人教版七年级数学上册课件
发布时间:2023-10-16 人教版七年级上册课件 人教版七年级课件 人教版七年级人教版七年级数学上册课件。
教案是老师上课之前需要备好的课件,每个老师都需要仔细规划教案课件。教案是教学的策略关系到教学效果。编辑为您精选了这份特别的“人教版七年级数学上册课件”希望您感到满意,所述文章仅供参考请勿用于非法用途!
人教版七年级数学上册课件(篇1)
课题:1.2.2数轴
学习目标:
1、掌握数轴概念,理解数轴上的点和有理数的对应关系。
2、会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数
轴上的点读出所表示的有理数。
3、使学生初步理解数形结合的思想。
教学重点:数轴的概念。
教学难点:从直观认识到理性认识,从而建立数轴的概念,并初步体会数形结合的思想方法。
教学过程:
一、创设情境:
问题1:在一条东西走向的马路上,有一个汽车站,汽车站东3米和
7.5米处分别有一棵柳树和一棵杨树,汽车站西3米和4.8米处分别有一棵槐树和一根电线杆,你能画图表示这一情境吗?
师提出问题:(1)先画什么呢?
(2)先找什么?再找什么?
(3)怎样正确摆放这几者的位置呢?
问题2:怎样用数轴简明地表示这些树,电线杆与汽车站的相对位置
关系(方向、距离)
师生合作完成二、合作交流,探索新知
引导学生思考上面的问题,引导学生建立数轴的概念。
问题3:怎样正确地画一条数轴,数轴需哪几个条件?
怎样才能将不同数的点清楚表示出来?
尝试画满足条件的数轴。
可以先让学生试着画出自己想象的数轴,并把学生不同画法展示出来。先让学生交流哪种画法规范,然后师生共同分析归纳得出数轴的特征:
(1)数轴是一条直线。
(2)数轴三要素:原点
正方向
单位长度
由此我们可以说:规定了原点、正方向和单位长度的直线叫做数轴。练习:下列图形哪些是数轴?哪些不是,为什么?
(题目及图形在导学案上)
三、动手操作,亲身体验。
问题
4、如果给你一些数,你能相应地在数轴上找出它们的准确位置吗?如果给你数轴上的点,你能读出它所表示的数吗?
(1)画出数轴并表示下列有理数
91.5-22-2.52(2)写出数轴上A、B、C、D、E表示的数
(图形在导学案上)
观察发现:(1)哪些数在原点的左边?哪些数在原点的右边?由此你会
发现什么规律?
(2)每个数到原点的距离是多少?由此你会发现什么规律?
小组讨论,交流归纳完成上述问题。
四、巩固提高
1、画出数轴并表示下列有理数。
(1)-3-2-10123
(2)-30-20-100102030
(3)155122-2-
2五、课堂小节:、数轴的概念。、数轴的三要素。、数轴的作法及数与点转化过程。
六、作业:
必做题:教科书第14面习题1、2第二题123
人教版七年级数学上册课件(篇2)
教学目标:
1.掌握把整亿的数改写成以亿为单位的数。四舍五入省略“亿”后面的尾数求近似数的方法。理解改写与省略的相同与不同。
2.在探究亿以上数的改写和省略尾数方法的过程中,渗透比较的思维方法,培养初步的观察、比较及概括的能力和符号意识。
3.在现实情境中,感受大数在日常生活中的广泛应用,进一步体验数学的应用价值,培养学生对数学的兴趣和良好情感。
教学难点:
1.课件出示:把下面画横线的数改写成用“万”作单位的数。
(1)水星到太阳的平均距离是57910000千米。
(2)太阳中心的温度是10000000摄氏度。
(3)8月8日,有150900多观众在现场观看了北京奥运会开幕式。
(4)地球赤道周长40075700米。
(1)先分级,再去掉57910000万位后面的4个0,换成万字,是5791万。
(2)先分级,再去掉10000000万位后面的4个0换成万字,是1000万。
(3)先分级,150900的千位上是0,比5小,把尾数舍去,写上万字,约是15万。
(4)先分级,40075700的千位上是5,够5,向万位后面进1,舍去尾数,写上万字,约是4008万。
4.师:怎样把不是整万的数省略万位后面的尾数求近似数?这种方法叫什么?
师:我们已经学过了亿以内数的改写和省略,那亿以上的数怎么改写用“亿”作单位的数呢?这节课我们就来学习。
(一)亿以上数的改写。
(2)把这些数改写成用“亿”作单位的数。
(2)师:改写时,是不是要去掉所有的0?(只需要去掉亿位后面的0,不是有几个0就去掉几个0)
(3)5305┊0000┊0000=5305亿,去掉亿位后面的8个0
4.小结:怎样把整亿数改写用“亿”作单位的数?(先分级,去掉亿位后面的8个0,换成“亿”字)
人教版七年级数学上册课件(篇3)
一、教学目标:(1)熟练地进行同分母的分式加减法的运算.
(2)会把异分母的分式通分,转化成同分母的分式相加减.
进行异分母的分式加减法的运算是难点,异分母的分式加减法的运算,必须转化为同分母的分式加减法,,然后按同分母的分式加减法的法则计算,转化的关键是通分,通分的关键是正确确定几个分式的最简公分母,确定最简公分母的一般步骤:(1)取各分母系数的最小公倍数;(2)所出现的字母(或含字母的式子)为底的幂的因式都要取;(3)相同字母(或含字母的式子)的幂的因式取指数的.在求出最简公分母后,还要确定分子、分母应乘的因式,这个因式就是最简公分母除以原分母所得的商.
异分母的分式加减法的一般步骤:(1)通分,将异分母的分式化成同分母的分式;(2)写成“分母不便,分子相加减”的形式;(3)分子去括号,合并同类项;(4)分子、分母约分,将结果化成最简分式或整式.
1. P18问题3是一个工程问题,题意比较简单,只是用字母n天来表示甲工程队完成一项工程的时间,乙工程队完成这一项工程的时间可表示为n+3天,两队共同工作一天完成这项工程的 .这样引出分式的加减法的实际背景,问题4的目的与问题3一样,从上面两个问题可知,在讨论实际问题的数量关系时,需要进行分式的加减法运算.
2. P19是为了让学生回忆分数的加减法法则,类比分数的加减法,分式的加减法的实质与分数的加减法相同,让学生自己说出分式的加减法法则.
3.P20例6计算应用分式的加减法法则.第(1)题是同分母的分式减法的运算,第二个分式的分子式个单项式,不涉及到分子变号的问题,比较简单,所以要补充分子是多项式的例题,教师要强调分子相减时第二个多项式注意变号;
第(2)题是异分母的分式加法的运算,最简公分母就是两个分母的乘积,没有涉及分母要因式分解的题型.例6的练习的题量明显不足,题型也过于简单,教师应适当补充一些题,以供学生练习,巩固分式的加减法法则.
(4)P21例7是一道物理的电路题,学生首先要有并联电路总电阻R与各支路电阻R1, R2, …, Rn的关系为 .若知道这个公式,就比较容易地用含有R1的式子表示R2,列出 ,下面的计算就是异分母的分式加法的运算了,得到 ,再利用倒数的概念得到R的结果.这道题的数学计算并不难,但是物理的知识若不熟悉,就为数学计算设置了难点.鉴于以上分析,教师在讲这道题时要根据学生的物理知识掌握的情况,以及学生的具体掌握异分母的分式加法的运算的情况,可以考虑是否放在例8之后讲.
1.出示P18问题3、问题4,教师引导学生列出答案.
引语:从上面两个问题可知,在讨论实际问题的数量关系时,需要进行分式的加减法运算.
2.下面我们先观察分数的加减法运算,请你说出分数的加减法运算的法则吗?
3. 分式的加减法的实质与分数的加减法相同,你能说出分式的加减法法则?
4.请同学们说出 的最简公分母是什么?你能说出最简公分母的确定方法吗?
第(1)题是同分母的分式减法的运算,分母不变,只把分子相减,第二个分式的分子式个单项式,不涉及到分子是多项式时,第二个多项式要变号的问题,比较简单;第(2)题是异分母的分式加法的运算,最简公分母就是两个分母的乘积.
第(1)题是同分母的分式加减法的运算,强调分子为多项式时,应把多项事看作一个整体加上括号参加运算,结果也要约分化成最简分式.
第(2)题是异分母的分式加减法的运算,先把分母进行因式分解,再确定最简公分母,进行通分,结果要化为最简分式.
人教版七年级数学上册课件(篇4)
三维目标:
1、通过贴近学生生活实际的素材,在丰富多彩的实践活动中充分体会时、分、秒的实际意义。
教学重、难点:
时间单位的简单转换和求经过时间的方法。
第2题,先让学生独立完成,再让学生说一说每一题是怎么比较的,允许学生用不同的方法进行比较,只要说得有道理就行。
第3题,读读书上的三个例子,并要求学生收集类似的信息。
第4、5题,学生计算经过的时间。如果部分学生有困难,让他们借助钟面模型加以演示、理解,教师给予适当的帮助。
第6题,要求学生先估计,再实际进行验证,验证的数据可以由学生和家长一起完成。
第7题,事先让学生找几个自己感兴趣的节目,想办法把它们开始和结束的时刻都记录下来。
二、补充题目。
2、电影《神奇的宇宙》从2:05开始,到2:50结束,这场电影放映了多长时间?
3、你会提问题让同学们算经过的时间吗?
二、三维目标:
1、使学生巩固时间的认识和计算,养成从小珍惜时间、合理安排时间的好习惯;
2、加强数学知识与现实生活的联系,逐渐培养学生从不同渠道获取信息的意识和能力。
三、教学重点:
巩固时间的认识和计算,逐渐培养学生从不同渠道获取信息的意识和能力。
1、师:说一说什么时候上早仔自习,什么时候出早操,什么时候上第一节课?
师:像这样比较固定的事情发生的时间就可成为作息时间。
3、仿照课程表的设计思路,根据自己的实际情况,制定作息时间表。
4、引导学生互相交流、比较,看看别人的作息时间表中有哪些比自己合理的地方。(如是不是自己睡觉太晚了,起床太晚了,是不是有很多时间白白浪费了等等—)
师:你们都会制定一个合理的作息时间表了,但严格地遵守自己制定的作息时间表更为重要。希望你们能督促自己在以后的生活中更加合理、有效地安排和利用时间。
二、以小组为单位,统计完成某些共同事件所需的时间。
1、统计小组成员完成家庭作业所需的时间。
列出统计表后,对表中的数据进一步分析和讨论,如有的同学用的时间少很少,而有的同学花很长时间,原因是什么,
请作业做得又快又好的同学介绍一下经验。
师:希望你们能从刚才的事件中养成按时、认真完成家庭作业的习惯。
2、统计每位同学的睡眠时间。并说一说计算睡眠时间的方法。根据统计结果看看谁的睡眠时间最长,谁的最短,大家的睡眠时间是否够。请大家课后想办法去查一查。
3、统计同学们每天参加体育锻炼的时间和看电视、看书的时间。
4、小结:一寸光阴一寸金,请你们是时间生活中要合理地安排学习、锻炼、娱乐、休息的时间。
三、巩固练习。
练习十四第8、9、10题。
人教版七年级数学上册课件(篇5)
七年级数学上册教案人教版3篇
教师是学生的一个引导者,每一个七年级数学老师要在课堂上引导学生正确的理解教学内容。数学是我们每一个人都必须掌握的技能,作为七年级数学老师你会写七年级数学教案?你是否在找正准备撰写“七年级数学上册教案人教版”,下面小编收集了相关的素材,供大家写文参考!
七年级数学上册教案人教版篇1
学习目标
1. 理解三线八角中没有公共顶点的角的位置关系 ,知道什么是同位角、内错角、同旁内角.
2. 通过比较、观察、掌握同位角、内错角、同旁内角的特征,能正确识别图形中的同位角、内错角和同旁内角.
重点难点
同位角、内错角、同旁内角的特征
教学过程
一·导入
1.指出右图中所有的邻补角和对顶角?
2. 图中的∠1与∠5,∠3与∠5,∠3与∠6 是邻补角或对顶角吗?
若都不是,请自学课本P6内容后回答它们各是什么关系的角?
二·问题导学
1.如图⑴,将木条,与木条c钉在一起,若把它们看成三条直 线则该图可说成"直线 和直线 与直线 相交" 也可以说成"两条直线 , 被第三条直线 所截".构成了小于平角的角共有 个,通常将这种图形称作为"三线八角"。其中直线 , 称为两被截线,直线 称为截线。
2. 如图⑶是"直线 , 被直线 所截"形成的图形
(1)∠1与∠5这对角在两被截线AB,CD的 ,在截线EF 的 ,形如" " 字型.具有这种关系的一对角叫同位角。
(2)∠3与∠5这对角在两被截线AB,CD的 ,在截线EF的 ,形如" " 字型.具有这种关系的一对角叫内错角。
(3)∠3与∠6这对角在两被截线AB,CD的 ,在截线EF的 ,形如" " 字型.具有这种关系的一对角叫同旁内角。
3.找出图⑶中所有的同位角、内错角、同旁内角
4.讨论与交流:
(1)"同位角、内错角、同旁内角"与"邻补角、对顶角"在识别方法上有什么区别?
(2)归纳总结同位角、内错角、同旁内角的特征:
同位角:"F" 字型,"同旁同侧"
"三线八角" 内错角:"Z" 字型,"之间两侧"
同旁内角:"U" 字型,"之间同侧"
三·典题训练
例1. 如图⑵中∠1与∠2,∠3与∠4, ∠1与∠4分别是哪两条直线被哪一条直线所截形成的什么角?
小结 将左右手的大拇指和食指各组成一个角,两食指相对成一条直线,两个大拇指反向的时候,组成内错角;
两食指相对成一条直线,两个大拇指同向的时候,组成同旁内角;
自我检测
⒈如图⑷,下列说法不正确的是( )
A、∠1与∠2是同位角 B、∠2与∠3是同位角
C、∠1与∠3是同位角 D、∠1与∠4不是同位角
⒉如图⑸,直线AB、CD被直线EF所截,∠A和 是同位角,∠A和 是内错角,∠A和 是同旁内角.
⒊如图⑹, 直线DE截AB, AC, 构成八个角:
① 指出图中所有的同位角、内错角、同旁内角.
②∠A与∠5, ∠A与∠6, ∠A与∠8, 分别是哪一条直线截哪两条直线而成的什么角?
⒋如图⑺,在直角ABC中,∠C=90°,DE⊥AC于E,交AB于D .
①指出当BC、DE被AB所截时,∠3的同位角、内错角和同旁内角.
②试说明∠1=∠2=∠3的理由.(提示:三角形内角和是1800)
相交线与平行线练习
课型:复习课: 备课人:徐新齐 审核人:霍红超
一.基础知识填空
1、如图,∵AB⊥CD(已知)
∴∠BOC=90°( )
2、如图,∵∠AOC=90°(已知)
∴AB⊥CD( )
3、∵a∥b,a∥c(已知)
∴b∥c( )
4、∵a⊥b,a⊥c(已知)
∴b∥c( )
5、如图,∵∠D=∠DCF(已知)
∴_____//______( )
6、如图,∵∠D+∠BAD=180°(已知)
∴_____//______( )
(第1、2题) (第5、6题) (第7题) (第9题)
7、如图,∵ ∠2 = ∠3( )
∠1 = ∠2(已知)
∴∠1 = ∠3( )
∴CD____EF ( )
8、∵∠1+∠2 =180°,∠2+∠3=180°(已知)
∴∠1 = ∠3( )
9、∵a//b(已知)
∴∠1=∠2( )
∠2=∠3( )
∠2+∠4=180°( )
10.如图,CD⊥AB于D,E是BC上一点,EF⊥AB于F,∠1=∠2.试说明∠BDG+∠B=180°.
二.基础过关题:
1、如图:已知∠A=∠F,∠C=∠D,求证:BD∥CE 。
证明:∵∠A=∠F ( 已知 )
∴AC∥DF ( )
∴∠D=∠ ( )
又∵∠C=∠D ( 已知 ),
∴∠1=∠C ( 等量代换 )
∴BD∥CE( )。
2、如图:已知∠B=∠BGD,∠DGF=∠F,求证:∠B + ∠F =180°。
证明:∵∠B=∠BGD ( 已知 )
∴AB∥CD ( )
∵∠DGF=∠F;( 已知 )
∴CD∥EF ( )
∵AB∥EF ( )
∴∠B + ∠F =180°( )。
3、如图,已知AB∥CD,EF交AB,CD于G、H, GM、HN分别平分∠AGF,∠EHD,试说明GM ∥HN.
七年级数学上册教案人教版篇2
列代数式
教学目标
1. 使学生在了解代数式概念的基础上,能把简单的与数量有关的词语用代数式表示出来;
2. 初步培养学生观察、分析和抽象思维的能力.
教学重点和难点
重点:列代数式.
难点:弄清楚语句中各数量的意义及相互关系.
课堂教学过程设计
一、从学生原有的认知结构提出问题
1用代数式表示乙数:(投影)
(1)乙数比x大5;(x+5)
(2)乙数比x的2倍小3;(2x-3)
(3)乙数比x的倒数小7;( -7)
(4)乙数比x大16%((1+16%)x)
(应用引导的方法启发学生解答本题)
2在代数里,我们经常需要把用数字或字母叙述的一句话或一些计算关系式,列成代数式,正如上面的练习中的问题一样,这一点同学们已经比较熟悉了,但在代数式里也常常需要把用文字叙述的一句话或计算关系式(即日常生活语言)列成代数式本节课我们就来一起学习这个问题。
二、讲授新课
例1 用代数式表示乙数:
(1)乙数比甲数大5; (2)乙数比甲数的2倍小3;
(3)乙数比甲数的倒数小7; (4)乙数比甲数大16%
分析:要确定的乙数,既然要与甲数做比较,那么就只有明确甲数是什么之后,才能确定乙数,因此写代数式以前需要把甲数具体设出来,才能解决欲求的乙数。
解:设甲数为x,则乙数的代数式为
(1)x+5 (2)2x-3; (3) -7; (4)(1+16%)x
(本题应由学生口答,教师板书完成)
最后,教师需指出:第4小题的答案也可写成x+16%x
例2 用代数式表示:
(1)甲乙两数和的2倍;
(2)甲数的 与乙数的 的差;
(3)甲乙两数的平方和;
(4)甲乙两数的和与甲乙两数的差的积;
(5)乙甲两数之和与乙甲两数的差的积
分析:本题应首先把甲乙两数具体设出来,然后依条件写出代数式
解:设甲数为a,乙数为b,则
(1)2(a+b); (2) a- b; (3)a2+b2;
(4)(a+b)(a-b); (5)(a+b)(b-a)或(b+a)(b-a)
(本题应由学生口答,教师板书完成)
此时,教师指出:a与b的和,以及b与a的和都是指(a+b),这是因为加法有交换律但a与b的差指的是(a-b),而b与a的差指的是(b-a)两者明显不同,这就是说,用文字语言叙述的句子里应特别注意其运算顺序
例3 用代数式表示:
(1)被3整除得n的数;
(2)被5除商m余2的数
分析本题时,可提出以下问题:
(1)被3整除得2的数是几?被3整除得3的数是几?被3整除得n的数如何表示?
(2)被5除商1余2的数是几?如何表示这个数?商2余2的数呢?商m余2的数呢?
解:(1)3n; (2)5m+2
(这个例子直接为以后让学生用代数式表示任意一个偶数或奇数做准备)
例4 设字母a表示一个数,用代数式表示:
(1)这个数与5的和的3倍;(2)这个数与1的差的 ;
(3)这个数的5倍与7的和的一半;(4)这个数的平方与这个数的 的和
分析:启发学生,做分析练习如第1小题可分解为“a与5的和”与“和的3倍”,先将“a与5的和”例成代数式“a+5”再将“和的3倍”列成代数式“3(a+5)”
解:(1)3(a+5); (2) (a-1); (3) (5a+7); (4) a2+ a
(通过本例的讲解,应使学生逐步掌握把较复杂的数量关系分解为几个基本的数量关系,培养学生分析问题和解决问题的能力)
例5 设教室里座位的行数是m,用代数式表示:
(1)教室里每行的座位数比座位的行数多6,教室里总共有多少个座位?
(2)教室里座位的行数是每行座位数的 ,教室里总共有多少个座位?
分析本题时,可提出如下问题:
(1)教室里有6行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?
(2)教室里有m行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?
(3)通过上述问题的解答结果,你能找出其中的规律吗?(总座位数=每行的座位数×行数)
解:(1)m(m+6)个; (2)( m)m个
三、课堂练习
1设甲数为x,乙数为y,用代数式表示:(投影)
(1)甲数的2倍,与乙数的 的和; (2)甲数的 与乙数的3倍的差;
(3)甲乙两数之积与甲乙两数之和的差;(4)甲乙的差除以甲乙两数的积的商
2用代数式表示:
(1)比a与b的和小3的数; (2)比a与b的差的一半大1的数;
(3)比a除以b的商的3倍大8的数; (4)比a除b的商的3倍大8的数
3用代数式表示:
(1)与a-1的和是25的数; (2)与2b+1的积是9的数;
(3)与2x2的差是x的数; (4)除以(y+3)的商是y的数
〔(1)25-(a-1); (2) ; (3)2x2+2; (4)y(y+3)〕
四、师生共同小结
首先,请学生回答:
1怎样列代数式?2列代数式的关键是什么?
其次,教师在学生回答上述问题的基础上,指出:对于较复杂的数量关系,应按下述规律列代数式:
(1)列代数式,要以不改变原题叙述的数量关系为准(代数式的形式不);
(2)要善于把较复杂的数量关系,分解成几个基本的数量关系;
(3)把用日常生活语言叙述的数量关系,列成代数式,是为今后学习列方程解应用题做准备要求学生一定要牢固掌握
五、作业
1用代数式表示:
(1)体校里男生人数占学生总数的60%,女生人数是a,学生总数是多少?
(2)体校里男生人数是x,女生人数是y,教练人数与学生人数之比是1∶10,教练人数是多?
2已知一个长方形的周长是24厘米,一边是a厘米,
求:(1)这个长方形另一边的长;(2)这个长方形的面积.
学法探究
已知圆环内直径为acm,外直径为bcm,将100个这样的圆环一个接着一个环套环地连成一条锁链,那么这条锁链拉直后的长度是多少厘米?
分析:先深入研究一下比较简单的情形,比如三个圆环接在一起的情形,看 有没有规律.
当圆环为三个的时候,如图:
此时链长为,这个结论可以继续推广到四个环、五个环、…直至100个环,答案不难得到:
解:
=99a+b(cm)
七年级数学上册教案人教版篇3
教学目的
通过天平实验,让学生在观察、思考的基础上归纳出方程的两种变形,并能利用它们将简单的方程变形以求出未知数的值。
重点、难点
1.重点:方程的两种变形。
2.难点:由具体实例抽象出方程的两种变形。
教学过程
一、引入
上一节课我们学习了列方程解简单的应用题,列出的方程有的我们不会解,我们知道解方程就是把方程变形成x=a形式,本节课,我们将学习如何将方程变形。
二、新授
让我们先做个实验,拿出预先准备好的天平和若干砝码。
测量一些物体的质量时,我们将它放在天干的左盘内,在右盘内放上砝码,当天平处于平衡状态时,显然两边的质量相等。
如果我们在两盘内同时加入相同质量的砝码,这时天平仍然平衡,天平两边盘内同时拿去相同质量的砝码,天平仍然平衡。
如果把天平看成一个方程,课本第4页上的图,你能从天平上砝码的变化联想到方程的变形吗?
让同学们观察图(1)的左边的天平;天平的左盘内有一个大砝码和2个小砝码,右盘上有5个小砝码,天平平衡,表示左右两盘的质量相等。如果我们用x表示大砝码的质量,1表示小砝码的质量,那么可用方程x+2=5表示天平两盘内物体的质量关系。
问:图(1)右边的天平内的砝码是怎样由左边天平变化而来的?它所表示的方程如何由方程x+2=5变形得到的?
学生回答后,教师归纳:方程两边都减去同一个数,方程的解不变。
问:若把方程两边都加上同一个数,方程的解有没有变?如果把方程两边都加上(或减去)同一个整式呢?
让同学们看图(2)。左天平两盘内的砝码的质量关系可用方程表示为3x=2x+2,右边的天平内的砝码是怎样由左边天平变化而来的?
把天平两边都拿去2个大砝码,相当于把方程3x=2x+2两边都减去2x,得到的方程的解变化了吗?如果把方程两边都加上2x呢?
由图(1)、(2)可归结为;
方程两边都加上或都减去同一个数或同一个整式,方程的解不变。
让学生观察(3),由学生自己得出方程的第二个变形。
即方程两边都乘以或除以同一个不为零的数,方程的解不变:
通过对方程进行适当的变形.可以求得方程的解。
例1.解下列方程
(1)x-5=7 (2)4x=3x-4
(1)解两边都加上5,x,x=7+5 即 x=12
(2)两边都减去3x,x=3x-4-3x 即 x=-4
请同学们分别将x=7+5与原方程x-5=7;x=3x-4-3,与原方程4x=3x-4比较,你发现了这些方程的变形。有什么共同特点?
这就是说把方程两边都加上(或减去)同一个数或同一个整式,就相当于把方程中的某些项改变符号后,从方程的一边移到另一边,这样的变形叫做移项。
注意:“移项’’是指将方程的某一项从等号的左边移到右边或从右边移到左边,移项时要先变号后移项。
例2.解下列方程
(1)-5x=2 (2) x=
这里的变形通常称为“将未知数的系数化为1”。
以上两个例题都是对方程进行适当的变形,得到x=a的形式。
练习:
课本第6页练习1、2、3。
练习中的第3题,即第2页中的方程①先让学生讨论、交流。
鼓励学生采用不同的方法,要他们说出每一步变形的根据,由他们自己得出采用哪种方法简便,体会方程的不同解法中所经历的转化思想,让学生自己体验成功的感觉。
三、巩固练习
教科书第7页,练习
四、小结
本节课我们通过天平实验,得出方程的两种变形:
1.把方程两边都加上或减去同一个数或整式方程的解不变。
2.把方程两边都乘以或除以(不等零)的同一个数,方程的解不变。第①种变形又叫移项,移项别忘了要先变号,注意移项与在方程的一边交换两项的位置有本质的区别。
五、作业
教科书第7—8页习题6.2.1第1、2、3。
人教版七年级数学上册课件(篇6)
本课的重点是了解正数与负数是由实际需要产生的以及有理数包括哪些数。难点是学习负数的必要性及有理数的分类。关键是要能准确地举出具有相反意义的量的典型例子以及要明确有理数分类的标准。
正、负数的引入,有各种不同的方法。教材是由学生熟知的两个实例:温度与海拔高度引入的。比0℃高5摄氏度记作5℃,比0 ℃低5摄氏度,记作-5℃;比海平面高8848米,记作8848米,比海平面低155米记作-155米。由这两个实例很自然地,把大于0的数叫做正数,把加“-”号的数叫做负数;0既不是正数也不是负数,是一个中性数,表示度量的“基准”。这样引入正、负数,不仅有利于学生正确使用正、负数表示具有相反意义的量,而且还将帮助学生理解有理数的大小性质。把负数理解为小于0的数。教材中,没有出现“具有相反意义的量”的概念。这是有意回避或淡化这个概念。目的是,从正、负数引入一开始就能较深刻的揭示正、负数和零的性质,帮助学生正确理解正、负数的概念。
关于有理数的分类要明确的是:分类标准不同,分类结果也不同,分类结果应是不重不漏,即每一个数必须属于某一类,又不能同时属于不同的两类。
这节课是在小学里学过的数的基础上,从表示具有相反意义的量引进负数的.从内容上讲,负数比非负数要抽象、难理解.因此在教学方法和教学语言的选择上,尽可能注意中小学的衔接,既不违反科学性,又符合可接受性原则。例如,在讲解有理数的概念时,让学生清楚地认识有理数与算术数的根本区别,有理数是由两部分组成:符号部分和数字部分(即算术数).这样,在理解算术数和负数的基础上,对有理数的概念的理解就简便多了.
