不等式可以证明,当两个数的和固定时,它们的平均数越大,它们的几何平均数就越小。
总的来说,基本不等式是高中数学不可缺少的一部分,不仅在考试中占有重要地位,而且还具有很重要的理论意义。希望本文对初学者掌握基本不等式有所帮助。
不等式的课件 篇10
教学目标:
1.一元一次不等式与一次函数的关系.
2.会根据题意列出函数关系式,画出函数图象,并利用不等关系进行比较.
1.通过一元一次不等式与一次函数的图象之间的结合,培养学生的数形结合意识.
2.训练大家能利用数学知识去解决实际问题的能力.
体验数、图形是有效地描述现实世界的重要手段,认识到数学是解决问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用.
自己根据题意列函数关系式,并能把函数关系式与一元一次不等式联系起来作答.
1.张大爷买了一个手机,想办理一张电话卡,开米广场移动通讯公司业务员对张大爷介绍说:移动通讯公司开设了两种有关神州行的通讯业务:甲类使用者先缴15元基础费,然后每通话1分钟付话费0.2元;乙类不交月基础费,每通话1分钟付话费0.3元。你能帮帮张大爷选择一种电话卡吗?
2.展示学习目标:
(1)、理解一次函数图象与一元一次不等式的关系。
(2)、能够用图像法解一元一次不等式。
(3)、理解两种方法的关系,会选择适当的方法解一元一次不等式。
积极思考,尝试回答问题,导出本节课题。
阅读学习目标,明确探究方向。
问题1:结合函数y=2x-5的图象,观察图象回答下列问题:
问题2:如果y=-2x-5,那么当x取何值时,y>0?当x取何值时,y
巡回每个小组之间,鼓励学生用不同方法进行尝试,寻找最佳方案。答疑展示中存在的问题。
问题3.兄弟俩赛跑,哥哥先让弟弟跑9m,然后自己才开始跑,已知弟弟每秒跑3m,哥哥每秒跑4m,列出函数关系式,画出函数图象,观察图象回答下列问题:
(1)何时哥哥分追上弟弟?
(2)何时弟弟跑在哥哥前面?
(3)何时哥哥跑在弟弟前面?
(4)谁先跑过20m?谁先跑过100m?
你是怎样求解的?与同伴交流。
问题4:已知y1=-x+3,y2=3x-4,当x取何值时,y1>y2?你是怎样做的?与同伴交流.
让学生体会数形结合的魅力所在。理解函数和不等式的联系。
移动通讯公司开设了两种长途通讯业务:全球通使用者先缴50元基础费,然后每通话1分钟付话费0.4元;神州行不交月基础费,每通话1分钟付话费0.6元。若设一个月内通话x分钟,两种通讯方式的费用分别为y1元和y2元,那么
(1)写出y1、y2与x之间的函数关系式;
(2)在同一直角坐标系中画出两函数的图象;
(3)求出或寻求出一个月内通话多少分钟,两种通讯方式费用相同;
(4)若某人预计一个月内使用话费200元,应选择哪种通讯方式较合算?
在共同探究的过程中加强理解,体会数学在生活中的重大应用,进行能力提升。
积极完成导学案上的检测内容,相互点评。
学生回顾总结学习收获,交流学习心得。
教材P51.习题2.6知识技能1;问题解决2,3.
一、学习与探究:
1.一元一次不等式与一次函数之间的关系;
2.做一做(根据函数图象求不等式);
四、课后作业:
圆的性质课件
俗话说,磨刀不误砍柴工。在学习工作中,幼儿园教师有提前准备可能会使用到资料的习惯。资料意义广泛,可以指一些参考素材。资料可以帮助我们更高效地完成各项工作。所以,你有哪些值得推荐的幼师资料内容呢?经过搜索整理,小编为你呈现“圆的性质课件”,不妨参考一下。希望你喜欢!
圆的性质课件 篇1
今天我说课的内容是《分数的基本性质》。下面我将从“说教学理念、说教材、说教法、说学法、说教学程序、说板书设计”六个方面来说课。
一、本课的教学理念有:
1、以学生发展为本,着力强化主体意识。
2、从学生已有的认知发展水平和知识经验出发,为学生提供充分从事数学活动的机会,变“学数学”为“做数学”。
3、致力于改变学生的学习方式,关注过程,让学生经历知识的形成过程,感受验证、转化等数学思想方法。
二、说教材
《分数的基本性质》一课是义务教材六年制数学第十册第四单元的一个内容。这部内容的学习是在学生学习了分数的意义、分数与除法的关系、商不变性质等知识的基础上进行教学的。它是进一步学习约分、通分的基础。
根据教材内容和学生的认识知规律,将本课的教学目标拟定如下:
1、知识与技能:理解和掌握分数的基本性质,知道分数基本性质与整数除法中商不变性质的关系。能运用分数的基本性质把一个分数化成分母相同而大小相等的分数;培养学生观察、比较及动手实践的能力,进一步发展学生的思维。
2、情感、态度:激发学生积极主动的情感状态,养成注意倾听的习惯。
本课的教学重点和难点:理解和掌握分数的基本性质,会运用分数的基本性质。
三、说教法
树立以“以学生发展为本”、“以学定教”、“教为学服务”的思想,因此在教学中,我采用引导自学、合作探索相结合法,让学会运用分数的基本性质把一个分数化成分母不同但大小相等的分数,有效地提高了教学效率。在知识的巩固阶段,我还采用组织练习法,当然以上这些教法并不是孤立存在的,本着“一法为主,多法为辅”的思想,我将多种教法进行优化组合,以达到促进学生学习方式的转变,实现教学目标的目的。
四、说学法
1、学生在运用分数的基本性质时,引导学生采用自主发现法、操作体验法,学生在折纸上画出相应的阴影部分后,必然会对那三个图形进行观察和比较,从中有所发现。之后老师通过启发学生运用分数的基本性质,证明那三个分数大小相等,让尝试中发现,在实践中体验。从而加深学生对分数基本性质的理解。
2、在学习例题的过程中教师先采用启发法,再采用自自学尝试法,独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成做一做,达到检验自学的目的。
五、说教学程序
一、设疑激趣,引入新课
教育学家布朗曾提出:“情境通过活动来合成知识,兴趣最好的老师”。
首先我通过多媒体为学生带来一个和尚分饼的故事。从前有座山,山里有座庙,庙里有个老和尚和三个小和尚。小和尚最喜欢吃老和尚烙的饼了。有一天,老和尚做了三块一样大小的饼,想给小和尚吃,还没给,小和尚就叫开了。矮和尚说:“我要一块!”高和尚说:“我要两块!”胖和尚说:“我不要多,只要四块!”老和尚听了二话没说,立刻把一块饼平均分成四块,取其中的一块给了矮和尚;把第二块饼平均分成八块,取其中的两块给了高和尚;把第三块饼平均分成十六块,取其中的四块给了胖和尚,一一满足了他们的要求。同学们,你知道哪个和尚吃的多吗?
这样通过故事激发学生的学习兴趣,为后面的学习做好了铺垫。
二、自主探索,学习新知
新课标强调,要让学生在实践活动中进行探索性的学习。根据这一理念,我设计了下面的活动。让学生在体验中学习,在学习中体验。
1、小组合作,让学生用一张纸代替饼,试着分分看。经历验证猜想——学生操作验证——集体汇报交流——展示成果四个过程。
2、引导提问:既然三个和尚分得的饼同样多,那么表示他们分得饼的三个分数什么关系呢?这三个分数什么变了,什么没变?
学生得出:这三个分数相等关系,分数的分子和分母变化了,但分数的大小不变。
3、引导学生从左到右观察等式,想一下,这三个分数的分子、分母怎样变化才保证了分数的大小不变的?
师:谁能用一句话把这个变化规律叙述出来呢?
生:从左往右看,分数的分子、分母同时扩大了,也就分子分母都乘了一个相同的数,但三个分数的大小没有变。
师:你们观察的真仔细!请大家给点掌声好吗?(出示课件)老师这样叙述的“分数的分子、分母都乘上同一个数,分数大小不变”。
4、让学生从右到左观察等式分子和分母又如何变化的呢?谁能用一句话把这个变化规律叙述出来?小组讨论后,同样的方法让学生小结规律,并请同学给予评价,让学生抒发自己的见解,体现课堂教学的民主化。然后教师在课件中补充“或者除以”四个字,小结分数的基本性质。
5、接着让学生四人小组一起做游戏,运用分数的基本性质,由一位同学说一个分数,然后其他同学依次说出相等的分数,不能重复,看看谁又快又准。
结束游戏,教师提问,现在我们知道分数的分子、分母都乘上或除以同一个数,分数大小不变。刚刚大家做游戏,有没有人使用了0呢?大家想一想0可以不可以呢?让学生回答:分数的分母不能为零。我在课件中填上“零除外”三个红色的字,以便引起学生的注意。
6、教师引导:“学了分数的基本性质到底有什么用呢?老师告诉你们,根据分数的基本性质,我们就能变魔术一样,把一个分数变成多个跟它大小一样,分子分母却不同的新分数。下面就让我们来变个魔术。”接着让学生练习课本例题2,两名学生上台演板,其他学生点评。学生自己小结方法。
教育家波利亚指出:学习任何新知的最佳途径由学生自己去发现,因为这种发现理解最深,也最容易掌握内在规律和联系。教学中给学生提供自主探究、合作交流的天地,积极为学生创设主动学习的机会,提供尝试探索的空间,学生能主动从不同方面,不同角度思考问题,寻求解决途径。同时还培养学生的合作意识,使不同的想法得到交流,实现知识的学习、互补。
三、分层练习,巩固深化
只有通过相应的练习,才能更好地巩固新知,形成技能。在练习的安排上我注重层次性,渗透多样性,让学生理解用所学的知识可以解决不同类型的问题,进一步提高解题能力。
1、涂一涂练习14,第1、7题。
因为要给空格上色,所以答案并不唯一,通过这两题不仅能让学生回忆探究发现规律的过程,充分体现了“玩中学,学中玩”的新课程理念。
2、说一说完成练习14,第8题
我想通过这道题让学生进一步加深对分数基本性质的形成过程的理解,从而培养学生的语言表达能力。
3、想一想:第5、9、10题(选择一题做为作业)
在这我让同学们充分发挥想象,灵活运用分数的基本性质。为后面学习约分和通分的知识奠定基础。
四、畅谈收获,小结全课
让学生自己总结所学内容,畅谈收获和感受,培养学生的概括能力和语言表达能力。
整节课中,我力求做到始终引导学生主动观察、充分体验、动手实践、积极创新,努力做到既注重学生的独立思考,又注重合作交流,既重视知识与能力的共进,又关注情感和体验的提高,让学生全面、深刻地理解分数的基本性质。
圆的性质课件 篇2
各位老师,同学:
大家上午好!
我说课的资料是:人教版小学数学课标教材五年级下册75页―76页《分数基本性质》。下面我就从教材分析、学情分析、教学目标、教法学法及教学过程五个方面来谈一下教学过程设计及设计意图。
一、教材分析
本节资料属于概念教学。《分数基本性质》在小学数学学习中起
着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习分数的计算、比的基本性质的基础,还是约分、通分的依据。
二、学情分析
学生已经清楚理解分数的好处,明确分数与除法的关系,商不变
性质等知识,这些都为本节课学习做了知识上的铺垫。分数的基本性质是一种规律性知识,分数的分子、分母变了,分数的大小却没变。学生在这种“变”与“不变”中发现规律,掌握新知识。
三、教学目标
综合分析课程标准要求及学生实际,我确定本节教学目标如下:
1、理解和掌握分数的基本性质,并会运用分数的基本性质把不同的分数化成分母(或分子)相同而大小不变的分数。
2、初步养成观察、比较、抽象概括的逻辑思维潜力,并且在自主探究中正确认识和理解变与不变的辩证关系。
3、受到数学思想的熏陶,养成乐于探究的学习态度。
教学重点:理解掌握分数的基本性质,它是约分、通分的依据。
教学难点:让学生自主探索、发现和归纳分数的基本性质,以及应用它解决相关的问题。
四、教法学法
根据本节课的教学目标,思考到学生已有的知识、生活经验和认
知特点,结合教材资料,本课我主要采用猜想验证与探索发现的教学模式。在分数的基本性质过程中,采取学生动手操作、小组讨论、合作探究等方式,引导学生进行比较、观察、分析。透过观察、比较,提出问题并解决问题来进行自主探索与合作交流,充分发挥学生主体参与作用,激发学生学习兴趣,同时让学生获得成功体验。
五、教学过程
本节课的教学过程我分五个部分进行:
第一部分:故事设疑,揭示课题。以唐僧师徒分饼的故事创设问题情境,揭示本节课要研究的问题。
第二部分:组织讨论,动手操作。主要是组织学生动手进行折、画、标等活动,初步理解分数基本性质。
第三部分:合作探究,发现规律。主要的是学生找出规律,并利用规律解决问题。
第四部分:多层练习,巩固深化。主要是巩固所学知识并进行拓展提高。
第五部分:梳理知识,反思小结。主要是总结全课。
其中,第三部分“合作探究,发现规律”能够细化为三个环节:
环节一:动手操作,进行比较
这一环节是在第二部分的基础上进行的,我给每组学生三张大小一样的长条纸,让学生用分数表示涂色部分,并比较大小。此环节的设计主要是培养学生的比较潜力。
环节二:呈现问题,引导观察
这一环节主要呈现给学生这样一个问题,“第一环节中的分数的分子、分母都不一样,为什么大小相等”,引导学生从左到右、从右到左两方面去观察,此环节的设计主要是培养学生的观察潜力。
环节三:交流汇报,得出规律
这一环节主要是学生汇报交流,得出结论。
如果学生没有概括出“0除外”就设计两组练习,分子、分母同乘或除以0,完善结论;如果概括出来了,再追加一个问题“为什么强调0除外”,巩固结论。最终推导出分数的基本性质————分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。此环节的设计主要是培养学生的抽象概括潜力。
就应强调的是,无论学生说的多么好,教师最后的总结和确认是不可缺少的。
以上是我对《分数基本性质》一节的教学设计意图,有不当之处,请各位批评指导。
圆的性质课件 篇3
一、说教材、学情
本次说课的内容是人教版小学数学四年级下册第四单元《小数的性质》。
小数的性质属于数与代数领域的知识,是学生在学习了“小数的意义”的基础上深入学习小数有关知识的开始。掌握小数的性质,不但可以加深对小数意义的理解,而且它也是小数的化简、改写和四则运算的基础。
二、说教学目标
根据课程标准的要求,和对教材内容的分析,我确定了如下教学目标。
(1)知识与技能:使学生理解并掌握小数的性质。
(2)数学思考:培养学生观察、分析、比较、抽象、概括的意识以及简单的推理能力。使学生学会主动思考问题。
(3)问题解决:通过直观推理、自主探究、合作交流,理解和掌握小数的性质,提高学生运用知识进行推理的能力。
(4)情感态度价值观:使学生经历小数的性质探究过程,获得成功的体验,体会数学与实际问题的联系,激发学生的数学学习兴趣。
三、说教学重难点
针对上述教学目标,结合学生的认知基础,我将本节课的教学重难点定位如下:
1、教学重点:理解并掌握小数的性质。
2、教学难点:探究小数性质的知识形成过程。
四、说教法和学法
1、教法
本节课我准备采用的教学方法有:情境教学法,引导发现法,多媒体辅助法等教法。让学生在教师营造的“可探索”的环境里,主动参与,主动探究,主动发现小数的性质。
2、学法
预设的学习方法是:观察发现法、自主探究法、合作交流法、练习法等。让学生在师生互动,生生互动中主动探究,主动发现,主动提高,有效培养学生自主学习的能力。
3、教学准备
为了更好地辅助课堂教学,顺利完成教学任务,达到预期的教学目标,在教具、学具上我准备了米尺,正方形方格纸,多媒体课件等。
五、说教学过程
根据本节课的教学内容,为了切实落实教学目标,有效突破重难点,我设计了以下五个教学环节。分别是:创设情境、激趣引思;体验操作、探究新知;巩固深化、学以致用;课堂总结、回顾反思和作业布置。
(一)第一环节:创设情境,激趣引思
1、多媒体出示超市情境图,将学生带入到具体的生活情境中去:老师昨天想去买一只中性笔,可是两家超市的标价不一样,我要去哪家买更便宜一些呢?(出示中性笔价格图片:一家是2.5元,一家是2.50元)
2、学生会根据已有的知识经验回答:去哪家买都一样。
教师在这时追问为什么,并引导学生说出:因为2.5元表示2元5角,2.50元表示2元50分,5角=50分,所以2.5元=2.50元(教师板书)
3、教师引导学生观察两个小数的区别,学生会发现:小数的末尾多了一个0,大小还没变。
4、教师提出质疑:
那是不是所有的小数都有这样的特点呢?这节课让我们共同来探究一下吧,让学生带着好奇心开始新知识的探究。
设计理念:
通过超市价格标签的具体生活情境引出小数性质的教学,利用学生熟悉的人民币直观感知相等关系,激发学生的学习兴趣,使学生带着对知识的好奇心走进知识的殿堂。
(二)体验操作,探究新知
在这一环节,我设计了以下3个教学层次:
1、小组合作,初步感知
课件出示:0.1m,0.10m,0.100m这三个长度,让学生进行大小比较。
(1)我为每个学习小组都准备了米尺,让学生在尺上先找一找0.1m,0.10m,0.100m这三个长度,并与小组成员说说你是怎么找的,然后在纸上画出来,比较他们的大小。(教师进行随堂指导)
(2)小组探究完成后进行展示交流
每个小组派代表分别展示他们找到的0.1m,0.10m,0.100m的长度,并说说是怎么找的,也就是小数的意义。
学生们得出探究结果:因为这三个长度都相等,所以这3个小数的大小是一样的。
(3)教师让学生观察0.1m,0.10m,0.100m这3个小数,引导学生发现三个小数的区别:三个小数末尾的0不一样多,但是大小一样。
看来像这样大小相等但末尾0不一样多的小数的确存在。
设计理念:
借助长度单位初步体会小数的性质,让学生动手在米尺上找出0.1m/0.10m/0.100m的长度,使学生直观感受到0.1m,0.10m,0.100m的长度相等,所以大小相等,初步感知小数的性质。
2、大胆猜想,独立验证
教师板书0.3和0.30这两个小数,让学生猜一猜这两个小数有什么关系?学生根据刚才的探究会说“相等”。
(1)这时我为学生准备了两个同样大小的正方形,一个正方形平均分成了10份,另一张正方形平均分成了100份,让学生独立验证自己的猜想。(教师进行随堂指导)
(2)学生独立验证后进行汇报展示
找学生投影展示涂方格的方法并说一说自己的想法(引导学生说出小数的意义,因为涂的面积相同,所以两个小数相等)
设计意图:
利用直观图比较0.3和0.30的大小,通过观察,引导学生借助小数的意义发现0.3和0.30的异同点,进而脱离具体的量,进一步理解小数的性质。
3、观察比较,发现规律
(1)教师引导学生观察3组算式:我们先从左往右看,小数的末尾有什么变化?从右往左看呢?他们的大小呢?你有什么发现?
