幼儿教师教育网,为您提供优质的幼儿相关资讯

二次函数课件

发布时间:2023-07-03 二次函数课件 二次课件

二次函数课件经典。

优秀的人总是会提前做好准备,在学习工作中,幼儿园教师有提前准备可能会使用到资料的习惯。资料的意义非常的广泛,可以指需要查到某样东西所需要的素材。参考资料有利于我们完成相应的学习工作目标。所以,你是否知晓幼师资料到底是怎样的形式呢?根据你的需要,小编精心整理了二次函数课件经典,我们后续还将不断提供这方面的内容。

二次函数课件 篇1

1.经历对实际问题情境分析确定二次函数表达式的过程,体会二次函数意义。

2.了解二次函数关系式,会确定二次函数关系式中各项的系数。

1.一粒石子投入水中,激起的波纹不断向外扩展,扩大的圆的面积S与半径r之间的函数关系式是 。

2.用16米长的篱笆围成长方形的生物园饲养小兔,怎样围可使小兔的活动范围较大?

设长方形的长为x 米,则宽为 米,如果将面积记为y平方米,那么变量y与x之间的函数关系式为 .

3.要给边长为x米的正方形房间铺设地板,已知某种地板的价格为每平方米240元,踢脚线的价格为每米30元,如果其他费用为1000元,门宽0.8米,那么总费用y为多少元?

在这个问题中,地板的费用与 有关,为 元,踢脚线的费用与 有关,为 元;其他费用固定不变为 元,所以总费用y(元)与x(m)之间的函数关系式是 。

(二)归纳提高。

上述函数函数关系有哪些共同之处?它们与一次函数、反比例函数的关系式有什么不同?

一般地,我们称 表示的函数为二次函数。其中 是自变量, 函数。

一般地,二次函数 中自变量x的取值范围是 ,你能说出上述三个问题中自变量的取值范围吗?

例1、判断:下列函数是否为二次函数,如果是,指出其中常数a.b.c的值.

(1) y=1― (2)y=x(x-5) (3)y= - x+1 (4) y=3x(2-x)+ 3x2

(5)y= (6) y= (7)y= x4+2x2-1 (8)y=ax2+bx+c

例2.当k为何值时,函数 为二次函数?

例3.写出下列各函数关系,并判断它们是什么类型的函数.

⑴正方体的表面积S(cm2)与棱长a(cm)之间的函数关系;

⑵圆的面积y(cm2)与它的周长x(cm)之间的函数关系;

⑶某种储蓄的年利率是1.98%,存入10000元本金,若不计利息,求本息和y(元)与所存年数x之间的函数关系;

⑷菱形的两条对角线的和为26cm,求菱形的面积S(cm2)与一对角线长x(cm)之间的函数关系.

1.已知函数 是二次函数,求m的值.

2. 已知二次函数 ,当x=3时,y= -5,当x= -5时,求y的`值.

3.一个长方形的长是宽的1.6倍,写出这个长方形的面积S与宽x之间函数关系式。

4.一个圆柱的高与底面直径相等,试写出它的表面积S与底面半径r之间的函数关系式

5.用一根长为40 cm的铁丝围成一个半径为r的扇形,求扇形的面积y与它的半径x之间的函数关系式.这个函数是二次函数吗?请写出半径r的取值范围.

6. 一条隧道的截面如图所示,它的上部是一个半圆,下部是一个矩形,矩形的一边长2.5 m.

⑴求隧道截面的面积S(m2)关于上部半圆半径r(m)的函数关系式;

⑵求当上部半圆半径为2 m时的截面面积.(π取3.14,结果精确到0.1 m2)

课堂练习:

1.判断下列函数是否是二次函数,若是,请指出它的二次项系数、一次项系数、常数项。

(1)y=2-3x2; (2)y=x2+2x3; (3)y= ; (4)y= .

2.写出多项式的对角线的条数d与边数n之间的函数关系式。

3.某产品年产量为30台,计划今后每年比上一年的产量增长x%,试写出两年后的产量y(台)与x的函数关系式。

4.圆柱的高h(cm)是常量,写出圆柱的体积v(cm3)与底面周长C(cm)之间的函数关系式。

1.下列函数:(1)y=3x2+ +1;(2)y= x2+5;(3)y=(x-3)2-x2;(4)y=1+x- ,属于二次函数的

是 (填序号).

2.函数y=(a-b)x2+ax+b是二次函数的条件为 .

A.圆的周长与圆的半径之间的关系; B.在弹性限度内,弹簧的长度与所挂物体质量的关系;

C.圆柱的高一定时,圆柱的体积与底面半径的关系;

D.距离一定时,汽车行驶的速度与时间之间的关系.

4.某超市1月份的营业额为200万元,2、3月份营业额的月平均增长率为x,求第一季度营业额y(万元)与x的函数关系式.

B级:

5、一块直角三角尺的形状与尺寸如图,若圆孔的半径为 ,三角尺的厚度为16,求这块三角尺的体积V与n的函数关系式.

6.某地区原有20个养殖场,平均每个养殖场养奶牛20xx头。后来由于市场原因,决定减少养殖场的数量,当养殖场每减少1个时,平均每个养殖场的奶牛数将增加300头。如果养殖场减少x个,求该地区奶牛总数y(头)与x(个)之间的函数关系式。

C级:

7.圆的半径为2cm,假设半径增加xcm 时,圆的面积增加到y(cm2).

(1)写出y与x之间的函数关系式;

(2)当圆的半径分别增加1cm、 时,圆的面积分别增加多少?

(3)当圆的面积为5πcm2时,其半径增加了多少?

8.已知y+2x2=kx(x-3)(k≠2).

(1)证明y是x的二次函数;

(2)当k=-2时,写出y与x的函数关系式。

二次函数课件 篇2

教学目标:

1、理解二次函数的概念,掌握二次函数=ax2的图象与性质;

2、会用描点法画抛物线,能确定抛物线的顶点、对称轴、开口方向;

3、能较熟练地由抛物线=ax2经过适当平移得到=a(x-h)2+的图象。

重点:用配方法求二次函数的顶点、对称轴,由图象概括二次函数=ax2图象的性质。

1.二次函数的概念,二次函数=ax2 (a≠0)的图象性质。

(2)为何值时,抛物线有最低点?求出这个最低点.这时当x为何值时,随x的增大而增大?

(3)为何值时,函数有最大值?最大值是什么?这时当x为何值时,随x的增大而减小?

学生活动:学生四人一组进行讨论,并回顾例题所涉及的知识点,让学生代表发言分析解题方法,以及涉及的知识点。

抛物线的增减性要结合图象进行分析,要求学生画出草图,渗透数形结合思想,进行观察分析。

2.强化练习;已知函数 是二次函数,其图象开口方向向下,则=_____,顶点为_____,当x_____0时,随x的增大而增大,当x_____0时,随x的增大而减小。

3.用配方法求抛物线的顶点,对称轴;抛物线的画法,平移规律,

例2:用配方法求出抛物线=-3x2-6x+8的顶点坐标、对称轴,并画出函数图象,说明通过怎样的平移,可得到抛物线=-3x2。

学生活动:小组讨论配方方法,确定抛物线画法的步骤,探索平移的规律。充分讨论后让学生代表归纳解题方法与思路。

4.教师归纳点评:

(1)教师在学生合作讨论基础上强调配方的方法及配方的意义,指出抛物线的一般式与顶点式的互化关系: =ax2+bx+c————→=a(x+b2a)2+4ac-b24a

(2)强调利用抛物线的对称性进行画图,先确定抛物线的顶点、对称轴,利用对称性列表、描点、连线。

(3)抛物线的平移抓住关键点顶点的移动。

5.综合应用。

例3:如图,已知直线AB经过x轴上的点A(2,0),且与抛物线=ax2相交于B、C两点,已知B点坐标为(1,1)。

(1)求直线和抛物线的解析式;

(2)如果D为抛物线上一点,使得△AOD与△OBC的面积相等,求D点坐标。

6. 强化练习:

(1)抛物线=x2+bx+c的图象向左平移2个单位。再向上平移3个单位,得抛物线=x2-2x+1,求:b与c的值。

(2)通过配方,求抛物线=12x2-4x+5的开口方向、对称轴及顶点坐标再画出图象。

(3)函数=ax2(a≠0)与直线=2x-3交于点A(1,b),求:

抛物线=ax2的顶点和对称轴;

x取何值时,二次函数=ax2中的随x的增大而增大,

求抛物线与直线=-2两交点及抛物线的顶点所构成的三角形面积。

1.让学生反思本节教学过程,归纳本节课复习过的知识点及应用。

1.若二次函数=(+1)x2+2-2-3的图象经过原点,则=______。

2.函数=3x2与直线=x+3的交点为(2,b),则=______,b=______。

3.抛物线=-13(x-1)2+2可以由抛物线=-13x2向______方向平移______个单位,再向______方向平移______个单位得到。

4.用配方法把=-12x2+x-52化为=a(x-h)2+的形式为=_____,其开口方向______,对称轴为______,顶点坐标为______。

二次函数课件 篇3

通过学生的讨论,使学生更清楚以下事实:

(1)分解因式与整式的乘法是一种互逆关系;

(2)分解因式的结果要以积的形式表示;

(3)每个因式必须是整式,且每个因式的次数都必须低于原来的多项式 的次数;

(4)必须分解到每个多项式不能再分解为止。

在教师的引导下,学生应用提公因式法共同完成例题。

让学生进一步理解提公因式法进行因式分解。

3.下列哪些变形是因式分解,为什么?

学生自主完成练习。

通过学生的反馈练习,使教师能全面了解学生对因式分解意义的理解是否到位,以便教师能及时地进行查缺补漏。

从今天的课程中,你学到了哪些知识?掌握了哪些方法?明白了哪些道理?

学生发言。

通过学生的回顾与反思,强化学生对因式分解意义的理解,进一步清楚地了解分解因式与整式的乘法的互逆关系,加深对类比的数学思想的理解。

通过作业的巩固对因式分解,特别是提公因式法理解并学会应用。

二次函数课件 篇4

一、教材分析

1.教材的地位和作用

(1)函数是初等数学中最基本的概念之一,贯穿于整个初等数学体系之中,也是实际生活中数学建模的重要工具之一,二次函数在初中函数的教学中有重要地位,它不仅是初中代数内容的引申,也是初中数学教学的重点和难点之一,更为高中学习一元二次不等式和圆锥曲线奠定基础。在历届佛山市中考试题中,二次函数都是必不可少的内容。

(2)二次函数的图像和性质体现了数形结合的数学思想,对学生基本数学思想和素养的形成起推动作用。

(3)二次函数与一元二次方程、不等式等知识的联系,使学生能更好地将所学知识融会贯通。

2.课标要求:

①通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义。

②会用描点法画出二次函数的图象,能从图象上认识二次函数的性质。

③会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导)。

④会根据二次函数的性质解决简单的实际问题。

3.学情分析:

(1)初三学生在新课的学习中已掌握二次函数的定义、图像及性质等基本知识。

(2)学生的分析、理解能力较学习新课时有明显提高。

(3)学生学习数学的热情很高,思维敏捷,具有一定的自主探究和合作学习的能力。

(4)学生能力差异较大,两极分化明显。

4.教学目标

◆认知目标

(1)掌握二次函数 y=图像与系数符号之间的关系。通过复习,掌握各类形式的二次函数解析式求解方法和思路,能够一题多解,发散提高学生的创造思维能力。

◆能力目标

提高学生对知识的整合能力和分析能力。

◆ 情感目标

制作动画增加直观效果,激发学生兴趣,感受数学之美。在教学中渗透美的教育,渗透数形结合的思想,让学生在数学活动中学会感受探索与创造,体验成功的喜悦。

5.教学重点与难点:

重点:(1)掌握二次函数y=图像与系数符号之间的关系。

(2) 各类形式的二次函数解析式的求解方法和思路。

(3)本节课主要目的,对历届中考题中的二次函数题目进行类比分析,达到融会贯通的作用。

难点:(1)已知二次函数的解析式说出函数性质

(2)运用数形结合思想,选用恰当的数学关系式解决几何问题.

二、教学方法:

1. 运用多媒体进行辅助教学,既直观、生动地反映图形变换,增强教学的条理性和形象性,又丰富了课堂的内容,有利于突出重点、分散难点,更好地提高课堂效率。

2.将知识点分类,让学生通过这个框架结构很容易看出不同解析式表示的二次函数的内在联系,让学生形成一个清晰、系统、完整的知识网络。

3.师生互动探究式教学,以课标为依据,渗透新的教育理念,遵循教师为主导、学生为主体的原则,结合初三学生的求知心理和已有的认知水平开展教学.形成学生自动、生生助动、师生互动,教师着眼于引导,学生着眼于探索,侧重于学生能力的提高、思维的训练。同时考虑到学生的个体差异,在教学的各个环节中进行分层施教,让每一个学生都能获得知识,能力得到提高。

三、学法指导:

1.学法引导

“授人之鱼,不如授人之渔”在教学过程中,不但要传授学生基本知识,还要培育学生主动思考,亲自动手,自我发现等能力,增强学生的综合素质,从而达到教学终极目标。

2.学法分析:新课标明确提出要培养“可持续发展的学生”,因此教师有组织、有目的、有针对性的引导学生并参入到学习活动中,鼓励学生采用自主学习,合作交流的研讨式学习方式,培养学生“动手”、“动脑”、“动口”的习惯与能力,使学生真正成为学习的主人。

3、设计理念:《课标》要求,对于课程实施和教学过程,教师在教学过程中应与学生积极互动、共同发展,要处理好传授知识与培养能力的关系,关注个体差异,满足不同学生的学习需要.”

4、设计思路:不把复习课简单地看作知识点的复习和习题的训练,而是通过复习旧知识,拓展学生思维,提高学生学习能力,增强学生分析问题,解决问题的能力。

四、教学过程:

1、教学环节设计:

根据教材的结构特点,紧紧抓住新旧知识的内在联系,运用类比、联想、转化的思想,突破难点.

本节课的'教学设计环节:

◆创设情境,引入新知 :复习旧知识的目的是对学生新课应具备的“认知前提能力”和“情感前提特征进行检测判断”。学生自主完成,不仅体现学生的自主学习意识,调动学生学习积极性,也能为课堂教学扫清障碍。为了更好地理解、掌握二次函数图像与系数之间的关系,根据不同学生的学习需要,按照分层递进的教学原则,设计安排了6个由浅入深的题型,让每一个学生都能为下一步的探究做好准备。

◆自主探究,合作交流:本环节通过开放性题的设置,发散学生思维,学生对二次函数的性质作出全面分析。让学生在教师的引导下,独立思考,相互交流,培养学生自主探索,合作探究的能力。通过学生观察、思考、交流,经历发现过程,加深对重点知识的理解。

◆运用知识,体验成功:根据不同层次的学生,同时配有两个由低到高、层次不同的巩固性习题,体现渐进性原则,希望学生能将知识转化为技能。让每一个学生获得成功,感受成功的喜悦。

安排三个层次的练习。

(一)从定义出发的简单题目。

(二)典型例题分析,通过反馈使学生掌握重点内容。

(三)综合应用能力提高。

既培养学生运用知识的能力,又培养学生的创新意识。引导学生对学习内容进行梳理,将知识系统化,条理化,网络化,对在获取新知识中体现出来的数学思想、方法、策略进行反思,从而加深对知识的理解。并增强学生分析问题,运用知识的能力。

(四)方法与小结

由总结、归纳、反思,加深对知识的理解,并且能熟练运用所学知识解决问题。

2、作业设计:(见课件)

3、板书设计:(见课件)

五、评价分析:

本节课的设计,我以学生活动为主线,通过“观察、分析、探索、交流”等过程,让学生在复习中温故而知新,在应用中获得发展,从而使知识转化为能力。本节教学过程主要由创设情境,引入新知――合作交流;探究新知――运用知识,体验成功;知识深化――应用提高;归纳小结――形成结构等环节构成,环环相扣,紧密联系,体现了让学生成为行为主体即“动手实践、自主探索、合作交流“的《数学新课标》要求。本设计同时还注重发挥多媒体的辅助作用,使学生更好地理解数学知识;贯穿整个课堂教学的活动设计,让学生在活动、合作、开放、探究、交流中,愉悦地参与数学活动的数学教学。

二次函数课件 篇5

回顾旧知:

1.作函数图象有几个步骤?(列表-----描点-------连线) 2.一次函数图象有什么特点?

(一次函数图象是一条直线,其中,正比例函数的图象是经过原点(0,0)的一条直线.)

1.结合图像探索并掌握一次函数y=kx+b(k≠0)的性质。 2.能根据一次函数的图像和性质解决简单的数学问题。

3、通过对一次函数性质的探索与应用,领会数形结合的思想方法。 【自主探索】

(一)自学指导:

自学教材P48—P50内容,完成以下内容: 1.在同一直角坐标系中画出下列函数的图象:

32、在同一直角坐标系中画出下列函数的图象:

3y=-x+2和y=-x-1 23.根据前两题的函数图像观察自变量x从小变到大时函数y的值分别有何变化?

4.请同学们在小组内进行交流讨论,并试着总结一次函数y=kx+b(k≠0)的性质。

(二)自学效果检测:

2、下图中哪一个是y=x-1的大致图象:

4、函数y=-2x+4,y=-3x,y=3-x的共同性质是( ) A.它们的图象都不经过第二象限 B.它们的图象都不经过原点 C.函数y都随自变量x的增大而增大 D.函数y都随自变量x的增大而减小

5、下列一次函数中,y的值随x的增大而减小的有_____________ (1)y=10x-9 (2)y=-0.3x+2 (3)y=【合作提升】

1.利用函数y=-2x+2的图象,回答下列问题:

(1)这个函数中,随着x的增大,y将增大还是减小?它的图象从左到右怎样变化? (2)当x取何值时,y=0?当x取何值时,y>0?当0

12、已知点(2,m) 、(-3,n)都在直线y=x+1的图象上,试比较 m和n的

1.一次函数y=kx+b中,k≠0 kb>0,且y随x的增大而减小,则它的图象大致为(

D

2、关于x的一次函数y=(2m-1)x+m-1的图象与y轴的交点在x轴的上方,求m的取值范围。

3、点P1(x1,y1),点P2(x2,y2)是一次函数y=-4x+3的图象上两个点,且x1

4、若一次函数y=kx+b(k≠0)的函数值y随x的增大而减小,且图象与y轴的负半轴相交,那么对k和b的符号判断正确的是(

1、 一次函数y=3x+b的函数图象经过原点,则b的值是________.

2、 已知一次函数y=kx+b的图象交y轴于正半轴,且y随x的增大而减小,则k__0,b__0,请写出符合上述条件的一个关系式:_____________.

二次函数课件 篇6

教学设计

一 教学设计思路

通过小球飞行高度问题展示二次函数与一元二次方程的联系。然后进一步举例说明,从而得出二次函数与一元二次方程的关系。最后通过例题介绍用二次函数的图象求一元二次方程的根的方法。

二 教学目标

1 知识与技能

(1).经历探索函数与一元二次方程的关系的过程,体会方程与函数之间的联系。总结出二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,表述何时方程有两个不等的实根、两个相等的实数和没有实根.

(2).会利用图象法求一元二次方程的近似解。

2 过程与方法

经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.

三 情感态度价值观

通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况培养学生自主探索意识,从中体会事物普遍联系的观点,进一步体会数形结合思想.

四 教学重点和难点

重点:方程与函数之间的联系,会利用二次函数的图象求一元二次方程的近似解。

难点:二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。

五 教学方法

讨论探索法

六 教学过程设计

(一)问题的提出与解决

问题 如图,以20m/s的速度将小球沿与地面成30角的方向击出时,球的飞行路线将是一条抛物线。如果不考虑空气阻力,球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系

h=20t5t2。

考虑以下问题

(1)球的飞行高度能否达到15m?如能,需要多少飞行时间?

(2)球的飞行高度能否达到20m?如能,需要多少飞行时间?

(3)球的飞行高度能否达到20.5m?为什么?

(4)球从飞出到落地要用多少时间?

分析:由于球的飞行高度h与飞行时间t的关系是二次函数

h=20t-5t2。

所以可以将问题中h的值代入函数解析式,得到关于t的一元二次方程,如果方程有合乎实际的解,则说明球的飞行高度可以达到问题中h的值:否则,说明球的飞行高度不能达到问题中h的值。

解:(1)解方程 15=20t5t2。 t24t+3=0。 t1=1,t2=3。

当球飞行1s和3s时,它的高度为15m。

(2)解方程 20=20t-5t2。 t2-4t+4=0。 t1=t2=2。

当球飞行2s时,它的高度为20m。

(3)解方程 20.5=20t-5t2。 t2-4t+4.1=0。

因为(-4)2-44.10。所以方程无解。球的飞行高度达不到20.5m。

(4)解方程 0=20t-5t2。 t2-4t=0。 t1=0,t2=4。

当球飞行0s和4s时,它的高度为0m,即0s时球从地面飞出。4s时球落回地面。

由学生小组讨论,总结出二次函数与一元二次方程的解有什么关系?

例如:已知二次函数y=-x2+4x的值为3。求自变量x的值。

分析 可以解一元二次方程-x2+4x=3(即x2-4x+3=0) 。反过来,解方程x2-4x+3=0又可以看作已知二次函数y=x2-4+3的值为0,求自变量x的值。

一般地,我们可以利用二次函数y=ax2+bx+c深入讨论一元二次方程ax2+bx+c=0。

(二)问题的讨论

二次函数(1)y=x2+x-2;

(2) y=x2-6x+9;

(3) y=x2-x+0。

的图象如图26.2-2所示。

(1)以上二次函数的图象与x轴有公共点吗?如果有,有多少个交点,公共点的横坐标是多少?

(2)当x取公共点的横坐标时,函数的值是多少?由此,你能得出相应的一元二次方程的根吗?

先画出以上二次函数的图象,由图像学生展开讨论,在老师的引导下回答以上的问题。

可以看出:

(1)抛物线y=x2+x-2与x轴有两个公共点,它们的横坐标是-2,1。当x取公共点的横坐标时,函数的值是0。由此得出方程x2+x-2=0的根是-2,1。

(2)抛物线y=x2-6x+9与x轴有一个公共点,这点的横坐标是3。当x=3时,函数的值是0。由此得出方程x2-6x+9=0有两个相等的实数根3。

(3)抛物线y=x2-x+1与x轴没有公共点, 由此可知,方程x2-x+1=0没有实数根。

总结:一般地,如果二次函数y= 的图像与x轴相交,那么交点的横坐标就是一元二次方程 =0的根。

(三)归纳

一般地,从二次函数y=ax2+bx+c的图象可知,

(1)如果抛物线y=ax2+bx+c与x轴有公共点,公共点的横坐标是x0,那么当x=x0时,函数的值是0,因此x=x0就是方程ax2+bx+c=0的一个根。

(2)二次函数的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点。这对应着一元二次方程根的三种情况:没有实数根,有两个相等的实数根,有两个不等的实数根。

由上面的结论,我们可以利用二次函数的图象求一元二次方程的根。由于作图或观察可能存在误差,由图象求得的根,一般是近似的。

(四)例题

例 利用函数图象求方程x2-2x-2=0的实数根(精确到0.1)。

解:作y=x2-2x-2的图象(如图),它与x轴的公共点的横坐标大约是-0.7,2.7。

所以方程x2-2x-2=0的实数根为x1-0.7,x22.7。

七 小结

二次函数的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点。这对应着一元二次方程根的三种情况:没有实数根,有两个相等的实数根,有两个不等的实数根。

八 板书设计

用函数观点看一元二次方程

抛物线y=ax2+bx+c与方程ax2+bx+c=0的解之间的关系

例题

二次函数课件 篇7

学习目标:

1、能解释二次函数 的图像的位置关系;

2、体会本节中图形的变化与 图形上的点的坐标变化之间的关系(转化),感受形数 结合的数学思想等。

学习重点与难点:

对二次函数 的图像的位置关系解释和研究问题的数学方法的感受是学习重点;难点是对数学问题研究问题方法的感受和领悟。

学习过程:

一、知识准备

本节课的学习的内容是课本P12-P14的内容,内容较长,课本上问题较多,需要你操作、观察、思考和概括,请你注意:学习时要圈、点、勾、画,随时记录甚至批注课本,想想那个人是如何研究出来的。你有何新的发现呢?

二、学习内容

1.思考:二次函数 的图象是个什么图形?是抛物线吗?为什么?(请你仔细看课本P12-P13,作出合理的解释)

x -3 -2 -1

0 1 2 3

类似的:二次函数 的图象与函数 的图象有什么关系?

它的对称轴、顶点、最值、增减性如何?

2.想一想:二次函数 的图象是抛物线吗?如果结合下表和看课本P13-P14你的解释是什么?

x

-8 -7 -6 -3 -2 -1 0 1 2 3 4 5 6

类似的:二次函数 的图象与二次函数 的图象有什么关系 ?它的对称轴、顶点呢?它的对称轴、顶点、最值、增减性如何呢

三、知识梳理

1、二次函数 图像的形状,位置的关系是:

2、它们的性质是:

四、达标测试

⒈将抛物线y=4x2向上平移3个单位,所得的抛物线的函数式是 。

将抛物线y=-5x2+1向下平移5个单位,所得的抛物线的函数式是 。

将函数y=-3x2+4的图象向 平移 个单位可得y=-3x2的图象;

将y=2x2-7的图象向 平移 个单位得到可由 y=2x2的图象。

将y=x2-7的图象向 平移 个单位 可得到 y=x2+2的图象。

2.抛物线y=-3(x-1)2可以看作是抛物线y=-3x2沿x 轴 平移了 个单位;

抛物线y=-3(x+1)2可以看作是抛物线y=-3x2沿x轴 平移了 个单位.

抛物线y=-3(x-1)2的顶点是 ;对称轴 是 ;

抛物线y=-3(x+1)2的顶点是 ;对称轴是 .

3.抛物线y=-3(x-1)2在对称轴(x=1)的左侧,即当x 时, y随着x的增大而 ; 在对称轴(x=1)右侧,即当x 时, y随着x的增大而 .当x= 时,函数y有最 值,最 值是 ;

二次 函数y=2x2+5的图像是 ,开口 ,对称轴是 ,当x= 时,y有最 值,是 。

4.将函数y=3 (x-4)2的图象沿x轴对折后得到的函数解析式是 ;

将函数y=3(x-4)2的 图象沿y轴对折后得到的函数解析式是 ;

5.把抛物线y=a(x-4)2向左平移6个单位后得到抛物线y=- 3(x-h)2的图象,则a= ,h= .

函数y=(3x+6)2的图象是由函数 的图象向左平移5个单位得到的,其图象开口向 ,对称轴是 ,顶点坐标是 ,当x 时,y随x的增大而增大,当x= 时,y有最 值是 .

6.已知二次函数y=ax2+c ,当x取x1,x2(x1x2), x1,x2分别是A,B两点的横坐标)时,函数值相等,

则当x取x1+x2时,函数值为 ( )

A. a+c B. a-c C. c D. c

7.已知二次函数y=a(x-h)2, 当x=2时有最大值,且此函数的图象经过点(1,-3),求此函数的解析式,并指出当x为何值时,y随x的增大而增大?

Yjs21.Com更多幼师资料扩展阅读

一次函数课件


编辑为您搜罗的“一次函数课件”。教案课件是我们老师的部分工作,因此每天老师都会按质按时去写好教案课件。 教学过程中可以通过教案课件以激发学生的兴趣。星愿今天的分享能够帮助到您!

一次函数课件 篇1

2、把已知条件(自变量与函数对应值)代入解析式,得到关于待定系数的方程(组);。

3、解方程(组),求出待定系数;。

4、将求得的待定系数的值代回所设的函数解析式,从而得到所求函数解析式。

例、已知:一次函数的图象经过点(2,­-1)和点(1,-2).

(1)求此一次函数的解析式;(2)求此一次函数与x轴、y轴的交点坐标。

分析:一般一次函数有两个待定字母k、b.要求解析式,只须将两个独立条件代入,再解方程组即可.凡涉及求两个函数图象的交点坐标时,一般方法是将两个函数的解析式组成方程组,求出方程组的解就求出了交点坐标.

