幼儿教师教育网,为您提供优质的幼儿相关资讯

多边形课件

发布时间:2023-07-01 多边形课件

多边形课件(锦集5篇)。

教学过程中教案课件是基本部分,又到了写教案课件的时候了。教案是推进教学质量改进的有效工具。幼儿教师教育网小编精心挑选了一篇有趣的文章名为“多边形课件”,如果对这个话题感兴趣的话,请关注本站!

多边形课件【篇1】

[教学目标]

知识与技能:

1.会用多边形公式进行计算。

2.理解多边形外角和公式。

过程与方法:

经历探究多边形内角和计算方法的过程,培养学生的合作交流意识力.

情感态度与价值观:

让学生在观察、合作、讨论、交流中感受数学转化思想和实际应用价值,同时培养学生善于发现、积极思考、合作学习、勇于创新的学习态度。

[教学重点、难点与关键]

教学重点:多边形的内角和.的应用.

教学难点:探索多边形的内角和与外角和公式过程.

教学关键:应用化归的数学方法,把多边形问题转化为三角形问题来解决.

[教学方法]

本节课采用“探究与互动”的教学方式,并配以真的情境来引题。

[教学过程:]

(一)探索多边形的内角和

活动1:判断下列图形,从多边形上任取一点c,作对角线,判断分成三角形的个数。

活动2:①从多边形的一个顶点出发,可以引多少条对角线?他们将多边形分成多少个三角形?②总结多边形内角和,你会得到什么样的结论?

多边形边数分成三角形的个数图形

内角和计算规律

三角形31180°(3-2)·180°

四边形4

五边形5

六边形6

七边形7

。。。。。。

n边形n

活动3:把一个五边形分成几个三角形,还有其他的分法吗?

总结多边形的内角和公式

一般的,从n边形的一个顶点出发可以引____条对角线,他们将n边形分为____个三角形,n边形的内角和等于180×______。

巩固练习:看谁求得又快又准!(抢答)

例1:已知四边形ABCD,∠A+∠C=180°,求∠B+∠D=?

(点评:四边形的一组对角互补,另一组对角也互补。)

(二)探索多边形的外角和

活动4:例2如图,在五边形的每个顶点处各取一个外角,这些外角的和叫做五边形的外角和.五边形的外角和等于多少?

分析:(1)任何一个外角同于他相邻的内角有什系?

(2)五边形的五个外角加上与他们相邻的内角所得总和是多少?

(3)上述总和与五边形的内角和、外角和有什么关系?

解:五边形的外角和=______________-五边形的内角和

活动5:探究如果将例2中五边形换成n边(n≥3),可以得到同样的结果吗?

也可以理解为:从多边形的一个顶点A点出发,沿多边形的各边走过各点之后回到点A.最后再转回出发时的方向。由于在这个运动过程中身体共转动了一周,也就是说所转的各个角的和等于一个______角。所以多边形的外角和等于_________。

结论:多边形的外角和=___________。

练习1:如果一个多边形的每一个外角等于30°,则这个多边形的边数是_____。

练习2:正五边形的每一个外角等于________,每一个内角等于_______。

练习3.已知一个多边形,它的内角和等于外角和,它是几边形?

(三)小结:本节课你有哪些收获?

(四)作业:

课本P84:习题7.3的2、6题

附知识拓展—平面镶嵌

(五)随堂练习(练一练)

1、n边形的内角和等于__________,九边形的内角和等于___________。

2、一个多边形当边数增加1时,它的内角和增加()。

3、已知多边形的每个内角都等于150°,求这个多边形的边数?

4、一个多边形从一个顶点可引对角线3条,这个多边形内角和等于()

A:360°B:540°C:720°D:900°

5.已知一个多边形,它的内角和等于外角和的2倍,求这个多边形的边数?

多边形课件【篇2】

目标

1、通过观察和比较正五边形、正六边形、正八边形和正十边形,感知其主要特征。

2、通过动手操作,激发幼儿学习图形的兴趣。

3、培养幼儿观察、辨别的能力。

4、让幼儿体验数学活动的乐趣。

5、积极参与数学活动,体验数学活动中的乐趣。

准备

1、挂图“美丽的窗户”

2、操作学具

3、《操作册》P45—P46

过程

走线、线上游戏《积木房》

1、以“小熊设计房子”导入,引起幼儿兴趣

森林设计师笨笨熊给小动物们设计了好多房子,这些房子都快装修好了,只有窗户还没有装好,我们来帮帮它吧。

2、集体活动(出示挂图)

小朋友来看一看,笨笨熊它设计了几间房子啊?

那你们发现这些房子的窗户一样吗?

谁能告诉我怎么不一样的?(有五条边的、有六条边的……..引导幼儿说出每条边相同的是正五边形、正六边形………..)

我们一起来给这些窗户装修一下(一边数一边给每条边涂色)

3、集体操作

今天李老师把这些漂亮的窗户都带到了我们大二班,小朋友想不想看一看呢?

呦,看李老师记性多不好,只把窗框带了过来忘了把窗户上的玻璃带来了。那我想请小朋友帮我把这些窗户根据他的形状装上玻璃好吗?

老师示范做一个

我给小朋友也准备了小窗户,现在请小朋友把自己的小窗框拿出来放好。

现在请小朋友给它们装上玻璃吧。

老师个别指导

装好的小朋友坐坐好,我们来看一看小朋友装的漂不漂亮。

请两个小朋友展示作品

4、分组活动

多边形不仅是小动物们的窗户,多边形还能玩很多游戏。大家想不想玩?

第1、2桌:玩“种花”游戏在不同的多边形纸样里面画上数量与边数相同的花,如五边形里中5朵小花………。

第3、4桌:玩“做花伞”游戏,在不同的多边形的伞面上装饰上漂亮的图案,做成小花伞。

第5、6、7桌:做《操作册》第45页。

5、评价

现在我要请做的最快最好的小朋友把你的作品给大家分享一下。

每组一个人

延伸

今天我们帮笨笨熊装好了窗户,也认识了正五边形、正六边形、正八边形和正十边形、其实在我们的生活中也有很多多边形的物品,今天我请小朋友回家找一找生活中的多边形,并且把它画下来,明天带到幼儿园和我们大家一起分享。

教学反思:

在听课之前,我对这一堂课进行研究和设计。我考虑到本课时的教学内容较为简单,在教学中我采用自主学习,体验探究的'教学方式,让学生动手、动脑、操作、观察,合作探究多边形对角线条数,从中体会从特殊到一般的几何图形探究方法。力主体现“自主学习、主体参与、合作探究”的教学理念。

多边形课件【篇3】

《多边形的面积整理与复习》教学设计

教学内容:义务教育教科书五年级上册数学103页。教学目标:

1、熟练掌握平行四边形、三角形、梯形的面积计算公式,进一步理解图形特征、面积公式之间的内在联系,构建知识网络。

2、灵活运用公式解决一些简单的实际问题,进一步体会数学与生活的联系,感受数学的价值,增强学习兴趣。

教学重点:回顾平面图形面积公式推导过程,建构知识体系。教学难点:感悟平面图形之间的内在联系。

教学准备:课件、学生课前自主复习办手抄报、整理卡、平面图形学具和教具 教学过程:

一、创设情境,再现知识

师:漫步我们的校园,随处可见图形的身影(看大屏幕),同学们会计算它们的面积了吗?(师出示数据)

指名只列式不计算。

教师黑板上张贴长方形及公式。

小结:面积计算在生活中的应用十分广泛。

师:这节课我们一起对第六单元多边形的面积进行整理复习。这一单元我们学习了哪些图形的面积?(张贴图形:三角形、梯形、平行四边形;板书:基本图形、组合图形、不规则图形)结合课前的自主复习,你觉得我们应该复习些什么知识?(学生自主发言)(教师板书:公式、推导、联系、应用、注意……)

二、合作梳理 构建网络

1、梳理基本图形的公式和推导

师:以小组为单位,每人选择平行四边形、三角形、梯形中的任意一种图形说一说它们的面积计算公式,知其然更要知其所以然,并借助手中的学具重点交流这些计算公式的推导过程。注意:一定要说清楚是由哪个图形怎样推导出来的。

学生以小组为单位回顾,教师巡视。

学生汇报,其他同学补充或者质疑,完善表达。(学生借助教具,并张贴三个公式)

师:同学们对三个公式及推导还有疑问吗?(师在板书:公式、推导上打√)

2、讨论联系,构建网络

师:大家有没有发现,这几种平面图形面积的推导过程有什么相同的地方?(板书:转化)转化是一种重要的数学思想。

小组活动:

(1)说一说平行四边形、三角形、梯形是怎么转化的?转化成了谁?(2)根据这种转化关系,将这些图形按照一定的顺序排一排,张贴在整理卡上,同时借助一些符号或文字,把它们联系成一张网络图,表示出图形与图形的联系。

教师巡视,学生张贴自己的网络图。汇报想法。其他学生评价质疑。师小结:真是百花齐放,百家争鸣,这些思考都很好地反映了转化的数学思想。从左往右看能从前面的图形推导出后面的图形(教师顺势摆好教具),从右往左看,后面的图形能转化成前面的图形如果是直角三角形或直角梯形还可以直接转化为长方形(教师画箭头),我们可以发现长方形是这些图形的“根”。

师:这几种图形本身之间是有着紧密的联系的。(课件:梯形的上底是0时,变三角形,梯形的上底等于下底时又变成了平行四边形),正因为它们之间有着密切的联系,才能够实现相互的转化,从而解决新问题。

3、梳理组合图形面积,加强联系

师:如果我们把几个基本图形连在一起,就变成什么图形?(课件演示)怎样求组合图形的面积?(板书:分、补)无论是分或是补,其实都是转化成基本图形。(板书箭头)

4、回顾不规则图形面积,完善网络 师:不规则图形呢?

小结:估算(数方格和转化)(板书),近似地转化成基本图形求面积。(板书箭头)

三、分层练习形成技能

师:经过大家的努力,我们将这一单元的知识整理成网络图,理清了知识的来龙去脉。老师相信同学们对这部分知识一定有了更深更系统的认识。接下来老师带你们去练习园迎接挑战,锤炼本领。

(一)我过基础关(基础性题组)我会算:

1、求出下面图形的面积。只列式不计算

2、组合图形

全班交流解题思路。选择一种自己喜欢的方法计算出组合图形的面积,同桌互判(课件再订正答案)

教师小结:要先明确解题思路,并把每个基本图形的面积求对,才能确保正确。

(二)我闯变式关(形成性题组)

我会辩:判断(指名按顺序逐个完成)

(1)两个等底等高的三角形可以拼成一个平行四边形。()(2)梯形的面积等于平行四边形面积的一半。()(3)平行四边形的底越大,它的面积就越大。()我会填:填空(将答案写在练习本上,指名订正说明理由)(1)一个平行四边形的面积是24平方厘米,它的高是3厘米,它的底是()厘米。

(2)一个平行四边形和一个三角形等底等高,平行四边形的面积是30平方厘米,三角形的面积是()平方厘米。

(3)三角形的面积是14平方分米,高是4分米,底是()分米。(4)将一个长方形的框架挤压成一个平行四边形后,平行四边形的面积比长方形的面积()。

四、收获提炼 评价反思

师:孔子曰:温故而知新。相信今天的复习能给大家带来新的发现和体会。谁来交流一下自己的复习收获?学生交流复习收获。

师:你们的收获可真多呀,让我们带着这些收获再次走进生活,去发现和解决生活中更多的面积问题。

五、拓展链接 整体提升

1、走进劳动基地(提问题,并选择与面积相关的乘法解答)

师:在我们小院里,小兔和鸽子的家就是一个图形大世界!仔细观察,这里有哪些用面积计算的问题?(学生提问题)

预设:制作这样一个鸽舍(或鸽舍旁边的储物箱)要用多少木料? 如果把正面除窗户的部分重新涂油漆,涂油漆的面积是多少?需要多少千克?花多少钱?

鸽舍的玻璃面积是多少? 房顶是多少平方米?

围成的面积是多少?用多少块地砖?多少块墙砖?

师选择其中一个问题出示要求计算:储物箱前面上底0.4米,下底0.6米,高0.2米,需要多少平方米的木料?如果涂油漆,每平方米花12元,要用多少钱?

2、回归课的开始(教师提问题,解答与面积相关的除法问题)每棵花占地300平方厘米,求需要多少棵花秧?

师小结:我们在解决实际问题时,认清面积与其他数量之间的关系很重要。课下同学们可以选择自己感兴趣的问题去解决。

3、全课总结:课前我们自主复习,并办了整理复习小报,可谓异彩纷呈,集聚观赏性和可读性,今天的作业是各小组将小报相互学习,并评选优秀小报,在教室展览,全班学习。

多边形课件【篇4】

1

目标

知识与技能:掌握多边形内角和定理,进一步了解转化的数学思想

过程与方法:经历质疑、猜想、归纳等活动,发展学生的合情推理能力,积累数学活动的经验,在探索中学会与人合作,学会交流自己的思想和方法.

情感态度与价值观:让学生体验猜想得到证实的成功喜悦和成就感,在解题中感受生活中数学的存在,体验数学充满着探索和创造.

重点:多边形内角和定理的探索和应用

教学难点:边形定义的理解;多边形内 角和公式的推导;转化的数学思维方法的渗透.

教学过程

第一环节 创设现实情境,提出问题,引 入新(3分钟,学生思考问题,入)

1.多媒 体展示蜂窝,教师结合图片让学生发现生活中无处不在的多 边形.

