分数乘法教案
发布时间:2023-08-11 分数乘法教案 乘法教案分数乘法教案汇总。
如果你想要了解更多关于“分数乘法教案”的内容推荐看这篇文章。老师在新授课程时,一般会准备教案课件,这就需要我们老师自己抽时间去完成。教师要有科学的教案才能达到良好的教学效果。欢迎大家阅读本文但请注意仅供参考之用途!
分数乘法教案 篇1
一、说教材
1、教学内容:九年义务教育六年制小学数学第十一册第一单元分数乘法应用题第一课时:“求一个数的几分之几是多少的应用题”,课本第14页例1,练习四第1——5题。
2、教材所处地位和作用
本节课所学的分数乘法应用题是求一个数的几分之几是多少的应用题,它是一个数乘分数的意义在实际中的运用,同时还是学习“已知一个数的几分之几是多少求这个数”的应用题以及今后学习较复杂的分数应用的基础。因此使学生掌握这种应用题的解答方法有重要的意义。
3、教学目标。
根据《大纲》的要求和教材特点,确定如下教学目标:
(1)、使学生能根据一个数乘分数的意义,理解“求一个数的几分之几是多少”的应用题的数量关系。
(2)、在理解的基础上,掌握解题方法,能正确解答这类应用题。
(3)、让学生进一步体验数学与日常生活的密切联系,体验数学问题的探索性和挑战性,从而激发学生学习数学的兴趣,以主动参与数学活动。
4、教材的重点和难点
根据《大纲》的要求和教材的特点,结合本班学生的实际情况,确定使学生在理解题意的基础上,分析数量关系,掌握解题思路是本节重点,其中分析数量关系,找准单位“1”是本节课的难点。
二、说教法。
俗话说:教学有法,但无定法,贵在得法。为了突出重点,分散难点,我遵循学生的认识规律及分数应用题的特点,在教学中采用如下几点教法:
1、有目的的运用迁移规律,启发引导的方法组织教学,教给学生获取知识的方法,引导学生进行观察、分析、概括,培养学生的思维能力。
2、采用“尝试教学法”,利用学生好奇心和求知心切的特点,让学生通过画线段直观上理解弄清数量关系,掌握例题的解题思路。然后通过各种形式的巩固练习,使学生真正理解和掌握所学知识。
三、说学法
叶圣陶先生的数学核心思想是:“教是为了不教。”这正体现了现代教学的目标不是使学生“学会”,而是让学生“会学”,也就是通过课堂教学教给学生正确科学的学习方法,培养其良好的学习习惯。
本节的教学,使学生掌握以下学法:学会通过画线段图、观察、分析、归纳最后概括出此类应用题的解答方法。掌握解题技能,发展智力,提高解题能力。
四、说教学程序
(一)、出示复习题
1、列式计算
(1)20的1/5是多少?(2)6的3/4是多少?
(通过复习,使学生唤起回忆,巩固一个数乘分数的意义,沟通新知识,为学好分数应用题打下好的基础。)
(二)探究新知
1、出示例1:学校买来100千克白菜,吃了4/5,吃了多少千克白菜?
(1)学生读题、审题,明确条件和要求问题。
(2)通过画线段图,帮助学生弄清数量关系。指名多位学生说说该把哪个数量看作单位“1”?吃了4/5是指吃了哪个数量的4/5。
(3)学生尝试练习解答,师巡视,指名学生板演。
(4)引导学生归纳“求一个数的几分之几是多少的应用题”的解题方法。
小结:求一个数的几分之几是多少的应用题,根据分数乘法的意义,用乘法计算。即:单位“1”×几/几=几分之几的对应量。
(通过画线段图,让学生直观地理解弄清数量关系,让学生自己去找出题中的“单位1”,充分发挥学生的主体作用,让学生自己去探索发现知识的规律,特别是差生,先让他们发表见解,给他们创造成功的机会,使不同的人在数学上得到不同的发展。学生尝试独立解答同样体现了学生的主体作用。利用“反馈信息”,教师进行精讲小结,归纳,解决疑难,揭示解题方法。)
(三)巩固练习
1、做教科书第14页“做一做”第1、2题。
2、做练习四的第1.4.5题。
(让学生独立完成,充分发挥学生的主体作用,使学生进一步掌握求一个数的几分之几是多少的解题方法。)
分数乘法教案 篇2
教学内容:
教科书第7—9页《分数乘法(三)》
教学目标:
1、结合具体情境,探索并理解分数乘分数的意义;探索并掌握分数乘分数的计算方法,并能正确计算;
2、培养学生动手操作,观察发现的能力。
3、能解决简单的分数与分数相乘的实际问题,
4、体会数学与生活的密切联系,培养学生学习数学的兴趣。
教学重点
1、结合具体情境,探索并理解分数乘分数的意义;
2、在操作活动中,借助图形语言,理解分数乘分数的意义
教学准备
1、每人准备一条约10厘米长的纸条;
2、每人准备5张长方形的纸。
教学过程
一、复习
5×3/7 20×7/10 7/8×4 15×3/5
(1)你是怎么算的?
(2)表示什么?
这就是我们前几天研究的分数乘整数的意义和计算方法,今天我们继续来研究分数乘法(三)。
二、探究新知
(一)探究分数乘法的意义
1、《庄子天下》
我国文化源远流长,《庄子天下》中有这样一句话,找同学读一下我国古代著名哲学著作《庄子·天下》中有这样一段话:“一尺之捶,日取其半,万世不竭。”意思是说:“一尺长的木棍,每天截一半,永远也截不完。”
一尺之捶是指有限的长度,而万世不竭是指无限的时间。这是一个辩证
的思想。我们可以把他变成数学问题,来理解这个问题。
2、一张长方形纸条,第一次剪去它的1/2,第二次剪去剩余部分的1/2 。此时,剩下的部分占这张纸条的几分之几?如果第三次再剪去剩余部分的1/2,那么剩下的部分占这张纸条的几分之几?
(1)读题(你明白了吗?明白了)
(2)拿出准备好的纸条,按照要求,动手中折一折、涂一涂,看看“剩下的部分占这张纸条的几分之几?”
(3)小组交流
(4)全班汇报(学生边展示边汇报)
生:把这条纸平均分成两份,第一次剪去他的1/2还剩1/2,第二次剪去剩余部分的1/2,就是求1/2的1/2是多少,(1/4)。剪去剩余部分的1/2就是求剩余部分的1/2,就是1/4的1/2是多少。
生:我第一次剪把一张纸平均分成了2份,剪去他的1/2,还剩多少?(1/2)
第二次剪剩余部分的1/2,(剩余部分是多少呢?)1/2。是将1/2剪去他的1/2。(点:也就是在1/2的基础上剪了1/2)。是这么大。(点:①是多少呢?打开看看(1/4)。②是1/4,打开给大家看看)
第三次剪去剩余部分的1/2,(剩余部分是多少?1/4)在1/4的基础上剪了1/2,是多少呢?
你能把他刚才讲的过程再说一遍吗?
也就是说第二次剪了1/2的1/2,第三次剪了1/4的1/2
(5)第二次剪了1/2的1/2,你能列出算式吗?(1/2×1/2=1/4)1/2×1/2表示什么?(1/2的1/2是多少)
第三次剪了1/4的1/2,你还能列出算式吗?(1/4×1/2=1/8)1/4×1/2表示什么?(1/4的.1/2是多少)
看来大家是明白了,
(求剩下的部分占这张纸条的几分之几就是求1/2的1/2是多少,与上节课
学习的求一个数的几分之几的意义相同,所以用乘法计算。)
(二)探究分数乘法的计算方法
1、我们学过整数乘以分数的计算方法,看这个算式3/4×1/4-=表示什么呢?3/4×1/4到底是多少呢?我们可以利用手中的长方形纸折一折,涂一涂看看3/4×1/4等于多少
(1)学生折一折,涂一涂。
(2)同桌互说你是怎么想的。
(3)汇报
生:我把这张纸平均分成4份,取了其中的3份。我再给他这样平均分成4份,取了其中的1份。刚才我们是竖着平均分,现在我们是横着平均分。(点:是谁的1/4?)
我先竖着分平均分成4份,取了其中的三份,我再横着分,把3/4平均分成4份,取其中的1份,就是3/16
你能把它刚才说的过程结合图形再说一遍吗?
还有的同学是这样做的,大家一起看一下,这样行不行?行,你看行吗?
第一次分的时候3/4能分出来。第二次分3/4的1/4怎么分?有麻烦。所以我们分的时候可以先竖着分,再横着分。或者先横着分再竖着分。
(4)请你说一说,红色部分占斜线部分的几分之几?红色部分占整
张纸的几分之几?
(5)你那么3/4×1/4=?
(6)通过折我们知道了3/4×1/4=3/16
(7)观察:结合图观察3/16的16表示什么?(表示分的份数)3表示什么?(3/4和1/4共同的部分)
2、做一做:按照上面的方法折一折,想一想,并算出结果。
3/8×1/22/3×1/3
师:请认真观察1/2×1/2=1/41/4×1/2=1/8 3/4×1/4=3/163/8×1/2=3/162/3×1/3=2/9算式
(1)观察思考:观察这几组式子你能发现什么?(手)举例子来说
(2)说一说:你能总结分数与分数相乘的计算方法吗?
(3)小结:分数与分数相乘,分子与分子相乘的积作分子,分母与分母相乘的积作分母。这就是今天这节课所要学习的分数乘分数的计算方法。
3、试一试:
1/4×2/3 3/5×2/9 7/8×5/14
强调:能约分的要先约分。
(三)看书质疑
三、课堂练习
2、解决问题。
(1)教科书第8--9页“练一练”第2、3、4、6、题。
学生完成后,说说解题思路。
(2)书第9页数学故事“唐僧分西瓜”
四、全课总结
分数乘法教案 篇3
一、教学目标。
1、使学生理解分数乘整数的意义与整数乘法意义相同。
2、使学生掌握分数乘整数的计算方法,能正确进行计算,明白计算过程中能约分的要先约分的道理。
二、教学重点。
使学生理解分数乘整数的意义及计算方法。
三、教学难点。
总结分数乘整数的计算方法,理解分数乘整数算式的意义。
四、教学过程。
(一)设疑激趣,提出问题
1、把9+9+9+9+9改成乘法算式。
2、把O.2+0.2+O.2+O.2改成乘法算式。
3、(1)口答整数乘法的意义。
(2)求几个相同加数和的简便运算。
4、列式计算。
(1)5个12是多少?
12×5=
(2)12个1.5是多少?
1.5×12=
(3)3个是多少?
5、提出问题。
教师:求3个是多少,能不能用算式×3来表示呢?今天,我们就一起来学习分数乘法。
板书课题:分数乘法(一)。
(二)引导探索,解决问题。
1、分数与整数相乘的意义。
(1)出示题目。
1个占1张彩纸的,3个占这张彩纸的几分之几?