解:(1)设函数解析式为y=kx+b.

(2)当y=0时x=3,当x=0时y=-3。可得直线与x轴交点(3,0)、与y轴交点(0,-3)。

评析:用待定系数法求函数解析式,求直线的交点均与解方程(组)有关,因此必须重视函数与方程之间的关系.

一次函数课件 篇2

1、本节课讲述内容为北师大版教材九年级下册第五章《反比例函数》的第二节,也这一章的重点。本节课是在理解反比例函数的意义和概念的基础上,进一步熟悉其图象和性质的过程。

2、对教材的分析

(1)教学目标:进一步熟悉作函数图象的主要步骤,会作反比例函数的图象;体会函数三种方式的相互转换,对函数进行认识上的整和;逐步提高从函数图象中获取知识的能力,探索并掌握反比例函数的主要性质。

(2)重点:会作反比例函数的图象;探索并掌握反比例函数的主要性质。

(3)难点:探索并掌握反比例函数的主要性质。

1、提问:

(1)=4/x是什么函数?你会作反比例函数的图象吗?

(2)作图的步骤是怎样的

(3)填写电脑上的表格,开始在坐标纸上描点连线。

2、按照上述方法作=—4/x的图象

3、对照你所作的两个函数图象,找一下它们的相同点和不同点。

1、让学生观察函数=/x的图象,按下动画按钮,在运动中观察值的变化与函数图象变化之间的关系,并与同学充分讨论有何规律。

2、演示反比例函数中心对称的性质以及轴对称性质,显示反比例函数的两条对称轴。

3、让学生观察函数=/x的图象,观察过反比例函数上任意一点作x轴和轴的垂线,观察其围成矩形的面积变化情况。

(1)拖动,使变化,观察不断变化过程中,矩形面积的变化情况,讨论得出结论。

(2)拖动函数上的点,观察矩形面积的变化情况,讨论得出结论。

1、给出两个反比例函数的`图象,判断哪一个是=2/x和=—2/x的图象。

2、判断一位同学画的反比例函数的图象是否正确。

课本137页第1题、141页第2题

一次函数课件 篇3

数学一次函数教案

主题:一次函数的概念与应用

一、教学目标和要求:

1. 掌握一次函数的定义和性质;

2. 学会利用一次函数解决实际问题;

3. 发现一次函数在实际生活中的应用。

二、教学重难点:

1. 一次函数的定义和性质;

2. 一次函数的应用解决实际问题。

三、教学过程:

1. 导入(5分钟)

老师先通过简单故事、情境或问题,引起学生对一次函数的兴趣和注意,激发学生学习的动机。

2. 定义介绍(10分钟)

引导学生回顾数轴上的点、坐标的概念,并引出一次函数的定义。通过例题的引导,帮助学生理解一次函数的定义和特点,并引导学生进行概念总结。

3. 性质探究(15分钟)

通过观察、思考和讨论,引导学生发现一次函数的性质,并进行总结。包括线性增长与线性减少,满足函数定义等。

4. 应用实例(20分钟)

通过一些生活实例,让学生体验利用一次函数解决实际问题的过程。比如购物优惠活动中的打折策略、汽车燃油消耗的模型等。让学生将实际问题转化为一次函数的表达式,并进行计算和分析。

5. 实例讲解(15分钟)

选取一些典型的一次函数的实例,对解题过程进行详细讲解。通过解析实例,让学生了解一次函数解题的方法和技巧。

6. 练习和巩固(20分钟)

设计一些小组讨论、个人练习和问题解答等不同形式的练习,让学生巩固和运用所学的知识和技能。

四、教学评价:

在教学过程中,可以通过观察学生的参与程度和合作情况,以及利用小组讨论中的发言和回答问题的情况,来评价学生的掌握程度和应用能力。同时,可以设计一些综合性的问题或实际问题供学生解答,检验其对一次函数的理解和应用能力。

五、拓展延伸:

对于学有余力的学生,可以介绍二次函数的概念和性质,让他们进一步深入了解函数这一概念,提高他们的数学思维和解决问题的能力。

六、教学反思:

通过这堂课的教学实践,我发现学生对一次函数的定义和性质掌握得还不够扎实,有一些学生还存在一些概念上的模糊。下一次教学中,我将更注重概念的讲解和例题的引导,加强学生对一次函数的理解和应用能力的培养。同时,还需要更多的实际问题和应用实例,来帮助学生将抽象的数学概念与实际生活相联系,增强学习的趣味性和实际意义。

一次函数课件 篇4

教学目标:

1、能够用热情、欢快的声音演唱《木瓜恰恰恰》,感受歌曲的欢快情绪和喜悦心情。

2、能够用打击乐器为歌曲伴奏。

3、用叫卖的演唱形式表达歌曲,了解一些相关文化以及“叫卖”的艺术形式。

教学重点及难点:

1、用热情、欢快的声音演唱《木瓜恰恰恰》。

2、正确地演唱《木瓜恰恰恰》的弱起小节及切分节奏。教学准备:多媒体(ppt)、flash动画、歌曲(mp3)、打击乐器(沙锤、双响筒、碰铃等)

教学过程:

一、播放《卖汤圆》和《冰糖葫芦》,学生走进教室。让学生感受叫卖调(欢快、活泼、幽默、诙谐)

导课:师:同学们,刚才听的歌曲你们熟悉吗?你们知道是卖什么的?像这种类型的歌曲叫什么歌?介绍叫卖歌。今天,咱们学习一首印尼叫卖歌曲《木瓜恰恰恰》板书课题。

二、走入印尼国家

1、师:印尼是哪个国家?知道吗?(印度尼西亚)。你们想去看看吗?师:印度尼西亚,是“水中岛国”,是由许多大小岛屿组成的群岛国家,又称“千岛之国”。这里火山活跃,又被称为“火山之国”。该国家盛产水果。它的首都是雅加达,有“歌舞之邦”的美称,生活在各岛上的100多个民族都有自己独特的民歌、舞蹈和乐器,各族人民都非常热爱音乐,尤其在印度尼西亚的著名旅游胜地——巴厘岛,舞蹈已成为人民生活的一部分。

师:你们感受到印尼美吗?(学生答)

2、出示印尼水果市场

师:我们又来到了哪里?(水果市场)印度尼西亚的水果特别多,集市上到处都有各种各样的水果,可真是琳琅满目。到处都有吆喝声叫卖水果声。咱们有没有兴趣来学学各种叫卖声,看谁的叫卖声最能吸引顾客来光顾。

二、感受歌曲,解决重难点

1、播放《木瓜恰恰恰》flash动画

师:歌曲给你带来什么感受?(欢快、活泼、高兴等)

2、范唱歌曲

师:你听出来歌曲中唱到哪些水果?(番石榴、菠萝等)

3、介绍弱起小节和切分音

4、跟老师一起读有节奏的.叫卖声,双手拍腿

师:这个恰恰恰是轻快的还是笨重的?出现在每个乐句的前面还是末尾?(师生一起说“恰恰恰”。)

4、师生一起随着歌声唱唱轻快的“恰恰恰”。(“恰恰恰”声音要求轻巧、有弹性)

5.如果让你给这段歌声加上伴奏的话,你觉得在哪儿加比较合适?(生略)让我们拿起自己制作的沙锤或其他打击乐器为音乐加上伴奏。

6、师:除了用乐器还可以用什么来表现恰恰恰韵律(扭胯)

7、我们一起边说边做,看谁的动作既能合上音乐的感觉又和别人都不一样(师生共同扭胯)。(发现较好学生,请她上台带领同学们再来一次。)

8、师:刚才我们又唱又跳,真开心!师:下面我们来学唱这首歌

四、学唱歌曲

1、让学生用“啦”哼唱歌曲

2、跟琴学唱歌谱

3、完整演唱歌谱

4、按节奏读歌词

5、教唱歌词

6、完整演唱歌曲

五、用多种形式表演歌曲

分组唱:一组唱,另一组打节奏。

师生合作:跟伴奏,边唱边表演打节奏。

教师小结

师:今天,我们通过对叫卖歌曲的学习,了解了叫卖歌曲的特点,这些极富情趣的演唱给了我们极大的艺术享受。其实啊,这些音乐都来源于我们的生活,只要你多做有心人,你也一定可以创作出动听有趣的音乐。好,今天的音乐课我们就上到这里,下课。

一次函数课件 篇5

【数学一次函数教案】

主题:求解一次函数的相关方法与应用

一、教学目标

1. 理解一次函数的定义和特征;

2. 熟练掌握一次函数的图像、表达式和性质;

3. 掌握一次函数的求解方法,解决与实际问题的应用;

4. 培养学生分析问题、解决问题的能力。

二、教学重点

1. 一次函数的性质与表达式;

2. 一次函数的图像及其相关参数;

3. 一次函数的求解方法。

三、教学内容

1. 一次函数的定义和性质:

了解一次函数的定义,并指出一次函数的图像是一条直线;

了解一次函数的表达式形式,即y = kx + b;

了解一次函数的斜率和截距的概念,理解斜率对应直线的倾斜程度。

2. 一次函数的图像和特点:

通过在平面直角坐标系中画出一次函数的图像,探究函数的斜率和截距对图像的影响;

探究当斜率k为正数和负数时,直线的走势和倾斜方向的不同;

理解截距b的正负对图像的平移和位置的影响。

3. 一次函数的求解方法:

理解如何求解一次函数的零点,即函数与x轴的交点;

学会通过斜率和截距求解直线的方程;

了解如何求解一次函数的交点,即两函数的解(非一次函数)。

4. 一次函数在实际问题中的应用:

探究一次函数在实际问题中的应用案例;

学会用一次函数解决实际问题,如关于速度、距离、成本等方面的问题;

发展学生解决实际问题的思维能力。

四、教学方法

1. 示范法:通过画图和计算的方式,引导学生理解一次函数的定义和性质;

2. 指导法:通过具体问题的引导,帮助学生理解一次函数的应用方法;

3. 探究法:通过实例和问题的解析,引导学生主动思考、探索与发现。

五、教学步骤

1. 导入:通过一些实际问题,引出一次函数的概念和应用。

2. 发现:通过画图和计算,让学生发现一次函数图像的特点和性质。

3. 解释:对一次函数的斜率和截距进行解释,并引导学生理解。

4. 拓展:通过一些实际问题,拓展学生对一次函数的应用和解决方法。

5. 实践:通过练习题和实例,检验学生对一次函数的理解和应用能力。

6. 总结:对一次函数的定义、性质和应用进行总结和归纳。

7. 反思:学生对本节课知识的掌握情况,提出问题和解答疑惑。

六、教学评估

1. 练习题:布置一些练习题,测试学生对一次函数的掌握情况。

2. 实际问题:让学生解答一些实际问题,考察其对一次函数应用的能力。

七、教学拓展

1. 深化一次函数的性质和应用,引入函数的变化率和几何意义;

2. 探究一次函数与其他函数的关系,如一次函数与二次函数的交点问题;

3. 引入一次方程的概念和求解方法。

八、教学资源

1. 平面直角坐标纸;

2. 教学课件;

3. 一次函数的实际应用案例。

九、教学反馈

1. 学生的课后习题完成情况;

2. 学生的实际问题解答情况;

3. 学生的课堂互动和问题反馈情况。

通过本节课的学习,学生将能够掌握一次函数的定义、性质和求解方法,并能够应用一次函数解决实际问题。同时,通过多种教学方法的运用,帮助学生培养分析问题和解决问题的能力,提高数学思维和运算能力。

一次函数课件 篇6

八年级数学一次函数教案(教学目标)

1、经历一般规律的探索过程,发展学生的抽象思维能力。

2、理解一次函数和正比例函数的概念,能根据所给条件写出简单的一次函数表达式,发展学生的数学应用能力。

八年级数学一次函数教案(重难点)

教学重点:

正比例函数的概念及两者之间的关系。

2、 会根据已知信息写出一次函数的表达式。

教学难点: 一次函数知识的运用教学方法教师引导学生自学法教具准备弹簧一根、

八年级数学一次函数教案(课件教学过程)

一、创设问题情境,引入新课

1、 简单复习函数的概念(设在某一变化过程中有两个变量X和Y,如果 ,那么我们称Y是X的函数,其中X是自变量,Y是因变量)

2、 演示弹簧在力的作用下发生形变现象,提出问题:在弹簧长度发生变化过程中,弹簧的长度是哪个变量的函数?为什么?

3、 汽车匀速行驶途中,油箱中的剩余油量与什么有关系?这其中有函数吗?

二、新课学习

1、 做一做。让学生做书上157页上面两个题目,使学生在探索一般规律的过程中,发展抽象思维能力。

正比例函数的概念学习讨论:刚才写出的.两个关系式y=y=100-0.18x在形式上有什么相同之处?

让学生分析出他们的共同点:①左边都是因变量,右边都是含自变量的代数式;②自变量X与因变量Y的次数都是1;③从形式上看,形式都为y=kx+b,K,b为常数。

问:从自变量的次数上看,这样的函数大家认为可以取个什么名字?引导学生归纳出一次函数的概念:若两个变量x,y间的关系可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x是自变量,y是因变量)。

问:一次函数y=kx+b中,k可以为0吗?b可以为0吗?引导学生得出正比例函数的概念。

并接着引导学生比较一次函数与正比例函数的关系(用集合的方法比较):一次函包括正比例函数,正比例函数是一次函数的特殊情况。

3、 例题学习

例题1是考察学生对一次函数与正比例函数概念的理解,学生直接进行口答。

例题2是培养学生根据题意列出简单一次函数关系式及利用一次函数解决实际问题的能力。其中第三问严格地讲应先判断出工资的范围是800

三、随堂练习

b的值。若不是一次函数,请说明理由。

A、y= +x B、y=-y=y=6-

2、已知函数y=(m+1)x+(m2-1),当m ,y是x的一次函数;当m ,y是x的正比例函数。

四、拓展应用

学校组织部分学生去井岗山体验革命历史。出行方面准备从甲、乙两家旅行社中选择一家代办,已知两家旅行社报价相同,都是每人y乙,解答下列问题:(

让学生归纳本节课学习内容:

正比例函数概念以及它们之间的关系。

2、会根据已知信息写出一次函数的关系式。

一次函数课件 篇7

一、教材分析

本节内容共安排2个课时完成。该节内容是二元一次方程(组)与一次函数及其图像的综合应用。通过探索方程与函数图像的关系,培养学生数学转化的思想,通过二元一次方程方程组的图像解法,使学生初步建立了数(二元一次方程)与形(一次函数的图像(直线))之间的对应关系,进一步培养了学生数形结合的意识和能力。本节要注意的是由两条直线求交点,其交点的横纵坐标为二元一次方程组的近似解,要得到准确的结果,应从图像中获取信息,确立直线对应的函数表达式即方程,再联立方程应用代数方法求解,其结果才是准确的.

二、学情分析

学生已有了解方程(组)的基本能力和一次函数及其图像的基本知识,学习本节知识困难不大,关键是让学生理解二元一次方程和一次函数之间的内在联系,体会数和形间的相互转化,从中使学生进一步感受到数的问题可以通过形来解决,形的问题也可以通过数来解决.

三、目标分析

1.教学目标

知识与技能目标

(1) 初步理解二元一次方程和一次函数的关系;

(2) 掌握二元一次方程组和对应的两条直线之间的关系;

(3) 掌握二元一次方程组的图像解法.

过程与方法目标

(1) 教材以问题串的形式,揭示方程与函数间的相互转化,使学生在自主探索中学会不同数学知识间可以互相转化的数学思想和方法;

(2) 通过做一做引入例1,进一步发展学生数形结合的意识和能力.

(3) 情感与态度目标

(1) 在探究二元一次方程和一次函数的对应关系中,在体会近似解与准确解中,培养学生勤于思考、精益求精的精神.

(2) 在经历同一数学知识可用不同的数学方法解决的过程中,培养学生的创新意识和变式能力.

2.教学重点

(1)二元一次方程和一次函数的关系;

(2)二元一次方程组和对应的两条直线的关系.

3.教学难点

数形结合和数学转化的思想意识.

四、教法学法

1.教法学法

启发引导与自主探索相结合.

2.课前准备

教具:多媒体课件、三角板.

学具:铅笔、直尺、练习本、坐标纸.

五、教学过程

本节课设计了六个教学环节:第一环节 设置问题情境,启发引导;第二环节 自主探索,建立方程与函数图像的模型;第三环节 典型例题,探究方程与函数的相互转化;第四环节 反馈练习;第五环节 课堂小结;第六环节 作业布置.

第一环节: 设置问题情境,启发引导

内容:1.方程x+y=5的解有多少个? 是这个方程的解吗?

2.点(0,5),(5,0),(2,3)在一次函数y= 的图像上吗?

3.在一次函数y= 的图像上任取一点,它的坐标适合方程x+y=5吗?

4.以方程x+y=5的解为坐标的所有点组成的图像与一次函数y= 的图像相同吗?

由此得到本节课的第一个知识点:

二元一次方程和一次函数的图像有如下关系:

(1) 以二元一次方程的解为坐标的点都在相应的函数图像上;

(2) 一次函数图像上的点的坐标都适合相应的二元一次方程.

意图:通过设置问题情景,让学生感受方程x+y=5和一次函数y= 相互转化,启发引导学生总结二元一次方程与一次函数的对应关系.

效果:以问题串的形式,启发引导学生探索知识的形成过程,培养了学生数学转化的思想意识.

前面研究了一个二元一次方程和相应的一个一次函数的关系,现在来研究两个二元一次方程组成的方程组和相应的两个一次函数的关系.顺其自然进入下一环节.

第二环节 自主探索方程组的解与图像之间的关系

内容:1.解方程组

2.上述方程移项变形转化为两个一次函数y= 和y=2x ,在同一直角坐标系内分别作出这两个函数的图像.

3.方程组的解和这两个函数的图像的交点坐标有什么关系?由此得到本节课的第2个知识点:二元一次方程和相应的两条直线的关系以及二元一次方程组的图像解法;

(1) 求二元一次方程组的解可以转化为求两条直线的交点的横纵坐标;

(2) 求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的解.

(3) 解二元一次方程组的方法有:代入消元法、加减消元法和图像法三种.

注意:利用图像法求二元一次方程组的解是近似解,要得到准确解,一般还是用代入消元法和加减消元法解方程组.

意图:通过自主探索,使学生初步体会数(二元一次方程)与形(两条直线)之间的对应关系,为求两条直线的交点坐标打下基础.

效果:由学生自主学习,十分自然地建立了数形结合的.意识,学生初步感受到了数的问题可以转化为形来处理,反之形的问题可以转化成数来处理,培养了学生的创新意识和变式能力.

第三环节 典型例题

探究方程与函数的相互转化

内容:例1 用作图像的方法解方程组

例2 如图,直线 与 的交点坐标是 .

意图:设计例1进一步揭示数的问题可以转化成形来处理,但所求解为近似解.通过例2,让学生深刻感受到由形来处理的困难性,由此自然想到求这两条直线对应的函数表达式,把形的问题转化成数来处理.这两例充分展示了数形结合的思想方法,为下一课时解决实际问题作了很好的铺垫.

效果:进一步培养了学生数形结合的意识和能力,充分展示了方程与函数的相互转化.

第四环节 反馈练习

内容:1.已知一次函数 与 的图像的交点为 ,则 .

2.已知一次函数 与 的图像都经过点A(2,0),且与 轴分别交于B,C两点,则 的面积为( ).

(A)4 (B)5 (C)6 (D)7

3.求两条直线 与 和 轴所围成的三角形面积.

4.如图,两条直线 与 的交点坐标可以看作哪个方程组的解?

意图:4个练习,意在及时检测学生对本节知识的掌握情况.

效果:加深了两条直线交点的坐标就是对应的函数表达式所组成的方程组的解的印象,培养了学生的计算能力和数学转化的能力,使学生进一步领悟到应用数形结合的思想方法解题的重要性.

第五环节 课堂小结

内容:以问题串的形式,要求学生自主总结有关知识、方法:

1.二元一次方程和一次函数的图像的关系;

(1) 以二元一次方程的解为坐标的点都在相应的函数图像上;

(2) 一次函数图像上的点的坐标都适合相应的二元一次方程.

2.方程组和对应的两条直线的关系:

(1) 方程组的解是对应的两条直线的交点坐标;

(2) 两条直线的交点坐标是对应的方程组的解;

3.解二元一次方程组的方法有3种:

(1)代入消元法;

(2)加减消元法;

(3)图像法. 要强调的是由于作图的不准确性,由图像法求得的解是近似解.

意图:旨在使本节课的知识点系统化、结构化,只有结构化的知识才能形成能力;使学生进一步明确学什么,学了有什么用.

第六环节 作业布置

习题7.7

附: 板书设计

六、教学反思

本节课在学生已有了解方程(组)的基本能力和一次函数及其图像的基本知识的基础上,通过教师启发引导和学生自主学习探索相结合的方法,进一步揭示了二元一次方程和函数图像之间的对应关系,从而引出了二元一次方程组的图像解法,以及应用代数方法解决有关图像问题,培养了学生数形结合的意识和能力,充分展示了方程与函数的相互转化.教学过程中教师一定要讲清楚图像解法的局限性,这是由于画图的不准确性,所求的解往往是近似解.因此为了准确地解决有关图像问题常常把它转化为代数问题来处理,如例2及反馈练习中的4个问题.

一次函数课件 篇8

【教学目标】

【知识目标】

1、使学生初步理解二元一次方程与一次函数的关系

2、能根据一次函数的图象求二元一次方程组的近似解.

3、能利用二元一次方程组确定一次函数的表达式

【能力目标】

通过学生的思考和操作,在力图提示出方程与图象之间的关系,引入二元一次方程组图象解法,同时培养了学生初步的数形结合的意识和能力.

【情感目标】

通过学生的自主探索,提示出方程和图象之间的对应关系,加强了新旧知识的联系,培养了学生的创新意识,激发了学生学习数学的兴趣.

【教学重点】

1、二元一次方程和一次函数的关系

2、能根据一次函数的图象求二元一次方程组的近似解

【教学难点】方程和函数之间的对应关系即数形结合的意识和能力

知识点

一、学生起点分析:

学生的知识技能基础:学生能够正确解方程(组),初步掌握了一次函数及其图像的基础知识,已经具备了函数的初步思想,对于数形结合的数学思想也有所接触。

学生的活动经验基础:学生能够根据已知条件准确画出一次函数图象,能够认识和接受函数解析式与二元一次方程之间的互相转换.在过去已有经验基础上能够加深对“数”和“形”间的相互转化的认识,有小组合作学习经验.

二、学习任务分析:

本节课的主要内容是二元一次方程(组)与一次函数及其图像的综合应用.通过探索“方程”与“函数图像”的关系,培养学生数学转化的思想,通过学习二元一次方程方程组的解与直线交点坐标之间的关系,使学生初步建立了“数”(二元一次方程)与“形”(一次函数的图像)之间的对应关系,进一步培养了学生数形结合的意识和能力.因此确定本节课的'教学目标为:

1.初步理解二元一次方程和一次函数的关系;

2.掌握二元一次方程组和对应的两条直线之间的关系;

3.发展学生数形结合的意识和能力,使学生在自主探索中学会不同数学知识间可以互相转化的数学思想和方法.

教学重点

二元一次方程和一次函数的关系;

教学难点

数形结合和数学转化的思想意识.

四、教法学法

1.教法学法

启发引导与自主探索相结合.

2.课前准备

教具:多媒体课件、三角板.

学具:铅笔、直尺、练习本、坐标纸.

五、教学过程

本节课设计了六个教学环节:第一环节设置问题情境,启发引导;第二环节自主探索,建立“方程与函数图像”的模型;第三环节典型例题,探究方程与函数的相互转化;第四环节反馈练习;第五环节课堂小结;第六环节作业布置.

同步练习

A,B两地相距100千米,甲、乙两人骑车同时分别从A,B两地相向而行.假设他们都保持匀速行驶,则他们各自到A地的距离S(千米)都是骑车时间t(时)的一次函数.1小时后乙距离A地80千米;2小时后甲距离A地30千米.问经过多长时间两人将相遇?

三典型例题,探究一次函数解析式的确定

内容:例1某长途汽车客运站规定,乘客可以免费携带一定质量的行李,但超过该质量则需购买行李票,且行李费y(元)是行李质量x(千克)的一次函数.现知李明带了60千克的行李,交了行李费5元,张华带了90千克的行李,交了行李费10元.

(1)写出y与x之间的函数表达式;

(2)旅客最多可免费携带多少千克的行李?

一次函数课件 篇9

一次函数是数学中最基础的函数之一,也是中学数学中最早接触的函数之一。学习一次函数的概念和性质对于理解其他更复杂的函数以及应用数学非常重要。下面是一篇关于数学一次函数教案的主题范文,旨在帮助学生更好地理解和应用一次函数。

主题:一次函数的定义、性质及应用

范文:

一、引言

在我们平常的生活中,许多的数学问题都能够通过使用一次函数来进行解决。一次函数是一种非常常见且重要的数学函数,它可以用简单的线性关系来描述数值之间的关系。本节课我们将学习一次函数的定义、性质以及如何将其应用到实际问题中。

二、一次函数的定义与性质

1. 一次函数的定义

一次函数是指具有形如 y = ax + b 的函数,其中a和b是常数,且a不等于0。在一次函数中,自变量(x)的最高次数为1,因此也称为线性函数。

2. 一次函数的性质

(1)一次函数的图像是一条直线,且直线的斜率等于函数中a的系数,斜率可以表示函数的变化率。

(2)当a大于0时,函数是递增的,当a小于0时,函数是递减的。

(3)如果a等于0,那么函数将变成一个常数函数,即无论自变量的值如何变化,函数的值都保持不变。

(4)一次函数的x轴上的截距为-b/a,即y=0时的解。

三、一次函数的应用

1. 线性方程

一次函数可以用来解决线性方程。例如,一个商店出售T恤衫,每件T恤衫售价为20元,可以用一次函数 y = 20x 来表示其中x表示购买的件数,y表示总价。这样当我们知道购买件数时,可以通过计算得到总价。

2. 成本、收益、利润

一次函数还可以用来描述成本、收益和利润之间的关系。如果我们知道某个企业生产一个产品的成本为10元每件,售价为30元每件,那么利润可以用一次函数 y = 20x - 10 来表示,其中x表示销售数量,y表示利润。

3. 速度和时间

一次函数还可以用来描述速度和时间之间的关系。例如,一辆汽车以每小时60公里的速度行驶,那么行驶时间t和行驶距离d之间可以表示为一次函数 d = 60t。

四、综合练习

1. 已知一次函数过点(2, 4)和斜率为3,求函数的解析式。

解:设函数的解析式为y = ax + b,根据过点(2, 4)可以得到 4 = 2a + b。根据斜率为3可以得到a = 3。将a的值代入第一个方程中解得b = -2。因此,函数的解析式为y = 3x - 2。

2. 一辆汽车以每小时100公里的速度匀速行驶,从A地到B地共需5小时。求AB两地的距离。

解:设AB两地的距离为d,根据速度和时间的关系可得 d = 100 × 5 = 500公里。因此,AB两地的距离为500公里。

五、总结

本节课我们学习了一次函数的定义、性质以及如何将其应用到实际问题中。一次函数是数学中最基础的函数之一,它的图像是一条直线,斜率表示了函数的变化率。通过本节课的学习,希望大家能够更好地理解和应用一次函数,并能够将其运用到实际生活中解决问题。

一次函数课件 篇10

教学目标

(一)知识认知要求

1、认识一元一次方程与一次函数问题的转化关系;

2、学会用图象法求解方程;

3、进一步理解数形结合思想;

(二)能力训练要求

1、通过一元一次方程与一次函数的图象之间的结合,培养学生的数形结合意识;

2、训练大家能利用数学知识去解决实际问题的能力。

(三)情感与价值观要求

体验数、图形是有效地描述现实世界的重要手段,认识到数学是解决问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的.作用。

教学重点与难点

1、理解一元一次不方程与一次函数的转化及本质联系。

2、掌握用图象求解方程的方法。

教学过程

一、提出问题

(1)方程2x+20=0;(2)函数y=2x+20

观察思考:二者之间有什么联系?