2.工人师傅锯桌面:一个四边形的桌面,用锯子锯掉一个角,还剩几个角?

第二环节 概念形成(5分钟,学生理解定义)

1.借助多媒体显示一多边形,学生类比三角形的有关知识对多边形定义、并表示出相应的元素.

2.教师再给出严格规范的定义,特别借助学具说明“在平面内” 的必要性.此外,说明正多边形的定义以及多边形可分为凸多边形和凹多边形.

第三环节 实验探究(12分钟,学生动手操作,探究内角和)

(以四人小组为单位展开探究活动)

提出问题:三角形的内角和为180°,那么多边形的内角和是多少度呢?从四边形开始研究. 1 . c o m

活动一:利用四边形探索四边形内角和

要求:先独立思考再小组合作交流完成.)

(师巡视,了解学生探索进程并适当点拨.)

(生思考后交流,把不同 的方案在纸上完成.)

……(组 间交流,教师展示几种方法)

教师帮助学生反思:在刚才的探索活动中,大家有不同的方法求四边形的内角和,这些看似不同的方法有没有相似之处?

进而引导 学生得出:我们是把四边形的问题转化成三角形,再由三角形内角和为 1 80°,求出四边形内角和为360°,从而使问题得到解决!进一步提出新的探索活动。

活动二:探索五边形内角和

(要求:独立思考,自主完成.)

第四环节 思维升华(5分钟,教师引导学生进行推算)

教学过程:

探索n边形内角和,并试着说明理由

(结合出示的图表从代数角度猜测公式,并从几何意义加以解读)

n边形的内角和=(n—2)180°

正n边形的一个内角= =

第五环节 能力 拓展(12分钟,学生抢答)

抢答题:

1.正八边形的内角和为_______ .

2.已知多边形的内角和为900°,则这个多边形的边数为_______.

3.一个多边形每个内角的度数是150°,则这个多边形的边数是_______.

应用发散:

4.如图所示的模板,按规定,AB,CD的延长线相交成80°的角,因交点不在板上,不便测量,质检员测得∠BAE=122°,∠DCF=155°.如果你是质检员,如何知道模板是否合格?为什么?

5.小明有一个设想:2008年奥运会在北京召开,要是能设计一个内角和是2008°的多边形花坛该多有意义啊!小明的这个想法能实现吗?

第六环节 时小结:(3分钟,学生填表)

教师和学生一起对本节内容和同学们的表现做一小结,然后每位学生利用活动评价表进行自我量化考核,并于下反馈给老师

第七环节 布置作业: 习题4、10

A组(优等生)1;思考题:一个多边形去掉一个内角后形成的多边形内角和为 1800°,你能求出原多边形的边数吗?

B 组(中等生)1

C组(后三分之一生)1

教学反思:

多边形课件【篇5】

一、【课题】多边形的面积复习课

二、【复习目标分析依据】

1、课程标准中的相关陈述:

利用方格纸或割补等方法,探索并掌握平行四边形、三角形和梯形的面积计算公式。

2、教材分析:

本节课是五年级上册第八单元多边形的面积的复习。复习的主要内容包括平行四边形、三角形、梯形的面积和组合图形的面积。教材要求要先对本单元的知识进行系统整理,然后通过练习巩固多边形面积计算。从教材上安排的习题来看,注重知识形成的过程,着重培养学生灵活解决问题的能力。

3、学情分析:

在之前学习当中,学生已经通过数方格和剪拼的方法初步探索和掌握了平行四边形、三角形和梯形的面积计算公式、并能够计算一般组合图形的面积。通过复习,知识进一步系统化,学生解决问题的能力进一步提高,空间观念进一步提升,从而达到学期目标。

三、【复习目标】

(1)通过回忆、小组合作,进一步理解和掌握多边形面积计算公式的推导过程,并构建知识网络。

(2)通过拼摆和讨论,学生对转化这一数学思想理解更加深刻。(3)通过练习,能够结合具体情景灵活解决实际问题。

四、【复习重、难点】

复习重点:多边形面积公式的推导过程。

复习难点:理解多边形面积之间的联系。

五、【评价设计】

1、在回顾整理和融会贯通环节中根据学生对多边形面积推导过程的汇报和对知识网络的构建完成对目标1的评价。

2、在回顾整理环节中根据学生拼摆、讨论和汇报对目标2进行综合评价。

3、在练习环节中观察学生能否运用所学知识解决实际问题对目标3进行评价。

六、【复习活动预案】

(一)引入课题

板书课题,这节课我们就一起来复习多边形的面积。

(二)回顾整理。

1、出示郑州地铁图,问:我们能在图上找到哪些之前学过的图形?

2、回忆公式。还记得这些图形的面积公式吗?先用文字叙述,再用字母表示。学生汇报。

通过回忆再现完成目标1。

3、梳理公式推导过程。

数学是一门很严密的学科,不但要知道是什么,还要知道为什么。你知道这些计算公式是怎样推导过程出来的呢?请同学们在小组内选一个或几个你喜欢的图形拼一拼、摆一摆、说一说。(小组活动)

4、各小组汇报。

哪个小组讨论的是平行四边形的面积公式推导过程?(把平行四边形贴在黑板上)在学生汇报展示面积公式推导过程的时候,如果学生回答的不完整,小组成员可以补充,或者老师补充提问,如果学生回答不好而且没人补充,老师演示课件。

哪个小组愿意派代表来说说三角形的面积公式推导过程?(把三角形贴在黑板上)哪个小组愿意派代表来说说梯形的面积公式推导过程?(把梯形贴在黑板上)学生进一步掌握多边形面积公式推导过程,完成目标1。总结内化,完成目标2。

6、构建知识网络。

同学们再来想一想这三种图形的面积计算公式的推导有哪些相同之处呢? 因此我们可以用箭头来表示转化的过程。大家想想,这个箭头我应该怎么画?为什么?(在黑板上图形之间标上箭头)

如果我们想在这个结构图中加上长方形,那么应该把它放在哪里合适呢?(平行四边形的下边)教师贴上长方形,画上箭头。如果把箭头反过来又表示什么呢?(推导)这样就形成了一个完整的知识结构图。如果把这个图看成一棵大树的话,那么长方形相当于?(树根)平行四边形相当于?(树干)三角形和梯形相当于(树枝和树叶)

师在黑板上画出树的形状。

从这个图中我们可以发现转化把这几种图形紧密的联系在了一起,转化也是我们学习数学的重要方法。

构建知识网络,完成目标1。理解图形间的内在联系,完成目标2。

(三)巩固提升。

下面,我们利用刚才复习的知识来做几组练习,在这个环节中我们要充分发挥自己的聪明才智,向大家展示出最优秀的自己,有信心吗?

第一个环节,判断对错并说出理由,看谁更快。

1、(1)、把一个长方形的木条框架拉成一个平行四边形,它的周长和面积都不变。()(2)面积相等的两个梯形,一定能拼成一个平行四边形。()(3)两个平行四边形的面积相等,那么它们的底和高都相等()(4)两个面积相等的三角形,形状一定相同。()

(5)一个三角形的底扩大2倍,高不变,它的面积也会扩大2倍。()

2、下面这块地种了三种蔬菜,茄子、西红柿和黄瓜各种了多少平方米?这块地共有多少公顷?(把计算过程写在学习任务单1的相应位置)

在计算多边形面积的时候,你想提醒同学们注意什么?

3、如果学校空地的形状如下图所示,你能求出它的面积吗?(单位:厘米)小组内任选一种方法解答,然后学生汇报,把学生采用的不同方法展示出来。)学生把计算过程写在学习任务单2上。

4、学校想在这片空地上建一个面积是48平方米的花圃,请你设计这个花圃的形状?(鼓励学生设计不同的图形,最好是组合图形。)汇报展示。

张明同学设计了一种长方形图案,长9 米,宽7米,空白处是小路,路宽1 米。判断一下他设计的对吗?你是怎样想的?

通过练习学生解决实际问题的能力得到提升,完成对目标3。

(四)复习总结

通过本节课的复习,同学们一定有了新的收获,在以后的学习中希望大家能够在新知识和旧知识之间建立联系,这样才能学的更好。

yJS21.com更多精选幼师资料阅读

多边形课件(汇总11篇)


俗话说,不打无准备之仗。在幼儿园教师的平时工作生活中,会经常需要提前准备参考资料。资料的意义非常的广泛,可以指需要查到某样东西所需要的素材。有了资料才能更好的在接下来的工作轻装上阵!那么,关于幼师资料你了解哪些内容呢?也许下面的“多边形课件(汇总11篇)”正合你意!供大家参考借鉴,希望可以帮助到有需要的朋友。

多边形课件【篇1】

人教版小学五年级数学上册《多边形面积的计算》教案教学反思设计 教学内容:九年义务教育六年制小学教科书数学第九册第64~66页,练习十六第1~3题。

教学目的:

1.使学生在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积。

2.通过操作、观察、比较,发展学生的空间观念,使学生初步认识转化的思考方法在研究平行四边形面积时的运用,培养学生的分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。

教具准备:

1.照课本第64页的方格纸上画着的平行四边形和长方形的插图制成演示教具。有投影片设备的也可制成投影片。

2.剪两个底40厘米、高30厘米的平行四边形,供教师演示用。有投影设备的也可按照上述底和高的比例制成推拉投影片。

3.每个学生准备一个平行四边形(可以用课本第137页的图剪下来贴在厚纸上。)和一把剪刀。

教学过程:

一、复习

1.出示方格纸上画的平行四边形。提问:方格纸上画的是什么图形?什么叫平行四边形?它有什么特征?

2.让学生指出平行四边形的底,再指出它的高来。然后让每个学生在自己准备的平行四边形上画高。(教师巡视,注意画得是否正确。)

二、新课 这节课我们共同研究平行四边形面积的计算。(板书:平行四边形面积的计算)

1.用数方格的方法计算平行四边形的面积。

(1)我们学习计算长方形的面积时,曾经用数方格的方法来计算面积的大小,现在我们学习习近平行四边形面积的计算,也先在方格图上数一数它的面积是多少?请打开书看第64页左边的平行四边形,每一个方格表示一平方厘米,自己数一数是多少平方厘米? 请同学认真观察一下,平行四边形在方格纸上出现了不满一格的,怎么数呢?可以都按半格计算。然后指名说出数得的结果,并说一说是怎样数的。(2)出示方格纸上画的长方形,要求直接计算出它的面积。然后指名说出计算结果。

(3)比较。提问:它们的面积怎么样?平行四边形的底和长方形的长怎么样?平行四边形的高和长方形的宽呢? 启发学生把比较的结果重复说一遍。平行四边形的底和长方形的长,平行四边形的高和长方形的宽分别相等,它们的面积也相等。

(4)小结。从上面的研究我们知道,平行四边形的面积也可以用数方格的方法求出来。但数起来比较麻烦,而且往往不能算得精确。特别是较大的平行四边形,如像教室这么大就不好数了。想一想,能不能像计算长方形面积那样,也找出计算平行四边形面积的计算方法。2.通过操作总结平行四边形面积的计算公式。

(1)从上面的比较中,你发现平行四边形的底、高和面积与长方形的长、宽和面积之间有什么联系?你能不能把一个平行四边形转化成一个长方形呢?想一想,该怎么做?让学生拿出准备好的平行四边形进行剪拼。(学生剪拼时,教师巡视。)然后指名到前边演示。(2)教师示范平行四边形转化成长方形的过程。刚才发现同学们把平行四边形转化成长方形时,就把从平行四边形左边剪下的直角三角形直接放在剩下的梯形的右边,拼成长方形。在变换图形的位置时,怎样按照一定的规律做呢?现在看老师在黑板上演示。

①先沿着平行四边形的高剪下左边的直角三角形。

②左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。

③移动一段后,左手改按梯形的左部。右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。请同学们把自己剪下来的直角三角形放回原处,再沿着平行四边形的底边向右慢慢移动,直到两个斜边重合。(教师巡视指导。)

(3)引导学生比较。(黑板上在剪拼成的长方形上面放一个原来的平行四边形,便于比较。)

①这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积比较,有没有变化?为什么?

②这个长方形的长与平行四边形的底有什么样的关系?

③这个长方形的宽与平行四边形的高有什么样的关系? 教师归纳整理:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的平行四边形的面积相等,它的长、宽分别和原来的平行四边形的底、高相等。(4)引导学生总结平行四边形面积计算公式。这个长方形的面积怎么求?(指名回答后,在长方形右面板书:长方形的面积=长×宽)那么,平行四边形的面积怎么求?(指名回答后,在平行四边形右面板书:平行四边形的面积=底×高。)

(5)教学用字母表示平行四边形的面积公式。板书:S=a×h,告知S和h的读音。说明在含有字母的式子里,字母和字母中间的乘号可以记作“·”,写成a·h,也可以省略不写,所以平行四边形面积的计算公式可以写成S=a·h,或者S=ah。

(6)看课本中讲解的相应的内容,并完成第65页中间的“填空”。3.应用总结出的面积公式计算平行四边形的面积。

(1)课本第66页例题,指名读题后,引导学生想,根据什么列式?并提醒学生注意得数保留整数。然后在本上列式计算,教师巡视。共同订正,指名说出是根据什么列式的。

(2)完成课本第66页“做一做”第1、2题。共同订正。(3)把自己准备的平行四边形量一量,底、高各是多少厘米?再求出面积。

三、巩固练习练习十六第1题。

四、全课小结 这节课我们共同研究了什么? 怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导出来的?