(2)探索交流。
①用图示表示。
1个图案占这张彩纸的。3个图案占这张彩张的。
②用加法计算。
③用乘法计算。
(3)引导发现。
教师:求几个相同的分数和,可以用乘法计算。分数与整数相乘的意义与整数乘法的意义相同。
2、分数与整数相乘的计算方法。
(1)涂一涂,算一算。呈现题目。
(2)引导观察算式和结果。教师:在中,你是怎么算出得数的?算式中的数字与得数的数字有什么关联?让学生认真观察算式数字,思考其中的关联,并和同学交流,说一说自己有什么发现。在这一基础上,师生共同探索其中的联系。
(3)总结计算方法。让学生用自己的语言表述分数与整数相乘的计算方法。
(4)试一试。
3、约分。
教师:再计算时你有什么体会?让学生回答问题,同学之间进行交流,通过算式比较。最后,使全班学生明白:
(1)在计算过程中,能约分的要先约分。
(2)最后结果应该是最简分数。
(三)巩固练习完成课文第3页“练一练”。
1、第1题。
完成后要将算式得数和涂的结果进行比较,并说明计算中的要点。
2、第2题。利用教材提供的素材,教育学生节约用水。
3、第3题。
(1)让学生独立完成。
(2)同学之间互相交流、校对,发现问题,及时反馈。
(3)说一说计算的步骤、方法:
①分子与整数相乘作分子,分母不变。
②能约分的要先约分,再计算。
4、第4题。
(1)学生独立完成。
(2)说一说,你是如何解决问题的。爸爸和小红一天分别吃多少→爸爸和小红一天共吃多少→爸爸和小红3天共吃多少。
5、第5题。让学生都算出结果,再观察各组题目的算式及结果,然后说一说有什么发现。
(四)作业选用课时作业。
分数乘法教案 篇4
一、说教材
《分数乘法(三)》是北师大版教材五年级下册第一单元第三课时的内容。是在学生已经理解与掌握分数乘整数的意义及计算方法的基础上进行教学,同时为后面学习分数除法做铺垫。
根据本课结构特点,基于本人对教材的的理解,考虑到学生已有的认知结构和年龄特点,我确定如下
教学目标:
1、让学生在操作活动中,借助图形语言,理解分数乘分数的意义。
2、学生在自主探究、合作交流的过程中掌握分数乘分数的计算方法,并能正确进行计算。
3、能运用分数乘分数的知识解决简单实际问题,体会数学与生活的联系。
本着课程标准,在深入研究教材的基础上,我将本课的教学重难点确定如下:
教学重点:
是掌握分数乘分数的计算方法。
教学难点:
是理解分数乘分数的算理。
二、说学情
以新课标精神为主导,依据学生已有的生活经验和知识脉络,我在教学过程中面向全体学生,主要采用“情境探究法”、“操作法”、“比较法”、“观察法”等教学方法,注重培养学生动手实践、动眼观察、动脑思考,最大限度地留给学生自主探索的时间和空间,把学习主动权交给学生,让学生自由开放地探索学习,鼓励启发每位学生积极主动参与到学习活动,让学生成为学习的主人,体现以生为本的理念,这正是课标中要求的,也是我们每位数学教师必须做到的。
《新课标》指出:有效的数学活动,不能单纯的依赖记忆和模仿,动手实践、自主探究、合作交流是数学学习的重要方式。因此在本节课中主要采用“动手实践、自主探究、合作交流”等多种学习方法来理解掌握分数乘分数的意义与算理。
三、说教学过程
数学是培养人思维、发展人思维的一门重要学科,因此在教学中不仅要使学生知起然,更要知其所以然。为了凸显本节的设计理念,切实高效地完成教学目标,我设计以下教学环节:
1、回顾旧知,使新旧知“衔接”起来。
复习分数乘整数的意义及计算方法,为学习新知做铺垫。
2、创设情境、让课堂“活”起来。
在课始,我用古代著名哲学著作《庄子、天下》中的话语创设问题情境:“为什么永远截不完呢?”,于是老师引导学生做一做:“请大家拿出小纸条,第一次折出它的1/2,第二次折出剩下的1/2,此时,剩下部分占这张纸的几分之几?”并引导学生理解此时剩下的部分就是1/2的1/2,用乘法算式可以表示为1/2×1/2。并得到算式1/2×1/2=1/4,此时,导入新课“今天,我们将一起探究分数乘分数的计算方法。”这样设计,首先用问题情境引起学生的思考,激起学生的学习兴趣和求知欲望。在动手操作中初步感知分数乘分数的意义,并为下面探究分数乘分数的过程奠定了基础。
3、自主探究,让学生“动”起来。
苏霍姆林斯基曾经说过:“在人的思想里根深蒂固的有一种需求,就是希望自己成为一个发现者、探究者,而儿童的精神世界这种需求更为强烈”。因此我在教学中通过引导学生在“折一折”、“涂一涂”、“说一说”等多种活动来理解分数乘分数的意义及计算方法。
首先,接着上面的问题,引导学生在实际操作中再次感知分数乘分数的意义。“如果第三次再折出剩下的1/2,此时剩余部分占这张纸的几分之几?”让学生自己动手剪一剪,根据第一次的经验得出此时剩余部分占这张纸的1/8,并得出算式1/4×1/2=1/8。 在学生初步理解分数乘分数的意义基础上,提出问题“1/4×3/4=?”引导学生先折出一张纸的1/4并用斜线表示出来,再折出斜线部分的3/4,用红色标记。然后让学生自己讨论交流“红色部分占斜线部分的几分之几?占整张纸的几分之几?”给学生充分的时间交流后,让学生发表自己的见解,绝大部分学生能够通过折的过程和结果得出红色部分占整张纸的3/16,并引导学生理解得出算式1/4×3/4=3/16。在此基础上,引导学生观察,发现分数乘分数的计算方法。尽量多给机会让学生总结发言,让学生用自己的语言总结出分数乘分数的计算方法:分数乘分数,分子相乘,分母也相乘。在学生充分的操作和交流中,教学重点得到了落实,突破了本节课的教学难点。总之,在整个过程中充分体现“以生为本”的教学理念,秉着“将课堂还给学生,让课堂焕发生命的活力”的指导思想。
4、体验成功,让学生“乐”起来。
练习是学习知识,掌握技能的一个重要环节,我根据本课内容特点,设计了由易到难,由浅入深的练习,力求体现知识的纵横联系。
5、总结全课,加深印象。
人们常说“千金难买回头看”,“回顾”是数学课的主流教学策略。因此,在课尾结合简洁明了的板书总结全课,同时是对本课所学知识的一个梳理。
总之,在本课教学中,我始终关注着学生,为学生提供多种条件让学生参与到获取新知的过程,体验成功的喜悦来满足每个学生的需求。
分数乘法教案 篇5
我将要从七个方面展开说课:说教材、说学情、说教学目标与教学重难点、说教法与学法、说教学过程、说板书设计、说教学效果。
一、说教材
《分数乘法(二)》是北师大版小学数学新课标教材五年级下册第三单元分数乘法第二课第一课时的内容,它是在学生理解了整数乘法的意义,分数的意义,并学会“求几个几分之几是多少?”的基础上进行教学的。是对《分数乘法(一)》的拓展和延伸,为进一步学习分数乘分数,分数除法和分数四则混合运算奠定基础。起着承前启后的作用。是学习分数多步计算的关键,教材中创设两个问题情境,通过直观图形引导学生利用转化的方法思考,将旧知与新知有机联系在一起,应用分数乘法解决实际问题。
二、学情分析
1.已具备的知识经验:学生在学习《分数乘法(一)》的过程中已经经历了算理和算法的推导过程,本课的学习是对《分数乘法(一)》的拓展和延伸,依据知识的迁移,应用转化的思想,学生可以通过探究,把新知识转化为已经学习过的旧知识,理解并掌握分数乘整数的意义与计算法则。
2.学习态度及习惯:五年级学生有很强的自学能力,求知欲强烈,但由于个性的差异,主动参与积极探究程度各不相同。
三、说教学目标
知识与能力:
1.结合具体情境在操作活动中探索并理解求一个数的几分之几,扩展分数乘法的意义并熟练计算。
2.会解决有关的应用问题,进一步体会分数乘法在生活中的应用。
过程与方法:在具体情境中运用直观模型,通过折一折、分一
分、画一画的方法,理解一个数乘分数的意义,探究一个数乘分数的计算方法。
情感、态度、价值观:体会数学与生活的密切联系,渗透德育教育。
教学重点:进一步理解分数乘法的意义。
教学难点:正确计算分数乘法并能解决简单的实际问题。
四、说教法、学法
焦老师在本节课主要采用了情境创设法、实践操作法、引导法、点拨法、多媒体演示法来提高学生的学习兴趣,有力的突出重点,突破难点,引导学生理解分数乘法的意义和计算方法。
学法:学生以自主探究为主,小组合作学习为辅,通过动手实践、讨论交流、展示汇报、迁移归纳、应用拓展的方法,在学生动手、动脑、动口的过程中获取新知。
五、说教学过程
本节课,焦老师分成了五个环节进行教学,逐步递进;创设情境,激趣导入——动手操作,探究新知——学以致用,提升能力。——拓展应用,延伸新知——畅谈收获,体验成功。
焦老师首先进行了课前小热身,巧用学生人数与班级的关系激起学生的学习欲望。有意识的唤醒了孩子用已经掌握的《分数乘法(一)》的知识来解答,既复习了旧知,又为学习新知做好铺垫,自然过渡,揭示课题。
(一)创设情境,激趣导入。(3分钟)
观察情境图,培养学生整理数学信息,根据相关信息提出问题的能力。
(二)动手操作,探究新知。(20分钟)
这一环节焦老师设计了二个活动,重点引导学生进一步体会分数乘法意义及计算方法。
活动1:动手操作,自主探究。
以问题“笑笑吃了多少块饼干?”为引领和调控课堂教学的主线,重点引导学生理解“奇思饼干数的二分之一”这句话,打通学生的思维通道。转化为求6的二分之一是多少?把图形语言作为理解的基础,以学生动手折一折、分一分。让学生在动手操作中观察、思考、交流将抽象、枯燥的内容活动化、直观化。学生能够很快的探究出方法,由于个性的差异,部分学生没有真正理解,只停留在表象。找到解决问题的关键。焦老师给学生提供展示在平台,由学生在黑板上实物操作展示,表述方法,出现表述不清时,焦教师及时启迪学生深思,依据旧知的迁移,应用转化的思想,把“一个数的几分之几是多少?”转化成已经学过的知识“几个几分之几是多少?”来获取新知。体现了我校的“‘134问题导学模式’” 培养了学生观察分析的能力,锻炼了学生归纳及口头表达的能力。
活动2.推理归纳,验证结论
抛出问题“淘气吃了多少块饼干?”,请学生画一画理解方法。由具体到抽象,引导学生归纳出解题的思路,“求一个数的几分之几用乘法计算”,并请学生利用身边的资源操作验证。使学生豁然开朗。中肯的评价更加激发学生展示的欲望。学生对一个数只能是整数吗?产生质疑,焦老师抓住机会引发学生想象分数还可以与分数相乘,可以跟小数相乘,打破学生思维固有的框架。学生的质疑,实现了课堂的升华。
巧妙的为下一节《分数乘法(三)》的学习埋下了伏笔,实现了知识的融会贯通。对学生数学思想的渗透更加丰富。开阔了学生的视野,发散了学生的思维。培养了学生的问题意识、创新意识。
(三)学以致用,提升能力。(10分钟)
二个练习,由易到难,层层深入,“说一说”学生轻松应对巩固了解题方法,“列一列”使学生体验了从数量到计量的转化,考察学生是否会灵活应用,拓宽了知识的范畴,从多种角度为学生理解问题、解决问题提供了思路和灵感。使不同层次的学生都参与练习,得到不同层次的发展。
(四)拓展应用,延伸新知。(5分钟)
焦老师根据课堂实际情况,临时调整为拓展应用,延伸新知。将数学知识与“为灾区捐款”生活问题自然联系,发展学生根据实际情境和运算意义解决问题的能力,将数学与生活,服务于生活的理念体现的淋漓尽致。渗透德育教育,激发人人献爱心。
(五)畅谈收获,体验成功。(2分钟)
谈谈“通过这节课的学习,你有什么收获?还有什么遗憾?”学
生不仅将整个学习过程进行回顾,形成整体印象,巩固了新知。而且分享学习数学的感受,合作的快乐,成功的喜悦。
六、说板书设计
分数乘法(二)
6的 相当于6个 6×
6的 相当于6个 6×
一个数的几分之几 这个数×几分之几
板书设计直观、突出重点,明确了新知与旧知的连接点。突显了转化方法的运用。点明了结论。更加体现出分数乘法知识的内在联系。扩展了学生对分数乘法意义的理解。
七、说教学效果
整节课焦老师以问题作为引领和调控课堂的主线,以策略作为方法与应用的统一,以活动作为体会知识与生活的有机联系,以评价作为学生探究的动力。以德育的渗透得到情感的升华。让学生自主参与学习的全过程,经历感知—操作—推理—验证—应用。符合新课标的理念,充分发挥了学生的主体作用,体现了自主、合作、探究的学习方式。培养了学生的探究意识、创新意识。使学生学有所获,获有所悟,悟有所成。
我的说课到此结束,谢谢大家。
分数乘法教案 篇6
教材分析
“分数乘法的意义”是学习和理解本节课内容的重要基础,因此在教学新知识前帮助学生找到知识的生长点很重要。
本节课的内容为简单的分数乘法一步应用题,掌握这部分知识才能为学习后面部分较复杂的分数乘法问题打下基础。
学情分析
本节课的内容是在学生已经掌握了分数乘法的计算方法和分数乘法的意义,具备了一定的分析题意中已知条件和找单位“1”等迁移知识的能力。学生认知的障碍点主要是理解分数问题中的单位“1”和问题的关系。
教学目标
1.理解掌握“求一个数的几分之几是多少”的分数问题的结构和解题方法。
2.渗透对应思想,发展学生分析推理能力和解决实际问题能力。
3.感受数学知识应用的广泛性。
教学重点和难点
1. 理解分数问题中的单位“1”和问题的关系。
2.理解“求一个数的几分之几是多少”的问题的解题思路和方法。
3.抓住知识关键,正确、灵活判断单位“1”。
教学过程
一、复习导入。
1.读信息,找出单位“1”:
2.列式计算。
思考:这两道题为什么用乘法计算?
板书课题
二、探索新知。
1.教学例1
(1)读题,理解题意。知道题中已知条件和所求问题,搞清楚
数量间的关系。
(2)画线段图分析思考,分析重点句。
(3)在分析题意的基础上,学生尝试解答。
板书: 2500× =1000(㎡)
(4)结合计算结果,让学生说说自己的'想法,培养学生分析数据的能力,进行国情教育。
三、巩固练习。
1.让学生理解题意,解决问题并说出解决的依据是什么。
2.(1)解决的问题是什么?怎样解决?
(2)比较这两道题的异同。
3.要求学生画线段图分析题意,再独立列式解答。
四、拓展提高。
先让学生独立思考,尝试列式解答,再交流想法。
小结:解决这类问题应从哪里入手分析?解题步骤是什么?
五、归纳总结。
今天有什么收获?
六、布置作业。
教科书第18页第2、3、9题。
分数乘法教案 篇7
一教学目标
1.结合具体情境,借助示意图理解分数乘整数的意义,渗透数形结合思想。
2.借助转化的方法理解分数乘整数的算理,并能正确地进行计算,提高计算能力。
3.在探索与交流活动中培养观察、推理的能力。
二学情分析
1.由于分数乘法的计算过程要比整数乘法的极端过程复杂,因此学生对于这方面知识的学习有很大的吃力感,所以加强学生的计算能力是学习这方面知识的保证。
2.学生认知发展分析:小学学生现在的认知基础还是以整数乘法为主,他们习惯于学习整数乘法方面的知识和解题方法与思路。因此学习本节课内容主要从整数入手,逐渐加强学生对分数乘法的认识。
3.学生认知障碍点:学生在刚开始学分数乘法时可能有时想不到先约分,后计算。
三重点难点
教学重点:理解他数乘整数的意义,掌握分数乘整数的计算方法。
教学难点:理解分数乘整数的计算方法。
四教学过程
4.1分数乘整数
4.1.1教学活动
活动1【导入】复习旧知,引出课题。
1.复习题。
(1)列式计算。
5个12是多少?9个11是多少?8个6是多少?
提问:你还记得整数乘法的含义吗?
(2)计算:
提问:分母相同的分数相加,如何计算?
2.引出课题。
第二道题还可以怎么计算?今天我们就来学习分数乘法。
活动2【活动】创设情境,探究分数乘整数
1.教学分数乘整数的意义。
出示例1,自由读题。小新、爸爸、妈妈一起吃一个蛋糕,每人吃个,3人一共吃多少个?
(1)分析演示:
题中的:“小新、爸爸、妈妈一起吃一个蛋糕,每人吃个”意思什么?(每人吃了整个蛋糕的)
每人吃了整个蛋糕的,可以画图表示吗?怎样表示?
3个人呢?
求3人一共吃了多少个,
就是要求什么?怎样列式计算?
用加法计算:+ + = = (个)
求3个的和是多少,还可以怎样列式?
用乘法计算:×3
这个乘法算式与我们之前学习的有什么不同?分数乘整数与整数乘法意义相同,都表示求几个相同加数的和的简便运算。区别在于,在整数乘法中,相同加数是整数,在分数乘整数中,是分数。板书课题:分数乘整数
2.教学分数乘整数的计算法则。
(1)推导算理:由分数乘整数的.意义导入。
问:怎样计算?分数乘整数第一次遇到,能转化成我们学过的式子来计算吗?为什么?
引导学生说出表示求3个的和。板书:+ + 。
学生计算,教师板书:。提示:分子中3个2连加简便写法怎么写?学生答后板书:(块)
补充两个例子:若每人吃个,×3=
若每人吃个,×3=
今后每次都要转化成分数加法来计算吗?分数乘整数的计算有没有什么规律可循呢?
(边说边加虚线)
(2)引导观察:分子部分、分母与算式中两个数有什么关系?(互相讨论)
汇报结果:(多找几名学生汇报)使学生得出是用分数的分子2与整数3下乘的积作分子,分母不变。
(3)概括总结计算方法。(同桌互说)
请学生总结。教师板书。
(4)介绍约分及注意事项。
根据的计算过程,指出:计算过程中,分子、分母能约分的可以先约分,然后再乘,结果相同。教师示范,注意约分书写格式:约得的数要与原数上下对齐。追问:你知道为什么先约分,再相乘,结果不会变吗?(还是根据分数的基本性质)那么请你比一比,想一想,计算结果约分和在过程中约分,你倾向于哪一种,请说明理由。
3.反馈练习:练习一第1题、做一做。
活动3【活动】全课小结
今天学习的主要内容是什么?关于分数乘整数有哪些收获?
活动4【练习】课堂作业
A部分:练习一第2、3题。
B部分:青岛地铁2号线将于20xx年底实现东段通车,全线共设车站22个,平均每两个站之间距离是五分之六千米。青岛地铁2号线全程长是多少千米?
分数乘法教案 篇8
尊敬的各位评委、老师:
大家好!