从数上看:方程2x+20=0的解,是函数y=2x+20的值为0时,对应自变量x的值

从形上看:函数y=2x+20与x轴交点的横坐标即为方程2x+20=0的解

根据上述问题,教师启发学生思考:

根据学生回答,教师总结:

由于任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某一个函数的值为0时,求相应的自变量的值。从图象上看,这相当于已知直线y=ax+b,确定它也x轴交点的横坐标的值。

二、典型例题:

例1、(书中例1)一个物体现在的速度是5米/秒,其速度每秒增加2米/秒,再过几秒它的速度为17米/秒?

一次函数课件 篇11

教学目标:

1.经历一般规律的探索过程、发展学生的抽象概括思维能力

2.理解一次函数和正比例函数的概念,以及它们之间的关系,《一次函数》教案。能根据所给条件写出简单的一次函数表达式。

3.通过函数与变量之间的关系的联系,一次函数与一次方程的联系,发展学生的数学思维。

教学重点:

1.一次函数、正比例函数的概念及关系。

2.会根据已知信息写出一次函数的表达式。

教学难点:

会根据已知信息写出一次函数的表达式。

教学方法:

引导学生自学法、互动学习法、启发讨论式。

教具准备:

多媒体课件(补充练习6.2A)

教学过程:

一、导入新课

上节课我们已学习过函数的概念,在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。在现实生活中有许多问题都可以归结为函数问题。大家能不能举一些列子呢?

二、推进新课

复习函数的概念及方程,接下来我们要从最简单而重要的一种函数讲起,到底是什么样的函数请看P182引例和做一做

1、P182引例:某弹簧的自然长度为3厘米,在弹性限度内,所挂物体的质量x每增加1千克、弹簧长度y增加0.5厘米。

(1)计算所挂物体的质量分别为1千克、2千克、3千克、4千克、5千克时弹簧的长度,并填入下表:

x/千克012345y/厘米33.544.555.5

(2)你能写出x与y之间的关系式吗?

分析:当不挂物体时,弹簧长度为3厘米,当挂1千克物体时,增加0.5厘米,总长度为3.5厘米,当增加1千克物体,即所挂物体为2千克时,弹簧又增加0.5厘米,总共增加1厘米,由此可见,所挂物体每增加1千克,弹簧就伸长0.5厘米,所挂物体为x千克,弹簧就伸长0.5x厘米,则弹簧总长为原长加伸长的长度,即y=3+0.5x。

2、P182做一做

某辆汽车油箱中原有汽油100升,汽车每行驶50千克耗油9升。

(1)完成下表:

汽车行驶路程x/千米050100150200300

油箱剩余油量y/升

你能写出x与y之间的关系吗?(y=100-0.18x或y=100-x)

3、一次函数,正比例函数的概念

上面的两个函数关系式为y=0.5x+3,y=100-0.18x,都是左边是因变量y,右边是含自变量x的代数式。并且自变量和因变量的指数都是一次。若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当b=0时,称y是x的正比例函数。

小练:下列函数中,y是x的一次函数的是

①y=x-6;②y=;③y=;④y=7-x;⑤

4、例题讲解

P183例1:写出下列各题中x与y之间的关系式,并判断,y是否为x的一次函数?是否为正比例函数?

①汽车以60千米/时的速度匀速行驶,行驶路程中y(千米)与行驶时间x(时)之间的关系式;

②圆的面积y(厘米2)与它的半径x(厘米)之间的关系;

③一棵树现在高50厘米,每个月长高2厘米,x月后这棵树的高度为y(厘米)

[(1)y=60x,y是x的一次函数,也是x的正比例函数;

(2)y=πx2,y不是x的正比例函数,也不是x的一次函数;

(3)y=50+2x,y是x的一次函数,但不是x的正比例函数]。

例2:当k=时,是一次函数

P183例3:我国现行个人工资、薪金税征收办法规定:月收入低于1600元的部分不收税;月收入超过1600元但低于2100元的部分征收5%的所得税…如某人某月收入1960元,他应缴个人工资薪金所得税为(1960-800)×5%=18(元)

①当月收入大于1600元而又小于2100元时,写出应缴所得税y(元)与月收入x(元)之间的关系式。

②某人某月收入为1760元,他应缴所得税多少元?

③如果某人本月缴所得税19.2元,那么此人本月工资薪金是多少元?

分析:对于③应要注意19.2是否在范围之内

(1)当月收入大于1600元而小于2100元时,y=0.05×(x-1600);

(2)当x=1760时,y=0.05×(1760-1600)=8(元);

(3)当x=2100时,y=0.05×(1300-1600)=25(元),25 19.2,

因此本月工资少于2100元,设此人本月工资是x元,则0.05×(x-1600)=19.2,x=1984。

三、课堂练习

1、随堂练习

(1)解:y=2.2x,y是x的一次函数,也是x的正比例函数。

(2)解:y=100+8x,y是x有一次函数。

2、补充练习

课件显示6.2A

1、见下表:

x-2-1012…

y-5-2147…

根据上表写出y与x之间的关系式是:_,y是否为x一的次函数?y是否为x有正比例函数?

2、为了加强公民的节水意识,合理利用水资源,某城市规定用水收费标准如下:每户每月用水量不超过6米3时,水费按0.6元/米3收费;每户每月用水量超过6米3时,超过部分按1元/米3收费。设每户每月用水量为x米3,应缴水费y元。(1)写出每月用水量不超过6米3和超过6米3时,y与x之间的函数关系式,并判断它们是否为一次函数。(2)已知某户5月份的用水量为8米3,求该用户5月份的水费。

[①y=0.6x,y=x-2.4,y是x的一次函数。②y=8-2.4=5.6(元)]

四、课后小结

1、一次函数、正比例函数的概念及关系。

2、能根据已知简单信息,写出一次函数的表达式。

五、课后作业

P186:1,2 MSN(中国)

二元一次方程课件经典


教案课件是老师上课中很重要的一个课件,就需要老师用心去设计好教案课件了。 写好教案课件需要细心,包括课程重点难点梳理等,网络有没有优质的教案课件以资借鉴呢?我们已经帮您搜集了一些和“二元一次方程课件”相关的实用资料,不妨参考一下说不定会让你受益匪浅!

二元一次方程课件 篇1

一、教材分析

1、教材的地位与作用:本节内容是在学生掌握了二元一次方程方程组的有关概念之后讲授的,用代入消元法解二元一次方程方程组是学生接触到的解方程组的第一种方法,消元体现了化未知为已知的重要思想。它是本章学习的重点和难点,也为解决现实问题提供了方便,同时为以后学习函数、线性方程组以及高次方程组奠定了基础。

2、教学目标:根据新课标要求以及学生的认知水平,我确定了如下了三维教学目标:

(1)知识与技能:

①会用代入法解二元一次方程组;

②能初步体会代入法解二元一次方程组的基本思想—“消元”。

(2)过程与方法:

①培养学生基本的运算技巧和能力;

②培养学生观察、比较、分析、综合能力,以及运用旧知识解决新问题的能力。

(3)情感、态度、价值观:鼓励学生积极主动的参与整个“教”与“学”的过程,通过研究解决问题的方法,培养学生的合作交流意识与探索精神。

3、教学重点、难点:

重点:会用代入法解二元一次方程组。

难点:在“消元”的过程中能够判断消去哪个未知数,使得解方程组的运算转为较简便。探索如何用代入法将“二元”转化为“一元”的消元过程。

二、教法与学法

根据七年级学生的思维能力较单一,教学学习活动中归纳能力较差这一特点,本节课主要采取“探究发现式”教学方法,在教学过程中,采用“问题——实践——交流合作——说理——练习”的教学流程。老师对学生在课堂中表现予以帮助与评价,鼓励学生积极主动地参与教学过程。在探索、交流中获取新知。对于学生最重要的是让他们学会学习,因此教学中主要采用了教师引导学生动手实践,自主探索与合作交流的学习方法,在学习过程中充分调动学生从事数学活动的时间和空间,让学生乐于思考、勤于动手,自主的交流与合作,在实践中掌握解二元一次方程组的方法,从面获得新知。使每一个学生都能得到充分的发展。

三、教学过程

第一环节:创设情境,导入新课

引例:篮球联赛中,化育节要到了,蓝球是初一(1)班的拳头项目,为了取得好名次,他们想在全部22场比赛中得到40分。已知每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,那么初一(1)班胜负场数分别是多少?

设置问题:

(1)问题中有几个未知数?

(2)若设胜X场,如何列出一元一次方程求解?

(3)若设胜X场,负的为Y场,列出的二元一次方程组又是什么?

(4)列出来的一元一次方程我们会解,那么又如何去解这个二元一次方程组呢?

问题(2)和(3)让两个学生上黑板列出方程并解方程(1),而问题(3)让学生列出方程组即可,最后一问有意设置矛盾,让学生处于积极思维状态,但一时又难以给出正确的答案。从而引出本节课题:消元。

(通过问题引起学生注意,同时把学生带入新课的学习情境中,刺激学生对身边发生的问题所蕴含的数学知识的兴趣,注重数学来源于生活的理念.通过创设问题情境自然地揭示新课课题,激发学生求知欲望,同时为本节课的学习打下了良好的思想基础)

第二环节:师生合作,探究新知

问题1:因为胜负场数和是22场,所列的方程除了X+Y=22外还有其他哪种形式?

在学生回答出Y=22—X和X=22—Y,教师接着提问;由这个二元一次方程组

x+y=22①

2x+y=40②

能不能得到方程2X+(22—X)=38?如何得到?提出问题后,将学生分成小组讨论,教师深入学生的讨论中,引导学生观察。例如:从设未知数表示数量关系的角度或从二元一次方程组与一元一次方程的结构上观察。学生通过对比观察体会到一元一次方程与二元一次方程组之间的联系,学生回答后,马上暴露知识发生过程:(1)Y=22—X

(2)用22—X替换方程2X+Y=40中的Y,即把Y=22—X代入2X+Y=40

问题2:

(1)这时,方程组转变为什么方程?哪个未知数的值可以先求出来?从哪里求?问题解完了吗?

(2)另一个未知数的值如何求?引导学生回答以上问题后,师生共同完成解答过程,并将结果与前面列一元一次方程求出的结果对照。

(通过问题的提出,给学生提供从事数学活动的机会,激发学生思考,体现数学知识的形成与过程,引导学生观察、比较,分析问题,鼓励学生思考、合作与交流,有利于学生理解与掌握相关知识与方法,形成良好的数学思维习惯。

通过演示,提出问题,让学生积极地动脑、动手、动口。在教师的引导下,学生通过观察、分析、比较并积极思考解决问题的方法,有助于学生理解和掌握由二元一次方程组化为一元一次方

程的过程,从而明确消元思想——由二元化为一元——由未知化为已知。)

第三环节:师生合作,发现规律

结论:这种将“二元”转化为“一元”的思想方法,我们称为消元法(并板书课题),在消元法中我们消去一个未知数,消元是我们解方程组的关键。进而提示:我们是如何消元的?引导学生去发现,把一个方程中的某一个未知数用另一个未知数表示后代入另一个方程,消去一个未知数,这种消元法我们称之为代入消元法。

(这样归纳后,学生对解方程组的思路就会较清晰,能够顺利地实现目标,同时也会对这种方法表现极大兴趣)

第四环节:典例分析,规范步骤

让学生自学课本97页例1,规范解题步骤,然后根据云图中提出的问题积极思考明确问题答案,此环节的目的是为了培养学生良好的自学习惯,体现学生的学习活动。然后教师提出问题:

①方程组是如何变形的?还有其他变形方法吗?

②将已求出的未知数的值代入哪一个方程解出另一个未知数更简便呢?

③你能先求出的值吗?

③何检验你求出的结果是否正确?

(通过提出这一系列的问题,使学生对代入消元法解二元一次方程组的步骤更加明确。通过另一种解法,让学生体会一题多解,从而达到举一反三的目的。选择适当变形方式,使运算简便。其目的是让学生意识到代入消元法有时可消去x有时可消去y。目的是为了培养学生良好的检验习惯。)

第五环节:熟练技能,升华提高

要求学生练习课本98页第一题(再加一问,用含的代数式表示,体会哪一种表示方法更为简便)。第2题采用学生板演,学生自我批改的形式。在掌握了本节课知识点的基础之上,完成当堂达标测试题。

第六环节:归纳小结,布置作业

1。从本节课中你学到了解二元一次方程组的哪种方法?其基本思想是什么?主要步骤有哪些?要求同学之间互相交流讨论。

2。必做题课本103页

选做题课本99页3,4

(作业分必做和选做是为了在巩固本节所学知识的前提下,考虑不同学生的需求。)

四、板书设计

8.2消元——二元一次方程组的解法(一)

Y=4

Y=22—x

变形

设胜了x场,负y场,x+y=22①代入

2x+y=40②

设胜了x场,则负

(22—x)场,则消元

2x+(22—x)=40③x=18(说明:由于此编辑窗口不能插入线条,所以图示中没有带箭头的线条,请谅解。)

五、时间分配

1、创设情景,引入新课(5分)

2、师生合作,探求新知(10分)

3、师生合作,发现规律(3分)

4、典例分析,规范步骤(10分)

5、熟练技能,升华提高(10分)

6、归纳小结,作业布置(2分)

六、设计说明

本节课教学按照“身边的数学问题引入——寻求一元一次方程的解法——探索二元一次方程组的解法(代入消元法)——典型例题——归纳代入法”的思路进行设计。在教学过程中,充分调动学生的学习积极性,重视知识的发生过程,让学生认知内化,形成能力。将设未知数求一元一次方程的过程与解二元一次方程组的过程进行比较,在复习旧知识的同时获的新知,取得了良好的教学效果。

二元一次方程课件 篇2

二元一次方程(组)教案 一、 学习内容分析: 执教者 钱嘉颖  时间 年 6 月 12 日 1、 选自  初一年级(下) 数学  学科 第八 章(第一单元) 第一 节 (课)(1课时45分钟)     2、 教材内容简要分析   教材以引言中的一个实际例子,“一班和二班进行篮球比赛,总共打了22场。每胜一场得2分,每负一场得1分,已知比赛结束一班累计得了40分,思考:一班胜了多少场,负了多少场”来开展这次课程。以本例来首先回忆已学过的一元一次方程的知识内容,以此作为切入点,引导学生思考用两个未知数来表示方程,借此进入二元一次方程的介绍。之后,引导学生利用一元一次方程的解法特点来思考二元一次方程组的解答方法,本次课程内容主要介绍了代入解答法(也称消元法)的详细解答过程,以及二元一次方程组的实际运用及解答,让学习者更好的吸收及掌握二元一次方程组和二元一次方程组的消元法。另外,在本单元结束介绍了作为课外知识的“二元一次方程古代表示方法”。     3、学习内容分析表: 知识点 重点 难点 编号 内容  1  二元一次方程组定义及特点  二元一次方程组的两个特点  二元一次方程组成立的条件(未知数要同时满足两个条件)  2  二元一次方程组 代入消元法  代入消元法的具体解法  消元法与一元一次方程解法间的联系  3  二元一次方程组实际运用  以实际例题列出方程并解答  未知数的假设以及运用已知条件列出正确方程。   二、 学习者分析: 本次教学的对象是云南省某中学的初中一年级学生,平均年龄12岁。初一年级是学生由幼稚的童年向青年转化和个性逐渐成型的重要转折点,初一年级学生具有其特殊性。初一年级学生由于刚刚接触完全不同于小学的学习生活而有手足无措的情况。而在这个时期的学生生理和心理飞速发展变化,自我意识开始强烈,有了自己的兴趣,独立性增强,感情趋于丰富复杂化,有一定独立思考的能力、一定程度的抽象思维能力和逻辑思维能力,处于识记能力最强的时期。此时,进行的教育可以更加重视独立思考,在数学教学中更加重视引导教学,致使学习者能够更加深刻的'理解所学知识,达到教学目标。   三、 课题教学目标: 教学目标 知 识 点 目标层次 教学目标描述 二元一次方程(组)定义 知道、接受  通过已学知识与新知识的相通之处传授给学习者,使其知道并了解什么是二元一次方程(组) 二元一次方程组代入消元法 应用、判断、系统阐述  通过一元一次方程的特征进行介绍及解释代入消元法,再配合一定程度的加深练习,使学习者能够应用该法并且理解其原理 二元一次方程组实例中的运用 综合、评价、系统阐述  经过讲解和练习,使学习者能够熟练掌握二元一次方程组的列式方法以及运用消元法来解题,并且能够判断一个实例中二元一次方程组的列式依据   四、 教学策略:  1、教学顺序 (1)复习已学过的一元一次方程知识引入开篇实例。 (2)以一元一次方程解释实例引导对于二元的思考。 (3)以二元一次方程的方法建立方程,进而介绍二元一次方程组的定义及特点并巩固。 (4)以本例引发思考二元一次方程组的解法。 (5)介绍二元一次方程组消元法的运用,并进行随堂练习以及随堂解答。 (6)在确定学生掌握消元法后进入二元一次方程组的实例运用讲解以及随堂练习。 (7)复习、回忆、巩固本次课程的主要内容,介绍课外延伸内容。    2、教学活动程序 (1)引起注意 以“上课”号令以及播放PPT唤起学习者的注意。 (2)告诉学习者目标 以PPT的播放以及言语刺激,明确告诉学习者本次课的内容是学习二元一次方程组,本次学习的目标是掌握二元一次方程组的消元法以及二元一次方程的实例运用。 (3)刺激对先前知识的回忆 回忆之前学过的一元一次方程的主要内容(定义、解法、实际运用),以实例进行先前内容的回忆并且充分利用原有的认知结构中关于一元一次方程的列式观念来与新学的二元一次方程产生共鸣。 (4)呈现刺激材料 在讲解过程中伴随着PPT的播放,并在关键需要注意的部分进行板书强调,在语调上有所突出。 (5)提供学习指导 以教材内容为指导,以及教师的提示语和示范性行为等进行引导。 (6)诱导行为 在重点部分题型注意,进行随堂练习,分为详细解答和对答案两种方式。在详细解答时要求同学与老师一同进行,必要时提问同学,让学习者参与进来,更好的理解信息并掌握学习内容。 (7)提供反馈 在学习者作出反应、表现出行为之后,及时让学习者知道学习结果,从而使学习者能肯定自己的理解与行为正确与否,以便及时更正。 (8)评定行为 以随堂测验的方式进行随堂评定,并且在课后布置习题让同学们课后完成,再由教师进行评定。 (9)增强记忆与促进迁移 设置教学活动(见附录),强化刺激,为学习者加深印象,并且促使其发散思维,将学习的知识广泛运用。  3、教学组织形式 本次教学中选择运用了以下几种教学组织形式 (1)讲解的形式 以教师的说明和解释为主,向学生传输新信息,是本次教学主要形式,因本次教学内容的特征,这种形式能够全面详细的解释本次教学内容,并能充分发挥教师的引导作用。 (2)提问的形式 这一形式能够在教学过程中起到刺激课堂,引起学习者注意的作用,并且是对学习者某一知识学习情况的抽样调查,由教师找出学习者存在的问题进行解决。 (3)师生共同解答的形式 采用这个形式能够在师生之间产生共鸣,提起课堂气氛,产生共鸣,引起注意,使大部分学习者都参与进来,也是一个小型头脑风暴过程,在学习者之间互相影响,从而对知识得到正确理解。    4、教学方法的选择 本次课程选择运用了讲授法、演示法、练习法的教学方法。 (1)语言的方法―讲授法,主要是根据教学目标和教学任务,数学这门学科的解释性强的特点以及这个学习阶段的学习者的自学能力不够然而接受能力很强的特点而选择的。 (2)直观的方法―演示法,顺应时代的发展,教学中出现了利用新媒体的需要,并且,对于这个阶段的学习者,在课程开展中利用PPT来进行演示可以更加有效的刺激学习者感官,并且配合适当的板书,对于这个年龄段的学习者更加容易接受,同时也由于我们已经具备了采用新媒体的条件。在课后,会以电子杂志的形式形成重点复习资料留给学习者课后复习。 (3)实践的方法―练习法,包括了口头练习和书面练习。口头练习是这个年龄段学习者心理特征的需要,因为他们独立性还不够强,在进行口头练习的时候,比较能够跟上大多数人的思维,产生共鸣。书面练习是这个学科特征的需要,必须进行书面练习才能让同学们更好的掌握所学知识,随堂练习能及时反映出当场学习的状况。  

二元一次方程课件 篇3

一、说教材分析

1、教材的地位和作用

二元一次方程组安排在学生已经学过整式和一元一次方程的知识之后,它是学习三元一次方程组的'重要基础,同时也是以后学习函数、平面解析几何等知识以及物理、化学中的运算等不可缺少的工具。对于学生理解并掌握方程思想、转化思想、消元法等重要的数学思想方法有着重要的意义。本节课是在学生学习了代入法解二元一次方程组的基础上,继续学习另一种消元的方法---加减消元,它是学生系统学习二元一次方程组知识的前提和基础。教材的编写目的是通过加减来达到消元的目的,让学生从中充分体会化未知为已知的转化过程,体会代数的一些特点和优越性;理解并掌握解二元一次方程组的最常用的基本方法,为以后函数等知识的学习打下基础、

2、教学目标

通过对新课程标准的研究与学习,结合我校学生的实际情况,我把本节课的三维教学目标确定如下:

(一)知识与技能目标:

1、会用加减消元法解简单的二元一次方程组。

2、理解加减消元法的基本思想,体会化未知为已知的化归思想方法。

(二)过程与方法目标:

通过经历加减消元法解方程组,让学生体会消元思想的应用,经过引导、讨论和交流让学生理解根据加减消元法解二元一次方程组的一般步骤。

(三)情感态度及价值观:

通过交流、合作、讨论获取成功体验,感受加减消元法的应用价值,激发学生的学习兴趣,培养学生养成认真倾听他人发言的习惯和勇于克服困难的意志。

3、教学重点、难点:

由于七年级的学生年龄较小,在学习解二元一次方程组的过程中容易进行简单的模仿,往往不注意方程组解法的形成过程更无法真正理解消元的思想方法。而大家都知道,数学的思想与方法才是数学的精髓,是联系各类数学知识的纽带,所以我将本节课的重点和难点确定如下

重点:用加减法解二元一次方程组。

难点:灵活运用加减消元法的技巧,把二元转化为一元

二、学情分析

七年级学生在自学中,通常能掌握表面知识,如具体的一个问题的解题过程,但学生在数学解题能力,运算能力,思维能力等各方面参差不齐,这也导至在学习中,特别是在自学中有的动力不够,有的更是缺乏探索精神,而在总结归纳中又缺乏合作的学习态度。在自学中能说出是什么怎么样,但又还探索不出为什么有什么联系。

三、说教法与学法

教法:利用导学提纲自主互动学习,根据学情教师适时点拨、归纳、升华。

学法:本节课的教学我始终把学生作为学习的主人,不断激发他们的学习兴趣,引导学生在自主探究、合作交流、小组积分相结合的学习方式下获得成功的体验。

四、教学环境及资源准备

教学环境:多媒体教室

资源准备:导学提纲,多媒体课件制作。

二元一次方程课件 篇4

教学目标知识技能

会根据行程问题、百分比问题情境及条件,列出方程组,解行程问题及百分比问题;2.使学生掌握运用方程组解决实际问题的一般步骤.

数学思考

让学生经历和体验列方程组解决实际问题的过程,进一步体会方程组是刻画现实世界的有效数学模型.

问题解决

通过列方程组解应用题,培养学生的数学应用能力,增强列方程解决实际问题的能力,进一步提高学生解二元一次方程组的技能.

情感态度

进一步丰富学生学习数学的成功体验,激发学生对数学学习的好奇心,进一步形成积极参与数学活动、主动与他人合作交流的意识.

教学重点

列二元一次方程组解行程问题和百分比问题.

教学难点

根据题意找出等量关系,列出方程.

授课类型新授课课时

教具多媒体课件

(续表)

教学活动

教学步骤师生活动设计意图

回顾问题1:解二元一次方程组的基本思想是________,解法有________.问题2:七年级上册我们学习了列一元一次方程解应用题,那么你还记得它的一般步骤吗?通过复习旧知,为本节课的学习做好铺垫,扫除知识障碍.

活动一:创设情境导入新课

【课堂引入】图1-3-3《孙子算经》大约产生于一千五百年前,现在传本的《孙子算经》共三卷,其中卷下第31题,可谓是后世“鸡兔同笼”题的始祖,书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”问题1:“上有三十五头”的意思是什么?“下有九十四足”呢?问题2:你能解决这个有趣的问题吗?以数学历史故事为背景,激发学生的爱国热情,感受数学在生活中的应用,吸引学生的注意力,激发学生的学习兴趣,同时为本课的学习做好铺垫.

活动二:实践探究交流新知

【探究1】鸡免同笼问题①一元一次方程解法(实物投影).解:设有鸡x只,则有兔(35-x)只.根据题意,得2x+4(35-x)=94.2x+140-4x=94.-2x=-46.x=23.35-x=12.答:有鸡23只,兔12只.②二元一次方程组解法(实物投影).解:设有鸡x只,兔y只.根据题意,得①×2,得2x+2y=70,③②-③,得2y=24,y=12.把y=12代入①,得x=23.答:有鸡23只,兔12只.你能比较两种解法的优劣吗?

【探究2】行程问题情境:小琴去县城要经过外祖母家,第一天下午她从家走到外祖母家,第二天上午,她从外祖母家出发,匀速前进,走了2小时和5小时后,离她自己家的距离分别为13千米、25千米.你能算出她的速度吗?能算出她家与外祖母家相距多远吗?问题1:你能画线段表示本题的数量关系吗?问题2:填空:(用含s,v的代数式表示)设小琴的速度是v千米/时,她家与外祖母家相距s千米,第二天她走2小时的路程是________千米,此时她离家距离是________千米;她走5小时的路程是________千米,此时她离家的距离是________千米.

【探究3】百分比问题情境:两块合金,一块含金95%,另一块含金80%,将它们与2克纯金熔合得到含金90.6%的新合金25克,计算原来两块合金的重量.问题1:设原来含金95%的合金为x克,含金80%的合金为y克.熔合后新合金中的含金量为25×90.6%,熔合前的总含金量为95%x+80%y+2,因此可以列出方程95%x+80%y+2=25×90.6%.问题2:两块合金的重量,加上2克纯金的重量等于新合金的重量,据此你能列出什么样的方程呢?引导学生体会两种解法的优点和不足,为学生建立方程组模型做铺垫.对于二元一次方程组的解法,如果学生学习存在困难,可以借助微视频讲解,或者教师设计表格,帮助学生分析等量关系.

活动三:开放训练体现应用

【应用举例】例1甲、乙两人都从A地到B地,甲步行,乙骑自行车,如果甲先走6千米乙再动身,则乙走0.75小时后恰好与甲同时到达B地;如果甲先走1小时,那么乙用0.5小时可追上甲,求两人的速度及AB两地的距离.变式训练1.两码头相距280千米,一船顺流航行需14小时,逆流航行需20小时,求船在静水中的速度和水流的速度.2.从小华家到姥姥家有一段上坡路和一段下坡路.星期天,小华骑自行车去姥姥家,如果保持上坡每小时行3 km,下坡每小时行5 km,她到姥姥家需要行66分钟,从姥姥家回来时需要行78分钟才能到家.那么,从小华家到姥姥家上坡路和下坡路各有多少千米,姥姥家离小华家有多远?例2革命老区百色某芒果种植基地,去年结余500万元,估计今年可结余960万元,并且今年的收入比去年高15%,支出比去年低10%,求去年的收入与支出各是多少万元.巩固用列二元一次方程组解应用题的思想,掌握列二元一次方程组解应用题的方法和步骤.