为了使学生掌握必要的数学思想和方法,在明确有理数的分类时,可以有意识地渗透分类讨论的思想方法,理解分类的标准、分类的结果,以及它们的相互联系。通过正数、负数都统一于有理数,可以将对立统一的辩证思想的逐步树立渗透到日常教学中。
1﹒对于正数和负数的概念,不能简单的理解为:带“+”号的数是正数,带“-”号的数是负数。
2﹒引入负数后,数的范围扩大为有理数,奇数和偶数的外延也由自然数扩大为整数,整数也可以分为奇数和偶数两类,能被2整除的数是偶数,如…-6,-4,-2,0,2,4,6…,不能被2整除的数是奇数,如…-5,-4,-2,1,3,5…
3﹒到现在为止,我们学过的数细分有五类:正整数、正分数、0、负整数、负分数,但研究问题时,通常把有理数分为三类:正数、0、负数,进行讨论。
4﹒通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数;负整数和0统称为非正整数。
整数和分数统称为有理数。1)正整数、零、负整数统称为整数;正分数、负分数统称为分数。
2)整数也可以看作分母为1的分数,但为了研究方便,本章中分数是指不包括整数的分数。
3)注意概念中所用“统称”二字,它与说“整数和分数是有理数”的意思不大一样。前者回避了分数是否包括整数的问题,即使把整数包括在分数范围内,说“统称”还是不错,而用后一种说法就欠妥了。
4)分数和小数的区别:
分数(既约分数)都可表示成小数,但不是所有的小数都能表示成分数的。
5)到目前为止,所学过的数(除π外)都是有理数。
人教版七年级数学上册课件(篇7)
1 知识与技能:
使学生理解和掌握整十数除整十数、几百几十数(商一位数)的口算方法,能正确地进行计算。
2 过程与方法:
通过观察、操作、讨论的活动,使学生经历探究口算方法的全过程。
3 情感态度与价值观:
让学生感受数学与生活的联系,培养学生用数学知识解决简单实际问题的能力。
20×3= 7×50= 6×3=
20×5= 4×9= 8×60=
24÷6= 8÷2= 12÷3=
42÷6= 90÷3= 3000÷5=
有80面彩旗,每班分20面,可以分给几个班?
(1)提出问题,寻找解决问题的方法。
师:怎样算80÷20呢,请同学们先自己想一想、算一算,再说给同桌听一听。
学生汇报:
预设学生可能会有以下两种口算方法:
B.因为8÷2=4, 所以80÷20=4 这是根据计数单位的组成
为什么可以不看这个“0”? ( 80÷20可以想“8个十里面有几个二十?”)
这样我们就把除数是整十数的转化为我们已经学过的表内除法。
(4)师小结:
同学们有的用乘法算除法的,也有用表内除法来想的,都很好,那么你喜欢哪种方法呢?
师:你能知道题目要求我们做什么吗?你怎么知道的?你是怎样计算的?和同学们交流一下。
生:求83除以20、80除以19大约得多少,从题目中的约等号看出不用精确计算。
预设:83接近于80,80除以20等于 4,所以83除以20约等于4。
19接近于20,80除以20等于 4,所以80除以19约等于4。
(3)你是怎么这样快就算出的呢?
A.因为15÷5=3,所以150÷50=3。
B.因为3个50是150,所以150÷50=3。
这一题跟刚才分彩旗的口算方法有不同吗?
都是运用想乘算除和表内除法这两种方法来口算的。
师:在解决分彩旗和刚才的问题中,我们共同探讨了除法的口算方法,(板题:口算除法)口算时,可以用自己喜欢的方法来口算。
口算练习:150÷30 240÷80 300÷50 540÷90
你能估吗?请先估算,再把你的估算方法与同伴交流,看看能否互相借鉴。
(2)谁想把你的方法跟大家说一说。
(4)判断估算是否正确:122÷60=2 349÷50≈8 为什么不正确?
观察每道题,怎样很快说出下面除法算式的商?
如果估算的话把谁估成多少。
2.算一算、说一说。
(1)除数不变,被除数乘几,商也乘几。
(2)被除数不变,除数乘几,商反而除以几。
(1)一共要寄240本书,每包40本。要捆多少包?
你能找到什么条件、问题。你会解决吗?
(2)这个小朋友也是一个爱看书的好孩子,她在看一本故事书。
问:要求看完这本书大约需要几个月?必须要知道哪些条件,你会求吗?
这节课你有什么收获?还有什么问题?
本节课学习了整十数除整十数、几百几十数(商一位数)的口算方法,能正确地进行计算。
有80面彩旗,每班分20面,可以分给几个班?
80÷20=
人教版七年级数学上册课件(篇8)
教学内容:
人教版小学数学教材六年级下册第107~108页例2及相关练习。
教学目标:
1.在学习过程中引导学生探索研究数与形之间的联系,寻找规律,发现规律,学会利用图形来解决一些有关数的问题。
2.让学生经历猜想与验证的过程,体会和掌握数形结合、归纳推理、极限等基本数学思想。
重点难点:
探索数与形之间的联系,寻找规律,并利用图形来解决有关数的问题。
教学准备:
教学课件。
教学过程:
一、直接导入,揭示课题
同学们,上节课我们探究了图形中隐藏的数的规律,今天我们继续研究有关数与图形之间的联系。(板书课题:数与形)
【设计意图】直奔主题,简洁明了,有利于学生清楚本节课学习的内容和方向。
二、探索发现,学习新知
(一)教师与学生比赛算题
1.教师:你知道等于多少吗?(学生:)
教师:那等于多少呢?(学生计算需要时间)教师紧接着说:我已经算好了,是,不信你算算。
2.只要按照这个分子是1,分母依次扩大2倍的规律写下去,不管有多少个分数相加,我都能立马算出结果。有的同学不相信是吗?咱们试试就知道。为了方便,我请我们班计算最快的同学跟我一起算,看看结果是否相同。谁来出题?
在学生出题后,老师都能立刻算出结果,并且是正确的,学生感到很惊奇。
3.知道我为什么算得那么快吗?因为我有一件神秘的法宝,你们也想知道吗?
【设计意图】一方面,教师通过与学生比赛计算速度,且每次老师胜利,使学生产生好奇心,再通过教师幽默的语言,吸引学生的注意力,激发学生的学习兴趣和求知欲。另一方面,为接下来学习例题做好铺垫。
(二)借助正方形探究计算方法
1.这件法宝就是(师边说边课件出示一个正方形),让我们来把它变一变,聪明的同学们一定能看明白是怎么回事了。
2.进行演示讲解。
(1)演示:用一个正方形表示“1”,先取它的一半就是正方形的(涂红),再剩下部分的一半就是正方形的(涂黄)。
想一想:正方形中表示的涂色部分与空白部分和整个正方形之间有什么关系呢?(涂色部分等于“1”减去空白部分)空白部分占正方形的几分之几?()那么涂色部分还可以怎么算呢?(),也就是说。
(2)继续演示,谁知道除了通分,还可以怎么算?
根据学生回答,板书。
(3)演示:那么计算就可以得到?()。
3.看到这儿,你发现什么规律了吗?
4.小结:按照这样的规律往下加,不管加到几分之一,只要用1减去这个几分之一就可以得到答案了。
5.这个法宝怎么样?谁来说说它好在哪里?你学会了吗?
6.尝试练习
【设计意图】将复杂的数量运算转化为简单的图形面积计算,转繁为简,转难为易,引导学生探索数与图形的联系,让学生体会到数形结合、归纳推理的数学思想方法。
(三)知识提升,探索发现
1.感受极限。
(1)刚才我们已经从一直加到了,如果我继续加,加到,得数等于?()再接着加,一直加到,得数等于?()随着不断继续加,你发现得数越来越?(大)无数个这样的数相加,和会是多少呢?
(2)这时候你心中有没有一个大胆的猜想?(学生猜想:这样一直加下去,得数会不会就等于1了。)
(3)想象一下,如果我们在刚才加的过程中在正方形上不断涂色,那空白部分的面积就越来越?(小)而涂色部分的面积越来越接近?(1)也就是求和的得数越来越接近?(1)最终得数是1吗?你有什么方法来证明得数就是1?
(学情预设:学生提出书本的圆形图和线段图,若没有学生提出,教师自己提出。)
2.利用线段图直观感受相加之和等于“1”。
(1)书本上有两幅图,我们一起来看看(课件出示)。一幅是圆形图,一幅是线段图,你能看懂它的意思吗?请你想一想,然后告诉大家你的想法。
(2)学生看书思考。
(3)全班交流,课件演示,得出结论:这些分数不断加下去,总和就是1。
【设计意图】利用数与形的结合,让学生直观体会极限数学思想,并让学生经历猜想得数等于“1”,到数形结合证明得数等于“1”的过程,激发学生学习兴趣,培养学生探索新知的精神。
3.课堂小结。
对于这种借用图形来帮助我们解决问题的方法,你有什么感受?
教师小结:是的,“数”与“形”有着紧密的联系,在一定条件下可以相互转化。当用数形结合的方法解决问题时,你会发现许多难题的解决变得很简单。
4.举一反三。
其实在以前的学习中,我们也常用到数形结合的数学方法帮助我们解题,你能想到些例子吗?(如学生有困难,教师举例:一年级加法,分数的认识,复杂的路程问题线段图等。)
【设计意图】让学生体会“数形结合”是数学学习中常用的方法。
三、练习巩固
1.基础练习。
(1)学生独立计算。
(2)全班交流反馈。
【设计意图】通过练习,回顾新知,巩固新知,使学生对新知识掌握得更扎实。
2.小林、小强、小芳、小兵和小刚5人进行象棋比赛,每2人之间都要下一盘。小林已经下了4盘,小强下了3盘,小芳下了2盘,小兵下了1盘。请问:小刚一共下了几盘?分别和谁下的?
解决问题
(1)全班读题,学生独立思考。
(2)指名回答。
(3)根据学生回答情况,连线(课件演示)。
(4)结合连线图得出:小刚一共下了2盘,分别和小林、小强下的。
【设计意图】让学生进一步体会数形结合的直观性和变难为易的特点。
四、课堂总结
快下课了,请你来说说这节课有什么收获?
课后反思:
图形的直观形象的特点,决定了化数为形往往能达到以简驭繁的目的,例2中,用举例的方法求出等比数列的有限和,都不能证明无限多项相加结果为1,但是接近 1,但这个无限接近于1的数是多少呢?电子白板呈现出圆形模型和线段模型来表示“1”,使学生结合分数意义,在圆上和线段上分别有规律地表示这些加数,当这个过程无止境地持续下去时,所有的扇形和线段就会把整个圆和整条线段占满,即和为“1”,用画图的方法来表示计算过程和结果,让学生感受到什么叫无限接近,什么叫直观形象,同时,一个极其抽象的极限问题,变得十分直观和便捷。
人教版七年级数学上册课件(篇9)
1.经历观察、操作、想像、推理、交流等活动,进一步发展推理能力和有条理表达能力.
学习重难点:探索并掌握直线平行的条件是本课的重点也是难点.
1.两条直线被第三条直线所截,如果同位角相等,那么内错角也相等.( )
2.两条直线被第三条直线所截,如果内错角互补,那么同旁内角相等.( )
2、填空1.如图1,如果∠3=∠7,或______,那么______,理由是__________;如果∠5=∠3,或笔________,那么________, 理由是______________; 如果∠2+ ∠5= ______ 或者_______,那么a∥b,理由是__________.
2.如图2,若∠2=∠6,则______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.
A.AB∥EF,CD∥EF B.∠5=∠A; C.∠ABC+∠BCD=180° D.∠2=∠3
A.由∠1=∠6,得AB∥FG;
C.由∠1+∠2+∠3+∠5=180°,得CE∥FI;
四、已知直线a、b被直线c所截,且∠1+∠2=180°,试判断直线a、b的位置关系,并说明理由.
五、作业课本15页-16页练习的1、2、3、
间观念,推理能力和有条理表达能力.
毛2.分析题意说理过程,能灵活地选用直线平行的方法进行说理.
学习难点:选取适当判定直线平行的方法进行说理是重点也是难点.
平行线的判定方法有几种?分别是什么?
二.巩固练习:
1.如图2,若∠2=∠6,则______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.
2.如图,一个合格的变形管道ABCD需要AB边与CD边平行,若一个拐角∠ABC=72°,则另一个拐角∠BCD=_______时,这个管道符合要求.
2.如图,直线AB、CD被直线EF所截,使∠1=∠2≠90°,则( )
三、解答题.
1.你能用一张不规则的纸(比如,如图1所示的四边形的纸)折出两条平行的直线吗?与同伴说说你的折法.
2.已知,如图2,点B在AC上,BD⊥BE,∠1+∠C=90°,问射线CF与BD平行吗?试用两种方法说明理由.
人教版七年级数学上册课件(篇10)
1.通过类比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0),分清二次项及其系数、一次项及其系数与常数项等概念.
2.了解一元二次方程的解的概念,会检验一个数是不是一元二次方程的解.
通过类比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0)和一元二次方程的解等概念,并能用这些概念解决简单问题.
一元二次方程及其二次项系数、一次项系数和常数项的识别.
1.什么是方程?你能举一个方程的例子吗?
2.下列哪些方程是一元一次方程?并给出一元一次方程的概念和一般形式.
(1)2x-1 (2)mx+n=0 (3)1x+1=0 (4)x2=1
3.下列哪个实数是方程2x-1=3的解?并给出方程的解的概念.
根据题意列方程.
1.教材第2页 问题1.
提出问题:
(1)正方形的大小由什么量决定?本题应该设哪个量为未知数?
(2)本题中有什么数量关系?能利用这个数量关系列方程吗?怎么列方程?
(3)这个方程能整理为比较简单的形式吗?请说出整理之后的方程.
2.教材第2页 问题2.
提出问题:
(1)本题中有哪些量?由这些量可以得到什么?
(2)比赛队伍的数量与比赛的场次有什么关系?如果有5个队参赛,每个队比赛几场?一共有20场比赛吗?如果不是20场比赛,那么究竟比赛多少场?
(3)如果有x个队参赛,一共比赛多少场呢?
3.一个数比另一个数大3,且两个数之积为0,求这两个数.
提出问题:
本题需要设两个未知数吗?如果可以设一个未知数,那么方程应该怎么列?
4.一个正方形的面积的2倍等于25,这个正方形的边长是多少?
提出问题:
(1)上述方程与一元一次方程有什么相同点和不同点?
(2)类比一元一次方程,我们可以给这一类方程取一个什么名字?
(3)归纳一元二次方程的概念.
1.一元二次方程:只含有________个未知数,并且未知数的次数是________,这样的________方程,叫做一元二次方程.
2.一元二次方程的一般形式是ax2+bx+c=0(a≠0),其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.
提出问题:
(1)一元二次方程的一般形式有什么特点?等号的左、右分别是什么?
(2)为什么要限制a≠0,b,c可以为0吗?
(3)2x2-x+1=0的一次项系数是1吗?为什么?
3.一元二次方程的解(根):使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解(根).
例1 在下列方程中,属于一元二次方程的是________.
(1)4x2=81;(2)2x2-1=3y;(3)1x2+1x=2;
(4)2x2-2x(x+7)=0.
总结:判断一个方程是否是一元二次方程的依据:(1)整式方程;(2)只含有一个未知数;(3)含有未知数的项的次数是2.注意有些方程化简前含有二次项,但是化简后二次项系数为0,这样的方程不是一元二次方程.
例2 教材第3页 例题.
总结:判断一个数是否为方程的解,可以将这个数代入方程,判断方程左、右两边的值是否相等.
练习:
1.若(a-1)x2+3ax-1=0是关于x的一元二次方程,那么a的取值范围是________.
2.将下列一元二次方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项.
(1)4x2=81;(2)(3x-2)(x+1)=8x-3.
3.教材第4页 练习第2题.
4.若-4是关于x的一元二次方程2x2+7x-k=0的一个根,则k的值为________.
我们学习了一元二次方程的哪些知识?一元二次方程的一般形式是什么?一般形式中有什么限制?你能解一元二次方程吗?
理解一元二次方程“降次”——转化的数学思想,并能应用它解决一些具体问题.
提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=0型的一元二次方程.
运用开平方法解形如(x+m)2=n(n≥0)的方程,领会降次——转化的数学思想.
通过根据平方根的意义解形如x2=n的方程,将知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程.
(1)x2-8x+________=(x-________)2;(2)9x2+12x+________=(3x+________)2;(3)x2+px+________=(x+________)2.
解:根据完全平方公式可得:(1)16 4;(2)4 2;(3)(p2)2 p2.
问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程与一元一次方程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法?
上面我们已经讲了x2=9,根据平方根的意义,直接开平方得x=±3,如果x换元为2t+1,即(2t+1)2=9,能否也用直接开平方的方法求解呢?
老师点评:回答是肯定的,把2t+1变为上面的x,那么2t+1=±3
例1 解方程:(1)x2+4x+4=1 (2)x2+6x+9=2
分析:(1)x2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1.
例2 市政府计划2年内将人均住房面积由现在的10 m2提高到14.4 m2,求每年人均住房面积增长率.
分析:设每年人均住房面积增长率为x,一年后人均住房面积就应该是10+10x=10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x)2
因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去.
所以,每年人均住房面积增长率应为20%.
共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想称为“降次转化思想”.
本节课应掌握:由应用直接开平方法解形如x2=p(p≥0)的方程,那么x=±p转化为应用直接开平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±p,达到降次转化之目的.若p
理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题.
通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面两种形式的一元二次方程的解题步骤.
yjs21.cOm更多幼师资料编辑推荐
人教版六年级上册数学课件
我们为您特别准备的“人教版六年级上册数学课件”一定能满足您的需求。每位老师在上课前都会带上自己的教案课件,因此他们会认真规划每份教案课件的重点和难点。在教学过程中,可以利用教案课件来激发学生的兴趣。请您收藏此页以免遗忘!
人教版六年级上册数学课件 篇1
教学内容:
人教版六年级上册第四单元第一课时。
教学目标:
1、知识目标:使学生认识圆,知道圆的各部分名称。掌握圆的特征,理解直径与半径的关系。初步学会用圆规画圆。
2、技能目标:让学生从生活中认识圆,借助动手操作活动,发现规律,培养学生的观察、分析、抽象、概括等思维能力和初步的空间观念。
3、情感目标:通过操作、研讨,培养学生独立探索能力和创新、合作的意识。
教学重点:
掌握圆的基本特征,理解直径与半径的关系。
学具准备:
圆的实物、剪好的圆片、圆规、直尺
教具准备:
细线、图钉、剪好的圆片、三角板
教学过程:
一、悬念产生好奇,好奇带入新课
(一)设置悬念
师:同学们,你们知道吗?(课件展示、图文并茂)
1、车轮为什么都是圆形的?
2、篮球场的中间为什么要设计成圆形呢?
3、枪口、炮口为什么都是圆形的?
师:同学们,这些问题你们暂时还不必回答,但老师还有一个问题需要马上回答,这三个问题都与什么有关?
(当学生回答是“圆”时,教师板书课题)
师:当同学们通过这堂课的学习,对圆有一定认识后,你们再回答这三个问题,相信你们的答案会更完整、更圆满。(在黑板的一侧板书:圆满)
[设计意图]不拘泥于教材内容,从学生年龄和心理特征出发,用心扑捉圆在生活中、自然中的原型,巧妙地创设了“三个问题”情境,引发学生的好奇心,从而使他们带着一种“打破沙锅问到底”的向往与追求的意向,以的状态进入学习角色。同时,在“暂时还不回答”的关子下,把“三个问题”集中在“圆”上,旗帜鲜明地拉开了这节课的序幕,这一导课不仅意味深长,激发了学生的学习兴趣,并开始不知不觉地渗透了“圆的文化特征”意识,可谓是一举两得。
二、在猜想中探究,在探究中感悟
(一)生活中的圆
师:生活中你们见到哪些物体是圆形的?
(学生回答时,教师可要求学生将已准备的实物举起展示)
(二)运动中的圆
师:你们都是生活中的有心人。那么下面的情况可能会出现怎样的现象呢? (课件展示)
1、一粒石子抛入平静的水面时
2、电风扇的扇叶转动时
(三)探究圆的形成
一根细线,用图钉固定一端,另一端绑着一支粉笔旋转一周。
1、师:接下来做个小实验,老师用图钉固定线的一端,将细线拉直,绑有粉笔的一端旋转一周,会出现什么现象?
师:松开细线的这头,粉笔还能转圈吗?(孕伏“定点”意识),图钉按住起什么作用?
2、师:刚才老师是怎样操作画出一个圆的?
学生交流
师:图钉按住的一端(不动),带粉笔的一端我们把它看作一个点,这个点是(运动的),怎么运动的?
师:(把线拉直)这样运动时动点就与固定的这点距离(保持不变)。粉笔在这个运动轨道上旋转一周就得到了一个(圆)。
3、师:如果把细线放长,粉笔继续旋转一圈,发生了什么变化?看来这细线的长短可以确定(所画圆的大小)
(孕伏“定长”意识)
[设计意图]以上三个教学环节,以“感知—想象—发现”为线索,逐步推进,串成学生探究“圆的形成”这一过程。感知是认识世界的开始,是思维、想象等一切心理活动的基础。通过“生活中的哪些物体是圆形的”举例,既激活了学生已有的经验,同时为过度到想象提供了丰富的表象,这样想象力也就引向了更成熟的高度。最后用他们的想象力猜测、感悟“圆的形成”两大核心要素圆心和半径,从而为后面的“圆”的本质认识打下了扎实的基础。
(四)从画圆中认识圆
1、通过回想前面的游戏,让学生在感悟“圆的形成”过程中思考:你会画圆吗?
2、学生尝试画圆(教师巡视,收集学生不圆的和圆的作品。)
3、投影展示学生作品、学生互相交流
(投影展示“不圆”的作品)
师:请你评价下这幅作品?
你想提点什么建议?
师顺着学生的阐述引出“定点”、“定长”。
(让学生自己“由误到悟”,在交流、切磋中对“画圆时要注意什么”印象深刻)
(投影展示“圆”的作品)
师:请欣赏这幅作品是怎样被圆规创造出来的?
两个学生介绍如何画圆,师追问“画的圆为什么有大有小?”
随着学生反馈画圆的三个步骤,教师同时用课件演示圆规画圆。
4、板书: 定点、定长、旋转一周。
定点确定圆的位置,定长确定圆的大小
5、如何在篮球场上画圆?
师:我们会在纸上画圆了,其实生活中还有很多地方需要画圆。例如:要在篮球场上画一个很大很大的圆,你准备怎样做?与小组里的同学说一说你的想法。
学生反馈、相互交流补充。
[设计意图] “画圆”的环节,不仅仅只是学生掌握画圆的技巧、学会用圆规画圆的过程,更重要的是继前三个环节后,进一步提升学生对圆的初步认识,由表象逐步向抽象转化的过程。在这里教师还十分关注学生情绪,尊重学生意愿,在学生跃跃欲试时,采用先让学生尝试画圆,并利用可能“出现的问题”,揭示圆的画法、“圆的位置”和“圆的大小”等深层次问题,这是数学课堂教学的一种自然本色。数学来源于生活、用于生活,画圆后教师提出了一个开放性的问题:如何在篮球场上画圆?让学生从“纸上谈兵”,过渡到解决现实情境问题,与“探究圆的形成”有个呼应。
(五)解读圆的概念
师:刚才我们用圆规画圆、用绳子画圆,工具不一样,画出来的却都是圆,这是为什么?
生1:原理都一样
生2:都是按三步骤来画的
师小结:画圆时都有两个点,一个点是固定的,一个点是运动的,两个点之间的距离保持不变,,动点在这个运动轨道上旋转一周,得到的图形就是(圆)。 所以,圆就是由无数个点连成的一条什么线?(曲线、封闭的曲线)
(课件演示)
(六)认识圆的各部分名称及其特征
1、师:有关圆你还了解哪些知识?
教师将“圆心o”“ 半径r”“直径d”写在3张卡片上,请学生一一贴在黑板上圆的有关之处。
师:谁能在黑板上的圆中将它们画出来并贴好。(3个学生依次上台)
2、直接揭示圆心的概念
3、半径
师:像这样的半径,你会画吗?
学生动手画半径
师:你是怎样画的?
(注意引导学生阐述“从哪里出发画到哪里”)
师:什么样的线段叫半径? 揭示半径的概念。
(板:半径r)
师:在同一个圆里,像这样的半径还能画吗?有多少条?为什么有无数条?
生:圆上有无数个点。
师:那它们的长度都有怎样的关系呢?谁来说说你的想法?
4、直径
师:直径你会画吗?在你的圆片上画出直径。
师:你是怎样画的? 那什么样的线段叫直径呢?
你们和数学家们总结差不多呢!翻到56页,全班齐读。
(板:直径d)
师:在同一个圆里,直径有多少条?
师:那它们的长度都有怎样的关系呢?谁来说说你的想法?
(板书:无数条 长度都相等)
5、师:其实早在2500多年前,我国伟大的教育家、科学家就曾提出有关圆的概述 (课件出示)
师:一中的“中”指的是?那“同长”的意思是?
6、判断:以下圆内哪些线段是半径,哪些线段是直径?
7、半径与直径的关系
①师:你会怎样去验证你的想法?
在小组里商量一下,再派代表反馈。
课件验证:在同一个圆里,直径长度是半径的2倍,半径是直径的1/2。 d=2r r=1/2d
②制造冲突(展示学生事先剪的一大一小的两个圆)
疑问:在这两个圆中,半径、直径二者还存在以上的关系吗?