我是13号,我说课的内容是北师大版小学数学五年级下册第1单元第一课《分数乘法(一)》。下面我将从说教材、说教法、说学法、说教学程序和说板书设计五个方面来完成我的说课。
一、说教材:
《分数乘法(一)》是在学生学习了整数乘法意义以及分数加减法基础上教学。本节主要内容求几个相同分数的和,将分数乘法与整数乘法相联系,并探索出分数乘整数计算方法。同时为以后分数成分数打基础。
根据新课标要求及教材内容,我从三方面确立目标。
1、结合具体情境,在操作活动中探索并理解分数乘整数意义,掌握分数乘整数计算方法。
2、在生经历探索分数乘整数的意义及计算方法的过程中,培养生观察、分析、概括等方面的能力。
3、能解决简单分数乘整数实际问题,体会数学与生活的密切联系。
根据教学目标,我将教学重点定为:(目标1).
根据生实际情况,教学难点:理解分数乘整数算理,掌握方法。
二、说教法:
根据教材内容以及生年龄特点,采用多媒体演示法、启发式教学法、引导发现法、讲授法,通过观察探索,获取知识,激趣。通过启发引导,使学生的思维活动在师引导下层层展开,使他们听有所思,做有所获。教学中,我采用多媒体辅助教学,这样突出教学效果,优化课堂教学。
三、说学法:
在教学中,学生始终是学习的主体,教师要交给学生有效的学习方法,使学生学会学习。在本课的教学中,依据教学内容,通过自主探究、动手实践、合作交流的学习方法,使学生理解分数乘法意义,掌握分数乘整数计算方法。这样可以充分调动学生学习的积极性和主动性,使学生不仅学会而且会学。
四、说教学程序:
根据本课教学目标,我设计了复习导入(约3)探索新知(约15)巩固应用(约20)课堂小结(约2)四个环节进行教学,具体如下:
(一)复习导入:多媒体出示:1、把9+9+9+9+9改成乘法算式2、列式计算:(1)5个12是多少? 12×5让学生列式并说出整数乘法的意义。“3个1/5是多少?怎样列式?能不能用算式1/5×3来表示呢?今天,我们就一起来学习分数乘法(一)。”板书课题)(这样设计,通过复习旧知为新知的学习提供迁移准备,引起学生的好奇心和求知的欲望,同时激发了学生的学习兴趣)
(二)探索新知:多媒体出示教材2页情境。一个图案占整张纸的1/5,3个图案占整张纸的几分之几?怎样解决这个问题呢?请同学们先独立思考,然后同桌交流。学生汇报方法:有的学生是用画图的方法做的,先把一张纸平均分成5份,每份是1/5,就是一个图案,三个图案就是三份,也就是3/5。有的学生用连加的方法做的:列式是1/5+1/5+1/5(板书)同分母分数相加以前学过,分母不变分子相加,所以=1+1+1/5=3/5。还有的学生用乘法计算:列式3×1/5 “这个算式表示什么?请同学交流讨论”。然后会发现3×1/5表示3个1/5的和是多少。也就是=1/5+1/5+1/5=1+1+1/5,分子是3个1想加,利用整数
乘法意义=3×1/5=3/5 师生共同归纳出:分数乘整数的意义与整数乘法意义相同,是 求几个相同的分数和,可以用乘法计算。。(这样设计,通过学生独立思考,培养学生自主探究能力,通过小组讨论交流,培养学生小组合作意识,这一环节体现了学生是学习的主体,要充分发挥学生学习的主动性)
接着多媒体出示教材“涂一涂,算一算”“2个3/7的和是多少?3个5/16的和是多少?”让学生独立解决。学生根据涂一涂的结果会列出这样的算式3/7 ×2=6/75/16×3=8/16 “请同学们仔细观察这两个式子的分子分母与得数的分子分母有什么关系?有了想法后在小组内交流。”学生会发现:3/7 ×2=3×2/7= 6/75/16×3=5×3/16 =8/16 也就是分子和整数相乘做分子,分母不变。这就是分数乘整数的计算方法。(这样设计,通过师生之间相互交流,归纳出分数乘整数的计算方法,加深学生对这一知识的理解,使新知识及时纳入学生的知识结构中,突出重点突破难点)
“同学们通过观察,比较,交流,讨论我们理解了分数乘整数的意义是:求几个相同分数的和的简便运算,掌握了分数乘整数的计算方法是:分子和整数相乘做分子,分母不变。”(这样设计,通过教师及时的总结归纳出本节课的重点内容:分数乘整数意义及其计算方法,使知识既是内化到学生的认知结构中。)
(三)巩固应用:练习是理解知识、掌握知识、形成技能的基本途径,为使不同层次的学生都得到不同程度的发展,我设计了以下几个层次的练习。
1、基本练习:教材3页“试一试”的1让学生独立完成,集体订正,巩固对知识的掌握
2、提高练习:教材3页“做一做” 让学生独立思考,通过算式比较以及教师适当指导,总结出:在计算过程中,能约分的要约分;最后结果应该是最简分数。
3、拓展练习:教材3页“试一试”的3。先让学生说一说是怎么想的,再全班交流经验,培养学生运用所学知识解决简单的实际问题。
(这样的设计由浅入深、环环相扣,既巩固了本节课的知识,又培养了学生解决问题的能力,发展了学生思维的灵活性。)
(四)课堂总结“通过今天的学习,你们有哪些收获?”学生谈收获,教师适时总结。
(让学生先总结,既梳理了学生的思路,又使所学的知识及时内化,形成了良好的认知结构。同时还培养了抽象概括能力,让学生学会反思。)
五、说板书设计这样的板书设计,突出了教学的重点,解决了教学难点。使教学内容一目了然,便于学生理解掌握。
1/5+1/5+1/53×1/5
=1+1+1/5=1/5+1/5+1/5
=3/5=1+1+1/5
=3×1/5
=3/5
意义:求几个相同分数的和的简便运算
方法:分子和整数相乘做分子,分母不变。
以上是我的说课内容,谢谢各位评委老师!
yjs21.cOm更多幼儿园教案编辑推荐
有理数乘法法教案分享
想知道“有理数乘法法教案”的内涵和背后的故事请继续阅读,我们将对您的问题和需求提供专业的建议和意见。老师都需要为每堂课准备教案课件,每位老师都需要认真准备自己的教案课件。要知道做好教案课件的前期准备,在教学的时候学生也能更理解课堂知识点。
有理数乘法法教案【篇1】
1、知识积累与疏导:通过蜗牛爬行模型的演示,循序渐进,导出有理数乘法法则。认知率100%。毛
2、技能掌握与指导:能运用有理数乘法法则进行计算,掌握两个有理数相乘的方法和步骤。利用率100%。
3、智能的提高与训导:在练习等师生互动、生生互动的活动过程中,学会与老师及与其他同学交流,沟通和合作,准确表达自己的.思维过程。互动率95%。
4、情感修炼与开导:通过练习中的沟通与合作,领悟有理数乘法与小学里数的乘法的联系、发展和进步。投入率95%。
5、观念确认与引导:通过导出、运用法则等活动,加深理解有理数乘法法则;通过与小学里数的乘法法则的比较及法则的导入,培养学生的观察、分析能力,渗透数形结合和转化的数学思想。
把全班学生分成46人一组。
1、每组学生演示自己制作的蜗牛爬行的模型(模型制作事先完成),如课本P37的四种情况,讨论完成P37的五个填空。
2、全班集中交流以上结论,归纳引出有理数乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘。
问:法则(1)有没有把所有的有理数都包括在内?
指出:正数与0相乘得0,这里规定负数与0相乘也得0。
所以得法则(2) 任何数同0相乘,都得0。
有理数乘法法教案【篇2】
一、创设情景,导入新
1、由前面的学习我们知道,正数的加减法可以扩充到有理数的加减法,那么乘法是可也可以扩充呢?
乘法是加法的特殊运算,例如5+5+5=5×3,那么请思考:
(-5)+(-5)+(-5)与(-5)×3是否有相同的结果呢?本节我们就探究这个问题。
3、在一条由西向东的笔直的马路上,取一点O,以向东的路程为正,则向西的路程为负,如果小玫从点O出发,以5千米的向西行走,那么经过3小时,她走了多远?
二、合作交流,解读探究
1、小学学过的乘法的意义是什么?
乘法的分配律:a×(b+c)=a×b+a×c
如果两个数的和为0,那么这两个数 互为相反数 。
2、由前面的问题3,根据小学学过的乘法意义,小玫向西一共走了 (5×3)千米,即(-5)×3=-(5×3)
3、学生活动:计算3×(-5)+3×5,注意运用简便运算
通过计算表明3×(-5)与3×5互为相反数,从而有
3×(-5)=-(3×5),由此看出,3×(-5)得负数,并且把绝对值3与5相乘。
类似的,(-5)×(-3)+(-5)×3=(-5)×[(-3)+3]=0
由此看出(-5)×(-3)得正数,并且把绝对值5与3相乘。
4、提出:从以上的运算中,你能总结出有理数的乘法法则吗?
鼓励学生自己归纳,并用自己的语舞衫歌扇,并与同伴交流。
在学生猜测、归纳、交流的过程中及时引导、肯定
两数相乘,同号得正,异号得负,绝对值相乘。
任何数与0相乘,积仍为0
(板书)有理数乘法法则:
三、应用迁移,巩固提高
1、计算
(-5)×(-4) 2×(-3.5) × (-0.75)×0
(1)学生根据乘法法则,在练习本上完成。指定四位同学到黑板演习。
(2)教师:要求学生明确算理,学生做练习时,教师巡视,及时引导。
2、计算下列各题
① (-4)×5×(-0.25)
② ×( )×(-2)
③ ×( )×0×( )
指定三名同学在黑板上做,使学生明确,做有理数的乘法时,要先确定积的符号,再求出积的绝对值。
教师提出问题:几个有理数相乘时,因数都不为0时,积是多少?
学生小结后,教师归纳:
几个不为0的有理数相乘,积的符号由负因数的符号决定,负因数有奇数个时,积为负;负因数有偶数个时,积为正;只要有一个因数为0,则积为0
练习:本P31练习
四、总结反思(学生先小结)
1、有理数乘法法则
2、有理数乘法的一般步骤是:
(1)确定积的符号;
有理数乘法法教案【篇3】
1.几个有理数相乘的积的符号法则
引导学生观察上面各题的计算结果,找一找积的符号与什么有关?
(7),(9),(11)等题积为负数,负因数的个数是奇数个;(18),(20)等题积为正数,负因数个数是偶数个.
是不是规律?再做几题试试:
(1)3× (-5); (2)3×(-5)×(-2); (3)3×(-5)×(-2)×(-4);
(4)3×(-5)×(-2)×(-4)×(-3);(5)3×(-5)×(-2)×(-4)×(-3)×(-6).
同样的结论:当负因数个数是奇数时,积为负;当负因数个数是偶数时,积为正.
再看两题:
(1)(-2)×(-3)×0×(-4); (2)2×0×(-3)×(-4).
结果都是0.
引导学生由以上计算归纳出几个有理数相乘时积的符号法则:
几个不等于0的数相乘,积的符号由负因数的个数决定.当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.
几个有理数相乘,有一个因数为0,积就为0.
说明:(1)这样以后进行有理数乘法运算时必须先根据负因数个数确定积的符号后,再把绝对值相乘,即先定符号后定值.
(2)第一个因数是负数时,可省略括号.
2.乘法运算律
在做练习时我们看到如果像小学一样能利用乘法的交换律和结合律
计算:
(1)5×(-6); (2)(-6)×5;
(3)[3×(-4)]×(-5); (4)3×[(-4)×(-5)];
由上面计算结果,可以说明有理数乘法也同样有交换律,结合律,
(1)乘法交换律
文字叙述:两个数相乘,交换因数的位置,积不变.
代数式表达:ab=ba.
(2)乘法结合律
文字叙述:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变.
代数式表达:(ab)c=a(bc).
例2,用简便方法计算:(1)(-5)×89.2×(-2)
(2)(-8)×(-7.2)×(-2.5)×
解:(1)原式=5×2×89.2……交换因数位置,决定积的符号
=892………………按顺序依次运算
(2)原式=-(8×2.5)×(7.2× )……交换因数位置,决定积的符号
=-60………………按顺序依次运算
有理数乘法法教案【篇4】
人教版数学有理数乘法教学设计
设计理念
1.注意突出学生的自主探索,通过一些熟悉的、具体的事物,让学生在观察、思考、探索中体会有理数的意义,探索数量关系,掌握有理数的运算。教学中要注重让学生通过自己的.活动来获取、理解和掌握这些知识。
2.本课注意降低了对运算的要求,尤其是删去了繁难的运算。注重使学生理解运算的意义,掌握必要的基本的运算技能。
3.数轴是理解有理数的概念与运算的重要工具,教学中要善于利用好这个工具,尤其要使学生善于借助数轴学习、理解。
教学目标
1.使学生掌握有理数乘法的运算律,并利用运算律简化乘法运算。
2.使学生掌握多个有理数相乘的积的符号法则。
过 程 与 方 法: 培养学生观察、归纳、概括及运算能力。
情感态度与价值观:让学生感知数学来源于生活,培养学生学习数学的兴趣。
重点 乘法的符号法则和乘法的运算律。
难点 积的符号的确定。
教学过程
一、复习引入;
观察并计算
①(-2)3456
②(-2)(-3)456
③(-2)(-3)(-4)56
④(-2)(-3)(-4)(-5)6
⑤(-2)(-3)(-4)(-5)(-6)
二、自主学习探索:
1.以上几个式子有何区别与联系?
2.你认为多个数相乘先干什么?
3.你能总结出什么规律?
有理数乘法法教案【篇5】
1.多个有理数相乘,可以把它们按顺序依次相乘。
例如:计算:1(-1)(-7)=-(-7)=-2(-7)=14;
又如:(+2)[(-78)]=(+2)(-26)=-52.
我们知道计算有理数的乘法,关键是确定积的符号。
观察:下列各式的积是正的还是负的?
(1)234 (2)234(-4)
(3)2(-3)(-4)(4)(-2)(-3)(-4)(-5)。
易得出:(1)、(3)式积为负,(2)、(4)式积为正,积的符号与负因数的个数有关。
教师问:几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?
学生完成思考后,教师指出:几个不是0的数相乘,积的符号由负因数的个数决定,与正因数的个数无关,当负因数的个数为负数时,积为负数;当负因数的个数为偶数时,积为正数。
2.多个不是0的有理数相乘,先由负因数的个数确定积的符号再求各个绝对值的积。
有理数乘法法教案【篇6】
各位专家,各位同仁:;大家好!;我说课的课题是北师大版《数学》七年级上册教材中的;
一。教材分析;
(一)教材的地位与作用;本课时既是有理数加减混合运算的自然延续,又是后面;
(二)教学目标分析;
1、知识与技能目标:借助实际情境,使学生理解有理;
2、方法与过程目标:让学生经历有理数乘法法则的探;
3、情感﹑态度与价值观目标:通过学习
2.8. 有理数的乘法(第一课时)
各位专家,各位同仁 :
大家好!