五、布置作业 练习十六第2、3题。

教材先给出方格纸上的平行四边形和长方形,从数图形中的方格数引入平行四边形的面积。利用数方格的方法来计算面积仍然是一种计量面积的方法。遇到图形中的边与边之间有不成直角的情况时,该怎样计算面积,学生还没有学过。教材通过实际数方格的个数让学生学会这种计算面积的方法。教材中左右两个方格图上,平行四边形的底与长方形的长,平行四边形的高与长方形的宽分别相等,暗含着两种图形的联系。长方形画在方格纸上,实际是给出了它的长和宽。通过数和算,使学生知道两个图形的面积相等;再通过比较,使学生看出左右两个图形的底与长、高与宽分别相等,从而初步看到平行四边形和长方形的面积和它们的边长和高之间有一定的联系。这样就为学生进一步探寻平行四边形面积的计算方法做了准备。接着教材再提出问题,平行四边形的面积怎样计算,能不能转化为长方形来算。转化的方法是一种数学方法,利用这种方法,可以把新知识转化为旧知识,从而使新问题得到解决。在教学一个数除以小数时,已经用到了转化方法。即根据被除数和除数都扩大相同倍数商不变的性质,把除数是小数的除法转化成学过的除数是整数的小数除法。教材在这里教学平行四边形的面积时利用转化方法,通过学生动手操作、探索,把平行四边形转化成已学过的长方形,从而把计算平行四边形的面积转化为计算长方形的面积。教材改变了过去简单的割补方法,在引导学生操作时渗透了平移思想。教材用图说明平移的方法,把从左面剪下的直角三角形,底边沿着原来的底边向右平着移动,直到直角三角形的左下角的顶点和原平行四边形右下角的顶点重合,直角三角形的斜边和原平行四边形的右边重合为止。通过这样操作,学生把一个平行四边形转化为一个与它面积相同的长方形。然后让学生自己找出长方形的长、宽与原来平行四边形的底、高的关系,推导出平行四边形的面积计算公式。接着通过例题和“做一做”巩固新学的计算公式。“做一做”中第1题图形的底和高的数值都很简单,但图形位置各不相同。这样可使学生加深对图形的认识,正确分清平行四边形的底和高。第2题出现一个接近平行四边形的地面图,让学生计算它的面积,以便加强与实际的联系。练习题由浅入深,而且不全是按照所给的数据直接计算面积的,也有运用图形知识的题目。还注意培养学生动手测量的能力。如第3题让学生自己动手量平行四边形的底和高,这就要求学生首先要会找出哪是底,哪是高,然后才能量出相应的底和高。第6题需要学生综合运用知识,进行逻辑推理,使学生明白平行四边形的面积只与底和高有关,与相邻两边组成的角度大小无关。第8题和第9题是联系实际的题目,需要先计算土地的面积,再根据数量关系解答问题。第11题渗透函数思想,通过木条围成的图形的变化,以及面积、周长的变化,可以加深学生对长方形和平行四边形之间的联系的理解,使学生知道4根木条围成的长方形面积最大,左右两边的木条斜度越大,围成的平行四边形的高越小,从而面积也越小。

多边形课件【篇2】

教学内容

苏教版《义务教育课程标准实验教科书 数学》二年级(上册)第26~27页。

教学目标

1. 使学生通过观察、比较、类推等活动,认识四边形、五边形、六边形等平面图形。

2. 使学生在摸、数、折、剪、围等操作活动中,体会图形的变换,掌握变换的规律,积累图形变换的经验。

3. 使学生在与同伴合作交流的过程中,获得成功的体验,培养学习数学的兴趣。

教学过程

一、 导入新课

谈话:小朋友,我们在一年级时已经认识了很多图形,你还认识这些图形吗?

出示长方形、正方形和平行四边形。

启发:请小朋友仔细观察三个图形,你发现它们有什么相同的地方?(它们都有4条边)

揭题:今天我们继续认识图形。(板书课题:认识图形)

[评析:从学生已有的知识经验展开教学,朴实、自然,有利于学生认知结构的形成。]

二、 探索新知

1. 认识四边形。

(1)摸一摸、数一数。

谈话:请小朋友拿出这样的一张长方形纸,(出示长方形纸)摸一摸它的边,再数一数有几条边。

要求:再拿出正方形和平行四边形,摸一摸、数一数,看看正方形和平行四边形各有几条边。

谈话:长方形、正方形、平行四边形都有四条边,下面的图形各有几条边呢?请小朋友像刚才那样摸一摸,数一数。

学生活动后反馈。

谈话:刚才的这些图形,它们有什么共同的地方?(都有四条边)像这样的图形都是四边形。

(2)练习。

①认一认。

完成想想做做第1题(略)。

②找一找。

谈话:小朋友,我们已经认识了四边形,你能从周围找到一些四边形吗?(数学书的封面等)

③围一围。

谈话:你能在钉子板上围一个四边形吗?先想一想怎样围,再和同桌交流。

(3)小结。(略)

[评析:通过摸一摸、数一数、找一找、围一围等多种形式的操作活动,由认识规则的四边形到认识不规则的四边形,有层次地展开教学活动,突出了本节课的重点。在充分感知的基础上,逐步抽象出四边形的本质特征,既有利于形成正确、清晰的表象,又为学习其他多边形奠定了坚实的基础。]

2. 认识五边形、六边形。

谈话:请小朋友拿出课前老师发给大家的信封,信里有一些纸片剪成的图形,同桌的两个小朋友合作,先数一数每个图形各有几条边,再把它们分成两类。

反馈:你是怎样分的?为什么这样分?(五条边的图形分为一类,六条边的图形分为一类)

提问:有五条边的图形,是几边形?有六条边的呢?

出示教材第二个例题的四个图形。

谈话:数一数这几个图形,每个图形分别有几条边?是几边形?

小结:由五条边围成的图形是五边形,由六条边围成的图形是六边形。

谈话:我们已经认识了四边形、五边形、六边形,它们都是多边形,我们今天认识的图形都是多边形。(在课题旁板书:多边形)

谈话:请小朋友动脑筋想一想,多边形还会有哪些形状呢?(七边形、八边形、九边形)是的,多边形还有很多,以后我们还要进一步学习和研究它们。

[评析:在认识四边形的基础上,用类比、迁移的方法,使学生轻松地认识了五边形、六边形,学生不仅掌握了数学知识,而且潜移默化地受到了数学思想方法的熏陶。]

三、 巩固拓展

1. 围图形。

让学生在钉子板上分别围出四边形、五边形和六边形。

2. 搭图形。

让学生用小棒分别搭四边形、五边形和六边形。

交流:你搭成的图形分别要了几根小棒?搭一个四边形至少要用几根小棒?搭一个五边形、六边形呢?

3. 折一折,剪一剪。

谈话:今天我们认识了多边形,你能用纸折出或剪出我们认识的多边形吗?

学生活动,教师组织交流。

师生共同活动,按想想做做第4题的顺序折出不同的多边形,再让学生自由地折一折。

[评析:巩固练习是课堂教学的重要环节,是新知教学的补充和延伸,是形成知识结构和发展能力的重要过程。教师通过数、围、搭、折、剪等多种形式的活动,使学生进一步加深了对多边形的认识,积累了数学活动经验,体验了学习成功的快乐。]

四、 课堂小结

提问:今天这节课你学到了哪些新本领?对自己在课堂上的表现满意吗?

多边形课件【篇3】

一、教学目标:

1、让学生经历探索多边形外角和公式的过程,培养学生主动探究的习惯。

2、能灵活的运用多边形内角和与外角和公式解决有关问题。

二、教材分析

本节的主要内容是多边形的.外角定义和公式。多边形的外角和是三角形的一个重要性质,与前面的内角和公式综合运用能解决一些较难的问题。为提供三角形的外角提供了一种方法。

三、教学重点、难点

1、多边形的外角和公式及公式的探索过程。

2、能灵活运用多边形的内角和与外角和公式解决有关问题。

四、教学建议

关于外角和公式关键要让学生理解它是不随多边形边数的增加而增大,因此在教学中应设置由特殊到一般的题目,让学生亲身体会这个外角和是360°。

五、教具、学具准备

投影仪、题板、画图工具

六、教学过程

1、复习提问:

(1)多边形的内角和是多少?

(2)正八边形的每一个内角为度?

2、创设问题情景,引入新课:

教师投放课本51页图9—35时,并出示以下问题:

小明沿一个五边形广场周围的小路,按顺时针方向跑步

(1)小明从一条街道转到下一条街道时,身体转过的角是哪个角?在图中标出它们。

(2)观察∠1、∠2、∠3、∠4、∠5的两边分别与它相邻的五边形的内角的边有何关系?

(3)问题:你能计算小明跑完一圈,身体转过的角度和吗?如何计算∠1+∠2+∠3+∠4+∠5呢?

点拨:

请填写下题:

如图,oa‘∥ae,ob‘∥ab,oc‘∥bc,od‘∥cd,oe‘∥de,则∠α=,∠β=,∠γ=,∠δ=∠θ=。

因为∠α+∠β+∠γ+∠δ+∠θ=。

所以∠1+∠2+∠3+∠4+∠5=。

由此可得:五边形的外角和是360°

(4)你能借助内角和来推导五边形的外角和吗?

点拨:

因五边形的每一个内角与它相邻的外角是邻补角,

所以五边形的内角和加外角和等于5×180°

所以外角和等于5×180°—(5—2)×180°=360°

(5)你用第二种方法推导下列多边形的外角和

三角形的外角和四边形的外角和五边形的外角和n边形的外角和是。

得出结论:多边形的外角和都等于360°。

4、应用举例:

例一个多边形的内角和等于它的外角和的3倍,它是几边形?

点拨:

设出未知数,根据相等关系:内角和=3×外角和列出方程

5、练习:

见学案练习一和练习二

6、达标检测

见学案达标检测

7、小结

本节课你学到了什么?有什么收获?

8、作业

学生口答,并计算出度数

学生独立观察分析思考找出特征,试概括所得结论,从而引出多边形的外角定义及外角和定义及引入新课从而板书课题。

学生质疑思考,一时找不到方法,可按点拨的引导继续思考。

生充分思考,认真分析,小组讨论交流得出答案。

学生找关系,小组积极讨论、交流,小组汇报结果。

学生独立探究,很快得出答案。

学生独立解决

让学生先总结、交流谈体会

多边形课件【篇4】

各位领导,各位老师大家下午好,很高兴有机会参加这次教学研究活动。

我的教学设计是华师大版七年级数学(下)第八章第三节"多边形的内角和与外角和"。根据新的课程标准,我从以下七个方面说一下本节课的教学设想:

一, 教材分析

从教材的编排上,本节课作为第八章的第三节是承上启下的一节,在内容上,从三角形的内角和到四边形的内角和到多边形的内角和环环相扣,前面的知识为后边的知识做了铺垫,知识联系性比较强,特别是教材中设计了一些"想一想""试一试""做一做"等内容,体现了课改的精神。在编写意图上,编者有意从简单的几何图形入手,让学生经历探索,猜想,归纳等过程,发展了学生的合情推理能力。

二, 学生情况

学生上节课刚刚学完三角形的内角和,对内角和的问题有了一定的认识,加上七年级的学生具有好奇心,求知欲强,互相评价互相提问的积极性高。因此对于学习本节内容的知识条件已经成熟,学生参加探索活动的热情已经具备,因此把这节课设计成一节探索活动课是切实可行的。

三, 教学目标及重点,难点的确定

新的课程标准注重学生所学内容与现实生活的联系,注重学生经历观察,操作,推理,想象等探索过程。根据新课标和本节课的内容特点我确定以下教学目标及重点,难点

【知识与技能】掌握多边形内角和与外角和定理,进一步了解转化的数学思想

【过程与方法】经历质疑,猜想,归纳等活动,发展学生的合情推理能力,积累数学活动的经验,在探索中学会与人合作,学会交流自己的思想和方法。

【情感态度与价值观】让学生体验猜想得到证实的成功喜悦和成就感,在解题中感受生活中数学的存在,体验数学充满着探索和创造。

【教学重点】多边形内角和及外角和定理

【教学难点】转化的数学思维方法

四, 教法和学法

本次课改很大程度上借鉴了美国教育家杜威的"在做中学"的理论,突出学生独立数学思考活动,希望通过活动使学生主动探索,实践,交流,达到掌握知识的目的,尤其是本节课更是一节难得的探索活动课,按新的课程理论和叶圣陶先生所倡导的"解放学生的手,解放学生的大脑,解放学生的时间"及初一学生的特点,我确定如下教法和学法。

【课堂组织策略】利用学生的好奇心,设疑,解疑,组织活泼互动,有效的教学活动,鼓励学生积极参与,大胆猜想,积极思考,使学生在自主探索和合作交流中理解和掌握本节课的有关内容。

【学生学习策略】明确学习目标,在教师的组织,引导,点拨下进行主动探索,实践,交流等活动。

【辅助策略】利用多媒体课件展示三角形内角和向多边形内角和转化,突破这一教学难点,另外利用演示法,归纳法,讨论法,分组竟赛法,使不同学生的知识水平得到恰当的发展和提高。