【拓展提升】例3某铁路桥长1000 m,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用了1 min,整列火车完全在桥上的时间共40 s.求火车的速度和长度.例4从甲地到乙地的路有一段上坡与一段平路,如果保持上坡每小时走3千米,平路每小时走4千米,下坡每小时走5千米.那么从甲地到乙地需54分,从乙地到甲地需42分,从甲地到乙地全程是多少千米?通过练习,使学生熟练掌握解决问题的方法,提升解决问题的能力.

活动四:课堂总结反思

【当堂训练】1.甲、乙二人练习跑步,如果甲让乙先跑10米,甲跑5秒钟就可追上乙,如果甲让乙先跑2秒钟,那么甲跑4秒钟就追上乙.若设甲、乙每秒钟分别跑x米,y米,则列出方程组应为( )A. B.C. D.2.一轮船顺流航行的速度为a千米/时,逆流航行的速度为b千米/时,那么船在静水中的速度为多少千米/时( )A.a+b B.(a-b) C.(a+b) D.a-b3.甲、乙两人从相距36千米的两地相向而行,如果甲比乙先走2小时,那么他们在乙出发后2.5小时相遇;如果乙比甲先走2小时,那么他们在甲出发后3小时相遇.设甲每小时走x千米,乙每小时走y千米,可列出方程组________________.通过设置当堂训练,进一步巩固所学新知,同时检测学习效果,做到堂堂清.框架图式总结,更容易形成知识网络.

【教学反思】①[授课流程反思]通过古代的“鸡兔同笼”问题,进行列二元一次方程组解决实际问题的训练,这样,一方面在列方程组的建模过程中,强化了方程思想,培养了学生列方程(组)解决实际问题的意识和应用能力.另一方面,将解方程组的技能训练与实际问题的解决融为一体,在实际问题的解决过程中,进一步提高学生解方程组的技能.

②[讲授效果反思]通过师生互动,让学生体会数学的实用性,掌握列方程组解应用题的思考方法及解题步骤.

③[师生互动反思]在建立方程思想的过程中采用了循序渐进的思路,由算术方法到一元一次方程再到二元一次方程组,遵循了学生的思维梯度,逐步建立起学生用二元一次方程组解应用题的思想,充分感受它的优点和思维的简化.

④[习题反思]好题题号__________________________________________错题题号__________________________________________ 反思,更进一步提升.

活动四:课堂总结反思

二元一次方程课件 篇5

开始引入了名人迪卡儿的数学思想,学生崇拜名人相信名人于是以名人名言给这节课定了基调,那就是数学与实际有密切的关系以及用方程思想解决实际问题的总方针。结合现实生活中的身边事例篮球赛为引例巧妙引导到新课。其中张老师设计了学生用原来解二元一次方程组的方法解时太麻烦,不好解,产生了困惑,学生自然而然就会想到有没有解决问题的好方法的猜想。这样就让学生产生了认知上的冲突,从而激发了学生的好奇心和求知欲,提高了学生的热情和兴趣,学生就会拼命地去探究科学奥秘。此时张老师抓住时机引导学生要探究好方法首先要有预备知识,抛出一个量来表示另一个量的探究内容。给学生指明了方向,使学生不至于太漫无边际的探究。也为接下来的自学铺平了道路。紧接着出示自学目标和指导。

自学指导学生自主探究,先个人独立思考后合作交流展示汇报。老师巡视,指导学困生,积极组织学生活动并参与其中,及时评价学生,关注每个学生的发展。这个过程学生提高了合作、交流能力,也展示了学生的表现能力,并锻炼了学生归纳总结能力,培养学生会听取别人的意见及看法,并给予承认、表扬和鼓励的情感意识,课堂上的掌声不由自主的响起,提升了个人的思想品质和为人素养,思想性很强,情感意识很浓。

学生一旦获得了探究的新知,马上进行训练和提高,练习中有生趣,有关注学生的严密细致的科学态度,学生练的热情高。其中有一个学生的不同解法, 张老师利用的惟妙惟肖,有效地开发和利用了课堂的生成性资源,启迪了学生的智慧,激励了他们的发散思维,培养了他们的创新能力,肯定了学生的一题多解,举一反三的学法,使我们的课堂异彩纷呈。

四、消元思想,代入消元,化归思想,让学生充分体会到化归思想的神奇魅力,从而把数学思想贯穿在教学中,让学生能力得到提高,以后可持续发展自己,一生有用。

总之本节课清晰明了,行如流水,结构严谨,一环扣一环,步步深入。板书设计精细,清晰,具有高度的概括性和逻辑性,学生好记,印象深。学生学习既紧张又活泼,既有常规思维又有创造思维,既学得了知识,又锻炼了各种能力,还随时培养了学生的好习惯。整个课堂始终以学生为主,老师为辅,老师的引导恰如其分,很好的组织了课堂,激发了学生,把时间和空间还给了学生,体现了教育教学的新理念,传播了数学思想和方法,是一堂意味深长的好课,值得研究。不过教学的探究是无止境的,有些地方可以探讨和提升,现在在这里不细说了,以后再个别交流。

二元一次方程课件 篇6

一、教材分析

1、教材的地位和作用

函数、方程和不等式都是人们刻画现实世界的重要数学模型。用函数的观点看方程(组)与不等式,使学生不仅能加深对方程(组)、不等式的理解,提高认识问题的水平,而且能从函数的角度将三者统一起来,感受数学的统一美。本节课是学生学习完一次函数、一元一次方程及一元一次不等式的联系后对一次函数和二元一次方程(组)关系的探究,学生在探索过程中体验数形结合的思想方法和数学模型的应用价值,这对今后的学习有着十分重要的意义。

2、教学重难点

重点:一次函数与二元一次方程(组)关系的探索。

难点:综合运用方程(组)、不等式和函数的知识解决实际问题。

3、教学目标

知识技能:理解一次函数与二元一次方程(组)的关系,会用图象法解二元一次方程组。

数学思考:经历一次函数与二元一次方程(组)关系的探索及相关实际问题的解决过程,学会用函数的观点去认识问题。

解决问题:能综合应用一次函数、一元一次方程、一元一次不等式、二元一次方程(组)解决相关实际问题。

情感态度:在探究活动中培养学生严谨的科学态度和勇于探索的科学精神,在师生、生生的交流活动中,学会与人合作,学会倾听、欣赏和感悟,体验数学的价值,建立自信心。

二、教法说明

对于认知主体——学生来说,他们已经具备了初步探究问题的能力,但是对知识的主动迁移能力较弱,为使学生更好地构建新的认知结构,促进学生的发展,我将在教学中采用探究式教学法。以学生为中心,使其在“生动活泼、民主开放、主动探索”的氛围中愉快地学习。

三、教学过程

(一)感知身边数学

学生已经学习过列方程(组)解应用题,因此可能列出一元一次方程或二元一次方程组,用方程模型解决问题。结合前面对一次函数与一元一次方程、一元一次不等式之间关系的探究,我自然地提出问题:“一次函数与二元一次方程组之间是否也有联系呢?”,从而揭示课题。

[设计意图]建构主义认为,在实际情境中学习可以激发学生的学习兴趣。因此,用“上网收费”这一生活实际创设情境,并用问题启发学生去思、鼓励学生去探、激励学生去说,努力给学生造成“心求通而未能得,口欲言而不能说”的情势,从而唤起学生强烈的求知欲,使他们以跃跃欲试的姿态投入到探索活动中来。

教学引入

师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。

动画演示:

场景一:正方形折叠演示

师:这就是我们得到的正方形。下面请同学们拿出三角板(刻度尺)和圆规,我们来研究正方形的几何性质—边、角以及对角线之间的关系。请大家测量各边的长度、各角的大小、对角线的长度以及对角线交点到各顶点的长度。

[学生活动:各自测量。]

鼓励学生将测量结果与邻近同学进行比较,找出共同点。

讲授新课

找一两个学生表述其结论,表述是要注意纠正其语言的规范性。

动画演示:

场景二:正方形的性质

师:这些性质里那些是矩形的性质?

[学生活动:寻找矩形性质。]

动画演示:

场景三:矩形的性质

师:同样在这些性质里寻找属于菱形的性质。

[学生活动;寻找菱形性质。]

动画演示:

场景四:菱形的性质

师:这说明正方形具有矩形和菱形的全部性质。

及时提出问题,引导学生进行思考。

师:根据这些性质,我们能不能给正方形下一个定义?怎么样给正方形下一个准确的定义?

[学生活动:积极思考,有同学做跃跃欲试状。]

师:请同学们回想矩形与菱形的定义,可以根据矩形与菱形的定义类似的给出正方形的定义。

学生应能够向出十种左右的定义方式,其余作相应鼓励,把以下三种板书:

“有一组邻边相等的矩形叫做正方形。”

“有一个角是直角的菱形叫做正方形。”

“有一个角是直角且有一组邻边相等的平行四边形叫做正方形。”

[学生活动:讨论这三个定义正确不正确?三个定义之间有什么共同和不同的地方?这出教材中采用的是第三种定义方式。]

师:根据定义,我们把平行四边形、矩形、菱形和正方形它们之间的关系梳理一下。

(二)享受探究乐趣

1、探究一次函数与二元一次方程的关系

[设计意图]用一连串的问题引导学生发现一次函数与二元一次方程在数与形两个方面的关系,为探索二元一次方程组的解与直线交点坐标的关系作好铺垫。

2、探究一次函数与二元一次方程组的关系

[设计意图]学生经过自主探索、合作交流,从数和形两个角度认识一次函数与二元一次方程组的关系,真正掌握本节课的重点知识,从而在头脑中再现知识的形成过程,避免单纯地记忆,使学习过程成为一种再创造的过程。此时教师及时对学生进行鼓励,充分肯定学生的探究成果,关注学生的情感体验。

(三)乘坐智慧快车

例题:我市一家电信公司给顾客提供两种上网收费方式:方式A以每分0。1元的价格按上网时间计费;方式B除收月基费20元外再以每分0。05元的价格按上网时间计费。如何选择收费方式能使上网者更合算?

[设计意图]为培养学生的发散思维和规范解题的习惯,引导学生将上网问题延伸为例题,并用问题:“你家选择的上网收费方式好吗?”再次激起学生强烈的求知欲望和主人翁的学习姿态。通过此问题的探究,使学生有效地理解本节课的难点,体会数形结合这一思想方法的应用。

(四)体验成功喜悦

1、抢答题

2、旅游问题

[设计意图]抓住学生对竞争充满兴趣的心理特征,用抢答题使学生的眼、耳、脑、口得到充分的调动,并在抢答中品味成功的快乐,提高思维的速度。在学生感兴趣的旅游问题中,进一步培养学生应用数学的意识,更好地促进学生对本节课难点的理解和应用,帮助学生不断完善新的认知结构。

(五)分享你我收获

在课堂临近尾声时,向学生提出:通过今天的学习,你有什么收获?你印象最深的是什么?

[设计意图]培养学生归纳和语言表达能力,鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价。

(六)开拓崭新天地

1、数学日记

2、布置作业

[设计意图]新课程强调发展学生数学交流的能力,用数学日记给学生提供一种表达数学思想方法和情感的方式,以体现评价体系的多元化,并使学生尝试用数学的眼睛观察事物,体验数学的价值。作业由必做题和选做题组成,体现分层教学,让“不同的人在数学上得到不同的发展”。

四、教学设计反思

1、贯穿一个原则——以学生为主体的原则

2、突出一个思想——数形结合的思想

3、体现一个价值——数学建模的价值

4、渗透一个意识——应用数学的意识

二元一次方程课件 篇7

教学目标

知识与技能

(1)初步理解二元一次方程和一次函数的关系;

(2)掌握二元一次方程组和对应的两条直线之间的关系;

(3)掌握二元一次方程组的图像解法.

过程与方法

(1)教材以“问题串”的形式,揭示方程与函数间的相互转化,使学生在自主探索中学会不同数学知识间可以互相转化的数学思想和方法;

(2)通过“做一做”引入例1,进一步发展学生数形结合的意识和能力.

情感与态度

(1)在探究二元一次方程和一次函数的对应关系中,在体会近似解与准确解中,培养学生勤于思考、精益求精的精神.

(2)在经历同一数学知识可用不同的数学方法解决的过程中,培养学生的创新意识和变式能力.

教学重点

(1)二元一次方程和一次函数的关系;

(2)二元一次方程组和对应的两条直线的关系.

教学难点

数形结合和数学转化的思想意识.

教学准备

教具:多媒体课件、三角板.

学具:铅笔、直尺、练习本、坐标纸.

教学过程

第一环节:设置问题情境,启发引导(5分钟,学生回答问题回顾知识)

内容:

1.方程x+y=5的解有多少个?是这个方程的解吗?

2.点(0,5),(5,0),(2,3)在一次函数y=的图像上吗?

3.在一次函数y=的图像上任取一点,它的坐标适合方程x+y=5吗?

4.以方程x+y=5的解为坐标的所有点组成的图像与一次函数y=的图像相同吗?

由此得到本节课的第一个知识点:

二元一次方程和一次函数的图像有如下关系:

(1)以二元一次方程的解为坐标的点都在相应的函数图像上;

(2)一次函数图像上的点的坐标都适合相应的二元一次方程.

第二环节自主探索方程组的解与图像之间的关系(10分钟,教师引导学生解决)

内容:

1.解方程组

2.上述方程移项变形转化为两个一次函数y=和y=2x,在同一直角坐标系内分别作出这两个函数的图像.

3.方程组的解和这两个函数的图像的交点坐标有什么关系?由此得到本节课的第2个知识点:二元一次方程和相应的两条直线的关系以及二元一次方程组的图像解法;

(1)求二元一次方程组的解可以转化为求两条直线的交点的横纵坐标;

(2)求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的解.

(3)解二元一次方程组的方法有:代入消元法、加减消元法和图像法三种。

注意:利用图像法求二元一次方程组的解是近似解,要得到准确解,一般还是用代入消元法和加减消元法解方程组.

第三环节典型例题(10分钟,学生独立解决)

探究方程与函数的相互转化

内容:例1用作图像的方法解方程组

例2如图,直线与的交点坐标是.

第四环节反馈练习(10分钟,学生解决全班交流)

内容:

1.已知一次函数与的图像的交点为,则。

2.已知一次函数与的图像都经过点A(—2,0),且与轴分别交于B,C两点,则的面积为()。

(A)4(B)5(C)6(D)7

3.求两条直线与和轴所围成的三角形面积。

4.如图,两条直线与的交点坐标可以看作哪个方程组的解?

第五环节课堂小结(5分钟,师生共同总结)

内容:以“问题串”的形式,要求学生自主总结有关知识、方法:

1.二元一次方程和一次函数的图像的关系;

(1)以二元一次方程的解为坐标的点都在相应的函数图像上;

(2)一次函数图像上的点的坐标都适合相应的二元一次方程.

2.方程组和对应的两条直线的关系:

(1)方程组的解是对应的两条直线的交点坐标;

(2)两条直线的交点坐标是对应的方程组的解;

3.解二元一次方程组的方法有3种:

(1)代入消元法;

(2)加减消元法;

(3)图像法.要强调的是由于作图的不准确性,由图像法求得的解是近似解.

第六环节作业布置

习题7.7A组(优等生)1、2、3B组(中等生)1、2C组1、2

二元一次方程课件 篇8

知识目标

了解二元一次方程、二元一次方程组及其解等有关概念,并会判断一组数是不是某个二元一次方程组的解。

能力目标

通过讨论和练习,进一步培养学生的观察、比较、分析的能力。

情感目标

通过对实际问题的分析,使学生进一步体会方程是刻画现实世界的有效数学模型,培养学生良好的数学应用意识。

教学重点

二元一次方程组的含义

教学难点

判断一组数是不是某个二元一次方程组的解,培养学生良好的数学应用意识。

教学过程

一、引入、实物投影

1、师:在一望无际呼伦贝尔大草原上,一头老牛和一匹小马驮着包裹吃力地行走着,老牛喘着气吃力地说:累死我了,小马说:你还累,这么大的个,才比我多驮2个老牛气不过地说:哼,我从你背上拿来一个,我的包裹就是你的2倍!,小马天真而不信地说:真的?!同学们,你们能否用数学知识帮助小马解决问题呢?

2、请每个学习小组讨论(讨论2分钟,然后发言)

这个问题由于涉及到老牛和小马的驮包裹的两个未知数,我们设老牛驮x个包裹,小马驮y个包裹,老牛的包裹数比小马多2个,由此得方程x-y=2,若老牛从小马背上拿来1个包裹,这时老牛的包裹是小马的2倍,得方程:x+1=2(y-1)

师:同学们能用方程的方法来发现、解决问题这很好,上面所列方程有几个未知数?含未知数的。项的次数是多少?(含有两个未知数,并且所含未知数项的次数是1)

师:含有两个未知数,并且含未知数项的次数都是1的方程叫做二元一次方程

注意:这个定义有两个地方要注意①、含有两个未知数,②、含的次数是一次

练习

下列方程有哪些是+2y=1xy+x=13x-=5x2-2=3x

xy=12x(y+1)=c2x-y=1x+y=

二、议一议、

师:上面的方程中x-y=2的x含义相同吗?

二元一次方程课件 篇9

本节的教学重点是使学生学会用代入法.教学难点 在于灵活运用代入法,这要通过一定数量的练习来解决;另一个难点在于用代入法求出一个未知数的值后,不知道应把它代入哪一个方程求另一个未知数的值比较简便.

解二元一次方程组的关键在于消元,即将“二元”转化为“一元”.我们是通过等量代换的方法,消去一个未知数,从而求得原方程组的解.

1.关于检验方程组的解的问题.教材指出:“检验时,需将所求得的一对未知数的值分别代入原方程组里的每一个方程中,看看方程的左、右两边是不是相等.”教学时要强调“原方程组”和“每一个”这两点.检验的作用,一是使学生进一步明确代入法是求方程组的解的一种基本方法,通过代入消元的确可以求得方程组的解二是进一步巩固二元一次方程组的解的概念,强调

这一对数值才是原方程组的解,并且它们必须使两个方程左、右两边的值都相等;三是因为我们没有用方程组的同解原理而是用代换(等式的传递)来解方程组的,所以有必要检验求出来的这一对数值是不是原方程组的解;四是为了杜绝变形和计算时发生的错误.检验可以口算或在草稿纸上演算,教科书中没有写出.

2.教学时,应结合具体的例子指出这里解二元一次方程组的关键在于消元,即把“二元”转化为“一元”.我们是通过等量代换的方法,消去一个未知数,从而求得原方程组的解.早一些指出消元思想和把“二元”转化为“一元”的方法,这样,学生就能有较强的目的性.

3.教师讲解例题时要注意由简到繁,由易到难,逐步加深.随着例题由简到繁,由易到难,要特别强调解方程组时应努力使变形后的方程比较简单和代入后化简比较容易.这样不仅可以求解迅速,而且可以减少错误.

1.掌握用代入法解二元一次方程组的步骤.

2.熟练运用代入法解简单的二元一次方程组.

1.培养学生的分析能力,能迅速在所给的二元一次方程组中,选择一个系数较简单的方程进行变形.

2.训练学生的运算技巧,养成检验的习惯.

通过本节课的学习,渗透化归的数学美,以及方程组的解所体现出来的奇异的数学美.

2.学生学法:在前面已经学过一元一次方程的解法,求二元一次方程组的解关键是化二元方程为一元方程,故在求解过程中始终应抓住消元的思想方法.

如何“消元”,把“二元”转化为“一元”.

一方面复习用一个未知量表示另一个未知量的方法,另一方面学会选择用一个系数较简单的方程进行变形:

1.教师设问怎样用一个未知量表示另一个未知量,并比较哪种表示形式更简单,如 等.

2.通过课本中香蕉、苹果的应用问题,引导学生列出一元一次方程或二元一次方程组,并通过比较、尝试,探索出化二元为一元的解方程组的方法.

3.再通过比较、尝试,探索出选一个系数较简单的方程变形,通过代入法求方程组解的办法更简便,并寻找出求解的规律.

本节课我们将学习用代入法求二元一次方程组的解.

从复习用一个未知量表达另一个未知量的方法,从而导入  运用代入法化二元为一元方程的求解过程,即利用代入消元法求二元一次方程组的解的办法.

(1)已知方程 ,先用含 的代数式表示 ,再用含 的代数式表示 .并比较哪一种形式比较简单.

A. B. C. D.

【教法说明】 第(1)题为用代入法解二元一次方程组打下基础;第(2)题既复习了上节课的重点,又成为导入  新课的材料.

通过上节课的学习,我们会检验一对数值是否为某个二元一次方程组的解.那么,已知一个二元一次方程组,应该怎样求出它的解呢?这节课我们就来学习.

这样导入  ,可以激发学生的求知欲.

香蕉的售价为5元/千克,苹果的售价为3元/千克,小华共买了香蕉和苹果9千克,付款33元,香蕉和苹果各买了多少千克?

学生活动:分别列出一元一次方程和二元一次方程组,两个学生板演.

上面的一元一次方程我们会解,能否把二元一次方程组转化为一元一次方程呢,由方程①可以得到    ③,把方程②中的 转换成 ,也就是把方程③代入方程②,就可以得到 .这样,我们就把二元一次方程组转化成了一元一次方程,由这个方程就可以求出 了.

【教法说明】解二元一次方程组与解一元一次方程相比较,向学生展示了知识的发生过程,这对于学生知识的形成十分重要.

上面解二元一次方程组的方法,就是代入消元法.你能简单说说用代入法解二元一次方程组的基本思路吗?

学生活动:小组讨论,选代表发言,教师进行指导.纠正后归纳:设法消去一个未知数,把二元一次方程组转化为一元一次方程.

(2)把①代入②后可消掉 ,得到关于 的一元一次方程,求出 .

如何检验得到的结果是否正确?

教师:要把所得结果分别代入原方程组的每一个方程中.

【教法说明】给出例1后提出的三个问题,恰好是学生的思维过程,明确了解题思路;教师板演例1,规范了解二元一次方程组的解题格式;通过检验,可使学生养成严谨认真的学习习惯.

要把某个方程化成如例1中方程①的形式后,代入另一个方程中才能消元.方程②中 的系数是1,比较简单.因此,可以先将方程②变形,用含 的代数式表示 ,再代入方程①求解.

教师巡视指导,发现并纠正学生的问题,把书写过程规范化.

检验后,师生共同讨论:

(1)由②得到③后,再代入②可以吗?(不可以)为什么?(得到的是恒等式,不能求解)

(2)把 代入①或②可以求出 吗?(可以)代入③有什么好处?(运算简便)

学生活动:根据例1、例2的解题过程,尝试总结用代入法解二元一次方程组的一般步骤,讨论后选代表发言.之后,看课本第12页,用几个字概括每个步骤.

练习:P13  1.(1)(2);P14  2.(1)(2).

①由 可以得到用 表示 .

②在 中,当 时, ;当 时, ,则 ; .

1.解二元一次方程组的思想:

2.用代入法解二元一次方程组的步骤.

通过这节课的学习,我们要熟练运用代入法解二元一次方程组,并能检验结果是否正确.

(一)必做题:P15 1.(2)(4),2.(1)(2)(3)(4).

(二) ,

二元一次方程课件 篇10

教学目标:

知识与技能目标:

通过对实际问题的分析,使学生进一步体会方程组是刻画现实世界的有效数学模型,初步掌握列二元一次方程组解应用题.初步体会解二元一次方程组的基本思想“消元”。

培养学生列方程组解决实际问题的意识,增强学生的数学应用能力。

过程与方法目标:

经历和体验列方程组解决实际问题的过程,进一步体会方程(组)是刻画现实世界的有效数学模型。

情感态度与价值观目标:

1.进一步丰富学生数学学习的成功体验,激发学生对数学学习的好奇心,进一步形成积极参与数学活动、主动与他人合作交流的意识.

2.通过"鸡兔同笼",把同学们带入古代的数学问题情景,学生体会到数学中的"趣";进一步强调课堂与生活的联系,突出显示数学教学的实际价值,培养学生的人文精神。重点:

经历和体验列方程组解决实际问题的过程;增强学生的数学应用能力。

难点:

确立等量关系,列出正确的二元一次方程组。

教学流程:

课前回顾

复习:列一元一次方程解应用题的一般步骤

情境引入

探究1:今有鸡兔同笼,

上有三十五头,

下有九十四足,

问鸡兔各几何?

“雉兔同笼”题:今有雉(鸡)兔同笼,上有35头,下有94足,问雉兔各几何?

(1)画图法

用表示头,先画35个头

将所有头都看作鸡的,用表示腿,画出了70只腿

还剩24只腿,在每个头上在加两只腿,共12个头加了两只腿

四条腿的是兔子(12只),两条腿的是鸡(23只)

(2)一元一次方程法:

鸡头+兔头=35

鸡脚+兔脚=94

设鸡有x只,则兔有(35-x)只,据题意得:

2x+4(35-x)=94

比算术法容易理解

想一想:那我们能不能用更简单的方法来解决这些问题呢?

回顾上节课学习过的二元一次方程,能不能解决这一问题?

(3)二元一次方程法

今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?

(1)上有三十五头的意思是鸡、兔共有头35个,

下有九十四足的意思是鸡、兔共有脚94只.

(2)如设鸡有x只,兔有y只,那么鸡兔共有(x+y)只;

鸡足有2x只;兔足有4y只.

解:设笼中有鸡x只,有兔y只,由题意可得:

鸡兔合计头xy35足2x4y94

解此方程组得:

练习1:

1.设甲数为x,乙数为y,则“甲数的二倍与乙数的一半的和是15”,列出方程为_2x+05y=15

2.小刚有5角硬币和1元硬币各若干枚,币值共有六元五角,设5角有x枚,1元有y枚,列出方程为05x+y=65.

合作探究

探究2:以绳测井。若将绳三折测之,绳多五尺;若将绳四折测之,绳多一尺。绳长、井深各几何?

题目大意:用绳子测水井深度,如果将绳子折成三等份,一份绳长比井深多5尺;如果将绳子折成四等份,一份绳长比井深多1尺。问绳长、井深各是多少尺?

找出等量关系:

解:设绳长x尺,井深y尺,则由题意得

x=48

将x=48y=11。

所以绳长4811尺。

想一想:找出一种更简单的创新解法吗?

引导学生逐步得出更简单的方法:

找出等量关系:

(井深+5)×3=绳长

(井深+1

解:设绳长x尺,井深y尺,则由题意得

3(y+5)=x

4(y+1)=x

x=48

y=11

所以绳长48尺,井深11尺。

练习2:甲、乙两人赛跑,若乙先跑10米,甲跑5秒即可追上乙;若乙先跑2秒,则甲跑4秒就可追上乙.设甲速为x米/秒,乙速为y米/秒,则可列方程组为(B).

归纳:

列二元一次方程解决实际问题的一般步骤:

审:审清题目中的等量关系.

设:设未知数.

列:根据等量关系,列出方程组.

解:解方程组,求出未知数.