(板书:在同一个圆里)
[设计意图]探究圆的特征是本节课的重点,又是难点。怎么有个突破,使学生能轻松地接受,本环节是采用“画”、“量”、“折”,让学生动手操作、自主探究的方法。“画”是发现,是印证;“量”是验证、确认。这一为学生搭建的自主探究学习的平台,既能使学生学得生动活泼,积极参与,而且将对所学的知识理解得更深刻,记忆得更牢固,也正好印证了“儿童的智慧出在他们手尖上”这句话。
三、运用知识,拓展思维
(一)小裁判
1、两端都在圆上的线段叫做直径。( )
2、半径2厘米的圆比半径1厘米的圆大。( )
3、圆的直径都相等。 ( )
4、在同一个圆里,圆心到圆上任意一点的距离都相等。 ( )
(二)你能帮忙找到这个圆的圆心吗?
[设计意图]由于本节课是属概念教学课,作为反馈练习,仅设计了两大题。通过这两大题训练以检查学生对概念理解的情况,并解决学生容易混淆或出错的问题。
四、解释自然中圆,欣赏人文中圆
(一)解释自然中圆
师:课的一开始,我们还留下三个问题(课件重返“三个问题”):由于时间关系,我们现在集中解决第一个问题好吗?
1、分组讨论:车轮为什么都是圆形的?
2、小组派代表汇报(教师根据学生的汇报,利用课件演示下面两个主要因素)
①平稳(因为车轴在车轮圆心上,同圆半径都相等,确定了车与地面距离不变,所以平稳)
②车速快(车轮接触地面只是一个点,摩擦力小,车速就快了。)
[设计意图]这是一道引导学生用所学知识解决实际问题的训练题,以小组合作、同学互助,共同讨论为主要解题形式,以帮助学生综合运用知识、提高技能,培养学生不断探索、不断发现的精神,增强互助合作、敢于创新为目标。同时,本练习起到了“前后呼应”之教学艺术功能,成了学生善于动脑、勇于解题的动力,使学生在成功解答后有一种满足感,以进一步激发他们的求知欲。
(二)欣赏人文中圆
1、引言:同学们,世界是美妙的、神奇的,有了圆更增添了她的梦幻般的色彩。请欣赏
2、课件演示:(配乐)
摩天轮、花丛中肆意绽放的鲜花、中国传统的圆形剪纸、陶瓷艺术、圆形建筑、2008年奥运奖牌、神秘的阴阳太极图……
还有古老的东方,中国人特别重视中秋、除夕、元宵等佳节,月下尝饼、桌上汤圆…这就意味着团圆、圆满;大陆同胞送给台湾同胞的团团、圆圆两只熊猫,不也就是盼望祖国早日统一,海峡两岸同胞早日团圆吗?
圆,在我们身上遗留下的印痕是多么深刻而广远。圆,是和谐的象征,是幸福的感受!
同学们,在这优美的旋律中,我们这堂课也接近尾声了。这节课愉快吗?你觉得这节课上得圆满吗?
[设计意图]教学本质是一种文化。我们有理由向学生传递教学本身的内涵和鲜活的文化背景,引领他们通过学习感受数学文化的博大精深,努力使数学所具有的文化特征浸润于学生心间,成为学生数学成长的不竭动力源泉,让数学课堂摆脱原有习惯思维与阴影,真正美丽起来。为此,设计“欣赏人文中的圆”这一环节,就是引发学生领略“圆”的神奇魅力及其背后所蕴含的人文的、文化的特征,拓宽学生对“圆”的认识视域。同时,让学生真切地感受中国人对“圆”的特殊情感,激发他们爱祖国、爱学习的热情,为进一步学好“圆”打下坚实的基础。
人教版六年级上册数学课件 篇2
一、填一填。
1、今有鸡兔共35只,脚共有94只,鸡( )只,兔( )只。
2、有龟和鹤共30只,龟的腿和鹤的腿共有82条。龟只、鹤()只。
3、停车场有三轮车和小轿车共7辆,总共有25个轮子。三轮车有( )辆,小轿车有( )辆。
4、2元和5元的人民币共9张,合计33元。2元有( )张,5元有( )张。
5、28名师生去公园划船,恰好坐满了大、小船共5只。大船每只坐6人,小船每只坐4人,租了( )只小船和租了( )只大船。
6、松鼠妈妈采松子,晴天每天采20个,雨天每天可采12个,它一连采了112个,平均每天采14个,这几天中有( )天是雨天。
7、一个工人要将63个零件装进两种盒子里,每只大盒子装12个零件,每只小盒子装5 个零件,需要准备4个大盒子和( )个小盒子才能把这些零件装下去。
8、口袋里有1个黄球、2个白球、3个绿球和4个红球,这些球的大小相同,从中任意 摸一个球,摸到黄球的可能性是( ),摸到白球的可能性是( ),摸到绿球的可能性是( ),摸到( )球的'可能性最大。
二、选一选。
1、学校买回4个篮球和5个排球一共用185元,一个篮球比一个排球贵8元,篮球的单价是( )元。
2、钢笔每支12元,圆珠笔每支7元,共买了6支,用了52元,钢笔买了( )支。
3、两个大人带几个小孩去公园游玩,大人门票每人5元,小孩门票每人3元,买门票一共花了22元,则这两个大人带了( )个小孩。
4、甲级铅笔5角钱一枝,乙级铅笔7角钱一枝,用7.5元可买这两种铅笔各( )枝。
5、面粉每千克5元,大米每千克3元。王叔买面粉和大米共150千克,共付人民币650元,面粉买( )千克。
6、幼儿园买来20张小桌和30张小凳共用去1860元,已知每张小桌比小凳贵8元,问小凳的价格是()?
三、算一算。
1、直接写得数对又快。
537-299=
2.7×10%=
0.25×1.2×0.4=
121×98=
0.9+99×0.9=
四、做一做。
1、商店里蓝球的单价是42元、足球的单价是35,李老师为学校买篮球和足球共6个花了231元,篮球和足球各买了多少个?
2、 12张乒乓球台上共有34人在打球,问:正在进行单打和双打的台子各有几张?
3、鸡兔同笼不知数,三十六头笼中露。数清脚共五十双,各有多少鸡和兔?
4、体育课上,跳绳的每5人一组,扔沙包的每3人一组,共有42名学生分成10组参加活动。参加跳绳和扔沙包的各有多少人?(用列方程的方法解答)
5、数学竞赛共20道选择题,答对1题得5分,答错或不答倒扣1分。小王同学在竞赛中得了82分,他答对多少道题?
6、小强有三角形、长方形的卡片共40张,这些卡片共有145个角,两种卡片各有多少张?
7、现有大小油桶50个,每个大桶可装油4千克,每个小桶可装油2千克,大桶比小桶共多装油20千克,问大小桶各多少个? (用假设法解答)
8、搬运1000只玻璃瓶,规定搬一只可得搬运费3角,但打碎一只要赔5角.如果运完以后共得到运费260元,问搬运中打碎了多少只玻璃瓶?
人教版六年级上册数学课件 篇3
1、教学内容:人教版六年级上册第69页的例题2.
2、教材所处地位
圆环的面积这部分的内容是在学生掌握了圆的面积计算的基础上进行教学的。是为了日常生活中解决一些实际问题做准备。教材第69页例2是求圆环的面积。教材通过插图帮助学生理解求圆环面积是利用外圆面积减去内圆面积的面积。
3、教学目标:
(1)、认识圆环的特征,掌握圆环面积的计算方法,合理地进行计算。
(2)、培养和发展学生的逻辑推理和概括的能力,运用所学的知识解决简单的实际问题。
4、教学重点:圆环面积公式的推导。
5、教学难点:圆环面积公式的应用。
二、说教法
1、讲解法2、讨论法
三、说学法
通过本节课的教学,要使学生掌握一些基本学法:1、教学中重视学生的思维过程的教学,培养逻辑能力。2、通过指导看书,培养学生自学能力。
四、说教学程序
(一)复习,为新课做准备
1、口算:
32 42 52 82 92 202
26 10 7 5
2、思考:
(1)圆的周长和面积分别怎样计算?二者有何区别?
(2)求圆的面积需要知道什么条件?
这部分知识在本单元学过,学生虽然不感到陌生,但也可能出现回生或遗忘。这样通过复习提问,从而唤起学生的回忆,也为下面的新课打下基础。
(二)谈话导入新课
刚才我们复习了圆的面积计算,这节课我们学习圆的环形面积。板书课题:圆环的面积。
(三)新授
教学例子,讲清算理和方法。
1、教学例2: 光盘的银色部分是个圆环,内圆半径是2cm,外圆半径是6cm。它的面积是多少?
已知:R=6厘米 r=2厘米 求: s=?
3.1462 3.1422
=3.1436 =3.144
=113.04(平方厘米) =12.56(平方厘米)
113.04-12.56=100.48 (平方厘米)
第二种解法:3.14(62-22)=100.48(平方厘米)
教学此例时,教师可以根据题意准备实物或教具(一个圆中间可以取出一个同圆心的小圆),通过演示,使学生明确,求圆环的面积就是用外圆的面积减去内圆的面积。如果是分步计算,先分别求出大圆面积和小圆面积,再求出圆环的面积。当要求列综合算式时,学生可能会列出教材上所给的两种方法,教师可以让学生说一说两种解法有什么不同,两者之间可以通过什么运算定律互相转化,引导学生在计算圆环的面积时,尽量使用简便算法,可以减少计算量。
2、小结:环形的面积计算公式:
S=R2- 或 S=(R2-r2)
3、完成做一做: 一个圆形环岛的直径是50m,中间是一个直径为10m的圆形花坛,其他地方是草坪。草坪的占地面积是多少?
(四)巩固练习。
巩固新知是课堂教学中不可缺少的过程,这一阶段是学生巩固知识、形成技能、技巧,发展智力的重要阶段。因此,我们要加强训练适当练习,确保学习效果。
1、学校有个圆形花坛,周长是18.84米,花坛的面积是多少?
选择正确算式
A、(18.843.142)23.14
B、(18.843.14)23.14
C、18.8423.14
2、环形铁片,外圈直径20分米,内圆半径7分米,环形铁片的面积是多少?
3、课堂小结。
(1)这节课的学习内容是什么?
(2)求圆的面积时题中给出的已知条件有几种情况?怎样求出圆面积?
已知半径求面积 S=r2
已知直径求面积 S=( )2
已知周长求面积 S=( )2
(3)环形面积: S=(R2-r2)
通过以上练习,使学生进一步掌握圆环面积的求法,同时也便于检查教学效果。
(五)全课总结
这节课我们学习了什么内容?谈谈你有什么收获?
(六)布置作业
课本P70第4、6、7题。
板书设计:
圆环的面积
例2: 光盘的银色部分是个圆环,内圆半径是2cm,外圆半径是6cm。它的面积是多少?
已知:R=6厘米 r=2厘米 求: s=?
3.1462 3.1422
=3.1436 =3.144
=113.04(平方厘米) =12.56(平方厘米)
113.04-12.56=100.48 (平方厘米)
第二种解法:3.14(62-22)=100.48(平方厘米)
小结:环形的面积计算公式:
S=R2- 或 S=(R2-r2)
人教版六年级上册数学课件 篇4
教学目标:
1、理解比的意义,学会比的读写法,掌握比的各部分名称及求比值的方法。
2、弄清比与除法、分数的联系,明确比的后项不能为0的道理,同时懂得事物之间是相互联系的。
3、通过主动发现的讨论式学习,激发合作意识,培养比较、分析、抽象、概括和自主学习的能力,培养爱国主义情感。
教学重点:
比的意义
教学准备:
多媒体课件、三支红粉笔、五支白粉笔
教学流程:
一、创设情境,理解意义
1、师:同学们,我们刚刚过完国庆节,你知道今年10月1日是祖国几周岁的生日吗?56年前的10月1日,五星红旗第一次在天安门广场上冉冉升起,让每一位中国人为之自豪。但你们知道吗,我们的国旗中还隐藏着很多有趣的数学问题呢!
出示出一面国旗:
2、判断:小强身高1米,他的爸爸身高173厘米,小强和爸爸身高比是1∶173。
明确:同类量相比单位名称要相同。
二、总结全课,拓展延伸
1、去年奥运会中国女排在首场比赛中以3∶0击败了美国队,打出了我国的女排风采。这里的3∶0表示什么意思?它和我们今天学习的比相同吗?为什么?
强调:这里的3∶0是表示两个队各赢了几局,不是相除关系,而今天学的比是指两个数的相除关系。
2、通过今天的学习,你有什么收获?
3、你知道吗?公元4世纪希腊数学家欧多克斯,利用线段找到了世界上最美丽的几何比——黄金分割,它的比值大约是0.618,比大约为2∶3。
介绍:黄金割应用非常广泛,国旗的宽与长的比是2比3,接近黄金分割,现在你们知道五星红旗为什么这么美观了吧!
生活中还有很多地方用到黄金分割:
T型台上选模特也要求模特的身长与腿长的比符合黄金分割。
理发师也将黄金分割运用到发型设计中去。
……
课后同学们还可以去调查。
人教版六年级上册数学课件 篇5
本节课是人教版六年制小学数学第十一册第五单元百分数中的内容,是在学生理解了百分数的的意义和写法,掌握了百分数和小数的互化的基础上学习的。
学情分析:根据教材特点,我也对学生做出了以下分析
学生的基础知识掌握情况还可以,同学之间的相互质疑,解疑的能力有一定的水平。但学生在分析信息、处理信息的能力较薄弱,学生从数学的角度提出问题、理解问题和解决问题的能力不强。
根据数学课程标准与本课教材特点以及学生学情和设计理念,结合学生实际情况制定以下教学目标。
1、结合学生的生活实际,通过观察、计算,主动探索的活动,认识利率,初步掌握利率计算及作用。进一步提高学生运用百分数解决实际问题的能力。
2、结合储蓄等活动,学习合理理财,逐步养成不乱花钱的好习惯。
教学重、难点:
进一步提高学生运用百分数解决实际问题的能力,体会数学与日常生活的密切联系。
我试图引导学生通过以下的学习方法掌握新知:
1、自主探究法,让学生利用已有的知识经验自主探究解决问题的方法。
2、抽象概括法,让学生通过抽象,概括出解决此类问题的一般方法。
3、互助学习法,在互助合作中体验成功的愉悦。
根据本节课的知识结构及六年级学生的认知规律和发展水平,优化教学过程,实现“尊重学生,注重发展”的课堂教学要求,我设计了以下三个环节:一、情景导入;二、新课讲解;三、巩固练习。
具体教学过程如下:
1、情景导入。
随着改革开放,社会经济不断发展,人民收入增加,人们可以把暂时不用的钱存入银行,储蓄起来。这样一是支援国家建设,二是对个人也有好处,既安全和有计划,同时又得到利息,增加收入。那么,怎样计算利息呢?这就是我们今天要学的内容。
2、巩固练习
(1)介绍存款的种类、形式。
存款分为活期、整存整取和零存整取等方式。
(2)、阅读p99页的内容,自学讨论例题,理解本金、利息、税后利息和利率和含义。
(3)、学会填写存款凭条。
(4)、利息的计算。
3、巩固练习。
“数学源自生活而应用于生活”这句话充分说明了数学与生活的密切联系。下面,我继续沿着抗震救灾这一主线设置情境,安排了三个层次的练习。在练习的设计上,我兼顾了习题的层次性和开放性,使不同层次的学生都参与练习,以求训练思维、培养能力、形成技能。
1、小华把得到的200元压岁钱存入银行,整存整取一年。她准备到期后将钱全部取出捐给“希望工程”。如果按年利率2.25%计算,到期后小华可以捐给“希望工程”多少元钱?
2、李老师把20xx元钱存入银行,整存整取五年,年利率是3.60%,利息税率为20%。到期后,李老师的本金和利息共有多少元?李老师交了多少利息税?
3、小明的爸爸打算把5000元钱存入银行(三年后用)。他如何存取才能得到最多的利息?
人教版六年级上册数学课件 篇6
第一单元
分数乘法
第一课时
分数乘整数
教学内容:
教材第2页例1练习一1~3.
教学目标:
1、结合具体情境,借助示意图理解分数乘整数的意义,渗透数形结合思想。
2、借助转化的方法理解分数乘整数的算理,并能正确地进行计算,提高计算能力。
3、在探索与交流活动中培养观察、推理的能力。
教学重点:
理解他数乘整数的意义,掌握分数乘整数的计算方法。
教学难点:
理解分数乘整数的计算方法。
教学过程:
一、复习旧知,引出课题。
1、复习题。
(1)列式并根据题意说出算式中的两个乘数各表示什么。
5个12是多少?9个11是多少?8个6是多少?
提问:通过解决这三道整数乘法计算题,你有什么想说的吗?
(整数乘法是表示几个相同加数的和的简便运算)
(2)计算:
计算时向学生提问:这道题的什么特点?计算时把什么做分子?使学生看到三个加数都相同,计算时3个3连加的结果做分子,分母不变。
2、引出课题。
这题我们还可以怎么计算?今天我们就来学习分数乘法。
二、创设情境,探究分数乘整数
1、教学分数乘整数的意义。
出示例1,指名读题。小新、爸爸、妈妈一起吃一个蛋糕,每人吃个,3人一共吃多少个?
(1)分析演示
飦?题中的:鈥溞⌒隆职帧⒙杪枰黄鸪砸桓龅案猓咳顺?个鈥澮馑际裁矗浚咳顺粤苏龅案獾?)
飦?确定标准量(单位鈥?鈥潱┖捅冉狭俊C咳顺粤苏龅案獾?,是把整个蛋糕看作标准量(单位鈥?鈥潱话衙咳顺缘姆菔醋鞅冉狭俊?/p>
飦?借助示意图理解题意
根据题意列出加法算式++
(2)观察引导:这道题3个加数有什么特点?使学生看到3个加数的分数相同。
教师问:求三个相同分数的和怎样列式比较简便呢?引导学生列出乘法算式。教师板书:。再启发学生说出表示求3个相加的和。
(3)比较和12脳5两种算式异同
提示:从两算式表示的意义和两算式的特点进行比较。(让学生展开讨论)。
通过讨论使学生得出:相同点:两个算式表示的意义相同。
不同点:是分数乘整数,12脳5是整数乘整数。
(4)概括总结
教师明确:两个算式表示的意义相同,谁能用一句话概括出两算式的意义?(引导学生说出都是表示求几个相同加数的和。)
2、教学分数乘以整数的计算法则。
(1)推导算理:由分数乘整数的意义导入。
问:表示什么意义?引导学生说出表示求3个的和。板书:++。学生计算,教师板书:。提示:分子中3个2连加简便写法怎么写?学生答后板书:(块)教师说明:计算过程中间的加法算式部分是为了说明算理,计算时省略不写。(边说边加虚线)
(2)引导观察:的分子部分、分母与算式两个数有什么关系?(互相讨论)
观察结果:的分子部分2脳3就是算式中的分子2与整数3相乘,分母没有变。
(3)概括总结:请根据观察结果总结的计算方法。(互相讨论)
汇报结果:(多找几名学生汇报)使学生得出是用分数的分子2与整数3下乘的积作分子,分母不变。
根据的计算过程,明确指出:分子、分母能约分的要先约分,然后再乘。约分进约得的数要与原数上下对齐。然后让学生将按简便方法计算。
3、反馈练习:看图写算式:做一做、练习一第1题。
三、全课小结。
人教版六年级上册数学课件 篇7
教学目标:
1.使学生学会在具体情境中探索确定位置的方法,懂得能用数对表示物体的位置。
2.经历探索确定物体位置的方法的过程,让学生在学习的过程中发展空间观念。
3.使学生感受确定位置的丰富现实情景,体会数学的价值,产生对数学的亲切感。
教学重点:能用数对表示物体的位置。
教学难点:能用数对表示物体的位置,正确区分列和行的顺序。
教学准备:投影仪、本班学生座位图
教学过程:
一、复习旧知,初步感知
1、教师提问:同学们,你能介绍自己座位所处的位置吗?
学生介绍位置的方式可能有以下两种:
(1)用“第几组第几个”描述。
(2)用在我的“前面”、“后面”、“左面”、“右面”来描述。让学生先说说
2、我们全班有48名同学,但大部分的同学老师都不认识,如果我要请你们当中的某一位同学发言,你们能帮我想想要如何表示才能既简单又准确吗?
3、学生各抒己见,讨论出用“第几列第几行”的方法来表述。
二、新知探究
1、教学例1(出示本班学生座位图)
(1)如果老师用第二列第三行来表示同学的位置,那么你也能用这样的方法来表示自己的位置吗?
学生对照座位图初步感知,说出自己的位置。个别汇报,集体订正。
(2)学生练习用这样的方法来表示其他同学的位置。(注意强调先说列后说行)
(3)教学写法:同学的位置在第二列第三行,我们可以这样表示:(2,3)。按照这样的方法,你能写出自己所在的位置吗?(学生把自己的位置写在练习本上,指名回答)
2、小结例1:
(1)确定一个同学的位置,用了几个数据?(2个)
(2)我们习惯先说列,后说行,所以第一个数据表示列,第二个数据表示行。如果这两个数据的顺序不同,那么表示的位置也就不同。比较(2,3)与(3,2)的不同。
{在比较中发现不同之处,从而加深学生对数对的更深了解。}
3、 练习:
(1)教师念出班上某个同学的名字,同学们在练习本上写出他的准确位置。
(2)生活中还有哪里时候需要确定位置,说说它们确定位置的方法。
(电里的座位、地球仪上的经纬度、我国古代围棋等。)
{拓宽学生的视野,让学生体会数学在生活中的应用。}
三、当堂测评
教师课件出示,学生独立完成。小组内评比纠错。
{做到兵强兵、兵练兵。}
四、课堂总结
我们今天学了哪些内容?你觉得自己掌握的情况如何?还有什么不懂的?
{让学生说出,了解对知识的掌握情况。}
人教版六年级上册数学课件 篇8
一、教材
《画一画》这一内容是在学生学习了《变化的量》和《正比例》这两节内容以后安排的,学生已经结合大量的生活情境认识了生活中存在的许多相互依赖的变量,而且体会了这些变量之间的关系,认识了正比例及其意义,能初步判断两个相关联的两是不是成正比例,感受了正比例在生活中的应用,学生对正比例的认识有了一定的基础。教材安排这一内容,一是让学生进一步认识正比例,以及正比例中两个相关联的量之间的关系;二是通过让学生在方格纸上描出成正比例的量所对应的点并能在图中根据一个变量的值估计它所对应的变量的值,从而认识正比例图像的特点。主要意图是引导学生运用已有的知识,用图的形式去直观表示两个成正比例的量的变化关系,鼓励学生发现当两个变量成正比例关系时,所绘成的图像是一条直线,在此基础上,鼓励学生利用图,进行一些估计,解决一些问题,为以后进一步学习正比例函数打下一定的基础。
对于这一内容的设计,我结合实际主要确定了三个知识与技能的目标,即:1、在具体情景中,通过“画一画”的活动,初步认识正比例图像;2、会在方格纸上描出成正比例的量所对应的点,并能在图中根据一个变量的值估计它所对应的变量的值;3、利用正比例关系解决生活中的一些简单问题,提高学生观察与思考相结合的能力以及分析问题的能力。确定了两个情感目标,即:1、培养学生善于思考和积极参与的良好习惯;2、培养学生学习数学的兴趣。其中重难点目标是:1、会在方格纸上描出成正比例的量所对应的点,并能在图中根据一个变量的值估计它所对应的变量的值;2、利用正比例关系解决生活中的一些简单问题,提高学生观察与思考相结合的能力以及分析问题的能力。对于两个重难点目标,我将采取直观教学的形式(既PPT课件演示)和设计学生动手操作的练习题相结合,以此来分解难点,从而突破难点,化难为易。
二、教法
在教学中,我主要采用了直观教学法、启发式提问法、讲练结合法和激趣法。直观教学法就是利用PPT课件进行逐一演示,既演示解决问题的过程和方法,又演示解决问题的结果,使整个过程和方法都能清楚地展现在学生眼前,让学生更直观更形象地去感受和体验;启发式提问法能激起学生的学习兴趣,引导他们思考与交流如:横轴表示什么?纵轴表示什么?你发现了什么?;讲练结合法就是利用我设计的帮助学生进行探索和研究的练习题,让学生自己在练习题上进行动手操作,并在操作中独立思考,独立发现,把自己的发现写下来;激趣法就是在学生进行第一次研究得出结论后为了进一步验证结论,我提出了激励性的问题鼓励学生进行两次探索与研究,如:真的是这样吗?我们继续来研究和探索……这样能激起学生的探索欲望和求知欲望,让学生觉得学得轻松,我也教得轻松,也增强了学生学习数学的兴趣。
三、学法
在教学中,我主要以学生的动手活动和交流活动为主,即让学生在练习纸上动手画一画,连一连,写一写。通过学生自己描点连线,自己发现问题,得出结论,并写下来,然后在班上进行交流,学生很容易得出结论,在交流中让学生体验到成功的喜悦,既培养了学生的动手能力、操作能力和观察能力,又培养学生善于思考和积极参与的良好习惯,学生的自学能力也就提高了。
四、教学程序设计
对于教学过程,我主要设计了五个步骤:
1、温故而知新。
我设计了两道题,都是用PPT课件展示出来,一是什么是正比例的填空题,二是判断两个相关联的两个量是不是成正比例。两道题的设计是为了让学生进一步认识什么是相关联的量和正比例的意义,能正确判断两个相关联的量是不是成正比例,既是复习旧知,也是为下一步学习作准备。这一过程主要采取学生独立——汇报交流——师生评价的方式。
2、初探尝试,引入新课。
首先用PPT课件展示出来,这一内容是教材第22页的内容,通过填表、说一说、连线、交流、展示等来揭示本节课的学习主题,提出悬念,激起学生的学习兴趣和探索欲望。
3、探索与研究。
这是本节课的主要内容,我结合实际安排了两个探索内容,是为了让学生通过探索与研究能更准确地从活动中得出结论,更深刻的理解正比例图像的特点,同时也能根据正比例图像的特点更准确地进行描点、连线和估计。这一过程我主要采取了让学生动手画一画,连一连,写一写,说一说等方法让学生自己得出结论,同时利用PPT课件进行展示,加深学生的认识和理解,从而达到本节课的前两个教学目标。
4、反馈练习。
我安排了3道题,一题是判断是否成正比例,二题和三题是有关正比例图像的练习以及利用正比例图像和正比例关系解决生活中的一些问题,既加深了学生对正比例图像的理解,又能培养学生的解决问题的能力,使学生体会到数学与生活的联系。练习题在我设计的题单中,同时我也利用PPT课件进行逐一展示,这样既保证了教学内容的完成,又能提高教学效益,使本节课的第3个教学目标得以完成,充分突破重点和难点。
5、课堂总结。
这是作为新课必要的一个环节,通过学生自己总结和评价,既加深了学生对新知识的理解和消化,又让学生体验到学习数学的价值和兴趣
人教版六年级上册数学课件 篇9
一、教材分析:
“鸡兔同笼”问题是我国民间广为流传的数学趣题,它在培养学生逻辑推理能力的同时使学生体会代数方法的一般性。解决这类问题时,教材展示了学生逐步解决问题的过程。“假设法”有利于培养学生的逻辑推理能力,列方程则有助于学生体会代数方法的一般性。因此在解决“鸡兔同笼”问题时,学生选用哪种方法均可,不强求用某一种方法。
二、学情分析:
(1)“鸡兔同笼”问题是我国古代著名数学趣题,容易激发学生的探究兴趣。
(2)列方程解答此类问题数量关系直观易懂,要加以提倡。
(3)“假设法”对学生来说比较陌生,教学中要抓住其特点,讲解算理,让学生逐步掌握,根据具体问题引导学生分析理解,拓宽学生思维。
使学生了解“鸡兔同笼”问题的结构特点,掌握用列表法和假设法解决问题,初步形成解决此类问题的一般性策略。
通过自主探索,合作交流,让学生经历用不同的方法解决“鸡兔同笼”问题的过程,使学生体会解题策略的多样性,渗透化繁为简的'思想。
使学生感受古代数学问题的趣味性,体会到“鸡兔同笼”问题在生活中的广泛应用,提高学习数学的兴趣。
四、教学重点:
尝试用不同的方法解决“鸡兔同笼”问题,体会用假设法解决问题的优越性。
五、教学难点:
理解用假设法解决“鸡兔同笼”问题的算理。
1.同学们今天老师将和大家一起来学习一道我国古代非常有名的数学趣题,“今有雉兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”(PPT投影展示原题)这四句话是什么意思呢?