五, 教学过程设计

整个教学过程分五步完成。

1, 创设情景,引入新课

首先解决四边形内角的问题,通过转化为三角形问题来解决。

2,合作交流,探索新知。

更进一步解决五边形内角和,乃至六边形,七边形直到N边形的内角和,都能用同样的方法解决。学生分组讨论。

3, 归纳总结,建构体系。

多边形内角和已得出,对外角和更是水到渠成,这时要适当的总结,让学生自己得到零散的知识体系。

4, 实际应用,提高能力。

"木工师傅可以用边角余料铺地板的原因是什么 "这既是对本节所学知识在现实生活中的应用,又是本章第一节的延伸,同时也为下节打下了一个铺垫

5, 分组竞赛,升华情感

四组不同难度的电子试卷,既巩固本节课所学的知识,又使学生本节课产生的激情得以释放。

六, 板书设计

板书本节课学生所需掌握的知识目标:即多边形内角和与外角和定理

七, 创意说明

本节课在知识上由简单到复杂,学生经历质疑,猜想,验证的同时,在情感上,由好奇到疑惑,由解决单个问题的一点点快感,到解决整个问题串的极大兴奋,产生了强烈的学习激情。这时,一次有效的教学竞赛活动,使学生的学习激情得到释放,学科个性得以张扬,教师稍加点拨,适可而止,把更多的思考空间留给学生。

多边形课件【篇5】

各位评委、各位老师:

大家好!我说课的内容是人教版义务教育课程标准实验教科书,七年级数学(下)第七章第三节《多边形的内角和》。下面,我从以下几个方面对本节课的教学设计进行说明。

一、教材分析

1、教材的地位和作用本节课作为第七章第三节,起着承上启下的作用。在内容上,从三角形的内角和到多边形的内角和,再将内角和公式应用于平面镶嵌,环环相扣,层层递进,这样编排易于激发学生的学习兴趣,很适合学生的认知特点。通过这节课的学习,可以培养学生探索与归纳能力,体会从简单到复杂,从特殊到一般和转化等重要的思想方法。

2、教学重点和难点重点:多边形的内角和与外角和难点:探索多边形内角和时,如何把多边形转化成三角形。

二、教学目标分析

1、知识与技能:掌握多边形的内角和与外角和,进一步了解转化的数学思想。

2、数学思考:能感受数学思考过程的条理性,发展能力推理和语言表达能力,并体会从特殊到一般的认识问题的方法。

3、解决问题:让学生尝试从不同的角度寻求解决问题的方法,并能有效地解决问题。

4、情感态度:让学生体验猜想得到证实的成就感,在解题中感受生活中数学的存在,体验数学充满探索和创造。

三、教法和学法分析

本节课借鉴了美国教育家杜威的“在做中学”的理论和叶圣陶先生所倡导的“解放学生的手,解放学生的大脑,解放学生的时间”的思想,我确定如下教法和学法:

1、教学方法的设计我采用了探究式教学方法,整个探究学习的过程充满了师生之间,生生之间的交流和互动,体现了教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。

2、活动的开展利用学生的好奇心设疑、解疑,组织活泼互动、有效的教学活动,鼓励学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。

3、现代教育技术的应用我利用课件辅助教学,适时呈现问题情景,以丰富学生的感性认识,增强直观效果,提高课堂效率。

四、教学程序设计

1、本节教学将按以下六个流程展开创设情境引入新课↓合作交流探索新知↓自主探究得出结论↓尝试练习应用新知↓归纳总结形成体系↓分组竞赛升华情感

2、教学过程

互动环节互动内容设计意图1创设情境引入新课

(1)在一次数学基础知识抢答赛上,王老师出了这么一个问题:某个多边形所有的角加起来等于它的外角和,那么该多边形是几边形?小明同学仅用几秒钟就解决了问题,你能吗?

(2)(演示教具)用四块大小形状完全相同的四边形可拼成一块无空隙的纸板,你知道这是为什么吗?通过今天的学习,我们就能明白其中的道理,引出课题。

这样一开始就利用抢答赛问题以及教具演示实验来提问设疑,学生很容易发问:这个多边形是几边形呢?用四块大小形状完全相同的四边形可拼成一块无空隙的纸板,为什么会产生这种效果呢?从而可调动学生的学习兴趣和注意力,创设恰当的教学情境。

2合作交流探索新知

(1)问题:三角形的内角和等于多少度?外角和等于多少度?长方形的内角和等于多少度?正方形的内角和等于多少度?

(2)问题:任意四边形的内角和等于多少度呢?你是怎样得到的?你能找到几种方法?

(3)学生思考,并分组交流讨论,教师深入小组参与活动,指导、倾听学生交流。

(4)学生分组选代表展示小组的探索成果,师生共同进行评判,对学生找到的不同方法要加以及时肯定。

学生可能找到以下几种方法:

①“量”—即先测量四边形四个内角的度数,然后求四个内角的和;

②“拼”—即把四边形的四个内角剪下来,拼在一起,得到一个周角;

③“分”—即通过添加辅助线的方法,把四边形分割成三角形。

教师在学生展示完后提问:

①在“量”、“拼”、“分”这几种方法中,哪种方法操作简单又相对准确?

②我们刚才找到了几种不同的辅助线的作法,它们的共同点是什么?

先回顾三角形、正方形和长方形的内角和,促使学生对新问题进行思考与猜想。

从简单的四边形入手,让学生亲自操作寻求结论,易于引起学习兴趣,鼓励学生找到多种方法,让学生体会多种分割形式,有利于深入领会转化的本质——四边形转化为三角形,也让学生体验数学活动充满探索和解决问题方法的'多样性。通过交流,让学生用自己的语言清楚地表达解决问题的过程,可以提高语言表达能力。

3自主探究得出结论

(1)问题:用刚才类似的方法,你能算出五边形、六边形、七边形的内角和吗?

学生先独立思考,分组讨论,然后再叙述结论。

(2)问题:依此类推,n边形的内角和等于多少度呢?让学生自己归纳总结,得出n边形的内角和公式为(n—2)·180°。从探索四边形的内角和,到五边形、六边形、七边形乃至n边形,通过增强图形的复杂性,让学生体会由简单到复杂,由特殊到一般的思想方法,再一次经历转化的过程,同时在分组交流的过程中,感受合作的重要性。

4应用新知尝试练习

(1)想一想:如果一个四边形的一组对角互补,那么另一组对角有什么关系?为什么(教材88页例1)。

(2)算一算

①教材89页练习1、2。

②四边形的外角和等于多少度?

③五边形的外角和,六边形以及n边形的外角和呢?

(3)读一读先让学生阅读教材89页最后两段内容,然后我再用课件展示。通过做例题和练习来巩固新知识。先求四边形的外角和,再求五边形、六边形以及n边形的外角和,我提出阶梯式的问题,让学生逐步归纳得出多边形的外角和等于360°。这两段是新增加的内容,从另一个角度增加对任意多边形外角和理解与认识。这样处理,注重教材阅读学习,同时用课件演示更加形象直观,便于理解。

5归纳总结形成体系我从以下几个方面引导学生进行小结:

(1)现在你能解决数学知识抢答赛上,王老师提出的问题了吗?你知道为什么能用四块大小形状完全相同的四边形拼成一块无空隙的纸板了吗?

(2)这节课我们学习了哪些知识和方法?你有什么收获?让学生运用所学知识解决引问中的问题,提高解决问题的能力,鼓励学生畅所欲言总结对本节课的收获和体会,有利于培养归纳、总结的习惯和能力,让学生自主建构知识体系。

6分组竞赛升华情感

我制作了A、B、C、D四组不同的电子试卷,让学生运用所学知识通过小组竞赛的形式合作完成,自检掌握情况。通过竞赛的方式,激发学生的学习兴趣,引导他们在做练习的过程中,通过小组协作来巩固知识和获得技能。

在每组试卷中,大部分选自教材的练习题。另外,我还另增加了1个思考题,实际上是对证明四边形内角和方法的补充,主要是通过一题多解发散思维,提高思维的灵活性,还可以复习旧知识,把握知识间的相互联系,让学生再次体会转化的思想方法。

五、评价分析

1、注意评价内容的多元化通过课堂中学生展示自己对所学内容的理解,交流对某一问题的看法,动手操作的表演,各种问题尝试解答等活动,使教师从学生思维活动、有关内容的理解和掌握,以及学生参与活动的程序等多层面地了解学生。

2、注重对学生学习过程的评价在整个教学过程中,通过对学生参与数学活动的程度、自信心、合作交流的意识以及独立思考的习惯,发现问题的能力进行评价,并对学生中出现的独特的想法或结论给予鼓励性评价。

六、设计说明

1、指导思想根据义务教育阶段数学课程的要求,结合教材的编写意图,在本节课设计时,我遵循以下原则:情境引入激发兴趣,学习过程体现自主,知识建构循序渐进,思想方法有机渗透。

2、关于教材处理本教案设计时,我对教材作了如下改变:

①将教材例1作为练习中的“想一想”,由学生自已尝试解答;

②将例2中的求“六边形”的外角和,改为练习中的“算一算”,先让学生求“四边形”的外角和,再探索“五边形、六边形,以及n边形的外角和”。这样处理仍然是为了体现学生的自主探索,使学生学习变“被动”为“主动”。

③作业采取分组竞赛的形式合作完成。这样,在情感上,本节课学生由好奇到疑惑,由解决单个问题的一点点快感,到解决整个问题串的极大兴奋,产生了强烈的学习激情。这时,一次有效的教学竞赛活动,使学生的学习激情得到释放,学科个性得以张扬,教师可稍加点拨,适可而止,把更多的思考空间留给学生。以上是我对本节课的设计说明,不足之处,请各位指正,谢谢!

多边形课件【篇6】

五年级数学

《多边形的面积》复习课

【教学目标】:

1、知识与技能:

(1)使学生进一步理解并掌握平行四边形、三角形和梯形的面积公式,能应用公式计算一些平面图形的面积,并解决一些简单的实际问题。

(2)能用不同的方法计算简单组合图形的面积,进一步体验算法多样化。

2、过程与方法: 引导学生通过回忆、讨论与交流,将“多边形的面积”这个单元所学的知识进行系统复习,结合练一练,加深对所学知识的理解,提高掌握水平。

3、情感、态度与价值观: 使学生感受复习的必要性与重要性,逐步养成自己整理所学知识的意识和良好学习习惯。【教学重点】:正确运用面积公式进行相关计算。【教学过程】

一.创设情境,激发兴趣

谈话:同学们喜欢唱歌吗?有一首歌叫《王老先生有块地》你们知道吗?今天我们就来观察观察王老先生的这块地。大家看黑板。(出示小黑板)

问:你们发现这块地都有什么图形组成的呢?

生回答:(平行四边形、三角形、梯形)

二、知识梳理:

1、组织学生回忆各类图形面积的计算公式(相机板书)

2、回忆各类图形面积计算公式的推导过程。(学生讨论,全班交流)

平行四边形:割补平移转化为长方形

三角形:两个相同的三角形拼成一个平行四边形 梯形:(1、两个完全相同的梯形拼成一个平行四边形。

(2、将梯形分割成两个的三角形。

(3、将梯形分割成一个平行四边形和一个三角形。

小结:我们在推导平行四边形、三角形、梯形的面积公式时,根据转化的思想,把这些图形转化为我们所学过的图形来推导,这是一个重要的思想方法,这在今后学习新知识也将会用到。

3、说说在计算面积时,应该注意的问题是什么?(低和高一定要相互对应)

三、基础练习:

1、口算面积:(单位:厘米)

2、帮王老先生算一算他的地有多大?

四、巩固提高,大显身手 五年级数学

第一题、判断

1、三角形面积是平行四边形面积的一半。()

2、两个面积相等的梯形,形状是相同的。()

3、两个三角形的高相等,它们的面积就相等。()

4、平行四边形的底越长,它的面积就越大。()

5、面积相等的两个梯形一定能拼成一个平行四边形。()

6、两个等底等高的三角形一定可以拼成一个平行四边形。

()

7、用木条做一个长方形框架,再拉成一个平行四边形,平行四边形的面积要变小()第二题、填空

1)一个平行四边形面积是40平方厘米,与它等底等高的三角形面积是()平方厘米。2)个三角形,高不变,底扩大3倍,面积就扩大()倍。

3)如果一个三角形的底和一个平行四边形的底相等,面积也相等,平行四边形的高是10厘米,那么三角形的高是()

4)一个三角形的面积是36平方厘米,高是8厘米,底是()厘米。第三题、思考:

1、一个平行四边形的面积是16平方厘米,从这个平行四边形中剪出一个最大的三角形,这个三角形的面积是多少平方厘米。

2、一个三角形与一个平行四边形的底和面积都相等,平行四边形的高是16厘米,三角形的高是多少厘米。

3、一个平行四边形的底是14厘米,高是9厘米,它的面积是多少平方厘米,与它等底等高的三角形的面积是多少平方厘米。

4、一个梯形面积是84平方米,上底是6米,下底是8米,它的高是多少米。

五、终极挑战:(小黑板出示)

1、一堆圆形钢管堆在一起,它的横截面形状成等腰梯形。已知这堆钢管最上面一层有8根,最下面的一层有13根,并且下面一层都比上面一层多1根。求这堆钢管共有多少根?