我说课的课题是北师大版《数学》七年级上册教材中的第二章第8节"有理数的乘法".第一课时。我将从以下四个方面谈一谈这节课的教学设计。
一。教材分析
(一)教材的地位与作用
本课时既是有理数加减混合运算的自然延续,又是后面学习有理数除法、乘方运算的基础,还是今后学习代数式运算﹑方程﹑函数等内容的必要知识储备。因此本节课的学习有着承上启下﹑铺路架桥的作用。学好这部分内容,对于学生理解"类比和化归"这些重要数学思想,应用"不完全归纳法",发展学生数学探究能力,增强学生学习数学的信心都具有十分现实的意义。
(二)教学目标分析
1、知识与技能目标:借助实际情境,使学生理解有理数乘法的意义,掌握有理数的乘法法则,并运用法则解决实际问题。
2、方法与过程目标:让学生经历有理数乘法法则的探索过程,发展学生观察、猜想、归纳、验证、运算的能力,让学生领会类比、数学建模,以及从特殊到一般的数学思想方法。
3、情感﹑态度与价值观目标:通过学习,激发学生的学习动机和好奇心理,锻炼学生的思维意志品质,张扬学生个性,培养学生科学严谨的学习态度,使学生树立正确的价值观、人生观。
(三)教学重、难点及成因分析
教学重点定为:掌握有理数的乘法法则,会进行有理数的乘法运算。
教学难点定为:有理数的乘法法则的探索和对法则的理解。
为了突破教学重难点,教学的关键是运用猜想验证的方式,利用水位变化的直观性,帮助学生掌握有理数乘法运算法则。
二、教法、学法分析
(一)、学情分析
1、学生在小学已经明确正数乘法的意义和正数之间、正数与零之间的乘法运算法则。
2、通过对有理数加法运算的学习,学生对负数参与运算有了一定的认识,已经明确计算时要先确定和的符号,再确定和的绝对值的基本方法。
(二)、教法分析
《课程标准》中明确指出:学生是学习的主人,教师是学习的组织者、引导者与合作者。基于以上理念,结合本节课内容及学生的实际情况,教学中我主要采用"引导——探究法"组织教学。
(三)、学法指导
本节课我鼓励学生采用自主探索与合作交流相结合的方式进行学习,让学生亲身体验知识的发生、发展、发现的全过程,增强学生的参与意识,促进学生对知识的理解和掌握,真正提升学生的数学素养。
三、教学过程分析
我根据数学课程"倡导积极主动,勇于探索的学习方式"的基本理念,将本节课的基调定为对于创设情境,引入课题,我考虑了两种方式:
1.直接提出问题:你能给出下列各式的结果吗?
(1)2×3=____;(2)(-2)×(-3)=____;(3)2×(-3)=____;(4)0×(-4)=____. 这种引入由学生所熟悉的正数乘法运算引入未知的负数参与的乘法运算,能做好中学与小学知识的衔接,激起学生认知上的冲突。但它较难让学生快速进入学习情境。
2、通过演示实际生活中甲,乙两水库的水位上升或下降的情景,得到乘法算式,以次引入课题。这种引入符合七年级学生形象思维能力强的认知特点,易激发学生的学习兴趣,在复习乘法意义的同时,也为后面利用水位变化研究课题打下基础。因此我选择第二种方式引出课题。
(二)自主探究,归纳结论
根据学生思维活跃,善于交流的特点,本着由浅入深,由易到难,由形象思维过渡到抽象思维的原则,我设计了:出示问题,建立模型;独立思考,探索规律; 归纳总结,得出法则 这样三个层次,来逐步展开对课题的探究。以便更好的展示知识的形成过程,突出重点,突破难点;减轻学生对法则的理解难度。
1.出示问题 ,建立模型
问题1. 议一议
(-3)×4= -12
(-3)×3=
(-3)×2=
(-3)×1=
在出示问题,建立模型这一环节,先提出问题1. 议一议,我要求学生按6人一组,进行探究活动,在充分合作并取得一致意见的基础上,然后由学生主动进行展示。学生可能会从以下两个方面进行回答。1.把乘法转化成加法(链接);2.利用乙水库水位的变化来说明。点评时,教师通过动画演示验证学生结论的正确性。
问题2:①你知道(-3)×0的结果吗?
②如何用水位的变化来解释(-3)×0= 0 ?
通过演示,学生很容易就能看出当时间没有变化时,水位不会发生变化。
问题3.认真观察上述5个算式,其中包含什么规律?
此处是本节课的一个难点,学生要得到答案,比较困难。我将从以下几个方面对学生进行引导。1.观察算式的左边,找出变化的因数和不变的因数;2.观察算式的右边,找出积的变化规律;3.要求学生在独立思考之后,将两边的变化规律总结成一个结论。即:一个因数不变,另一个因数每次减小1.算式右边的积每次增加-3.
上述三个问题的解决,渗透了高效课堂教学的理念,让学生通过自主交流,自我展示,达到理解知识、培养能力、张扬个性的效果。学生通过独立思考,自己发现规律,也能提高学习数学的兴趣,同时也为解决下面的问题4打下坚实的基础。
2. 独立思考,探索规律
问题4.猜一猜
(-3)×(-1)=
(-3)×(-2)=
(-3)×(-3)=
(-3)×(-4)=
由于有了上面的铺垫,学生很容易猜出这4个算式的结果,但是为什么是这四个结果,学生却并不明白,为突破这一关键点,我给出了教科书上的一个规定: 水位上升为正,水位下降为负 ; 为区分时间,我们规定:"现在前"为负,"现在后"为正 .根据上述规定,我先让学生说一说这4个算式的实际意义,如(-3)×(-1)表示乙水库一天前的水位等。接着让学生看动画演示,然后再让他们充分发表自己的意见,在争辩讨论中弄清楚此时各种情况下水位的总变化量,最后达成共识。
这样做的目的为了让学生知其然更知其所以然,感受数学结论的合理性。
问题5.你能猜出 3×(-2)的结果,并解释理由吗?
通过与第四个问题进行类比,学生很容易得出此题答案。这里补充正数与负数相乘,是为后面学生归纳有理数的乘法法则打下伏笔。
本环节我以学生的发展为本,让学生经历探索的过程,培养学生自主学习的能力。通过文字的叙述和算式的有机结合,使得乘法结果的得出自然合理,更有助于一般结论的归纳。课件动画效果可以使情境更生动,有助于学生思考问题得出结论,使学生由感性认识上升到理性思维。
接着我引导学生进入第三步:归纳总结,得出法则。
3、归纳总结,得出法则
完成问题6后,学生对有理数的乘法法则已经到了呼之欲出的地步,于是我提出了问题7:
由于学生对负数的意义理解不深,()计算时很容易算对绝对值的乘积而忽视了符号问题,或者,注意了符号而又忘记了把绝对值相乘,于是我设置了做一做及问题8,让学生清楚运算时的几个步骤。并引导学生进行归纳:有理数相乘,先确定积的符号,再决定积的绝对值。
通过层层设置的问题,我引导学生讨论发现,归纳结论。这些环节展示了知识的形成过程,培养了学生探究能力,锻炼了学生概括表述能力。在探究归纳的过程中,也渗透了类比和分类讨论、从特殊到一般、数学建模的思想方法。
(三)知识运用,加深理解
1、运用法则进行计算
在这一环节,为了提高学生计算的准确度,培养学生的运算能力,并为多个有理数的乘法及乘除法混合运算奠基,在选题时,例1安排了分数、小数、带分数及整数参与运算。在(2)中设计了整数与小数相乘、(4)设计了小数与带分数相乘,(5)设计了有理数的连乘,在学生解题的基础上,都分别总结了两种计算方法;并由学生总结解题的方法和技巧:当因数是小数时,一般可化为分数再相乘;当因数是带分数时,一般要化为假分数再相乘,有理数的连乘
可以两两相乘,也可以先确定积的符号,再确定积的绝对值。同时通过(1)的计算要让学生明白:乘积是1的两个数互为倒数。
2、运用法则解决实际问题
有理数的乘法运算法则只是计算工具,更主要的还是运用它来解决生活中的实际问题,因此我设计了例2,这个问题的解决对学生来说,难度不大,因此我打算让学生上黑板演板。通过这个问题的解决,
让学生体验到数学来源于生活又服务于生活的数学理念,培养学生的应用意识。
两个例题的解决采取了师生互动方式,评价采取生生评价的方式,提高了学生学习兴趣,培养了学生严谨的数学思维习惯。
(四)变式训练,拓展思维。
通过变式训练,可加深学生对法则的理解,使学生的学习巩固过程成为再深化、再创造的过程。开放性的试题,让不同学生的思维潜能得到展示,体现了"不同的人在数学上得到不同的发展"的理念。
(五)回顾反思,感悟提升。
在课堂临近尾声时,我鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价,让学生对所学知识有比较清晰的轮廓体系,也让学生形成善于反思、总结的学习习惯。
(六)布置作业,延伸知识。
数学课程提出:人人学有价值的数学,人人获得必须的数学,不同的人在数学上得到不同的发展。因此我设计了A、B两组作业:
分层设置作业,兼顾了不同学生的学习水平,关注了学生的个体差异。设置开放性的作业,充分挖掘了学生的学习潜力,锻炼了学生的思维意志品质,同时也让学生的学习延伸到课外,使他们学会时刻"用数学的眼光"来观察生活。
四、教学反思
最后,对这节课我做了如下的反思:
在教学过程中,我始终坚持以观察为起点,以问题为主线,以能力培养为核心的宗旨;遵照学生为主体,教师为主导,训练为主线的教学原则;遵循由已知到未知、由浅入深、由易到难的认知规律,采用诱思探究教学法,通过课件和师生的双边活动,使学生的知识和能力得到提高。通过创设、引导、渗透、归纳等活动随时搜集和评价学生的学习情况,及时反馈调节,查漏补缺,让全体学生参与教学的全过程,从而更好的促进学生全面、持续、和谐的发展。
我的说课到此结束,恳请各位专家批评,指正。谢谢大家!
有理数乘法法教案【篇7】
本课的教学内容是有理数乘法交换律、结合律,分配律,是本单元的教学重点,也是本节课内容的难点。有理数乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的计算能力有着重要的作用,因此本节具有非常重要的作用。
(二)教学目标:
2、理解并掌握有理数的乘法运算律;乘法交换律、乘法结合律、分配率
二、说教学方法:
根据本节教材内容和学生的实际水平,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,我将采用探究发现法、讲授法等。教学中教师精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考,教师并适时运用电教多媒体动画演示,激发学生探索知识的欲望来达到对知识的发现,并自我探索找出规律,使学生始终处于主动探索问题的积极状态,从而培养思维能力。
三、说学法:
根据学法指导自主性的原则,让学生在教师创设的问题情境下,通过教师的启发点拨,学生的积极思考努力下,自主参与知识的发生、发展、发现的过程,使学生掌握了知识,体现了素质教育中学生学习能力的培养问题,达到教学的目的。
现在用我们所学的知识,大家解一下这几道题:
6×13 13×6(—5)×6 6×(-5)—4×(-1/2)-1/2×(—4)提问:观察一下这两组式子和结果,可以发现什么规律?学生:每组的计算结果一样,我们可以得到乘法的交换律结合律在有理数中依然成立。
现在用我们所学的知识,大家解一下这几道【2×(-3)】×(-1/3)2×【(-3)×(-1/3)】提问:大家又能发现什么规律
乘法的结合律:三个数相乘先把前两个数相乘,或者先把后两个数相乘,积不变。 (ab)c=a(bc)技能训练
(-10) ×(-1/3)×0.1×6 20×1/4×(-8)×1/20第三步
(-4+5+1)×6 -4×6+5×6+1×6你发现了什么?
一个数与几个数相乘等于把这个数分别与这几个数相乘,再把积相加。
乘法分配率a(b+c)=ab+bc 总结:我们发现小学学过的乘法三大运算律在有理数范围内同样适用。配合例题,规范解法
例、用两种方法计算(1/4 + 1/66/12)×12 =-1/12×12 =-1先通分加减之后再做乘法
解2:原式=1/4×12+1/6×12—1/2×12 =3+2-6 =-1省去通分的麻烦
70×14+89×14+41×14 29 24/25×5 20 1/5×5解:原式=14 ×(70+89+41)解:原式=(30-1/25)×5解:原式=20×5+1 =14 ×200 =30× 5-1/25× 5 =101 =2800 =150-1/5
三、巩固训练,熟练技能=149 4/5 30×(1/2-2/3+0.4) 5 24/13×12 19 23/24×24 (1/3 + 1/4 - 1/2) ×12
小数乘法教案
幼儿教师教育网小编带来一篇关于“小数乘法教案”的深度阐述文章。教案课件是我们老师的部分工作,因此每天老师都会按质按时去写好教案课件。 学生的反馈可以反映教学的成功与否。以下只是提供一些参考资料请大家仔细阅读!
小数乘法教案(篇1)
主题:
小数乘法
教学目标:
学生能够理解小数乘法的概念和计算方法;
学生能够正确地进行小数乘法的计算;
学生能够理解小数乘法的意义和应用。
教学重点:
小数乘法的计算方法;
小数乘法的意义和应用。
教学难点:
小数乘法的计算方法;
小数乘法的应用。
教学过程:
Step 1. 引入
教师出示一个小数,让学生猜测这个小数的数值。
学生根据自己的猜测进行计算,得出结果。
Step 2. 讲解
教师讲解小数乘法的`概念和计算方法,可以使用图片、图表等直观的方式来解释。
教师示范小数乘法的计算方法,让学生跟随教师的操作进行计算。
教师让学生练习小数乘法的计算,并进行纠错和指导。
Step 3. 应用
教师提出一个实际应用问题,让学生通过小数乘法的计算来解决问题。
教师让学生自行设计问题,进行小数乘法的计算,并进行交流和讨论。
Step 4. 总结
教师让学生总结本节课的内容和收获。
教师进行课堂小结,回顾本节课的主要内容和重点。
Step 5. 作业
教师布置小数乘法的练习题,让学生在课后进行巩固练习。
教师提醒学生注意小数乘法的计算方法和应用,鼓励学生在实际生活中运用所学知识。
教学评估:
学生在课堂上的参与度和积极性;
学生在课后练习中的正确率和进步情况;
学生在实际应用中的表现和思考能力。
小数乘法教案(篇2)
大学路第二小学 胡瑞君
第一单元:小数乘法
第一课时 小数乘整数(1)
教材来源:义务教育教科书,人民教育出版社版
教学内容来源:小学五年级数学(上册)
主题:小数乘法
课时:第一课时
授课对象:五年级学生
【学习目标的设置】:
(一)确定学习目标的依据:
1.课程标准相关陈述
掌握必要的运算技能;理解估算的意义;
2.教材分析
学生已经掌握了整数的四则运算、小数的意义和性质以及小数加减法,而小数的书写方式、进位规则均与整数相同。因此,本节课的学习内容十分注意加强与整数乘法的联系,引导学生运用转化的方法,将整数乘法的经验迁移到小数乘法中,理解小数乘整数的意义,重点说明将元转化为角的方法
3.学情分析
学生在四年级下册的学习中已经认识了小数,会进行小数加减法的运算,并掌握了两位数乘两、三位数计算的`方法,具备了学习本单元新知识的基础,而且教材十分重视学生的已有经验,通过利用常见的十进制计量单位元、角、分和长度单位厘米、分米、米,让学生了解小数乘法和整数乘法的联系,引导学生用转化的方法,将整数乘法的法则经验迁移到小数乘法中,为下面学生学习小数乘法和小数乘加、乘减混合运算打下坚实的基础,并让学生学会探求模式、发现规律,掌握算理,学会知识内容。
(二)学习目标:
1、创设购物情景,用已有知识和经验解决小数乘整数的问题,初步理解“小数乘整数”的算理。
2、正确计算小数乘法。
评价方案
1、从学生购物情境中的回答和交流,以及做题的正确情况,判断是否达成目标1.