答:检验所求出未知数是否符合题意,写出答案。

二元一次方程课件 篇11

一、教学设计的理念

1.树立“以人为本,人人都学有价值的数学,不同的人在数学上得到不同的发展”的理念。

2.通过动手实验、合作交流培养学生自主探索,寻找结论的学习意识。

3.通过本节课教学,加强对学生思维方法的训练,增强小组合作意识

二、教学内容的重组加工

1.学生分析

认知起点,学生已初步掌握了本章知识,他们已经能比较熟练得求出二元一次方程组的解,知道用二元一次方程组表示等量关系。七年级学生活泼好动,乐于展示、表现自我,求知欲较强,他们的逻辑思维以开始处于优势地位,

2.教材分析

本章知识是在学习了一元一次方程即应用后的又一种重要的用来表示数量关系的数学模型,用它解决某些实际问题比用一元一次方程更简捷,但在解法上他们又存在着相互转化的关系,在这节的教学中不仅要让学生充分认识到消元这种思想方法的重要性,更重要的是让他们进一步体会知识的形成过程,提高他们能准确选择模型解决问题的能力。

3.教学重点、难点分析

难点:已知一组解,如何构造二元一次方程组使解相同

重点:解二元一次方程组

4.教学目标

(1)知识与技能:进一步体会列二元一次方程组解决实际问题的优越性,熟练用消元法解二元一次方程组

(2)过程与方法:通过自主探索过程,培养对数学的感情,培养分析问题能力及从实际问题中抽象出数学模型的能力,学会与人合作,交流自己的方法意见。向终身学习型人才发展。

(3)情感与态度:引导学生探索发现,培养学生主动探索,乐于合作交流的品质和素养,让学生先猜测再动手实践加以验证,懂得实践是检验真理的唯一标准的道理。鼓励学生有自己独特见解,培养学生的创新品质。

5.教学方法分析

本节课采用“探究、讨论、发现”的方法。因为它符合本节课教学内容的特点,从学生年龄来说讨论法虽然更适合于高年级的学生,但这是一节复习课,我认为复习应该是知识的整合和提高的过程,因此也可以。

三、教学过程及反思

我的教学过程可分为三个环节一、探索只用二元一次方程也能解决实际问题,但答案不唯一。二、探索要使一的问题答案是唯一的,那么在刚才的基础上应该再添加一个,关于这两个未知数的关系的条件,然后才能列出二元一次方程组解出唯一答案。这个环节是难点。这样设计的目的是通过过程探索加深学生对二元一次方程组的解的理解,即它是两个方程的公共解,同时与列一元一次方程形成对比,即需要两个条件才能得出唯一答案。再者通过对一个问题实施两种列法,一种解法,也体现了二元与一元之间的转化思想。第三个过程是解方程组训练消元法的应用。目的让学生进一步熟炼消元这种数学方法,同时使知识形成一个完整的体系。

我对自己的设计思路比较满意,因为我一直以为学数学就是领悟数学思想方法,训练思维,提高推理分析的能力。在平时的教学中我一直比较注重发散思维的训练,和逆向思维的训练,注重引导学生从多个角度两个方向分析问题。引导学生在课堂活动中感悟知识的生成、发展与变化过程

我的课领导们已经听了过程就不再赘述。下面我按照教学环节把我这节课分析一下;

一采用刘三姐对歌引入,切近生活,激发兴趣,引起学生注意。提出问题后,学生受定向思维影响,认为答案是唯一的,这种情况下我用提问的方式激发学生思考,如我问一个男孩的困惑在那里,然后给与合理提示,使他们继续讨论得出答案。缺点:备学生不充分,以致引题较难,脱离育才学生实际,今后应注意开讲很重要但要注意所选问题的难易程度。

二突破难点仍然采用讨论法,期间部分学生思维受阻,我请一名同学解释了他的解题过程,又加以适当引导和鼓励,使讨论达到高潮。优点是能鼓励学生用实验的办法寻求解题思路,引导他们通过对比的方法发现二元一次方程组和一元一次方程之间的联系,在考虑到时间不够用的情况下,仍然坚持让学生继续展开讨论,上黑板展示自己的劳动成果,并且我认为,通过这节课的训练这些孩子肯定会喜欢上讨论交流这种形式的,通过这节课教学使他们已经完成了一个从羞于讨论到开始讨论的过程。我在巡视的过程中发现了这种微妙的变化我很高兴。缺点是:引导方向不够明确,浪费了学生的时间。数学是一门精确的学问,不允许教师含糊其辞,不允许让学生猜你要表达什么意思,如:我在第一个问题解决了以后,问孩子们:你们能不能添上一个条件使分法是唯一的呢/实际上这个问法对这些孩子来说还是跳跃性太大,致使他们再次陷入迷惘,我想如果我这样处理是不是更好一些:老师在黑板上把同学们刚才回答的几组解列出来,然后让他们观察每一组解之间的关系,再添条件构造方程。给我的教训是向学生提问不是一件轻而易举的事情,要问得新奇,问得有趣,问得巧妙,问得具有启发性,问得难而有度,问得高而可攀,就非得是前做好充分准备,精心构思不可。学生的时间是宝贵的,因此我要学会提出一个真正称得上是问题的问题。今后备课我应该认真考虑到各个环节,做好各种准备工作。

三解方程组 因为时间不够用处理非常仓促我原本的意图是想通过对比让他们体会代入消元源自于实际问题。因为这章知识点是解在前用在后而我复习的时候把它倒过来也是这个原因。我组织他们讨论解方程组时经常出现的哪些错误,这样能使学生在轻松的过程里接受这些错误从进而改正他们。另外这节课还存在两个问题:小组活动单一化小组,活动结束后应该让他们充分展示自己的劳动成果,增加成就感。小组合作意识不强列,回答问题不积极,原因之一是他们的表达能力根本跟不上,我在巡视时有许多孩子跟我说老师我不知道该怎么说。所以我认为这种自主探究,合作交流的教学形式应该继续搞下去,孩子的表达能力继续锻炼。

大家都知道凯慕柏莉奥立佛近日当选为2006-年美国年度教师这在美国是一项殊高的荣誉。他曾经说:“好老师不必是那些上出成功课或教出得分最高班的老师。好老师是那些有能力去反思一堂课理解什么是对了什么是错了寻找策略让下次更好的教师,以上是我对我的授课过程的分析,有不当之处恳请各位领导批评指正。

函数课件


在教学过程中,教案课件起着至关重要的作用,并且每位老师都需要每天撰写自己的教案课件。教案课件是提高学生思维能力的有效途径。为了帮助大家更好地工作和学习,幼儿教师教育网今天为大家准备了一篇精选文章,讲述的是“函数课件”。希望这篇文章能够对您在实际工作和学习中提供一些参考。如果您需要具体的实现方案,请与专业人士进行联系!

函数课件【篇1】

本节课是在学生学习了《基本初等函数(Ⅰ)》的基础上,学习函数与方程的第一课时,本节课中通过对二次函数图象的绘制、分析,得到零点的概念,从而进一步探索函数零点存在性的判定,这些活动就是想让学生在了解初等函数的基础上,利用计算机描绘函数的图象,通过对函数与方程的探究,对函数有进一步的认识,解决方程根的存在性问题,为下一节《用二分法求方程的近似解》做准备.

从教材编写的顺序来看,《方程的根与函数的零点》是必修1第三章《函数的应用》一章的开始,其目的是使学生学会用二分法求方程近似解的方法,从中体会函数与方程之间的联系.利用函数模型解决问题,作为一条主线贯穿了全章的始终,而方程的根与函数的零点的关系、用二分法求方程的近似解,是在建立和运用函数模型的大背景下展开的.方程的根与函数的零点的关系、用二分法求方程的近似解中均蕴涵了“函数与方程的思想”和“数形结合的思想”,建立和运用函数模型中蕴含的“数学建模思想”,是本章渗透的主要数学思想.

从知识的应用价值来看,通过在函数与方程的联系中体验数学中的转化思想的意义和价值,体验函数是描述宏观世界变化规律的基本数学模型,体会符号化、模型化的思想,体验从系统的角度去思考局部问题的思想.

基于上述分析,确定本节的教学重点是:了解函数零点的概念,体会方程的根与函数零点之间的联系,掌握函数零点存在性的判断.

1.通过对二次函数图象的描绘,了解函数零点的概念,渗透由具体到抽象思想,领会函数零点与相应方程实数根之间的关系,

2.零点知识是陈述性知识,关键不在于学生提出这个概念。而是理解提出零点概念的作用,沟通函数与方程的关系。

3.通过对现实问题的分析,体会用函数系统的角度去思考方程的思想,使学生理解动与静的辨证关系.掌握函数零点存在性的判断.

4.在函数与方程的联系中体验数形结合思想和转化思想的意义和价值,发展学生对变量数学的认识,体会函数知识的核心作用.

1.零点概念的认识.零点的概念是在分析了众多图象的基础上,由图象与轴的位置关系得到的一个形象的概念,学生可能会设法画出图象找到所有任意函数的可能存在的所有零点,但是并不是所有函数的图象都能具体的描绘出,所以在概念的接受上有一点的障碍.

2.零点存在性的判断.正因为f(a)·f(b)<0且图象在区间上连续不断,是函数f(x)在区间上有零点的充分而非必要条件,容易引起思维的混乱就是很自然的事了.

3.零点(或零点个数)的确定.学生会作二次函数的图象,但是要作出一般的函数图象(或图象的交点)就比较困难,而在这一节课最重要的恰恰就是利用函数图象来研究函数的零点问题.这样就在零点(或零点个数)的确定上给学生带来一定的困难.

基于上述分析,确定本节课的教学难点是:准确认识零点的概念,在合情推理中让学生体会到判定定理的充分非必要性,能利用适当的方法判断零点的存在或确定零点.

考虑到学生的知识水平和理解能力,教师可借助计算机工具和构建现实生活中的模型,从激励学生探究入手,讲练结合,直观演示能使教学更富趣味性和生动性.

通过让学生观察、讨论、辨析、画图,亲身实践,在函数与方程的联系中体验数形结合思想、转化思想的意义和价值,发展学生对变量数学的认识,体会函数知识的核心作用.

变式:解方程3x5+6x-1=0的实数根. (一次、二次、三次、四次方程的解都可以通过系数的四则运算,乘方与开方等运算来表示,但高于四次的方程不能用公式求解。大家课后去阅读本节后的“阅读与思考”,还有如lnx+2x-6=0的实数根很难下手,我们寻求新的角度——函数来解决这个方程的问题。)

设计意图:从学生的认知冲突中,引发学生的好奇心和求知欲,推动问题进一步的探究。通过简单的引导,让学生课后自己阅读相关内容,培养他的自学能力和更广泛的兴趣。开门见山的提出函数思想解决方程根的问题,点明本节课的目标。

问题1 求方程x2-2x-3=0的实数根,并画出函数y=x2-2x-3的图象;

方程x2-2x-3=0的实数根为-1、3。函数y=x2-2x-3的图象如图所示。

问题2 观察形式上函数y=x2-2x-3与相应方程x2-2x-3=0的联系。

函数y=0时的表达式就是方程x2-2x-3=0。

问题3 由于形式上的联系,则方程x2-2x-3=0的实数根在函数y=x2-2x-3的图象中如何体现?

y=0即为x轴,所以方程x2-2x-3=0的实数根就是y=x2-2x-3的图象与x轴的交点横坐标。

设计意图:以学生熟悉二次函数图象和二次方程为平台,观察方程和函数形式上的联系,从而得到方程实数根与函数图象之间的关系。理解零点是连接函数与方程的结点。

初步提出零点的概念:-1、3既是方程x2-2x-3=0的根,又是函数y=x2-2x-3在y=0时x的值,也是函数图象与x轴交点的横坐标。-1、3在方程中称为实数根,在函数中称为零点。

问题4 函数y=x2-2x+1和函数y=x2-2x+3零点分别是什么?

函数y=x2-2x+1的零点是-1。函数y=x2-2x+3不存在零点。

提出零点的定义:对于函数,把使成立的实数叫做函数的零点.(zero point)

2、函数零点的判定:

研究方程的实数根也就是研究相应函数的零点,也就是研究函数的图象与x轴的交点情况。 (Ⅰ)

问题5 如果把函数比作一部电影,那么函数的零点就像是电影的一个瞬间,一个镜头。有时我们会忽略一些镜头,但是我们仍然能推测出被忽略的片断。现在我有两组镜头(如图),哪一组能说明他的行程一定曾渡过河?(Ⅱ)

第Ⅰ组能说明他的行程中一定曾渡过河,而第Ⅱ组中他的行程就不一定曾渡过河。

设计意图:从现实生活中的问题,让学生体会动与静的关系,系统与局部的关系。

问题6 将河流抽象成x轴,将前后的两个位置视为A、B两点。请问当A、B与x轴怎样的位置关系时,AB间的一段连续不断的函数图象与x轴一定会有交点?

A、B两点在x轴的两侧。

设计意图:将现实生活中的问题抽象成数学模型,进行合情推理,将原来学生只认为静态的函数图象,理解为一种动态的过程。

问题7 A、B与x轴的位置关系,如何用数学符号(式子)来表示?

A、B两点在x轴的两侧。可以用f(a)·f(b)

设计意图:由原来的图象语言转化为数学语言。培养学生的观察能力和提取有效信息的能力。体验语言转化的过程。

问题8 满足条件的函数图象与x轴的交点一定在(a,b)内吗?即函数的零点一定在(a,b)内吗?

一定在区间(a,b)上。若交点不在(a,b)上,则它不是函数图象。

设计意图:让学生体验从现实生活中抽象成数学模型时,需要一定修正。加强学生对函数动态的感受,对函数的定义有进一步的理解。

通过上述探究,让学生自己概括出零点存在性定理:

一般地,我们有:

如果函数y=f(x)在区间上的图象是连续不断的一条曲线并且有f(a)·f(b)

例题1 观察下表,分析函数在定义域内是否存在零点?

分析:函数图象是连续不断的,又因为,所以在区间(0,1)上必存在零点。我们也可以通过计算机作图(如图)帮助了解零点大致的情况。

设计意图:初步应用零点的存在性定理来判断函数零点的存在性问题。并引导学生探索判断函数零点的方法,通过作出x,的对应值表,来寻找函数值异号的区间,还可以借助计算机来作函数的图象分析零点问题。而且对函数有一个零点形成直观认识.

例题2 求函数的零点个数.

分析:用计算器或计算机作出x,的对应值表和图象。

由表可知,f (2)0,则,这说明函数在区间(2,3)内有零点。结合函数的单调性,进而说明零点是只有唯一一个.

设计意图:学生应用例题1方法来解决例题2的零点存在性问题,并结合函数的单调性,从图象的直观上去判断零点的个数问题。

练习:判断下列函数是否存在零点,指出零点所在的大致区间?

① f(x)=2xln(x-2)-3;

②f(x)= 2x+2x-6.

通过引导让学生回顾零点概念、意义与求法,以及零点存在性判断,鼓励学生积极回答,然后老师再从数学思想方面进行总结.

必作题:

1.教材P92习题3.1(A组)第2题;

2.求下列函数的零点:

3.求下列函数的零点,图象顶点的坐标,画出各自的简图,并指出函数值在哪些区间上大于零,哪些区间上小于零:

(1) (2).

4.已知.

(1)为何值时,函数的图象与轴有两个零点;

(2)如果函数至少有一个零点在原点右侧,求的值.

(1)利用计算机探求和时函数的零点个数;

(2)当时,函数的零点是怎样分布的?

数学的学习,学生需要费很大的心思。毕竟数学并不是一门只要会背或者会说或者会写就可以学好的学科,它灵活度比较高。通常学生在学习数学花的时间比较多,但又毫无效果是什么原因呢?是方法不对?还是思路不对?

在数学学习过程中,常常出现这种现象,学生在课堂上听懂了,但课后解题特别是遇到新题型时便无所适从。这就说明上课听懂是一回事,而达到能应用知识解决问题是另一回事。

有这种想法的人总会感到失望。每一份综合试卷,出卷人总要避免考旧题、陈题,尽量从新的角度,新的层面上设计问题。但是考查的知识点和数学思想方法是恒久不变的。所以多做题,不会碰巧和考题零距离亲密接触,反而会把自己陷入无边无际的题海之中。解决问题的办法是从知识点和思想方法的角度分别对所解题目进行归类,总结解题经验的同时,确认自己是否真正掌握并确认复习的重点。

首先有一条定律:高次将次,多元消元,常数分离,变元集中。围绕这句话能够拓展出许多方法:比如解不等式恒成立题中的“常数分离法”、“换元法”。还有一句很重要的话就是:解题其实就是转化,将所求与题设条件靠拢的过程,根据求证找到题设条件与之的关系,进而寻找证明方法。

其次便是题型与方法。方法分为数学思想与常用解题技巧,这个可以去书店里找找相关的书,应该很容易就能找到。题型则是分为解析几何、立体几何、三角函数等等,这些多做试卷就能掌握相关规律,每道题重要的是看它背后的方法,例如函数求和题,可以裂项相消,也可以倒序求和,题目是用来巩固已学的数学知识,当某种方法已经掌握透了之后,就能去找别的类型的题练习,直到掌握所有方法。

同一道题,不同的学生从不同的角度去理解,由不同的看法最终汇聚成正确的解题过程,这是解题的必然。无论是推导、还是硬性套用、凭借经验做题,都是思路的一种。有的同学由开始思路不清渐渐转变为清楚,有的同学根本没有思路,这就形成了做题的上的差距。

数学解题思想其实只要掌握一种即可,即必要性思维。什么是必要性思维?必要性思维就是通过所求结论或者某一限定条件寻求前提的思想。几乎所有数学命题都可以用这一思想进行破解。

纵观近几年高考数学试题,可以看出试题加强了对知识点灵活应用的考察。这就对考生的思维能力要求大大加强。

例如:课本在讲绝对值和不等式时,根据a-b≤a+b推出a-b≤a-c+b-c,这里运用了插值法a-b=(a-c)-(b-c)≤a-c+b-c这一思维方法,我们要弄清之所以这样想,之所以得到这个解法的全部酝酿过程。

以上就是为大家提供的“数学解题方法技巧:如何更快答题”希望能对考生产生帮助,更多资料请咨询中考频道。

高一新生学习数学该注意什么?

【编者按】数学是一个人的学习生涯中所占比重最大的学科,也是高考科目中最能够拉开分数层次的.学科,因此学好数学,无论是对高考,还是对以后学习工作都起着重要作用。那么高一新生在学习上刚刚踏入新阶段,如何去除初中时养成的不适宜高中学习的习惯,又如何掌握正确的学习方法呢?我们应注意以下三点:

(1)注意和初中数学知识的衔接。这是一个十分困难的问题,初中数学与高中数学的差别非常大,从原本的实际思维转入抽象思维,需要一个大幅度转变。这就需要重新整理初中数学知识,形成良好的知识基础,在此基础上,再根据高中知识特点,较快的吸收新的知识,形成新的知识结构。

(2)认真理解,反复推敲思考高中各知识点的涵义,各种表示方法。容易混淆的知识,仔细辨识、区别,达到熟练掌握,逐步建立与高中数学结构相适应的理论本质与思考方法,切忌急于求成。

(3)通过学习,要努力培养自己观察,比较抽象,概括能力初步形成运用知识准确地表达数学问题和实际问题的意识和能力;培养科学的、严谨的学习态度,为树立辩证唯物主义科学的世界观认识世界打下基础。

我们应试时,时常发现厌试心理,有时会有些紧张,这是很正常的。但过分紧张也会导致考不好,所以平时应把练习当作考试,但考试时则平视为练习,心态好了,成绩自己就上去了。

如何减少解题失误,这是一个考高分的关键。失误少了,分数就会溅涨。这需要学生的仔细观察与认真阅读题目,抓住题目重点、题心,并围绕重点、题心考虑其他条件与答案。其次,考虑要周全,避免出现遗漏情况,各个方面都要考虑到,这需要平日思考事物的长期积累。

考试考得不好,这是常遇到的问题,心情沮丧是正常心理,但不能持久下去。要将答案听彻底,记下,并与自己的解题思路相比较,发现不同之处,或不要之处并记于心里,这样对于下次考试则很有好处。

(2) 元素的互异性,

(3) 元素的无序性,

3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

(1) 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

2) 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{xR x-3>2} ,{x x-3>2}

注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A

实例:设 A={xx2-1=0} B={-1,1} “元素相同则两集合相等”

②真子集:如果AB,且A B那就说集合A是集合B的真子集,记作A B(或B A)

规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

定 义 由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作‘A交B’),即A B={xx A,且x B}.

由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作‘A并B’),即A B ={xx A,或x B}).

设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)

A (CuA)= Φ.

在过程中,掌握科学的,是提高成绩的重要条件。以下我分别从、上课、作业、、、课外学习、实验课等七个方面,谈一下的常规问题。应当说明的是,我这里所谈的是各科学习的一般规律,不涉及具体学科。

一、预习。预习一般是指在讲课以前,自己先独立地阅读新课内容,做到初步理解,做好上课的准备。所以,预习就是自学。预习要做到下列四点:

1、通览教材,初步理解教材的基本内容和思路。

2、预习时如发现与新课相联系的旧掌握得不好,则查阅和补习旧,给学习新打好牢固的基础。

3、在阅读新教材过程中,要注意发现自己难以掌握和理解的地方,以便在时特别注意。

4、做好预习笔记。预习的结果要认真记在预习笔记上,预习笔记一般应记载教材的主要内容、自己没有弄懂需要在听课着重解决的问题、所查阅的旧知识等。

二、上课。教学是教学过程中最基本的环节,不言而喻,上课也应是同学们学好功课、掌握知识、发展的决定性一环。上课要做到:

1、课前准备好上课所需的课本、笔记本和其他文具,并抓紧时间简要回忆和复习上节课所学的内容。

2、要带着强烈的求知欲上课,希望在课上能向老师学到新知识,解决新问题。

3、上课时要集中精力听讲,上课铃一响,就应立即进入积极的学习状态,有意识地排除分散注意力的各种因素。

4、听课要抬头,眼睛盯着老师的一举一动,专心致志聆听老师的每一句话。要紧紧抓住老师的思路,注意老师叙述问题的逻辑性,问题是怎样提出来的,以及分析问题和解决问题的方法步骤。

5、如果遇到某一个问题或某个问题的一个环节没有听懂,不要在课堂上“钻牛角尖”,而要先记下来,接着往下听。不懂的问题课后再去钻研或向老师请教。

6、要努力当课堂的主人。要认真思考老师提出的每一个问题,认真观察老师的每一个演示实验,大胆举手发表自己的看法,积极参加课堂讨论。

7、要特别注意老师讲课的开头和结尾。老师的“开场白”往往是概括上节内容,引出本节的新课题,并提出本节课的目的要求和要讲述的中心问题,起着承上起下的作用。老师的课后总结,往往是一节课的精要提炼和复习提示,是本节课的高度概括和总结。

8、要养成记笔记的好习惯。最好是一边听一边记,当听与记发生矛盾时,要以听为主,下课后再补上笔记。记笔记要有重点,要把老师板书的知识提纲、补充的课外知识、典型题目的解题步骤和课堂上没有听懂的问题记下来,高二,供课后复习时参考。

三、作业。作业是学习过程中一个重要环节。通过作业不仅可以及时巩固当天所学知识,加深对知识的理解,更重要的是把学过的知识加以运用,以形成技能技巧,从而发展自己的,培养自己的能力。作业必须做到:

1、先看书后作业,看书和作业相结合。只有先弄懂课本的基本原理和法则,才能顺利地完成作业,减少作业中的错误,也可以达到巩固知识的目的。

2、注意审题。要搞清题目中所给予的条件,明确题目的要求,应用所学的知识,找到解决问题的途径和方法。

3、态度要认真,推理要严谨,养成“言必有据”的习惯。准确运用所学过的定律、定理、公式、概念等。作业之后,认真检查验算,避免不应有的错误发生。

4、作业要独立完成。只有经过自己动脑思考动手操作,才能促进自己对知识的消化和理解,才能培养锻炼自己的能力;同时也能检验自己掌握的知识是否准确,从而克服学习上的薄弱环节,逐步形成扎实的基础。

5、认真更正错误。作业经老师批改后,要仔细看一遍,对于作业中出现的错误,要认真改正。要懂得,出错的地方,正是暴露自己的知识和能力弱点的地方。经过更正,就可以及时弥补自己知识上的缺陷。

6、作业要规范。解题时不要轻易落笔,要在深思熟虑后一次写成,切忌写了又改,改了又擦,使作业涂改过多。书写要工整,解题步骤既要简明、有条理,又要完整无缺。作业时,各科都有各自的格式,要按照各学科的作业规范去做。

7、作业要保存好,定期将作业分门别类进行整理,复习时,可随时拿来参考。

四、复习。复习的主要任务是达到对知识的深入理解和掌握,在理解和掌握的过程中提高运用知识的技能技巧,使知识融汇贯通。同时还要通过归纳、整理,使知识系统化,真正成为自己知识链条的一个有机组成部分。复习要做到:

1、当天的功课当天复习,并且要同时复习头一天学习和复习过的内容,使新旧知识联系起来。对老师讲授的主要内容,在全面复习的基础上,抓住重点和关键,特别是听课中存在的疑难问题更应彻底解决。重点内容要熟读牢记,对基本要领和定律等能准确阐述,并能真正理解它的意义;对基本公式应会自行推导,晓得它的来龙去脉;同时要搞清楚知识前后之间的联系,注意总结知识的规律性。

2、单元复习。在课程进行完一个单元以后,要把全单元的知识要点进行一次全面复习,重点领会各知识要点之间的联系,使知识系统化和结构化。有些需要的知识,要在理解的基础上熟练地。

3、期中复习。期试前,要把上半学期学过的内容进行系统复习。复习时,在全面复习的前提下,特别应着重弄清各单元知识之间的联系。

4、期末复习。期末考试前,要对本学期学过的内容进行系统复习。复习时力求达到“透彻理解、牢固掌握、灵活运用”的目的。

5、假期复习。每年的和,除完成各科作业外,要把以前所学过的内容进行全面复习,重点复习自己掌握得不太好的部分。这样可以避免边学边忘,造成总复习时负担过重的现象。

6、在达到上面要求的基础上,学有余力的同学,可在老师的指导下,适当阅读一些课外参考书或做一些习题,加深对有关知识的理解和记忆。

五、考试。考试是学习过程的重要环节。通过考试可以了解自己的学习状况,以便总结经验教训,改进学习方法,为以后的学习明确努力方向。考试时应做到:

1、要正确对待考试。考试是检查学习效果的一种方法,考得好,可以促进自己进一步努力学习,考得不好,也可以促使自己认真分析原因,找出存在的问题,以便今后更有针对性地学习。所以,考试并不可怕,绝不应当产生畏考,造成情绪紧张,影响水平的正常发挥。

2、做好考试前的准备。首先是对各科功课进行系统认真的复习,这是考出好成绩的基础。另外,考试前和考试期间要注意劳逸结合,保证充足的睡眠和休息,保持充沛的精力,这是取得优异成绩的必要条件。

3、答卷时应注意的主要问题是: ①认真审题。拿到后,对每一个题目要认真阅读,看清题目的要求,找出已知条件和要求的结论,然后再动手答题。②一时不会做的题目可以先放一放,等把会做的题目做完了,再去解决遗留问题。③仔细检查,更正错误。答完以后,如果还有时间,就要抓紧时间进行检查和验证。先检查容易的、省时间的、错误率高的题目,后检查难的、费时间的、错误率低的题目。④卷面要整洁,书写要工整,答题步骤要完整。

4、重视考后分析。拿到老师批阅的试卷后,不仅要看成绩,而且要对进行逐一分析。首先要把错题改正过来,把错处鲜明地标示出来,引起自己的注意,以便复习时查对。然后分析丢分的原因,并进行分类统计。看看因审题、运算、表达、原理、思路、马虎等因素各扣了多少分;经过分析统计,找出自己学习上存在的问题。对做对了的题目也要进行分析,检查自己对题目的表达是否严密,解题方法是否简便等。

5、各科试卷要分类保存,以便复习时参考。

6、杜绝各种作弊现象。

六、课外学习。课外学习是课内学习的补充和扩展,二者是相互联系、相互渗透的整体。在搞好课内学习的基础上,适当进行课外学习,可以开阔自己的知识领域,发展个人的、爱好和特长,同时对课内学习也会起到有效的促进作用。课外学习应注意:

1、可根据自己的学习情况,有目的地选择学习内容,原则是有利于巩固基础知识,弥补自己的学习弱点。

2、可以根据自己的特长和爱好,选择一些有关学科的课外读物学习。

3、课外阅读一定要从自己的实际出发,量力而行,宁可少而精,也不多而滥,切忌好高鹜远、贪多求全。

七、实验课。实验是理论联系实际的重要手段,实验的目的是加深对理论的理解和有效地扩大知识领域,培养观察能力、判断能力、形象和动手操作的技能技巧,培养严肃认真的科学态度。实验课要做到:

1、实验前做好预习,明确实验的目的要求、实验原理及实验方法、步骤等。

2、注意熟悉实验用仪器设备的名称、功能和操作方法。

3、实验要自己动手操作,仔细观察实验现象,认真测定数据,做好记录。同时要分析出现误差的原因。严格遵守操作规程,爱护仪器设备,注意安全。

“充要条件”是数学中极其重要的一个概念。

(1)先看“充分条件和必要条件”

当命题“若p则q”为真时,可表示为p=>q,则我们称p为q的充分条件,q是p的必要条件。这里由p=>q,得出p为q的充分条件是容易理解的。

但为什么说q是p的必要条件呢?