(2)让学生说说自己的发现:
小数的末尾添上“0”或去掉“0”小数的大小不变(板书)
(教师强调并解释:末尾指的是小数点后面最后一个非0的数。帮助学生区分哪些0可以去掉,哪些0不能去掉)
(3)教师强调课题:我们把这个小数所共有的特点叫做小数的性质(板书课题)
设计意图:
让学生在探究验证之后,尝试自己总结规律,培养学生对知识的概括能力。
(三)巩固深化、学以致用
1、对口令游戏:教师说一个小数,学生对出相等的小数。
2、哪些数可以去掉末尾的0(重点区分小数中哪些0可以去掉,整数与小数的区别,强化小数的性质)
3、连线
设计理念:
注重练习设计的层次性,满足不同层次的需要,体现新课标中人人获得必需的数学,人人学有价值的数学,不同的人在数学中得到不同的发展的要求。
(四)课堂总结,回顾反思
俗话说“千金难买回头看”。课的结尾,通过提问:今天你有什么收获?你是怎样获得新知的?你还有什么疑惑?来回顾所学知识,梳理知识。引导学生对本节课所学知识和获取知识的方法进行总结和反思。
(五)作业布置
小游戏:你能只动三笔,使5,50,500,5000四个数相等吗?既检查学生对知识的掌握情况,又带有趣味性,激发了学生在课下探究数学知识的兴趣。
六、说板书设计
板书素有“微型教案”之称,它具有高度的概括性、艺术性和指导性的特征。本节课的板书是随着教学进度依次呈现的,它能体现本节课的教学重难点,对学生整堂课的学习,起着重要的指导作用。
小数的性质
2.5元=2.50元
0.1m=0.10m=0.100m
0.3=0.30
小数的末尾添上“0”或去掉“0”,小数的大小不变。
以上是我对这节课的教学设想,在这堂课的设计中,注重引导学生沿着“实例——猜想——验证——总结——应用”的轨迹去探索、去发现,使学生体验探索、发现数学规律的基本策略和方法。我相信学生能在老师的带领下,完成此节课的教学内容,基本达到教学目标。我的说课完毕,请评委老师们指正,谢谢!
圆的性质课件 篇4
一、教材简析和教材处理
1.教材简析
《分数的基本性质》是九年义务教育六年制小学数学课本(西师大版)第十册第15-16页的内容。在小学数学学习中起着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习分数的计算、比的基本性质的基础。分数的基本性质是一种规律性知识,分数的分子分母变了,分数的大小会变吗?分数的分子分母如何变化,分数的大小不变呢?学生在这种“变”与“不变”中发现规律。
2.教材处理
以前,教师通常把《分数的基本性质》看作一种静态的数学知识,教学时先用几个例子让学生较快地概括出规律,然后更多地通过精心设计的练习巩固应用规律,着眼于规律的结论和应用。随着课程改革的深入,教师们越来越重视学生获取知识的过程,但我们也看到这样的现象:问题较碎,步子较小,放手不够,探究的过程体现不够充分。《分数的基本性质》可不可以有别的教学思路呢?新的课程标准提出:“教师应向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法。根据这一新的理念,我认为教师可以为学生创设一种大问题背景下的探索活动,使学生在一种动态的探索过程中自己发现分数的基本性质,从而体验发现真理的曲折和快乐,感受数学的思想方法,体会科学的学习方法。所以,教师的着眼点,不能只是规律的结论和应用,而应有意识地突出思想和方法。
二、教学课件设计意图
场景一:故事引人,揭示课题。
有位老爷爷把一块地分给三个儿子。老大分到了这块地的三分之一,老二分到了这块地的六分之二。老三分到了这块的九分之三。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈的笑了起来,给他们讲了几句话,三兄弟就停止了争吵。
让学生发表自己的意见,教师出示三块大小一样的纸,通过师生折、观察和验证,得出结论:三兄弟分得的一样多。
一上课,先听讲一段故事,学生非常乐意,并会立即被吸引。思考故事当中提出的问题,学生自然兴趣浓厚。通过故事设疑,激起了学生探求新知的欲望。
场景二:发现问题,突出质疑。
既然三兄弟分得的一样多,那么表示它们分得土地的分数是什么关系呢?这三个分数什么变了,什么没有变?让学生小组讨论后答出:这三个分数是相等关系,它们平均分的份数和表示的份数也就是分数的分子和分母变化了,但分数的大小不变。
3.引入新课:下面算式有什么共同的特点?学生回答后
它们各是按照什么规律变化的呢?场景三:比较归纳,揭示规律。
1.出示思考题。
比较每组分数的分子和分母:
(1)从左往右看,是按照什么规律变化的?
(2)从右往左看,又是按照什么规律变化的?
让学生带着上面的思考题,看一看,想一想,议一议,再翻开教科书看看书上是怎么说的。
2.集体讨论,归纳性质。
(1)从左往右看,由1/4到2/8,分子、分母是怎么变化的?引导学生回答出:把1/4的分子、分母都乘以2,就得到2/8。原来把单位“1”平均分成4份,表示这样的1份,现在把分的份数和表示份数都扩大2倍,就得到2/8。
(2)3/4是怎样变化成9/12的呢?怎么填?学生回答后填空。
(3)引导口述:3/4的分子、分母都乘以2,得到6/8,分数的大小不变。
(4)在其它几组分数中,分子、分母的变化规律怎样?几名学生回答后,要求学生试着归纳变化规律:分数的分子和分母都乘以相同的数,分数的大小不变。
(5)从右往左看,分数的分子和分母又是按照什么规律变化的?通过分析比较每组分数的分子和分母,得出:分数的分子和分母都乘以相同的数,分数的大小不变。
(6)对照教科书中的分数基本性质,让学生说出少了什么?(少了“零除外”)讨论:为什么性质中要规定“零除外”?
出示的思考题是学生探求新知、独立思考的指南,教师环紧扣的提问以及引导学生逐步展开的充分的讨论,帮助学生一步步走向结论。]
3.出示例2:把3/4和15/24化成分母是8而大小不变的分数。
思考:要把3/4和15/24化成分母是8而大小不变的分数,分子怎么不变?变化的依据是什么?
通过举例,沟通分数的基本性质与商不变性质之间的联系。引导学生运用分数与除数的关系,以及整数除法中商不变的性质,说明分数的基本性质。
如:
[有助于学生顺利地运用分数与除法的关系,以及整数除法中商不变性质说明分数的基本性质,实现新知化归旧知。]
场景四:多层练习,巩固深化。
1.口答。
学生口答后,要求说出是怎样想的?
2.判断对错,并说明理由。
运用反馈片判断,错的要求说明与分数的基本性质中哪几个字不相符。
3.在下面()内填上合适的数。
练习设计由易到难,由浅入深,既巩固新知,又发展思维,其间还自然地渗透思想品德教育。师生对出数做题,能够创设民主和谐的学习气氛。通过举例,还渗透了函数思想。
圆的性质课件 篇5
一、说教学理念
1、以学生发展为本,着力强化个人主体意识,同时关注学生学习动机、兴趣等情感态度。
2、从学生已有的认知发展水平和知识经验出发,为学生提供充分从事数学活动的机会和充分的练习空间。
3、致力于改变学生的学习方式,关注过程,让学生经历知识的形成过程,感受验证、转化,以及“用数学学数学”等数学思想方法。
二、说教材
1、教学内容
《分数的基本性质》一课是五年级下册第四单元的一个内容。这部分内容是在学生学习了分数的意义、分数与除法的关系、商不变性质等知识的基础上进行教学的,它是以后学习约分、通分的依据。因此,分数的基本性质是本单元的教学重点之一。在讲解这一知识点时,应注意加强整数商不变性质的回顾,这样既帮助学生理解了分数的基本性质,又沟通了新旧知识的内在联系。
2、学情分析
学生在三年级上学期已经初步认识了分数,知道分数各个部分的名称,会读、写简单的分数,会比较分子是1的分数,以及同分母分数的大小。还学习了简单的同分母分数的加、减法。在本学期又学习了因数、倍数等概念,掌握了2、3、5的倍数的特征,为学习本单元知识打下了基础。另外,本单元的知识内容概念较多,比较抽象,学生的抽象逻辑思维在很大程度上还需要直观形象思维的支撑。在数学教学中,化抽象为具体、直观,对于顺利开展教学是十分必要的。
3、教学目标:
(1)通过教学使学生理解和掌握分数的基本性质,能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数,再应用这一规律解决简单的实际问题。
(2)引导学生在参与观察、比较、猜想、验证等学习活动过程中,有条件、有根据的思考、探究问题,培养学生的抽象概括能力。
(3)渗透初步的辨证唯物主义思想教育,使学生受到数学思想方法的熏陶,培养乐于探究的学习态度。
教学重点:理解和掌握分数的基本性质;教学难点:学习自主探索,发现和归纳分数基本性质,以及应用它解决相应的问题。教具学具:课件,三张同样大小的长方形纸条、彩笔。
三、说教法
“将课堂还给学生,让课堂焕发生命活力”,为营造学生在教学活动中的独立、自主的学习空间,让学生成为课堂的主人,本着这样的指导思想,以及学生的认知规律,我采用的教学方法主要有:
1、实际操作法
指导学生亲自动手折一折,涂一涂,比一比,从这些实践活动中加深学生对分数基本性质的理解,促使学生的感性认识逐步理性化。
2、直观演示法
先让学生充分感知,发现规律,然后比较归纳,最后概括出分数的基本性质,从而使学生的思维从形象思维过渡到抽象思维。
3、启发式教学法
运用知识迁移规律组织教学,用数学学数学,层层深入,促使学生在积极的思维中获取新知。
四、说学法
1、学生在学习分数的基本性质时,引导学生采用自主发现法、操作体验法,学生在纸条上涂出相应的阴影部分后,必然会对那三个图形进行观察和比较,从中有所发现。之后老师通过启发学生运用分数的基本性质,证明那三个分数大小相等,在尝试中发现,在实践中体验,从而加深学生对分数基本性质的理解。
2、在学习例题的过程中教师先采用启发法,再采用学生自学尝试法,独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成练习题,达到检验自学的目的。
五、说教学过程
(一)、新知铺垫
(二)、新知导入
(三)、新知探究
(四)、新知探究
(五)、新知训练
(六)、新知应用
(七)、新知强化
(八)、新知小结
1、新知铺垫和导入
上课伊始我利用分饼的故事来激发学生的学习兴趣,让学生亲自动手折一折、分一分、比一比,从直观上让学生感受到这几个分数大小是相等的,而这几个分数的分子和分母都不相等,这其中有什么规律呢?继而揭示课题。
(设计意图)好奇是学生的天性,通过分地故事能快抓住学生的好奇心,使他们在心理上产生悬念,带着疑问迅速切入正题。
2、新知探究
(1)、动手操作、形象感知
首先让学生用三张同样大小的长方形纸条折一折,再涂色表示出每张纸的1/2,2/4,4/8。观察涂色部分,说说发现了什么?在学生汇报时,说出:涂色部分面积相等,也就说明这三个分数大小相等。然后通过电脑再进一步证实学生的发现:通过观察,我们发现三个阴影部分大小相等,说明三个分数大小相等。
(设计意图)主要是利用学生爱动手以及直观思维的特点,让学生在动手操作过程中不仅复习了分数的意义,为下面导入新知识作好迁移,而且激活了课堂气氛,营造了良好的学习开端。
(2)、观察比较,探究规律
首先,在学生折纸的基础上,通过小组讨论交流总结出分数的基本性质,让学生理解“同时乘上或者除以”的意义,以及为什么要强调“0除外”这个条件。其次,总结出分数的基本性质后,要和以前学过的商不变规律进行对比,找出二者间的联系,使学生更好的理解、运用性质。
(设计意图)这一环节重在培养了学生大胆交流、语言表达的能力,同时学生在汇报交流中使问题逐渐明朗化,最终验证了自己的猜想。要充分放手,让学生畅所欲言。
3、新知训练
在巩固阶段,我安排了三个不同层次的习题。其中“新知训练”是对“分数的基本性质”做进一步的诠释。“新知应用”是导入分饼时的题,难度不大,首尾照应,最后还安排了“新知强化”环节,属于开放性题。整个习题设计部分,题目呈现方式的多样,吸引了学生的注意力,激发了学生兴趣,培养了学生创新意识和解决问题的能力。
圆的性质课件 篇6
一、说教学内容的创新处理
《分数的基本性质》是九年义务教育六年制小学数学第十册第四单元的一个重要内容。该教学内容是以分数的意义、分数与除法的关系以及整数除法中商不变的规律这些知识为基础的。原教材先通过直观使学生了解1/2、2/4、3/6三个分数的分子、分母虽然不同,但是分数的大小是相等的。接着进一步研究这三个分数的分子和分母,思考它们是按照什么规律变化的。最后归纳出分数的基本性质。这样安排教学内容,学生的主体地位不能得到充分体现,不利于培养学生的问题意识。为此,我打算通过"折、画、想、问、用"五个环节对教学内容作如下处理。
1.折--用三张同样大小的长方形纸条分别折出二等分、四等、八等分。
2.画--让学生用色笔在长方形纸条上分别涂出它们的一半,并用分数来表示。
3.想--1/2、2/4、4/8这些分数有什么关系?你还能说出和"1/2"大小相等的其他分数吧?你还能说出和"2/3"大小相等的分数吧?