指生回答(笼子里有若干只鸡和兔,从上面数,有35个头;从下面数,有94只脚。鸡和兔各有几只?
2.有谁知道这类题我们把它叫做什么问题吗?(鸡兔同笼)板书。鸡兔同笼问题是我国古代三大趣题之一,记载于《孙子算经》一书中,距今已有1500多年。
(二)探究交流,尝试解决问题。
1.为了研究方便,我们把题目里的数字改小一点。“笼子里有若干只鸡和兔,从上面数,有8个头;从下面数,有26条腿。鸡和兔各有几只?”(说明:为了便于分析时叙述,把“26只脚”改成了“26条腿”课件出示)
2.我们一起来看看被关在同一个笼子里的鸡和兔给我们带来了哪些数学信息?
让学生理解:①鸡和兔共8只。②鸡和兔共有26条腿。 ③鸡有2条腿。 ④兔有4条腿。(课件出示)
3.我们先来猜猜,笼子中可能会有几只鸡几只兔呢?学生猜测,在猜测时要抓住哪个条件呢?(鸡和兔一共是8只)那是不是抓住了这个条件就一定能猜对呢?
4.怎样才能确定你们猜测的结果对不对?(把鸡的腿和兔的腿加起来看等不等于26。)
为了研究老师把所有的可能按顺序列出来了,我们先看表格中左起的第一列,8和0是什么意思?(就是有8只鸡和0只兔,也就是假设笼子里全是鸡,)那笼子里是不是全是鸡呢?(不是)那就是把里面的兔也看成鸡来计算了,那把一只4条腿的兔当成一只2条腿的鸡来算会有什么结果呢?(就会少算两条腿)(课件出示。)
26-16=10(条)(把兔看成鸡来算,4条腿兔有当成两条腿的鸡算,每只兔就少了两条腿,10条腿是少算了兔的腿)
4-2=2(假设全是鸡,是把4条腿的兔有当成两条腿的鸡。所以4-2表示是一只兔当成一只鸡就要少算2条腿。)
10÷2=5(只)兔(那把多少只兔当成鸡算就会少10条腿呢?就看10里面有几个2就是把几只兔当成了鸡来算,所以10÷2=5就是兔的只数。)
8-5=3(只)鸡(用鸡兔的总只数减去兔的只数就是鸡的只数,8-5=3只鸡)
算出来后,我们还要检验算的对不对,谁愿意口头检验。
生:3×2+5×4=26(只),5+3=8(只)。
我们再回到表格中,看看右起第一列中的0和8是什么意思?(笼子里全是兔)那是不是全都是兔呢?(不是)也就是假设笼子里全是兔。那把兔当了鸡在算。那就是把里面的鸡也当成兔来计算了,那把一只2条腿的鸡当成一只4条腿的兔来算会有什么结果呢?(就会多算两条腿)(课件出示:把一只鸡当成一只兔算,就多了两条腿)
先用假设全是鸡的办法解决了这个问题,现在假设全是兔又应该怎么分析和解决这个问题呢?同学们能自己解决吗?如果有困难可以同桌边或小组讨论。
小结:刚才我们假设都是鸡或都是兔,所以把这种方法叫做假设法。这种方法能化难为易,是解答鸡兔同笼问题的一种基本方法。(板书:假设法)
小结:请同学们回忆一下,在解决鸡兔同笼问题时,用到了哪些方法?(列表法、假设法)
好,让我们一起再次回到1500年前的这道题目:(出示课件),看看古人是怎样解决“鸡兔同笼”问题的?
1.假如让鸡抬起一只脚,兔子抬起两只脚,还有26÷2=13只脚。
2.这时每只鸡一只脚,每只兔子两只脚。笼子里只要有一只兔子,则脚的总数就比头的总数多1。
3.这时脚的总数与头的总数之差13-8=5,就是兔子的只数。
(三)练习巩固,反思提升。
1.课件出示“做一做” 生活中“鸡兔同笼”的问题。
有龟和鹤共40只,龟的腿和鹤的腿共有112条。龟、鹤各有几只?
集体反馈。
(2)新星小学“环保卫士”小分队12人参加植树活动。男生每人栽了3棵树,女生每人栽了2棵树,一共栽了32棵树。男、女生各有几人?
(3)引导学生建立“鸡兔同笼”问题的数学模型。
看来鸡兔问题这类问题我们不只局限算鸡和兔的只数问题上,只要能用“鸡兔同笼”问题来解答的问题都可以统一叫做“鸡兔同笼”问题。今后我们就用刚才学到的“鸡兔同笼”方法,来帮我们解决生活中遇到的一些实际问题。
(四)总结。
本节课你有什么收获?你们对自己这节课的表现满意吗?
(五)课外延伸与作业。
2.完成练习二十六的1-3题。
人教版六年级上册数学课件 篇10
一、教材分析
尊敬的各位老师,各位评委大家好,今天我说课的内容是义务教育课程标准实验教科书六年级上册圆的认识,圆是学生认识了长方形,正方形,三角形等平面图行后所要认识的小学阶段的又一种图形。学生认识圆应把握它的特点,借助多媒体使学生体会到圆所蕴涵的美学特征,本课教学针对的是六年级学生。他们已初步具备自主学习的能力和逻辑推理的能力,特别是结合多媒体教学使这成为现实。信息技术与课程整合,学生是学习过程的主体,多媒体教学成为学生学习的重要平台。
二、教学目标
根据数学课程标准与本课教材特点以及学生学情和设计理念,结合学生实际情况我制定了以下教学目标。在知识目标方面,使学生认识圆的个部分名称掌握圆的特征和画圆的方法,在技能目标方面,让学生在已有的知识经验基础上,熟练掌握用圆规画圆培养学生实际操作能力,在情感目标方面,我通过生动画面,图象,演示让学生感受到生活中圆的存在与作用,感受其神奇与蕴涵的美学价值。
三、教学重点与难点
根据本课的设计理念和目标设置确定本课的教学重点:通过多媒体演示及动手操作认识圆的圆心、半径及直径,掌握圆的特征,教学难点:掌握圆的特征,能熟练的画圆。
教法与学法:
根据本课的目标设置和重点难点特制定教法:以学定教,综合探究如情景陶冶法,学法是顺学而导,互助学习如师生互动学习法等。
四、教学流程
首先我通过传统节日中秋节引入圆形的概念,又结合多媒体课件演示,创设情景,展示生活中中随时都有圆的存在,让学生感受到圆的神奇进而激发学生的学习兴趣,顺利的导入到新课之中.然后让学生在课前准备好的圆形纸片上动手折一折,确定多条折痕都交于一点,这一点叫做圆心,用字母O表示。选择其中一条折痕,沿折痕画下来,分析这条折痕的特点,得到通过圆心且两端都在圆上的线段叫做直径,用字母d表示。从圆心向圆上画一条线段,给出从圆心到圆上任意一点的线段叫做半径,用字母r表示。
其次,我会让学生自己去探索新知,此时我会播放课件:在同一个圆里:你能画多少条半径?量一量这些半径都相等吗?你能画多少条直径?量一量这些直径都相等吗?直径和半径的长度有什么关系?让学生实际动手画一画,量一量发现圆内的所有直径都相等,有无数条,半径也都想等,有无数条,计算发现直径是半径的两倍。同时用多媒体以旋转两条半径得到一条直径的动画,让学生观察分析发现直径是半径的两倍,推导出半径是直径的一半.
再次,我会在认识了圆的圆心、半径、直径的基础上在向外延伸:如何才能既准确又方便地画出一个圆呢?先认识圆规,然后自学圆的画法并分组尝试画圆,一半的学生画半径是2cm的圆,另一半的学生画直径是4cm的圆,接下来我会让学生谈谈画圆的基本步骤及这个过程中需要注意哪些方面,指出直径4cm也就是半径2cm。最后播放课件圆规画圆的过程得到巩固。
最后,我根据以上所学的内容,为学生准备了两大习题,来加深所学的知识。一块是判断题和选择题,巩固对圆的圆心、半径及直径的认识。另一块是运用圆的知识解释一些生活现象如车轮为什么是圆的?理论联系实际,做到学有所用,激发学生学习数学兴趣以及在以后的数学学习中,更加用心。
本课设计把多媒体下的探索学习和认识活动整合,让学生在发现中研究,在研究中创造,使发现与创造成为数学课堂的主旋律.以上只是我个人的看法和做法,如果有什么不足之处还请在坐的各位评委和老师们多多指教,谢谢各位评委!
人教版五年级上册数学课件
俗话说,做什么事都要有计划和准备。在幼儿园教师的平时工作生活中,会经常需要提前准备参考资料。资料的定义比较广,可以指生活学习资料。资料可以作为参考给我们一些学习工作灵感。你是否收藏了一些有用的幼师资料内容呢?你可以读一下小编整理的人教版五年级上册数学课件,希望你能从中找到有用的内容!
人教版五年级上册数学课件 篇1
教学目标:
1、使学生认识用字母表示数的意义和作用。能用字母表示数。
2、使学生在具体情景中感受用字母表示数的必要性,向学生渗透符号化思想。
3、通过数学活动来激起学生的学习热情,培养学习兴趣。
教学重点:
会用含有字母的式子表示简单的数量、数量关系和计算公式。
教学难点:
用字母表示数时省略乘号的简便写法及建立符号意识。
教具准备:
多媒体课件
教学过程:
一、创设情景,激趣导学。
1、师:同学们吃过肯德基吗?
生:(。。。吃过。。。)
师:那你们谁能说出肯德基的字母表示?看谁平时能用心观察生活中的现象。举手回答。
生:(一个老头,KFC)
师:非常好,看来你非常善于观察。
2、师:平时有同学玩过扑克吗?你知道它们中的J、Q、K是什么意思吗?
生:(玩过。。。。代表11、12、13.。。)
师:还有,生活中我常常听见有同学说这样的话:我都讲了N遍了,你怎么还不会!N遍是什么意思?
生:(很多遍)
3、师:以上这些字母都是我们生活中非常常见的,像这样的例子还有很多,如,语文上的鲁迅写的小说《阿Q正传》,英语上UK是英国的简写,等等非常之多。那么请同学们思考一下,这些字母在生活中的应用有什么好处呢?
生:(简洁,方便,便于记忆)
4、师:比如我们以前学习的交换律a+b=b+a等,这些字母表达式,非常简明易懂的把数学中的规律给表达出来了。字母在我们的生活中无处不在,在数学领域里应用也是很广泛的,今天我们就来研究用字母表示数(板书课题)
二、探究数量和数量关系
1、教学例1.
(1)课件出示
师:摆1个三角形用3根小棒,摆2个三角形用23根小棒,那摆3个三角形用小棒的根数是()3呢?摆4个三角形用小棒的根数是()3呢?依次类推,照这样说下去能说的完吗?(生:不能)
师:那你能用一句话概括一下:三角形的个数与所用小棒的根数有什么关系吗?
生:①摆几个三角形,小棒根数就有几个3.
②小棒的根数总是三角形个数的3倍。
③可以用三角形的个数3表示小棒的根数。
师:如果用a表示三角形的个数,小棒的根数是()()
板书:摆a个三角形所用小棒的根数是a3
师:追问,a个三角形究竟是指几个三角形?这里的a可以表示哪些数?可以表示小数吗?指出:这里的a可以是任意的自然数,但不能表示小数。
师:像这样的数量关系不仅可以用a表示,还可以用其他的字母表示,但这些字母表示的数是有一定限制的。
2、教学例2.
课件出示
师:听懂题目的意思了吗?用什么数量关系来列示呢?
师:课件出示,依次表示行驶50千米,74.5千米,b千米后所剩的千米数。
追问:这里的b可以表示哪些数?b能大于280的数吗?
师:小结,这里的b不仅可以表示整数,也可以表示小数,但都因是不大于280的数。并且如果知道b的数值,就可以求出剩下的千米数。课件出示。
3、练一练第2题。
课件出示,指明读题,独立填表,学生填表后追问:这里的a可以表示怎样的数?a=10,妈妈多少岁?如果a=15呢?
4、教学例3
师:大家还记得正方形周长和面积计算方法吗?
生:。。
师:课件出示,如果a表示正方形的边长,C表示周长,S表示面积,你能写出正方形的周长和面积公式吗?
生:正方形的周长公式:C=a4.正方形的面积公式=:S=aa
师:板书正方形周长、面积公式。
直接指出:具体的数与字母相乘时,通常采用简便写法。如a4或4a都可以把简写成。。写成4.a;或者省略乘号,写成4a.在省略乘号时,一定要把数字写在字母的前面。两个字母相乘时,通常也采用简便方法。如aa既可以写成a.a,也可以写成,读作a的平方。反之a的平方表示aa,那b的平方呢?mm呢?
生:。。。。
师:指出,刚才大家写出的C=4a和S=a,这里使用的字母都是数学里已经规定的,一般不用其他字母替代。
师:如果a1或1a怎样简便书写?
指出,一个字母与1相乘时,写法可以进一步简化,直接写a。
三、实际应用,内化拓展
挑战一
课件出示练一练1
教师强调简写方法,学生审题,举手回答。
挑战二
课件出示练一练3
独立完成,交流讨论。
挑战三
练习十八第一题
师:这里的a可以表示什么样的数呢?b可以表示什么样的数呢?
指出:这里的a表示的是单价,可以是整数,也可以是小数;b表示的是本书,只能是整数。
挑战四
练习十八第二题
先说说题目中x,y分别表示什么路程,再独立完成填空。
挑战五
练习十八第三题
学生读题,举手填写,师生共同分析。
四、回顾总结,感悟延伸
1、课大家掌握了什么?(举手回答)
2、介绍代数之父韦达。
人教版五年级上册数学课件 篇2
教学目标:
(一)知识目标
1、理解小数除法的意义。
2、掌握小数除以整数(恰好除尽)的计算方法。
(二)能力目标:能够在情境中发现问题、提出问题,在观察比较的过程中感受小数除法的异同,能够与他人合作交流解决问题。
(三)情感目标:经历探索小数除以整数(恰好除尽)计算方法的过程,体验获得成功的乐趣。
教学重点:
小数除法的意义,小数除以整数(恰好除尽)的计算方法。
教学难点:
商的小数点与被除数的小数点对齐。
教学方法:
探究、交流、引导。
教学过程:
一、导入新课,创设情境
1、淘气打算去买牛奶,你从图上得到了什么数学信息?
2、根据图上的数学信息,你能提出哪些数学问题?
3、教师根据学生提出的问题,引导学生列出算式: 11.5÷5 12.6÷6
引导学生观察这两个算式与以往我们学过的除法算式有什么不同。(被除数都是小数,除数都是整数。)
师:我们今天就来研究小数除以整数的计算方法,看看淘气到底应该买哪个商店的牛奶。
二、探索新知,解决问题
1、师:两个商店牛奶的单价分别是多少呢?我们先算一算甲商店的牛奶单价。
2、学生交流讨论,教师巡视指导。
3、教师引导学生比较汇总的各种方法,认为哪个方法比较简便实用?
引导出“商的小数点与被除数的小数点对齐”。
4、理解算理。
5、引导归纳总结,明确小数除法的计算方法:按照整数除法的计算方法; 商的小数点与被除数的小数点对齐。
6、学生尝试计算,教师巡视指导。
三、巩固练习,拓展延伸
1、完成教材第3页练一练第1题。
集体订正。
2、我是小小神算手。
20.4÷4 96.6÷42 55.8÷31
引导学生通过对比发现小数除以两位数与除以一位数的,都要注意商的小数点要与被除数的小数点对齐。
3、完成教材第3页练一练第4题。
教师巡视指导。
四、全课总结
今天你有什么收获呢?
板书设计:
甲商店牛奶每袋多少钱? 乙甲商店牛奶每袋多少钱?
11.5÷5=2.3(元) 12.6÷6=2.1(元)
人教版五年级上册数学课件 篇3
平行四边形的面积
教学内容:教科书第79-81页内容 教学目标:
1.使学生通过探索,经历平行四边形面积计算公式的推导过程,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。2.通过操作、观察、猜想、验证、比较活动,渗透“转化”的数学思想方法,培养学生的观察、分析、概括、推导能力。
3.引导学生初步理解转化的思想方法,培养学生的思维能力和解决简单的实际问题的能力。教学重难点: 重点:
使学生通过探索,理解和掌握平行四边形的面积计算方法,会计算平行四边形的面积。难点:
引导学生动手操作,用剪拼的方法把一个平行四边形转化为一个长方形,找出两个图形之间的联系,推导出平行四边形的面积计算公式。教具准备:
多媒体、格子纸、平行四边形纸片、剪刀、三角尺、平行四边形木框、粘板 教学设计:
一、旧知引入,引出猜想
师:同学们请看,(师指黑板)这是什么图形? 生:平行四边形
师:看到它,你想到了平行四边形的哪些知识?
生:对边平行且相等,有无数条高,每一组对边上都有和它对应的高
具有不稳定性,容易变形〃〃〃〃〃〃〃(在此过程中找个学生上来做一条高)
师:黑板上这个拉不动,老师做了一个和它一样的框架,仔细看,它被拉成了什么形状?(边拉边说)生:长方形
师:那你们觉得拉成的长方形和这个平行四边形的周长一样吗?为什么?
生:我们一看就知道了,还是这四根木条的总长度啊 师:哦,周长没变,那面积呢? 生:变〃〃〃〃不变
师:有的同学认为变,有的同学认为不变,这只是我们的猜想,仅靠观察这个木框的推拉变化得出结论是有困难的,这还需要我们进一步5cm 9cm 去研究。
二、合作交流、探究新知
师:为方便大家研究,老师已经把这两个图形画在了方格纸中,(课件出示)这里的每一个小方格是边长为1厘米的正方形,那它的面积就是1平方厘米。
谁能想办法比较这两个图形的面积? 生:数格子
师:下面就请同学们用数格子的方法来比较这两个图形的面积?并把你数出的结果记录下来
(生开始数这两个图形的面积。师巡视,然后询问)师:都数出来了吗?有什么困难吗? 生:不够一格的怎么办?
生:可以把每一行左右两个不够一格的凑到一起拼成一个整格。师:谁愿意把你数的结果告诉大家?(找一生上来实物投影展示数的过程)
生:先数长方形〃〃〃〃〃〃〃〃〃再数平行四边形,数平行四边形的时候我先数的是整格,不满一格的是〃〃〃〃〃〃〃〃
师:大家看清楚了吗?(课件演示学生数的过程)引导学生仔细看,清楚数格子的方法
师结:刚才这个同学用数格子的方法比较出这两个图形的面积是不一样的,大家觉得数格子的方法怎么样? 生:麻烦〃〃〃〃〃 师:受刚才数格子的启发,谁能想到更好的办法比较出这两个图形的面积是不一样的?(课件出示两个图形)生思考
找一生上来指屏幕说方法
师:(课件演示)刚才这个同学是把这一个三角形平移到左边拼成了一个小长方形,拼成的小长方形的面积和平行四边形的面积应该是相等的,这样就很清楚的看出大长方形比小长方形多出这一行,所以这两个图形的面积是不一样的。(生看课件演示,对剪拼的过程有个初步认识)
师:请同学们继续观察,这个小长方形和平行四边形除了面积相等,还有什么关系?
生:长方形的长等于平行四边形的底,宽等于平行四边形的高〃〃〃〃〃〃〃〃
师:根据这些重要的关系,你还会有什么重要的发现? 同桌可以互相讨论交流一下
生:发现了平行四边形的面积等于底乘高
生:因为长方形的面积等于长乘宽,我认为平行四边形的面积应该等于底乘高
师:我们通过这些关系得到了这个结论,现在用这个结论来算出这个平行四边形的面积?
生:9乘4 等于36平方厘米〃〃〃〃〃 师:9是平行四边形的什么?4呢? 师:这个结果和刚才数格子的结果是完全一致的,那这个方法和数格子的方法比那个简便? 生:用底乘高简便〃〃〃〃〃
师:以上同学们用不同的方法知道了平行四边形推拉成长方形后面积变了,并从中初步得到了一个结论,那就是这个平行四边形的面积等于底乘高。(师指生齐读)
师:是不是所有平行四边形的面积都等于底乘高呢?(生此时有疑惑)
三、动手操作,验证结论
师接着说:同学们还有疑惑,看来这个结论还需要我们进一步去验证,老师为同学们准备了一些大小不同的平行四边形,下面就请同学们利用身边的材料,结合刚才的方法来进一步验证这个结论。同桌可以先互相讨论交流一下。
(师下去巡视,学生交流,操作活动)师:谁来说一说你是怎么验证的?
生:数格子的方法(实物投影展示过程)〃〃〃〃〃〃〃〃〃〃〃〃
师:这位同学用数格子的方法验证了平行四边形的面积也等于底乘高。
师:还有和他不一样的吗? 生:(实物投影展示过程)
老师,我是把平行四边形沿着高剪开拼成了一个长方形,我量出了它的长和宽
然后又量出平行四边形的底和高,我发现长乘宽的积等于底乘高的积,所以平行四边形的面积等于底乘高。师:这个同学的方法好不好? 生:好
师:这位同学用这种方法也验证了平行四边形的面积也等于底乘高〃〃〃〃
师:还有和他不一样的吗?
生:(实物投影展示)老师,我的方法和他差不多,我也是剪拼成了长方形,我发现长方形的长就是平行四边形的底,长方形的宽就是平行四边形的高,因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。
师:大家同意吗?明白了吗? 生:同意〃〃〃〃明白了〃〃〃
师:老师有个问题不明白,你们为什么都沿着高剪呢?
生:因为这样可以拼成长方形,长方形的面积我们已经学习过〃〃〃〃 师:哦,刚才不管是数格子还是剪拼的方法我们都验证了平行四边形的面积等于底乘高,实际上这种思路就是把我们今天学习的新知识转变成我们原来学过的旧知识,这是一个非常重要的数学思想,叫做转化
师:通过以上我们的共同研究,我们得到了一个非常重要的结论,那就是(生齐读)这就是我们本节课的学习内容
如果用s表示平行四边形的面积,a表示平行四边形的底,h表示平行四边形的高,那么这个结论的字母表达式就是s=ah 看来要求平行四边形的面积我们必须知道什么? 生:底和高〃〃〃〃
四、应用结论,解决问题
师:现在我们就应用这个结论来解决这个问题(课件出示例1)找一生到黑板上列示计算
师:他做的怎么样?和他一样的请举手
同学们做的非常好,那下面这个平行四边形你还会求它的面积吗? 师:谁来列示? 生:8乘5〃〃〃〃 生:10乘4〃〃〃〃
师:这里有两条底两条高,你为什么不用10乘5呢? 生:因为平行四边形的底和高是互相对应的〃〃〃〃 师:总结并板书 对应
师:我们再来看黑板上这两个图形,我们都已知道平行四边形推拉成长方形后面积变大了?大了多少呢?谁来解决这个问题? 生:大了9平方厘米
生:9乘5减去9乘4〃〃〃〃〃〃〃
师结:看来用底乘邻边得不出平行四边形的面积,而得到的是拉成的长方形的面积,可你们知道吗?如果知道了底和邻边的夹角,再结合底与邻边的积也能求出平行四边形的面积,这要用到中学的数学知识,感兴趣的同学课后去查阅这方面的资料。
五、课堂回顾,反思提升
人教版五年级上册数学课件 篇4
教学目标
1、结合教材提供的素材自主探索确定位置的方法,并能利用方格纸依据两个数据确定物体的位置。
2、进一步渗透数形结合的思想和方法,感悟数对与位置一一对应思想。
3、初步建立坐标系的概念,感受数学与生活的联系。
教学重难点
1、能运用数对表示指定的位置。
2、在方格纸上画出指定图形或地点的位置。
教学过程:
一、复习铺垫
提问:怎样用数对表示物体的位置?
用数对表示物体的位置,要先确定列数,再确定行数,即(列数,行数)。
【设计意图】
通过复习用数对表示位置的方法,让学生明确要先确定列数,再确定行数,为学习新知做好铺垫。
二、探索新知
1、学习例2。
(1)引导学生理解图意。
横排和竖排所构成的区域是整个动物园的范围。动物园的各场馆都画成一个点,这些点都分散在方格纸竖线与横线的交点上。
(2)师谈话引出问题。
不仅找座位需要确定位置,看图时我们也要确定位置。这张动物园图很清楚地表示了每个场馆的位置,你能说出这个场馆分成了几行几列吗?(0表示列和行的起始)
(3)用数对表示位置。
(4)在图上表示场馆的位置。
出示飞禽馆(1,1),学生说明位置后,再在图上标出位置。
学生独立标出猩猩馆(0,3),狮虎山(4,3)的位置,然后再投影订正。
2、请同学们仔细观察同一行或同一列的数对,有什么地方相同,什么不同?