2、通过做题的正确情况,判断是否达成目标2.
活动预案
一、复习铺垫:
填空:
2.5元=( )角 3.75元=( )元( )角( )分
0.72元=( )元( )角 355角=( )元
103角=( )元
二、学习新知:
1、谈话引入:节假日时,有不少的小朋友们结伴到珍珠湾去放风筝,……
2、出示主题图:
(1)从图中你得到哪些信息?学生回答。
你能帮这个小女孩解答这个问题吗?如果有困难的学生可以用我们学过的知识来解决。
学生思考后,在小组内交流。
集体交流:
方法一:3.5+3.5+3.5=10.5元
方法二:3.5×2=7元 7+3.5=10.5元
方法三:3.5元=35角 35×3=105角=10.5元……
说得不错,能把竖式列出吗?( 重点说明将元转化为角的方法。)
(2)根据图中给出的信息,你还能提出什么问题?提出问题并独立解答。
引导学生提出买风筝计算钱数的问题。
学生独立完成后,在小组内交流,再请几位同学说一说。
买9个鱼形风筝要多少钱?
学生讨论完成。学会使用将元转化为角的方法。
三、课堂小结:以元为单位的小数乘整数,可以转化为以角或分为单位的整数乘法进行计算。
四、作业设计:
1.基本知识:
填一填:
1. 2.8+2.8+2.8+2.8+2.8=( )×( )
2. 2.19扩大( )倍是219. 305缩小( )倍是3.05.
2.综合知识:
(1)课本第2页“做一做”.
3.拓展训练:
练习一第13题。
板书设计
小数乘法教案(篇3)
教学内容:
课本第9-10页。
教学目的:
会把整数乘法的运算定律应用于小数的计算,并会用乘法运算定律进行简便计算。
教学过程:
一、复习。
1.口算。
2.5X4
1.25X0.8
32X25X4
0.5X
0.5X1.01
125X18X8
问:连乘的式题你是怎么算的X
在整数乘法中我们学过那些运算定律X
(主要从运算定律的内容、运算定律的字母表达式、举例说明应用运算定律怎样使计算简便来说明)
根据学生回答板书:aXb=bXa(aXb)Xc=aX(bXc)(a+b)Xc=aXc+bXc
2.用简便方法计算。
25X46X4
47X8X125
48X99
54X61+61X46
3.分组计算下面各题。
0.7X1.2
1.2X0.7
(0.8X0.5)X0.4
0.8X(0.5X0.4)
(2.4+3.6)X0.5
2.4X0.5+3.6X0.5
左边和右边对应算式结果相同吗X哪一种算法比较简便X为什么X
4.:运用运算定律可以使一些计算简便,小数乘法也可以运用整数乘法的运算定律使一些计算简便。(板书课题:小数乘法的简便运算)
二、新授。
学生尝试计算。
0.25X4.78X4
=0.25X4X4.78
=1X4.78
=4.78
0.65X
=0.65X(+1)
=0.65X+0.65X1
=130+0.65
=130.65
学生板演后,要讲出简算依据。
:运用定律计算,如果能设法使一个因数转化为整百数或者两个因数相乘的积为整百数就能使计算简便。
三、巩固练习。
1.用简便方法计算。
0.25X0.125X4X8
3.2X1.25
0.5X0.46+0.5X0.54
2.5X99
2.课本第10页做一做。
四、作业。
练习三第3、4、5题。
课后:
小数乘法教案(篇4)
教学内容:
人教版小学数学教材五年级上册第7页例5及做一做,练习二第6~8题。
教学目标:
1、经历在实际问题中收集和获取信息的过程,会正确利用小数倍解决实际问题,正确计算小数乘法。
2、掌握小数乘法的验算方法,体验解决问题方法的多样性,形成修正错误、严谨求实的科学态度。
3、形成独立思考、反思质疑的学习习惯,体验知识迁移的学习方法。
教学难点:
合理选择小数乘法的验算方法。
1、口算下面各题,看谁算得又对又快。(将答案按顺序记录在口算本上,再集体订正。)
2、解答:一支铅笔0.5元,一支水性笔的价钱是一支铅笔的3倍。一支水性笔多少钱?(指名学生回答:为什么用乘法计算?)
(学生自由回答,教师适时引导,整理回顾小数乘法的计算法则、确定积的小数点位置的方法以及积与因数的大小关系等。)
1、呈现教材主题情境图(PPT课件),让学生独立收集信息。
2、交流整理:从这幅图中你知道了哪些数学信息?(教师结合学生的回答,在课件上适时强调、突出相关的数学信息。)
(1)非洲野狗的最高速度是56千米/时;
(2)鸵鸟的最高速度是非洲野狗的1、3倍;
(3)要求的问题是鸵鸟的最高速度是多少千米/时。
3、揭示课题:今天我们继续学习小数乘法利用小数倍解决问题。〔板书课题:小数乘小数(2)〕
小数乘法教案(篇5)
教学目标:
掌握小数乘法的基本方法和技巧;
能够熟练地进行小数乘法计算;
能够正确理解小数乘法的意义和作用。
教学重难点:
掌握小数乘法的基本方法和技巧;
理解小数乘法的意义和作用。
教学准备:
课件、小数乘法练习题、学生练习纸。
教学过程:
一、引入新知识
出示小数乘法的计算题,引导学生回忆小数乘法的`计算方法。
二、讲解新知识
介绍小数乘法的计算方法。
小数乘法和整数乘法的计算方法基本相同,只是在计算过程中需要注意小数点的位置。具体方法如下:
(1)将两个小数竖直排列;
(2)按照整数乘法的方法进行竖式计算,得出结果;
(3)在竖式下方对结果进行进位和去小数点操作。
引导学生练习小数乘法的计算方法。
出示小数乘法的练习题,引导学生按照以上方法进行计算。
三、巩固新知识
出示小数乘法的练习题,引导学生进行小组讨论和交流,巩固小数乘法的计算方法。
四、应用新知识
出示小数乘法的应用题,引导学生理解小数乘法的意义和作用,进行应用。
五、课堂小结
总结本节课的教学内容,强调小数乘法的基本方法和技巧,提醒学生在日常生活中注意小数乘法的应用。
六、作业布置
布置小数乘法的练习题,引导学生进行巩固练习。
小数乘法教案(篇6)
设计说明
1.创设情境,激发兴趣。
教学情境是学生掌握知识,形成能力,发展心理品质的重要源泉,是沟通现实生活与数学学习的桥梁。因此,在讲授例5时,通过学生喜欢的讲故事的形式,以非洲草原上非洲野狗追赶鸵鸟的情境引入,激发学生的学习兴趣和求知欲望,引入倍数是小数的学习内容,使学生在具体情境中理解倍数可以是整数,也可以是小数。
2.拓展验算方法,提高判断能力。
验算是计算和解决数学问题不可缺少的环节,掌握验算的方法,养成验算的习惯是学好数学的重要条件之一。在学生独立计算后,让学生试着用自己的方式进行验算,最后在学生汇报的基础上对验算的方法加以总结,既拓展了学生的思维,又提高了学生对计算结果的判断能力。
课前准备
教师准备PPT课件
学生准备计算器
教学过程
复习引入
1.先说出下面各式的积是几位小数,再口算出结果。
0.3×670×0.41.87×0
0.24×24×0.2560×0.5
(学生思考后说出积是几位小数并口算出结果)
师:计算小数乘法时,怎样确定积的小数位数?如果积的小数位数不够,你知道该怎么办吗?
(学生分小组讨论、交流后汇报)
2.揭示课题:这节课我们继续学习小数乘法的相关知识。(板书课题)
设计意图:通过复习铺垫,使学生深入理解小数乘法的算理,进一步巩固小数乘法的计算方法,为下一步的学习奠定基础。
创设情境,探究新知
1.故事激趣,列出乘法算式。
(1)创设故事情境,寻找信息。
师描述非洲野狗追赶鸵鸟的故事,并用课件出示教材7页例5情境图,引导学生观察、提问:从图中你发现了哪些数学信息?
(2)提供信息,列出算式。
现在老师提供给你们这样一条信息,“鸵鸟的最高速度是非洲野狗的1.3倍”,你能求出鸵鸟的最高速度吗?请你列出算式。
(56×1.3)
师小结:同学们说得真好!从这道题中我们可以知道倍数可以是整数,也可以是小数。
2.竖式对比,提出验算要求。
(1)算一算。
学生动手在练习本上算一算56×1.3,教师巡视,选算法有代表性的同学到黑板上板演。
可能性一:
可能性二:
(2)提出问题。
同学们,我们发现这两位同学的计算结果不一样,那你们能验算一下这道算式的结果吗?到底哪位同学算得才是正确的呢?
3.自主尝试验算,总结验算方法。
(1)学生尝试计算,如果有困难,可以参照课本,也可以与同桌进行讨论。
(2)全班反馈交流。
师:现在我们请几位同学来展示你们的想法。
预设生
1:我是用估算的方法验算的,把1.3看做1,算得结果是56,所以结果可能是72.8,也可能是71.8。
生2:我是用计算器验算的,算出来的结果是72.8。
生3:我把它们因数的位置交换了一下,再进行计算,算出来的结果也是72.8。
两位数乘法教案
俗话说,做什么事都要有计划和准备。身为一位优秀的幼儿园的老师我们都希望自己能教孩子们学到一些知识,一般来说,提升学生的效率最好是准备一份教案,教案可以让上课自己轻松的同时,学生也更好的消化课堂内容。写好一份优质的幼儿园教案要怎么做呢?经过收集并整理,小编为你呈上两位数乘法教案,仅供参考,我们来看看吧!
两位数乘法教案 篇1
一、教学内容
人教版《义务教育课程规范实验教科书》三年级数学下册P63。
二、教学目标
1、知识与技能目标:同学经历探索两位数乘两位数的计算方法的过程,进一步掌握笔算方法,理解两位数乘两位数的算理。
2、过程与方法目标:同学通过自主探索、合作交流,体验计算方法。
3、情感态度与价值观目标:在探索算法与解决问题过程中,增强合作交流的意识,体验胜利的喜悦。
三、教学重点
在理解算理基础上掌握两位数乘两位数的笔算方法。
四、教学难点
理解笔算乘法的顺序与第二局部积的书写方法。
五、教学对象与准备
对象:三年级3班。教学准备:多媒体课件、教学平台、图片。
六、教学过程
环节一:情境引入
1、旧知引入:8×6(一位数乘一位数)、20×8(两位数乘一位数)、20×10(两位数乘两位数)。
师:像20×18、38×18......这类型的算式,我们叫它两位数乘两位数。
引入课题:两位数乘两位数的笔算。
2、情景激趣:
书店一角(课件展示情景图):
(1)每本书24元,买2本要付多少钱?24×2=48(元);
(2)每本书24元,买10本要付多少钱?24×10=240(元)
(3)每本书24元,买12本要付多少钱?48+240=288(元)
想:假如用乘法怎样列式呢?
环节二:算法探究
1、估算:
请你估算一下,24×12大约是多少?说说你的估算情况。
2、自主探索:同学独立在练习纸上计算24×12,教师进行巡视指导。
3、小组交流:小组内进行核对算法和答案。(同学组内交流)
4、同学汇报:展示不同算法并说说算法。
5、师生评议:请同学说说你喜欢哪种算法?为什么?
6、研究笔算:
(1)同学研讨笔算算理;
(2)师生一起小结笔算算理:
24
×12
------
48......24×2的积,问:48是怎么来的?
24......24×10的积,问:这里的24是表示多少?
------
288
环节三:巩固练习
1、解题活动:小博士寻宝、探路。
2、游戏活动:帮小动物找鞋,比比哪组找得多。
3、拓展延伸:
①我们学校的阶梯教室共有22排,每排有14个座位。假如有300位老师来参与听课活动,能坐得下吗?
②课后研讨:123×23(三位数乘两位数)
环节四:教学小结
通过今天的学习,你有什么收获?两位数乘两位数的笔算,最关键是什么?你有什么好的建议?
七、教学反思
本节课,我以“情境引入(层次推进)--算法探究(自主、合作学习)笔算算理(师生研讨)--专项练习(解决问题)”三个环节来讲述两位数乘两位数的笔算。是在同学比较熟练地口算整十、整百数,估算和笔算两位数乘一位数的基础上进行教学的。
1、注重笔算与算理结合,体验计算。让同学研讨计算方法,理解竖式计算的算理。增强自主学习的能力。
2、注重同学主动探索,加强竞争意识,在活动中提高他们的积极性与增强学习兴趣和加强思想交流。
3、在判断与交流中逐步完善知识结构。强化提升已有的知识经验。
两位数乘法教案 篇2
今天听了李林涛老师三年级数学《两位数乘两位数的笔算乘法》一课,我有以下几点想法:
好的地方:
1、情境导入以旧引新,渗透先分后和解题策略。
2、注重了算理的直观呈现。
3、练习设计有层次。
探讨的地方:
(1)充分发挥点子图的作用,培养几何直观。
教学时,李老师先让学生把想法用点子图表示出来,然后交流汇报。这时要有效发挥好教师的引导作用,使全体学生都在探索、交流中体会“先分后合”的解题思路。但李老师在这个的教学环节占用了较大时间。
在研究笔算方法的算理时,应充分利用点子图,帮助学生很好地理解笔算过程中每一步的意义,培养几何直观。在研究竖式的计算方法时,教师可以再在点子图上分一分,并把四次相乘得出的结果都在图上圈出来,沟通算理与算法的关系。从而突出教学重点:用十位上的数去乘时,所得的积的末位数要和十位上的数对齐。教师追问:为什么最后要把两次乘得的积加起来,学生自然就会理解。
(2)处理好算法多样化与优化的关系。
在交流14×12的多种算法时,在感受算法多样化的同时,应注意让学生通过对不同计算方法和点子图的比较、归纳和分类,体验方法的异同,掌握解题的策略。例如,学生可能会说“这些方法都是‘先分后合’”“分开以后,数变小了,就会算了”“‘分’”了以后就把新知识转化为旧知识来解答了”,体会这些方法的共同特点及解决问题的策略。学生可能还会比较每一种方法的优劣,“把12分成10和2,比较好计算”“把12分成两个6,两部分的数相同,只要计算一次乘法再加就可以了,也比较好计算”,在比较过程中培养学生的分析能力和优化意识。这方面我觉得李老师引导不够。
建议:课题出示应置于学生列出两位数乘两位数算式后;机智把握课堂教学失误,教师出错要学会把出错原因“推”给学生,鼓励学生及时发现错误并敢于提出。
两位数乘法教案 篇3
【教学内容】
人教版小学数学三年级上册第46页例1
【教学目标】
1、掌握两位数乘两位数的不进位乘法的笔算方法。
2、理解用第二个因属十位上的数乘第一个因数的多少个“十”,乘得的数的末位要和因数的十位对齐。
【教学重难点】
重点:掌握笔算方法并正确计算。
难点:解决乘的顺序和第二部分积的书写位置问题。
【教学准备】
例1点子图
【教学过程】
一、复习旧知提高能力
1、口算(出示彩球)
30×80 88×10 900×10 60×70 13×3 32×2
2、笔算并说出计算过程。
14×2 231×3
【设计意图】通过课件出示彩球让学生进行口算练习和笔算,不仅提高了学生学习的积极性,而且巩固了旧知,提高了学生的计算能力,为本节课的内容做铺垫。
二、情景导入探究新知
1、情景导入
出示新华书店的图片,今天王老师带大家到新华书店去买书,遇到了一些问题,想请你们帮忙解决,你们愿意吗?课件出示情境图,让学生说一说,这幅图所展示的情景是什么。
(王老师去书店买书,买了12套,每套书有14本,她在想一共买了多少本)
让学生说一说,这道题如何列式。引导学生去想这是一道什么样的乘法算式。(两位数乘两位数的乘法算式)今天我们就来研究两位数乘两位数的计算方法(板书课题)
【设计意图】让学生在生活的情景中,找出问题,解决问题,体现出数学来源于生活的数学思想。
2.自主探究
指导:你能不能运用以前学过的知识,来探究今天摆在我们面前的这个问题呢?