4.问--ww"1/2=2/4=/4/8"中,你发现什么?
5.用--用已学过的"分数的基本性质"解决有关的数学问题。这样安排教学有以下几点好处:
(1)有利于知识的迁移。
让学生通过动手折、涂,再用分数表示,这样既帮助学生复习了分数的意义,又为学习新知识作了准备。
(2)能发挥学生学习的主动性。
通过学生找和"1/2"大小相等的分数,以及和"2/3"大小相等的分数,发挥学生学习的主动性,体现自主学习的精神。
(3)提高了学生的学习能力。
通过交流,培养学生敢于发表自己的意见,积极思考问题,积极探问题,培养学生概括问题的能力和解决问题的能力。
二、说教学模式
本节课起打算采用"创设情境,复习迁移--设疑激思,获取新知--深化概念,及时反馈"的教学模式进行教学。
1.创设情境,复习迁移。
为了发挥学生学习的主动性,使旧知识起到正向迁移的作用,首先创设了动手操作的情境:起发给每位学生三张同样大小的长方形纸条,让学生折一折。把第一张纸条对折(也就是把这张纸条平均分成2份),把第二张纸条对折再对折(也就是把纸条平均分成4份),再把第三张3次对折(也就是把纸条平均分成8份)。接着,让学生画一画,用彩笔在等分后的纸条上分别涂出它们的一半。告诉学生,如果把每张纸条都看作单位"1",问学生:你能把涂色的部分用分数表示吗?(电脑显示三张涂色的纸条,学生分别用分数1/2、2/4、4/8表示。)
这一情境的设置,主要是让学生在动手操作过程中不仅复习了分数的意义,为下面导入新知识作好铺垫、迁移。并且在教学一开始,就能抓住学生爱动手以及直观思维的特点,激活课堂气氛,营造良好的学习开端。
2.设疑激思,获取新知。
"疑是思之始,学之端"。学,就是学习问题,学怎样问问题。为此,我在上面教学的基上,引导学生逐一讨论以下问题:
(1)1/2、2/4、4/8这些分数有什么关系?
(学生会说这三个分数的大小相等。)
(2)你能说出与"1/2"大小相等的其他分数吗?你还能说出与"2/3"大小相等的分数吗?
(如果学生写错或写不出,待得出分数基本性质后再写)
(3)从"1/2=2/4=4/8"中,你发现了什么?
(让学生分组讨论,充分发表自己的意见,经过归纳,最后得出:分数的分子和分母同时乘以或者除以相同的数,分数的大小不变。并把这句话显示出来。)
(4)你对上面这句话觉得有什么问题吗?
(学生可能会提出地"相同的数"中"0"必须除外。如果学生提出不出,就由教师提出问题:相同的数是不是任何数都行?为什么?)
最后,让学生完整地概括出分数的基本性质。(老师揭示课题)
这样教有利于培养学生的问题意识,师生情感交融、和谐,学生积极参与,思维活跃,学习主动,为学生创设一个良好的学习氛围。
3.深化概念,及时反馈。
为了加深学生对分数基本性质的理解,激发学生的学习兴趣,起设计了如下练习:
1.下面各式对吗?为什么?(让学生用手势表示对错)
(1)3/4=6/8(2)3/8=12/2(3)3/10=1/5
2.在()里填上合适的数。
()/6=()/36=8/12=2/()=()/24
3.把2/3和10/24化成分线是12而大小不变的分数。
4.把下面大小相等的两个分数用线连接起来。
4/51/64/94/612/16
3/42/320/256/368/18
三、说教学目标
以上各个教学环节的设计体现如下几点教学目标:
1.知识技能性目标:让学生亲身经历"分数基本性质"抽象概括的全过程,正确理解和掌握分数的基本性质,使学生能运用分数的基本性质解决有关的数学问题。
2.发展性目标:培养学生观察--探索--抽象--概括的能力以及迁移类推能力,渗透事物是相互联系、发展变化的辩证唯物主义观点,培养学生的数学意识、问题意识、合作意识以及应用意识。
3.创新性目标:让学生在学习的过程中发现问题、解决问题,提高学生探索问题的能力和研究问题的能力。
圆的性质课件 篇7
一、教材分析
分数的基本性质是约分和通分的基础,而约分、通分又是分数四则运算的重要基础,因此,理解分数的基本性质显得尤为重要。而分数与除法的关系以及除法中的商不变的规律与这部分知识紧密联系,是学习这部分内容的基础。
探索分数的基本性质,关键是让学生在活动中主动地观察和发现,在讨论交流的基础上归纳规律。根据我对教材的认识,本课时安排了学习活动和游戏活动让学生寻找相等的分数,使学生初步体验分数的大小相等关系,为观察、发现分数的基本性质提供丰富的学习材料。然后引导学生观察这两组相等的分数,寻找分子、分母的变化规律,并展开充分的交流讨论,在此基础上归纳分数的基本性质。
教学目标:
1、知识目标:经历探索分数的基本性质的过程,理解分数的基本性质。能用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。
2、能力目标:培养学生的观察、比较、归纳、总结概括能力。
3、情感目标:经历观察、操作和讨论等学习活动,体验数学学习的乐趣。
二、说教法
“将课堂还给学生,让课堂焕发生命活力”,为营造学生在教学活动中的独立、自主的学习空间,让学生成为课堂的主人,本着这样的指导思想,根据概念教学的特点,结合教学特点,以及学生的认知规律,我将采用的教学方法主要有:
1、 直观演示法
先让学生充分感知,然后比较归纳,最后概括出分数的基本性质,从而使学生的思维从形象思维过度到抽象思维。
2、 实际操作法
指导学生亲自动一动、折一折,画一画,比一比,多这些实践活动中加深学生对分数基本性质的理解,促使学生的感性认识逐步理性化。
3、 启发式教学法
运用知识迁移规律组织教学,层层深入促使学生在积极的思维
4. 树立以“以学生发展为本”、“以学定教”、“教为学服务”的思想,因此在教学中,我采用引导自学、合作探索相结合法,让学会运用分数的基本性质把一个分数化成分母不同但大小相等的分数,有效地提高了教学效率。在知识的巩固阶段,我还采用分层练习法,当然以上这些教法并不是孤立存在的,本着“一法为主,多法为辅”的思想,我将多种教法进行优化组合,以达到促进学生学习方式的转变,实现教学目标的目的
三、教学组织形式:
师生互动、合作与探索结合
四、教学过程与设计意图
1、故事引入、激发兴趣、揭示课题
以阿凡提讲故事引入,然后小组讨论。
2、动手操作,探索新知
①做一做,折一折。拿出三张同样大的长方形纸,请分别平均折成2份、4份、8份。并按照下图涂色。如果把每张纸都看作“1”,请你把涂色的部分用分数表示出来。学生动手操作、汇报。
根据上面的过程,学生能得到一组相等的分数吗?
②教师引导学生归纳小结:比较这三个分数的分子和分母,它们各是按照什么规律变化的?分数的分子和分母同时乘上或除以相同的数(0除外),分数的大小不变,这就是分数的基本性质。
知识引伸,联系旧知识:根据分数与除法的关系,以及整数除法中商不变的性质,你能说说它与分数的基本性质吗?
设计意图:新知识力求让学生主动探索,逐步获取。借助直观图组织学生进行一个动手操作活动,借助直观图形找出相等的分数,使学生能够直观感知。充分调动孩子们去动手、动脑,培养学生的操作能力和语言表达能力。并充分发扬学生的团结协作的精神, 互相帮助,每个人都能在激励中得到不同的发展。
本次活动的安排为学生提供了丰富的学习材料,引导学生联系以往的学习经验,进行学习内容的迁移,自然得到分数大小的变化规律,教师在此也进行了适当的重点点拨。在这一环节的学习过程中,教师注重学生的观察、比较、归纳概括能力的培养。
3、实践游戏、深化理解、巩固练习:
设计意图:练习设计由易到难,由浅入深,既巩固新知,又发展思维,其间还自然地渗透思想品德教育。师生对出数做题,能够创设民主和谐的学习气氛。学生对于课堂游戏都非常积极,这时,教师应该及时表扬表现出色的学生,也要顾及一些后进生的学习状况,带动后进生的学习激情。
4、全课总结:这节课你有什么收获?
圆的性质课件 篇8
一、说教学内容:
本节课是北师大版数学五年级上册第三单元的内容。
二、说教学目标:
1、理解和掌握分数的基本性质,知道分数基本性质与整数除法中商不变性质的关系。
2、通过动手实践,发现并总结规律,能运用分数的基本性质把一个分数化成分母相同而大小相等的分数;培养学生观察、比较及动手实践的能力,进一步发展学生的思维。
3、激发学生积极主动的情感状态,养成注意倾听的习惯,在实践操作中体验成功的快乐。
三、说教学重、难点:
理解和掌握分数的基本性质,会运用分数的基本性质。
四、说教法、学法
1、创设情景,激发学生的学习兴趣。
通过创设猴王分饼的情境,巧设悬念,激发学生求知欲望,既找到了教学的起点,又调动了学生探究的积极性,这种引课的方式取代了过去的“复旧引新”那种机械的模式。有效性和学生思维震荡的深刻性。
2、创造性地用好课程资源,体现新的教学理念。
教学通过折纸得出分数,认识到分数大小相等,并探究出规律,这一部分内容跳出教材圈子,有机地整合了教材,把教材的做一做作为巩固知识的载体。利用折纸得出的多媒体演示、、三个大小不变的分数,把学生们带入一个探究的空间,感知分数的基本性质的来历,同时学生对分数的分母和分子之间的关系产生疑问,通过引发学生的认知冲突,激发学生探索求知的欲望。
3、整节课力求体现探究学习的基本要求,让学生的学习主体地位得到体现,使学生学习积极性较高涨。
五、说教学过程:
(一)、创设情景,设疑
教师创设猴王分饼的情景:同样大小的饼,第一只小猴分得,第二只小猴分得,第三只小猴分得,它们谁分得多?学了今天的内容你就明白了,引入新课。
(设计意图:故事引入,设置悬念,使学生急于想弄明白谁多谁少,激发学生的求知欲望)
圆的性质课件 篇9
一、说教材
《分数的基本性质》在分数教学中占有重要的地位,在小学数学学习中起着承前启后的作用。它既以分数的意义、分数的大小比较为基础,又与整数除法及商不变的性质有着内在的联系,更分数的约分、通分的依据,也进一步学习分数加减法计算、比的基本性质的基础。因此,分数的基本性质该单元的教学重点之一。
二、说学情
学生在三年级上学期已经初步认识了分数,以及同分母分数的大小。在本学期又学习了因数、倍数等概念,掌握了2、3、5的倍数的特征,为学习本单元知识打下了基础。五年级学生已经养成了合作学习的习惯,并且已经具有了一定的分析和解决问题的能力,再加上他们所具有的一定的生活经验,因此能够在教师的引导下完成“质疑——探索——释疑——应用”这一完整的学习过程。
三、说教学目标
依据新的《数学课程标准》,为了更好地体现数学学习对学生在数学思考、解决问题以及情感与态度等方面的要求。根据本节课的具体内容并结合学生的实际情况,我制定了以下教学目标:
知识与技能:让学生亲身经历“分数基本性质”抽象概括的过程,理解和掌握分数的基本性质,并能初步运用分数的基本性质解决简单的数学问题。
过程与方法:让学生经历发现问题、探究问题、解决问题的全过程,在观察、猜想、验证等探索活动中,培养学生观察--探索--抽象--概括的能力以及合情推理能力,体验解决问题策略的多样性。
情感与态度:使学生在分数基本性质的探究活动中,获得成功的体验,建立自信心,感受到数学的严谨性,及渗透事物相互联系、发展变化的辩证唯物主义观点。
教学重点:理解和掌握分数的基本性质,运用分数的基本性质解决实际问题。
教学难点:让学生经历自主探索,发现和归纳分数的基本性质,并会应用分数的基本性质解决相关问题。
教学准备:三张同样大小的长方形纸张,彩色笔
四、说教学方法
树立以“以学生发展为本”、“以学定教”的思想,为实现教学目标,有效地突出重点、突破难点,我遵循学生的认知规律,以建构主义学习理论为指导,在探究分数的基本性质过程中,采取学生动手操作、小组讨论、合作探究等方式,引导学生进行比较、观察、分析,充分运用知识迁移的规律,在感知的基础上加以抽象、概括,进行归纳整理,采取迁移教学法、引导发现法组织教学。创设了一种“情境导入、动手体验、自主探索”的课堂教学形式,以“自主探究”贯穿全课,引导学生迁移旧知、大胆猜想——实验操作、验证——质疑讨论、完善猜想等,把这一系列探究过程放大,把“过程性目标”凸显出来。
五、学法
有效的数学学习活动,不能单纯模仿与记忆,动手实践、自主探索与合作交流学生学习数学的重要方式。在学习例题的过程中学生主要采用自学尝试法,自主探究法,合作交流的学习方式,让学生通过独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成做一做,达到检验自学的目的。通过观察、比较、提出问题并解决问题来进行自主探索与合作交流,充分发挥学生主体参与作用、激发学生学习爱好,同时让学生获得成功体验。
六、说教学过程
为了全面、准确地引导学生探索发现分数的基本性质,实现教学目标,我努力抓住学生的思维生长点组织教学,设计了以下五步教学环节:
1、创境设疑: 回顾旧知,引发思考
2、自主探究: 动手实践,发现规律
3、交流归纳:揭示规律,巩固深化
4、分层精练:多层练习,多元评价
5、感悟延伸:课堂小结,加深理解
第一环节:创境设疑
结合六一儿童节的到来,创设分蛋糕的情景,妈妈分得公平吗?课始便迅速地抓住了学生的好奇心,使课堂教学有了一个好的开始。鼓励学生当小法官,则极大地调动了学生的积极性,使他们在心理上产生悬念,进一步激发学生的学习兴趣,为后面的学习做好了铺垫。这样设计也从学生已有的经验和情感出发,找准新知的最佳切入点,为学生后面的联想和猜想巧设“孕伏”。
第二环节:自主探究
通过折纸、涂色的动手操作活动,使学生亲身经历并获得非常具体、真切的感知,为探究分子、分母的变化规律提供认知基础。教师通过五个有层次的问题,分层质疑,分层提问,分层评价,尽量地关注到了每一个层次的学生,引导学生逐步在自主探索、合作互助的学习方式中初步理解并能简单概括出分数的基本性质,并及时强调了0除外的意义,使学生体验到解决问题策略的多样性,发展学生的实践能力和创新精神,培养学生的合作意识。
第三环节:交流归纳
在这一环节,教师引导学生在观察与分析、探索与思考分数的基本性质的基础上不断生成新问题,通过质疑,借助知识的迁移,沟通分数的基本性质与商不变性质之间的联系。引导学生应用分数和除法的关系,以及整数除法中商不变的性质,说明分数的基本性质。这样的设计就让学生感受到了数学知识的内在联系,同时渗透“事物之间相互联系”的辨证唯物主义观点,培养学生观察--探索--抽象--概括的能力。
第四环节:分层精练
这个环节让学生对分数的基本性质再一次的体验,感受,研究,同时也整节课的亮点之一,练习分层,评价分层,通过分层练习,关注到每一个层次的学生,让每一个学生都有发展。教师结合本班学生的学习特点,设计了由浅入深,由易到难的练习,基本练习让90%的同学体验到了学习的快乐,综合练习让80%的同学品尝到了成功的喜悦,拓展练习则留到课后,让学生在自主探究中、讨论交流中、知识的沉淀中进一步加深对知识的理解和掌握。
第五环节:感悟延伸
通过小结、反思,查漏补缺,学生在交流收获、互相帮助的过程中,使学生对知识有个系统的回顾和认识,从而进一步培养学生的知识概括能力。
总之,本节课教学坚持了“学生探索的主体”这一教学原则,面向全体学生,充分的引导学生动手实验,自主探索,质疑延伸,合作交流,让每一个学生在探索的过程中感受数学和日常生活的紧密联系,体验学习数学的快乐,培养了创新精神和实践能力。
圆的性质课件 篇10
一、说教材
1、教学内容:六年制小学数学第八册p100例1、2。
2.教材所处的地位
小数的性质是一节概念教学课,是在学习了“小数的意义”的基础上深入学习小数有关知识的开始。掌握小数的性质,不但可以加深对小数意义的理解,而且它是小数四则计算的基础。根据小数的性质可以把末尾有零的小数化简,也可以不改变小数的大小,把一个数改写成指定位数的小数。
3、教材的重点和难点:
掌握小数性质的含义是教学的重点,理解小数性质归纳的过程是教学的难点。
4、教学目标:
(1)利用知识的迁移规律,让学生在自主探究、合作交流中理解和掌握小数的性质,提高学生运用知识进行判断、推理的能力。
(2)让学生进一步体验教学与日常生活的密切联系,体验数学问题的探究性和挑战性,从而激发学习数学的兴趣,以主动参与数学活动。
(3)在教学中渗透事物是普遍联系和相互转化的辩证唯物主义观点。
二、教法
根据教学要求,结合教材的特点,为了更好地突出重点,突破难点,完成教学任务。我采用了:
1、情景教学法。让学生在情景里亲自动手操作、探索,感受知识的形成过程不过如此简单,享受成功的喜悦,激发学生学习数学知识的兴趣。
2、游戏教学法。即是新课改的教学理念“做中学、玩中学”的体现。因为小学生学习活动不再是教师的“说教”,应该更多的时间是在学生自主探索的过程中。这样的教学,更能体现了“学生是学习数学的主人,教师是数学学习的组织者、引导者和合作者”的功能。
3、以小组合作的形式来组织教学。体现了“自主探索、合作交流、实践创新”的数学学习方式,培养了学生互相合作交流的意识,在共同讨论中完成学习任务。
三、学法
通过这节课的教学,主要培养了学生以下学习方法:
1、指导学生观察图画,共同讨论,在自主探索中把感性认识上升到理性认识。
2、在游戏中运用学习成果,把数学知识利用到现实生活中。
3、培养学生共同合作,相互交流的学习方式。
四、说教学程序
(一)情景导入激趣揭题
(课件出示)唐僧师徒一起去西天取经,有一天,他们口渴了,唐僧要把三根甘蔗分给三个徒弟吃,事先他把甘蔗分别装进三个袋子里,上面标注着长度:0.