小结:表示同一列物体位置的数对,它们的。第一个数相同;表示同一行物体位置的数对,它们的第二个数相同。
3、适时练习:完成教材第20页“做一做”第1、2题。
学生独立完成,集体讲评。
4、小结:想一想:怎样在方格纸上用数对确定物体的位置?
在方格纸上用数对确定物体的位置,先找出数对表示的是第几列,第几行,然后在列数与行数相交处描点,标上名称。
【设计意图】
充分利用学生已有的生活经验和已学过的知识,让学生通过实际操作,会根据题目中所给数对在方格纸上确定具体物体的位置。
三、课堂总结
谈谈今天你的收获?
人教版五年级上册数学课件 篇5
教学目标:
1.通过复习,使学生能够运用所学知识,采用列方程的方法解答应用题.
2.让学生独立思考,合作交流,确定等量关系,正确用方程解答应用题
3.培养学生利用恰当的方法解决实际问题的能力。
教学重点:
通过复习,使学生弄请已知量与未知量的联系,找出题目中的等量关系.
教学难点:
通过复习,使学生能够准确的找出题目中的等量关系.
教学过程:
一、复习准备.(P107)
1.找出下列应用题的等量关系.
①男生人数是女生人数的2倍.
②梨树比苹果树的3倍少15棵.
③做8件大人衣服和10件儿童衣服共用布31.2米.
④把两根同样的铁丝分别围成长方形和正方形.
( 学生回答后教师点评小结)
我们今天就复习运用题目中的等量关系解题.(板书:列方程解应用题)
二、新授内容
1、教学例3、
(1)、一列客车以每小时90千米的速度从甲站开往乙站,同时有一列货车以每小时75千米的速度从乙站开往甲站,经过4小时相遇,甲乙两站的铁路长多少千米?
①.读题,学生试做.
②.学生汇报(可能情况)
(90+75)×4
提问:90+75求得是什么问题?再乘4求的是什么?
90×4+75×4
提问:90×4与75×4分别表示的是什么问题?
(由学生计算出甲乙两站的铁路长多少千米。)
(2)、甲乙两站之间的铁路长660千米,一列客车以每小时90千米的速度从甲站开往乙站,同时有一列货车以每小时75千米的速度从乙站开往甲站。经过多少小时相遇?
(先用算术方法解,再用方程解)
①、660÷(90+75)=?
②方程
解: 设经过x小时相遇,
(90+75)×x =660 或者, 90×x +75×x =660
让学生说出等量关系和解题的思路
教师小结(略)
(3)、甲乙两站之间的铁路长660千米。一列客车以每小时90千米的速度从甲站开往乙站,同时有一列货车从乙站开往甲站,经过4小时相遇。货车每小时行多少千米?
( 先用算术方法解,再用方程解)
①、(660—90×4)÷4=?
②、方程
解:设货车每小时行x千米
90×4+ 4x = 660 或者(90 + x )×4 = 660
让学生说出等量关系和解题的思路
教师小结(略)
让学生比较上面三道应用题,它们有什么联系和区别?
比较用方程解和用算术方法解,有什么不同?
教师提问:这两道题有什么联系?有什么区别?
三、巩固反馈.(P109---1题)
1.根据题意把方程补充完整.
(1)张华借来一本116页的科幻小说,他每天看x 页,看了7天后,还剩53页没有看.
_____________=53
_____________=116
(2)妈妈买来3米花布,每米9.6元,又买来x千克毛线,每千克73.80元.一共用去139.5元.
_____________=139.5
_____________=9.6×3
(3)电工班架设一条全长x 米长的输电线路,上午3小时架设了全长的21%,下午用同样的工效工作1小时,架设了280米.
_____________=280×3
2.(P110----4题)解应用题.
东乡农业机械厂有39吨煤,已经烧了16天,平均每天烧煤1.2吨.剩下的煤如果每天烧1.1吨,还可以烧多少天?
小结:根据同学们的不同方法,我们需要具体问题具体分析,用哪种方法简便就用哪种方法.
3.思考题.
甲乙两个港相距480千米,上午10时一艘货船从甲港开往乙港,下午2时一艘客船从乙港开往甲港.客船开出12小时后与货船相遇.如果货船每小时行15千米.客船每小时行多少千米?
四、课堂总结.
通过今天的复习,你有什么收获?
五、课后作业.
(P110---5题)不抄题,只写题号。
板书设计:
列方程解应用题
等量关系 具体问题具体分析
例3:一列火车以每小时90千米的速度从甲站开往乙站,同时有一列货车以每小时75千米的速度从乙站开往甲站,经过4小时相遇,甲乙两站的铁路长多少千米。
人教版五年级上册数学课件 篇6
教学目标:
1、使学生进一步认识用字母表示数及其作用,能正确地用含有字母的式子表示数量及数量关系、计算公式,培养学生抽象,概括的能力。
2、使学生加深对方程及相关概念的认识,掌握解简易方程的步骤和方法,能正确地解简易方程。
教学重点:
能够熟练地理解字母表示数,数量关系。
教学难点:
能够熟练并正确地解简易方程。
教学过程:
一、揭示课题
我们在复习了整数、小数的概念,计算和应用题的基础上,今天要复习解简易方程,(板书课题)通过复习,要进一步明白字母可以表示数量、数量关系和计算公式,加深理解方程的概念,掌握解简易方程的步骤、方法,能正确地解简易方程。
二、复习用字母表示数
1、用含有字母的式子表示。
(1)求路程的数量关系。
(2)乘法交换律。
(3)长方形的面积计算公式。
让学生写出字母式子,同时指名一人板演。指名学生说说每个式子表示的意思。提问:用字母表示数有什么作用?用字母表示乘法式子时要怎样写?
2、做“练一练”第x题。
让学生做在课本上。指名口答结果,老师板书,结合提问怎样求式子的值。
3、做练习第x题。
指名学生口答。选择两道说说是怎样想的。
三、复习解简易方程
1、复习方程概念。
提问:什么是方程?你能举出方程的例子吗?(老师板书出方程的例子)这里用字母表示等式里的什么?指出:字母还可以表示等式里的未知数。含有未知数的等式就叫方程。(板书定义)
2、做“练一练”第x题。
小黑板出示,学生判断并说明理由。提问:5x—4x=2里未知数x等于几,x=2是这个方程的什么?7×0。3+x=2。5里未知数x等于几?x=0。4是这个方程的什么?那么,什么叫做“方程的解”?(板书定义)它与“解方程”有什么不同?(强调解方程是一步一步完成的过程)你会解方程求出方程的解吗?根据什么解方程?
3、解简易方程。
(1)做“练一练”第x题第一组题。
指名两人板演,其余学生做在练习本上。集体订正:解第一个方程是怎样想的,检查解方程时每一步依据什么做的。第二个方程与第一个有什么不同,解方程时有什么不同?指出:解方程时先看清题目,根据运算顺序,能先算的就先算出来。不能算的就看做一个未知数。我们现在解方程是一般根据加减法之间、乘除法之间的关系来进行的。(结合板书:解方程:能先算的要先算,再按各部分关系来解)追问:这两题可以怎样检验方程的解对不对?
(2)做“练一练”第x题后两组题。
指名两人板演,其余学生分两组,分别做其中的一组题。集体订正,并让学生说说每组两题有什么不同,解方程的过程有什么不同。强调一定要先看清题,按运算顺序能先算的就先算出来,然后根据四则运算之间的关系求出方程的解。
(3)做“练一练”第x题。
让学生列出方程。指名口答方程,老师板书。提问列方程的等量关系是什么。
四、课堂小结
今天复习了哪些知识?你进一步明确了什么内容?
五、布置作业
课堂作业;完成“练一练”第x题解方程;练习第x题,第x题后x题,第x题。
家庭作业;练习第x题前x题、第x题。
人教版五年级上册数学课件 篇7
人教版小学数学五年级上册平行四边形的面积说课稿
本课是九年义务教育六年制小学数学五年级上册第五章第一节的教学内容。
一、在学生认识了平行四边形、三角形和梯形和掌握上长方形和正方形的面积计算基础上安排的。所以若想使学生理解掌握好平行四边形面积公式,必须以长方形的面积与平行四边形的底和高为基础,运用迁移和同化理论,使平行四边形面积的计算公式这一新知识,纳入到原有的认知结构之中。另外平行四边形面积公式这一内容学习得如何,直接与学习三角形和梯形的面积公式有着直接的关系。
二、学生分析: 掌握了平行四边形的特征和长方形面积的计算方法。这些都为本节课的学习奠定了坚实的知识基础。但是小学生的空间想象力不够丰富,对平行四边形面积计算公式的推导有一定的困难。因此本节课的学习就要让学生充分利用好已有知识,调动他们多种感官全面参与新知的发生发展和形成过程。
三、说教法、学法
1、发展迁移原则 运用迁移规律,注意从旧到新、引导学生在整理旧知的基础上学习新知,体现“温故知新”的教学思想。
2、学生为主体,教师为主导的教学原则 针对几何知识教学的特点、本节课的教学内容以及小学生以形象思维为主,我打算主要采用动手操作,自主探索,合作交流的学习方式,通过课件演示和实践操作,以激发学生的学习兴趣,调动学生的学习积极性。通过学生动手操作、观察、实验得出结论,体现了教学以学生为主体、老师为主导的教学原则。
3、反馈教学法 为了体现学生的主体性和创新性,在教学中,采用反馈教学法进行教学,给学生提供一个参与平行四边形面积公式形成和运用的机会,使学生不仅“学会”而且“会学”。4.学生的学习活动不仅是为了获得知识,而更重要的是掌握获得知识的方法。本节课我以培养学生的实践能力、探索能力和创新精神为目标。在教学过程中,我培养学生初步感知和运用转化的方法,引导学生通过观察、比较、操作、概括等行为来解决新问题,通过一系列活动,培养学生动手、动口、动脑的能力,使学生的观察能力、操作能力、抽象概括能力逐步提高,教会学生学习。
四.说教学教学目标 1.培养学生的自主探究能力,发展学生的空间思维能力。2.使学生理解并掌握平行四边形面积计算公式,会运用平行四边形的面积公式求平行四边形的面积。使学生理解并掌握平行四边形面积计算公式,会运用平行四边形的面积公式求平行四边形的面积。
五.教学重点: 使学生能够运用平行四边形面积公式正确计算出平行四边形面积。六.教学难点:平行四边形面积公式的推导过程。
七.教具学具: 1.剪成一个长为40厘米,宽为30厘米的长方形和底为40厘米,高为30厘米的平行四边形硬纸片为教师演示教具;
3、让每个学生准备一个平行四边形纸片和一把剪刀。为了能更好地凸显“自
(一)、复习旧知,渗透转化 新课开始,我先让学生回忆已经学过的平面图形,让学生进行反馈,以唤取学生对旧知识的回忆,为新知识的学习做好铺垫。
(二)、创设情景,引出课题 接着,我出示一个长方形和一个平行四边形,这对好朋友发生了争论了,它们都说是自己的面积要大,你们认为谁的面积要大呢?你是怎么知道谁的面积大呢? 通过这些问题,促使学生积极动脑猜想,长方形的面积大家会求了,平行四边形的面积如何计算呢?从而引出本节课的课题:平行四边形的面积计算(板书)
(三)动手实践,探究发现
1、数方格,引发猜想 在很久以前,我们的祖先计算平行四边形的面积和计算长方形的面积一样,采取了数方格的方法。老师也为你们准备了一个格子图,你们来数一数它们的面积是多少?通过数格子的方法,并填写表格,从表格中学生很容易观察到平行四边形的面积与长方形的面积相等。2,剪拼法,验证猜想 学生动手操作,想办法将平行四边形转化为长方形。操作之后进行汇报,交流自己的验证过程。汇报的时候,剪拼的方法有好多种,在这时,我及时抛给学生这样一个问题:“为什么要沿高剪开?”引发学生积极开动脑筋思考。然后我又引导学生观察这两个图形并比较,进而讨论:拼出的长方形与原来平行四边形什么变了,什么没变?拼成长方形的长和宽与原来平行四边形的底和高有什么联系?通过上面问题的思考,学生对平行四边形公式的推导有了更深的认识,这时我顺势引导学生得出推导过程:将一个平行四边形通过剪、拼后转化为一
主探究”的教学理念,高效完成教学目标,我设计如下课堂教学环节:
个长方形,拼成的长方形的长相当于原来平行四边形的底,拼成的长方形的宽相当于原来平行四边形的高,平行四边形的面积就等于长方形的面积,因为长方形的面积=长×宽,所以平行四边形的面积=底×高,公式用字母表示S=ah。接着我让学生同桌互相说一说整个操作过程,使学生真正理解平行四边形转化成长方形的过程。
3、解决实际问题
教学例1:平行四边形花坛的底是6m,高是4m,它的面积是多少?引导学生写完整整个解题过程。新课标指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。”这一环节的教学设计,我发挥教师的引导作用,倡导学生动手操作、合作交流的学习方式,进而建构了学生头脑中新的数学模型:转化图形——建立联系——推导公式。整个过程是学生在实践分组讨论中,不断完善提炼出来的,这样完全把学生置于学习的主体,把学习数学知识彻底转化为数学活动,培养了学生观察、分析、概括的能力。
(四)分层训练,理解内化 对于新知需要及时组织学生巩固运用,才能得到理解与内化。我本着“重基础、验能力、拓思维”的原则,设计四个层次的练习题: 第一层:基本练习:书本P82第1题 第二层:综合练习:
1、你能想办法求出下面两个平行四边形的面积吗?要求这两个平行四边形的面积必须先干什么? 让学生自己动手作高,并量出平行四边形的底和高,再计算面积,这个过程也体现了“重实践”这一理念。
2、你会求出这个平行四边形的面积吗? 通过不同的高引起学生的混淆,在计算中让学生明确在计算平行四边形面积时底要找 出与它相对应的高,这样才能准确求出平行四边形的面积。并且根据已求的面积和另一条高,求出与这条高相对应的底。第三层:扩展练习:
1、下面这两个平行四边形的面积相等吗?为什么?你还能在这里画出与这两个面积相等的平行四边形吗?可以画几个?(图在课件中)学生综合运用知识,进行逻辑推理,明白平行四边形的面积只与底和高有关,等底同高的平行四边形的面积相等。
2、把平行四边形模型拉近,它们的面积发生变化了吗? 通过这个过程的操作,让学生明白当一个平行四边形的周长一定时,越拉近它的面积就越小。
(五)课堂小结,巩固新知 小结:这节课我们学习了什么?你学会了什么?(有利于学生对本节课所学知识有个系统的认识,充分提高归纳和总结能力。)
人教版五年级上册数学课件 篇8
平行四边形的面积教学设计
教学内容:新人教版小学数学五年级上册第87—88页。教学目标:
1、知识与技能:通过学生观察、讨论、动手体验,使学生理解并掌握平行四边形面积计算公式,并能解决实际问题,培养学生小组合作能力。
2、过程与方法:通过操作观察比较发展学生的空间观念,学生初步认识转化的思考方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。
3、情感态度与价值观:让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲,陶冶情操,培养学生探索精神和合作精神。教学重点:理解平行四边形面积公式的推导过程,掌握平行四边形面积的计算方法。
教学难点:学生对探究性学习方法的理解与掌握及探究能力的形成。教学方法:合作学习,自主探索。
教具准备:平行四边形(剪高)2个、课件。
学具准备:每人一个平行四边形、一把剪刀、三角尺,每小组一张操作卡。教学过程:
一、复习导入:
师:同学们,想一想,我们学过的几何图形都有哪些?(课件展示几何图形)
师:今天老师为大家准备了一幅街区的主题图,观察图中学校门口的两个花坛,说一说这两个花坛都是什么形状?
师:在我们周围有哪些东西的形状是平行四边形?什么叫平行四边形?他有什么特征?
师:你认为哪个花坛的占地面积会大一些?
师:要比较两个花坛哪个大也就是比较两个花坛的什么?可是现在我们只会计算哪个图形的面积?
师:长方形的面积我们已经会计算了,那么平行四边形的面积怎样计算?跟长方形又有怎样的关系呢?今天我们就来研究平行四边形面积的计算方法。
二、探索新知:
1、用数方格的方法计算平行四边形面积。
师:我们已经知道可以用数方格的方法得到一个图形的面积。现在请同学们用这个方法算出这个平行四边形和长方形的面积。(同桌合作完成。)
2、课件演示,汇报交流。
师:比较平行四边形的底和高与长方形的长和宽,你发现了什么?(小组讨论。)
生汇报:平行四边形的底和长方形的长,平行四边形的高和长方形的宽分别相等。它们的面积也相等。
师:他们的面积是不是真的相等呢?我们就来动手验证一下吧。3.操作验证,得出结论。(1)小组合作,动手操作。
师:请每个小组拿出课前准备好的平行四边形动手剪一剪、拼一拼。看看你能发现什么?
(2)汇报交流:请学生演示剪拼的过程。(3)演示操作过程。(课件演示)
师:我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?(小组讨论,然后完成讨论题卡,汇报后,教师归纳。)
师:同学们真聪明,在操作过程中运用了一种重要的数学方法叫“转化法”,是把一个平行四边形转化成一个长方形,它的面积与原来的平行四边形面积相等。“转化法”是一种重要的数学思想方法,在以后学习中会经常用到。
(4)推导出平行四边形面积公式: 长方形的面积=长×宽平行四边形的面积=底×高(5)用字母表示:
师:如果用s表示平行四边形面积,a表示它的底,h表示它的高,那么平行四边形的面积计算公式用字母表示成什么?字母中间乘号可以写成圆点,公式为:S=a·h,字母中间乘号还可以省略,写作:S=ah.三、深化理解:
1、师:我们研究了平行四边形面积,得出了它的面积公式,现在我们就来运用它。请看题(课件出示例1),你能求出它的面积吗?(完成在练习本上,指名一人板演集体校对。)
提问:做这题时,要注意什么?(单位名称)要求平行四边形的面积,首先要知道什么条件?(底是多少,高是多少。)
2、比一比谁最聪明:已知一个平行四边形的面积和底(如右图),求高。
5厘米 15平方厘米
3、学校里有一块长方形草地,想在草地的一边修一条小路通向另一边,下面的三种设计方案,你认为哪种设计方案的面积最小?为什么?
四、全课总结:
通过这节课你有什么收获?
板书设计:
平行四边形的面积
长方形的面积=长×宽平行四边形的面积=底×高
S= a×h 或 S= a·h S= a h
人教版五年级上册数学课件 篇9
1.1 知识与技能:
使学生学会两位数加两位数(不进位加)的计算方法,能熟练的进行竖式计算。
1.2过程与方法:
培养学生主动探索知识的精神和认真计算的良好习惯。
1.3 情感态度与价值观:
通过学生对确定现象和不确定现象的体验,体会数学和日常生活的密切联系。
21 教学重点:
掌握两位数加两位数(不进位加)的笔算方法,能正确的计算。
2.2 教学难点:
掌握两位数加两位数(不进位加)的笔算方法,能正确的计算。
(一)1、观察情境图,从图中你知道了那些数学信息?学生回答后可用表格的形式出示。
2、根据这些信息你能提出什么数学问题?
生小组内交流,然后汇报,师选择性的板书例1的问题。
(1)班学生和本班带队老师一共多少人?
只要学生用自己的话说出“求一共有多少人,就是把二(1)班学生和本班带队老师数合起来”就行,培养学生的语言表达能力。
2、怎样计算35+2=?借助手里的小棒试一试。
生2:我是通过摆小棒算出来的,先摆3捆和5根,再摆2根,5根和2根合起来是7根,7根与原来的3捆合起来就是37根。
师生一起拿出计数器,师一边操作一边讲解竖式的写法,
师:你认为应该从什么数位开始计算?同桌的小朋友开始议一议。
生说自己的看法。
小结:为了以后计算进位加法,我们在竖式计算时,都从各位开始计算。个位上是5+2=7,7应该对齐个位,十位上的3要写在横线下面,对齐十位。
小组讨论加法竖式计算时,应怎样对齐?学生用自己的语言表达。
明确个位对个位,十位对十位,可以归纳为相同数位上的数对齐。
1、课件出示情境图。
师:因为博物馆比较远,我们给小朋友们准备了能乘坐70人的大客车,大家想一想应该哪两个班做一辆车呢?
如果我们让二(1)班和二(2)班同学合乘一辆车,二(3)班和二(4)班同学合乘一辆车可以吗?
我们先来看看二(1)班和二(2)班同学可不可以合乘一辆车,请列出算式。(板书:35+32)
2、同学们,能不能用自己喜欢的方式计算一下。
学生自由算,老师巡视,适时帮助学困生。
师:刚才同学们利用口算和摆小棒算出了35+32的结果。真棒!现在,我们可以用竖式计算一下。
小结:个位对个位,十位对十位,可以归纳为相同数位上的数对齐。
通过本节课的学习,我学会了计算两位数加两位数(不进位加)时,个位对个位, 十位对十位,相同数位要对齐。
个位对个位,
十位对十位,
相同数位要对齐。
人教版五年级上册数学课件 篇10
2019-2019年人教版五年级小学数学上册教学计
划
教学计划决定着教学内容总的方向和总的结构,并对有关学校的教学、教育活动,生产劳动和课外活动校外活动等各方面作出全面安排。下面是为大家收集的五年级小学数学上册教学计划,供大家参考。一、学生基本情况分析:
我们班共有学生19人,大部分的学生学习态度端正,有着良好的学习习惯,空间观念较强。上课时都能积极思考,能够主动、创造性的进行学习。但个别学生能力较差,计算和应用题都存在困难。还有的学生学习态度不端正,不能按时完成作业。从上学期的知识质量验收的情况看,学生的成绩存在明显的两极分化,后进生的面还是比较大,本班学生纪律观念较差,爱动好说,自我约束能力差.针对这些情况,本学年在重点抓好基础知识教学的同时,加强后进生的辅导和优等生的指导工作,强调组织纪律,实行分小组量化管理,把团队精神.集体观念融入教学中,调动学生学习积极性,全面提高本班的整体成绩。二、教材分析 :
本册教材内容包括:小数乘法、小数除法、简易方程、观察物体、多边形的面积、统计与可能性、数学广角和数学综合运用等。
第 1 页(一)数与代数方面
本册教材安排了小数乘法,小数除法和简易方程。小数乘法和除法是在学生掌握了整数的四则运算、小数的意义和性质以及小数加减法的基础上进行教学,继续培养学生小数的四则运算能力。简易方程中有用字母表示数、等式的性质、解简单的方程、用方程表示等量关系进而解决简单的实际问题等内容,进一步发展学生的抽象思维能力,提高解决问题的能力。
(二)在空间与图形方面,安排了观察物体和多边形的面积两个单元。在已有知识和经验的基础上,探索并体会各种图形的特征、图形之间的关系,及图形之间的转化,掌握平行四边形、三角形、梯形的面积公式及公式之间的关系,渗透平移、旋转、转化的数学思想方法,促进学生空间观念的进一步发展。
(三)在统计与概率方面,本册教材让学生学习有关可能性和中位数的知识。通过操作与实验,让学生体验事件发生的等可能性以及游戏规则的公平性,学会求一些事件发生的可能性;在平均数的基础上教学中位数。
(四)在用数学解决问题方面,教材一方面结合小数乘法和除法两个单元,教学用所学的乘除法计算知识解决生活中的简单问题;另一方面,安排了“数学广角”的教学内容,通过观察、猜测、实验、推理等活动,培养他们探索数学问题
第 2 页 的兴趣和发现、欣赏数学美的意识。
(五)本册教材还安排了两个数学综合应用的实践活动,让学生通过小组合作的探索活动,运用所学知识解决问题,体会探索的乐趣和数学的实际应用,感受用数学的愉悦,培养数学意识和实践能力。 三、教学目标
1、使学生在理解小数的意义和性质的基础上。比较熟练地进行小数乘法和小数除法的笔算和简算。
2、使学生学会用字母表示数,表示常见的数量关系,初步理解方程的含义,会解简易方程。3、探索并掌握平行四边形、三角形和梯形面积的计算公式,会计算它们的面积。4、能辨认从不同方位看到的物体的形状和相对公式。5、理解中位数的意义,会求数据的中位数。
6、体验事件发生的等可能性以及游戏规则的公平,会求一些事件发生的可能性;能对简单事件发生的可能性作出预测,进一步体会概率在现实生活中的作用。培养学生的环保意识,争做环保小卫士,向周边的居民宣传有关禁毒知识,做禁毒宣传的小能手。
7、经历从实际生活中发现问题、提出问题、解决问题的过程。体会数学在日常生活中的作用,初步形成综合运用数学知识解决问题的能力。
8、初步了解数字编码的思想方法,培养发现生活中数学的第 3 页 意识,初步形成观察、分析及推理的能力。
9、体会学习数学的乐趣,提高学习的兴趣,建立学好数学的信心。
10、养成认真作业、书写整洁的良好习惯。 四、教学重难点
1、小数乘法、除法,简易方程,多边形的面积,统计与可能性等是本册教材的重点教学内容。
2、理解小数乘、除法的算理,理解用字母表示数的意义,理解用字母表示数的公式,理解方程的意义及等式的基本性质,根据题意分析数量间的相等关系,理解多边行面积公式的推导过程。 五、教学措施
1、加强学习目的性教育,充分挖掘学生的潜能,发挥学生的主体作用。
2、增强学生的动手实践活动,培养学生的空间观念。 3、加强个别辅导,提高学困生的学习成绩。
4、多创设学习情景,大胆放手让学生自学,解疑问难,发展学生的个性特长。
5、注意加强数学与实际生活联系,让学生在活动中解决数学问题,感受、体验理解数学。 6、合作探究,拓展引申。六、课时安排
第 4 页 1.小数的乘法 7课时 2.平移与旋转 4课时 3.小数除法 11课时 4.简易方程 9课时 5.多边形的面积 13课时 6.因数与倍数 5课时
7.统计 4课时
以上是查字典数学网为大家准备的五年级小学数学上册教学计划,希望对大家有所帮助。
第 5 页
七年级上册数学课件
为了教学更加顺利,老师需要提前准备教案和课件,并且每份课件都需要设计得更加完善。学生的反应可以帮助老师及时评估自己的教学效果。为了让您满意,编辑专门制作了“七年级上册数学课件”,但请注意,此页面的信息仅供参考,请慎重对待!