事实上,与“p=>q”等价的逆否命题是“非q=>非p”。它的意思是:若q不成立,则p一定不成立。这就是说,q对于p是必不可少的,因而是必要的。

(2)再看“充要条件”

若有p=>q,同时q=>p,则p既是q的充分条件,又是必要条件。简称为p是q的充要条件。记作pq

数学中,只有A是B的充要条件时,才用A去定义B,因此每个定义中都包含一个充要条件。如“两组对边分别平行的四边形叫做平行四边形”这一定义就是说,一个四边形为平行四边形的充要条件是它的两组对边分别平行。

显然,一个定理如果有逆定理,那么定理、逆定理合在一起,可以用一个含有充要条件的语句来表示。

“充要条件”有时还可以改用“当且仅当”来表示,其中“当”表示“充分”。“仅当”表示“必要”。

(4)一般地,定义中的条件都是充要条件,判定定理中的条件都是充分条件,性质定理中的“结论”都可作为必要条件。

以上就是为大家提供的“高中数学学习方法:理解“充要条件”具体概念”希望能对考生产生帮助,更多资料请咨询中考频道。

中总有那么一两道问题难度系数很低的,问题难,以拉开来不同考生的差距。遇到难题一时想不出来,可以考虑换一种,换一种思路,如果仍然没有头绪,不妨先放一放,记下题号,等后面的解答完了再回来看看,你可能会获得新的解题。最后如果仍然没有想出来的也不能放弃,是选择题就要猜测答案了,填空题也不能空着,猜测答案往上写,是大题,就要分步写,只要与问题有关,能写多少写多少。

遇到了难题,我该怎么办?

会做的题目要力求做对、做全、得,而更多的问题是对不能完整完成的题目如何分段得分。下面有两种常用方法。

一、面对一个疑难问题,一时间想不出方法时,可以将它划分为几个子问题,然后在解决会解决的部分,即能解决到什么程度就解决到什么程度,能演算几步就写几步。如从最初的把文字语言译成符号语言,把条件和目标译成表达式,设应用题的未知数,设轨迹题的动点坐标,依题意正确画出图形等,都能得分。而且可望在上述处理中,可能一时获得,因而获得解题方法。

二。有些问题好几问,每问都很难,比如前面的小问你解答不出,但后面的小问如果根基前面的结论你能够解答出来,这时候不妨先解答后面的,此时可以引用前面的结论,这样仍然可以得分。如果稍后想出了前面的解答方法,可以补上:“事实上,第一问可以如下证明”。

从题目的条件出发,通过正确的运算或推理,直接求得结论,再与选择支对照来确定选择支。

在几个选择支中,排除不符合要求的选择支,以确定符合要求的选择支。

就是取满足条件的特例(包括取特殊值、特殊点、以特殊图形代替一般图形等),并将得出的结论与四个选项进行比较,若出现矛盾,则否定,可能会否定三个选项;若结论与某一选项相符,则肯定,可能会一次,这种方法可以弥补其它方法的不足。

函数课件【篇2】

解析:设f(x)=lg x +x-2,则f(1.75)=f74=lg 74-140,f(2)=lg 20.

2.函数f(x)=x2+2x-3,x0,-2+lnx,x0的零点个数为()

解析::x0时由x2+2x-3=0x=-3;x0时由-2+lnx=0x=e2.

解析:因为f(0)=-10,f(1)=e-10,所以零点在区间(0,1)上,选C.

解析:由4x-2x+1-3=0(2x+1)(2x-3)=02x=3, x=log23.

6.函数f(x)=(x-1)(x2-3x+1)的零点是__________.

7.若函数y=x2-ax+2有一个零点为1,则a等于__________.

8.已知函数f(x)=logax+x-b(a0且a1),当234时,函数f(x)的零点为x0(n,n+1)(nN*),则n=________.

解析:根据f(2)=loga2+2-blogaa+2-3=0,

f(3)=loga3+3-blogaa+3-4=0,

则f(x)在区间(-,+)上的图象是一条连续不断的曲线.

当x=0时,f(x)=-10.当x=1时,f(x)=10.

f(0)f(1)0,故在(0,1)内至少有一个x0,当x=x0时,f(x)=0.即至少有一个x0,满足01,且f(x0)=0,故方程x2x=1至少有一个小于1的正根.

函数课件【篇3】

教学目标:

(一)教学知识点:1.对数函数的概念;2.对数函数的图象和性质.

(二)能力训练要求:1.理解对数函数的概念;2.掌握对数函数的图象和性质.

(三)德育渗透目标:1.用联系的观点分析问题;2.认识事物之间的互相转化.

由学生的预习,可以直接回答“对数函数的概念”

由指数、对数的定义及指数函数的'概念,我们进行类比,可否猜想有:

2.求指数函数的反函数.

①;

所以函数与指数函数互为反函数.

这节课我们所要研究的便是指数函数的反函数——对数函数.

因为对数函数与指数函数互为反函数.所以与图象关于直线对称.

因此,我们只要画出和图象关于直线对称的曲线,就可以得到的图象.

研究指数函数时,我们分别研究了底数和两种情形.

那么我们可以画出与图象关于直线对称的曲线得到的图象.

还可以画出与图象关于直线对称的曲线得到的图象.

请同学们作出与的草图,并观察它们具有一些什么特征?

3.图象的加深理解:

与图象关于X轴对称;与图象关于X轴对称.

一般地,与图象关于X轴对称.

(2)时,函数为减函数,

4.练习:

(1)如图:曲线分别为函数,,,,的图像,试问的大小关系如何?

这节课我们主要介绍了指数函数的反函数——对数函数.并且研究了对数函数的图象和性质.

函数课件【篇4】

二次函数复习课件

二次函数是我们在数学学习中经常会遇到的一个重要概念。它在解决实际问题中有着广泛的应用,并且在数学建模中也扮演着重要的角色。本文将详细介绍二次函数的定义、特征以及应用等方面的内容,以帮助读者更好地理解和掌握二次函数的知识。

首先,我们来了解二次函数的定义。二次函数是指具有以下形式的函数:f(x) = ax^2 + bx + c,其中a、b、c为实数且a ≠ 0。这里的a决定了二次函数的开口方向,当a > 0时,二次函数开口向上;当a

其次,我们来探讨二次函数的特征。二次函数最重要的特征之一就是顶点坐标。对于一般形式的二次函数f(x) = ax^2 + bx + c,它的顶点坐标为(-b/2a, f(-b/2a))。顶点坐标有着很重要的几何意义,它代表了二次函数的最值点,也就是函数图像的最高点或最低点。

此外,二次函数还有着其他一些重要的性质。例如,二次函数的零点是指函数图像与x轴相交的点,求解二次函数的零点可以使用因式分解、配方法、求根公式等方法。另外,二次函数还可以通过平移、伸缩、翻转等变换来产生不同的函数图像,这些变换对应着二次函数的参数a、b、c的取值。通过灵活运用这些性质,我们可以更好地理解和分析二次函数的图像。

最后,我们来了解一下二次函数在实际问题中的应用。二次函数的应用非常广泛,尤其在物理、经济、生物等领域,有着重要的作用。例如,抛物线的运动轨迹可以用二次函数来描述;经济学中的成本、收益等问题也可以用二次函数来建模;生物学中的种群增长、病毒传播等问题也可以采用二次函数来描述。因此,掌握二次函数的知识可以帮助我们更好地理解和解决实际问题。

总结起来,二次函数是数学学习中一个重要的概念,具有广泛的应用价值。它的定义、特征以及应用等方面的内容我们都进行了详细的介绍。通过学习和掌握二次函数的知识,我们可以更好地理解和解决实际问题,也能在数学建模中运用二次函数来描述和分析各种问题。希望本文对读者的学习和理解有所帮助。

函数课件【篇5】

今天我的说课题目是人教A版必修1第一章第二节《函数及其表示》。

对于这节课,我将以“教什么,怎么教,为什么这么教”为思路,从教材分析、目标分析、教学法分析、教学过程 分析和评价五个方面来谈谈我对教材的理解和教学设计,敬请各位专家、评委批评指正。

函数是中学数学中最重要的基本概念之一,函数的学习大致可分为三个阶段。第一阶段在以为教育阶段,学习了函数的描述性概念,接触了正比例函数、反比例函数、一次函数、二次函数等,本章学习的函数的概念、基本性质与后续将要学习的基本初等函数(i)和(ii)是函数学习的第二阶段,是对函数概念的再认识阶段;第三阶段在选修系列导数及其应用的学习,使函数学习的进一步深化和提高。因此函数及其表述这一节在高中数学中,起着承上启下的作用,函数的思想贯穿高中数学的始终,学好这章不仅在知识方面,更重要的是在函数思想、方法方面,将会让学生在今后的学习、工作和生活中受益无穷。

本小结介绍了函数概念,及其表示方法。我将本小节分为两课时,第一课时完成函数概念的教学,第二课时完成函数图象的教学。这里我主要谈谈函数概念的教学。

函数概念部分分用三个实际例子设计教学情境,让学生探寻变量和变量对应关系,结合初中学习的函数理论,在集合论的基础上,促使学生建构出函数概念,体验结合旧知识,探索新知识、研究新问题的快乐。

(1) 在初中,学生已经学习过函数的概念,并且知道韩式是变量间的相互依赖关系

(2) 学生思维活跃,积极性高,已经步入对数学问题的合作探究能力

根据《函数的概念》在教材中的地位与作用,结合学情分析,本节教学应实现如下教学目标:

进一步体会函数是描述变量之间的依赖关系的重要数学模型。能用集合与对应的语言刻画函数,体会对应关系在刻画函数概念中的作用

了解构成函数的要素,理解函数定义域和值域的概念,并会求一些简单函数的'定义域。

引导学生观察,探寻变量和变量的对应关系,通过归纳、抽象、概括,自主建构函数概念,体验旧知识探索新知识,研究新问题的快乐

通过对函数概念形成的探究过程培养学生发现问题,探索问题,不断超越的创新品质

重点:体会函数是描述变量之间的依赖关系的重要数学模型,正确理解函数的概念。难点:函数概念及符号y=f(x)的理解

函数课件【篇6】

本次说课主要从五个部分进行,分别是教材分析、学情分析、教学目标分析、教学重难点分析和教学设计。

首先是教材分析:

我所使用的教材选自人教20xx年版的《全日制普通高级中学教科书数学第一册(上)》,《反函数》函数部分的一个重难点,也是研究两个函数相互关系的重要内容,而反函数的概念又是其中的抽象难理解部分,因此反函数概念的学习有助于学生进一步加深对函数的认识和理解。

接着是学情分析:

高一的学生在学习反函数之前,已经对函数的概念、表示法,映射等内容有了一定的认识和了解,那么有了这些储备知识,学生在本节课的学习中可以在教师的引导下进行思考和理解,从而能较好地完成对本节课的学习。

接下来的教学目标分析是从知识与技能、过程与方法、情感与态度入手的:

知识与技能:让学生学生了解反函数的概念;通过本节课的学习会求一些简单函数的反函数过程与方法:教学上使用引导、发现法,这主要通过从具体到抽象、从特殊到一般的过渡方式来实现。

情感与态度(也就是德育目标):通过本节课的学习,能使学生发现函数内部因素相互联系,从而培养他们善于发现分析的能力,使他们学会以发现分析的目光去关注数学,以联系发展的态度去学习数学。

第四部分是教学重难点分析

本节课的教学重点放在反函数的概念、反函数的求法上,而由于反函数的概念相对抽象难理解,所以教学难点自然落在了反函数的概念理解。

下面我对第五部分的教学设计进行详细展开:我的整个教学过程分成五个环节

一、新课引入

由于反函数的概念比较抽象难理解,在概念讲解前先以具体例子入手逐步引导,这样比较符合学生的接受规律。

联系函数的三要素,通过给出的两对函数之间三要素变化的比较,让学生对反函数首先有了一个大概的认识,然后再对反函数下严格的定义并进行详细的讲解。

二、概念讲解

由于教材中给出的反函数的概念较长且较抽象,会给学生在理解上产生一定的难度,故引导学生从另外的角度分三步完成对反函数概念的理解,这样较易于学生接受和理解。

1.由函数式yf(x) xA yC,得到式子x(y)

2.根据函数的概念去说明x(y)是一个函数,其中定义域为C,值域为A.

3.下结论说明函数x(y)是函数yf(x)的反函数,并记作xf1(y),一般互换x和y,写作yf1(x).

三、通过问题的讨论加深学生对反函数的认识和理解

1.所有函数都有反函数吗?

通过两个具体的函数(在讲课的课件中有详细给出)的异同,引导分析发现并不是所有的函数都有反函数。

2.互为反函数的函数有什么关系?

通过引入部分例子分析,结合反函数的概念,引导学生从从函数的三要素出发去描述互为反函数的两函数之间的关系:

(1)对应法则互逆(2)定义域与值域互换3.yf1(x)的反函数是什么?

1在回答了第二个问题的基础上,引导学生利用以上结论发现yf(x)的反函数恰好是yf(x),即有yf(x)与yf1(x)互为反函数。

四、例题、联系相结合,归纳求反函数的方法

首先分析讲解例题中的(1)、(2),再让学生结合反函数概念的分步理解思考归纳,尝试从解题过程中总结出求已知函数反函数的一般方法。

1.找原函数的值域;

2.由原函数式解出x(y);

3.互换x和y的位置;

4.标注反函数的定义域。

简化为一句话:一找、二解、三换、四标。

本次课堂不再安排别的练习题,而让学生对照求法步骤,自行完成(3)、(4)的求解作为课堂练习。

五、课堂小结、布置作业

本节课所布置的作业是求已知函数的反函数,主要为了巩固学生对本节课知识的学习并加强对反函数求法的使用。

本节课的整个课堂设计,希望能从从新课引入到概念讲解、从概念学习到深入学习理解,实现从从具体到抽象、从特殊到一般的过渡方式。我觉得这样的设计,符合学生学习的循序渐进的接受规律,在教学过程中可以贯穿着教师引导学生讨论学习的主线,体现了教师教学的辅助作用与学生学习的主体地位。

函数课件【篇7】

各位专家、各位老师:

大家好!

今天我说课的题目是《函数的概念》,本课题是人教A版必修1中1、2的内容,计划安排两个课时,本课时的内容为:函数的概念、三要素及简单函数的定义域及值域的求法。下面我将以“学什么、怎么学、学了有何用”为思路,从教材、教法、学法、教学评价、教学过程设计、板书设计等几个方面对本节课的教学加以说明。

一、教学目标

1、课程标准

课节内容的课标要求是:

(1)通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。

(2)在实际情景中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数。

(3)通过具体实例,了解简单的分段函数,并能简单应用。

(4)通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解奇偶性的含义。

(5)学会运用函数图像理解和研究函数的性质。

2、课标解读

关于函数内容的整体定位和基本要求解读:

(1)把函数作为刻画现实世界中一类重要变化规律的模型来学习,是一种通过某一事物的变化信息可推知另一事物信息的对应关系的数学模型;

(2)强调对函数本质的认识和理解,因此要求在高中数学学习中多次接触、螺旋上升;

(3)关注背景、应用、增加了函数模型及其应用;

(4)削弱和淡化了一些内容,如函数的定义域、值域、反函数、复合函数等;

(5)注重思想和联系——增加了函数与方程、用二分法求方程的近似根;

(6)合理地使用信息技术,旨在帮助学生更好地认识和理解函数及其性质。

【依据意图】

(1)教材如此要求的根本目的是希望帮助学生更好地从整体上认识和理解函数的本质,而真正理解函数概念是不容易的。因此,不要在过于细枝末节的非本质问题上作过多的训练,有了定义域和对应关系,值域自然就定了。此外,“课标”建议先讲函数再讲映射,也是为了帮助学生把注意力集中在函数的本质理解。

(2)希望通过方程根与函数零点的内在联系,加强对函数概念、函数思想及函数这一主线在高中数学中的地位作用的认识和理解。并通过用二分法求方程近似根将函数思想以及方程的根与函数零点之间的联系具体化。

(3)二分法是求方程近似根的常用方法,更为一般、简单,能很好地体现函数思想,“大纲”只是用“三个二”解决根的分布问题。

(4)现代信息技术不能替代艰苦的学习和人脑精密的思考,信息技术只是作为达到目的的一种手段,一种快速计算的工具。

3、教材分析

(1)地位作用

函数内容是高中数学学习的一条主线,它贯穿整个高中数学学习中,其重要性体现在以下几个方面:

1、函数是高中数学七大主干知识之一,又是沟通代数﹑方程﹑不等式﹑数列、三角函数、解析几何、导数等内容的桥梁,同时也是今后进一步学习高等数学的基础;

2、函数的学习过程经历了直观感知、观察分析、归纳类比、抽象概括等思维过程,通过学习可以提高了学生的数学思维能力;

3、这一节所学习的函数概念既是对初中所学函数概念的一次升华和再认识、对集合语言的一次重要应用;又是以后继续学习函数的性质、数列等等知识的必备理论基础,在函数学习中是承上启下的关键章节。

(2)内容与课时划分

本课题是高中数学人教A版必修1中1、2节,计划教学2个课时,第一课时内容包括函数的概念、函数的三要素、简单函数的定义域及值域的求法;第二课时内容为:区间表示、较复杂函数的定义域及值域的求法、分段函数、函数图象等。本节《函数的概念》是函数这一章的起始课。概念是数学的基础,只有对概念做到深刻理解,才能正确灵活地加以应用。

4、学情分析

(1)学生在初中已经在初中学习过函数的概念。

(2)本班级学生个体差异较明显。

5、教学目标

【依据意图】:教学目标的设计,要简洁明了,具有较强的可操作性,容易检测目标的达成度,同时也要体现出新课标下对素质教育的要求。基于以上分析作为依据,课时目标分解如下:

【课时分解目标】

1、能够列举生活中具有函数关系的实例;

2、能用集合与对应的语言描述函数的定义,能对具体函数指出定义域、对应法则、值域;

3、会求一些简单函数(带根号,分式)的定义域和值域;

4、能够从函数的三要素的角度去判定两个函数是否是同一个函数。

二、教学重难点

重点:让学生体会函数是描述变量之间的相互依赖关系的重要数学模型,正确理解形成函数的概念。

难点:引导学生从具体实例抽象出函数概念。

[意图依据]:本课时是概念课,重在概念的理解和形成,但教师应把重点放在让学生形成概念的过程中,联系旧知、突破难点、生长新知。为此通过教学目标和难重点的展示,让学生明确本节课的任务及精髓,带着目标去学习,才能达到事半功倍的效果。

三、教法

问题式教学法(实例情境、启发引导、合作交流、归纳抽象)

由于本课题是从集合与对应的角度揭示函数的本质,无论难度还是跨度都有质的飞跃。根据学生的心理特征和认知规律,我通过以问题为主线,以学生为主体,以教师为主导的教学理念。采用一系列的设问、引导、启发、发现,让学生归纳、概括出函数概念的本质,并灵活应用多媒体、黑板呈现、展示、交流。

[意图依据]:函数的`概念的教学要注重以下几个方面:

(1)把集合作为一种语言;

(2)对函数本质的理解不能一步到位,要注重螺旋上升;

(3)重视信息技术的使用。为此,教师要在课堂上搭建一个平台,通过展示实例、学生举例、典例分析、小结归纳等环节穿插若干问题,引起思考,达成教学目标。

四、学法

自主探究、合作交流、展示互评

我们知道越是基础性的概念,其统摄性就越强,学生从中领悟到的数学就越本质;但事物总有两面性,这些概念的理解和掌握往往难度大、时间长,需要更多的经验积累.因此本节课在学法上我重视学生在列举大量实际背景的前提下对所给出实例观察,类比,归纳,分析,探究,合作,提炼,感悟函数概念的“本来面目”,以此培养学生发现问题、研究问题和分析解决问题的能力;同时在预习环节有学生的自主学习、在互动环节有学生的合作交流、在课后拓展环节有学生的探究学习。这样做,增加了学生主动参与的机会,增强了参与意识,教给学生获取知识的途径以及思考问题的方法,使学生真正成为教学的主体。也只有这样做,才能使学生“学”有所“思”,“思”有所“获”,“获”有所“用”。也恰好能够体现我以“学什么、怎么学、学了有何用”来设计本课题的整体思路。

[意图依据]:本课时是以问题为主线的教学过程,着重让学生经过对大量实例的剖析、了解、归纳而形成概念。在这个过程中,教师的作用是引导,经过一系列问题的提出、解决让学生在思考、交流的基础上层层深入的理解函数概念。

五、教学过程设计

本节内容的教学过程我设计为以下逐层推进六个步骤:

1、课前预习、生成问题

2、创境设问、引入课题

3、观察分析、探索新知

4、思考辨析、深刻理解

5、提炼总结、分享收获

6、布置作业、拓展延伸

函数课件【篇8】

本节课是在学生学习了《基本初等函数(Ⅰ)》的基础上,学习函数与方程的第一课时,本节课中通过对二次函数图象的绘制、分析,得到零点的概念,从而进一步探索函数零点存在性的判定,这些活动就是想让学生在了解初等函数的基础上,利用计算机描绘函数的图象,通过对函数与方程的探究,对函数有进一步的认识,解决方程根的存在性问题,为下一节《用二分法求方程的近似解》做准备.

从教材编写的顺序来看,《方程的根与函数的零点》是必修1第三章《函数的应用》一章的开始,其目的是使学生学会用二分法求方程近似解的方法,从中体会函数与方程之间的联系.利用函数模型解决问题,作为一条主线贯穿了全章的始终,而方程的根与函数的零点的关系、用二分法求方程的近似解,是在建立和运用函数模型的大背景下展开的.方程的根与函数的零点的关系、用二分法求方程的近似解中均蕴涵了“函数与方程的思想”和“数形结合的思想”,建立和运用函数模型中蕴含的“数学建模思想”,是本章渗透的主要数学思想.

从知识的应用价值来看,通过在函数与方程的联系中体验数学中的转化思想的意义和价值,体验函数是描述宏观世界变化规律的基本数学模型,体会符号化、模型化的思想,体验从系统的角度去思考局部问题的思想.

基于上述分析,确定本节的教学重点是:了解函数零点的概念,体会方程的根与函数零点之间的联系,掌握函数零点存在性的判断.

1.通过对二次函数图象的描绘,了解函数零点的概念,渗透由具体到抽象思想,领会函数零点与相应方程实数根之间的关系,

2.零点知识是陈述性知识,关键不在于学生提出这个概念。而是理解提出零点概念的作用,沟通函数与方程的关系。

3.通过对现实问题的分析,体会用函数系统的角度去思考方程的思想,使学生理解动与静的辨证关系.掌握函数零点存在性的判断.

4.在函数与方程的联系中体验数形结合思想和转化思想的意义和价值,发展学生对变量数学的认识,体会函数知识的核心作用.

1.零点概念的认识.零点的概念是在分析了众多图象的基础上,由图象与轴的位置关系得到的一个形象的概念,学生可能会设法画出图象找到所有任意函数的可能存在的所有零点,但是并不是所有函数的图象都能具体的描绘出,所以在概念的接受上有一点的障碍.

2.零点存在性的判断.正因为f(a)·f(b)<0且图象在区间上连续不断,是函数f(x)在区间上有零点的充分而非必要条件,容易引起思维的混乱就是很自然的事了.

3.零点(或零点个数)的确定.学生会作二次函数的图象,但是要作出一般的函数图象(或图象的交点)就比较困难,而在这一节课最重要的恰恰就是利用函数图象来研究函数的零点问题.这样就在零点(或零点个数)的确定上给学生带来一定的.困难.

基于上述分析,确定本节课的教学难点是:准确认识零点的概念,在合情推理中让学生体会到判定定理的充分非必要性,能利用适当的方法判断零点的存在或确定零点.

考虑到学生的知识水平和理解能力,教师可借助计算机工具和构建现实生活中的模型,从激励学生探究入手,讲练结合,直观演示能使教学更富趣味性和生动性.

通过让学生观察、讨论、辨析、画图,亲身实践,在函数与方程的联系中体验数形结合思想、转化思想的意义和价值,发展学生对变量数学的认识,体会函数知识的核心作用.

变式:解方程3x5+6x-1=0的实数根. (一次、二次、三次、四次方程的解都可以通过系数的四则运算,乘方与开方等运算来表示,但高于四次的方程不能用公式求解。大家课后去阅读本节后的“阅读与思考”,还有如lnx+2x-6=0的实数根很难下手,我们寻求新的角度——函数来解决这个方程的问题。)

设计意图:从学生的认知冲突中,引发学生的好奇心和求知欲,推动问题进一步的探究。通过简单的引导,让学生课后自己阅读相关内容,培养他的自学能力和更广泛的兴趣。开门见山的提出函数思想解决方程根的问题,点明本节课的目标。

函数课件【篇9】

一、教学目标

1.知识与技能

(1)能够借助三角函数的定义及单位圆中的三角函数线推导三角函数的诱导公式。

(2)能够运用诱导公式,把任意角的三角函数的化简、求值问题转化为锐角三角函数的化简、求值问题。

2.过程与方法

(1)经历由几何直观探讨数量关系式的过程,培养学生数学发现能力和概括能力。

(2)通过对诱导公式的探求和运用,培养化归能力,提高学生分析问题和解决问题的能力。

3.情感、态度、价值观

(1)通过对诱导公式的探求,培养学生的探索能力、钻研精神和科学态度。

(2)在诱导公式的探求过程中,运用合作学习的方式进行,培养学生团结协作的精神。

二、教学重点与难点

教学重点:探求π-a的诱导公式。π+a与-a的诱导公式在小结π-a的诱导公式发现过程的基础上,教师引导学生推出。

教学难点:π+a,-a与角a终边位置的几何关系,发现由终边位置关系导致(与单位圆交点)的坐标关系,运用任意角三角函数的定义导出诱导公式的“研究路线图”。

三、教学方法与教学手段

问题教学法、合作学习法,结合多媒体课件

四、教学过程

角的概念已经由锐角扩充到了任意角,前面已经学习过任意角的`三角函数,那么任意角的三角函数值怎么求呢?先看一个具体的问题。

(一)问题提出

如何将任意角三角函数求值问题转化为0°~360°角三角函数求值问题。

【问题1】求390°角的正弦、余弦值、一般地,由三角函数的定义可以知道,终边相同的角的同一三角函数值相等,三角函数看重的就是终边位置关系。即有:sin(a+k·360°)=sinα,

cos(a+k·360°)=cosα,(k∈Z)tan(a+k·360°)=tanα。

这组公式用弧度制可以表示成sin(a+2kπ)=sinα,cos(a+2kπ)=cosα,(k∈Z)(公式如何利用对称推导出角π-a与角a的三角函数之间的关系。

由上一组公式,我们知道,终边相同的角的同一三角函数值一定相等。反过来呢?如果两个角的三角函数值相等,它们的终边一定相同吗?比如说:

【问题2】你能找出和30°角正弦值相等,但终边不同的角吗?

角π-a与角a的终边关于y轴对称,有sin(π-a)=sina,

cos(π-a)=-cosa,(公式二)tan(π-a)=-tana。

〖思考〗请大家回顾一下,刚才我们是如何获得这组公式(公式二)的?因为与角a终边关于y轴对称是角π-a,,利用这种对称关系,得到它们的终边与单位圆的交点的纵坐标相等,横坐标互为相反数。于是,我们就得到了角π-a与角a的三角函数值之间的关系:正弦值相等,余弦值互为相反数,进而,就得到我们研究三角函数诱导公式的路线图:角间关系→对称关系→坐标关系→三角函数值间关系。

(三)自主探究

如何利用对称推导出π+a,-a与a的三角函数值之间的关系。

刚才我们利用单位圆,得到了终边关于y轴对称的角π-a与角a的三角函数值之间的关系,下面我们还可以研究什么呢?