l米、0.10米、0.100米,馋嘴的八戒抢先一步说:“我的肚子大,我吃长的。”说着拿回了注有“0.100米”的袋子。沙和尚好不服气,上前对师傅说:“八戒好吃懒做,长的应该让给大师兄悟空吃。”悟空笑了笑说:“两位徒弟别吵了,无论哪个袋子都一样呀!”唐僧听了悟空的话,微笑着点了点头。
同学们,你们知道为什么师傅对悟空的话点头微笑呢?这是因为大师兄悟空掌握了小数很重要的性质,学习了这节课,我们就知道其中的奥秘了”。(板书:小数的性质)
这样的设汁,旨在把枯燥的数学知识贯穿在小学生喜闻乐道的故事中,引发起学主的学习兴趣,点燃他们求知欲望的火花,从而进入最佳的学习状态,为主动探究新知识聚集动力。
(二)探索新知
1.
同学们,刚才悟空说无论哪个袋子都一样,是不是这样呢?下面请同学们利用手中的米尺和已有的知识来验证一下,好吗?各小组合作研究。
师巡视并引导学生观察米尺图各小组汇报:
A、0.1米是几分之几米(1/10米)?用整数表示就是多少分米?(l分米)
B、0.10米是几个几分之1米?(10个1/100米)1/100米用整数表示是几厘米(1厘米)?10个1/100米就是多少厘米?(10厘米)
C、0.100米就是几个几分之1米(100个1/1000米)?1/1000米用整数表示是几毫米(1毫米)?那么100个1/1000米就是多少毫米?(100毫米)
结合学生回答,教师板书:
0.1米是1/10米,就是1分米
0.10米是10个1/100米,就是10厘米
0.100米就是10个1/1000米,就是100毫米
因为1分米=10厘米=100毫米
所以0.l米=0.10米=0.100米
这样,学生根据小数的意义,从“0.l米、0.10米、0.100米”出发研究问题。在问题得以解决的过程中,学生锻炼了运用已有知识解答新问题的能力,培养了运用数学知识的意识。《数学课程标准》强调:数学活动必须建立在学生的认知发展水平和已有的知识经验基础上,这样教学,也正是使本节课牢牢地扎根于小数意义的基础上,是小数意义的运用,而不是简单的重复,因而是有意义学习。
接着教师指着“0.l米=0.10米=
0.100米"这个等式,并标上思考符号“→”,先让学生从左往右观察、比较,你们发现了什么?
根据学生的回答板书:在小数的末尾添上0,小数的大小不变)。再标出思考箭头“→”,让学生从右往左观察,发现什么规律,补充板书小数的末尾去掉“0”。
这样教学,把静态的知识结论转化为动态的求知过程,让学生真正成为学习的主人,对所学的内容理解深刻,记忆牢固,不但知其然,而且知其所以然。同时,还培养了学生归纳概括事物本质属性的能力。
2.
为了进一步证明小数性质的可*性出示例2:比较0.30和0.3的大小。放手给学生自己研究,发给各小组平均分成100个小格子的正方形各两个。
汇报交流:
(1)左图把1个正方形平均分成几份?阴影分用分数怎样表示?用小数怎样表示?
(2)右图把同样的正方形平均分成几份?阴影部分用分数怎样表示?用小数怎样表示?
(3)从左图到右图有什么变了,什么没变?(份数变了,正方形的大小和阴影面积的大小没变)
(4)怎样比较0.30和0.3的大小?(0.30是30个1/100,0.3是3个1/10,
因为10个1/100是1个1/10,30个1/100也就是3个1/10,所以两个小数的大小相等)。
这样使学生的思维从形象思维逐步过渡到抽象思维,达到突破难点的目的。培养了学生的合作意识。通过两道例题,让学生进一步掌握规律,全面概括出小数的性质。
3.呼应课始,揭示奥秘:由于悟空掌握了小数的性质,所以他面对两位师弟的争执说:“无论哪一袋都一样”。
4.联系生活,再现新知:还有同学们在商场看到货物的标价为2.50元、3.00元,这样写,不但没有改变小数的大小,而且让顾客很清楚地知道是几元几角几分。
(三)巩固深化拓展思维
这是教学中不可缺少的环节,这一阶段是学生巩固知识,形成技能,技巧,发展智力的重要过程。在这一阶段,特别是抓住学生的求胜心理进行了练习、要进一步激发学生的学习兴趣,确保学习任务的圆满完成。
1、判断下面小数哪些0去掉是对的,哪些0去掉是错的?
8.0808.0880.0080.80800
2.判断下面各组两个数是否相等?为什么?
0.25和0.25000.25和0.2050.7和0.07
3和3003和3.00
3.第2题:把相等的数用线连起来,先在书上填好后,再提问找朋友。一个同学在第一栏里按顺序报数,其他同学准备当朋友。
4.闭眼听判:
“小数点的末尾添上‘0’或去掉“0’,小数大小不变”这种说法对吗?为什么?
这样设计、让学生对新知识的各种误解进行辨析、判断,使得所学知识真正转化为能力。
(四)全课小结
1.这节课你有哪些收获?
2.你对自己或同学有什么评价?
以上是我对小数的性质的简单的设想,请各位领导和老师批评、指正。
圆的性质课件 篇11
一、说教材:
本节内容是小数四则计算的基础。根据小数的性质,可以化简小数,也可以不改变小数的大小,在小数末尾添加“0”将其改写成固定为数的小数,或者可以把整数改写成小数形式。其重点是让学生一步步由形象到抽象地总结概括出小数的性质。在充分了解了小数性质后再进行对其运用的学习,例如化简和改写。
二、说教法:
在教授小数性质的过程中,首先,我利用几个相等的数量关系,让学生慢慢迁移到小数,然后根据几个小数间的数量关系总结出规律。为进一步理解这层关系,又加一个验证——利用涂色表示小数再比较他们的大小,验证规律。完成后加一个小练习;在下来时小数性质的利用。这部分相对简单,介绍什么样的时候会需要进行化简和改写,然后举例说明,接着练习巩固。
三、说目标
1、让学生理解和掌握小数的性质,并能较熟练地熟练地运用这性质对小数进行化简和改写。
2、利用迁移规律,让学生从形象思维逐步过渡到抽象思维,提高学生运用知识进行判断、推理的能力。
四、说重难点
掌握小数性质的含义
归纳小数性质的过程
五、说教学过程
一、导入
1、师:老师今天需要大家帮个忙:我这两天需要一个笔记本,于是去村里的两个小卖部转了转,发现这两家店对同一种本有不同的标价:左边这家标价是
2.5元,右边那家则是2.50元,大家帮我出出主意,我应该选择哪一家去买呢?
[都一样,任意选一家]
师:为什么?为什么2.5元末尾添个0大小不变呢?究竟可以添几个零呢?
这节课我们就来研究这一方面的知识。
【导入部分利用生活实际中的例子,并让学生来帮忙,这样可以激发学生的学习兴趣和探索欲望. 】
二、授新
1.猜想性质
板书三个“1”,让学生判断是相等的,接着在第二个1后面添写上一个0,在第三个1的后面添写上两个0,板书写成:1、10、100,提问:这三个数相等吗?(不相等)
你能想办法使它们相等吗?启发学生回答可以添上长度单位“米、分米、厘米”或“分米、厘米、毫米”就相等了。
板书:1分米=10厘米=100毫米。
思考:(1)你能把它们改用“米”作单位表示吗?
[0.1米0.10米0.100米]
(2)改写成用米作单位表示后,实际长度有没有变化?(没有)说明什么?(三个数量相等)
(3)仔细观察三个小数有什么变化?
根据学生回答总结:小数的末尾添零或去掉零,小数的大小不变。
【这部分利用整数的数量关系到加入长度单位后的关系一直引入到小数的数量关系,一步步使学生了解本节课的内容,并且通过认真观察后可以自己归纳总结出性质。】
2、验证猜想
为了验证我们的这个结论,我们再来做一个实验。
(1)出示做一做:比较0.30与0.3的大小
师:你认为这两个数的大小相等吗?(让学生先应用结论猜一猜)
(2)想一下你用什么办法来比较这两个数的大小呢?
出示课本做一做:在左图中涂出阴影部分表示0.3,右图中涂出阴影表示0.30,发现了两幅图什么相同,什么不同?
(份数不同,正方形的大小和阴影面积的大小相同)
这说明0.30与0.3相等,证明刚才这个结论是对的。
【在简单观察出性质以后,进一步通过之前的知识去进行验证,这样不仅可以让学生更深层次地理解知识,而且可以培养学生治学严谨的态度以及探究问题的一般步骤——先观察猜想,再进行验证。】
师:那如果我们现在说“小数后面添上零或去掉零,小数的大小不变”这句话还对吗?[不对]那如果是“小数点后面添上零或去掉零,小数的大小不变”呢?
[不对]分别举例说明。【这一步主要使学生确切地理解添上零或去掉零的位置,一定要在小数的末尾】
师:那如果我们现在说“小数末尾添上零或去掉零,小数的意义不变”这句话还对吗?【这一步主要使学生确切地理解添上零或去掉零后,一定是小数的大小不变,而意义有很大的不同】
师:那整数有这个性质吗?也就是我们可以说"整数末尾添上零或去掉零,大小不变”吗?【强调出小数与整数的区别】
判断练习。
下面的数中,哪些“0”可以去掉?
3.9 0.300 1.8000 500
5.780 0.0040 102.020 60.06
3、小数性质的利用
(1)根据小数的性质,可以对小数进行化简。(理解化简就是将其简单化)当遇到小数末尾有“0”的时侯,例如,0.30,一般可以去掉末尾的“0”,把小数化简。(0.30=0.3)
化简下面各小数:
0.70 105.0900 2.900 0.50600
0.090 10.830 12.000 0.070
(2)师:有时根据表示意义的需要,可以在小数的末尾添上0;(例如:0.3→0.30)
还可以在整数的个位右下角点上小数点,再添上0,把整数写成小数的形式。比如:我们在商场里看到的2元=2.00元,2.5元=2.50元
出示:不改变数的大小,把0.2、4.08、3改写成小数部分是三位的小数,怎样改写?
提醒:把整数改写成小数形式,在整数的个位右下角点上小数点,再添上“0”。
三、巩固深化
1、下面的每组数中,哪些零可以去掉,用斜杠划掉
(1)3.09 0.300 1.8000 5.00
(2)0.0004 12.002 60.06 500
(3)0.090 12.00001 0.50605060 30.0
2、化简下列小数
102.020 54.300 110.030 200.0300
3、判断题。(打“√”,错的打“×”)
(1)0.080=0.8()
(2)4.01=4.100()
(3)6角=0.60元()
(4)30=30.00()
(5)小数点后面添上“0”或去掉“0”,小数的大小不变。
4、学校小卖部进了一批冷饮,你能帮忙设计一下价格标签吗?(要求都写成两位小数)
盐水棒冰每支5角
随便每支1元5角
可爱多每支2元5角
5、智力游戏:谁能只动两笔,就可以在5、50、500之间划上等号。(50变成5.0,500变成5.00)
四、课堂总结
圆的性质课件 篇12
一、说教材分析
本节内容属于概念教学。《分数基本性质》在小学数学学习中起着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习分数的计算、比的基本性质的基础,还是约分、通分的依据。
二、说学情分析
学生已经清楚理解分数的意义,明确分数与除法的关系,商不变性质等知识,这些都为本节课学习做了知识上的铺垫。分数的基本性质是一种规律性知识,分数的分子、分母变了,分数的大小却没变。学生在这种“变”与“不变”中发现规律,掌握新知识。
三、说教学目标
综合分析课程标准要求及学生实际,我确定本节教学目标如下:
1、理解与掌握分数的基本性质,并会运用分数的基本性质把不同的分数化成分母(或分子)相同而大小不变的分数。
2、初步养成观察、比较、抽象概括的逻辑思维能力,并且在自主探究中正确认识与理解变与不变的辩证关系。
3、受到数学思想的熏陶,养成乐于探究的学习态度。
教学重点:理解掌握分数的基本性质,它是约分、通分的依据。
教学难点:让学生自主探索、发现与归纳分数的基本性质,以及应用它解决相关的问题。
四、说教法学法
根据本节课的教学目标,考虑到学生已有的知识、生活经验和认知特点,结合教材内容,本课我主要采用猜想验证与探索发现的教学模式。在分数的基本性质过程中,采取学生动手操作、小组讨论、合作探究等方式,引导学生进行比较、观察、分析。通过观察、比较,提出问题并解决问题来进行自主探索与合作交流,充分发挥学生主体参与作用,激发学生学习兴趣,同时让学生获得成功体验。
五、说教学过程
本节课的教学过程我分五个部分进行
第一部分:故事设疑,揭示课题。以唐僧师徒分饼的故事创设问题情境,揭示本节课要研究的问题。
第二部分:组织讨论,动手操作。主要是组织学生动手进行折、画、标等活动,初步理解分数基本性质。
第三部分:合作探究,发现规律。主要的是学生找出规律,并利用规律解决问题。
第四部分:多层练习,巩固深化。主要是巩固所学知识并进行拓展提高。
第五部分:梳理知识,反思小结。主要是总结全课。
其中,第三部分“合作探究,发现规律”可以细化为三个环节:
环节一:动手操作,进行比较
这一环节是在第二部分的基础上进行的,我给每组学生三张大小一样的长条纸,让学生用分数表示涂色部分,并比较大小。此环节的设计主要是培养学生的比较能力。
环节二:呈现问题,引导观察
这一环节主要呈现给学生这样一个问题,“第一环节中的分数的.分子、分母都不一样,为什么大小相等”,引导学生从左到右、从右到左两方面去观察,此环节的设计主要是培养学生的观察能力。
环节三:交流汇报,得出规律
这一环节主要是学生汇报交流,得出结论。
如果学生没有概括出“0除外”就设计两组练习,分子、分母同乘或除以0,完善结论;如果概括出来了,再追加一个问题“为什么强调0除外”,巩固结论。最终推导出分数的基本性质――分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。此环节的设计主要是培养学生的抽象概括能力。
2023不等式课件14篇
经验时常告诉我们,做事要提前做好准备。在平日里的学习中,幼儿园教师时常会提前准备好有用的资料。资料可以指人事物的相关多类信息、情报。有了资料才能更好地安排接下来的学习工作!你是否收藏了一些有用的幼师资料内容呢?以下是由小编为大家整理的“2023不等式课件14篇”,仅供参考,欢迎大家阅读。
不等式课件 篇1
七年级数学不等式课件
教学目标:
通过对具体实例的学习,使学生能够了解生活中的不等量关系,理解不等式的概念,知道什么是不等式的解,为以后学习不等式的解法奠定基础.