2、求阴影部分的面积

3、一个平行四边形花圃的中间有一条宽2米的小路,如图所示,求花圃的面积为多少平方米

六、反思总结:

通过今天的复习,你有什么收获,和大家分享一下。

多边形课件【篇7】

各位评委、老师:

早上好,我今天说课的题目是:华东师大版七年级数学第八章《多边形》的第三节“多边形的内角和” 。说课内容包括教材分析、教学目标、教法分析、过程设计和评价分析五个部分。

一、 教材分析

1、教学内容

“多边形的内角和”一节包括的内容主要有多边形的有关概念以及多边形内角和公式的推导和运用。

2、本章及本节的地位与作用

本章《多边形》,探索的是三角形和多边形的有关概念和性质,是学生在上学期初步认识和感受空间图形之后的延伸,也为今后进一步学习各种多边形打好基础。

本节课“多边形的内角和”作为本章的一个重点,是三角形有关知识的拓展,学习四边形的基础, 公式的运用还充分地体现了图形与客观世界的密切联系。

3、重点与难点

多边形内角和的公式及公式的推导和运用是本节课的重点; 因为公式的得出可以用多种不同的方法推导, 所以我确定本节课的难点是如何引导学生通过自主学习, 探索多边形内角和的公式。

二、教学目标

根据新课程标准的要求,课改应体现学生身心发展特点;应有利于引导学生主动探索和发现;有利于进行创造性的教学。因此,我把本节课的教学目标确定为以下三个方面:

知识目标:

① 识别多边形的顶点、边、内角及对角线;

② 理解多边形内角和公式的推导过程;

③ 掌握多边形内角和公式的内涵及其运用。

能力目标:

① 培养学生类比归纳、转化的能力;

② 培养学生观察分析、猜想和概括的能力。

思想情感目标:

通过体会数学图形的美感,提高审美能力, 树立认识数学来源于生活,又服务于实践的观点。

三、教法分析

在教法上树立以学生为本的思想,通过创设问题情境,启发引导学生观察----分析----猜想----概括,培养学生积极思考,勇于探索的精神,充分发挥其自主能动性。

学法指导是培养学生学习能力的关键,本节课针对学生的认知规律,指导他们动手操作、交流合作,体验发现问题、探索问题和解决问题的学习过程。

教学手段上采用多媒体辅助教学,通过直观演示,更好地实现了“数形结合”的教学,切实有效地提高了课堂教学的效果。

四、过程设计

1、创设问题情境,引入新课

我是这样设计问题的:

在一个平面内,把一个三角形的三个顶点固定,一边套上橡皮筋往外拉成一条折线,该折线与三角形的另外两边围成一个什么图形?再把橡皮筋的一边又往外拉,再固定, 又围成什么图形?……不断地向外拉,结果围成什么图形?

如果上述情况不是往外拉而是往里推,那是什么图形?

在学生的回答中引出主题:今天我们来学习多边形的有关知识.

(板书: 多边形的内角和)。

因为前面已经学过三角形的有关知识, 从学生熟悉的情境入手引入新知识, 更能引起学生的学习兴趣, 启发思考: 多边形与三角形有什么密切的联系呢? 渗透了互为转化的思想。

2、新课学习:

(1)基本概念

我把新课的引入过程作为本节课一条主线,各环节都围绕着这条主线展开。

首先告诉学生:我们往外拉得到的这些图形称为凸多边形,你能给往里推得到的多边形起个名字吗?怎样区别这两种图形呢?把凹多边形与凸多边形从分割的角度来区别,指出暂时研究的只是凸多边形。

帮助学生复习三角形的有关概念,类比得出四边形、五边形、… n边形的定义,识别多边形的顶点、边及内角,并会表示出一个多边形。

引入特殊多边形之前, 先欣赏生活中常见到的丰富多彩的图案, 让学生体会数学图形的美,提高审美情趣. 称这样的多边形为正多边形,说明这种规则的、对称的图形非常重要,为下一节学习用正多边形铺设地板作好铺垫。

在多边形的对角线这一概念的认识和理解上,应突出它的作用,引导学生观察、发现,由于这种特殊的线段,把多

边形分割成了最基本的图形——三角形,目的是为多边形内角和公式的推导埋下伏笔。

(2)知识探究

为了加深对概念的理解,领会其运用,突出本节课的重点和难点,同时体现新课程标准的精神实质, 在知识探究这一部分,我采取以下两个探究活动充分调动全体学生主动探索多边形的内角和公式:

探究活动1:多边形的对角线

先让学生画出四边形、五边形所有的对角线,再让三个学生上黑板,分别画出四边形、五边形、六边形只从一个顶点出发引出的对角线,其余学生则在下面都画出这三种情况,由动脑到动手,在操作中获取知识。

思考并分小组讨论以下两个问题:①从多边形的一个顶点出发能画出几条对角线?②这样的画法把多边形分成了多少个三角形?

因为多边形内角和公式的推导就是从对角线和三角形入手的,因此,这两个问题就显得尤其重要。引导学生回想课前引入的过程, 图形的转化中对角线有什么作用? 与边数对比,发现什么变化规律,归纳总结出来。

探究活动2:多边形的内角和

这既是本节课的重点, 又是难点, 能不能从以上对角线的问题得到启示呢? 为了紧紧扣住主题, 前后呼应. 我先提出问题:三角形的内角和等于多少度?

四边形的内角和呢?怎样算出?有的学生可能会想到用量角器量一量, 或类似求三角形内角和那样剪下来拼一拼, 有的可能马上就看出四边形被一条对角线分成了两个三角形, 它的内角和就是2×180°……在肯定正确的答案和各种想法的同时,让学生寻找出最优办法。

多边形课件【篇8】

《多边形的面积》整理与复习教学设计

王润敏

教学目标:

1、进一步理解并掌握平行四边形、三角形和梯形的面积计算公式,能应用公式计算这些图形的面积,并解决一些简单的实际问题。

2、通过回忆、交流,将“多边形的面积”这个单元所学的知识进行系统复习,形成完整知识体系;结合练习,加深对所学知识的理解,提高应用所学知识解决实际问题的能力。

3、感受系统复习的必要性与重要性,逐步形成学生自己整理所学知识的意识和良好的学习习惯。

4、在小组合作学习中,培养学生合作精神,增强学生的集体荣誉感。教学重点难点:

重点是把通过归纳和整理本单元所学的面积公式,形成完整的知识体系,能正确应用这些面积公式解决实际问题。难点是把掌握多边形面积公式之间的联系。教法学法: 本课指导思想是发挥学生的主体作用,引导学生自主学习。学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。教学过程:

(一)、回忆公式,夯实基础。小组合作交流。(思路提示)

1、本单元学过哪些多边形面积的计算公式?

2、他们是怎样推导出来的?

3、看图计算图形面积时,特别要注意哪些方面的问题?

(二)、全班交流,形成知识体系。

1、学生回答问题1,老师同步板书。

2、学生回答问题2,老师同步课件展示。(体现转化的数学思想)

3、学生回答问题3。学生先回答但不一定完整,再通过一些具体练习把答案补充更加完整。得到结论: 计算图形的面积时,特别要注意以下几个方面的问题 :

(1)计算三角形、梯形面积时一定不要忘记除以2。

(2)看图列式时,一定要找准相对应的底和高。

(3)单位不统一时,一定不要忘记单位转化。

(4)需要的条件不足时,用分步先算出来。

(三)、多样练习,促进理解。

1、重视利用填空、判断、选择题,巩固本单元概念。比如:填空题两个一样的梯形可以拼成一个(平行四边形),它的底边等于梯形的(上底加下底的和)。判断题:三角形的面积是平形四边形的一半。(×);两个三角形的高相等,它们的面积就相等。(×)

在选择题部分,强化了多边形面积计算时要注意底与高的“对应”。

2、在解决生活实际问题部分,我则补充了下列对比练习:

一块地近似平行四边形,它的底是50米,高12米。

(1)如果每平方米施化肥0.5千克,那么这块地共需施化肥多少千克?

(2)如果在这块地里种玫瑰,每棵玫瑰占地0.5平方米,这块地能种玫瑰多少棵?

小组合作完成,议一议、比一比第(1)和(2)问题的解题方法一样吗?为什么? 引导学生总结出解决问题需要注意:(1)、弄清楚图形,选择公式。

(2)、注意:条件要相对应,单位要统一,别忘了除以2(三角形、梯形)(3)、根据题意,弄清面积与其它数量间的关系.(四)、课堂小结:

这节课我们复习了多边形的面积,你有什么收获?

多边形课件【篇9】

本节课主要讲解多边形面积中的第一个图形面积,数学中非常重要的,平行四边形面积如何计算。

一、教学目标:

1.在学生理解的基础上掌握平行四边形面积计算公式,能正确地计算平行四边形的面积。

2.使学生通过操作和对图形的观察、比较,发展学生的空间观念,使学生初步知道转化的思考方法在研究平行四边形面积时的运用。

3.培养学生的分析、综合、抽象、概括和解决实际问题的能力。

二、教学重点:

理解并掌握平行四边形的面积公式

三、教学难点:

理解平行四边形面积公式的推导过程。

四、教学内容:

教材7-8页例1-例3

五、教学过程:

1.复习导入新课:说出学过的平面图形,在这些图形中,你会求哪些图形的面积?

2、探究新知:

教学例1:

(1)出示例1中的第1组图

要求:下面的两个图形面积是否相等?在小组里说一说你准备怎样比较这两个图形的面积。(学生分组活动后组织交流)

预设:学生大多会用数方格方法进行比较,对于出现转化教师应当鼓励,并加以引导。

(2)出示例1中的第2组图

你还能比较出这两个图形的大小吗?(学生交流,教师适当强调\转化\的方法,同时让学生思考第1组图也可以用转化的方法吗?)

(3)揭示课题:

师:今天我们运用已学过有关知识运用转化的数学思想来研究新图形的面积计算公式。

今天我们来研究平行四边形面积的计算。(板书课题)

3、教学例2:

(1)出示一个平行四边形

师:你能想办法把这个平行四边形转化成长方形吗?

(2)学生操作,教师巡视指导。

(3)学生交流操作情况

第一种:

①沿着平行四边形的高剪下左边的直角三角形。

②把这个三角形向右平移。

③平移至斜边重合。

第二种:

①沿着平行四边形的任意一条高将其剪为两个梯形。

②把左侧的梯形向右平移。

③倒过来斜边重合。

(4)小组讨论:比较两种转化方法,说说它们有什么相同的地方?

4、教学例3:

(1)提问:是不是任意一个平行四边形都能转化成长方形?都能推导出平行四边形的面积公式呢?请大家从教科书第115页上任选一个平行四边形剪下来(课前准备),先把它转化成长方形,再求出面积并填写下表。

转化后的长方形平行四边形

长(cm)宽(cm)面积(cm)底(cm)高(cm)面积(cm)

(2)学生操作,反馈交流。

(3)小组讨论。

①转化后长方形的面积与原平行四边形面积相等吗?

②长方形的长和宽与平行四边形的底和高有什么关系?

③根据长方形的面积公式,怎样求出平行四边形的面积?

(6)学生总结,形成下面的板书:

长方形的面积=长宽

平行四边形的面积=底高

S=ah

5、巩固练习:

①指导完成试一试:

明确应用公式求平行四边形的面积一般要有两个条件,即底和高。

②指导完成练一练:

强调底和高的对应关系。

六、教学结束:

通过今天的学习有哪些收获?请同学们回去预习,下一课所学内容三角形面积。

多边形课件【篇10】

安徽省黄山市黄山区甘棠中心学校 吕彩虹(初稿)

安徽省黄山市教科院 高娟娟(修改)安徽省黄山市黄山区教研室 齐胜利(统稿)

教学内容:人教版小学数学教材五年级上册第113页第2题及相关练习。教学目标:

(一)知识与技能

复习已学的多边形面积的计算公式。

(二)过程与方法

利用转化思想,推导出平行四边形、三角形和梯形的面积计算公式,将各种组合图形的面积转化为已学的多边形面积并加以计算。

(三)情感态度和价值观

加强知识间的联系,培养学生综合运用各种知识解决问题的能力。目标解析:本学期所学的平行四边形、三角形和梯形的面积计算公式都可以从长方形的面积计算公式推导而来。理解推导的过程,对加强知识间的内在联系、掌握转化的数学思想方法起着重要的作用。掌握了这些,学生今后即使忘记某个多边形的面积计算公式,也可自行推导得出。在计算组合图形的面积时,可以鼓励学生采用不同的方法进行计算,提高学生解决问题的能力。

教学重点:利用转化思想掌握多边形面积的计算公式。

教学难点:采用不同方法计算组合图形的面积,提高综合应用知识解决问题的能力。教学准备: 教具:课件;

学具:每人准备两个完全相同的三角形、梯形和一个平行四边形。教学过程:

一、创设情境,引出新课

李爷爷有一块地,种了三种蔬菜,是哪三种呢?我们一起去看看(课件出示图片)。

教师引导学生发现信息与问题。

信息:种茄子的是一块三角形的地,底长15 m,高是32 m;种黄瓜的是一块平行四边形的地,底长25 m,高是32 m;种西红柿的是一块梯形的地,上底是15 m,下底是23 m,高是32 m。

问题:茄子、西红柿和黄瓜各种了多少平方米?这块地共有多少平方米?

【设计意图】通过情境的创设,拉近数学与生活的联系,使学生产生亲切感,产生学习的兴趣。

二、解决问题,复习方法 1.三角形的面积=底×高÷2 =15×32÷2 =240(平方米)

思考:计算三角形的面积时,为什么要除以2呢?(出示两个完全相同的三角形,请同学拼一拼,明白三角形的面积就是两个完全相同的三角形所拼成的平行四边形面积的一半。)2.平行四边形的面积=底×高

=25×32 =800(平方米)

思考:为什么平行四边形的面积是“底×高”,而不是“底×斜边”呢?(沿平行四边形的高减下三角形,就可以拼得一个长方形。长方形的一边是平行四边形的底,长方形的另一边就是平行四边形的高。)3.梯形的面积=(上底+下底)×高÷2 =(15+23)×32÷2 = 608(平方米)

思考:有谁能说一说梯形的面积公式是怎样得来的?