七年级上册数学课件 篇1
我今天说课的课题是人教版义务教育课程标准实验教科书七年级数学上册第二章第1节《整式》第一课时“单项式”。下面我从:教材的分析、教法与学法及教学手段、教学过程、板书设计四部分来说这一节课,其中,教学过程分为:创设情境导入新课、新课讲解、小结作业三部分;整个过程是先由实际问题引入新课,让学生自然走入文本。合作交流去感受知识获取的过程,并且运用所学的知识解决相关的问题。
1、教材地位与作用。
就本节课而言,着重阐述了两个方面,一是因式分解的概念,二是与整式乘法的互逆关系。它是继整式乘法的基础上来讨论因式分解概念,继而,通过探究与整式乘法的关系,来寻求因式分解的原理。这一思想实质贯穿后继学习的各种因式分解方法。通过本节课的学习,不仅使学生掌握因式分解的概念和原理,而且又为后面学习因式分解作好了充分的准备。因此,它起到了承上启下作用。
2、教学目标。
根据单项式这一节课的内容,对于掌握各种单项式的系数和次数方法,乃至整个代数教学中的地位和作用,我制定了以下教学目标:
(一)知识目标:
1、理解单项式及单项式系数、次数的概念。
2、会准确迅速地确定一个单项式的系数和次数。
(二)能力目标:
1、初步培养学生观察、分析、抽象、概括等思维能力和应用意识。
2、通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力。
(三)情感目标:
1、通过参与对单项式概念的探究活动,提高学习数学的兴趣。
2、培养学生积极主动参与的意识,使学生形成自主学习、合作学习的良好的学习习惯。
3、教学重点与难点。
本节课理解单项式的概念及组成是学习本节单项式的关键,而学生由数到式的变形是一个由质到量变化的抽向思维。学生对新概念的形成有一定的障碍。因此我将本课的学习重点、难点确定为:
重点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数。
2/教法与学法及教学手段。
教法:为让学生体验单项式概念产生的过程;以及概念的形成和同化相结合,促进学生对单项式概念的理解;同时让学生主动暴露思维过程,及时得到信息的反馈。我采用先学后导-自主合作-问题评价教学。
学法:针对教法,在教学的过程中引导学生自主的学习:让学生去亲身体验单向式形成的过程,使学生的认识知识、感受知识,学生在活动的过程中积极参与,主动获取知识,体现了以学生为主体的新教学理念,结合教材内容,让学生“自主探索、合作交流”。通过同学之间相互讲解、演示、操作等方法让学生开动脑筋,互相讨论,找出解决问题的方法。使学生逐步地形成技能技巧,从而获得能力。
教学手段:利用多媒体辅助教学,可以加大一堂课的信息容量,极大提高学生的学习兴趣,电脑软件的交互性,可以很好地体现教师在教学过程中的思路和策略。
第一环节,设置实际问题,激发学习兴趣:
兴趣是最好的老师,可以激发情感,唤起某种动机,从而引导学生成为学习的主人。若能利用短短几分钟时间,在刚开始就激发学生的兴趣,这正是老师追求的一个目标。所以这个环节我设置以下的问题:青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段,列车在冻土地段的行驶速度是100千米/时,在非冻土地段的行驶速度可以达到120千米/时,请根据这些数据回答问题:
列车在冻土地段行驶时,2小时能行驶多少千米?3小时呢?t小时呢?
(让学生思考、利用已有的学习经验轻松解答,对整节的学习也创设了良好的情绪状态。)数学教学要紧密联系学生的生活实际,这是新课程标准所赋予的任务。让学生列代数式不仅复习前面的知识,更是为下面给出单项式埋下伏笔,同时使学生受到较好的思想品德教育。
单项式的概念,借助于学生已有的能用字母表示是数的基础,给学生提供一些问题背景,同时给学生留有充分思考的空间,。这个环节围绕几个问题展开,在积极的状态下,用观察-猜想-验证-自主学习的方法,找到新知生长点,把数的有关知识正迁移到式,由学生自己给出单项式的名称,引出课题,显得顺理成章。
利用多媒体课件,依次出示,让学生回答。
1、(回顾旧知)计算:
(1)边长为a的正方体的表面积为,体积为()。
(2)铅笔的单价是x元,圆珠笔的单价是铅笔单价的2.5倍,圆珠笔的`单价是()元。
(3)一辆汽车的速度是v千米/时,它t小时行驶的路程为()。
(4)数n的相反数是()。
给学生一定的时间思考,在学生原有的知识结构建成的基础上,得出答案。符合学生的认知规律。
2、(走入文本,自主学习)我们看看列出的式子有什么特点?对此大家都有一定的想法,也许一样,也许不一样。其实在我们的教材中给出了他们的说法,这样大家可以借助教材55页第二自然段-四自然段内容来验证一下。大家先独立阅读学习,然后前后每4人为一组相互交流,体验自己的收获,认识不足的地方大家可以相互弥补。这一设计,主要目的是以教材为中心为学生营造自主合作学习的氛围,形成新的学习方式。符合数学课程标准中指出:主动参与特定的数学活动,通过观察,探索获得数学的知识经验。”实现培养学生积极主动参与的意识,使学生形成自主学习、合作学习的良好的学习习惯。这个情感目标。同时对于学生的收获及时地整理,使获得成就感。
第三环节初步应用,巩固新知:趁此时学生处在一个积极思维的状态,教师给出练习。
1、判断下列各代数式哪些是单项式?
(1);(2)abc;(3)b2;(4)-5ab2;(5)y+x;(6)-xy2;(7)-5。
△这安排是为通过尝试教学,引导学生主动探究,造求学生自主学习的积极势态,通过一定的练习,达到知觉水平上的运用,加深学生对单项式概念的理解,从而突出本节课的重点,同时寻求认识单项式的方法,为下一个环节例题的讲解作了个铺垫,降低了本节课的难点。
用单项式填空,并指出它们的系数和次数:
(1)每包书有12册,n包书有()册;
(2)底边长为a,高为h的三角形的面积();
(3)一个长方体的长和宽都是a,高是h,它的体积是();
(4)一台电视机原价a元,现按原价的9折出售,这台电视机现在的售价为()元;
(5)一个长方形的长是0.9,宽是a,这个长方形的面积是()。
1、为了进一步淡化难点,完全放手让学生自主进行,充分暴露学生的思维过程,展现学生生动活泼、主动求知所富有的个性,使学生真正成为学习的主体,我马上让学生模仿解题尝试练习:
例1:判断下列各代数式是否是单项式。如不是,请说明理由;如是,请指出它的系数和次数。
①x+1;②;③πr2;④-a2b。
下面各题的判断是否正确?
①-7xy2的系数是7;②-x2y3与x3没有系数;③-ab3c2的次数是0+3+2;
④-a3的系数是-1;⑤-32x2y3的次数是7;⑥πr2h的系数是。
3、填空:
学生接受单项式的定义不是很难,但是做到判断无误却很困难,需要通过练习,反复强调单项式判断标准及单项式中的系数和次数的不同和概念中要求,比如只有字母的系数的不是1就是-1,单独一个字母的指数是1等知识出现的思维错觉必须学生通过甄别、理解,逐步提高准确度和熟练度。同时及时总结提升经验。
第五环节知识整理,归纳小结:
让学生形成善于归纳、总结的学习方式。当学生把所获得的数学内容与原有的认知结构建立起密切的多方面的联系时,才能更有效地掌握数学内容。能够提高学生的归纳总结能力和语言表达能力。因此,学生形成归纳总结的学习方式是必须的。
本节课是研究整式的起始课,它是进一步学习多项式的基础,因此对单项式有关概念的理解和掌握情况,将直接影响到后续学习。为突出重点,突破难点,教学中要加强直观性,即为学生提供足够的感知材料,丰富学生的感性认识,帮助学生认识概念,同时也要注重分析,亦即在剖析单项式结构时,借助反例练习,抓住概念易混淆处和判断易出错处,强化认识,帮助学生理解单项式系数、次数,为进一步学习新知做好铺垫。
针对七年级学生学习热情高,但观察、分析、认识问题能力较弱的特点,教学时将以启发为主,同时辅之以讨论、练习、合作交流等学习活动,达到掌握知识的目的,并逐步培养起学生观察、分析、抽象、概括的能力,为进一步学习同类项打下坚实的基础。
七年级上册数学课件 篇2
教学内容:
人教版小学数学教材六年级下册第107页例1及相关练习。
教学目标:
1.体会数与形的联系,进一步积累数形结合数学活动经验,培养学生数形结合的数学思想意识。
2.体验数形结合的数学思想方法价值,激发学生用数形结合思想方法解决问题的兴趣,感受数学的魅力。
3.在解决数学问题的过程中,体会和掌握数形结合、归纳推理等基本的数学思想。
重点难点:
积累数形结合数学活动经验,体验数学思想方法的价值,激发兴趣。
教学准备:
课件,不同颜色的小正方形。
学具准备:
不同颜色的小正方形,吸铁板,作业纸。
教学过程:
一、谈话导入,出示课题
教师:最近老师发现,我有一项非常神奇的本领。什么本领呢?我发现只要从1开始的连续奇数相加,比如,1+3,1+3+5……像这样的算式,我都算得特别快。你们信吗?
教师:不信也没关系,我们现场来比一比。
师生比赛,看谁算得快。
教师:这个方法快吗?你们想不想也像老师一样算得快呢?
教师:老师给你们一点点提示,我是借助图形发现这个方法的,今天这节课我们就来研究──数与形(板书)。
【设计意图】从谈话导入,通过设置悬念,激发学生学习兴趣,从而顺理成章地引出课题。
二、动手实践,以形解数
1.教师:我先根据算式中的加数拿出若干个图形。比如,1+3,我就先拿一个小正方形,再拿三个小正方形(贴在黑板上),我发现这些数量的小正方形刚好可以拼成一个大正方形,那我就把它们拼成一个大的正方形。
教师:接着,我观察图形和算式之间的关系,就发现了可以快速算得结果的方法,你们想不想自己试试看?
教师:先来两个加数的,再来三个加数的。请同学们在小组内先完成第一步,再完成第二步,看看哪个小组最先发现老师的.方法。
2.小组动手操作,教师巡视。
3.学生汇报,全班交流分析。
先讨论1+3,再讨论1+3+5。
教师:根据同学们的汇报,大家认为1+3=22,1+3+5=32。除了这两组同学的汇报,你们还有其他发现吗?
学生:算式中加数的个数是几,和就等于几的平方。
教师:你们认同他的方法吗?能不能举个具体的例子来说一说?
学生1:1+3+5+7+9=52。
学生2:1+3+5+7+9+11=62。
教师:那我们从头来看一看。请看屏幕:1+3+5+7+9=(52)。
教师:一个小正方形可以看成12,想要拼成一个更大的正方形,再增加1个是不够的,增加的个数要比前一个加数再多2(也就是3);想拼成更大的正方形,再增加3个是不够的,还要比3个再多2个(也就是5个),此时是1+3+5;再往下去,要加7才能拼成更大的正方形,依此类推,加到了9,就能排成每行、每列的个数是5的大正方形。
教师:那看来只要是1开始的,连续的奇数相加,就能排成每行、每列个数是几的大正方形,和也就是几的平方。
4.练习。
(1)1+3+5+7+9=( )2;
1+3+5+7+9+11+13=( )2;
____________________________=92。
教师请学生独立完成,然后全班核对答案。
(2)利用规律,算一算。
1+3+5+7+5+3+1=( );
1+3+5+7+9+11+13+11+9+7+5+3+1=( )。
全班交流,请学生说明计算结果和原因。
5.小结。
教师:我们同学都很细心,现在不但能很快算出从1开始的连续奇数的和,稍加一点变化,你们也照样算得很快。现在知道老师是用什么方法来快速计算这些题的吧?
教师:这么巧妙的方法,我们是借助什么发现的?(图形)。看来,有的计算问题借助图形解决会更容易。就像这个题一样,我们借助图形发现了更巧妙、更简便的方法。
【设计意图】充分让学生动手实践,感受如何将数和形结合,体会数和形之间的紧密联系,同时让学生感受到“形”可以展示“数”的特点,通过“形”使解决“数”的问题变得更加容易。
三、练习巩固
1.下面每个图中各有多少个红色小正方形和多少个蓝色小正方形?
学生回答,课件出示答案。
教师:请你认真思考、观察,上边的图形和对应的数之间有什么规律?四人小组交流。
教师:刚才有一个同学说,蓝色的小正方形顺次增加1个,红色的小正方形顺次增加2个。为什么蓝色的小正方形每次增加1个,而红色的小正方形每次增加2个呢?
教师:我们一起来看一看。第一个图形,若要增加1个蓝色小正方形,其上方、下方就要各增加1个红色小正方形;依此类推,第三个图形在第二个图形的基础上增加了1个蓝色小正方形,则红色小正方形就要增加几个?
教师:如果不让你看图,照这样画下去,第6个和第10个图形各有几个红色小正方形和蓝色小正方形呢?你能写出来吗?在草稿本上写一写。
教师请学生介绍,说说是怎么算出来的。
教师:观察发现,图形中左右两侧的红色小正方形个数固定不变(为6个),在中间部分,蓝色小正方形的个数乘以2就是红色小正方形的个数。即使在蓝色小正方形个数较多的情况下,仍然可以算得很快,看来图形问题确实也蕴涵着数的规律。找到了其中的规律,解决问题就清晰、容易多了。
2.课件出示教材第109页练习二十二第2题。
(1)教师:上方有图,下方有对应的数字,请你观察和思考,图和数之间有什么规律?小组交流一下。
全班交流。
学生:第2个图形中小圆的个数为1+2,第3个图形中小圆的个数为1+2+3,第4个图形中小圆的个数为1+2+3+4。
学生:是第几个图形,其中就有几行小圆。
教师:照这个规律往下画,你能画出来吗?图形下方的数字表示的是什么?第5个、第6个、第7个图形下方的数,你能不能很快写出来?
教师请学生独立完成在练习纸上。
教师请学生汇报,说说是怎么得到结果的。
教师:图形中的最后一行是第几行?含有几个小圆?
教师:现在如果老师不让你画图,你能不能想象一下第10个图形,它是什么样子的?一共有多少个小圆呢?现在我们就不画图,算一算,第10个图形下方的那个数是多少?能算出来吗?动笔试一试。
展示学生作品,请学生介绍方法。
(2)教师介绍“三角形数”“正方形数”。
教师:同学们发现没有,55个小圆能排成什么图形?(三角形)而且这个三角形的每一行的小圆的个数分别是从1到10。
教师:回过头来看看。3、6、10、15、21呢?它们是否也具有同样的特点?
教师:在数学上,我们把1、3、6、10、15、21、28这样的数称为“三角形数”。请同学们想一想,28后面的下一个三角形数是多少?(36)
教师:大家再看,一个图形,如果是4个小正方形可以拼成大正方形,如果是9个小正方形可以拼成大正方形,16个小正方形也可以拼成大正方形。像这样的数,我们称之为“正方形数”。
【设计意图】通过两个练习,让学生进一步体会数形结合的特点,感受用形来解决数的有关问题的直观性与简捷性。在练习中充分让学生动脑、动口、动手,在交流中发现特点,解决问题。
四、回顾反思
教师:今天这节课,我们一起学习了“数与形”,说说你有什么收获?
课后反思:
形的问题中包含着数的规律,数的问题也可以用形来帮助解决,教学时,让学生通过解决问题体会到数与形的完美结合,通过数与形的对应关系,相互印证结果,发现“和”都是“平方数”,再通过图形的规律理解“平方数”(即正方形数)的含义,并让学生大胆说出自己发现的其他规律,从不同角度寻找规律,例如从第一个图到第三个图,每次增加多少个小正方形,用加法怎样列式,加数都是连续奇数,这些奇数在图中什么地方,从而对规律形式更直观的认识。
七年级上册数学课件 篇3
教学目标:
知识与能力
能正确运用角度表示方向,并能熟练运算和角有关的问题。
过程与方法
能通过实际操作,体会方位角在是实际生活中的应用,发展抽象思维。
情感、态度、价值观
能积极参与数学学习活动,培养学生对数学的好奇心和求知欲。
教学重点:方位角的表示方法。
教学难点:方位角的准确表示。
教学准备:预习书上有关内容
预习导学:
如图所示,请说出四条射线所表示的方位角?
教学过程;
一、创设情景,谈话导入
在现实生活中,有一种角经常用于航空、航海,测绘中领航员常用地图和罗盘进行这种角的测定,这就是方位角,方位角应用比较广泛,什么是方位角呢?
二、精讲点拔,质疑问难
方位角其实就是表示方向的角,这种角以正北,正南方向为基准描述物体的方向,如“北偏东30°”,“南偏西40°”等,方位角不能以正东,正西为基准,如不能说成“东偏北60°,西偏南50°”等,但有时如北偏东45°时,我们可以说成东北方向。
三、课堂活动,强化训练
例1如图:指出图中射线OA、OB所表示的方向。
(学生个别回答,学生点评)
例2若灯塔位于船的北偏东30°,那么船在灯塔的什么方位?
(小组讨论,个别回答,教师)
例3如图,货轮O在航行过程中发现灯塔A在它的南偏东60°的方向上,同时在它北偏东60°,南偏西10°,西北方向上又分别发现了客轮B,货轮C和海岛D,仿照表示灯塔方位的方法,画出表示客轮B、货轮C、海岛D方向的射线。
(教师分析,一学生上黑板,学生点评)
四、延伸拓展,巩固内化
例4某哨兵上午8时测得一艘船的位置在哨所的南偏西30°,距哨所10km的地方,上午10时,测得该船在哨所的北偏东60°,距哨所8km的地方。
(1)请按比例尺1:000画出图形。
(独立完成,一同学上黑板,学生点评)
(2)通过测量计算,确定船航行的`方向和进度。
(小组讨论,得出结论,代表发言)
五、布置作业、当堂反馈
练习:请使用量角器、刻度尺画出下列点的位置。
(1)点A在点O的北偏东30°的方向上,离点O的距离为3cm。
(2)点B在点O的南偏西60°的方向上,离点O的距离为4cm。
(3)点C在点O的西北方向上,同时在点B的正北方向上。
作业:书P1407、9
七年级上册数学课件 篇4
学习目标:
了解平移的概念,会进行点的平移,理解平移的性质,能解决简单的平移问题
1、观察上面图形,我们发现他们都有一个局部和其他部分重复,如果给你一个局部,你能复制他们吗?
2如何在一张半透明的纸上,画出一排形状和大小如图的雪人?
2、在平面内,将一个图形沿某个方向___一定的距离,这样的图形运动称为平移,平移改变的是图形的_____。平移不改变图形的____和____。
3、图形的平移是由_____和_____决定的。
4、经过平移所得的图形与原来的图形的对应线段_______,对应角____,对应点所连的线段____。
5、如图1,ABC平移到DEF,图中相等的线段有_____________,相等的角有____________,平行的线段有______________。
6、把一个ABC沿东南方向平移3cm,则AB边上的中点P沿___方向平移了__cm。
7、如图,ABC是由四个形状大小相同的三角形拼成的,则可以看成是ADF平移得到的小三角形是___________。
8、如图,DEF是由ABC先向右平移__格,再向___平移___格而得到的。
11、如图,有一条小船,若把小船平移,使点A平移到点B,请你在图中画出平移后的小船。
12、如图,平移三角形ABC,使点A运动到A`,画出平移后的三角形A`B`C`。
1、一个图形________________________叫做平移变换,简称平移。
2、下列各组图形中,可以经过平移变换由一个图形得到另一个图形的是
3、如图,O是正六边形ABCDEF的中心,下列图形中可由OBC平移得到的是()
1、平移后的图形与原图形_____、______完全相同,新图形中的每一个点,都是由___________________移动后得到的,这两个点是对应点,连接各组对应点的线段______且________或__________,对应角_______。
2、如图,将梯形ABCD的腰AB沿AD平移,平移长度等于AD的长,则下列说法不正确的是()
3、ABC沿BC的方向平移到DEF的位置,(1)若∠B=260,∠F=740,则∠1=_______,∠2=______,∠A=_______,∠D=______
(2)若AB=4cm,AC=5cm,BC=4.5cm,EC=3.5cm,则平移的距离等于________,DF=_______,CF=_________。
(1)向上平移2个单位长度。
(2)再向右移3个单位长度。
2、已知三角形ABC、点D,D为A的对应点。过点D作三角形ABC平移后的图形。
A、沿射线EC的方向移动DB长;
C、沿射线BD的方向移动BD长;
3、下列四组图形中,有一组中的两个图形经过平移其中一个能得到另一个,这组图形是()
A、∠F,ACB。∠BOD,BA;C。∠F,BAD。∠BOD,AC
A、互相平行且相等;B。互相垂直且相等C。互相平行(或在同一条直线上)且相等
1、在平移过程中,平移后的图形与原来的图形________和_________都相同,因此对应线段和对应角都________。
2、如图所示,平移ABC可得到DEF,如果∠A=50°,∠C=60°,那么∠E=____度,∠EDF=_______度,∠F=______度,∠DOB=_______度。
1、如图所示,将ABC平移,可以得到DEF,点B的对应点为点E,请画出点A的对应点D、点C的对应点F的位置。
2、如图所示,请将图中的“蘑菇”向左平移6个格,再向下平移2个格。
3、如图所示,画出平行四边形ABCD向上平移1厘米后的图形。
4、如图,将ABC沿水平方向平移3cm。
5、直角ABC中,AC=3cm,BC=4cm,AB=5cm,将ABC沿CB方向平移3cm,则边AB所经过的平面面积为____cm2。
6、一个长方形竹园长20米,宽12米,竹园有一条横向宽度都为1.5米的小径(如图)。你能求出这个竹园中竹子的种植面积吗(除去小径的面积)?请说明理由。
七年级上册数学课件 篇5
知识与技能:
理解移项法则,会解形如ax+b=cx+d的方程,体会等式变形中的化归思想.
过程与方法:
1、能够从实际问题中列出一元一次方程,进一步体会方程模型思想的作用及应用价值.
2、经历探索移项法则法的过程,发展观察、归纳、猜测、验证的能力。
情感、态度与价值观:
结合实际问题,探索用移项法则解一元一次方程的方法,进一步认识数学来源于生活,并为生活服务,从而学生学习数学的兴趣和学好数学的信心。
确定实际问题中的相等关系,建立形如ax+b=cx+d的方程,并利用移项和合并同类项的方法解一元一次方程.
确定相等关系并列出一元一次方程,正确地进行移项并解出方程。
一、情景引入:
约公元825年,中亚细亚数学家阿尔—花拉子米写了一本代数书,重点论述怎样解方程.这本书的拉丁译本取名为《对消与还原》。对消,顾名思义,就是将方程中各项成对消除的意思.相当于现代解方程中的“合并同类项”,那“还原”是什么意思呢?
2. 把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生?
观察上列一元一次方程,与上题的类型有什么区别?
3.新知学习请运用等式的性质解下列方程:
问题2 你能说说由方程到方程的变形过程中有什么变化吗?
移项的定义:一般地,把方程中的某些项改变符号后,从方程的一边移到另一边,这种变形叫做移项。
移项的依据及注意事项:移项实际上是利用等式的性质1.注意:移项一定要变号。
例1 解下列方程:
移项时需要移哪些项?为什么?
(1) 5x-7=2x-10; (2) -0.3x+3=9+1.2x.
例2 某制药厂制造一批药品,如果用旧工艺,则废水排量要比环保限制的最大量还多200 t;如果用新工艺,则废水排量要比环保限制的最大量少100 t.新旧工艺的废水排量之比为2:5,两种工艺的废水排量各是多少?21
1. 对方程 7x = 6 + 4x 进行移项,得___________,合并同类项,得_________,系数化为1,得________.
2. 小新出生时父亲28岁,现在父亲的年龄比小新年龄的3倍小2岁. 求小新现在的年龄.
3. 在一张普通的月历中,相邻三行里同一列的三个日期数之和能否为30?如果能,这三个数分别是多少?
1.必做题:教科书第91页习题3.2第3(3),(4),11题。
2.选做题:
(1)周末,甲、乙两个商场搞促销活动,甲商场的活动为所有商品全部按标价的8折出售,乙商场的活动为标价200元以下的商品按标价出售,超出200元的部分打7折.现有某件商品在两个商场的标价都为400元,应当在哪个商场购买更实惠?如果标价为600元呢?为800元呢?你能否给顾客一些建议,以便获得更大的实惠呢?
七年级上册数学课件 篇6
教学目标
1.知识与技能
①理解有理数的意义.②能把给出的有理数按要求分类.③了解0在有理数分类的作用.
2.过程与方法
经历本节的学习,培养学生树立分类讨论的观点和能正确地进行分类的能力.
3.情感、态度与价值观
通过联系与发展、对立与统一的思考方法对学生进行辩证唯物主义教育.
教学重点难点
重点:会把所给的各数填入它所在的数集的图里.难点:掌握有理数的两种分类.
教与学互动设计
(一)创设情境,导入新课
讨论交流现在,同学们都已经知道除了我们小学里所学的数之外,还有另一种形式的数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.
(二)合作交流,解读探究
学生列举:3,5.7,-7,-9,-10,0,-3,-7.4,5.2…
议一议你能说说这些数的特点吗?
学生回答,并相互补充:有小学学过的整数、0、分数,也有负整数、负分数.
说明:我们把所有的这些数统称为有理数.
七年级上册数学课件 篇7
第一课时
教学目的
让学生通过独立思考,积极探索,从而发现;初步体会数形结合思想的作用。
重点、难点
1.重点:通过分析图形问题中的数量关系,建立方程解决问题。
2.难点:找出“等量关系”列出方程。
教学过程
一、复习提问
1.列一元一次方程解应用题的步骤是什么?
2.长方形的周长公式、面积公式。
二、新授
问题3.用一根长60厘米的铁丝围成一个长方形。
(1)使长方形的宽是长的专,求这个长方形的长和宽。
(2)使长方形的宽比长少4厘米,求这个长方形的面积。
(3)比较(1)、(2)所得两个长方形面积的大小,还能围出面积更大的长方形吗?
不是每道应用题都是直接设元,要认真分析题意,找出能表示整个题意的等量关系,再根据这个等量关系,确定如何设未知数。
(3)当长方形的长为18厘米,宽为12厘米时
长方形的面积=18×12=216(平方厘米)
当长方形的长为17厘米,宽为13厘米时
长方形的面积=221(平方厘米)
∴(1)中的长方形面积比(2)中的长方形面积小。
问:(1)、(2)中的长方形的长、宽是怎样变化的?你发现了什么?如果把(2)中的宽比长少“4厘米”改为3厘米、2厘米、1厘米、0.5厘米长方形的面积有什么变化?猜想宽比长少多少时,长方形的面积最大呢?并加以验证。
实际上,如果两个正数的和不变,当这两个数相等时,它们的积最大,通过以后的学习,我们就会知道其中的道理。
三、巩固练习
教科书第14页练习1、2。
第l题等量关系是:圆柱的体积=长方体的体积。
第2题等量关系是:玻璃杯中的水的体积十瓶内剩下的水的体积=原来整瓶水的体积。
四、小结
运用方程解决问题的关键是抓住等量关系,有些等量关系是隐藏的,不明显,要联系实际,积极探索,找出等量关系。
五、作业
教科书第16页,习题6.3.1第1、2、3。
第二课时
教学目的
通过分析储蓄中的数量关系、商品利润等有关知识,经历运用方程解决实际问题的过程,进一步体会方程是刻画现实世界的有效数学模型。
重点、难点
1.重点:探索这些实际问题中的等量关系,由此等量关系列出方程。
2.难点:找出能表示整个题意的等量关系。
教学过程
一、复习
1.储蓄中的利息、本金、利率、本利和等含义,关系:利息=本金×年利率×年数
本利和=本金×利息×年数+本金
2.商品利润等有关知识。
利润=售价-成本 ; =商品利润率
二、新授
问题4.小明爸爸前年存了年利率为2.43%的二年期定期储蓄,今年到期后,扣除利息税,所得利息正好为小明买了一只价值48.6元的计算器,问小明爸爸前年存了多少元?