知识与能力:
1.通过对具体事例的分析和探索,得到生活中不等量的关系.
2.通过理解得到不等式的概念,从而使学生经历实际问题中数量的分析、抽象过程,体会现实中有各种各样错综复杂的数量关系.
3.了解不等式的意义,知道不等式是用来刻画生活中的数量关系的.
4.知道什么是不等式的解.
过程与方法:
1.引导学生分析具体事例,从对具体事例的分析中得到不等量关系.
2.引导并帮助学生列出不等式,分析不等式的成立条件.
3.通过分析、抽象得到不等式的概念和不等式的解的概念.
4.通过习题巩固和加深对概念的理解.
情感、态度与价值观:
1.通过学生的分析和抽象过程使他们体会现实中错综复杂的数量关系,然后从而培养其抽象思维能力.
2.通过分组讨论学习,体会在解决具体问题的过程中与他人合作的重要性,培养学生的团体协作精神,使学生获得合作交流的学习方式.
3.通过联系与发展、对立与统一的思考方法对学生进行辩证唯物主义教育.
4.通过创设问题串,让学生仔细观察、对比、归纳、整理,尝试对有理数进行分类,然后体验教学活动充满着探索性和创造性.
教学重、难点及教学突破
重点:不等式的概念和不等式的解的概念.
难点:对文字表述的数量关系能列出不等式.
教学突破:由于学生在以前已经对数量的大小关系和含数字的不等式有所了解,但还没有接触过含未知数的不等式,在学生分析问题的时候注意引入现实中大量存在的数量间的不等关系,研究它们的变化规律,使学生知道用不等式解决实际问题的方便之处.在本节的教学中能够在组织学生讨论的过程中适当地渗透变量的知识,让学生感受其中的函数思想,并引导学生发现不等式的解与方程的解之间的区别.在处理本节难点时指导学生练习有理数和代数式的知识,准确“译出”不等式.
教学过程:
一.研究问题:
世纪公园的票价是:每人5元,一次购票满30张可少收1元.某班有27名少先队员去世公园进行活动.当领队王小华准备好了零钱到售票处买了27张票时,爱动脑的李敏同纪学喊住了王小华,提议买30张票.但有的同学不明白.明明只有27个人,买30张票,岂不浪费吗?
那么,究竟李敏的提议对不对呢?是不是真的浪费呢
二.新课探究:
分析上面的问题:设有x人要进世纪公园,①若x≥30,应该如何买票?②若x
结论:至少要有多少人进公园时,买30张票才合算?
概括:1、不等式的定义:表示不等关系的式子,叫做不等式.不等式用符号>,
2、不等式的解:能使不等式成立的未知数的值,叫做不等式的解.
3、不等式的分类:⑴恒不等式:-71+4,a+2>a+1.
⑵条件不等式:x+3>6,a+2>3,y-3>-5.
三、基础训练.
例1、用不等式表示:⑴a是正数;⑵b不是负数;⑶c是非负数;⑷x的平方是非负数;⑸x的一半小于-1;⑹y与4的和不小于3.
注:⑴不等式表示代数式之间的不相等关系,与方程表示相等关系相对应;
⑵研究不等关系列不等式的重点是抓关键词,弄清不等关系.
例2、用不等式表示:⑴a与1的和是正数;⑵x的2倍与y的3倍的差是非负数;⑶x的2倍与1的和大于—1;⑷a的一半与4的差的绝对值不小于a.
例3、当x=2时,不等式x-1
注:⑴检验字母的值能否使不等式成立,只要代入不等式的左右两边,如果符合不等号所表示的关系,就成立,否则就不成立.⑵代入法是检验不等式的解的重要方法.
学生练习:课本P42练习1、2、3.
四、能力拓展
学校组织学生观看电影,某电影院票价每张12元,50人以上(含50人)的团体票可享受8折优惠,现有45名学生一起到电影院看电影,为享受8折优惠,必须按50人购团体票.
⑴请问他们购买团体票是否比不打折而按45人购票便宜;
⑵若学生到该电影院人数不足50人,应至少有多少人买团体票比不打折而按实际人数购票便宜.
解:⑴按实际45人购票需付钱_________ 元,然后如果按50人购买团体票则需付钱50×12×80%=480元,所以购买团体票便宜.
⑵设有x人到电影院观看电影,当x_____时,按实际人数买票______张,需付款_______元,而按团体票购票需付款________元,如果买团体票合算,那么应有不等式________________,
由①得,当x=45时,上式成立,让我们再取一些数据试一试,将结果填入下表:
x12x比较480与12x的大小48
由上表可见,至少要__________人时进电影院,购团体票才合算.
五、小结:
⑴不等式的定义,不等式的'解.
⑵对实际问题中探索得到的不等式的解,然后不仅要满足数学式子,而且要注意实际意义.
六、作业课本P42习题8.1第1、2、3题.
补充题:
1.用不等式表示:
(1)与1的和是正数;(2)的与的的差是非负数;
(3)的2倍与1的和大于3;(4)的一半与4的差的绝对值不小于.
(5)的2倍减去1不小于与3的和;(6)与的平方和是非负数;
(7)的2倍加上3的和大于-2且小于4;(8)减去5的差的绝对值不大于
2.小李和小张决定把省下的零用钱存起来.这个月小李存了168元,然后小张存了85元.下个月开始小李每月存16元,小张每月存25元.问几个月后小张的存款数能超过小李?(试根据题意列出不等式,并参照教科书中问题1的探索,找出所列不等式的解)
3.某公司在甲、乙两座仓库分别有农用车12辆和6辆,现需要调往A县10辆,调往B县8辆,已知从甲仓库调运一辆农用车到A县和B县的运费分别为40元和80元,然后从乙仓库调运一辆农用车到A县和B县的运费分别为30元和50元,(1)设从乙仓库调往A县农用车辆,用含的代数式表示总运费W元;(2)请你用尝试的方法,探求总运费不超过900元,共有几种调运方案?你能否求出总运费最低的调运方案.
不等式课件 篇2
(1)本节内容,是在学习了用方程思想解决实际问题和一元一次不等式的性质及其解法等知识的基础上,把实际问题和一元一次不等式结合在一起,既是对已学知识的运用和深化,又为今后用不等式组解决实际问题以及更广泛的应用数学建模的思想方法奠定基础,具有在代数学中承上启下的作用;
(2)通过本节的学习,学生将继续经历把生活中的数和数量关系转化为数学符号的体验过程,体会不等式和方程一样都是刻画现实世界数量关系的重要模型。
(3)在列不等式解决实际问题的探索过程中,引导学生注意估算意识,体会算式结果所对应的实际意义,渗透建立数学模型,分类讨论等数学思想,对提升学生应用数学意识思考和解决问题的能力起到积极的作用。
对于用不等式解决实际问题,学生容易出现的认知困难主要有两个方面:①哪类的实际问题需要用一元一次不等式来解决;②如何将实际问题转化为一元一次不等式并加以解决。
根据以上的分析和《数学课程标准》对本课内容的教学要求,本节课的教学重点是:一元一次不等式在决策类实际问题中的应用;难点是:如何将实际问题中的数量关系符号化,并根据解集和结合实际情况分类讨论得出合理结论。
根据本课教材的特点、《数学课程标准》对本节课的教学要求以及学生的认知水平,我从三个方面确定了以下教学目标:
1、能进一步熟练的解一元一次不等式,能从实际问题中抽象出不等关系的数学模型,并结合解集解决简单的实际问题。
2、通过观察、实践、讨论等活动,积累利用一元一次不等式解决实际问题的经验,提高分类考虑、讨论问题的能力,感知方程与不等式的内在联系,体会不等式和方程同样都是刻画现实世界数量关系的重要模型。
3、在积极参与数学学习活动的过程中,体会实事求是的态度和从数学的角度思考问题的习惯;学会在解决困难时,与其他同学交流,相互启发,培养合作精神。
根据教学内容、教学目标和学生的认知水平,我主要采取教师启发引导,学生自主探究的教学方法.教学过程中,创设适当的教学情境,引导学生独立思考、共同探究,使学生经历将生活中的数和数量关系转化为数学符号的具体建模过程,体会不等式作为刻画现实世界数量关系的重要模型的价值。
教学中使用多媒体投影、计算机辅助教学,目的是充分发挥其快捷、生动、形象的特点,为学生提供直观感性的材料,有助于学生对问题的关注和理解,激发学生的学习兴趣.
为了达到本节课的教学目标,突出重点,突破难点,我把教学过程通过两个实际问题逐步深入;最后归纳小结,布置作业.具体过程如下:
1、课题引入:
我们以前已经学过了一元一次方程以及二元一次方程组的解法,并在解决许多实际问题的过程中感受到:将相等关系用数学符号抽象后所得到的“方程”确实是一种有效数学工具,它能让我们的思维过程更加准确和简明!
但是,生活中除了相等的数量关系以外,还存在着大量的不等关系,通过前几节课的学习,我们也已经基本了解了不等式的性质和简单不等式的解法。今天,就让我们通过一些带有选择“决策”意义的实际问题来共同探讨一下一元一次不等式这种数学模型是如何解决生活中的实际问题的。
实际情景1:在为我校初一年级学生选定营养餐的过程中选中了有两家公司.
这两家公司某种适合初一学生的营养餐的报价均是是6.5元/份,营养含量和服务承诺也均相同,且都表示对学生优惠:甲公司表示每份按报价的90%收费,乙公司表示购买100份以上的部分按报价的80%收费.
结 合新课标对本小节的要求:会用一元一次不等式解决简单的实际问题,我选择的是从数量关系上与教材例题类似的收费问题,并且真实数值与所在年级事情相一致,比书上的例题更能贴近学生的实际生活,引发学生探求的`兴趣。特别的,通常此类题目是不给出具体单价的,因为并不影响最后结论,考虑到学生现阶段的数学抽象 仍以识别数量的具体含义为主,所以我在此处添加了单价,并增设了问题一,用以降低抽象思维的梯度,为后续的设未知数的“代数化抽象”作适当的铺垫。
问题(1)请你判断,我们年级580人用餐,应该选择哪家公司能让每位学生的餐费平均算来更低呢?
预案 一:教师应关注学生能否在讨论中认清“每位学生的餐费平均算来更低”所对应的数量意义,将之转化为“付给公司的总金额少”。在此处不排除学生因生活经历的缺乏,而对题目中所隐含的数量关系抽象能力弱。应关注每一位同学的感受,让同学们充分理解交流,扩大参与思考的广度,获得基本抽象思维的生长点。
预案二:在进行甲乙公司所需费用的计算时,会有分部计算和综合计算两种计算形式,对于那些列综合算式的同学,教师应多给予展示机会,从而帮助其他同学整理思路,理解算式的实际含义;为后续的字母抽象做好铺垫。具体计算学生可以合理使用计算器提高课堂速度。
预案三:学生还有可能不通过计算,直接猜测甲公司合算或者乙公司合算,对于这种有可能产生的声音,教师应从估算的角度加以引导。引导学生体会在580人的前提下,超过100人部分(480人)的甲公司是九折乙公司是八折, 10%的差距,;100人以内(少于100人)甲公司九折,乙公司不打折10%的差距,480的10%明显大于100的10%,所以选乙合算,并引导学生用计算的方法验证估算的准确性。
结论:580人时选择乙公司能让每位学生的餐费平均算来更低。
问题(2)你能否用以前学过的知识,在不知道具体人数的前提下制定一套方案,当其他学校的初一年级也想在这两家公司之间进行选择时,不用重复第一题的计算过程,只要知道人数就马上能根据你方案的结论作出决策呢?
结合以前的训练,学生很容易想到要通过设未知数的方法进行符号表达,将非常关键而题目中并未给出的学生人数设为未知数。由于本题的具体分析过程仍然是由学生分析讨论完成,可能出现的情况是:
预案一:一部分综合能力较强的同学会根据实际意义直接列出综合算式:或
此处教师应该引导学生观察,在化简不等式的过程中单价并未影响结果(利用不等式性质二将其作为公倍数约去),即:题目中没有具体的单价也不会影响本题的决策。
还可以结合小学单位一的思想化简不等式,引导学生体会并不是题目中出现的所有数量都会影响不等关系,有可能引发学生的关于数量关系的深层次思考。
预案 二:还有一部分学生会因为生活经验少的关系,综合思考能力弱,无法快速的理清数量关系,列出综合算式,思考受阻,教师应引导学生体会在第一题的算式意义的提示下,如何分别列出表达甲乙公司所需总费用的过程量代数式。然后在通过将之用不等号连接的方式,来表达两笔费用的大小,降低因综合性所引起的思维梯度, 在过程中让学生体会“分步建模”的思维的条理性。
问题(1)如果你是该企业的高级管理人员,请你设计该企业在购买设备时两种型号有几种不同的组合方案;
问题(2)若按固定产量预算企业每月产生的污水量约为20xx吨,为了节约资金,应选择哪种购买方案?