(用两个完全相同的梯形可以拼成一个平行四边形。平行四边形的底就是梯形的“上底+下底”,平行四边形的高就是梯形的高,梯形的面积是拼成的平行四边形面积的一半。)4.你能用不同的方法求出李爷爷菜地的总面积吗?学生独立解决问题再汇报。方法一:总面积=三角形的面积+平行四边形的面积+ 梯形的面积

=240+800+608 =1648(平方米)

方法二:三种图形组合成一个梯形,上底是(25+23)米,下底是(15+25+15)米,高是32米。

总面积=[(25+23)+(15+25+15)]×32÷2 =1648(平方米)

【设计意图】在呈现简单实际问题的情境中,让学生在解决问题的过程中,回顾了多边形面积计算公式的相关知识和推导面积计算公式的方法,既巩固了多边形的面积计算,又发展了学生迁移、转化的方法和思想。带着问题动手操作,使抽象的知识形象化,进一步唤起对旧知的回忆。用不同的方法求菜地的总面积,让学生进一步感受到解决问题的多样化,训练了学生的思维。

三、巩固练习,应用拓展

1.课件出示教材第116页练习二十五第7题。

(1)学生独立解题。(2)汇报评价。

2.课件出示教材第116页练习二十五第8题。

(1)学生独立解题。(2)汇报评价。

指名说清计算过程中的每一步所表示的意义。既可分段列式,也可以综合列式。3.课件出示教材第116页练习二十五第9题。

(1)学生独立解题,教师巡视,适当指导。(2)小组交流汇报,教师评价。

4.课件出示教材第116页练习二十五第10题。

(1)题目给出什么条件,要求什么?

(条件:小方格的边长为1 cm。要求:组合图形的面积。)(2)学生自主尝试解决问题后,小组交流。

(3)学生汇报自己是怎么想的,教师评价。【设计意图】第7题与第8题属于基础题,通过解决生活中的简单问题巩固平行四边形及梯形面积的计算公式,让学生进一步熟练面积计算公式;第9题的难度有所加大,体现运用不同方式解决问题的思想,充分体现了开放性,既可通过“割”的方式,也可通过“补”的方式来计算,方法三难度相对较大,需要教师引导学生找到三角形的高,让学生感受解决问题的多样性;第10题更为灵活开放,学生先确定方法,再找出相应的长度计算,通过学生汇报自己的思考方法,优化认知,形成共识。

四、全课总结

这堂课你巩固了什么知识?你有什么新的收获?

【设计意图】将有关多边形面积的知识再次进行系统回顾,既加深印象,又将复习中获得的新知表达出来,让同学们共享,使其对知识的认知再次得到提升。

多边形课件【篇11】

1

目标

知识与技能:掌握多边形内角和定理,进一步了解转化的数学思想

过程与方法:经历质疑、猜想、归纳等活动,发展学生的合情推理能力,积累数学活动的经验,在探索中学会与人合作,学会交流自己的思想和方法.

情感态度与价值观:让学生体验猜想得到证实的成功喜悦和成就感,在解题中感受生活中数学的存在,体验数学充满着探索和创造.

重点:多边形内角和定理的探索和应用

教学难点:边形定义的理解;多边形内 角和公式的推导;转化的数学思维方法的渗透.

教学过程

第一环节 创设现实情境,提出问题,引 入新(3分钟,学生思考问题,入)

1.多媒 体展示蜂窝,教师结合图片让学生发现生活中无处不在的多 边形.

2.工人师傅锯桌面:一个四边形的桌面,用锯子锯掉一个角,还剩几个角?

第二环节 概念形成(5分钟,学生理解定义)

1.借助多媒体显示一多边形,学生类比三角形的有关知识对多边形定义、并表示出相应的元素.

2.教师再给出严格规范的定义,特别借助学具说明“在平面内” 的必要性.此外,说明正多边形的定义以及多边形可分为凸多边形和凹多边形.

第三环节 实验探究(12分钟,学生动手操作,探究内角和)

(以四人小组为单位展开探究活动)

提出问题:三角形的内角和为180°,那么多边形的内角和是多少度呢?从四边形开始研究. 1 . c o m

活动一:利用四边形探索四边形内角和

要求:先独立思考再小组合作交流完成.)

(师巡视,了解学生探索进程并适当点拨.)

(生思考后交流,把不同 的方案在纸上完成.)

……(组 间交流,教师展示几种方法)

教师帮助学生反思:在刚才的探索活动中,大家有不同的方法求四边形的内角和,这些看似不同的方法有没有相似之处?

进而引导 学生得出:我们是把四边形的问题转化成三角形,再由三角形内角和为 1 80°,求出四边形内角和为360°,从而使问题得到解决!进一步提出新的探索活动。

活动二:探索五边形内角和

(要求:独立思考,自主完成.)

第四环节 思维升华(5分钟,教师引导学生进行推算)

教学过程:

探索n边形内角和,并试着说明理由

(结合出示的图表从代数角度猜测公式,并从几何意义加以解读)

n边形的内角和=(n—2)180°

正n边形的一个内角= =

第五环节 能力 拓展(12分钟,学生抢答)

抢答题:

1.正八边形的内角和为_______ .

2.已知多边形的内角和为900°,则这个多边形的边数为_______.

3.一个多边形每个内角的度数是150°,则这个多边形的边数是_______.

应用发散:

4.如图所示的模板,按规定,AB,CD的延长线相交成80°的角,因交点不在板上,不便测量,质检员测得∠BAE=122°,∠DCF=155°.如果你是质检员,如何知道模板是否合格?为什么?

5.小明有一个设想:2008年奥运会在北京召开,要是能设计一个内角和是2008°的多边形花坛该多有意义啊!小明的这个想法能实现吗?

第六环节 时小结:(3分钟,学生填表)

教师和学生一起对本节内容和同学们的表现做一小结,然后每位学生利用活动评价表进行自我量化考核,并于下反馈给老师

第七环节 布置作业: 习题4、10

A组(优等生)1;思考题:一个多边形去掉一个内角后形成的多边形内角和为 1800°,你能求出原多边形的边数吗?

B 组(中等生)1

C组(后三分之一生)1

教学反思:

多边形内角和课件合集11篇


老师在开学前需要把教案课件准备好,每天老师都需要写自己的教案课件。设计教案需要注重课堂效果的反馈和评估。深入了解“多边形内角和课件”并理解它的背景接下来请阅读,欢迎你阅读与收藏!

多边形内角和课件(篇1)

教学目标

知识与技能:经历探索多边形的外角和公式的过程;会应用公式解决问题;

过程与方法:培养学生把未知转化为已知进行探究的能力,在探究活动中,进一步发展学生的说理能力与简单的推理能力.

情感态度与价值观:让学生体验猜想得到证实的成功喜悦和成就感,在解题中感受生活中数学的存在,体验数学充满着探索和创造.

教学重点:多边形外角和定理的探索和应用.

教学难点:灵活运用公式解决简单的实际问题;转化的数学思维方法的渗透.

教学准备:多媒体课件

教学过程

第一环节 创设情境,引入新课(5分钟,学生理解情境,思考问题)

问题:(多媒体演示)清晨,小明沿一个五边形广场周围的小路,按逆时针方向跑步。

(1)小明每从一条街道转到下一条街道时,身体转过的角是哪个角?

(2)他每跑完一圈,身体转过的角度之和是多少?

(3)在上图中,你能求出∠1+∠2+∠3+∠4+∠5的结果吗?你是怎样得到的?

第二环节 问题解决(10分钟,小组讨论,合作探究)

对于上述的问题,如果学生能给出一些合理的解释和解答(例如利用内角和),可以按照学生的思路走下去。然后再给出“小亮的做法”或以“小亮做法”为提示,鼓励学生思考。如果学生对于这个问题无法突破,教师可以给出“小亮的做法”,或引导学生按“小亮的做法”这样的思路去思考,以便解决这个问题。

小亮是这样思考的:如图所示,过平面内一点O分别作与五边形ABCDE各边平行的射线OA′,OB′,OC′,OD′,OE′,得到∠α,∠β,∠γ,∠δ,∠θ,其中,∠α=∠1,∠β=∠2,∠γ=∠3,∠δ=∠4,∠θ=∠5.

这样,∠1+∠2+∠3+∠4+∠5=360°

问题引申:

1.如果广场的形状是六边形那么还有类似的结论吗?

2.如果广场的形状是八边形呢?

第三环节 探索多边形的外角与外角和(10分钟,全班交流,学生理解识记)

1.多边形内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角。

2.在每个顶点处取这个多边形的一个外角,它们的和叫做这个多边形的外角和。

探究多边形的外角和,提出一般性的问题:一个任意的凸n边形,它的外角和是多少?

鼓励学生用多种方法解决这个问题,可以参考第二环节解决特殊问题的方法去解决这个一般性的问题。

方法Ⅰ:类似探究多边形的内角和的方法,由三角形、四边形、五边形…的外角和开始探究;

方法Ⅱ:由n边形的内角和等于(n-2)180°出发,探究问题。

结论:多边形的外角和等于360°

(1)还有什么方法可以推导出多边形外角和公式?

(2)利用多边形外角和的结论,能否推导出多边形内角和的结论?

第四环节 巩固练习(10分钟,学生利用知识独立解决问题)

例1一个多边形的内角和等于它的外角和的3倍,它是几边形?

随堂练习

1.一个多边形的外角都等于60°,这个多边形是几边形?

2.右图是三个不完全相同的正多边形拼成的无缝隙、不重叠的图形的一部分,这种多边形是几边形?为什么?

挑战自我:

1.在四边形的四个内角中,最多能有几个钝角?最多能有几个锐角?

2.在n边形的n个内角中,最多能有几个钝角?最多能有几个锐角?

挑战自我的2个问题,对于新授课上的学生而言,难度是比较大的。因为之前不管是多边形的内角和还是外角和,基本上都是利用等式,从“正向”解决的。而这里要解决的问题,在解决的过程中,需要用到简单的不等式知识和“反证”的思想,对于初次接触这些的学生而言,难度是比较大的。教师要注意讲解的方式方法。

第五环节 课时小结(3分钟,学生加深记忆)

多边形的外角及外角和的定义;

多边形的外角和等于360°;

在探求过程中我们使用了观察、归纳的数学方法,并且运用了类比、转化等数学思想.

第六环节 布置作业:

习题4.11

A组(优等生)第1,2,3题

B组(中等生)1、2

C组(后三分之一生)1

多边形内角和课件(篇2)

课题

探索多边形内角和

教学目标

知识目标

1、探索多边形内角和定义、公式

2、正多边形定义

能力目标

1、发展学生的合情推理意识、主动探索的习惯

2、发展学生的说理能力和简单的推理意识及能力

德育目标

培养用多边形美花生活的意识

教学重点

多边形内角和公式的推导

学难点

多边形内角和公式的简单运用

教学方法

探索、讨论、启发、讲授

教学手段

利用学生剪纸、投影仪进行教学

教学过程:

一、引入:

1、出示多媒体投影片或出示事物图:正方形石英钟、五边形(广场图)、六变形螺母、八边形。

2、给出多边形概念:多边形的顶点、边、内角和、对角线及其有关概念。

二、多边形内角和公式:

1、三角形的内角和是多少度?任意四边形的内角和是多少度?怎样得到的?那么五边形的内角和怎样求呢?要求学生剪纸或画图找出五边形可剪成多少个三角形求内角和?六边形可怎样剪成三角形?n边形呢?

2、学生讨论:在剪纸及画图活动中充分的探索、交流、体会,先独立思考,然后小组讨论、交流,发表不同见解。探索五边形内角和的不同方法:(学生可能得出如图一、图二、图三中的不同方法)

(1)量出每个内角度数然后相加为540°;

(2)从五边形的任一顶点出发,连结不相邻的两个顶点,将五边形分割成三个三角形,得出五边形内角和为540°(如图一);

(3)在五边形内任取一点,连结各顶点,将五边形分割成五个三角形,得出五边形内角和为5×180°—360°=540°(如图二);

(4)从五边形任意一边上取一点,连接不相邻的顶点,将五边形分割成四个三角形内角和为4×180°—180°=540°(如图三);

(5)六边形可怎样剪成三角形求内角和?n边形呢?

(6)总结规律:多边形内角和为(n—2)×180°(n≥3)。

3、议一议:

(1)过四边形一个顶点的对角线把四边形分成两个三角形;

(2)过五边形一个顶点的对角线把五边形分成( )个三角形;

(3)过六边形一个顶点的对角线把六边形分成( )个三角形。

(4)过n边形一个顶点的对角线把n边形分成( )个三角形;

三、正多边形定义:

1、出示课本第109页想一想图:(思考,图中的多边形各是几边形,它们的边和角有什么特点)

2、多边形定义:在平面内,内角都相等,边也相等的多边形是正多边形。

3、填表:

正多边形的边数

3

4

5

6

8

n

正多边形的内角和

180°

360°

540°

720°

1080°

正多边形每个内角的度数

60°

90°

108°

120°

135°

四、小结:

主要表扬本节课同学们很善于思考,对所学知识应用得很好,做得好的小组及他们做得好的地方。

五、布置作业:

课本P110、习题4、10第1、2、3题。

附:选用随堂练习:

1、一个多边形的每个内角都是140,它是()边形?