利息-利息税=48.6
可设小明爸爸前年存了x元,那么二年后共得利息为
2.43%×X×2,利息税为2.43%X×2×20%
根据等量关系,得 2.43%x·2-2.43%x×2×20%=48.6
问,扣除利息的20%,那么实际得到的利息是多少?扣除利息的20%,实际得到利息的80%,因此可得
2.43%x·2·80%=48.6
解方程,得 x=1250
例1.一家商店将某种服装按成本价提高40%后标价,又以8折 (即按标价的80%)优惠卖出,结果每件仍获利15元,那么这种服装每件的成本是多少元?
大家想一想这15元的`利润是怎么来的?
标价的80%(即售价)-成本=15
若设这种服装每件的成本是x元,那么
每件服装的标价为:(1+40%)x
每件服装的实际售价为:(1+40%)x·80%
每件服装的利润为:(1+40%)x·80%-x
由等量关系,列出方程:
(1+40%)x·80%-x=15
解方程,得 x=125
答:每件服装的成本是125元。
三三、巩固练习
教科书第15页,练习1、2。
四、小结
当运用方程解决实际问题时,首先要弄清题意,从实际问题中抽象出数学问题,然后分析数学问题中的等量关系,并由此列出方程;求出所列方程的解;检验解的合理性。应用一元一次方程解决实际问题的关键是:根据题意首先寻找“等量关系”。
五、作业
教科书第16页,习题6.3.1,第4、5题。
三课时
教学目的
借助“线段图”分析复杂的行程问题中的数量关系,从而建立方程解决实际问题,发展分析问题,解决问题的能力,进一步体会方程模型的作用。
重点、难点
1.重点:列一元一次方程解决有关行程问题。
2.难点:间接设未知数。
教学过程
一、复习
1.列一元一次方程解应用题的一般步骤和方法是什么?
2.行程问题中的基本数量关系是什么?
路程=速度×时间 速度=路程 / 时间
二、新授
例1.小张和父亲预定搭乘家门口的公共汽车赶往火车站,去家乡看望爷爷,在行驶了三分之一路程后,估计继续乘公共汽车将会在火车开车后半小时到达火车站,随即下车改乘出租车,车速提高了一倍,结果赶在火车开车前15分钟到达火车站,已知公共汽车的平均速度是40千米/时,问小张家到火车站有多远?
画“线段图”分析, 若直接设元,设小张家到火车站的路程为x千米。
1.坐公共汽车行了多少路程?乘的士行了多少路程?
2.乘公共汽车用了多少时间,乘出租车用了多少时间?
3.如果都乘公共汽车到火车站要多少时间?
4,等量关系是什么?
如果设乘公共汽车行了x千米,则出租车行驶了2x千米。小张家到火车站的路程为3x千米,那么也可列出方程。
可设公共汽车从小张家到火车站要x小时。
设未知数的方法不同,所列方程的复杂程度一般也不同,因此在设未知数时要有所选择。
三、巩固练习
教科书第17页练习1、2。
四、小结
有关行程问题的应用题常见的一个数量关系:路程=速度×时间,以及由此导出的其他关系。如何选择设未知数使方程较为简单呢?关键是找出较简捷地反映题目全部含义的等量关系,根据这个等量关系确定怎样设未知数。
四、作业
教科书习题6.3.2,第1至5题。
第四课时
教学目的
1.理解用一元一次方程解工程问题的本质规律;通过对“工程问题”的分析进一步培养学生用代数方法解决实际问题的能力。
2.理解和掌握基本的数学知识、技能、数学思想方法,获得广泛的数学活动经验,提高解决问题的能力。
重点、难点
重点:工程中的工作量、工作的效率和工作时间的关系。
难点:把全部工作量看作“1”。
教学过程
一、复习提问
1.一件工作,如果甲单独做2小时完成,那么甲独做I小时完成全
部工作量的多少?
2.一件工作,如果甲单独做。小时完成,那么甲独做1小时,完成
全部工作量的多少?
3.工作量、工作效率、工作时间之间有怎样的关系?
二、新授
阅读教科书第18页中的问题6。
分析:1.这是一个关于工程问题的实际问题,在这个问题中,已经知道了什么? 已知:制作一块广告牌,师傅单独完成需4天,徒弟单独做要6天。
2.怎样用列方程解决这个问题?本题中的等量关系是什么?
[等量关系是:师傅做的工作量+徒弟做的工作量=1)
[先要求出师傅与徒弟各完成的工作量是多少?]
两人的工效已知,因此要先求他们各自所做的天数,因此,设师傅做了x天,则徒弟做(x+1)天,根据等量关系列方程。 解方程得 x=2
师傅完成的工作量为= ,徒弟完成的工作量为=
所以他们两人完成的工作量相同,因此每人各得225元。
三、巩固练习
一件工作,甲独做需30小时完成,由甲、乙合做需24小时完成,现
由甲独做10小时;
请你提出问题,并加以解答。
例如 (1)剩下的乙独做要几小时完成?
(2)剩下的由甲、乙合作,还需多少小时完成?
(3)乙又独做5小时,然后甲、乙合做,还需多少小时完成?
四、小结
1.本节课主要分析了工作问题中工作量、工作效率和工作时间之
间的关系,即 工作量=工作效率×工作时间
工作效率= 工作时间=
2.解题时要全面审题,寻找全部工作,单独完成工作量和合作完成工作量的一个等量关系列方程。
五、作业
教科书习题6.3.3第1、2题。
七年级上册数学课件 篇8
教学目标:
1、能将正方体、长方体、棱锥、棱柱展开成平面图形;并由它们的平面图形折叠成立体图形
2、在操作活动中认识棱柱的某些特性;
3、经历折叠、模型制作等活动,发展空间观念,积累数学活动经验;
教学重点:
通过活动认识归纳出棱柱的特性,并能初步感受到研究空间问题的思维方法
教学难点:
根据简单的立体图形判别平面图形;反之,根据平面图形判别立体图形。
教学过程:
一、导入情境
让学生自己出示现实生活中某些商品的包装盒(课前准备工作),制作这些纸盒,我们是先根据它们表面展开后图形的形状剪裁纸张,再折叠围成,从而引入课题——展开与折叠。
二、通过动手操作,加强对图形(棱柱)的感受,体会棱柱的性质做一做
活动一:
1、如图1所示的平面图形经过折叠能否围成一个棱柱?请同学们以同桌的'形式动手做做看。
2、操作完后,请学生展示他们制作的模型。
3、实践验证图1所示的平面图形经过折叠可以围成如图2所示的棱柱。
4、教师介绍棱柱的各部分名称。
七年级上册数学课件 篇9
本节的重点是:单项式乘法法则的导出.这是因为单项式乘法法则的导出是对学生已有的数学知识的综合运用,渗透了“将未知转化为已知”的数学思想,蕴含着“从特殊到一般”的认识规律,是培养学生思维能力的重要内容之一.
本节的难点是:多种运算法则的综合运用.是因为单项式的乘法最终将转化为有理数乘法、同底数幂相乘、幂的乘方、积的乘方等运算,对于初学者来说,由于难于正确辩论和区别各种不同的运算以及运算所使用的法则,易于将各种法则混淆,造成运算结果的错误.
本节课在教学过程中的不同阶段可以采用了不同的教学方法,以适应教学的需要.
(1)在新课学习阶段的单项式的乘法法则的推导过程中,可采用引导发现法.通过教师精心设计的问题链,引导学生将需要解决的问题转化成用已经学过的知识可以解决的问题,充分体现了教师的主导作用和学生的主体作用,学生始终处在观察思考之中.
(2)在新课学习的'例题讲解阶段,可采用讲练结合法.对于例题的学习,应围绕问题进行,教师引导学生通过观察、思考,寻求解决问题的方法,在解题的过程中展开思维.与此同时还进行多次有较强针对性的练习,分散难点.对学生分层进行训练,化解难点.并注意及时矫正,使学生在前面出现的错误,不致于影响后面的学习,为后而后学习扫清障碍.通过例题的讲解,教师给出了解题规范,并注意对学生良好学习习惯的培养.
(3)本节课可以师生共同小结,旨在训练学生归纳的方法,并形成相应的知识系统,进一步防范学生在运算中容易出现的错误.
1.使学生理解并掌握单项式的乘法法则,能够熟练地进行单项式的乘法计算.
2.注意培养学生归纳、概括能力,以及运算能力.
3.通过单项式的乘法法则在生活中的应用培养学生的应用意识.
复习提问:
什么是单项式?什么叫单项式的系数?什么叫单项式的次数?
引言 我们已经学习了幂的运算性质,在这个基础上我们可以学习整式的乘法运算.先来学最简单的整式乘法,即单项式之间的乘法运算(给出标题).
(1)2x2y·3xy2; (2)4a2x2·(—3a3bx).
同学们按以下提问,回答问题:
①每个单项式是由几个因式构成的,这些因式都是什么?
①系数相乘为积的系数;
②相同字母因式,利用同底数幂的乘法相乘,作为积的因式;
③只在一个单项式里含有的字母,连同它的指数也作为积的一个因式;
④单项式与单项式相乘,积仍是一个单项式;
⑤单项式乘法法则,对于三个以上的单项式相乘也适用.
看教材,让学生仔细阅读单项式与单项式相乘的法则,边读边体会边记忆.
利用法则计算以下各题.
(2)(—5a2b3)·(—3a);
(3)(—5an+1b)·(—2a);
(4)(4×105)·(5×106)·(3×104).
=15a3b3;
=10an+2b;
=6·1016.
例2 计算以下各题(让学生回答):
(3)(—5amb)·(—2b2);
3y3;
(3) (—5amb)·(—2b2);
=18a4b3c.
小结 单项式与单项式相乘是整式乘法中的重要内容,它的运算法则的导出主要依据是,乘法的交换律与结合律以及幂的运算性质.
七年级上册数学课件 篇10
1.进一步理解字母表示数的意义,会用含字母的式子表示实际问题中的数量关系.
2.经历用含有字母的式子表示实际问题数量关系的过程,体会从具体到抽象的认识过程,发展符号意识.
进一步理解字母表示数的意义,会用含字母的式子表示实际问题中的数量关系.
分析题目中的数量关系,用式子表示数量关系.
(设计者: )
一、创设情境 明确目标
青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段.列车在冻土地段的行驶速度是100 km/h,列车在冻土地段的行驶时,根据已知数据求出列车行驶的路程.
(1)2 h行驶的路程是多少?3 h呢?t h呢?
(2)字母t表示时间有什么意义?如果用v表示速度,列车行驶的路程是多少?
(3)回顾以前所学的知识,你还能举出用字母表示数或数量关系的例子吗?
二、自主学习 指向目标
自学教材第54至55页,完成下列问题:
1.假设列车的行驶速度是100 km/h,根据路程、速度、时间之间的关系:路程=速度×时间,请写出:
(1)列车2 h行驶的路程为__200__km.
(2)列车3 h行驶的路程为__300__km.
(3)列车t h行驶的路程为__100t__km.
2.在含有字母的式子中如果出现乘号,通常将乘号写作__·__或__省略不写__.
三、合作探究 达成目标
用字母表示数
活动一:(1)苹果原价是每千克p元,按8折优惠出售,用式子表示现价;
(2)某产品前年的产量是n件,去年的产量是前年产量的m倍,用式子表示去年的产量;
(3)一个长方体包装盒的长和宽都是a cm,高是h cm,用式子表示它的体积;
(4)用式子表示数n的.相反数.
【展示点评】解答过程见教材第54页例1的解.含有字母的式子中如果出现乘号,写成“·”或省略不写.如第(3)小题,就不能写成a2·h.
【小组讨论】用字母表示数有什么意义?
【反思小结】字母可以表示任意的数,也可以表示特定意义的公式,还可以表示符合条件的某一个数,甚至可以表示具有某些规律的数,总之字母可以简明的将数量关系表示出来.
【针对训练】见“学生用书”.
用字母表示简单的数量关系
活动二:阅读教科书例2中的四个问题,思考:
顺水行驶时,船的速度=________+________;
逆水行驶时,船的速度=________-________.
解答过程见教材第55页例2的解答过程.
【展示点评】列式表示关系时,一定要搞清“和”、“差”、“积”、“倍”等关系.
【小组讨论】用含有字母的式子表示数量关系时,关键是什么?应注意什么问题?
【反思小结】用含有字母的式子表示数量关系时,关键是找准题目中的数量关系.
注意:1.用字母表示数时,数字与字母,字母与字母相乘,中间的乘号可以省略不写或用“·”表示;
2.字母和数字相乘时,省略乘号,并把数字放到字母前;
3.出现除式时,用分数的形式表示;
4.结果含加减运算的,需要带单位时,式子要用“()”;
5.系数是带分数时,带分数要化成假分数.
【针对训练】见“学生用书”.
四、总结梳理 内化目标
1.用字母表示数的意义.
2.用含有字母的式子表示数量关系的意义.
3.用含有字母的式子表示数量关系时要注意的问题.
实际问题―→用字母表示数―→用字母表示数量关系
《2.1整式》同步练习含答案
1. 其中长方形的长为a,宽为b.
(1)阴影部分的面积是多少?
(2)你能判断它是单项式或多项式吗?它的次数是多少?
《2.1整式》课后练习含答案
知识要点
1.单项式:只含有数和字母的乘积的代数式叫做单项式.单独的一个数或一个字母也是单项式.它的本质特征在于:
(1)不含加减运算;
(2)可以含乘、除、乘方运算,但分母中不能含有字母.
2.单项式的次数、系数:一个单项式中,所有字母的指数和叫做这个单项式的次数.单项式中的数字因数叫做这个单项式的系数.
3.多项式:几个单项式的和叫做多项式.多项式中,每个单项式叫做多项式的项,其中不含字母的项叫常数项.一个多项式中,次数最高的项的次数,叫做这个多项式的次数.
4.整式:单项和多项式统称整式.
七年级上册数学课件 篇11
学习目标:
知识:对顶角邻补角概念,对顶角的性质。
方法:图形结合、类比。
情感:合作交流,主动参与的意识。
学习重点:
对顶角的概念、性质。
学习难点及突破策略:
“对顶角相等”的探究;小组讨论
教学流程:
【导课】
同学们,你们看我左手拿着一块布,右手拿着一把剪刀,现在我用剪刀把布片剪开,同学们仔细观察,随着两把手之间的角逐渐变小,剪刀刃之间的角怎样变化?(学生答:也相应变小)如果把剪刀的构造看作两条相交的.直线,这就关系到两条相交直线所成的角的问题(板书课题)。
【阅读质疑,自主探究】
请大家阅读课本P,回答以下问题(自探提纲):
1、两条相交的直线所成的四个角中,两两相配共能组成几组对角?各组对角间存在着怎样的位置关系?存在怎样的大小关系?
2、什么样的两个角互为邻补角?什么样的两个角互为对顶角?
3、对顶角有什么性质?你是怎样得到的?
【多元互动,合作探究】
同学们阅读教材后,对自己不能解决的问题分小组讨论,然后老师针对自探提纲的问题让学生回答。先让学困生、中等生回答,优等生做补充、归纳,特别是问题3的第2问,最后老师强调:
1、注意“互为”的含义。邻补角和对顶角都是要两个角互为邻补角或对顶角。
2、“邻补角”这个名称,即包含了这两个角的位置关系,还包含了数量关系,对顶角一定是两条相交直线所构成的,这是一个前提条件。
3、“对顶角相等”的推导过程。
人教版六年级上册数学课件12篇
教案课件是每位老师必备的工具,因为每个人都需要为自己的教学计划创建教案课件。教案是专为学生学习特点而设计的重要工具,因此在编写教案课件时,老师需要注意什么呢?有关“人教版六年级上册数学课件”的内容,想要了解的小伙伴们可以看看这篇文章,它能够为你提供参考,希望有所帮助!
人教版六年级上册数学课件 篇1
一、教材分析
尊敬的各位老师,各位评委大家好,今天我说课的内容是义务教育课程标准实验教科书六年级上册圆的认识,圆是学生认识了长方形,正方形,三角形等平面图行后所要认识的小学阶段的又一种图形。学生认识圆应把握它的特点,借助多媒体使学生体会到圆所蕴涵的美学特征,本课教学针对的是六年级学生。他们已初步具备自主学习的能力和逻辑推理的能力,特别是结合多媒体教学使这成为现实。信息技术与课程整合,学生是学习过程的主体,多媒体教学成为学生学习的重要平台。
二、教学目标
根据数学课程标准与本课教材特点以及学生学情和设计理念,结合学生实际情况我制定了以下教学目标。在知识目标方面,使学生认识圆的个部分名称掌握圆的特征和画圆的方法,在技能目标方面,让学生在已有的知识经验基础上,熟练掌握用圆规画圆培养学生实际操作能力,在情感目标方面,我通过生动画面,图象,演示让学生感受到生活中圆的存在与作用,感受其神奇与蕴涵的美学价值。
三、教学重点与难点
根据本课的设计理念和目标设置确定本课的教学重点:通过多媒体演示及动手操作认识圆的圆心、半径及直径,掌握圆的特征,教学难点:掌握圆的特征,能熟练的画圆。
教法与学法:
根据本课的目标设置和重点难点特制定教法:以学定教,综合探究如情景陶冶法,学法是顺学而导,互助学习如师生互动学习法等。
四、教学流程
首先我通过传统节日中秋节引入圆形的概念,又结合多媒体课件演示,创设情景,展示生活中中随时都有圆的存在,让学生感受到圆的神奇进而激发学生的学习兴趣,顺利的导入到新课之中.然后让学生在课前准备好的圆形纸片上动手折一折,确定多条折痕都交于一点,这一点叫做圆心,用字母O表示。选择其中一条折痕,沿折痕画下来,分析这条折痕的特点,得到通过圆心且两端都在圆上的线段叫做直径,用字母d表示。从圆心向圆上画一条线段,给出从圆心到圆上任意一点的线段叫做半径,用字母r表示。
其次,我会让学生自己去探索新知,此时我会播放课件:在同一个圆里:你能画多少条半径?量一量这些半径都相等吗?你能画多少条直径?量一量这些直径都相等吗?直径和半径的长度有什么关系?让学生实际动手画一画,量一量发现圆内的所有直径都相等,有无数条,半径也都想等,有无数条,计算发现直径是半径的两倍。同时用多媒体以旋转两条半径得到一条直径的动画,让学生观察分析发现直径是半径的两倍,推导出半径是直径的一半.
再次,我会在认识了圆的圆心、半径、直径的基础上在向外延伸:如何才能既准确又方便地画出一个圆呢?先认识圆规,然后自学圆的画法并分组尝试画圆,一半的学生画半径是2cm的圆,另一半的学生画直径是4cm的圆,接下来我会让学生谈谈画圆的基本步骤及这个过程中需要注意哪些方面,指出直径4cm也就是半径2cm。最后播放课件圆规画圆的过程得到巩固。
最后,我根据以上所学的内容,为学生准备了两大习题,来加深所学的知识。一块是判断题和选择题,巩固对圆的圆心、半径及直径的认识。另一块是运用圆的知识解释一些生活现象如车轮为什么是圆的?理论联系实际,做到学有所用,激发学生学习数学兴趣以及在以后的数学学习中,更加用心。
本课设计把多媒体下的探索学习和认识活动整合,让学生在发现中研究,在研究中创造,使发现与创造成为数学课堂的主旋律.以上只是我个人的看法和做法,如果有什么不足之处还请在坐的各位评委和老师们多多指教,谢谢各位评委!
人教版六年级上册数学课件 篇2
教学内容:
九年义务教育六年制小学数学课本第十一册“比的意义”。
教学目标:
1.掌握比的意义,会正确读、写比。
2.记住比的各部分名称,会正确求比值。
3.理解比与除法、分数之间的关系,明确比的后项不能为0的道理,同时懂得事物之间的相互联系性。
4.通过自学讨论,激发学生合作学习的兴趣,培养学生分析、比较、抽象、概括和自学探究的能力。
一、创设情境,诱发参与
1、师:“2杯果汁”和“3杯牛奶”这两个数量之间有什么样的关系?你会用哪些方法表示它们的关系?可以提出什么问题,怎样列式解答?
生1:牛奶比果汁多1杯。
生2:果汁比牛奶少1杯。
生3:果汁的杯数相当于牛奶的
生4:牛奶的杯数相当于果汁的
师:2÷3是哪个量和哪个量比较?
生:果汁的杯数和牛奶的杯数比较。
师:3÷2求得又是什么,又可以怎样说?
生:牛奶的杯数和果汁的杯数比较。
2、师述:用新的一种数学比较方法,可以说成果汁和牛奶杯数的比是2比3。今天这节课我们学习用一种新的方法对两种量进行比较。(板书:比)
3、师:那么这节课你想学习比的哪些知识呢?
(什么叫比,谁和谁比……)
二、自学探究新知
1.探究比的概念
教师指着板书问:2÷3求的是什么?是哪个量和哪个量的比?
生:2÷3求的是果汁是牛奶的几分之几,是果汁和牛奶的比。
师:对!2÷3求的是果汁是牛奶的几分之几,也可以说成果汁和牛奶的比是2比3。
(板书:果汁和牛奶的比是2比3,学生齐读。)
师:照这样,牛奶是果汁的几分之几也可以说成牛奶和果汁的比。
生:牛奶是果汁的几分之几也可以说成牛奶和果汁的比是3比2。
(板书:牛奶和果汁的比是3比2)
师:都是果汁和牛奶的比较,为什么一个是2比3,而另一个却是3比2呢?
生:因为2比3是果汁和牛奶的比,而3比2是牛奶和果汁的比。
师:对,研究两个数量的比较,谁和谁比,谁在前,谁在后,是不能颠倒的。
出示试一试。
师:1:8表示什么意思?
生:1和8表示洗洁液1份,水8份。
师:怎样表示容液里洗洁液与水体积之间的关系?
生:先求出体积再比较。
课件出示:走一段900米长的山路,小军用了15分钟,小伟用了20分钟。让学生填表。
师:小军和小伟的速度是怎样求出来的?900:15表示什么?900:20又表示什么?
师:说说900米和15分钟的意义。
生:900米和15分钟分别是小军走的路程和时间。
师:那么小军的速度又可以说成哪两个量的比?
生:小军的速度可以说成路程和时间的比。
师:什么叫比?(同桌互相说一说,然后汇报。)
生1:除法叫比。
生2:两个数相除叫比。
师:两个数相除,以前叫除法,今天就叫做比。多了一种叫法,你觉得“比”字前面加上一个什么字比较妥当?
生1:加上“又可以”。
生2:加上“又”字。
师:两个数相除又叫做两个数的比。想一想这个比表示的是两个数之间的什么关系?
(随着学生的回答,教师在“相除”下面加上着重号,学生齐读比的概念。)
2.自学探究比的各部分名称等知识。
师:请同学们自学课本第68~69页。把自己认为重要的知识画出来,自学完后同桌互相说说“我自学到了什么”。
(学生同桌相互说完后,集体汇报探究。)
生:我学会了比的写法。
(老师指着2比3,让学生到黑板上写出2∶3。)
师:2、3中的符号“∶”是什么呀?
生:这是比号。(板书:比号)
师:写比号时,上下两个小圆点要对齐放在中间。(让学生同桌互相看看比号写得是否正确,并接着汇报。)
生:我知道了比号前面的数叫做比的前项,比号后面的数叫做比的后项。
师(指着2∶3)问:前项后项各是几呀?(学生答后接着汇报。)
生:我知道了比的读法。
(教师指着2∶3,指名学生试读2比3,然后学生齐读2比3。)
师:我们已经知道比的读法、写法,以及各部分的名称,想一想,你还学到了什么知识?
人教版六年级上册数学课件 篇3
第一单元
分数乘法
第一课时
分数乘整数
教学内容:
教材第2页例1练习一1~3.
教学目标:
1、结合具体情境,借助示意图理解分数乘整数的意义,渗透数形结合思想。
2、借助转化的方法理解分数乘整数的算理,并能正确地进行计算,提高计算能力。
3、在探索与交流活动中培养观察、推理的能力。
教学重点:
理解他数乘整数的意义,掌握分数乘整数的计算方法。
教学难点:
理解分数乘整数的计算方法。
教学过程:
一、复习旧知,引出课题。
1、复习题。
(1)列式并根据题意说出算式中的两个乘数各表示什么。
5个12是多少?9个11是多少?8个6是多少?
提问:通过解决这三道整数乘法计算题,你有什么想说的吗?
(整数乘法是表示几个相同加数的和的简便运算)
(2)计算:
计算时向学生提问:这道题的什么特点?计算时把什么做分子?使学生看到三个加数都相同,计算时3个3连加的结果做分子,分母不变。
2、引出课题。
这题我们还可以怎么计算?今天我们就来学习分数乘法。
二、创设情境,探究分数乘整数
1、教学分数乘整数的意义。
出示例1,指名读题。小新、爸爸、妈妈一起吃一个蛋糕,每人吃个,3人一共吃多少个?
(1)分析演示
飦?题中的:鈥溞⌒隆职帧⒙杪枰黄鸪砸桓龅案猓咳顺?个鈥澮馑际裁矗浚咳顺粤苏龅案獾?)