【问题3】两个角的终边关于x轴对称,你有什么结论?两个角的终边关于原点对称呢?

角-a与角a的终边关于x轴对称,有:sin(-a)=-sina,cos(-a)=cosa,(公式三)tan(-a)=-tana。

角π+a与角a终边关于原点O对称,有:sin(π+a)=-sina,

cos(π+a)=-cosa,(公式四)tan(π+a)=tana。

上面的公式一~四都称为三角函数的诱导公式。

(四)简单应用

例求下列各三角函数值:

(1)sinp;(2)cos(-60°);(3)tan(-855°)(五)回顾反思

【问题4】回顾一下,我们是怎样获得诱导公式的?研究的过程中,你有哪些体会?知识上,学会了四组诱导公式;思想方法层面:诱导公式体现了由未知转化为已知的化归思想;诱导公式所揭示的是终边具有某种对称关系的两个角三角函数之间的关系。主要体现了化归和数形结合的数学思想。具体可以表示如下:

(六)分层作业

1、阅读课本,体会三角函数诱导公式推导过程中的思想方法;2、必做题课本23页133、选做题

(1)你能由公式二、三、四中的任意两组公式推导到另外一组公式吗?

(2)角α和角β的终边还有哪些特殊的位置关系,你能探究出它们的三角函数值之间的关系吗?

函数课件【篇10】

一、教材分析

1、教材的地位与作用:《同角三角函数的基本关系》是学习三角函数定义后安排的一节继续深入学习的内容,是求三角函数值,化简三角函数式,证明三角恒等式的基本工具,是整个三角函数的基础,起承上启下的作用,同时,它体现的数学思想方法在整个中学学习中起重要作用。

2、教学目标的确定及依据

A、知识与技能目标:通过观察猜想出两个公式,运用数形结合的思想让学生掌握公式的推导过程,理解同角三角函数的基本关系式,掌握基本关系式在两个方面的应用:

1)已知一个角的一个三角函数值能求这个角的其他三角函数值;

2)证明简单的三角恒等式。

B、过程与方法:培养学生观察——猜想——证明的科学思维方式;通过公式的推导过程培养学生用旧知识解决新问题的思想;通过求值、证明来培养学生逻辑推理能力;通过例题与练习提高学生动手能力、分析问题解决问题的能力以及其知识迁移能力。

C、情感、态度与价值观:经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣。

3、教学重点和难点

重点:同角三角函数基本关系式的推导及应用。

难点:同角三角函数函数基本关系在解题中的灵活选取及使用公式时由函数值正、负号的选取而导致的角的范围的讨论。

二、学情分析:

学生刚开始接触三角函数的内容,学习了任意角的三角函数,对这一方面的内容既感到新鲜又感到陌生,很有好奇心,跃跃欲试,学习热情高涨。

三、教法分析与学法分析:

1、教法分析:采取诱思探究性教学方法,在教学中提出问题,创设情景引导学生主动观察、思考、类比、讨论、总结、证明,让学生做学习的主人,在主动探究中汲取知识,提高能力。

2、学法分析:从学生原有的知识和能力出发,在教师的带领下,通过合作交流,共同探索,逐步解决问题.数学学习必须注重概念、原理、公式、法则的形成过程,突出数学本质。

四、教学过程设计

例1、设计意图:已知一个角的某一个三角函数值,便可运用基本关系式求出其它三角函数值。在求值中,确定角的终边位置是关键和必要的。有时,由于角的终边位置的不确定,因此解的情况不止一种。本题主要利用的数学解题思想是:分类讨论

例2、设计意图:

(1)分子、分母是正余弦的一次(或二次)齐次式,注意所求值式的分子、分母均为一次齐次式,把分子、分母同除以 ,将分子、分母转化为 的代数式;还可以利用商数关系解决。

(2)“化1法”,可利用平方关系 ,将分子、分母都变为二次齐次式,再利用商数关系化归为 的分式求值;

五、教学反思:

如此设计教学过程,既复习了上一节的内容,又充分利用旧知识带出新知识,让学生明白到数学的知识是相互联系的,所以每一节内容都应该把它牢固掌握;在公式的推导中,教师是用创设问题的形式引导学生去发现关系式,多让学生动手去计算,体现了&qut;教师为引导,学生为主体,体验为红线,探索得材料,研究获本质,思维促发展&qut;的教学思想。通过两种不同的例题的对比,让学生能够明白到关系式中的开方,是需要考虑正负号,而正负号是与角的象限有关,角的象限题目可以直接给出来,但有时是需要已知条件来推出角可能所在的象限,通过分析,把本节课的教学难点解决了。

由于课堂在完成例题及变式时要给予学生充分的时间思考与尝试,故对学生的检测只能安排在课后的作业中,作业可以检测学生对本节课内容掌握的情况,能否灵活运用知识进行合理的迁移,可以发现学生在解题中存在的问题,下节课教师再根据学生完成的情况加以评讲,并设计相应的训练题,使学生的认识再上一个台阶。

函数课件【篇11】

教学目标:

1.在初中学习一次函数、二次函数的性质的基础上,进一步感知函数的单调性,并能结合图形,认识函数的单调性;

2.通过函数的单调性的教学,渗透数形结合的数学思想,并对学生进行初步的辩证唯物论的教育;

3.通过函数的单调性的教学,让学生学会理性地认识与描述生活中的增长、递减等现象.

教学重点:

用图象直观地认识函数的单调性,并利用函数的单调性求函数的值域.

教学过程:

一、问题情境

如图(课本37页图2-2-1),是气温关于时间t的函数,记为=f (t),观察这个函数的图象,说出气温在哪些时间段内是逐渐升高的或是下降的?

问题:怎样用数学语言刻画上述时间段内“随时间的增大气温逐渐升高”这一特征?

二、学生活动

1.结合图2―2―1,说出该市一天气温的变化情况;

2.回忆初中所学的有关函数的性质,并画图予以说明;

3.结合右侧四幅图,解释函数的单调性.

三、数学建构

1.增函数与减函数:

一般地,设函数=f(x)的定义域为A,区间IA.

如果对于区间I内的任意两个值x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说=f(x)在区间I是单调增函数,区间I称为=f(x)的`单调增区间.

如果对于区间I内的任意两个值x1,x2,当x1<x2时,都有f(x1)>f(x2),那么就说=f(x)在区间I是单调减函数,区间I称为=f(x)的单调减区间.

2.函数的单调性与单调区间:

如果函数=f(x)在区间I是单调增函数或单调减函数,那么就说函数=f(x)在区间I上具有单调性.

单调增区间与单调减区间统称为单调区间.

注:一般所说的函数的单调性,就是要指出函数的单调区间,并说明在区间上是单调增函数还是单调减函数.

四、数学运用

例1 画出下列函数的图象,结合图象说出函数的单调性.

1.=x2+2x-12.=2x

例2 求证:函数f(x)=-1x-1在区间(-∞,0)上是单调增函数.

练习:说出下列函数的单调性并证明.

1.=-x2+22.=2x+1

五、回顾小结

利用图形,感知函数的单调性→给出单调性的严格意义上的定义→证明一个函数的单调性.

六、作业

课堂作业:课本44页1,3两题.

函数课件【篇12】

正比例函数是本章的重点内容,是学生在初中阶段第一次接触的函数,这部分内容的学习是在学生已经学习了变量和函数的概念及图像的基础之上进行的。它是对前面所学知识的应用,又为后面学习做好铺垫。因此,本节课的知识起到了承上启下的作用。

学习本节课之前,学生已经学习了变量和函数等知识。在描点法的学习中初步感受了通过描点法画出图象,并感知其增感性的过程,为本节课新知识的学习做好准备,所以本节课的学习问题不大。

知识技能:1、初步理解正比例函数的概念及其图象的特征。2、能画出正比例函数的图象。3、能够判断两个变量是否构成正比例函数关系。

数学思考:1、通过“燕鸥飞行路程问题”的研究,体会建立函数模型的.思想。2、通过正比例函数图像的学习和探究,感知数行结合思想。

解决问题:1、能够要求运用“列表法”和“两点法”作正比率函数的图象。2、会利用正比例函数解决简单的数学问题。

情感态度:1、结合描点作图,培养学生认真、细心、严谨的学习态度和学习习惯。2、通过正比率函数概念的引入,使学生进一步认识数学是由于人们需要而产生的,与现实世界密切相关。同时渗透热爱自然和生活的教育。

函数的课件


居安思危,思则有备,有备无患。当幼儿园教师的教学任务遇到困难时,往往都需要参考一下我们提前准备参考资料。资料所覆盖的面比较广,可以指学习资料。参考资料我们接下来的学习工作才会更加好!你是否收藏了一些有用的幼师资料内容呢?于是,小编为你收集整理了函数的课件。欢迎阅读,希望你能阅读并收藏。

函数的课件【篇1】

函数是数学中最重要的基本概念之一,它揭示了现实世界中数量关系之间相互依存和变化的实质,是刻画和研究现实世界变化规律的重要模型。托马斯称:函数是现代数学思想之花。

《集合与函数概念》一章在高中数学中起着承上启下的作用。本课学习的函数概念及其反映出来的数学思想方法已广泛渗透到数学的各个领域,是进一步学习数学的重要基础。函数的思想方法贯穿了高中数学课程的始终。

本小节是继学习集合语言之后,运用集合与对应语言,在初中学习的基础上,进一步刻画函数概念,目的是让学生认识到它们优越性,从根本上揭示函数的本质。因此本课的教学重点是:学会用集合与对应语言刻画函数概念,进一步认识函数是描述客观世界中变量间依赖关系的数学模型。

1.正确理解函数的概念,会用集合与对应语言刻画函数。通过实例分析,体会对应关系在刻画函数概念中的作用;强化数学的应用与建模意识;培养学生的学习兴趣。

2.理解函数三要素,会求简单函数的定义域。通过例题教学与练习,培养归纳概括能力。

3.理解符号y=f(x)的含义,明确f(x)与f(a)的区别与联系。体会函数思想,代换思想,提高思维品质。

本堂课作为一堂公开课,我曾在多个班级试教。主要问题有:

首先,由三个实例归纳共性会遇到困难。原因是由具体实例到抽象的数学语言,要求学生具备较强的归纳概括能力;而对高一学生抽象思维能力相对较弱。

其次,学生不容易认识到函数概念的整体性。原因是把函数单一地理解成函数中的对应关系,甚至认为函数就是函数值。

第三,函数符号y=f(x)比较抽象,学生难以理解。

因此本课的教学难点是:1、从主观知识抽象成为客观概念。2、函数符号y=f(x)的理解。

在初中学生已学习了变量观点下的函数定义,具体研究了几类最简单的函数,对函数并不陌生;学生已经会把函数看成变量之间的依赖关系;同时,虽然函数概念比较抽象,但函数现象大量存在于学生周围,学生能列举出函数的实例,已具备初步的数学建模能力。                                                        我们目前所教的学生经历了初中新课程改革,他们普遍思维活跃,表达能力强,有较强的独立解决问题的能力。在平时的学习过程中,他们更喜欢教师创造疑问,然后自己想办法解决问题,通过教师的启发点拨,学生以自己的努力找到解决问题的方法。学生作为教学主体随时对所学知识产生有意注意,努力思索解决疑问的方式,使自己的能力通过教师的点拨得到发挥。

针对学生这一学习方式,我们在教学过程中从学生已有的知识经验出发,让学生明白新问题产生的背景,引导学生对三个实例进行分析,然后归纳共性,抽象出用集合与对应语言刻画的函数概念。其间采用了多媒体动画演示、教师引导、学生探究、讨论、交流一系列活动,让学生感到“概念的.得出是水到渠成的,自然的而不是强加于人的”。

对函数概念的整体性的理解,通过设计“想一想”、“练一练”、“试一试”等问题情景激发学生积极参与,在问题解决的过程中巩固函数概念。而对函数符号y=f(x),则让学生分析实例和动手操作,来认识和理解符号的内涵;并进一步渗透函数思想、代换思想。如三个实例用统一的符号表示、例4中计算当自变量是数字、字母不同情况时的函数值。让学生在做数学中领会含义,学会解题方法,提高解决问题的能力。

《标准》提倡运用信息技术呈现以往教学难以呈现的课程内容,数学的理解需要直观的观察、视觉的感知,特别是几何图形的性质,复杂的计算过程,函数的动态变化过程、几何直观背景等,若能利用信息技术来直观呈现使其可视化将会有助于学生的理解。本节课将充分利用信息技术支持课堂教学。

1、   多媒体动画演示炮弹发射。在形象生动的情景中感受高度h随时间t的变化而变化的运动规律。

2、   用几何画板画出h=130t-5t2的图象。在图象上任取一点P(t,h),然后拖动点P的位置,观察点P的横坐标t与纵坐标h的变化规律。

3、   制作幻灯片展示问题情景。

函数的课件【篇2】

一.内容和内容解析

【内容】变量与函数的概念

【内容解析】

“14.1变量与函数”是人教版义务教育课程标准实验教科书八年级上册第十四章第一单元,本设计是第1课时,引导学生从生活实例中抽象出常量、变量与函数等概念,其中函数的概念是本节核心内容.函数概念的核心是两个变量间的特殊对应关系:(1)由哪一个变量确定另一个变量;(2)唯一对应关系.如果直接研究某个量y有一定困难,我们可以去研究另一个与之有关的量x,从而达到研究的目的.这也是一种化繁为简的转化思想.

本节课是函数入门课,首先必须准确认识变量与常量的特征,初步感受到现实世界各种变量之间联系的复杂性,同时感受到研究主要从化繁就简入手,在初中阶段主要研究两个变量之间的特殊对应关系.本设计把重点放在认识“两个变量间的特殊对应关系:由哪一个变量确定另一变量;唯一确定的含义.” 而函数图象较为直观形象,有助于学生理解函数的概念,因此把函数图象中的部分内容提前到本课时学习.

二.目标和目标解析

【目标】理解常量、变量与函数的概念.

【目标解析】

(1)借助简单实例,学生初步感知用常量与变量来刻画一些简单的数学问题,能指出具体问题中的常量、变量.初步理解存在一类变量可以用函数方式来刻画,能举出涉及两个变量的实例,并指出由哪一个变量确定另一个变量,这两个变量是否具有函数关系.初步理解对应的思想,体会函数概念的核心是两个变量之间的特殊对应关系,能判断两个变量间是否具有函数关系.

(2)借助简单实例,引领学生参与变量的发现和函数概念的形成过程,体会从生活实例抽象出数学知识的方法,感知现实世界中变量之间联系的复杂性,数学研究从最简单的情形入手,化繁为简.

(3)从学生熟悉、感兴趣的实例引入课题,引领学生参与变量的发现和函数概念的形成过程,体验“发现、创造”数学知识的乐趣.学生初步感知实际生活蕴藏着丰富的数学知识,感知数学是有用、有趣的学科.

三、教学问题诊断分析

变量与函数的概念把学生由常量数学的学习引入变量数学学习中.学生知道代数式中的字母可以表示数,方程中的未知数求出来后也是一个“已知数”,从“静态”的角度理解字母所表示的数,另外,学生在日常生活中也接触到函数图象、两个变量的关系等朴素的函数关系的生活实例.但是学生初次接触函数的概念,难以理解定义中“唯一确定”的准确含义.

【教学重点】借助简单实例,从两个变量间的特殊对应关系抽象出函数的概念.

【教学难点】怎样理解“唯一对应”.

四、教学过程设计

(一)导言:

1.《名侦探柯南》中有这样一个情景:柯南根据案发现场的脚印,锁定疑犯的身高.你知道其中的道理吗?

2.我们班中同学A与职业相扑运动员,谁的饭量大?你能说明理由吗?

问题1中都涉及两个量的关系,脚印确定,对应的身高有多个取值;问题2涉及多个量的关系.这一节课我们研究两个量的关系,研究怎样由一个量来确定另一个量.

【设计意图】从学生的生活入手,开门见山,在极短的时间(一两分钟)内指明本节课的学习内容.现实世界中各种量之间的联系纷繁复杂,应向学生说明我们数学的研究方法是化繁就简,本节课只关注一类简单的问题.

(二)概念的引入

1.票房收入问题:每张电影票的售价为10元.

(1)若一场售出150张电影票,则该场的票房收入是 元;若售出205张、310张呢?

(2)若一场售出x张电影票,则该场的票房收入y元,则y= .

思考:

(1)票房收入随售出的电影票变化而变化,即y随的变化而变化;

(2)当售出票数x取定一个确定的值时,对应的票房收入y的取值是否唯一确定?

2.成绩问题:如图是某班同学一次数学测试中的成绩登记表:这一次数学测试中,13号的成绩为______;15号的成绩为______;16号的成绩为______;23号的成绩为______.

思考:

(1)测试成绩随________的变化而变化;

(2)任意确定一个学号x,对应的成绩f的取值是否唯一确定?

3.气温问题:图一是抚顺春季某一天的气温T随时间t变化的图象,看图回答:

(1)这天的8时的气温是 ℃,14时的气温是 ℃,最高气温是 ℃,最低气温是 ℃;

(3)这一天中,在4时~12时,气温( ),在16时~24时,气温( ).

A.持续升高 B.持续降低 C.持续不变

思考:

(1)天气温度随的变化而变化,即T随的变化而变化;

(2)当时间t取定一个确定的值时,对应的温度T的取值是否唯一确定?

【设计意图】这三个问题中都含有变量之间的单值对应关系,通过研究这些问题引出常量、变量、函数等概念,通过这种从实际问题出发开始讨论的方式,使学生体验从具体到抽象地认识过程.问题的形式有填空、列表、求值、写解析式、读图等,隐含着在函数关系中表示两个变量的对应关系有解析法、列表法、图象法.

(三)概念的界定

思考:上述三个问题中,分别涉及哪些量的关系?通过哪一个量可以确定另一个量?

在上面的三个问题中,其中一个量的变化引起另一个量的变化(按照某种规律变化),变化的量叫做变量;有些量的值始终不变(例如电影票的单价10元……).并且当其中一个变量取定一个值时,另一个变量就随之确定,且它的对应值只有一个.

教师根据学生的回答,在黑板上板书:

师生对上述三个问题进行分析,找出它们的共性,归纳出函数的概念.

【设计意图】(1)如何把具体的实例进行抽象,形式化为数学知识是本课的关键.这里提出的问题“上述三个问题中,分别涉及哪些量的关系?通过哪一个量可以确定另一个量?”是一个关键的“脚手架”,借助“脚手架”,学生经历数学概念的形成过程,引导学生认识为什么要引进变量、常量、函数的概念,逐步了解如何给数学概念下定义.(2)此处板书是“脚手架”的重要组成部分,揭示“两个量的对应关系”.

问题回顾:指出前面三个问题中涉及到的量,并指出其中的变量、常量、自变量与函数.

【设计意图】巩固常量、变量、自变量、函数的概念.

例1 一个三角形的底边为5,这一边上的高h可以任意伸缩.

(1)高h的变化会引起三角形中哪些量发生变化?这些变量是高h的函数吗?

(2)试求面积s随h变化的关系式,并指出其中的'常量、变量与自变量。

例2如果用r表示圆的半径,半径r的变化会引起圆中哪些量发生变化?这些变量是半径r的函数吗?

【设计意图】例1、例2的引入用几何画板做动态演示.此两例引导学生体会几何问题中两个变量在动态变化过程中的依存关系.

例3 问题1中,售出票数是票房的函数吗?问题2中,学号x是成绩f的函数吗?

【设计意图】(1)引导学生从逆向思维的角度进行思考,更全面地理解函数的概念.(2)培养学生逆向思维的习惯.(3)让学生对这三个问题留下更深刻的印象,特别是“成绩问题,”它将在函数这一章书的教学中反复被引用,帮助学生深入理解函数的概念.

(四)概念巩固

1.购买一些签字笔,单价3元,总价为y元,签字笔为x支,根据题意填表:

(1)y随x变化的关系式y = , 是自变量, 是 的函数;

(2)当购买8支签字笔时,总价为 元.

2.周末,小李8时骑自行车从家里出发,到野外郊游,16时回到家里.他离开家后的距离s(千米)与时间t(时)的关系如图所示.

(1)当t=12时,s=________;当t=14时,s=________;

(2)小李从______时开始第一次休息,休息时间为____小时,此时离家______千米.

(3)距离s是时间t的函数吗?时间t是距离s的函数吗?

函数的课件【篇3】

§5 简单的幂函数(第1课时)

交大二附中

刘正伟

一、课标三维目标:

1.知识技能:了解简单幂函数的概念;通过具体实例了解幂函数的图象和性质,并能进行初步的应用.2.过程与方法:通过作函数图像,让学生体会幂函数图像的特点,会利用定义证

明简单函数的奇偶性,了解利用奇偶性画函数图像和研究函数的方法。

3.情感、态度、价值观:进一步渗透数形结合与类比的思想方法;培养从特殊归

纳出一般的意识,体会幂函数的变化规律及蕴含其中的对称性。

二、教学重点与难点:

重点:幂函数的概念,函数奇、偶性的概念。

难点:判断函数的奇偶性。

三、学法指导:

通过数形结合,类比、观察、思考、交流、讨论,理解幂函数的概念和函数的奇偶性。

四、教学方法:

对奇偶性要求不高,题目不需要过难,尽量用多媒体和计算机画函数的图像,重在从图上看出图像关于谁对称,着重从对称的角度应用这一性质,培养学生自己归纳总结的能力。

五、教学过程:

(一)创设情境(生活实例中抽象出几个数学模型)

1.如果张红购买每千克1元的蔬菜x千克,那么她需要付的钱数 p=x元,这里p是s的函数.2.如果正方形的边长为a,那么正方形的面积S=a2,这里S是a的函数.3.如果正方体的边长为a,那么正方体的体积V=a3,这里V是a的函数

4.如果正方形场地的面积为S,那么正方形的边长a=S1/2,这里a是S的函数.5.如果某人t s内骑车行进了1km,那么他骑车的平均速度 v=t-1km/s,这里v 是t的函数.【思考】上述函数解析式有什么形式特征?具有什么共同点?(教师将解析式写成指数幂形式,以启发学生归纳,板书课题并归纳幂函数的定义。)

(二)探究幂函数的概念、图象和性质

1.幂函数的定义

如果一个函数,底数是自变量x,指数是常量α,即y = x,这样的函数称为幂函数.如

α【练】为了加深对定义的理解,让学生判别下列函数中有几个幂函数?

212x2(1)y=x+x(2)y=(3)y=2(4)y=2(5)y=2x(6)y=x3xx 22.幂函数的图象和性质

【1】通过几何画板演示让学生认识到,幂函数的图象因a的不同而形状各异 【2】引导学生从5个具体幂函数的图象入手,研究幂函数的性质

① 画出yx,yx,yx,yx,yx1的图象(重点画y=x3和y=x1/2的图象----学生画,再用几何画板演示)

2312

学生活动:1.学生自己说出作图步骤,交流讨论单调性。

学生活动:2.观察交流,分析图像还有那些特点?

3.观察函数值和自变量取值有什么特点?

我们还可以看到,f(x)=x3 的图像关于原点对称.并且对任意的x,f(-x)=(-x)3=-x3,即f(-x)=-f(x).

(三)奇函数、偶函数的定义

一般地,图像关于原点对称的函数叫作奇函数,即f(-x)=-f(x);反之,满足f(-x)=-f(x)的函数y=f(x)一定是奇函数。

2学生通过类比,自己找出偶函数的定义,可以建议利用y=x的图像特征?

一定是偶函数。

当函数f(x)是奇函数或偶函数时,称函数具有奇偶性。例1:画出下列函数的图像,判断奇偶性.(1)f(x)=-3x-1;

(2)f(x)= x2,x∈﹙-3,3〕

(3)f(x)= x2-3

;(4)f(x)= 2(x+1)2+1 图像关于y轴对称的函数叫作偶函数,即f(-x)=f(x);反之,满足f(-x)=f(x)的函数y=f(x)学生活动:思考讨论:

1.总结奇偶性对函数定义域的要求.2.总结利用图像法判断函数奇偶性

(四)根据定义法判断奇偶性

例2.判断f(x)=-2x5 和g(x)= x4 +2的奇偶性.

由于从图像上进行观察是一种常用而又较为粗略的方法,严格的说,它需要根据奇偶函数的定义进行证明。

学生自己先动手证明,教师一旁指导。要注意书写规范,并讨论交流定义法证明的步骤。

例3学生活动:动手实践

在图2-28 中,只画出了函数图象的一半,请你画出它们的另一半,并说出画法的依据.

结论:

在研究函数时,如果知道其图像具有关于原点或y轴对称的特点,那么我们可以先研究它的一半,再利用对称性了解另一半,从而可以减少工作量.

六.归纳小结:(学生自己交流总结)

1.本节课学习的主要知识是什么?

2.如何确定函数的奇偶性,其定义域有何特征?