实际情景2的选择除涉及“角色扮演”和“环保”等人文因素的考虑以外,在在结合本节的教学目标上还有如下考虑,
1、 本题取材于真实的实际生活问题,情景中的符号和数量关系较多,不等关系在文字语言的叙述中显得比第一题更加隐蔽,需要学生更深化的思考才能列出算式,是在第一个情景的基础上的扩展和深化。
2、 在学生的讨论过程中,教师应注重引导学生体会,用图表表示的数字信息比文字表达更便于观察和有序思考,感受“有序表达”在实际中的价值。
3、 结合本题每一个的具体问题的分析和解决,学生必须要从表格中分析筛选相关的有用数据,(例如:在第一问设计方案时未用到“处理污水量”和“年消耗费”,在第二问中未用到“价格”和“年消耗费”)这种分析和筛选的思考经历将有助于加强学生对数据关系的理解和运用能力。
结合以前的训练,在思考问题(1)学生很容易想到要通过设A型或B型设备的
例如:(1)设购买污水处理设备A型 台,则B型(10 – )台,由题意知:
在此处,将“限额为105万元”转化为“≤105”是学生要突破的第一关,教师应在次处多展示同学的对“限额为105万元”语言解释,尽可能多的在具有不同经历基础的同学心中将这个抽象过程生活化、自然化。
因为在实际情景中往往要根据未知数所代表的具体含义为未知数的加一个取值范围的限定,而这个隐含的限制条件往往是学生中所不容易考虑到的,教师应注意引导学生注意这一问题,
例如:本题中的 是设备的台数,应用非负整数的限制,所以 可取0、1、2,因此有三种购买方案:
①购A型0台,B型10台;
②购A型1台,B型9台;
③购A型2台,B型8台。
此处细节性的思考经历,有助于提高学生在建模过程中更全面的考虑数值的实际意义,促进抽象符号与具体意义在头脑中的融合。
特别的,此处的“0”是学生最容易忽视和丢掉的,教师在此处应重点引导学生思考当“ ”时,往往是企业最可能选的方案,因为不同的设备涉及到不同的维护问题,单一品种的设备往往更便于管理,这种思考有助于发散学生的思维,促进其结合实际作更全面的思考。
问题(2)的思维梯度较前几个问题进一步加大,学生必须理解“节约资金”这个目的的达成 一定是在“完成任务”的前提下的,要先通过对(1)中所得的三套方案是否能完成任务加以讨论和验证,然后再涉及计算哪个方案费用更低的问题
在验证三套方案的可行性时,收思维方式的局限,学生往往会选择逐一列举计算的讨论方式,并且由于数量少,很容易得出答案,教师可引导学生思考,如果满足(1)的方案不是三种,而是三十种呢?三百种呢?除了逐一讨论以外还有没有什么更好的方式能帮助我们迅速缩小范围呢?引导学生将所买设备能否完成任务量转化为如下不等关系:
(2)同(1)所设购买污水处理设备A型 台,则B型(10 – )台,
240 +200(10 – )≥20xx;
因此为了节约资金,应选购A型1台,B型9台。
此处的分析和引导有助于学生体会不等式在有效缩小讨论范围时的实际价值。
通过以上问题的解决,学生对不等式和方程一样都是刻画现实世界数量关系的重要模型有了进一部的认识,并感受到不等式确实是从实际问题中提出,又为解决实际问题提供明确的帮助有效数学工具。
本阶段通过学习小结进行课堂教学的反馈,组织和指导学生归纳知识、技能、方法,深化对数学思想方法的认识,为后续学习打好基础。
不等式课件 篇3
(1)本节内容,是在学习了用方程思想解决实际问题和一元一次不等式的性质及其解法等知识的基础上,把实际问题和一元一次不等式结合在一起,既是对已学知识的运用和深化,又为今后用不等式组解决实际问题以及更广泛的应用数学建模的思想方法奠定基础,具有在代数学中承上启下的作用;
(2)通过本节的学习,学生将继续经历把生活中的数和数量关系转化为数学符号的体验过程,体会不等式和方程一样都是刻画现实世界数量关系的重要模型。
(3)在列不等式解决实际问题的探索过程中,引导学生注意估算意识,体会算式结果所对应的实际意义,渗透建立数学模型,分类讨论等数学思想,对提升学生应用数学意识思考和解决问题的能力起到积极的作用。
对于用不等式解决实际问题,学生容易出现的认知困难主要有两个方面:①哪类的实际问题需要用一元一次不等式来解决;②如何将实际问题转化为一元一次不等式并加以解决。
根据以上的分析和《数学课程标准》对本课内容的教学要求,本节课的教学重点是:一元一次不等式在决策类实际问题中的应用;难点是:如何将实际问题中的数量关系符号化,并根据解集和结合实际情况分类讨论得出合理结论。
根据本课教材的特点、《数学课程标准》对本节课的教学要求以及学生的认知水平,我从三个方面确定了以下教学目标:
1.能进一步熟练的解一元一次不等式,能从实际问题中抽象出不等关系的数学模型,并结合解集解决简单的实际问题。
2.通过观察、实践、讨论等活动,积累利用一元一次不等式解决实际问题的经验,提高分类考虑、讨论问题的能力,感知方程与不等式的内在联系,体会不等式和方程同样都是刻画现实世界数量关系的重要模型。
3.在积极参与数学学习活动的过程中,体会实事求是的态度和从数学的角度思考问题的习惯;学会在解决困难时,与其他同学交流,相互启发,培养合作精神。
三、教学方法的选择
根据教学内容、教学目标和学生的认知水平,我主要采取教师启发引导,学生自主探究的教学方法.教学过程中,创设适当的教学情境,引导学生独立思考、共同探究,使学生经历将生活中的数和数量关系转化为数学符号的具体建模过程,体会不等式作为刻画现实世界数量关系的重要模型的价值,
教学中使用多媒体投影、计算机辅助教学,目的是充分发挥其快捷、生动、形象的特点,为学生提供直观感性的材料,有助于学生对问题的.关注和理解,激发学生的学习兴趣.
为了达到本节课的教学目标,突出重点,突破难点,我把教学过程通过两个实际问题逐步深入;最后归纳小结,布置作业.具体过程如下:
1、课题引入:
我们以前已经学过了一元一次方程以及二元一次方程组的解法,并在解决许多实际问题的过程中感受到:将相等关系用数学符号抽象后所得到的“方程”确实是一种有效数学工具,它能让我们的思维过程更加准确和简明!
但是,生活中除了相等的数量关系以外,还存在着大量的不等关系,通过前几节课的学习,我们也已经基本了解了不等式的性质和简单不等式的解法。今天,就让我们通过一些带有选择“决策”意义的实际问题来共同探讨一下一元一次不等式这种数学模型是如何解决生活中的实际问题的。
实际情景1:在为我校初一年级学生选定营养餐的过程中选中了有两家公司.
这两家公司某种适合初一学生的营养餐的报价均是是6.5元/份,营养含量和服务承诺也均相同,且都表示对学生优惠:甲公司表示每份按报价的90%收费,乙公司表示购买100份以上的部分按报价的80%收费.
结 合新课标对本小节的要求:会用一元一次不等式解决简单的实际问题,我选择的是从数量关系上与教材例题类似的收费问题,并且真实数值与所在年级事情相一致,比书上的例题更能贴近学生的实际生活,引发学生探求的兴趣。特别的,通常此类题目是不给出具体单价的,因为并不影响最后结论,考虑到学生现阶段的数学抽象 仍以识别数量的具体含义为主,所以我在此处添加了单价,并增设了问题一,用以降低抽象思维的梯度,为后续的设未知数的“代数化抽象”作适当的铺垫。
问题(1)请你判断,我们年级580人用餐,应该选择哪家公司能让每位学生的餐费平均算来更低呢?
预案 一:教师应关注学生能否在讨论中认清“每位学生的餐费平均算来更低”所对应的数量意义,将之转化为“付给公司的总金额少”。在此处不排除学生因生活经历的缺乏,而对题目中所隐含的数量关系抽象能力弱。应关注每一位同学的感受,让同学们充分理解交流,扩大参与思考的广度,获得基本抽象思维的生长点。
预案二:在进行甲乙公司所需费用的计算时,会有分部计算和综合计算两种计算形式,对于那些列综合算式的同学,教师应多给予展示机会,从而帮助其他同学整理思路,理解算式的实际含义;为后续的字母抽象做好铺垫。具体计算学生可以合理使用计算器提高课堂速度。
预案三:学生还有可能不通过计算,直接猜测甲公司合算或者乙公司合算,对于这种有可能产生的声音,教师应从估算的角度加以引导。引导学生体会在 580人的前提下,超过100人部分(480人)的甲公司是九折乙公司是八折, 10%的差距,;100人以内(少于100人)甲公司九折,乙公司不打折10%的差距,480的10%明显大于100的10%,所以选乙合算,并引导学生用计算的方法验证估算的准确性。
不等式课件 篇4
教学建议
一、知识结构
本书首先结合实例引入一元一次不等式组的解集的概念,然后通过三个例题说明利用数轴解一元一次不等式组的方法,最后对一元一次不等式组的解法步骤进行了总结.
二、重点、难点分析
本节教学的重点是掌握一元一次不等式组的解法步骤并准确地求出解集.难点是正确应用不等式的基本性质对不等式进行变形、求不等式组中各个不等式解集的公共部分.不等式在中学代数中是研究问题的重要工具,例如求函数的定义域、值域、研究函数的单调性,求最大值、最小值,一元二次方程根的讨论等,都要用到不等式的知识.不等式也是进一步学习其他数学内容的基础.学习和掌握不等式的求解和不等式的证明方法,对培养学生逻辑思维能力也有极其重要的作用.在处理解不等式的问题中,一元一次不等式组的解法,具有特别重要的意义.这是因为,解各类不等式的问题都可以归结为解一些由简单不等式所组成的不等式组.
1、在构成不等式组的几个不等式中
①这几个一元一次不等式必须含有同一个未知数;
②这里的“几个”并未确定不等式的个数,只要不是一个,两个,三个,四个……都行.
2、当几个不等式的解集没有公共部分时,我们就说这个不等式组无解.
3、由两个一元一次不等式组成的不等式的解集,共归结为下面四种基本情况:
【注意】①其中第(4)个不等式组,实质上是矛盾不等式组,任何数都不能使两个不等式同时成立。所以说这个不等式组无解或说其解集为空集。②从上面列出的表中,我们可以概括出来不等式组公共解的一规律:同大取大,同小取小,一大一小中间找。
三、教法建议
1.解本节的引例及例1、例2、例3时,注意把解不等式组的思路讲清楚,即先分别解每一个不等式,求出解集,再求这些解集的公共部分.求公共部分的过程一定要结合数轴来讲。
2.这节课的讲解自始至终要突出解不等式组的基本思想以及解一元一次不等式组的步骤这两个重点.准确熟练地解一元一次不等式以及用数轴上的点表示不等式的解集是这节课的基础,因此讲新课之前要复习提问这些内容。
3.求公共解集是这节课的新授内容,教师要充分利用数轴表示不等式解集具有形象、直观、易于说明问题这些优点.解集的公共部分教师可用彩笔在数轴的相应部分描画出来,使学生感到醒目,便于理解记忆。
4.每组不等式不要超过三个,关键是使学生理解和掌握解不等式组的基本思想和两个步骤,不宜做过于难、过于多、重复的机械计算。
不等式课件 篇5
(一)复习提问:
三角形的三边关系?
(二)列一元一次不等式组
问题:现有两根木条a和b,a长10cm,b长3cm.如果要再找一根木条c,用这三根木条钉成一个三角形木框,那么对木条c的长度有什么要求?
注:这个问题是本节的'引入问题,三角形木框的形状不唯一确定,只要能成为三角形即可.
探究:用三根长度分别为14cm,9cm,6cm的木条c1,c2,c3分别试试,其中哪根木条能与木条a和b一起钉成三角形木框?
可以发现,当木条a和b的长度确定后,木条c太长或太短,都不能与a和b一起钉成三角形.
由于“三角形中两边之和大于第三边,两边之差小于第三边”,设木条c长xcm,则x必须同时满足不等式x10+3①和x10-3②
注:木条c必须同时满足两个条件,即ca+b,ca-b.
类似于方程组,把这两个不等式合起来,组成一个一元一次不等式组记作注:这里并未正式给一元一次不等式组下定义,只是说这两个不等式合起来,组成一个一元一次不等式组.实际上,两个或更多的一元一次不等式组合起来,都组成一个一元一次不等式组.
(三)一元一次不等式组的解集
类比方程组的解,怎样确定不等式组中x的可取值的范围呢?
不等式组中的各不等式解集的公共部分,就是不等式组中x可以取值的范围.
注:这里还未正式出现不等式组的解集的概念,但已点出各不等式的解集的公共部分即不等式组中未知数的可取值范围.
由不等式①解得x13.
由不等式②解得x7.
从图9.3—2容易看出,x可以取值的范围为713.
注:利用数轴可以直观形象地认识公共部分.这个公共部分是两端有界的开区间.
这就是说,当木条c比7cm长并且比13cm短时,它能与木条a和b一起钉成三角形木框.
一般地,几个不等式的解集的公共部分,叫做由它们所组成的不等式组的解集.解不等式组就是求它的解集.
注:这里正式给出不等式组的解集以及解不等式组的定义13.注:利用数轴可以直观形象地认识公共部分.这个公共部分是两端有界的开区间.这就是说,当木条c比7cm长并且比13cm短时,它能与木条a和b一起钉成三角形木框.一般地,几个不等式的解集的公共部分,叫做由它们所组成的不等式组的解集.解不等式组就是求它的解集.注:这里正式给出不等式组的解集以及解不等式组的定义。
不等式课件 篇6
一元一次不等式组(2)
文星中学唐波
一、教学目标
(一)知识与技能目标
1、熟练掌握一元一次不等式组的解法,会用一元一次不等式组解决有关的实际问题。
2、理解一元一次不等式组应用题的一般解题步骤,逐步形成分析问题和解决问题的能力。
(二)过程与方法目标
通过利用列一元一次不等式组解答实际问题,初步学会从数学的角度提出问题、理解问题、并能综合运用所学的知识解决问题,发展应用意识。
(三)情感态度与价值观
通过解决实际问题,体验数学学习的乐趣,初步认识数学与人类生活的密切联系。
二、教学重难点
(一)重点:建立用不等式组解决实际问题的数学模型。
(二)难点:正确分析实际问题中的不等关系,根据具体信息列出不等式组。
三、学法引导
(一)教师教法:直观演示、引导探究相结合。
(二)学生学法:观察发现、交流探究、练习巩固相结合。
四、教具准备:多媒体演示
五、教学过程
(一)、设问激趣,引入新课
猜一猜:我属狗,请同学们根据我的实际情况来猜测我的年龄。(学生大胆猜想,利用不等关系分析得出答案。)
(二)、观察发现,竞赛闯关
1、比一比:填表找规律
(学生抢答,教师补充。)2利用发现的规律解不等式组 ?(学生解答,抽生演板。)你可以得到它的整数解吗?
(抽生回答:因为大于11小于14的整数有12和13,所以整数解为12和13。)3填空:三角形三边长分别为2、7、c,则 c的取值范围是__________。如果c是一个偶
数,则 c=__________。
(学生回答,教师补充更正。)
(三)、欣赏图片,探究新知
1、欣赏“五岳看山”。
2、利用欣赏引出例题(教科书P139例2仿编)
例:3名同学计划在10天内到嵩山拍照500张(每天拍照数量相同),按原来的计划,不能完成任务;如果每人每天比原计划多拍1张,就能提前完成任务,每个同学原计划每天............拍多少张?
生齐读,找出题中的已知条件和未知条件;再默读,找一找表示数量关系的句子。师引导分析,并提出问题:
(1)你是怎样理解“不能完成任务”的数量含义的?你是怎样理解“提前完成任务”的数量含义的?
(2)解决这个问题,你打算怎样设未知数?
(3)在本题中,可以找出几个不等关系,可以列出几个不等式?(学生交流讨论,教师指导。)
?7x?98
?7(x?3)?98
解答完成后,学生自学课本例2。
3、由例解题答过程,类比列二元一次方程组解应用题的步骤,总结列一元一次不等式组的解题步骤:
(1)、分析题意,设未知数; .(2)、利用不等关系,列不等式组; .(3)、解不等式组; .
(4)、检验,根据题意写出答案。.(学生总结,抽生回答,教师补充。)
(四)、闯关练习,巩固新知
1练一练:为纪念“5·12”大地震一周年,“五一”部分同学到青城山拍照留念,如果每人拍8张则多于如果每人拍9张则不够问共有多少个同学参加青城山旅游? ..150张;..180张。
教师引导:抓住重点词语,找到不等关系,列出不等式组。学生独立完成,抽生回答。
比较列二元一次方程组和列一元一次不等式组解应用题的区别:
(学生类比找区别,教师补充。)2练一练(教科书P140练习第2题):一本英语书共98页,张力读了一周(7天)还没读完,而李永不到一周就已读完。李永平均每天比张力多读3页,张力平均每天读多少页(答案取整数)?
学生分析列出不等式组,教师指导。(前面的练习已解出不等式组。)
(五)、畅所欲言,归纳小结 学生畅所欲言,谈收获体会 多媒体展示,本课内容小结:
1、解一元一次不等式组的秘笈:同大取大,同小取小,大小小大中间找,大大小小解不了。
2、具有多种不等关系的问题,可通过不等式组解决。
3、列一元一次不等式组解应用题的步骤是:(1)、分析题意,设未知数;(2)、利用不等关系,列不等式组;(3)、解不等式组;
(4)、检验,根据题意写出答案。
(六)、课后演练,终极挑战
必做题:教材习题第4、5、6题;
选做题:一个两位数,它的十位数字比个位数字大1,而且这个两位数大于30小于42,则这个两位数是多少?
六、板书设计
一元一次不等式组(2)
解:设每个同学原计划每天拍x张,得
① ?3?10x?500
?
?3?10(x?1)?500②
1、分析题意,设未知数;
解得x
3根据题意,x应为整数,所以x=16 答:每个同学原计划每天拍16张。
2??
2、找不等关系,列不等式组; ?
?
3、解不等式组; ?步骤
??
?
4、检验并根据题意写出答案。?