飦?确定标准量(单位鈥?鈥潱┖捅冉狭俊C咳顺粤苏龅案獾?,是把整个蛋糕看作标准量(单位鈥?鈥潱话衙咳顺缘姆菔醋鞅冉狭俊?/p>
飦?借助示意图理解题意
根据题意列出加法算式++
(2)观察引导:这道题3个加数有什么特点?使学生看到3个加数的分数相同。
教师问:求三个相同分数的和怎样列式比较简便呢?引导学生列出乘法算式。教师板书:。再启发学生说出表示求3个相加的和。
(3)比较和12脳5两种算式异同
提示:从两算式表示的意义和两算式的特点进行比较。(让学生展开讨论)。
通过讨论使学生得出:相同点:两个算式表示的意义相同。
不同点:是分数乘整数,12脳5是整数乘整数。
(4)概括总结
教师明确:两个算式表示的意义相同,谁能用一句话概括出两算式的意义?(引导学生说出都是表示求几个相同加数的和。)
2、教学分数乘以整数的计算法则。
(1)推导算理:由分数乘整数的意义导入。
问:表示什么意义?引导学生说出表示求3个的和。板书:++。学生计算,教师板书:。提示:分子中3个2连加简便写法怎么写?学生答后板书:(块)教师说明:计算过程中间的加法算式部分是为了说明算理,计算时省略不写。(边说边加虚线)
(2)引导观察:的分子部分、分母与算式两个数有什么关系?(互相讨论)
观察结果:的分子部分2脳3就是算式中的分子2与整数3相乘,分母没有变。
(3)概括总结:请根据观察结果总结的计算方法。(互相讨论)
汇报结果:(多找几名学生汇报)使学生得出是用分数的分子2与整数3下乘的积作分子,分母不变。
根据的计算过程,明确指出:分子、分母能约分的要先约分,然后再乘。约分进约得的数要与原数上下对齐。然后让学生将按简便方法计算。
3、反馈练习:看图写算式:做一做、练习一第1题。
三、全课小结。
人教版六年级上册数学课件 篇4
教学目标:
1、理解比的意义,学会比的读写法,掌握比的各部分名称及求比值的方法。
2、弄清比与除法、分数的联系,明确比的后项不能为0的道理,同时懂得事物之间是相互联系的。
3、通过主动发现的讨论式学习,激发合作意识,培养比较、分析、抽象、概括和自主学习的能力,培养爱国主义情感。
教学重点:
比的意义
教学准备:
多媒体课件、 三支红粉笔、 五支白粉笔
教学流程:
一、创设情境,理解意义
1、师:同学们,我们刚刚过完国庆节,你知道今年10月1日是祖国几周岁的生日吗?56年前的10月1日,五星红旗第一次在天安门广场上冉冉升起,让每一位中国人为之自豪。但你们知道吗,我们的国旗中还隐藏着很多有趣的数学问题呢!
出示出一面国旗:
3、判断:小强身高1米,他的爸爸身高173厘米,小强和爸爸身高比是1∶173。
明确:同类量相比单位名称要相同。
四、总结全课,拓展延伸
1、去年奥运会中国女排在首场比赛中以3∶0击败了美国队,打出了我国的女排风采。这里的3∶0表示什么意思?它和我们今天学习的比相同吗?为什么?
强调:这里的3∶0是表示两个队各赢了几局,不是相除关系,而今天学的比是指两个数的相除关系。
2、通过今天的学习,你有什么收获?
3、你知道吗?公元4世纪希腊数学家欧多克斯,利用线段找到了世界上最美丽的几何比——黄金分割,它的比值大约是0.618,比大约为2∶3。
介绍:黄金割应用非常广泛,国旗的宽与长的比是2比3,接近黄金分割,现在你们知道五星红旗为什么这么美观了吧!
生活中还有很多地方用到黄金分割:
T型台上选模特也要求模特的身长与腿长的比符合黄金分割。
理发师也将黄金分割运用到发型设计中去。
……
课后同学们还可以去调查。
人教版六年级上册数学课件 篇5
【教学目标】
1.能在具体的情境中,探索确定位置的方法,说出某一物体的位置。
2.会在方格纸上用“数对”确定物体的位置。
3.发展空间观念,初步体会到数形结合的思想。
4.体会生活中处处有数学,提高运用知识解决实际问题的能力。
【教学重点】
使学生经历确定位置的全过程,从而掌握用数对确定位置的方法。
【教学难点】
在方格纸上用“数对”确定位置。
【教法】
情境教学法,创设找图书管理员的情境,激发学习兴趣,感知确定位置的方法。
【学法】
积极参与法,在学习过程中积极思考,理解用数对确定位置的方法,并积极参与动手操作活动,提高看图能力。
【教学准备】
多媒体课件
【教学过程】
一、谈话导入
1.师生谈话。
学校让我们班推荐一位同学到学校图书室做图书管理员,老师已经选好了,那么你们想不想知道这位同学是谁吗?
这位同学在班级中的位置是第三组的。你们知道这位同学是谁吗?他可能是哪几位同学?如果要找到这位同学,还要知道什么条件?
这位同学的座位是在第3排,大家知道这位同学是谁吗?
2.导入新课。
今天这节课,我们就一起来学习确定位置的方法。
板书课题:用数对确定位置
【设计意图:通过谈话中引入数学问题,充分调动了学生的学习兴趣和积极性,为学习新知奠定了基础。】
二、探索新知
1.教学例1。
(1)出示例题1教学图。
让学生观察图,说说张亮同学坐在第几列?第几行。
(竖排叫做列,横排叫做行)
(2)张亮同学坐在第2列,第3行。用数对来表示(2,3)。
(3)让学生用数对表示王艳和赵强的位置。
王艳(3,4)赵强(4,3)
(4)小结。
确定一个同学在教室的位置,要考虑两个要素:第几列和第几行。
【设计意图:通过具体的实例引导学生认识第几列第几行的判断方法,经历应用数学知识分析问题的解决问题的过程】
2.完成第3页的“做一做”。
课件出示电和电影票的图片。出示题目:举出生活中确定位置的例子,并说一说确定位置的方法。
(电用电影票来确定位置,电影票一般都写着“几排几号”,“排”表示行,“号”表示列。比如“3排7号”用数对表示是(7,3)。
【设计意图:从学生熟悉的情景出发,选择学生感举的事物,提出相关问题,激发学生学习兴趣。】
3.教学例2。
(1)认识方格图。
出示动物园示意图。
指导学生观察图。
这幅动物园示意图与以前见过的示意图有以下几点不同:一是动物园的各场馆都画成一个点,只反映各场馆的位置,不反映其他内容;二是表示各场馆位置的那些点都分散在方格纸竖线和横线的交点上;三是方格纸的竖线从左到右依次标注了0,1,2,…,6;横线从下往上依次标注了0,1,2,…,6,其中的“0”既是列的起始,也是行的起始。
(2)用数对表示图中各场馆的位置。
提问1:我用了数对(3,0)来表示大门的位置,你们知道我是怎样想的吗?
【大门在示意图中处于“竖线3,横线0”的位置上,所以可以用数对(3,0)来表示】
你们能用数对表示其他场馆所在的位置吗?
【熊猫馆(3,5)大象馆(1,4)猴山(2,2)海洋馆(6,4)】
(3)根据数对标位置
在图上标出下面场馆的位置:飞禽馆(1,1)、猩猩馆(0,3)、狮虎山(4,3)。
【设计意图:通过具体的事例认识和理解位置与坐标中数值的对应关系,让学生不但会用数对描述现实生活中的位置,还会描述坐标图上的物体的位置。】
三、巩固运用
1.小游戏:看谁反应最快。
老师说出一组数对,相应的同学要在3秒内起立。
2.做一做。(课件出示)
【设计意图:通过练习,培养学生分析问题、解决问题的能力,加深对知识的理解和应用。】
四、课堂总结
这节课我们学习如何用数对来确定位置,用数对确定位置时,数对中的前一个数表示第几列,后一个数是表示第几行。
五、板书设计
用数对确定位置
竖排叫做列从左往右
横排叫做行从前到后
张亮坐在第2列第3行(2,3)
(列,行)
人教版六年级上册数学课件 篇6
一、展示课前调查结果,全班交流汇报
1、谁愿意把你收到的有关人民币储蓄、教育储蓄及国债的相关信息和大家交流一下?
2、老师也收集到一些这方面的信息,让我们一起来看一看。
(1)现行利率表(2)教育储蓄(3)国债、国库券
二、结合实例探讨方案
同学们:你们都是父母的掌上明珠,为人父母者无不望子成龙。对于你们来说当前最主要的任务是什么呢?(学习)是呀,然而未来的教育花销可不是一个小数目,父母需要提前为你做准备。这节课就让我们运用储蓄的知识帮父母解决一个关系到我们每个人的实际问题。
1、首先请大家算一算,如果从小学毕业算起你大约还有多长时间才能上大学呢?
2、为了你们能顺利的走入大学校园,如果妈妈打算给你存10000元钱,供你上大学的话,你觉得从什么时间开始存?怎样存收益比较大呢?谁愿意说一说?(能说出你的理由吗?)
(1)独立思考,试一试。
(2)合作交流,议一议。
(3)再次汇报。
3、通过同学们的发言,看得出来:解决这个问题我们要明确以下几点(1)什么时间开始存,存期多长时间?(2)每一次存款的本金都是多少?(3)每一次存款的利率是多少?
(4)如果是教育储蓄的话,你还要注意每份录取通知书只能用一次,所以你一定要掐好时间。
4、下面就请同学们以小组为单位,认真的算一算,到底怎样存收益比较大。每组的四名同学可以分别选择几种不同的方案进行计算,便于对比。
预设方案:
(1)教育三年+教育三年3377.24013377.24
(2)国债三年+教育三年3557.67013557.67
(3)国债三年+国债三年3740.53013740.53
(4)教育六年3456013456
(5)国债五年+教育一年3684.68013684.68
(6)国债五年+教育一年+定期半年+活期至少3906.990至少13906.99
(7)国债三年+国债三年+定期半年+活期至少3963.740至少13963.74
5、那么,现在你能给妈妈提出什么建议?你的根据是什么?
三、实际应用巩固练习
银行存款定期一年利率3.87%,到期缴纳利息税5%。
银行存款定期一年利率5.22%,到期缴纳利息税5%。
国库券定期三年利率3.14%,到期不缴纳利息税。
李叔叔在银行存款50000元,定期三年。如果是你,这50000元你怎么存?到期后能比李叔叔多取回多少元?
四、课堂小结
通过这节课的学习,我们知道了如何存款才能获得最大的收益,初步了解了合理理财。希望同学们帮助父母设计存款方案,并把你的理由讲给他们听。
人教版六年级上册数学课件 篇7
教学目标:
1、使学生进一步理解稍复杂的分数应用题之间的内在联系,掌握解答分数应用题的方法。
2、培养学生综合运用所学知识解决简单实际问题的能力以及学习数学知识的兴趣。
教学理念:
1、体现学生是学习的主体,教师为学生搭建探究、合作交流的平台,学会把已有的知识进行整合、归纳的方法。
2、体验转化的教学思想方法,沟通知识之间的内在联系,提高学生分析问题,解决问题的能力。
教学重点:
掌握与比一个数多(或少)几分之几的数量有关的稍复杂的分数应用题之间的联系和区别及不同的解答方法。
教学难点:
弄清分数应用题的数量关系,正确地选择适当的方法解答。
教学设计:
一、基本训练
1、分析关键句找单位1
请同学们指出下面每题中把准看作单位1?你还想到了哪些数量关系?(逐一出示)
⑴、故事书比科技书多1/5
⑵、已行的比未行的少2/3
⑶、实际节约了20%
⑷、第一次比第二次多做总数的1/4
2、导入新课
判断:蜡笔画比水彩画多2/5也就是水彩画比蜡笔画少2/5
师问:这句话对吗?
我们来验证一下
一、自主探索、归纳整理
{复习一个数比另一个数多或(少)几分之几(百分之几)的应用题}
1、教学例4
教师板书
(80-50)50=3/5答
(80-50)80=3/8答
师:通过验证刚才的说法是不正确的
为什么会这样呢?
我们来比较一下两个问题的异同
2、比较异同掌握解题规律
比较问题和列式的异同
共同点:两个问题中所要比较的两个数都是已知的(被除数差量相同)
不同点:把哪个数作单位1不同,因此算式中用哪个数作除数不同
3、反馈运用
比较问题和列式的异同
共同点:两个问题中所要比较的两个数都是已知的(被除数差量相同)
不同点:把哪个数作单位1不同,因此算式中用哪个数作除数不同
4、引申扩展练习
做练习二十二的第(1)条
逐条出示让学生做
第1条出示条件让学生提出问题再列式
第2条直接出示给学生做
第3条在第2条的基础上改四月份实际为四月份计划
5、自己小结归纳
这类题有什么共同的特点?
解题的关键是什么?
三、组合编题
自主解答
{复习已知一个数和几分之几是多少,求这个的应用题}
1、出示一组条件
投影出示下列条件,请同学们选择把它们作为条件或问题编题并解答
水彩画50幅
蜡笔画80幅
蜡笔画比水彩画多3/5
水彩画比蜡笔画少3/8
2、展示学生的编题和做法
物投影出示学生的编题和做法
显示:1水彩画50幅,蜡笔画比水彩画多3/5蜡笔画多少幅?50(1+3/5)
50+503/5
2蜡笔画80幅,蜡笔画比水彩画多3/5水彩画多少幅?80(1+3/5)
X+3/5X=80
3水彩画50幅,水彩画比蜡笔画少3/8蜡笔画多少幅?50(1-3/8)
X-3/8X=50
4蜡笔画80幅,水彩画比蜡笔画少3/8水彩画多少幅?80(1-3/8)
80-803/8
师注意表扬用两种方法解的同学
特别是2、3两题还可以用方程解
3、比较
教师引导学生比较:12两题的异同
34两题的异同
2413的异同
1423的异同
重点:问14为什么选择乘法?
23为什么选择除法?
4、整理、归纳
思考:怎样解这一类题?关键是什么?
师引导学生归纳出:先分清为什么数作单位1再看单位1是否已知,来确定解答方法。如果单位1已知,根据分数乘法的意义,直接用乘法求;如果单位1可以设它为X列方程解或根据除法意义,直接用除法解。
5、扩展到百分数
如果把上题的分数改为百分数
解答方法一样吗?
四、练习巩固
1、P111做一做第2题
第1小题将分数1/9改为10%
让学生练习
第2小题不改
2、做一做第1条
提问:合格率最高可能是多少?
说明什么?一批产品的合格率与废品率有什么关系?
3、课内作业
练习二十二/2、3、4
人教版六年级上册数学课件 篇8
一、说教材
本单元是学生接触不确定现象。结合“抛硬币”游戏过程,体会落地的硬币是正面朝上还是反面朝上是不能事先确定的。进而通过“摸球”试验,体会有的试验结果是一定发生的,有的是不可能发生的,有的是可能发生的。
教学目标:
1、在简单的猜测活动中初步感受不确定现象,初步体验有些事情的发生是确定的,有些事情的发生不是确定的。
2、能列出简单试验所有可能发生的结果。
二、说教学方法
本单元的教学方法主要通过观察法和动手实验法。在合作学习中体验成功的快乐,初步体会动手实验法探索新知识的有效途径。
三、说教学过程
(一)引入主题
充分发挥主题图的作用,引入本节内容的学习。(教师)生活中有些事情的结果无法确定,所以人们常用“可能”这个词来描述。
(二)探究新知
例1、例2的教学,主要是让学生在实际的操作活动中体验有些事情的发生是不确定的,有些则是确定的。因此,可以让学生亲自做一做
教学例1时可以让学生先猜“抛一枚硬币,落地后是正面向上还是反面朝上?”“亲自抛一抛,验证猜想,最后用“可能是正面,也可能是反面”来描述这一现象。
教学例2时,可让学生依次摸球得出结论再进行分类。
例3应先让学生进行猜测,然后进行分析和推理,最后列举出这场足球赛的3种可能结果。
教学中注意有序地列出随机现象的所有可能的结果,从而培养学生的猜想、分析及推理能力。
(三)课堂练习
课堂活动及练习题1、2、3。
(四)布置作业、
人教版六年级上册数学课件 篇9
教学目标:
1.经历整理、分析、编题的过程,强化分数应用题单位1对应分率=对应数量的结构特征;
2.学会正确、熟练地解答分数应用题,提高学生分析问题和解决问题的能力,丰富分数应用题的解题策略;
3.通过现实的有挑战性的问题,提高学习的自信,让每一个人获得成功的体验。
教学重点:
经历整理、分析、编题的过程,强化分数应用题单位1对应分率=对应数量的结构特征;
学会正确、熟练地解答分数应用题,提高学生分析问题和解决问题的能力,丰富分数应用题的解题策略;
教学过程:
一、自主准备,注重学生已有的学习起点。
展示学生数学复习小报,分析重难点。
1.同学们,今天我们要来复习分数的运算,之前我们做了调查,同学们都写出了自己觉得最简单的分数应用题和最难的分数应用题,不同的同学写出不同的题,今天这节课我们就一起来讨论。
二、知识梳理,注重知识之间的联系
1.出示条形统计图(见右图)
请同学们说说从图中你能得到哪些信息?
哪些含有分率的信息?35
5女生是男生的3
2男生比女生少5
2女生比男生多3板书:男生是女生的
2.出示两条信息:男生:30人;女生50人。男
(回答中可追问:①你能看出男生有几份?女生有几份?②谁为单位1?)
提出学习要求:请选择其中任意几个信息,提出一个数学问题,编成一道应用题,并列式。(学生独立完成)
3.小组交流编题的结果
交流要求
⑴小组交流:说出自己编写的不同题目,在相同的题目上做记号,并试着解答别人编写不同题目;
⑵整理记录:在编写最多的这张纸上进行整理补充,做好记录;
⑶准备汇报:以记录最完整的这张为发言稿。
(出示小组交流要求后,要求学生默看半分钟后,教师可做小小的提问,使学生明确交流要求。)
4.小组反馈交流结果
(先大致了解编写题目的个数,从最少的小组开始进行汇报,教师进行补充。)
5.教师出示本学期所学分数应用题类型
⑴看看老师编的题目中有你们没有的题目吗?
①男生15人,男生比女生少
②22,女生几人?30(1-)5522女生25人,男生比女生少,男生几人?50(1-)5522男生15人,女生比男生多,女生几人?30(1+)3322女生25人,女生比男生多,男生几人?50(1+)3333男生15人,男生是女生的,男女生共多少人?30+155555男生15人,女生是男生的,男女生共多少人?30(1+)33
⑵这些就是本学期主要学的几种分数应用题的类型。学了这么多的分数应用题,你发现它们之间的相同点和不同点吗?说说看。
⑶得到分数应用题的最基本结构单位1对应分率=对应数量(以上面6题中的任意两题为例来理解正向、逆向应用题的不同处)
三、方法多样,注重解题策略的指导
问题:小红看一本书,第一天看了多少页?
1.请你用自己的方式来解答。
2.提出要求。(如果有一位同学不会,他看了你的解题过程就明白了,所以每一个人都要把自己想的过程写完整,要求能将解题过程讲给不会做的同学听。)
3.学生反馈。(学生可以通过线段图、对应关系、解方程(方程是数量关系的正向思考)、草图等方法进行解题)1,第二天看了50页,还剩下一半没看完。这本书共有3
(预设:学生会提出用方程这么麻烦的,教师可以顺便提一下方程是数量关系的正向思考,在复杂和较复杂的解题过程中会比逆向思考更容易理解。)
四、教师小结
今天,通过复习,我们从简单的信息中,却发现了那么多新的信息,又从新的信息中得到了这么多类型的题目,但在归纳中,我们却又发现其实分数应用题就是这么一个简单的结构。我们在平时的解题中,要学会灵活运用这种结构来进行解题。
人教版六年级上册数学课件 篇10
教学目标:
1、理解比的意义,学会比的读写法,掌握比的各部分名称及求比值的方法。
2、弄清比与除法、分数的联系,明确比的后项不能为0的道理,同时懂得事物之间是相互联系的。
3、通过主动发现的讨论式学习,激发合作意识,培养比较、分析、抽象、概括和自主学习的能力,培养爱国主义情感。
教学重点:
比的意义
教学准备:
多媒体课件、三支红粉笔、五支白粉笔
教学流程:
一、创设情境,理解意义
1、师:同学们,我们刚刚过完国庆节,你知道今年10月1日是祖国几周岁的生日吗?56年前的10月1日,五星红旗第一次在天安门广场上冉冉升起,让每一位中国人为之自豪。但你们知道吗,我们的国旗中还隐藏着很多有趣的数学问题呢!
出示出一面国旗:
2、判断:小强身高1米,他的爸爸身高173厘米,小强和爸爸身高比是1∶173。
明确:同类量相比单位名称要相同。
二、总结全课,拓展延伸
1、去年奥运会中国女排在首场比赛中以3∶0击败了美国队,打出了我国的女排风采。这里的3∶0表示什么意思?它和我们今天学习的比相同吗?为什么?
强调:这里的3∶0是表示两个队各赢了几局,不是相除关系,而今天学的比是指两个数的相除关系。
2、通过今天的学习,你有什么收获?
3、你知道吗?公元4世纪希腊数学家欧多克斯,利用线段找到了世界上最美丽的几何比——黄金分割,它的比值大约是0.618,比大约为2∶3。
介绍:黄金割应用非常广泛,国旗的宽与长的比是2比3,接近黄金分割,现在你们知道五星红旗为什么这么美观了吧!
生活中还有很多地方用到黄金分割:
T型台上选模特也要求模特的身长与腿长的比符合黄金分割。
理发师也将黄金分割运用到发型设计中去。
……
课后同学们还可以去调查。
人教版六年级上册数学课件 篇11
教学目标:
1.欣赏由基本图形构成的美丽图案,并了解图案的排列规律,感受图形的美。
2.会用正方形、长方形、三角形、平行四边形等图形设计图案。
3.发展学生的空间想象力,创新意识和审美意识。
教学重点:
感受图形的美,会用基本的几何图形设计有规律排列的图案。
教学难点:
发现图案的排列规律。
教具准备:
课件、方格纸、水彩笔、尺子。
教学过程:
一、复习旧知,导入新课
1.展示一件衣服
师:你发现了什么?
引导学生发现衣服上有学过平面图形。
2.出示平面图形
学生说出图形的名称。
师:今天我们就来欣赏和设计由这些平面图形组成的漂亮图案。
出示课题:欣赏与设计
二、欣赏图案
1.欣赏课本上的6幅图案
师:老师收集了一些图案,请看。漂亮吗?请仔细欣赏,选一幅你最喜欢的,和你同桌说说它是由哪些平面图形组成?用了什么颜色?
2.交流汇报
(1)由2名学生选择喜欢的图案回答。
(2)教师指定一幅图案学生回答。
师:喜欢第5幅的同学请举手。这幅图案用了什么图形?(三角形、六边形)红色的六边形由几个三角形组成?(6个)在红色六边形的周围你还发现了什么?这幅图案像什么?
三、生活中的图案
师:这些漂亮的图案都是来自生活中,在我们的身边你在哪里见过像这些一样由平面图形组成的,有漂亮颜色的图案呢?
学生回答:地板砖、衣服、广场等。
四、找规律
师:咱们学校新建的厕所还没有合适的地板瓷砖图案,校长想请全校的同学都来出谋献策。淘气已经设计了一幅,大家请看。(课件出示方格图案)
1.在这幅图案上你发现了什么?
学生发现有正方形,还有4种颜色。
2.观察这4种颜色的排列规律。
①第一行第5个正方形是()色,第一行第8个正方形是()色。第11个呢?
你是怎样想的?有没有好办法能很快算出来?可以互相讨论。
引导学生说出,横着看图案的颜色排列规律。
②第一列第6个正方形是()色?你是怎样想的?
引导学生说出,竖着看图案的排列规律。
3.你还发现了什么规律?
4.想象一下,如果继续画下去,会是什么样子的?(课件展示画下去的图案)
五、设计图案
1.师:刚才这幅图案是淘气设计的学校厕所瓷砖图案的效果图,你觉得怎么样?为什么?
学生发表自己的看法。
师:你想设计吗?如果你是设计师你想怎样设计?
2.设计要求
(1)用学过的平面图形设计;
(2)图形的形状、颜色排列要有规律;
(3)设计的图案要美观大方。
3.学生设计图案
4.展示学生作品
师:请说说你是怎样设计的?
师:谁来说说他设计得怎么样?
六、总结
今天我们一起欣赏了图形的美,感受了美,并用双手创造了美,老师希望大家在今后的生活中,不仅能画出美丽的图案,还能够用美的语言,美的行为和美的心灵去装点我们的生活。
人教版六年级上册数学课件 篇12
教学内容:
教科书第81~82页的第4~7题,练习二十一的第4~6题.
教学目标:
通过一些有联系的分数乘、除法应用题的整理和复习,使学生进一步掌握分数乘、除法应用题的解题思路以及它们之间的内在联系.进一步提高用算术方法和用方程解应用题的能力.
教学过程:
一、复习一般的两步计算的分数应用题
1.教师出示第97~98页的第3题:学校买了一批新书,其中故事书有30本,科技书有18本,共占这批新书的.这批新书有多少本?
指定一名学生口述题目的条件和问题,全体学生在练习本上解答.解答完后指名学生口述分析解答过程.
2.让学生做练习二十六的第4题.
二、复习分数乘、除法应用题
1.解答第97页的第4题.
(1)出示第4题第(1)、(2)题.
指名学生口述它们的条件和问题.教师在黑板上画出线段图.
1125-1125解法一:x-x=450
解法二:450(1-)
让学生独立完成,并说出是怎样解答的.
教师板书出来(见上图).
(2)观察比较.
引导学生从线段图、解法上进行比较,使学生明确:第(1)题中单位1的数量是已知的,要求单位1的几分之几是多少,用乘法计算.第(2)题中剩下的公路长是已知的,而单位1是未知的,求单位1,要按照题意找等量关系列方程解,或用除法计算.
2.让学生做练习二十六的第5题.
3.解答第82页的第5题.
(1)出示第(1)、(2)题.
让学生自己读题,并进行解答.
订正时,教师出示线段图,指名说解题思路.教师在图的下面板书出算式.
(1)停车场有18辆大客车,(2)停车场有18辆大客车,
小汽车的辆数比大客车大客车的辆数比小汽车
多.小汽车有多少辆?少.小汽车有多少辆?
18+18解法一:x-x=18
解法二:18(1-)
(2)比较第(1)、(2)题.
让学生说说它们有什么相同点和不同点,各把谁看作单位1.使学生明确:第(1)题中单位1的数量是已知的,要求比已知数多的数是多少,用乘法计算;第(2)题中单位1的数量是未知的,要按照题意找等量关系列方程解答,或用除法解答.
(3)解答、比较第(3)、(4)题.
仿照第(1)、(2)题的复习方法进行.
(3)停车场有21辆小汽车,(4)停车场有21辆小汽车,
大客车的辆数比小汽车小汽车比大客车多.
少.大客车有多少辆?大客车有多少辆?
三、复习工程问题
1.教师出示第82页的第6题.让学生解答.
2.分析、比较第(1)、(2)题.
让学生回答下面的问题
(1)第(1)题的路程、两船的速度各是多少?
(2)第(2)题的路程、两船的速度各用什么表示?
(3)这两题的数量关系是否相同?
通过对比使学生认识到:两道题的思路是一致的,数量关系基本相同,都是用路程除以速度和.只是第(2)题的路程和速度不是用具体数量来计算,而是用单位1和、来表示的.
四、作业
练习二十一的第6、7题.