2、过四边形一顶点的对角线把它分成两个三角形,过五边形一个顶点的对角线把它分成()个三角形。

3、过六边形的一个顶点的对角线把它分成()个三角形,过n边形的一个顶点的对角线把n边形分成()个三角形。

4、一个多边形的每个内角都是140°,这个多边形是()边形。

5、如果一个多边形的边数增加1,那么这时它的内角和增加了()度。

6、下列角能成为一个多边形的内角和的是()

A、270°B、560°C、1800°D、1900°

思考题:如图(1),求∠A+∠B+∠C+∠D+∠E+∠F等于多少度?

如图(2),求∠A+∠B+∠C+∠D+∠E+∠F+∠G等于多少

多边形内角和课件(篇3)

一、教学目标

【知识与技能】

掌握多边形的内角和公式,能应用公式解决简单问题。

【过程与方法】

通过由四、五、六边形归纳多边形内角和的过程,提高总结归纳能力。

【情感、态度与价值观】

在探究过程中体验成功的喜悦,激发学习数学的兴趣。

二、教学重难点

【重点】多边形的内角和公式。

【难点】多边形的内角和公式的探究过程。

三、教学过程

(一)导入新课

回顾三角形内角和为180,正方形、长方形内角和为360。

提问:一般的四边形内角和是否也是360?五边形、六边形等多边形的内角和又是多少?

引出课题《多边形的内角和》。

(二)讲解新知

自主探究:在纸上画任意四边形,利用三角形内角和推导四边形的内角和。

预设学生想到只需连接一条对角线,即可将一个四边形分割为两个三角形,故内角和为360。

多边形内角和课件(篇4)

学情分析:

学生已经学过三角形的内角和定理的知识基础,并且具备一定的化归思想,但是推理能力和表达能力还稍稍有点欠缺。针对这种情况,我会引导学生利用分类、数形结合的思想,加强对数学知识的应用,发展学生合情合理的推理能力和语言表达能力。

教学目标:

1.知识与技能:运用三角形内角和定理来推证多边形内角和公式,掌握多边形的内角和的计算公式。

2.过程与方法:经理探究多边形内角和计算方法的过程,培养学生的合作交流的意识。

3.情感态度与价值观:感受数学化归的思想和实际应用的价值,同时培养学生善于发现,积极探究,合作创新的学习态度。

教学重点:

多边形的内角和公式。

教学难点:

探索多边形的内角和定理的推导

教学过程:

一、创设情境,导入新课

1、请看:我身后的建筑物是什么?─水立方。我看到水立方时发现它的膜结构的结合处都是多边形,你们想知道这些多边形的内角和吗?(多媒体展示)

这节课咱们一起来探究《多边形的内角和》。

二、合作交流,探究新知

1、多边形的内角和

问:要求内角和你联想到什么图形的内角和?(示三角形的内角和定理)。如果两个三角形能够拼成四边形,你能求出四边形的内角和是多少度呢?

预设回答:三角形的内角和360°。四边形的内角和360°

知道四边形的内角和为360°,现在你能利用三角形的内角和定理证明吗?自主学习教材第34页“动脑筋”

【教学说明】“解放学生的手,解放学生的大脑”,鼓励学生积极参与合作交流,寻找多种图形形式,深入全面转化的本质——将四边形转化为三角形问题来解决.

2、是否所有的多边形的内角和都可以“转化”为两个三角形的内角和来求得呢?如何“转化”?

预设回答:能,可以引对角线,将多边形分成几个三角形。

让学生合作交流讨论,展示探究成果。教材第35页“探究”

示图,取多边形上任意一个顶点,连接除相邻的两点,则多边形的内角和可转化为三角形内角和之间的关系,

多边形边数可分成三角形的个数多边形的内角和56 7┅┅┅┅n边形n

n边形有几个内角?是否可以“转化”为多个三角形的角来求得呢?如何“转化”?

预设回答:有n个内角,可以转化多个三角形来求,n边形可以引n-3条对角线,即有n-2个三角形。所有n边形的内角和等于(n-2)x180°

【教学说明】通过五边形、六边形、七边形、八边形等特殊多边形内角和的探索,让学生从特殊到一般归纳总结出多边形内角和公式,体会数形间的联系,感受从特殊到一般的数学推理过程和数学思考方法.

例:教材第36页例1

【教学说明】让学生利用多边形的内角和公式求一个多边形的内角和或它的边数,加深知识的理解与运用.

三、课堂演练

1、若从一个多边形的一个顶点出发,最多可以引10条对角线,则它是()

A.十三边形B.十二边形

C.十一边形D.十边形

2、十二边形的内角和为,已知一个多边形的内角和是1260°,则这个多边形的边数是。

【教学说明】由学生自主完成,教师及时了解学生的学习效果,让学生经历运用知识解决问题的过程.对需要帮助的学生及时点拨并加以强化.在完成上述题目后,让学生完成练习册中本课时的对应训练部分.

四、课时小结

1、这节课你有什么新的收获?

五、布置作业:

教材第36页练习1、2题。

六、板书设计多边形的内角和n边形内角和等于(n-2)×180°。

多边形的内角和是180的倍数;

边数越多,内角和就越大;

每增加一条边,内角和就增加180度。

多边形内角和课件(篇5)

一、教学任务分析

1、教学目标定位

根据《数学课程标准》和素质教育的要求,结合学生的认知规律及心理特征而确定,即:七年级的学生对身边有趣事物充满好奇心,对一些有规律的问题有探求的欲望,有很强的表现欲,同时又具备了一定的归纳、总结表达的能力。因此,确定如下教学目标:

(1).知识技能目标

让学生掌握多边形的内角和的公式并熟练应用。

(2).过程和方法目标

让学生经历知识的形成过程,认识数学特征,获得数学经验,进一步发展学生的说理意识和简单推理,合情推理能力。

(3).情感目标

激励学生的学习热情,调动他们的学习积极性,使他们有自信心,激发学生乐于合作交流意识和独立思考的习惯。。

2、教学重、难点定位

教学重点是多边形的内角和的得出和应用。

教学难点是探索和归纳多边形内角和的过程。

二、教学内容分析

1、教材的地位与作用

本课选自人教版数学七年级下册第七章第三节《多边形的内角和》的第一课时。本节课作为第七章第三节,起着承上启下的作用。在内容上,从三角形的内角和到多边形的内角和,层层递进,这样编排易于激发学生的学习兴趣,很适合学生的认知特点。

2、联系及应用

本节课是以三角形的知识为基础,仿照三角形建立多边形的有关概念。因此

多边形的边、内角、内角和等等都可以同三角形类比。通过这节课的学习,可以培养学生探索与归纳能力,体会把复杂化为简单,化未知为已知,从特殊到一般和转化等重要的思想方法。而多边形在工程技术和实用图案等方面有许多的实际应用,下一节平面镶嵌就要用到,让学生接触一些多边形的实例,可以加深对它的概念以及性质的理解。

三、教学诊断分析

学生对三角形的知识都已经掌握。让学生由三角形的内角和等于180°,是一个定值,猜想四边形的内角和也是一个定值,这是学生很容易理解的地方。由几个特殊的四边形的内角和出发,譬如长方形、正方形的内角和都等于360°,可知如果四边形的内角和是一个定值,这个定值是360°。要得到四边形的内角和等于360°这个结论最直接的方法就是用量角器来度量。让学生动手探索实践,在探索过程中发现问题"度量会有误差"。发现问题后接着引导学生联想对角线的作用,四边形的一条对角线,把它分成了两个三角形,应用三角形的内角和等于180°,就得到四边形的内角和等于360°。让学生从特殊四边形的内角和联想一般四边形的内角和,并在思想上引导,学习将新问题化归为已有结论的思想方法,这里学生都容易理解。课堂教学设计中,在探究五边形,六边形和七边形的内角和时,让学生动手实践,设置探究活动二,为了让学生拓宽思路,从不同的角度去思考这个问题,这个活动对学生的动手能力要求进一步提高了,学生对这个问题的理解稍微有些难度,但学生可根据自己本身的特点来加以补充和完善。在教学设计中,要求根据小组选择的方法探索多边形的内角和。首先,小组内各个成员对所选择的方法要了解,能够把掌握的知识运用到实践中;再者,小组内各个成员需要分工协作,才能够顺利的把任务完成;最后,学生还需要把自己的思维从感性认识提升到理性认识的高度,这样就培养了学生合情推理的意识。

四、教法特点及预期效果分析本节课借鉴了美国教育家杜威的"在做中学"的理论和叶圣陶先生所倡导的"解放学生的手,解放学生的大脑,解放学生的时间"的思想,我确定如下教法和学法:

1、教学方法的设计

我采用了探究式教学方法,整个探究学习的过程充满了师生之间,学生之间的交流和互动,体现了教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。

2、活动的开展

利用学生的好奇心设疑、解疑,组织活泼互动、有效的教学活动,鼓励学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。

3、现代教育技术的应用

我利用课件辅助教学,适时呈现问题情景,以丰富学生的感性认识,增强直观效果,提高课堂效率。探究活动在本次教学设计中占了非常大的比例,探究活动一设置目的让学生动手实践,并把新知识与学过的三角形的相关知识联系起来;探究活动二设置目的让学生拓宽思路,为放开书本的束缚打下基础;培养学生动手操作的能力和合情推理的意识。通过师生共同活动,训练学生的发散性思维,培养学生的创新精神;使学生懂得数学内容普遍存在相互联系,相互转化的特点。练习活动的设计,目的一检查学生的掌握知识的情况,并促进学生积极思考;目的二凸现小组合作的特点,并促进学生情感交流。

以上是我对《多边形的内角和》的教学设计说明。

多边形内角和课件(篇6)

各位评委、各位老师:

大家好!我说课的内容是人教版义务教育课程标准实验教科书,七年级数学(下)第七章第三节《多边形的内角和》。下面,我从以下几个方面对本节课的教学设计进行说明。

一、教材分析

1、教材的地位和作用本节课作为第七章第三节,起着承上启下的作用。在内容上,从三角形的内角和到多边形的内角和,再将内角和公式应用于平面镶嵌,环环相扣,层层递进,这样编排易于激发学生的学习兴趣,很适合学生的认知特点。通过这节课的学习,可以培养学生探索与归纳能力,体会从简单到复杂,从特殊到一般和转化等重要的思想方法。

2、教学重点和难点重点:多边形的内角和与外角和难点:探索多边形内角和时,如何把多边形转化成三角形。

二、教学目标分析

1、知识与技能:掌握多边形的内角和与外角和,进一步了解转化的数学思想。

2、数学思考:能感受数学思考过程的条理性,发展能力推理和语言表达能力,并体会从特殊到一般的认识问题的方法。

3、解决问题:让学生尝试从不同的角度寻求解决问题的方法,并能有效地解决问题。

4、情感态度:让学生体验猜想得到证实的成就感,在解题中感受生活中数学的存在,体验数学充满探索和创造。

三、教法和学法分析

本节课借鉴了美国教育家杜威的“在做中学”的理论和叶圣陶先生所倡导的“解放学生的手,解放学生的大脑,解放学生的时间”的思想,我确定如下教法和学法:

1、教学方法的设计我采用了探究式教学方法,整个探究学习的过程充满了师生之间,生生之间的交流和互动,体现了教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。

2、活动的开展利用学生的好奇心设疑、解疑,组织活泼互动、有效的教学活动,鼓励学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。

3、现代教育技术的应用我利用课件辅助教学,适时呈现问题情景,以丰富学生的感性认识,增强直观效果,提高课堂效率。

四、教学程序设计

1、本节教学将按以下六个流程展开创设情境引入新课↓合作交流探索新知↓自主探究得出结论↓尝试练习应用新知↓归纳总结形成体系↓分组竞赛升华情感

2、教学过程

互动环节互动内容设计意图1创设情境引入新课

(1)在一次数学基础知识抢答赛上,王老师出了这么一个问题:某个多边形所有的角加起来等于它的外角和,那么该多边形是几边形?小明同学仅用几秒钟就解决了问题,你能吗?

(2)(演示教具)用四块大小形状完全相同的四边形可拼成一块无空隙的纸板,你知道这是为什么吗?通过今天的学习,我们就能明白其中的道理,引出课题。

这样一开始就利用抢答赛问题以及教具演示实验来提问设疑,学生很容易发问:这个多边形是几边形呢?用四块大小形状完全相同的四边形可拼成一块无空隙的纸板,为什么会产生这种效果呢?从而可调动学生的学习兴趣和注意力,创设恰当的教学情境。

2合作交流探索新知

(1)问题:三角形的内角和等于多少度?外角和等于多少度?长方形的内角和等于多少度?正方形的内角和等于多少度?

(2)问题:任意四边形的内角和等于多少度呢?你是怎样得到的?你能找到几种方法?

(3)学生思考,并分组交流讨论,教师深入小组参与活动,指导、倾听学生交流。

(4)学生分组选代表展示小组的探索成果,师生共同进行评判,对学生找到的不同方法要加以及时肯定。

学生可能找到以下几种方法:

①“量”—即先测量四边形四个内角的度数,然后求四个内角的和;

②“拼”—即把四边形的四个内角剪下来,拼在一起,得到一个周角;

③“分”—即通过添加辅助线的方法,把四边形分割成三角形。

教师在学生展示完后提问:

①在“量”、“拼”、“分”这几种方法中,哪种方法操作简单又相对准确?