组织学生用充足的时间进行讨论,把讨论的结果记录在练习本上,然后各组选代表说出本组的想法,展示各组不同的计算过程和结果。
例:14×10=140(本)14×2=28(本)
140+28=168(本)或14×12=168(本)
有些学生会想到把12看成10和2的和,先用14×10,再用14×2,然后把两次乘得的结果相加,有些学生想到其它分成的方法,这时提出把12分成10和2是比较好计算。如果遇到数字比较大的数字怎么办呢?
如果我们列竖式该怎样算呢?谁愿意来黑板上试算一下。找两个同学在黑板上试算,其它同学在本上试算。
【设计意图】先让学生根据已有的知识尝试解决14×12,并要求学生在点子图上表示出计算方法。培养了学生将新知转化为旧知解决新问题的.能力,同时培养了学生的几何直观。接着让学生自主探索用竖式怎么计算,培养了学生探索研究的能力。
3.点拨归纳
学生做完后,先让学生说他是如何写的,在这过程中针对学生说得不对或不清楚的地方,教师要加以指导,也可以让写得对的给同学讲一讲。
教师在指导分析过程中,要把每步板书详细列出。
再找几名学生说计算方法。
最后教师总结。
从个位乘起:2在个位,表示2个1,个位上的2乘个位上的4得8,是8个什么?写在什么位?第二个因数个位上的2乘第一个
(讲解算法并板书)
再把两次所乘的积加起来。
教师归纳总结,板书强调每步难点。
在总结过程中提问:
(1)两位数乘两位数一种是口算方法,一种是笔算方法,你认为哪种方法好?
(2)笔算中乘了几层,为什么?乘得的结果怎么样?
(3)十位上的1和14乘完后,“4”为什么和十位对齐?
【设计意图】教师强调每一步计算的具体含义,帮助学生理解算理,掌握算法。
三、加强运用明确算理
第一关小车开到哪儿停(主要考察第二因数的十位合第一个因数的个位相乘以后得得积和谁对齐)。
13×12= 23×21= 43×22=
第二关笔算大比拼
23 33 43
×13 ×31 ×12
第三关啄木鸟治病
第四关弄脏的题单
【设计意图】利用闯关的形式来提高学生计算的兴趣,练习的题型分层次,有梯度,目的是让学生掌握两位数乘两位数的算理,巩固算法。
板书设计:
两位数乘两位数(不进位)
14×12=
口算:14×4=56 14×10=140
56×3=168 14×2=28
140+28=168
笔算:
1 4
× 1 2
2套书的本数← 2 8……14×2的积
10套书的本数←1 4 0……14×10的积(个位的0不写)
1 6 8
【设计意图】板书设计通过口算和笔算的对比,体现用笔算的解决问题的优化性。
两位数乘法教案 篇4
一、导入
师:刚到宁波,叶老师发现有一种“福娃”玩具特别好卖!(出示图片及有关数据)请问,买5个这样的福娃要多少元?
生1:24×5=120元。
师:解决这个问题,我们用到了什么旧的知识!(板书:旧知识)
生2:两位数乘一位数的笔算。
师:那么,如果买10个这样的福娃,又该付多少钱呢?
生3:24×10=240元。
师:在这里,我们又用到了什么旧的知识!
生4:两位数乘整十数的口算
师:假如老师想买12个福娃,该怎样计算需要的钱呢?
生5:24×12
师:与两位数乘一位数、两位数乘整十数相比,这是一道怎样的算式?
生合:两位数乘两位数(板书:两位数乘两位数)
[评:情境创设具有时代性与现实性,这是教学情境有效性的重要标准。教师善于把握最新社会生活中发生的信息,北京奥运吉祥物刚刚公布,学生们对此题材十分感兴趣,研究这个问题的积极性十分高涨,这对于学习数学知识起到了很好的促进作用。有效的情境也使计算教学过程成为了提出问题解决问题的过程,加强了计算教学的.数学思考,这正新课程背景下重视计算教学的价值所在。]
师:我们以前学过这类计算吗?
生合:没有!
师:所以说,这是我们面临的一个新问题!(板书:新问题)以前碰到新问题,你一般会怎么办?
生6:我会请教爸爸妈妈和老师。
生7:我会自己动脑筋解决。
生8:我会请同学帮忙。
师:哦!面对新问题,我们各有高招!而这节课,老师将和同学们一起,借助已经学会的旧知识来解决今天遇到的新问题!
[评:用旧知识来解决新问题是学习的很好的学习方法,但如何让学生能比较好地接受,需要教师运用好的方法引导。叶老师一开始出示了一位数乘两位数和两位数乘整十数原来已学过的旧知识,然后通过比较引出了两位数乘两位数这一新的问题,先让学生自己谈谈遇到新问题时一般采取的策略,教师在肯定学生原有的各种学习策略的基础上,引导学生学习和尝试运用旧知识来解决新问题的策略,这样既体现了教师尊重学生,又体现了较好地发挥教师的指导、引导作用。]
二、探究
师:请你估算一下,24×12的积大约会是多少?
生9:我把24看成20,把12看成10,所以24×12的积大约会200。
生10:大约是250。因为我是把24看成25、12看成10来进行估计的。
师:同学们的估算能力都很强!那么,究竟24×12的精确答案是多少呢?请每位小朋友开动脑筋,自己试着在纸上算一算!如果独立计算有困难的,可以先参考课本中的算法,再独立进行计算!
(学生独立计算,教师巡回指导)
[评:先让学生估算,再尝试用笔算,这样既复习了上节课上的估算方法,也为笔算(精算)学习打下基础,使估算、笔算有机结合。同时,教师要求学生独立计算时,允许不同层次的学生采取不同的学习步骤。能完全独立的就独立完成;暂时有困难的,可向书本请教,自学书本知识后再独立完成。较好地体现了教学中因材施教的原则。]
师:都算完了吗?请在四人小组里说说你的算法,也听听别人的算法!
(小组展开交流,教师参与其中)
师:谁愿意与同学们分享你的计算方法?
生11:我是把先算24×10=240,再算24×2=48,最后把240与48加起来得到288!
师:能说说每一步分别在算什么吗?
生11:“24×10=240”是求10个24是多少,“24×2=48”是求2个24是多少,240+48就是求12个24是多少!
生12:我是用竖式进行计算的。先算4×2……(该生讲不太清楚竖式过程,教师请他在实物投影上展示自己的计算过程。竖式见下方板书所示)
师:这个竖式有些新鲜!请问,这里的48、24分别是怎么得到的?
生12:48是24乘2得到的,24是24乘1得到的!
师:那么,24为什么要这样写呢?歪歪扭扭的,不太舒服!
生12:因为12的“1”表示的是10,而24×10是240,所以4要对在十位上,2要对在百位上!
生13:我补充一下,这里虽然写着24,实际上表示的是24个十!
[评:为什么“24“的4要与十位对准齐,这是这节课的新知,也是这节课的难点。为突破这个难点,教师安排了学生自己介绍计算方法,让学生自己说出“24”实际上是240,它是由24乘10得到的,它表示的是24个十,这样的安排,对于学生明白算理算法有十分重要的意义。]
师:原来是这样!你是怎么知道这种方法的?
生12:书上看的!
师:阅读课文,获取知识,是数学学习的好方法!
[评:鼓励学生运用课本获取知识,培养学生的良好学习习惯。]
生14:我是把12拆成3×4,先算24×3=72,再算72×4=288。
生15:还可以把12拆成2×6,先算24×2=48,再算48×6=288。
(随着学生的算法介绍,教师相应予以板书)
(准备题)
师:真不简单!如此短的时间里面,我们居然能够发现这么丰富的计算方法。那么,叶老师很想知道,每种方法分别是借助什么旧知识解决新问题的呢?你可以选一种算法来谈一谈!
生16:我说第(1)种方法。这种方法借助了两位数乘一位数、两位数乘整十数、笔算加法三个旧知识来解决新问题的!
生17:第(3)、(4)两种方法是差不多的,都是用到了两位数乘一位数的旧知识!
生18:第(2)种竖式算法是借助两位数乘一位数的竖式笔算来进行计算的!
师:说得真好!在这些算法中,你比较欣赏哪一种算法?
生19:我喜欢笔算,非常简便。
生20:我觉得竖式比较好,容易算对。
生21:我喜欢第(1)种方法,因为它比较容易弄懂!
师:真是青菜萝卜,各有所爱!那就请你选择自己喜欢的一种方法计算23×13吧!
(请三位学生上台板演,结果其中两位同学用竖式计算,另外一位同学用上面的第(1)种方法计算。然后,教师请这三位学生代表阐述算法,并请同样选择该算法计算的同学举手示意。师生共同发现,原来全班同学用的都是这两种算法!)
师:老师发现,同学们计算“23×13”时选用的算法明显比“24×12”要统一了。那么,为什么这么多的同学都会选择这两种方法计算,而不去选择这种方法计算呢?难道你们事先商量过了吗?
[评:教师明知故问,目的是为了引起学生进一步思考,有些算法有局限性。]
生22:因为另外一种方法这里用不来!
师:为什么呢?
生22:如果把因数13拆成两个数相乘的样子,就会有余数了!不能拆的!
师:都是这样想的吗?
生合:是!
师:的确,这种方法有局限性,当题目数据不能拆成两数之积的形式时,这种方法就不能用了。而另外两种方法都能帮助我们计算。不知同学们是否发现,其实这两种方法也是有联系的。
(教师引导学生发现方法(1)横式与方法(2)竖式之间的联系:横式中的“24×2=48”相当竖式中的第一部分积“48”;横式中的“24×10”相当于竖式中的第二部分积“24”。对于横式和竖式中的这种联系,教师用“连线”方式在板书中表现出来。然后追问:“那么,为什么竖式里还是写24呢?引导学生再次理解这个“24”表示的是24个10)
师:正是因为考虑到了两种算法的内在联系,又为了使计算过程清晰,便于检查,所以小学阶段我们进行笔算的基本算法是竖式计算。并且,随着计算学习的不断深入,竖式计算过程清晰、便于检查的优势将会越来越明显!那么,请同桌两位小朋友讨论一下:我们刚才是怎样用竖式来计算“24×12”这道两位数乘两位数的?
[评:通过两种算法内在联系的分析,让学生体验到竖式(笔算)计算的优越性和学习竖式的价值。]
(学生讨论,然后结合板书中的竖式步骤进行汇报,教师适时体提问、适度点拨,并把笔算顺序用箭头予以清晰表示,同时在第一层积“48”旁边板书“48个1”,在第二层积“24”旁边板书“24个10”)
师:谁能连起来完整说说这道题的竖式计算过程?
(学生回答过程中,教师穿插提携:也就是说,先用因数24乘因数12的个位“2”;再用因数24乘因数12的十位“1”;再把两次的积加起来。)
师:这道题是不是完成了?还需要怎样?
生合:在横式后面写得数!
(教师示范补上答案)
师:仔细严谨,体现了我们学习数学的良好品质!
(单项训练:(1)把竖式补充完整;(2)竖式计算)
[评:《数学课程标准》中,在计算教学中提倡算法多样化。算法多样化的目的是能在计算教学中,加强数学思考,尊重学生的个性,体现因村施教,培养和发展学生的创新思维能力。教师根据教材的实际,能较好地处理算法多样化与算法优化的关系。让学生在经历具体算式的过程中,自主运用自己喜欢的方法进行计算。在具体的计算中,体验到竖式计算的的优越性:简洁、明白、通用,易检查,在这个过程中,教师始终作为学习活动的组织者、引导者,让学生在自主探索、合作交流中去体会各种算法,感悟和选择出最优的方法,这样既张扬了学生的个性,又能使学生认同算法优优化的必要性。]
三、小结
师:这节课,我们学习了什么内容?
生合:两位数乘两位数!
师:准确地说,我们学习的是两位数乘两位数的笔算。(补充课题,齐读课题)笔算“两位数乘两位数”,你想给同学们提些什么建议?
生23:第二个因数十位上的数去乘第一个因数时,积的末尾要与十位对齐!
生24:要弄清楚每个得数的意义,正确地写在相应的数位上!
师:整节课,我们是怎样学习“两位数乘两位数的笔算”算法的呢?
生25:是我们先自己试着做,然后老师帮助我们理解基本算法!
生26:是叶老师和我们一起研究出来的!
师:让我们应用所学的知识,来解决两个我们身边的实际问题!
[评:通过学生自己的探究与一定量的训练,让学生在经历具体的计算中,在应用中,进一步理解算理算法,并自己归纳出两位数乘两位数的计算方法,这样的安排使人觉得有“水到渠成、瓜熟蒂落”之妙!]
四、练习
(一)
师:刚到镇明小学,叶老师发现我们学校的班级三面红旗竞赛开展得红红火火!在上周一到周四的竞赛栏中,老师发现每个班都贴着12个五角星。根据这个信息,你能解决什么问题?
生27:3个班一共贴着多少个五角星!
生28:12个班一共贴多少个五角星!
师:好!请你帮助老师算一算“全校一至三年级所有班级一共贴了多少个五角星?”
生29:因为我们学校一至三年级一共有13个班级,所以应该用“12×13=156”来解决这个问题!
师:看了这则数据,叶老师发现我们大队部的老师非常辛苦。每周都要剪出这么多的五角星来开展三面红旗竞赛活动,请同学们珍惜这来之不易的竞赛成果!
[评:这是在浙江省小学数学“同上一堂”课浙江省第十届小学数学课堂教学交流评比活动上的比赛课。为了充分展现参赛选手的真正实力,本届大赛组委会——浙江省教育厅教研室特意确定了“同上一堂课”(选择相同教材)“现场抽签定课、集中封闭备课”的比赛方法。这是借班上课,如何在借班课中,学习材料尽量贴近学生的生活,教师是作了认真的思考。这里,教师能较好地运用了学校的现实资源,运用同学们经历过的班级“红旗竞赛”活动的材料,联系实际让学生计算,学生们感到很亲切。而且在计算以后教师通过数据对学生进行教育,教师的“辛苦”、“珍惜”两个词,充满着浓浓的人文关爱,使大家体会到了纯真的情!]