3.思考讨论填写常用幂函数规律表。

七.作业:课本第50页A组1(2),2,3(1)(2),4

选做:B组、第2题

八.板书设计:

简单的幂函数

α一. 定义:形如y = x,α是常量.二. 奇、偶函数的定义: 三. 定义证明奇偶性。(教师板演)

八.教学反思:

函数的课件【篇4】

反比例函数是继一次函数学习之后又一类新的函数,它位居初中阶段三大函数中的第二,区别于一次函数,但又建立在一次函数基础之上,而又服务于以后更高层次函数的学习,以及为函数、方程、不等式间关系的处理奠定了基础。函数本身是数学学习中的重要内容,而反比例函数则是基础函数。具体老师评课如下:

刘霞:通过反比例函数的应用使学生明确函数、方程、不等式是解决实际问题的三种重要的数学模型,它们之间有着密切联系,并在一定的条件下可以互相转化。

在本节课的复习过程中,渗透着建模思想、函数思想、数形结合思想、方程以及方程组的思想,这些思想也为后面学习二次函数的应用奠定了基础。

而利用反比例函数解决实际问题的基本步骤是通过对例题的解题过程进行归纳总结而得到的结论。它遵循了从“具体到抽象再到具体”的认知规律,蕴含了从“特殊到一般再到特殊”的推理方法。对今后学习数学有着重要的指导意义。

孙法圣:巩固反比例函数的概念,会求反比例函数表达式并能画出图象。 巩固反比例函数图象的变化及性质并能运用解决某些实际问题。

李杰:可以说从复习课的角度来说这样安排教学目标是恰如其分的,使数学教学课标要求当中的了解、掌握、直至应用都考虑到了体现。

牛媛:首先通过提问的方式梳理有关反比例函数的知识点(如:定义,表示法,图像性质),形成知识体系。尔后给出三道例题,学生做完后由学生板演再师生共同分析,最后学生再完成自我测验题。(冯老师精心设计本节课教学内容并通过印刷试卷给予呈现。)通过这些难度不同的习题来渗透反比例函数的相关知识与性质以及数学思想方法。使基础薄弱的学生能听得懂做一些,也使学有余力的学生学习能力得到进一步的提升,面向全体,使每一位学生都学有所得,另一方面也符合学生的认知特点和认知规律。

梁淑祯:应该说冯老师能较好地完成了本节课的教学任务,实现了既定的教学目标,达到了一定的教学效果,数学思想方法都能从例题教学中得到了体现。总体上落实以教师为主导,学生为主体,练习为主线的复习课教学模式。

在教学基本功方面:冯老师深入研读课标,钻研教学大纲,吃透教材,形成自己独到的见解,把握教材准确、恰当,难易适中,重点空出,紧紧抓住数形结合的思想来求解有关反比例函数的应用问题。

板书工整有示范性,有启发性,如在学生板演出现错误时给予及时纠正并用彩色笔加以区别经引起学生的特别注意。灵活地把黑板分成4大板面,内容紧凑

又分明、清晰,主板书和副板书一目了然。个人以为在学生不能很好地完成书写过程时,教师不应把板演的任务交给学生,虽说教师已加以修改和订正,但看起来已经不够整洁,也不美观。这样在一定程度上就降低了板书对示范性和启发性要求。

教师上课娓娓道来,循循善诱,声音柔和,具有校强的语言功底,这有利于学生静心思考,与学生容易形成思维的碰撞,易于与学生达到心灵上的勾通,交流。不过引起注意是要多注视数学语言的生动有趣、简洁明了、富于启发的.特点,特别当学生情绪处于低落之时,若能制造轻松愉快的课堂氛围,就更有利于学生的思考。当学生在思维处于山重水复疑无路时,教师应适时加以启发以让学生的思维得到进一步的深入,以期达到柳岸花明又一春的境界,这样也许更好。

教师具有较强地把握课堂的能力,得心应手地实施教学设想。

教师从概念入手引发性质,步步为营,有利于知识重组,形成知识体系,然后抛出例题由学生解答,学以致用。

教师首先提问学生反比例函数的定义及性质如:图像的位置、单调性、函数表达式的两种表示方式(少了一种,应有三种),由学生共同回答,当学生无法回答出反比例函数当k 的值互为相反数时图像的两支关于x轴或y轴成轴对称(最好补充关于原点成中心对称)时,老师能给予及时的启发,让学生的思维得以顺利地进行(启发略嫌生涩)。接着进入典型例题的讲解,例题1两个小题是关于反比例函数解析式的求解以及实际的应用,其中涉及到解析式两个解取一个的情况,另一个解是负数不合实际意义,要舍去。解析式的求法用到了待定系数法,根据过函数反比例函数图像上任意一点作x轴或y轴的垂线,以垂足、该点和原点这三个点为顶点的三角形的面积的两倍就是k绝对值。若设这一点的坐标为(a,b),则k=ab。教师在讲解完该题时若能及时给予归纳就有画龙点睛的作用了,也更有深入浅出之意境,这样将大大提高了学生掌握和应用知识的能力。另外教师采用由学生到黑板析演的方式,而不是先由自己板书再让学生做下面第二题时再让学生板书,有暴露学生解题过程之不足之意,此种做法的效率个人以为有待于进一步商榷。

复习旧知时由学生一人主讲,让其他学生补充的方式。复习完旧知时,教师在不改变例题作用和降低例题使用效果的情况把三道例题结合为一道大例题,这样能节省学生因审题而花费的时间,也使题目的从易到难,层层深入,步步为营,同时照顾到了全体学生,使每个学生都能学有所获,也能让本节课不至于太沉闷。尔后,在讲解完例题后,还可留出一些时间给学生归纳反比例函数解题时所涉及的思想方法,让数学思想方法成为学生学习数学的导航器。

函数的课件【篇5】

人教版 数学 八年级 上册

第十四章

一次函数

§14.1.2 函数

案 设 计 说 明

江西省赣州市文清实验学校 谢志华

【教学设计说明】

这节课本着以观察为起点,以问题为主线,以培养能力为核心的宗旨;遵照教师为主导,学生为主体,训练为主线的教学原则;遵循特殊到一般,具体到抽象,由浅入深,由易到难的认识规律。整个教学过程突出以下构想:(1).创设情境,引人入胜

首先根据学生的认知基础,播放一组生活中熟悉的体现运动变化的课件视频与图片,激发学生的求知欲,使学生感知变量和函数的存在和意义,体会变量之间的相互依存关系和变化规律,为新课的开展创设良好的教学氛围,同时培养学生从数学的角度观察生活,思考问题的能力。

(2).过程凸现,紧扣重点

函数概念的形成过程是本节的重点。所以本节突出概念形成过程的教学。首先列举学生熟悉例子,引导学生从实例中观察分析探索变量之间的规律,抽象出函数的概念。然后提出注意问题,帮助学生把握概念的本质特征,再通过生活中的函数举例进一步理解函数的概念,最后引导学生运用概念并及时反馈,同时在概念的形成过程中,着意培养学生观察分析抽象概括的能力。引导学生从运动变化的角度看问题时,向学生渗透唯物主义观点的教育。(3).动态显现,化难为易

本节课的难点是理解函数概念。教学活动中充分利用多媒体有声有色有动感的画面,使抽象的问题形象化,静态方式的动态化,直观深刻地揭示函数概念的本质。不仅叩开学生的思维之门,也打开他们的心灵之窗,使他们在欣赏享受中,在美的熏陶中主动地轻松愉快地获得新知。

(4).例子展现,多方渗透

为了使抽象的概念具体化,通俗易懂,本节列举了大量的生活中的例子和其他学科中的例子,培养学生的发散思维,加强学科间的渗透,知识间的联系,也增强学生学数学的意识。

函数的课件【篇6】

函数的概念教学设计说明

一、本质、地位、作用分析:

函数这一章在高中数学中,起着承上启下的作用,本节《函数的概念》是函数这一章的起始课.它上承集合,下引性质.是派生数学概念的强大“固着点”.本节在复习初中函数概念的基础上,用集合和对应的观点来研究函数,加深对函数概念的理解,为高中后续课程的学习打下基础,函数的概念将贯穿整个高中数学的始终,渗透到数学的各个领域。

二、教学目标分析

我们生活的世界时刻都在发生变化,变化无处不在.这些变化着的现象都可以用数学有效地描述它们的变化规律.函数正是描述客观世界变化规律的重要数学模型,通过函数模型可以帮助我们科学地预测将发生什么,进而解决实际问题.因此,学习函数知识对研究客观世界、掌握事物变化规律具有重要的意义.教科书采用了从实际例子中抽象概括出用集合与对应的语言定义函数的方式介绍函数概念.这样不仅为学生理解函数概念打了感性基础,而且注重培养了学生的抽象概括能力,启发学生运用函数模型表述、思考和解决现实世界中蕴涵的规律,逐渐形成善于提出问题的习惯,学会数学表达和交流,发展数学应用意识.本课主要是从两集合间对应来描绘函数的概念,是一个抽象过程,学生学习可能有所不适应.教学中宜逐步设计合理的阶梯,从实际问题逐步建构函数的初步定义,对函数的概念的研究遵循“直观感知、抽象概括”的认知过程展开,学生在对生活中的实例观察感知基础上,借助帮助学生总结它们的共同特征得出定义,构建函数的一般概念,并通过辨析问题深化对定义的理解,这样就避免了学生死记硬背概念,有利于理解数学概念的本质。使学生更好地参与教学活动,展开思维,体验探索的乐趣,增强学习数学的兴趣.为更好地巩固函数的概念,设置了有梯度的例题,例1的三个小题都是选择题,第一小题重点考察是变量x与y是否具有函数关系,紧扣定义,验证定义即可;第二小题考察从集合A到集合B的函数应该满足什么条件,方法一可以通过定义验证对于集合A中的每一个元素,在集合B中是否有元素而且是唯一的元素与之相对应;另一种方法是从集合A到集合B的函数,其特点是:A就是函数 的定义域,B包含函数的值域,值域可以变化,只要是B的子集即可。如果条件“从A到B的函数”改为“以A为定义域,以B为值域的函数”,学生应当注意这道题变化前后的区别,再次加深函数的概念的理解;第三个题考察函数相等的条件,了解函数的三要素是定义域、对应关系和值域,而三者中起决定因素的是定义域和对应关系,使学生对于函数有直观的认识。例2是一道解答题,考察求函数的定义域问题,函数问题首要考虑定义域,这是研究函数的值域,单调性等一些性质的前提,所以函数的定义域显得尤为重要,本例的意图是让学生总结如何求函数的定义域;例3是求函数值问题,旨在让学生明白f(a)与f(x)的区别,真正理解函数;最后设计了一道易错题,考察含参问题一定要注意分类讨论。这四个题都是学生自己讨论、自己写出解题过程、自己讲解,最后教师点评。

整个教学过程主要是对函数概念的探究和应用。通过对概念的探究,不仅培养和提高了学生对抽象问题的感知和概括能力,而且通过对函数概念的感性认识进一步让学生认识到数学和生活密不可分,数学来源于生活并服务于生活,加深了学生学习数学的兴趣。

三、教学问题诊断:

(1)班级学生状况分析:

1.在学习本节课之前,学生在初中已经学习了函数的概念,对函数已经有了一些直观的认识;

2.学生已具有小组合作学习的经验,能积极参与讨论,对高效课堂的学习模式已经熟悉,但部分学生课前预习抓不住重点,自学能力不强;

3.少部分学生能从初中所学的函数的概念再加上生活中一些函数模型学习本课,大部分学生对于抽象的、不可触摸的函数概念理解不透彻,不知道怎么应用,因此我们采取对生活中常见的三类例子进行分析,从实际例子中抽象概括出用集合与对应的语言定义函数的方式介绍函数概念.这样不仅为学生理解函数概念打了感性基础,而且注重培养了学生的抽象概括能力,启发学生运用函数模型表述、思考和解决现实世界中蕴涵的规律,逐渐形成善于提出问题的习惯,学会数学表达和交流,发展数学应用意识.4.学生对学习概念兴趣不高,对学习抽象的函数概念有畏惧情绪,所以,学生需要受到鼓励和安慰,增强学习的兴趣。

(2)学情分析:

学生在初中已经学习了函数,并且已经认识一次函数、二次函数、正比例函数和反比例函数,对于函数已经有了直观的认识,但对于类似“x=1”、“y=1”、x1x0等一些表达式是否是函数没有概念,无从下手,这就说明初 f(x)x1x0 中所学的概念太过狭隘,这就要求我们从更高的层面再次学习函数。函数的概念从初中的变量学说到高中阶段的对应学说,显得很抽象,不好理解,特别“对于A中的任意一个元素,B中都有唯一的元素与之相对应”这句话的怎么理解,它有什么深刻的含义,这就要求我们用生活中同学们所熟悉的实例出发,提出问题让学生思考,解释为什么要强调A中任意,B中唯一,很自然的归纳出函数的定义,并通过一些例题加深对函数概念的认识和理解。对于函数的三要素、函数相等的条件、函数的定义域问题以及函数求值问题是对函数概念的升华,是为了加深对函数概念的理解,也是对函数概念的应用

四、教法特点以及预期效果分析:

(1)教法特点:

·情境激趣策略:根据学生的特点,本节课借助对生活中常见的三类实例及多媒体手段,观察思考数学在生活中的应用,促进思维的深层次加工和提高课堂参与度,激发学生兴趣,调动学生的积极性,使学生觉得学有所用;

·问题目标引导探究策略:通过问题目标的驱动,引导学生积极思考生活中的函数问题,并通过直观感知、抽象概括一步步加深对函数概念的理解,使学习循序渐进、由浅入深,积极地参与到猜想、探究的学习中;

·自主合作、实验探究式学习策略:建立小组讨论、交流、合作的课堂氛围,主张“先学后导,问题评价”的教学思维,采用小组合作学习方式,师生共同围绕研究这节课的主要内容和问题进行自主学习、合作交流,在讨论的过程中使学生思维更加开放、多样和灵活,给予学生一定的自主性和创造发挥的空间,使学生乐意学习,主动学习。(2)预期效果分析:

本节课借助多媒体辅助教学,采用“引导-探究式“教学方法,整个教学过程遵循”直观感知-归纳总结“的认知规律,注重发展学生的合情推理能力,降低对抽象问题理解的难度,同时加强了抽象问题具体化的培养,注重知识产生的

过程性,使学生更容易的记住本节课知识。考虑到学生的实际,有意地设计了一些铺垫和引导,既巩固已有知识,又为新知识提供了附着点,充分体现学生的主体地位。

本节课做题过程中渗透了分类讨论的数学思想方法,设计中注重对学生自己发现问题,自己解决问题能力的培养,使学生学会思考、掌握方法,有利于培养学生思维的广阔性与深刻性。相信通过这节课的学习会达到比较好地教学效果。

函数的课件【篇7】

1.掌握对数函数的概念,图象和性质,且在掌握性质的基础上能进行初步的应用.

(1) 能在指数函数及反函数的概念的基础上理解对数函数的定义,了解对底数的要求,及对定义域的要求,能利用互为反函数的两个函数图象间的关系正确描绘对数函数的图象.

(2) 能把握指数函数与对数函数的实质去研究认识对数函数的性质,初步学会用对数函数的性质解决简单的问题.

2.通过对数函数概念的学习,树立相互联系相互转化的观点,通过对数函数图象和性质的学习,渗透数形结合,分类讨论等思想,注重培养学生的观察,分析,归纳等逻辑思维能力.

3.通过指数函数与对数函数在图象与性质上的对比,对学生进行对称美,简洁美等审美教育,调动学生学习数学的积极性.

(1) 对数函数又是函数中一类重要的基本初等函数,它是在学生已经学过对数与常用对数,反函数以及指数函数的基础上引入的.故是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解.对数函数的概念,图象与性质的学习使学生的知识体系更加完整,系统,同时又是对数和函数知识的拓展与延伸.它是解决有关自然科学领域中实际问题的重要工具,是学生今后学习对数方程,对数不等式的基础.

(2) 本节的教学重点是理解对数函数的定义,掌握对数函数的图象性质.难点是利用指数函数的图象和性质得到对数函数的图象和性质.由于对数函数的概念是一个抽象的形式,学生不易理解,而且又是建立在指数与对数关系和反函数概念的基础上,故应成为教学的重点.

(3) 本节课的主线是对数函数是指数函数的反函数,所有的问题都应围绕着这条主线展开.而通过互为反函数的两个函数的关系由已知函数研究未知函数的性质,这种方法是第一次使用,学生不适应,把握不住关键,所以应是本节课的难点.

(1) 对数函数在引入时,就应从学生熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数 的`分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质.

(2) 在本节课中结合对数函数教学的特点,一定要让学生动手做,动脑想,大胆猜,要以学生的研究为主,教师只是不断地反函数这条主线引导学生思考的方向.这样既增强了学生的参与意识又教给他们思考问题的方法,获取知识的途径,使学生学有所思,思有所得,练有所获,,从而提高学习兴趣.

教学设计示例

1. 在指数函数及反函数概念的基础上,使学生掌握对数函数的概念,能正确描绘对数函数的图像,掌握对数函数的性质,并初步应用性质解决简单问题.

2. 通过对数函数的学习,树立相互联系,相互转化的观点,渗透数形结合,分类讨论的思想.

3. 通过对数函数有关性质的研究,培养学生观察,分析,归纳的思维能力,调动学生学习的积极性.

重点是理解对数函数的定义,掌握图像和性质.

难点是由对数函数与指数函数互为反函数的关系,利用指数函数图像和性质得到对数函数的图像和性质.

今天我们一起再来研究一种常见函数.前面的几种函数都是以形式定义的方式给出的,今天我们将从反函数的角度介绍新的函数.

反函数的实质是研究两个函数的关系,所以自然我们应从大家熟悉的函数出发,再研究其反函数.这个熟悉的函数就是指数函数.

由学生说出 是指数函数,它是存在反函数的.并由一个学生口答求反函数的过程:

由 得 .又 的值域为 ,

所求反函数为 .

那么我们今天就是研究指数函数的反函数-----对数函数.

由于定义就是从反函数角度给出的,所以下面我们的研究就从这个角度出发.如从定义中你能了解对数函数的什么性质吗?最初步的认识是什么?

教师可提示学生从反函数的三定与三反去认识,从而找出对数函数的定义域为 ,对数函数的值域为 ,且底数 就是指数函数中的 ,故有着相同的限制条件 .

在此基础上,我们将一起来研究对数函数的图像与性质.

提问学生打算用什么方法来画函数图像?学生应能想到利用互为反函数的两个函数图像之间的关系,利用图像变换法画图.同时教师也应指出用列表描点法也是可以的,让学生从中选出一种,最终确定用图像变换法画图.

由于指数函数的图像按 和 分成两种不同的类型,故对数函数的图像也应以1为分界线分成两种情况 和 ,并分别以 和 为例画图.

具体操作时,要求学生做到:

(1) 指数函数 和 的图像要尽量准确(关键点的位置,图像的变化趋势等).

(2) 画出直线 .

(3) 的图像在翻折时先将特殊点 对称点 找到,变化趋势由靠近 轴对称为逐渐靠近 轴,而 的图像在翻折时可提示学生分两段翻折,在 左侧的先翻,然后再翻在 右侧的部分.

学生在笔记本完成具体操作,教师在学生完成后将关键步骤在黑板上演示一遍,画出

和 的图像.(此时同底的指数函数和对数函数画在同一坐标系内)如图:

2. 草图.

教师画完图后再利用投影仪将  和 的图像画在同一坐标系内,如图:

然后提出让学生根据图像说出对数函数的性质(要求从几何与代数两个角度说明)

由以上两条可说明图像位于 轴的右侧.

(3) 截距:令 得 ,即在 轴上的截距为1,与 轴无交点即以 轴为渐近线.

(4) 奇偶性:既不是奇函数也不是偶函数,即它不关于原点对称,也不关于 轴对称.

(5) 单调性:与 有关.当 时,在 上是增函数.即图像是上升的

当 时,在 上是减函数,即图像是下降的.

之后可以追问学生有没有最大值和最小值,当得到否定答案时,可以再问能否看待何时函数值为正?学生看着图可以答出应有两种情况:

当 时,有 ;当 时,有 .

学生回答后教师可指导学生巧记这个结论的方法:当底数与真数在1的同侧时函数值为正,当底数与真数在1的两侧时,函数值为负,并把它当作第(6)条性质板书记下来.

最后教师在总结时,强调记住性质的关键在于要脑中有图.且应将其性质与指数函数的性质对比记忆.(特别强调它们单调性的一致性)

对图像和性质有了一定的了解后,一起来看看它们的应用.

例1.  求下列函数的定义域:

先由学生依次列出相应的不等式,其中特别要注意对数中真数和底数的条件限制.

(1) 与 ;      (2) 与 ;

(3) 与 ;           (4) 与 .

让学生先说出各组数的特征即它们的底数相同,故可以构造对数函数利用单调性来比大小.最后让学生以其中一组为例写出详细的比较过程.

(1)    定义域(2)值域(3)截距(4)奇偶性(5)单调性

(1) 已知 是函数 的反函数,且 都有意义.

① 求 ;

② 试比较 与4 的大小,并说明理由.

(2) .

函数的课件【篇8】

(1)开口___________;

(2)对称轴是___________;

(3)顶点坐标是___________;

(4)当时,随的增大而___________;

当时,随的增大而___________;

(5)函数图象有___________点,函数有___________值;

当_____时,取得__________值____.

问题:那二次函数的图象会是什么样子呢?它会有哪些性质呢?它与的图象有关系吗?

Ⅱ.自主探索、小组互学、展学提升:

(2)观察、思考并与同伴交流完成“议一议”

(3)一小组派代表展示,其它小组与老师评价、完善。

(1)作出二次函数的图象:

议一议:

仔细观察,用心思考,与同伴交流:

(1)二次函数的图象是什么样子?

(2)它的开口方向是什么?

(3)它是轴对称图形吗?对称轴是谁?

(4)它的顶点坐标是什么?

(5)当取什么值时,随的增大而增大?当取什么值时,随的增大而减小?

(6)二次函数的图象有最高点还是最低点?它会取得最大还是最小值?是多少?

此时,等于多少?

(7)二次函数与二次函数的图象有哪些相同点和不同点呢?它们的图象之间有什么关系呢?

教师巡视,察看学生完成情况并适时给予指导。

当学生展开讨论时,参与到学生的交流中启发、点拨学生的思维。

学生通过上一环节的作图、观察、比较、归纳、交流讨论等过程,已经积累了一些方法和经验,所以此环节由学生自己独立完成:

(1)作出二次函数的图象;

(2)观察、思考完成“想一想”

(3)一学生展示,其他同学与老师评价、完善。

问:

二次函数的图象会是什么样子?它与二次函数的图象有哪些相同点和不同点呢?它们的图象之间有什么关系呢?它图象的开口方向、对称轴、顶点坐标是什么?它的增减性、最值是什么情况呢?请你先猜一猜,然后做出它的图象观察思考,你猜的对吗?

(1)作出二次函数的图象:

(1)二次函数的图象是什么样子?

(2)它的开口方向是什么?

(3)它是轴对称图形吗?对称轴是谁?

(4)它的顶点坐标是什么?

(5)当取什么值时,随的增大而增大?当取什么值时,随的增大而减小?

(6)二次函数的图象有最高点还是最低点?它会取得最大还是最小值?是多少?

此时,等于多少?

(7)二次函数与二次函数的图象有哪些相同点和不同点呢?它们的图象之间有什么关系呢?

教师巡视,察看学生解决问题情况并适时指导.之后请学生展示,师生共同评价完善.

Ⅳ.自主探索、小组互学、展学提升:

学生在前面作图、观察、思考、交流讨论的基础上,完成“猜一猜”,然后师生共同利用计算机进行验证。最后,学生在交流讨论的基础上总结二此函数的性质。

猜一猜:

(1)二次函数的图象是什么样子呢?二次函数的图象与二次函数的图象有什么关系?请你描述一下二次函数的性质.

(2)二次函数的图象是什么样子呢?二次函数的图象与二次函数的图象有什么关系?请你描述一下二次函数的性质.

议一议:

(1)二次函数的图象与二次函数的图象有什么关系?

(2)二次函数的性质:

函数的课件【篇9】

2.函数f(x)=(a2-1)x在R上是减函数,则a的取值范围是( )

4.已知ab,ab 下列不等式(1)a2b2,(2)2a2b,(3) ,(4)a b ,(5)( )a( )b

(C)y= (D)y=

8.若函数y=32x-1的反函数的图像经过P点,则P点坐标是( )

(A)(2,5) (B)(1,3) (C)(5,2) (D)(3,1)

10.已知函数f(x)=ax+k,它的.图像经过点(1,7),又知其反函数的图像经过点(4,0),则函数f(x)的表达式是( )

(A)f(x)=2x+5 (B)f(x)=5x+3 (C)f(x)=3x+4 (D)f(x)=4x+3

11.已知01,b-1,则函数y=ax+b的图像必定不经过( )

12.一批设备价值a万元,由于使用磨损,每年比上一年价值降低b%,则n年后这批设备的价值为( )

(A)na(1-b%) (B)a(1-nb%) (C)a[(1-(b%))n (D)a(1-b%)n

13.若a a ,则a的取值范围是 。

14.若10x=3,10y=4,则10x-y= 。

15.化简= 。

18.(12分)若 ,求 的值.

19.(12分)设01,解关于x的不等式a a .

20.(12分)已知x [-3,2],求f(x)= 的最小值与最大值。

21.(12分)已知函数y=( ) ,求其单调区间及值域。

22.(14分)若函数 的值域为 ,试确定 的取值范围。

题号 11 12 13 14 15 16 17 18 19 20

4.(- ,0) (0,1) (1,+ ) ,联立解得x 0,且x 1。

5.[( )9,39] 令U=-2x2-8x+1=-2(x+2)2+9,∵ -3 ,又∵y=( )U为减函数,( )9 y 39。 6。D、C、B、A。

令y=3U,U=2-3x2, ∵y=3U为增函数,y=3 的单调递减区间为[0,+ )。

8.0 f(125)=f(53)=f(522-1)=2-2=0。

9. 或3。

Y=m2x+2mx-1=(mx+1)2-2, ∵它在区间[-1,1]上的最大值是14,(m-1+1)2-2=14或(m+1)2-2=14,解得m= 或3。

11.∵ g(x)是一次函数,可设g(x)=kx+b(k 0), ∵F(x)=f[g(x)]=2kx+b。由已知有F(2)= ,F( )=2, , k=- ,b= ,f(x)=2-

1.∵02, y=ax在(- ,+ )上为减函数,∵ a a , 2x2-3x+1x2+2x-5,解得23,

2.g[g(x)]=4 =4 =2 ,f[g(x)]=4 =2 ,∵g[g(x)]g[f(x)]f[g(x)], 2 2 ,22x+122x, 2x+12x,解得01

3.f(x)= , ∵x [-3,2],.则当2-x= ,即x=1时,f(x)有最小值 ;当2-x=8,即x=-3时,f(x)有最大值57。

4.要使f(x)为奇函数,∵ x R,需f(x)+f(-x)=0, f(x)=a- =a- ,由a- =0,得2a- =0,得2a- 。

5.令y=( )U,U=x2+2x+5,则y是关于U的减函数,而U是(- ,-1)上的减函数,[-1,+ ]上的增函数, y=( ) 在(- ,-1)上是增函数,而在[-1,+ ]上是减函数,又∵U=x2+2x+5=(x+1)2+4 4, y=( ) 的值域为(0,( )4)]。

由函数y=2x的单调性可得x 。

7.(2x)2+a(2x)+a+1=0有实根,∵ 2x0,相当于t2+at+a+1=0有正根,

8.(1)∵定义域为x ,且f(-x)= 是奇函数;

(2)f(x)= 即f(x)的值域为(-1,1);

(3)设x1,x2 ,且x1x2,f(x1)-f(x2)= (∵分母大于零,且a a ) f(x)是R上的增函数。

相关推荐

  • 二次函数的课件八篇 幼儿教师教育网小编为您寻找到了这篇重量级的“二次函数的课件”文章。老师会对课本中的主要教学内容整理到教案课件中,所以老师写教案可不能随便对待。 教案课件要敲定教学内容,也要注重梳理难点。感谢大家帮助分享这份资料让大家能够更好地学习和成长!...
    2024-04-28 阅读全文
  • 一次函数课件 编辑为您搜罗的“一次函数课件”。教案课件是我们老师的部分工作,因此每天老师都会按质按时去写好教案课件。 教学过程中可以通过教案课件以激发学生的兴趣。星愿今天的分享能够帮助到您!...
    2024-04-17 阅读全文
  • 高中函数课件经典 我们听了一场关于“高中函数课件”的演讲让我们思考了很多。老师会对课本中的主要教学内容整理到教案课件中,所以老师写教案可不能随便对待。教案是评估学生学习效果的有效依据。经过阅读本页你的认识会更加全面!...
    2024-09-20 阅读全文
  • 二次函数课件教案精选5篇 为了更加顺利地进行教学,老师需要提前准备教案课件。我们也要静下心来认真写好教案课件。同时,老师通过写好教案课件,也能更好地了解自己的教学情况。那么,一个好的教案课件应该具备哪些特点呢?小编查阅了相关资料“二次函数课件教案”,分享给大家参考。...
    2023-07-06 阅读全文
  • 二元一次方程课件经典 教案课件是老师上课中很重要的一个课件,就需要老师用心去设计好教案课件了。 写好教案课件需要细心,包括课程重点难点梳理等,网络有没有优质的教案课件以资借鉴呢?我们已经帮您搜集了一些和“二元一次方程课件”相关的实用资料,不妨参考一下说不定会让你受益匪浅!...
    2023-09-16 阅读全文

幼儿教师教育网小编为您寻找到了这篇重量级的“二次函数的课件”文章。老师会对课本中的主要教学内容整理到教案课件中,所以老师写教案可不能随便对待。 教案课件要敲定教学内容,也要注重梳理难点。感谢大家帮助分享这份资料让大家能够更好地学习和成长!...

2024-04-28 阅读全文

编辑为您搜罗的“一次函数课件”。教案课件是我们老师的部分工作,因此每天老师都会按质按时去写好教案课件。 教学过程中可以通过教案课件以激发学生的兴趣。星愿今天的分享能够帮助到您!...

2024-04-17 阅读全文

我们听了一场关于“高中函数课件”的演讲让我们思考了很多。老师会对课本中的主要教学内容整理到教案课件中,所以老师写教案可不能随便对待。教案是评估学生学习效果的有效依据。经过阅读本页你的认识会更加全面!...

2024-09-20 阅读全文

为了更加顺利地进行教学,老师需要提前准备教案课件。我们也要静下心来认真写好教案课件。同时,老师通过写好教案课件,也能更好地了解自己的教学情况。那么,一个好的教案课件应该具备哪些特点呢?小编查阅了相关资料“二次函数课件教案”,分享给大家参考。...

2023-07-06 阅读全文

教案课件是老师上课中很重要的一个课件,就需要老师用心去设计好教案课件了。 写好教案课件需要细心,包括课程重点难点梳理等,网络有没有优质的教案课件以资借鉴呢?我们已经帮您搜集了一些和“二元一次方程课件”相关的实用资料,不妨参考一下说不定会让你受益匪浅!...

2023-09-16 阅读全文
Baidu
map