不等式课件 篇7
科学合理的教学方法能使教学效果事半功倍,达到教与学的和谐完美统一。
基于此,我准备采用的教法讲授法、讨论法。德国教育学家第斯多慧:差的教师只会奉送真理,好的教师则交给学生如何发现真理,老师的教是为了不教,这才是教学的最高境界,所以我采用的学法是练习法、自主合作法。
在这节课的教学过程中,我注重突出重点,条理清晰,紧凑合理。各项活动的安排也注重互动、交流,最大限度的调动学生参与课堂的积极性、主动性。
首先是导入环节,我采用复习旧知的导入方法。我会让学生回忆不等式的概念以及一元一次方程的概念,明确指出今天学习的内容是《一元一次不等式》。
这样的设计既可以考查学生对之前知识的掌握情况,还能够为今天学习一元一次方程的概念打下基础。而且开门见山的导入方式能够快速地进入主题。
接下来是新知探索环节,首先我请学生类比不等式以及一元一次方程的概念,给一元一次不等式下定义。
能够总结出:含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式。
接下来让学生回忆上节课学习的不等式x-7>26如何解决的,通过学生回忆总结可以得到:通过“不等式的两边都加7,不等号的方向不变”而得到的。
接下来提问学生有没有更加简便的方法解不等式?让学生类比解一元一次方程的步骤进行解题。可以得到相当于可以用“移项”,来解决。
在这个过程中,强调每一个步骤,在第二题最后一步,强调当不等式的两边同时乘以(或除以)同一个负数时,不等号的方向改变。
解完不等式,先让学生回忆解一元一次方程的步骤是什么?并类比解一元一次方程的步骤,总结一下解一元一次不等式的步骤是什么?
从而我们归纳:解一元一次方程,要根据等式的性质,将方程逐步化为x=a的形式;而解一元一次不等式,则要根据不等式的性质,将不等式逐步化为xa的形式。
《数学课程标准》指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者”。根据这一教学理念,在本环节中,我组织学生进行了自主探究活动,让学生在保持高度学习热情和探究欲望的活动过程中,始终以愉悦的心情,亲身经历和体验知识的形成过程。培养学生的探究能力、分析思维能力,激发他们的创新意识、参与意识。
第三个环节是课堂练习环节,出示问题,解不等式,并在数轴上表示数集:5x+15>4x-1
之所以这样设计是因为练习是掌握知识、形成技能、发展思维的重要手段,针对本课的教学重点和难点,上述练习,目的是让学生进一步巩固对新知的理解。可以深化教学内容,培养思维的灵活性。
最后一个环节为小结作业环节,关于课堂小结,我打算让学生自己来总结今天的收获。
这样既发挥了学生的主体性,又可以提高学生的总结概括能力,让我在第一时间得到学习反馈,及时加以疏导。
通过这样的方式能够为本节课学习的知识进行进一步的巩固。
我的板书设计遵循简洁明了突出重点的意图,这是我的板书设计:
不等式课件 篇8
1、了解一元一次不等式组的概念。
2、理解一元一次不等式组的解集,能求一元一次不等式组的解集。
3、会解一元一次不等式组。
通过具体问题得到一元一次不等式组,从而了解一元一次不等式组的概念,解出每个不等式,利用数轴求出各不等式解集的公共部分,从而得到不等式组的解集,通过解几个有代表性的一元一次不等式组,总结出求不等式组解集的法则。
运用数轴确定不等式组的解集是行之有效的方法。这种“数形结合”的方法今后经常用到,锻炼同学们数形结合的能力,提高学习兴趣。
一元一次不等式组的解法。
确定一元一次不等式组的解集。
一、情境导入,初步认识
问题1现有两根木条a和b,a长10cm,b长3cm,如果要再找一根木条c,用这三根木条钉成一个三角形木框,那么木条c的长度有什么要求?
解:由于三角形中两边之____大于第三边,两边之____小于第三边,设c的长为xcm,则x<____,①x>____,②合起来,组成一个__________。
由①解得_____________,由②解得_____________。
在数轴上表示就是________________。
容易看出:x的取值范围是____________________。
这就是说,当木条c比____cm长并且比____cm短时,它能与木条a和b一起钉成三角形木框。
问题2由上面的解不等式组的过程用自己的语言归纳出一元一次不等式组的.解法。
全班同学可独立作业,也可分组自由讨论,10分钟后交流成果,逐步得出结论。
二、思考探究,获取新知
思考什么叫一元一次不等式组,什么叫一元一次不等式组的解集,什么叫解不等式组?
1、定义:
(1)一元一次不等式组:几个含有相同未知数的一元一次不等式合起来组成一个一元一次不等式组。
(2)一元一次不等式组的解集:几个不等式的解集的公共部分,叫做由它们所组成的不等式的解集。
(3)解不等式组:求一元一次不等式组的解集的过程叫解一元一次不等式组。
2、一元一次不等式组的解法:
(1)求出每个一元一次不等式的解集。
(2)求出这些解集的公共部分,便得到一元一次不等式组的解集。
不等式课件 篇9
本节教学的重点是不等式的解集的概念及在数轴上表示不等式的解集的方法.难点为不等式的解集的概念.
相同点:定义方式相同(使方程成立的未知数的值,叫做方程的解);解的表示方法也相同.
不同点:解的个数不同,一般地,一个不等式有无数多个解,而一个方程只有一个或几个解,例如, 能使不等式 成立,那么 是不等式的一个解,类似地 等也能使不等式 成立,它们都是不等式 的解,事实上,当 取大于 的数时,不等式 都成立,所以不等式 有无数多个解.
不等式的解与不等式的解集是两个不同的概念,不等式的解是指满足这个不等式的未知数的某个值,而不等式的解集,是指满足这个不等式的未知数的所有的值,不等式的所有解组成了解集,解集中包括了每一个解.
注意:不等式的解集必须满足两个条件:第一,解集中的任何一个数值,都能使不等式成立;第二,解集外的任何一个数值,都不能使不等式成立.
一般地,一个含未知数的不等式有无数多个解,其解集是某个范围,这个范围可用一个最简单的不等式表示出来,例如,不等式 的解集是 .
如不等式 的解集 ,可以用数轴上表示4的点的左边部分表示,因为 包含 ,所以在表示4的点上画实心圆.
如不等式 的解集 ,可以用数轴上表示4的点的左边部分表示,因为 包含 ,所以在表示4的点上画实心圈.
注意:在数轴上,右边的点表示的数总比左边的点表示的数大,所以在数轴上表示不等式的解集时应牢记:大于向右画,小于向左画;有等号的画实心圆点,无等号的画空心圆圈.
1.使学生了解不等式的解集、解不等式的概念,会在数轴上表示出不等式的解集.
2.知道不等式的“解集”与方程“解”的不同点.
通过教学,使学生能够正确地在数轴上表示出不等式的解集,并且能把数轴上的某部分数集用相应的不等式表示.
通过讲解不等式的“解集”与方程“解”的关系,向学生渗透对立统一的辩证观点.
通过本节课的学习,让学生了解不等式的解集可利用图形来表达,渗透数形结合的数学美.
2.学生学法:明确不等式的解与解集的区别和联系,并能熟练地用数轴表示不等式的解集,在数轴上表示不等式的解集时,要特别注意:大于向右画,小于向左画;有等号的画实心圆点,无等号的画空心圆圈.
不等式课件 篇10
1.了解不等式及一元一次不等式概念。
2.理解不等式的解、解集,能正确表示不等式的解集。
通过类比等式的对应知识,探索不等式的概念和解,体会不等式与等式的异同,初步掌握类比的思想方法。
1.经历把实际问题抽象为不等式的过程,能够列出不等关系式。
2.初步体会不等式(组)是刻画现实世界中不等关系的一种有效数学模型,培养学生的建模意识。
通过对不等式概念及其解集等有关概念的探索,培养学生的知识迁移能力和建模意识,加强同学之间的使用与交流。
活动一:
感知不等关系,了解不等式的概念。
通过实例,让学生认识到不等关系在生活中的存在,通过问题的解答,让学生了解不等式的概念,体会不等式是解决实际问题的有效工具。
活动二:
通过类比方程,继续探索出不等式的解、解集及其表示方法。
通过解决上个环节的问题,得出不等式的解,再引导学生观察解的特点,探索出解集的两种表示方法(符号表示、数轴表示),并且培养学生用估算方法求解集的技能。
活动三:
继续探索,归纳出一元一次不等式的意义。
针对所学的不等式,让学生归纳出特点,得到一元一次不等式的概念,并对概念进行辨析。
运用本节所学的知识,解决实际问题,使学生经历将实际问题转化为数学问题,再加以解决的过程,实现对所学知识的巩固和深化。
让学生通过自我反思和互相质疑提问,归纳总结本节课的主要内容,交流在概念、解及解集学习中的心得和体会,不断积累数学活动经验,教师应主动参与学生小结中,作好引导工作,布置好作业,并作及时反馈。
小强准备随父母乘车去武当山春游。
⑴在车上看到儿童买票所需的测身高标识线。
①x满足______时,他可免票。
②x满足______时,他该买全票。
⑵已知襄樊与武当山的距离为150千米,他们上午10点钟从襄樊出发,汽车匀速行驶。
①若该车计划中午12点准时到达武当山,车速应满足什么条件?
②若该车实际上在中午12点之前已到达武当山,车速应满足什么条件?
用不等式表示:
⑴a是正数;⑵a是负数;⑶a与5的和小于7;⑷a与2的差大于-1;
⑸a的4倍大于8;
⑹a的一半小于3。
学生回答①这两个由实际生活情境设置的问题,应非常容易.问题②相对①难度加大了,难在题意中的条件不象上面那样直接明了,并且可从距离和时间两个角度来分析、解决问题,而七年级学生恰恰缺乏阅读分析题意、多维度思考解决问题的能力,所以采用小组讨论交流的形式解决问题②
学生讨论角度估计大都集中在距离这一角度,教师可深入小组讨论中,认真听听同学们的思路,应鼓励学生多发表意见,并适当点拨,直到得出两种不等式。
此次活动中,教师应重点关注:讨论要有足够的时间和空间,学生在小组讨论交流时,是否敢于发表自己的想法。
再给出不等式概念:
像前面式子一样用“>”或“
教师可要求学生举出一些表示大小的式子,学生举出的不等式中,可能会有一些不含未知数的,如5>3等。教师此时应总结:不等式中可含有未知数,也可不含未知数。
教师根据学生举例给出表示不等关系的第三种符号“≠”,并强调:像前面式子一样用“≠”表示不等关系的式子也是不等式。
巩固练习是让学生用不等式来刻画题中6个简单的不等关系。学生得出答案并不难,所以该环节让学生独立完成、互相评价,教师可深入到学生的解题过程中,观察指导学生的解题思路,倾听学生的评价。
问题1在课本中起导入新课作用,考虑学生实际情况(分析应用题能力尚欠缺)和题目难度,所以设置问题串,降低难度。这样编排教材我认为更能体现知识呈现的序列性,从易到难,让学生“列不等式”能力实现螺旋上升。
问题3作用仅仅起巩固上面所学的知识,所以采用书中的一组习题,让学生独立完成,进一步培养学生列不等式能力。
采用学生熟悉的生活情境作为导入内容,然后层层推进,步步设问,环环相扣,直至推出不等式的概念及概念理解中应注意的地方。这样实现了:让学生从已有的数学经验出发,从生活中建构数学模型,为后面利用“不等式”这一模型解决生活中实际问题作好铺垫,体现了数学生活化、生活
不等式课件 篇11
1、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。
2、解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x项的系数化为1
1、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。
2、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。
3、求不等式组的解集的过程,叫做解不等式组。
4、当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。
3、代数式1-m的值大于-1,又不大于3,则m的取值范围是( )
A.x≥1 B.x≥-1/2 C.x>1 D.x>-1/2
A.5+4>8 B.2x-1 C.2x-5≤1 D.1/x-3x≥0
A. a>0¬ B.a≥0¬ C.a
11、若关于x的不等式组 的解集是x>2a,则a的取值范围是
A. a>4 B. a>2 C. a=2 D.a≥2
12、若方程组 中,若未知数x、y满足x+y>0,则m的取值范围是
13、不等式2(1) x>-3的解集是 。
14、用代数式表示,比x的5倍大1的数不小于x的 与4的差 。
15、若(m-3)x-1,则m .
18、某次个人象棋赛规定:赢一局得2分,平一局得0分,负一局得反扣1分。在12局比赛中,积分超过15分就可以晋升下一轮比赛,小王进入了下一轮比赛,而且在全部12轮比赛中,没有出现平局,问小王最多输 局比赛
1、定义:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点。
2、心对称的两条基本性质:
(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分。
(2)关于中心对称的两个图形是全等图形。
把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。
每上第一次课,我所讲的课程内容都和学生的错题有关。我通常把试卷中的错题摘抄出几个典型题,作为课堂的例题再讲一遍。而学生的反应,或是像没有见过,或是对题目非常熟悉,但没有思路。
这些现象的发生,都是学生没有及时总结的原因。所以第一次课后我都建议我的学生做一个错题本,像写日记一样,记录下自己的错题和感想。
成也审题败也审题。如何审题呢?
(1)这个题目有哪些个已知条件?我能不能把已知条件分开?
(2)求解的目标是什么?对求解有什么要求?
(3)能不能画一个图帮助思考?好多问题是没有看清楚题意致错。审题不清,你做得越多,可能错的就越多。
(4)所给出的已知条件相互之间有什么关系?能不能从中发现隐含条件?
(5)已知条件与求解目标有什么联系?能不能从中获得解题的思路?找到进门的门槛?
不等式课件 篇12
1.使学生感受到生活中存在着大量的不等关系,了解不等式和一元一次不等式的意义;
2.让学生自发地寻找不等式的解,会在数轴上正确地表示出不等式的解集;
3.能够根据题意准确迅速地列出相应的不等式。
1.通过汽车行驶过a地这一实例的研究,使学生体会到数学来源于生活,又服务于生活,培养学生“学数学、用数学”的意识;
2.经历由具体实例建立不等模型的过程,探究不等式的解与解集的不同意义的过程,渗透数形结合的思想。
㈢情感、态度、价值观:
1.通过对不等式、不等式的解与解集的探究,引导学生在独立思考的基础上积极参与对数学问题的讨论,培养他们的合作交流意识;
2.让学生充分体会到生活中处处有数学,并能将它们应用到生活的各个领域中去。
3.培养学生类比的思想方法、数形结合的思想。
1.教学重点:不等式、一元一次不等式、不等式解与解集的意义;在数轴上正确地表示出不等式的解集;
2.教学难点:不等式解集的意义,根据题意列出相应的不等式。
计算机、自制cai课件、实物投影仪、三角板等。
教师创设情境引入,学生交流探讨;师生共同归纳;教师示范画图,课件交互式练习。
〖创设情境——从生活走向数学〗
[多媒体展示]“五·一黄金周”快要到了,芜湖市某两个商场为了促销商品,推行以下促销方案:①甲商场:购物不超过50元者,不优惠;超过50元的,超过部分折优惠。②乙商场:购物不超过100元者,不优惠;超过100元的,超过部分九折优惠。亲爱的同学,如果五·一期间,你去购物,选择到哪个商场,才比较合算呢?
(以上教学内容是向学生设疑,激发学生探索问题、研究问题的积极性,可以让学生讨论一会儿)
教师:要想正确地解决这个问题,我们大家就要学习第九章《不等式和不等式组》,学完本章的内容后,我相信,聪明的你们一定都会作出正确的选择,真正地做到既经济又实惠。
首先,我们来共同学习本章的第一节课——9.1.1节《不等式及其解集》
〖新课学习〗
学习目标:
1.能感受到生活中存在着大量的不等关系,了解不等式和一元一次不等式和意义;
2.会寻找不等式的解,会在数轴上正确地表示出不等式的解集;
3.能够根据题意准确迅速地列出相应的不等式。
[多媒体展示一段动画]:引例:一辆匀速行驶的汽车在11:20距离a地50千米,要在12:00之前驶过a地,车速应满足什么条件?
设车速是x千米/小时,
(1)从时间上看,汽车要在12:00之前驶过a地,则以这个速度行驶50千米所用的时间不到 小时,即
(2)从路程上看,汽车要在12:00之前驶过a地,则以这个速度行驶 小时的路程要超过50千米,即
请同学们观察上面的两个式子,式子左右两边的大小关系是怎样的? 左右两边相等吗?
在学生充分发表自己意见的基础上,师生共同归纳得出:
用“>”或“<”号表示大小关系的式子叫做不等式;
用“≠”表示不等关系的式子也是不等式。
判断下列式子中哪些是不等式,是不等式的请在题后的括号内划“√”,不是的请划“×”
(1)3> 2 ( ) (2)2a+1> 0 ( ) (3)a+b=b+a ( )
(4)x< 2x+1 ( ) (5)x=2x-5 ( ) (6)2x+4x< 3x+1 ( ) (7)15≠7+9 ( )
上面的不等式中,有些不含未知数,有些含有未知数,大家把(2)、(4)、(6)式与(5)式类比,(5)式是一个一元一次方程,能不能给(2)、(4)、(6)式也起个名字呢?