(二)
师:叶老师无意中翻了翻我们的语文课本,发现里面的课文很美。所以,忍不住找了一篇读了起来。(课件出示:赵州桥)大家学过这篇课文吗?(齐读课题)想一想,叶老师今天为什么把一篇语文课拿到数学课堂上来呢?
生30:让我们找一找里面有哪些数字?
生31:让我们算一算这篇课文一共有多少字数?
(就在这时,下课铃声响了)
师:那好,课后请同学们先估计这篇课文大概有多少个字,再应用今天所学的知识去验证一下这篇课文究竟有多少个字?好吗?
(下课)
[评:在运用中巩固知识,通过应用激发学生学习数学的兴趣,提高数学的意识。]
[总评:本节课理念新、设计巧、思路清、特色明。总观这节课体现了“简洁而充满活力,朴实而富有情意”的设计理念。它为公开课返璞归真,展示原生态的课,提供了成功的案例。
1、明确教学目标,重视算理算法的理解与应用。《数学课程标准》中指出:计算教学中,“要通过观察、操作、解决实际等丰富的活动,感受数的意义,体会数用来表示和交流的作用,初步建立数感” 。教师在教学中,不仅使学生会算,还通过学生自己的探究,懂得为什么这样算的道理。并在多种算法的比较中使算法得到了优化。
2、通过改进教学方法,促进学习方式的改变。著名数学教育家弗赖登塔尔认为:“学习数学的唯一正确的方法是让学生‘再创造’”。即让学生通过数学活动自己去探究、去寻找正确的方法。这本节课中,教师在学习探究两位数乘两位数的计算方法时,通过交流,让学生充分展示学习的思路,让学生充分感受到知识发生、发展的过程。让学生真正自己领悟数学知识掌握数学技能。教师组织学生创新,鼓励学生发表自己的观点、介绍不同的计算方法。如“请在四人小组里说说你的算法,也听听别人的算法!”“谁愿意与同学们分享你的计算方法?”“在这些算法中,你比较欣赏哪一种算法?”等等,让学生在交流中学会吸收,学会欣赏,学会评价。
3、教学内容联系实际,重视学生的体验与感悟。
数学课程标准指出:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。
教师在引入阶段通过现实数学情境的创设,采取忆旧引新的方法,从复习两位数乘一位数笔算,两位数乘整十数的口算,再引出两位数乘两位的笔算。两位数乘两位数的计算,可以分解为两位数乘一位数和两位数乘整十数来计算,这里教师充分依据学生原有的知识和经验,复习旧知来为学习新知打下了扎实的基础。
4、关注学生良好习惯的养成,重视学习方法、学习策略的指导。我国近代教育家叶圣陶先生曾说过:“教是为了达到不需要教”。本节课自始至终都渗透着教师对学生进行学习方法、学习策略的指导,让学生自己能够运用不同的策略解决实际问题。重点让学生体验到了用旧知识解决新问题的方法。但又鼓励,学生根据各人的实际选用合适的策略。如看书,请教家长老师、同学间相互帮助、独立思考解决等。
5、课堂评价语运用恰到好处,时时处处都在关注促进学生的发展,激励学生学习更好地学习。如:“哦!面对新问题,我们各有高招!”“同学们的估算能力都真强!”“仔细严谨,体现了我们学习数学的良好品质!”“阅读课文,获取知识,是数学学习的好方法!”等都体现了教师看到学生在学习活动中的表现十分满意和欣喜。正是由于充满了人文关怀才使课堂如此温馨!
两位数乘法教案 篇5
做梦也没有想过,置身在村小任教的我能在市级课堂教学研讨会中与名师们同台竞技,面对面的交流。因此,非常感谢于科长给我们村小教师提供了这样一个观摩学习和成长的平台,更感激王主任给了我这样一次历练的机会。反思自己的课堂教学效果确实与后面两节差距较大。静下心来前后对比,剖析根源,具体体现在以下两个方面:
一、课前对学生的认知基础了解不足。
教材中要求“学习两位乘两位数(不进位)的笔算乘法”这一教学内容,必须建立在学生学习了笔算多位数乘一位数的基础上进行教学。所以课前对学生旧知识掌握程度的状态了解非常重要。而我在课前熟悉学生时,只是简单的测试了学生的两位数乘一位数和两位数乘整十数的口算、估算能力,忽略了对学生笔算两位数乘一位数的方法及算理的回顾,导致学生在课堂上叙述新知识的算理时造成障碍。假如再次上这节课的话,课前我还要补充一些两位数与三位数的笔算加法的复习,这样既避免了课堂中一位学生出现的两次相乘的积从高位加起的现象而节省时间,又对新知识的学习做了铺垫。
二、课中对教学的环节处理不细。
1.课堂预设没有踩准学生的思维线。
在教学中,围绕买书的情景设计了三个数学问题,前两个数学问题是学生能够解决的旧知识,第三个数学问题是新知识的呈现,学生能够顺利列式:24×12,我的此处预设是想让学生先口算,再估算,最后探索笔算,目的是想让学生感知解决生活问题的策略多样化,同时又为后面的探索口算与笔算的联系埋下伏笔。但是课堂实际脱离了我的预设,没有一位学生口算出结果。当时我脑海一片慌乱,一时不知如何引导,就舍弃此处马上进入了估算和笔算环节。与教材编者的意图不相符,导致本课的教学重、难点突破不到位,直接影响了学生的学习效果。现在想来,是我脱离了问题情境拉高了学生的思维线,如果当时能像于科长指点的那样,结合情境让学生尝试口算,问题就迎刃而解了。
2.估算环节的设计目的性不强。
“一堂好课精彩在课的设计,一堂高效的课重在学生从中收获了多少。”此时我才真正读懂这句话的含义。对比三节课,同样都有让学生估算的环节,但是每个人设计的意图不同,学生的收获也就不同。刘秀艳老师的设计意图重在让学生关注估算的应用价值,在解决实际问题时感受需要估多还是估少。吴名老师的设计意图是让学生学会通过估算锁定准确值的范围。而我的设计只是让学生“百花齐放”的估算了一把,没能给学生带来“估算”之外的收获。从中我也深受启发:在以后的备课中,每个环节设计前都要思考:到底能让学生收获什么。
3.教学方法不够科学、巧妙。
科学的方法是教学取得成功的前提。在教学中刘秀艳老师用画箭头的方法来帮助学生理解乘的顺序,感觉更直观、更易于学生理解。吴名老师采取了在竖式中找口算算式的方法,巧妙的引领学生加深了笔算的计算过程,都值得我学习和借鉴。
当然,在本节课中存在的问题还有很多,我会以此为契机,深入反思,努力学习,吸取新的教育理念,主动向名师请教,提高自身的素质和教学水平,让自己在这片肥沃的教育土地上茁壮成长!
两位数乘两位数的笔算乘法(不进位),是在学生已经掌握了多位数乘一位数的笔算乘法、两位数乘整十数的`口算的基础上进一步学习的。本节课的地位在于学习了两位数乘两位数的计算方法,不仅可以解决与之有关的实际问题,还为学习多位数四则混合运算打下基础,也为学生解决生活中遇到的因数是更多位数的乘法问题奠定基础。也就是说,本节课在这一单元起着至关重要的作用。本节课的教学关键①掌握乘的顺序;②理解用第二个因数十位上的数乘第一个因数是得多少个“十”,乘得的数的末位要和因数的十位对齐。
本节课以算理教学为支撑,以算法教学为目标,注重了学生的思维训练和数学思考,具有浓浓的“数学味”。主要体现在以下几个方面:
1.一“明”一“暗”两线并行,突出算理,掌握算法。
陈老师在上课伊始,渗透两道复习题,两道复习题放在新授课之前,是有着重要的意义。这两道题是两位数乘一位数和两位数乘整十数,这不仅是对原来所学知识的一个巩固,更重要的是紧紧抓住本节课的教学的起点,降低学生学习的坡度,让学生在不知不觉中深入新知识的学习中,实际上,学生在解决前面的两个问题时,就已经蕴含了两位数乘两位数竖式计算的道理,这是一个“暗处”所指。学生在列出算式后,经过自主探索,让新知识与已有旧知相结合,逐步解决问题,明确了乘的顺序和第二次相乘和积放在“十”位这一道理,这是一个“明处”。通过两条线的相互结合,突出了算理,让学生掌握了算法。
2.一“浅”一“深”相互交映,有效质疑,相机释疑。
由于有效铺垫的渗透,学生对新知存在着兴趣。在学生列出两位数乘两位数的算后,教师适时让学生在估算的基础上想办法计算出准确值,这是从一个很好的“浅入”的契机,目的突出学生自主能力,放手让学生自主解决“怎样算”的问题,让学生亲历学习计算方法的过程。由于本节课的重点之一是第二次积的书写位置,因此,老师在学生质疑的同时,适时提出“第二个4”为什么要写在“十位”上,可谓是“一石击起千层浪”,学生的思维在教师的引导下集中到这一焦点上,并想办法积极解决。在这个基础上,运用合作学习方式,让学生交流自己的计算方法,并相互评价。学生在合作交流中,体验解决问题的乐趣。这是“深”的表现。
3.一“加”一“减”活用教材,重视生成,达成目标。
教材是我们教学的载体,它要求教师从一个单纯的教材的使用者、执行者转变教材的开发者和研究者。因此教师根据学生思维特点和教学的需要,对例题进行了两个层次的改进,即把例题改变成12×4和12×20的形式,这一“加”是重视了学生学习的起点,为后续学习奠定了基础。在学生想办法进行计算12×24时,由于学生不善于运用口算的形式进行计算,即先算12×4,再算12×20,再将两次相乘的积相加,这个口算过程就是竖式的另一种形式,但在课堂上是没有看到的,陈老师并没有刻意的要求出现这一种结果,而是适时在学生都用竖式计算的基础进行交流、质疑,进而发现算理,掌握算法。一位专家说过,“课堂上是按照孩子们的思路去进行教学,还是按照你的思路去进行教学?这是教学指导思想的问题。”我想,这位专家的话给我们的启示是有着积极的意义的。学生都这么做了,我们没有必要再让学生回头思考口算的过程,我们最好的方式就是按照学生的思路进行上课,这一“减“也是至关重要的,是体现学生主体性的最好说明。
课堂永远是有着遗憾的地方,在这节课上也有着几点商榷之处,如在提升算法时再明确一些就更好了,教师的评价相对比较薄弱,这些都应当在以后的教学过程中有意地改进和加强。
小数乘法教案集合
教案是老师上课之前需要备好的课件,每个老师都需要仔细规划教案课件。教案是学生成功学习的关键。我们为您整理了一份关于“小数乘法教案”的大全,我们感谢您的阅读和收藏也希望您能将这篇文章分享给您的朋友圈!
小数乘法教案 篇1
使用说明及学法指导:
1、自学课本第6页,用红笔勾画出疑惑点;独立思考完成自主学习任务,并总结规律方法。
2、针对自主学习中找出的疑惑点,课上小组讨论交流,答疑解惑。
3、带号的5、6号同学不做。
学习目标:
1、我理解了倍数可以是整数,也可以是小数。
2、 我能通过验算检查计算的准确性。
学习重点、难点:掌握验算的方法,检查计算的准确性。
一、自主学习
任务:倍数是小数的问题的解法
1、王大爷家养了20只鸭,养鸡的只数是鸭的2倍,其中( )是一倍量,求鸡的只数的式子:( )。如果养的鸭是鸡的2倍,其中一倍量是( )的只数。
2、阅读教材第6页,一倍量是( )的速度,你觉得野狗追( )上鸵鸟;
如果鸵鸟的速度等于野狗的速度,野狗追( )上鸵鸟。
3、求鸵鸟的速度用( )倍量乘( )数,列式计算( )。
4、倍数是小数的解题方法和倍数是整数倍的解题方法( ),
几倍量=( )×( )
任务:小数乘法的验算
1、整数乘法的验算可以用( )或( )。
2、验算刚才的计算是否正确( )。
3、验算下列计算正确吗?3.2×2.5=0.8验算( )
2.6×1.08=2.708验算( )
4、我们可以用( )的方法来验算小数乘法的计算是否正确。
5、计算1.8×23 0.37×0.4 1.06×25
7×0.86 0.6×0.39 27×0.43
上面各式积大于第一个因数的式子有( )
积小于第一个因数的式子有( )
6、观察上面的分类,你有发现( )
二、合作探究,交流展示
1、讨论自主学习中存在的问题,组内进行互帮活动。(不能解答的写到自己组的黑板上)
2、交流、展示:
(1)讨论解决各组出示的不能解决的问题。
(2)倍数是小数的解题方法:
(3)小数乘法的验算方法:
3、分组探究:什么情况下两个数的积大于第一个因数,什么情况下两个数积小于第一个因数,用学过的知识解释原因。
4、一组展示探究结果,其余组补充完善。
三、过关检测
1、计算下列各题并验算。
2.7×1.8=;25×0.6=
2、在( )里填上“﹤”、“﹥”或“=”
123×0.8( )123 、 1×0.86( )1
3.18( )3.18×1.2 、 26.3( )26.3×2.1
3、河马的最长寿命是52岁,蓝鲸的最长寿命是河马的1.7倍,你能算出蓝鲸的最长寿命是多少吗?
4、张老师到商店给7名同学买奖品,一副羽毛球拍15.6元,如果每人一副,张老师买奖品共花多少钱?