含有一个未知数, 未知数的次数是1的不等式,叫做一元一次不等式.
问题2:车速可以是78千米/小时吗?75千米/小时呢? 72千米/小时呢?
问题3:我们曾经学过“使方程两边相等的未知数的值就是方程的解”,那么我们可以把使不等式成立的未知数的值叫做什么呢?
(师生共同归纳)使不等式成立的未知数的值叫做不等式的解。
2.课堂练习二——动一动脑,动一动手,你一定能算得对。
76, 73, 79, 80, 74.9, 75.1, 90, 60
(学生做完后,师问):你还能找出这个不等式的其他的解吗?这个不等式有多少个解?你从中发现了什么规律?
(学生讨论后,师生共同总结):当x>75时,不等式 x>50总成立;而当x<75或x=75时,不等式 x>50不成立,这就是说,任何一个大于75的数都是不等式 x>50的解,这样的解有无数个。因此,x>75表示了能使不等式 x>50成立的x的取值范围,叫做不等式 x>50的解的集合,简称解集。
我们再回到前面的问题,经过刚才的分析,可以知道,要使汽车在12:00之前驶过a地,车速必须大于75千米/小时。
一个含有未知数的不等式的所有的解,组成了这个不等式的解集。
4.在数轴上表示不等式的解集;
注意:在表示75的点上画空心圆圈,表示不包括这一点.
5.课堂练习三——动一动脑,动一动手,你一定能算得对。
判断下列数中哪些是不等式x+3>6的解? 哪些不是?
-4, -2.5, 0, 1, 2.5, 3, 3.2, 4.8, 8, 12
求不等式的解集的过程叫做解不等式。
7.课堂练习四——看谁算得最快最准。
直接想出不等式的解集,并在数轴上表示出不等式的解集:
(1) x+3>6; (2)2x<8; (3)x-2>0
解:(1)x>3; (2)x<4; (3)x>2。
1.例用不等式表示:
(1)x与1的和是正数; (2)的与的的差是负数;
(3)的2倍与1的和大于3;(4)的一半与4的差小于的3倍.
解:(1)x+1>0; (2)+b<0;
(3)2+1>3; (4)-4<3;
2.课堂练习五——看谁最列得又快又准。
用不等式表示:
(1)是正数; (2)是负数;
(3)与5的和小于7; (4)与2的差大于-1;
(5)的4倍大于8; (6)的一半小于3.
答案;(1)>0; (2)<0; (3)+5>0;
学生小结,师生共同完善:
2.会寻找不等式的解,会在数轴上正确地表示出不等式的解集;
3.能够根据题意准确迅速地列出相应的不等式。
不等式课件 篇13
教学重点:掌握不等式的三条基本性质,尤其是不等式的基本性质3.
教学难点:正确应用不等式的三条基本性质进行不等式变形.
通过观察、分析、讨论,引导学生归纳总结出不等式的三条基本性质,从具体上升到理论,再由理论指导具体的练习,从而强化学生对知识的理解与掌握.
(设计说明:设置以下习题是为了温故而知新,为学习本节内容提供必要的知识准备.)
2、什么是不等式?
3、用“>”或“<”填空.
(教学说明: 复习等式的基本性质后学生自然会联想到,不等式是否有与等式相类似的性质,从而引起学生的探究欲望.接着问题3为学生探究不等式的性质提供了载体,通过观察,寻找规律,得出不等式的性质.)
先让学生独立思考,后合作交流,通过充分讨论,类比等式性质得出不等式的性质.
观察时,引导学生注意不等号的方向,通过(1)题学生容易得出不等式性质1:
不等式基本性质1 不等式两边加(或减)同一个数(或式子),不等号的方向不变.
比较(2)、(3)题,注意观察不等号方向,并思考不等号方向的改变与什么有关?由学生概括总结,教师补充完善得出:
不等式基本性质2 不等式两边乘(或除以)同一个不为零的正数,不等号的方向不变.
不等式基本性质3 不等式两边乘(或除以)同一个不为零的负数,不等号的方向改变.
通过PPT用图形演示不等式的基本性质,让学生更加清楚地认识不等式的基本性质。
不等式有传递性吗?
【学生通过讨论能够比较容易得出结论:不等式有对称性,但要注意其不等号方向的`变化;不等式也有传递性,但要注意的是同向传递性。】
三、巩固训练,熟练技能:
1、(1) a - 3____b - 3;
(3) 0.1a____0.1b;
(5) 2a+3____2b+3;
【本题目采用提问的方式,因为内容相对简单,所以可以迅速得到结论。要让提问者说清楚答案,并说明利用不等式的性质几来进行判定的。】
(1)因为7.5>5.7,所以-7.5<-5.7;
(2)因为a+8>4,所以a>-4;
(3)因为4a>4b,所以a>b;
(4)因为-1>-2,所以-a-1>-a-2;
(5)因为3>2,所以3a>2a.
【学生口答,并说明为什么。本题重点是第5小题,要引导学生总结出a的取值会影响到答案。当a>0时,3a>2a.(不等式基本性质2)
当 a=0时,3a=2a.当a<0时,3a<2a.(不等式基本性质3) 】
学生自己完成以下题目,之后进行集体讲解。
(1)如果x-5>-1,那么______________________,得:x>4
(2)如果-2x>3,那么那么______________________,得X=______
师生共同小结本节课所学重点,不等式的基本性质的具体内容。
不等式课件 篇14
基本不等式是数学中重要的一个概念,它与不等式的证明和应用有着密切的关系。基本不等式的解法和思维方法不仅能让我们更好地掌握不等式的性质和应用,同时也能让我们更好地解决数学中的其他问题。下面,让我们就基本不等式这一主题展开更加深入的探讨。
一、基本不等式的定义、证明和性质
基本不等式定义:对于任意实数$x$,$y$,有$(x^2+y^2)\geq 2xy$,等号成立当且仅当$x=y$时成立。
基本不等式的证明:我们可以通过平方展开和配方进行证明,即:
$(x-y)^2\geq 0$
$x^2-2xy+y^2\geq 0$
$x^2+y^2\geq 2xy$
证毕。
基本不等式的性质:基本不等式可以用于求证其他不等式和解决实际问题,例如可以用基本不等式证明算术平均数$\ge$几何平均数,可以用基本不等式求证要想最小化一个多项式,需要使其中的各项等于彼此等于基本不等式中的相等值等。
二、基本不等式的应用及相关例题
基本不等式的应用广泛,其中最常见的应用就是在证明和求解不等式问题中。下面,我们就通过例题来展示基本不等式的具体应用。
例题一:
已知$a,b,c$均为正实数,求出$abc$与$\frac{(a+b+c)^3}{27}$的大小关系。
解:由于$a,b,c$均为正实数,故可运用基本不等式进行求解,即
$\begin{aligned}
\frac{(a+b+c)}{3}\geq\sqrt[3]{abc}\\
(a+b+c)^3\geq 27abc
\end{aligned}$
因此,
$\frac{(a+b+c)^3}{27}\geq abc$
即$\frac{(a+b+c)^3}{27}\geq abc$
得证。
例题二:
已知$a+b=3$,$a^2+b^2=5$,求出$a,b$的大小关系。
解:由已知条件可得$(a+b)^2=a^2+b^2+2ab$,即
$9=5+2ab$
$ab=\frac{4}{3}$
由基本不等式知得
$2ab=\frac{8}{3}\leq a^2+b^2=5$
即$a^2+b^2>2ab$,因此$a^2>b^2$,
又因为$a+b=3$,所以$b=3-a$,
所以$(3-a)^2
$9+a^2-6a
$a>\frac{3}{2}$
因此,
$a>b>\frac{3}{2}-a$
即$0
例题三:
已知$a,b,c>0$,求证$\frac{(a+b)^2}{c}+\frac{(b+c)^2}{a}+\frac{(c+a)^2}{b}\geq 12(a+b+c)$
解:由基本不等式得
$(a+b)^2\geq 4ab,(b+c)^2\geq 4bc,(c+a)^2\geq 4ac$
将以上三个式子代入原式变化得
$\frac{4ab}{c}+\frac{4bc}{a}+\frac{4ac}{b}\geq 12(a+b+c)$
即$4(ab^2+bc^2+ca^2)\geq 12abc(a+b+c)$
即$(ab^2+bc^2+ca^2)\geq 3abc$
由于$a,b,c>0$,故得证。
三、基本不等式的扩展
除了基本不等式外,还有一些基本不等式的扩展形式,例如平均值不等式和柯西施瓦兹不等式等。这些扩展形式大大丰富了不等式的证明和应用,并为数学研究提供了更加广泛的空间。下面,我们就来简单介绍一下平均值不等式和柯西施瓦兹不等式的相关内容。
平均值不等式:对于$n$个非负实数$x_1,x_2,\cdots,x_n$,有
$\frac{x_1+x_2+\cdots+x_n}{n}\geq\sqrt[n]{x_1x_2\cdots x_n}$
其中等号成立当且仅当$x_1=x_2=\cdots=x_n$时成立。
柯西施瓦兹不等式:对于任意实数$x_1,x_2,\cdots,x_n$和$y_1,y_2,\cdots,y_n$,有
$(x_1^2+x_2^2+\cdots+x_n^2)(y_1^2+y_2^2+\cdots+y_n^2)\geq(x_1y_1+x_2y_2+\cdots+x_ny_n)^2$
其中等号成立当且仅当$\frac{x_1}{y_1}=\frac{x_2}{y_2}=\cdots=\frac{x_n}{y_n}$时成立。
四、总结
综上所述,基本不等式是数学中重要的一个概念,它与不等式的证明和应用有着密切的关系。基本不等式的解法和思维方法不仅能让我们更好地掌握不等式的性质和应用,同时也能让我们更好地解决数学中的其他问题。在学习和应用基本不等式时,我们还需掌握其相关的扩展形式,如平均值不等式和柯西施瓦兹不等式等。只有充分掌握了这些知识点,我们才能更加深入地理解并应用不等式的知识。
例题三:
已知$a,b,c>0$,求证$\frac{(a+b)^2}{c}+\frac{(b+c)^2}{a}+\frac{(c+a)^2}{b}\geq 12(a+b+c)$
解:由基本不等式得
$(a+b)^2\geq 4ab,(b+c)^2\geq 4bc,(c+a)^2\geq 4ac$
将以上三个式子代入原式变化得
$\frac{4ab}{c}+\frac{4bc}{a}+\frac{4ac}{b}\geq 12(a+b+c)$
即(ab^2+bc^2+ca^2)\geq 12abc(a+b+c)$
即$(ab^2+bc^2+ca^2)\geq 3abc$
由于$a,b,c>0$,故得证。
三、基本不等式的扩展
除了基本不等式外,还有一些基本不等式的扩展形式,例如平均值不等式和柯西施瓦兹不等式等。这些扩展形式大大丰富了不等式的证明和应用,并为数学研究提供了更加广泛的空间。下面,我们就来简单介绍一下平均值不等式和柯西施瓦兹不等式的相关内容。
平均值不等式:对于$n$个非负实数$x_1,x_2,\cdots,x_n$,有
$\frac{x_1+x_2+\cdots+x_n}{n}\geq\sqrt[n]{x_1x_2\cdots x_n}$
其中等号成立当且仅当$x_1=x_2=\cdots=x_n$时成立。
柯西施瓦兹不等式:对于任意实数$x_1,x_2,\cdots,x_n$和$y_1,y_2,\cdots,y_n$,有
$(x_1^2+x_2^2+\cdots+x_n^2)(y_1^2+y_2^2+\cdots+y_n^2)\geq(x_1y_1+x_2y_2+\cdots+x_ny_n)^2$
其中等号成立当且仅当$\frac{x_1}{y_1}=\frac{x_2}{y_2}=\cdots=\frac{x_n}{y_n}$时成立。
四、总结
综上所述,基本不等式是数学中重要的一个概念,它与不等式的证明和应用有着密切的关系。基本不等式的解法和思维方法不仅能让我们更好地掌握不等式的性质和应用,同时也能让我们更好地解决数学中的其他问题。在学习和应用基本不等式时,我们还需掌握其相关的扩展形式,如平均值不等式和柯西施瓦兹不等式等。只有充分掌握了这些知识点,我们才能更加深入地理解并应用不等式的知识。
- 等式课件 幼儿教师教育网编辑为大家整理的“等式课件”或许能帮助您解决一些疑惑。教案课件是每个老师在开学前需要准备的东西,每个人都要计划自己的教案课件了。 设计有创意的教学课件可以增加学生的学习趣味。我们提供的样本仅供参考具体操作请根据实际情况做出调整!...
- 2024-06-12 阅读全文
- 不等式的课件 老师在开学前需要把教案课件准备好,每个人都要计划自己的教案课件了。教案是实现高效教学的不可或缺要素之一。如果您想深入理解这一话题不妨看看“不等式的课件”,本文的内容必将给您带来很多有用的收获!...
- 2024-05-15 阅读全文
- 不等式课件 不为明天做好准备的人是没有未来的,当幼儿园教师的工作遇到难题时,我们经常会用提前准备好的资料进行参考。资料通常是指书籍、报刊、图表、图片等。有了资料才能更好的在接下来的工作轻装上阵!所以,关于幼师资料你究竟了解多少呢?在这里,你不妨读读不等式课件,欢迎阅读,希望对你有帮助。教学目标:了解一元...
- 2023-04-23 阅读全文
- 等式的基本性质教案精选 常言道,优秀的人都是有自己的事先计划。在上课时幼儿园的老师都想让自己的课堂知识能够吸引小朋友们的注意力,教案的作用就是为了缓解学生的压力,提升效率,教案为学生带来更好的听课体验,从而提高听课效率。关于好的幼儿园教案要怎么样去写呢?下面的内容是小编为大家整理的等式的基本性质教案精选,强烈建议你能收藏本...
- 2023-05-20 阅读全文
- 不等式的课件收藏 经验时常告诉我们,做事要提前做好准备。在幼儿教育工作中,我们都有会准备一写需要用到资料。资料包含着人类在社会实践,科学实验和研究过程中所汇集的经验。有了资料的协助我们的工作会变得更加顺利!所以,关于幼师资料你究竟了解多少呢?小编现在推荐你阅读一下不等式的课件收藏,相信能对大家有所帮助。基本不等式是初...
- 2023-08-05 阅读全文
幼儿教师教育网编辑为大家整理的“等式课件”或许能帮助您解决一些疑惑。教案课件是每个老师在开学前需要准备的东西,每个人都要计划自己的教案课件了。 设计有创意的教学课件可以增加学生的学习趣味。我们提供的样本仅供参考具体操作请根据实际情况做出调整!...
老师在开学前需要把教案课件准备好,每个人都要计划自己的教案课件了。教案是实现高效教学的不可或缺要素之一。如果您想深入理解这一话题不妨看看“不等式的课件”,本文的内容必将给您带来很多有用的收获!...
不为明天做好准备的人是没有未来的,当幼儿园教师的工作遇到难题时,我们经常会用提前准备好的资料进行参考。资料通常是指书籍、报刊、图表、图片等。有了资料才能更好的在接下来的工作轻装上阵!所以,关于幼师资料你究竟了解多少呢?在这里,你不妨读读不等式课件,欢迎阅读,希望对你有帮助。教学目标:了解一元...
常言道,优秀的人都是有自己的事先计划。在上课时幼儿园的老师都想让自己的课堂知识能够吸引小朋友们的注意力,教案的作用就是为了缓解学生的压力,提升效率,教案为学生带来更好的听课体验,从而提高听课效率。关于好的幼儿园教案要怎么样去写呢?下面的内容是小编为大家整理的等式的基本性质教案精选,强烈建议你能收藏本...
经验时常告诉我们,做事要提前做好准备。在幼儿教育工作中,我们都有会准备一写需要用到资料。资料包含着人类在社会实践,科学实验和研究过程中所汇集的经验。有了资料的协助我们的工作会变得更加顺利!所以,关于幼师资料你究竟了解多少呢?小编现在推荐你阅读一下不等式的课件收藏,相信能对大家有所帮助。基本不等式是初...