5、计算:71.7×4.06-59.4×2.83
小数乘法教案 篇2
一、复习目标
1、通过整理复习,进一步巩固笔算小数乘法的计算法则,能较熟练地计算小数乘法,提高计算正确率。
2、能熟练地运用乘法运算定律进行小数乘法的简算。
3、解决有关小数乘法的问题。
4、培养认真计算、认真检查的习惯。
二、复习铺垫
1、口算。
0.4×5=1.2×4=4×1.5=1×0.5=
1.8×0.1=0.25×40=0.01×7=1.25×0.4=
三、自主整理
(一)、复习训练一。
1、用竖式计算。
1.36×2.5=10.3×5.9
2、笔算小数乘法的计算法则是:
(1)、小数的()对齐。(2)、按()乘法计算。(3)、看两个因数中一共有几位(),就从积的.末尾数出几位,()小数点。(4)、小数积末尾的0要()。
(二)、复习训练二
1、在○填>、
1.2×7.3○7.30.95×0.8○0.95
5.43×0○5.434.9×1○4.9
2、我发现:
(1)、一个不为0数乘大于1的数,积()这个数。
(2)、一个不为0数乘小于1的数,积()这个数。
(3)、一个不为0数乘等于1,积()这个数。
(4)、一个数乘0,积等于()
(三)、复习训练三
1、填空。
12.5×3.2×2.5=12.5××=×=
0.78×102=0.78×(+)=0.78×+0.78×=+=
3.4×12.5+6.6×12.5=(+)×=×=
2、我会用字母表示运算定律。
乘法交换律:
乘法结合律:
乘法分配律:
四、巩固测评
1、在下面算式的积里点上小数点,使等式成立。
2.5×0.4=1000.44×98=4312
0.35×42=14701.05×2.7=2835
2、笔算。
0.34×2.5=1.5×1.7=
3、简算。
0.25×16.2×4(1.25-0.125)×83.6×1022.4×12.5
3.72×3.5+6.28×3.512.5×3.2×2.55.73×101—5.73
五、学习收获
通过探究学习,我的收获(体会)
小数乘法教案 篇3
使用说明及学法指导:
1、结合问题自学课本第12页,用红笔勾画出疑惑点;独立思考完成书上填空,并发现理解简算方法。
2、针对自主学习中找出的疑惑点,课上小组讨论交流,答疑解惑。
学习目标:
1、使学生理解整数乘法的运算定律对于小数同样适用;
2、并会运用乘法的运算定律进行一些小数的简便计算。
3、在自主探究、合作学习中体验成长乐趣。
学习重点:乘法运算定律中数(包括整数和小数)的适用范围。
学习难点:运用乘法的运算定律进行小数乘法的的简便运算。
一、自主学习
任务:整数乘法运算定律推广到小数乘法的简便算法
1、想一想,我们学过哪些乘法运算定律?请用字母表示出来。
乘法交换律 ab=ba
乘法结合律 a(bc)=(ab)c
乘法分配律 a(b+c)=ab+ac
2、认真观察P.12三组中的每两个算式,在书上填出左右两边的关系。
3、上面的算式,应用了哪些运算定律?
4、试着在书上完成例8,想一想,每一步应用了哪些运算定律?
5、练一练:P.12页的“做一做”。
任务:探究小数乘整数的计算方法(课内):
1、你会填吗?根据什么定律填的?
4.2×1.69=□×□
2.5×(0.77×0.4)=(□×□)×□
6.1×3.6+3.9×3.6=(□+□)×□
2、阅读教材第12页例8。理解:计算0.25×4.78×4时,先将4.78和4交换位置,计算出0.25×4的积后,将积与4.78相乘得4.78较简便。这是根据 ;065×(200+1)=0.65×200+0.65×1这是根据 。
3计算2.5×18时,先把18写成 + ,再根据乘法分配律得出2.5×18= × + × 。就得到2.5×18= 较简便。
3、简算:4.8×0.25 7.5×104 2.33×1.25×8
二、合作探究、归纳展示(小组合作完成下列各题,一组展示,其余补充、评价)
1、小数乘整数乘法的 ,对于小数乘 法 。
2、简算:
2.5×33×4 3.6×0.8+0.8×6.4
12.7×10.8-2.7×10.8
3、简算出35.62+35.62×99时,要注意把前一个35.62看成( )×( )
过关检测:
1、简算;
6×5.68+5.68×94 7.5×33×4 4.33×12.5×8
2、下面各题怎样算简便就怎样算
(9.275+0.725)×0.59 33.2-2.64×0.5 0.67×8.3+2.7×0.67-0.67
小数乘法教案 篇4
教学内容:
人教版小学数学教材五年级上册第5~6页例3、例4及做一做,练习二第1~5题。
教学目标:
1.通过旧知迁移,引导学生自主探究、逐步理解小数乘小数的算理,掌握基本算法。
2.使学生掌握在确定积的小数点位置时,小数位数不够的,要在前面用0补足;引导学生发现一个因数比1大(或小)时,积和另一个因数的大小关系。
3.培养学生运用迁移的数学思想解决新问题的能力。
教学重点:
小数乘小数的计算方法。
教学难点:
小数乘法中积的小数位数和小数点位置的确定。
教学准备:
课件、课本。
教学过程:
一、类比迁移,情境展开
教学例3。
1.出示例题。
(1)师:同学们,最近我们要给学校宣传栏刷油漆,你能帮忙算算需要多少千克油漆吗?
(2)师:在计算需要多少千克油漆之前,需要先算出什么呢?
(3)板书(或用PPT课件演示):2.40.8=________
2.尝试计算。
(1)师:同学们,请观察这个小数乘法算式,它与我们上节课学习的小数乘法有什么不同?(两个因数都是小数。)
(2)师:我们上节课学习的小数乘整数是怎样计算的?那两个因数都是小数又怎么计算呢?
(3)师:小数乘整数是把小数转化成整数进行计算的,现在能否还用这个方法来计算2.40.8呢?如果能,应该怎样做?
(4)指名学生口答,教师适时板书(或PPT课件演示)学生的讨论结果。
3.理解算理。
引导学生得出:先把第一个因数2.4乘10变成24,积就乘了10;再把第二个因数0.8乘10变成8,积就又乘了10,这时的积就乘了100。要得到原来的积,就应把乘得的积192除以100,得1.92。
4.进一步明确算理(两个因数的小数位数不同)。
(1)计算出了宣传栏的面积后,怎样计算需要多少千克油漆呢?
(2)板书(或用PPT课件演示):1.920.9=________
(3)师:这道题也可以先按整数乘法计算吗?积里的小数点应该点在哪里呢?
【设计意图】在给宣传栏刷油漆的问题背景下,迁移已有的小数乘整数的经验,为学生进一步探究小数乘小数的计算方法奠定坚实的基础。
二、深化探究,总结算法
(一)探究因数与积的小数位数的关系
1.学生独立完成第5页的做一做。
2.师:观察例3及做一做各题中因数与积的小数位数,你能发现什么?
(二)小结小数乘法的计算方法
1.组织学生回顾、讨论小数乘法是怎样计算的。
2.组织学生汇报、交流自己的计算方法。
(1)师:你是怎样计算的?(先按整数乘法算出积,再点小数点。)
(2)师:怎样确定积的小数点的位置?(点小数点时,先看因数中一共有几位小数,就从积的最右边起数出几位,再点上小数点。)
3.根据学生的讨论和交流,逐步归纳概括出小数乘法的计算方法,并让学生将教材第6页小数乘法的计算方法补充完整。
【设计意图】教材上安排了计算方法的小结,通过本环节的教学有意识地培养学生由具体到抽象的归纳概括能力。
三、引发冲突,突破难点
(一)教学例4
1.出示例题。
(1)师:同学们,我们刚刚总结了小数乘法的计算方法,你能运用小数乘法的计算方法来计算下面这道题吗?
(2)板书(或用PPT课件演示):0.560.04=________
2.尝试计算。
(1)学生尝试计算,教师巡视,了解学生的计算情况和遇到的问题。
(2)师:在计算时,遇到了什么新问题?
(3)师:乘得的积的小数位数不够时,怎样点小数点呢?
(二)及时巩固
1.学生独立完成教材第6页做一做的第1题。
(其中既有一般的小数乘法,也有积的小数末尾有0和积的小数位数不够的类型,帮助学生全面掌握小数乘法的计算。)
2.学生完成教材第6页做一做第2题的计算。
(三)探究积与因数的大小关系
1.集体订正做一做第2题时,引导学生分别将每组题中计算的结果和第一个因数比较大小,发现其中的规律。
2.组织学生交流、总结自己发现的规律。
(1)一个数(0除外)乘大于1的数,积比原来的数怎么样?
(2)一个数(0除外)乘小于1的数,积比原来的数怎么样?
3.帮助学生进一步明确积与因数的大小关系,并结合具体例子明确应用这个关系可以判断乘法计算中的一些错误。
【设计意图】乘得的积的小数数位不够,怎么点小数点?是小数乘法中的难点,让学生用刚刚总结的小数乘法的计算法则来进行例4的计算,意图就是引发学生的认知冲突,促成学生用已有的知识和经验化解冲突,解决遇到的新问题,从而突破学习难点。引导学生自主探索积和因数之间的大小关系,不仅为确定小数点的位置提供了操作依据,避免在确定积的小数位数时发生错误,而且也有利于培养学生的探究意识和分析归纳能力。
四、实践应用,内化提升
(一)基本练习
1.练习二第1题(基本计算)。
(1)学生独立练习。
(2)组织学生交流和订正。(其中有第一个因数的位数比第二个因数的位数少、积的小数末尾有0和积的小数位数不够等多种类型同时出现的小数乘法计算,让学生充分地交流和发表意见,教师适时给予指导,帮助学生全面掌握小数乘法的计算方法。)
2. 练习二第2题(基本应用)。
(1)帮助学生理解题意,指导学生看懂每种商品各有多少千克。
(2)引导学生回顾单价、数量和总价之间的关系。
(3)学生独立完成。
(二)拓展练习
补充题:在下面算式的括号里填上合适的数。(你能想出不同的填法吗?)
0.48=( )( )
=( )( )
【设计意图】通过分层次的练习,旨在让学生通过基本计算全面掌握小数乘法的计算方法,培养学生的运算能力;通过基本应用感受小数乘法在现实生活中的实际应用,培养学生的应用意识;通过拓展练习进一步体会因数与积小数位数之间的关系,培养学生灵活运用小数乘法计算方法的能力。
五、全课总结,畅谈收获
说说这节课你有什么收获?
六、课堂练习
练习二第3、4、5题。
小数乘法教案 篇5
教材学情分析:
这部分内容是在学习了小数的意义和性质,会进行小数加、减法计算的基础上进行教学的。小数乘整数既是小数乘、除法的主要组成部分,也是进一步学习和探索小数乘小数、除数是小数的除法基础。本节课的主要教学内容是“小数乘整数”,主要引导学生探索小数乘整数的计算方法,探索由小数点位置的右移引起的小数大小变化的规律。
例1通过在夏天和冬天分别购买3千克西瓜的情景,引出小数乘整数的两个计算问题;先让学生结合具体情境,探索“0.8×3”的计算方法,介绍“0.8×3”的竖式计算,通过教学,使学生初步感知积的小数位数与因数中小数的位数是相同的;接着,要求学生分别用加法和乘法计算“2.35×3”,通过计算,让学生进一步积累小数与整数相乘计算方法的感性认识。
“试一试”先要求学生用计算器计算三道小数与整数相乘的计算方法的题目,并要求观察每道题中积与因数的小数位数有什么联系,再通过讨论,引导学生联系例题获得的感性认识,归纳出整数与小数相乘的计算方法;“练一练”主要让学生通过练习巩固初步理解的计算方法。
练习十二的第1-3题是配合例1安排的,主要帮助学生通过练习进一步掌握小数乘整数的计算方法。第1题安排了用竖式计算小数和整数相乘题目;第2-3题是用小数乘法解决一些简单的实际问题。
教学目标:
⑴使学生初步体会小数乘法的意义,在熟悉的日常情境中探索并理解小数乘整数的计算方法,能正确进行相关的计算,并应用计算解决一些简单实际问题。
⑵使学生在探索计算方法的过程中,进一步体会数学知识之间的内在联系,培养初步的抽象、概括以及合情推理能力。
⑶使学生在观察、探究、实践应用等活动中,体会小数乘法与生活的联系,感受小数乘法的实际应用价值,并形成继续学习小数乘、除法的积极意向。
教学重点:理解小数乘整数的计算方法
教学难点:小数乘整数的竖式计算。
教学具准备:()计算器。
教学过程:
一、呈现情境图,揭示课题。
⑴呈现例1情境图。
理解情境图,说说你了解到的数学信息:夏天的西瓜价钱0.8元;冬天的西瓜价钱是2.35元;冬天的西瓜价钱比夏天贵等等。
⑵出示问题,揭示课题。
夏天买3千克西瓜要多少元?冬天买3千克西瓜要多少元?
列式:0.8×3=()2.35×3=
思考:为什么都用乘法计算?预设:3个0.8是多少,所以用乘法;3个2.35是多少,所以用乘法计算。
观察:这两道算式有什么相同的地方?乘数相同;一个因数是小数,另一个因数是整数等等。
揭示课题:小数和整数相乘。
二、合作探究计算方法,
⑴探索计算方法。
教师谈话:0.8×3=?为什么?
预设:0.8+0.8+0.8=2.4,用连加的方法计算;3×8=24,一个因数有一位小数,就是2.4,直接用乘法计算;0.8元就是8角,3个8角就是24角,即2.4元,改变单位换成整数乘法再计算;
⑵初步形成计算方法。
教师谈话:2.35×3=?你会选择哪种方法计算?
预设:直接用乘法计算居多。说说计算的过程:2.35×3先看做235×3来计算,因为因数有2位小数,所以积也有2位小数。
概括计算方法:先和整数乘法一样计算,再根据因数中的小数位数在积里点上小数点。
预设:列竖式不同形式的探讨;插入估算;
⑶形成计算方法。
呈现“试一试”:先竖式计算下面各题,再用计算器计算,最后想想积和因数的小数位数有什么联系?
4.76×12=()2.8×53=()103×0.25=
再次概括计算方法:先和整数乘法一样计算出积,再根据因数中的小数位数在积里数出相同的位数,点上小数点。
三、运用计算方法进行计算。
⑴完成“练一练”。
竖式计算,让学生板演;
根据148×23=3404,直接写出下面各题的积:
14.8×23=()148×2.3=
148×0.23=()1.48×23=
指名说说直接写得数的依据。横着比较:为什么两题的算式不同结果却是一样的?
⑵完成练习十二第1-3题。
作为课堂作业完成;
⑶谈谈本节课的收获。
小数乘法教案 篇6
一、复习目标
1、通过整理复习,进一步巩固笔算小数乘法的计算法则,能较熟练地计算小数乘法,提高计算正确率。
2、能熟练地运用乘法运算定律进行小数乘法的简算。
3、解决有关小数乘法的问题。
4、培养认真计算、认真检查的习惯。
二、复习铺垫
1、口算。
0.4×5=1.2×4=4×1.5=1×0.5=
1.8×0.1=0.25×40=0.01×7=1.25×0.4=
三、自主整理
(一)、复习训练一。
1、用竖式计算。
1.36×2.5=10.3×5.9
2、笔算小数乘法的计算法则是:
(1)、小数的()对齐。(2)、按()乘法计算。(3)、看两个因数中一共有几位(),就从积的末尾数出几位,()小数点。(4)、小数积末尾的0要()。
(二)、复习训练二
1、在○填>、
1.2×7.3○7.30.95×0.8○0.95
5.43×0○5.434.9×1○4.9
2、我发现:
(1)、一个不为0数乘大于1的数,积()这个数。
(2)、一个不为0数乘小于1的数,积()这个数。
(3)、一个不为0数乘等于1,积()这个数。
(4)、一个数乘0,积等于()
(三)、复习训练三
1、填空。
12.5×3.2×2.5=12.5××=×=
0.78×102=0.78×(+)=0.78×+0.78×=+=
3.4×12.5+6.6×12.5=(+)×=×=
2、我会用字母表示运算定律。
乘法交换律:
乘法结合律:
乘法分配律:
四、巩固测评
1、在下面算式的积里点上小数点,使等式成立。
2.5×0.4=1000.44×98=4312
0.35×42=14701.05×2.7=2835
2、笔算。
0.34×2.5=1.5×1.7=
3、简算。
0.25×16.2×4(1.25-0.125)×83.6×1022.4×12.5
3.72×3.5+6.28×3.512.5×3.2×2.55.73×101—5.73
五、学习收获
通过探究学习,我的收获(体会)