②我们刚才找到了几种不同的辅助线的作法,它们的共同点是什么?

先回顾三角形、正方形和长方形的内角和,促使学生对新问题进行思考与猜想。

从简单的四边形入手,让学生亲自操作寻求结论,易于引起学习兴趣,鼓励学生找到多种方法,让学生体会多种分割形式,有利于深入领会转化的本质——四边形转化为三角形,也让学生体验数学活动充满探索和解决问题方法的'多样性。通过交流,让学生用自己的语言清楚地表达解决问题的过程,可以提高语言表达能力。

3自主探究得出结论

(1)问题:用刚才类似的方法,你能算出五边形、六边形、七边形的内角和吗?

学生先独立思考,分组讨论,然后再叙述结论。

(2)问题:依此类推,n边形的内角和等于多少度呢?让学生自己归纳总结,得出n边形的内角和公式为(n—2)·180°。从探索四边形的内角和,到五边形、六边形、七边形乃至n边形,通过增强图形的复杂性,让学生体会由简单到复杂,由特殊到一般的思想方法,再一次经历转化的过程,同时在分组交流的过程中,感受合作的重要性。

4应用新知尝试练习

(1)想一想:如果一个四边形的一组对角互补,那么另一组对角有什么关系?为什么(教材88页例1)。

(2)算一算

①教材89页练习1、2。

②四边形的外角和等于多少度?

③五边形的外角和,六边形以及n边形的外角和呢?

(3)读一读先让学生阅读教材89页最后两段内容,然后我再用课件展示。通过做例题和练习来巩固新知识。先求四边形的外角和,再求五边形、六边形以及n边形的外角和,我提出阶梯式的问题,让学生逐步归纳得出多边形的外角和等于360°。这两段是新增加的内容,从另一个角度增加对任意多边形外角和理解与认识。这样处理,注重教材阅读学习,同时用课件演示更加形象直观,便于理解。

5归纳总结形成体系我从以下几个方面引导学生进行小结:

(1)现在你能解决数学知识抢答赛上,王老师提出的问题了吗?你知道为什么能用四块大小形状完全相同的四边形拼成一块无空隙的纸板了吗?

(2)这节课我们学习了哪些知识和方法?你有什么收获?让学生运用所学知识解决引问中的问题,提高解决问题的能力,鼓励学生畅所欲言总结对本节课的收获和体会,有利于培养归纳、总结的习惯和能力,让学生自主建构知识体系。

6分组竞赛升华情感

我制作了A、B、C、D四组不同的电子试卷,让学生运用所学知识通过小组竞赛的形式合作完成,自检掌握情况。通过竞赛的方式,激发学生的学习兴趣,引导他们在做练习的过程中,通过小组协作来巩固知识和获得技能。

在每组试卷中,大部分选自教材的练习题。另外,我还另增加了1个思考题,实际上是对证明四边形内角和方法的补充,主要是通过一题多解发散思维,提高思维的灵活性,还可以复习旧知识,把握知识间的相互联系,让学生再次体会转化的思想方法。

五、评价分析

1、注意评价内容的多元化通过课堂中学生展示自己对所学内容的理解,交流对某一问题的看法,动手操作的表演,各种问题尝试解答等活动,使教师从学生思维活动、有关内容的理解和掌握,以及学生参与活动的程序等多层面地了解学生。

2、注重对学生学习过程的评价在整个教学过程中,通过对学生参与数学活动的程度、自信心、合作交流的意识以及独立思考的习惯,发现问题的能力进行评价,并对学生中出现的独特的想法或结论给予鼓励性评价。

六、设计说明

1、指导思想根据义务教育阶段数学课程的要求,结合教材的编写意图,在本节课设计时,我遵循以下原则:情境引入激发兴趣,学习过程体现自主,知识建构循序渐进,思想方法有机渗透。

2、关于教材处理本教案设计时,我对教材作了如下改变:

①将教材例1作为练习中的“想一想”,由学生自已尝试解答;

②将例2中的求“六边形”的外角和,改为练习中的“算一算”,先让学生求“四边形”的外角和,再探索“五边形、六边形,以及n边形的外角和”。这样处理仍然是为了体现学生的自主探索,使学生学习变“被动”为“主动”。

③作业采取分组竞赛的形式合作完成。这样,在情感上,本节课学生由好奇到疑惑,由解决单个问题的一点点快感,到解决整个问题串的极大兴奋,产生了强烈的学习激情。这时,一次有效的教学竞赛活动,使学生的学习激情得到释放,学科个性得以张扬,教师可稍加点拨,适可而止,把更多的思考空间留给学生。以上是我对本节课的设计说明,不足之处,请各位指正,谢谢!

多边形内角和课件(篇7)

《探索多边形的内角和与外角和》的教案

一、教学目标:

1、让学生经历探索多边形外角和公式的过程,培养学生主动探究的习惯。

2、能灵活的运用多边形内角和与外角和公式解决有关问题。

二、教材分析

本节的主要内容是多边形的外角定义和公式.多边形的外角和是三角形的一个重要性质,与前面的内角和公式综合运用能解决一些较难的问题.为提供三角形的外角提供了一种方法。

三、教学重点、难点

1、多边形的外角和公式及公式的探索过程。

2、能灵活运用多边形的内角和与外角和公式解决有关问题。

四、教学建议

关于外角和公式关键要让学生理解它是不随多边形边数的增加而增大,因此在教学中应设置由特殊到一般的题目,让学生亲身体会这个外角和是360°.

五、教具、学具准备

投影仪、题板、画图工具

六、教学过程

1.复习提问:

(1)多边形的内角和是多少?

(2)正八边形的每一个内角为度?

2.创设问题情景,引入新课:

教师投放课本51页图9-35时,并出示以下问题:

小明沿一个五边形广场周围的小路,按顺时针方向跑步。

(1)小明从一条街道转到下一条街道时,身体转过的角是哪个角?在图中标出它们。

(2)观察∠1、∠2、∠3、∠4、∠5的`两边分别与它相邻的五边形的内角的边有何关系?

(3)问题:你能计算小明跑完一圈,身体转过的角度和吗?如何计算∠1+∠2+∠3+∠4+∠5呢?

点拨:

请填写下题:

如图,oa‘∥ae,ob‘∥ab,oc‘∥bc,od‘∥cd,oe‘∥de,则∠α=   ,∠β=     ,∠γ=   ,∠δ=     ∠θ=    .

因为∠α+∠β+∠γ+∠δ+∠θ=.

所以∠1+∠2+∠3+∠4+∠5= .

由此可得:五边形的外角和是360°

(4)你能借助内角和来推导五边形的外角和吗?

点拨:

因五边形的每一个内角与它相邻的外角是邻补角,所以五边形的内角和加外角和等于5×180°所以外角和等于5×180°-(5-2)×180°=360°。

(5)你用第二种方法推导下列多边形的外角和三角形的外角和    四边形的外角和   五边形的外角和   n边形的外角和是得出结论:多边形的外角和都等于360°。

4.应用举例

例 一个多边形的内角和等于它的外角和的3倍,它是几边形?

点拨:

设出未知数,根据相等关系: 内角和=3×外角和列出方程。

5.练习:

见学案练习一和练习二

6.达标检测

见学案达标检测

7.小结

本节课你学到了什么?有什么收获?

8.作业

学生口答,并计算出度数

学生独立观察分析思考找出特征,试概括所得结论,从而引出多边形的外角定义及外角和定义及引入新课从而板书课题.

学生质疑思考,一时找不到方法,可按点拨的引导继续思考。

生充分思考,认真分析,小组讨论交流得出答案。

学生找关系,小组积极讨论、交流,小组汇报结果。

学生独立探究,很快得出答案.

学生独立解决

让学生先总结、交流谈体会

 

多边形内角和课件(篇8)

这三条线段叫做这个三角形的边;(AB、BC、CA)

相邻两条边的公共端点叫做这个三角形的顶点;(A、B、C)

相邻两条边所夹的角叫做这个三角形的内角,又叫做这个三角形的角(∠A、∠B、∠C)

三角形的内角的邻补角叫做这个三角形的外角

2.三角形的表示为△ABC

3.三角形的三条重要线段:高、中线、内角平分线(三条高所在的直线都交于一点,这个点叫

做三角形的垂心;三条中线交于一点,这个点叫做三角形的重心;

三条内角平分线交于一点,这个点叫做三角形的内心)

4.三角形内角和定理以及相关的结论

(1)三角形的内角和为180°

(2)直角三角形的两个锐角互余

(3)三角形的外角和为360°

(4)三角形的一个外角等于与它不相邻的两个内角的和

(5)三角形的一个外角大于与它不相邻的任何一个内角

5.三角形的三边关系定理

三角形的任意两边之和都大于第三条边;任意两边之差都小于第三条边

6.三角形具有稳定性

7.多边形:由在同一平面内,不在同一直线上的若干条线段首尾顺次连接所围成的封闭图形叫

做多边形

这些线段叫做这个多边形的边;

相邻两条边的公共端点叫做这个多边形的顶点;

相邻两条边所夹的角叫做这个多边形的内角,又叫做这个多边形的角

多边形的内角的邻补角叫做这个多边形的外角

8.对角线:连结多边形不相邻的两个顶点的线段叫做多边形的对角线

由一个顶点出发的对角线有(n-3)条;(n表示边数)

条对角线(n表示边数)

9.多边形的内角和及外角和

(1)多边形的内角和为(n-2).180°(n表示边数)

(2)多边形的外角和为360°

【阶段练习】

一、回答下列各问题

1.什么是三角形?它有哪些元素?通常用什么符号来表示它及三个角所对的边?

2.为什么屋架、桥梁及电杆的支架多采用三角形的形状?

3.如果△ABC的三条边长分别为(12、13、14)及(10、20、30),这样的三角形能成立吗?

为什么?

4.设△ABC的边长分别为a、b、c,那么这三条边的边长须具有什么条件,才能将△ABC画

出来

5.△ABC中有几条角平分线?试画图说明

6.什么是三角形的高?一个三角形有几条高?三角形的高的位置是否一定在形内?为什么?

试画图说明

7.三角形的一条中线把这个三角形分成两部分,这两个部分的面积有什么关系?为什么?

8.三角形的三个内角分别为α、β、γ,则α+β+γ的值是多少?

9.三角形的一个外角与它不相邻的两个内角之间有什么关系?

二、填空题

1.三角形的外角和是内角和的_____________倍

2.四边形的外角和是内角和的____________倍

3.六边形的外角和是内角和的_______________倍

4.一个多边形的内角和是900°,则这个多边形是________边形

三、解答题

已知AC、AD是五边形ABCDE的对角线,求证:AB+BC+CD+DE+EA>AC+CD+DA

多边形内角和课件(篇9)

一、教学目标:

1、让学生经历探索多边形外角和公式的过程,培养学生主动探究的习惯。

2、能灵活的运用多边形内角和与外角和公式解决有关问题。

二、教材分析

本节的主要内容是多边形的.外角定义和公式。多边形的外角和是三角形的一个重要性质,与前面的内角和公式综合运用能解决一些较难的问题。为提供三角形的外角提供了一种方法。

三、教学重点、难点

1、多边形的外角和公式及公式的探索过程。

2、能灵活运用多边形的内角和与外角和公式解决有关问题。

四、教学建议

关于外角和公式关键要让学生理解它是不随多边形边数的增加而增大,因此在教学中应设置由特殊到一般的题目,让学生亲身体会这个外角和是360°。

五、教具、学具准备

投影仪、题板、画图工具

六、教学过程

1、复习提问:

(1)多边形的内角和是多少?

(2)正八边形的每一个内角为度?

2、创设问题情景,引入新课:

教师投放课本51页图9—35时,并出示以下问题:

小明沿一个五边形广场周围的小路,按顺时针方向跑步

(1)小明从一条街道转到下一条街道时,身体转过的角是哪个角?在图中标出它们。

(2)观察∠1、∠2、∠3、∠4、∠5的两边分别与它相邻的五边形的内角的边有何关系?

(3)问题:你能计算小明跑完一圈,身体转过的角度和吗?如何计算∠1+∠2+∠3+∠4+∠5呢?

点拨:

请填写下题:

如图,oa‘∥ae,ob‘∥ab,oc‘∥bc,od‘∥cd,oe‘∥de,则∠α=,∠β=,∠γ=,∠δ=∠θ=。

因为∠α+∠β+∠γ+∠δ+∠θ=。

所以∠1+∠2+∠3+∠4+∠5=。

由此可得:五边形的外角和是360°

(4)你能借助内角和来推导五边形的外角和吗?

点拨:

因五边形的每一个内角与它相邻的外角是邻补角,

所以五边形的内角和加外角和等于5×180°

所以外角和等于5×180°—(5—2)×180°=360°

(5)你用第二种方法推导下列多边形的外角和

三角形的外角和四边形的外角和五边形的外角和n边形的外角和是。

得出结论:多边形的外角和都等于360°。

4、应用举例:

例一个多边形的内角和等于它的外角和的3倍,它是几边形?

点拨:

设出未知数,根据相等关系:内角和=3×外角和列出方程

5、练习:

见学案练习一和练习二

6、达标检测

见学案达标检测

7、小结

本节课你学到了什么?有什么收获?

8、作业

学生口答,并计算出度数

学生独立观察分析思考找出特征,试概括所得结论,从而引出多边形的外角定义及外角和定义及引入新课从而板书课题。

学生质疑思考,一时找不到方法,可按点拨的引导继续思考。

生充分思考,认真分析,小组讨论交流得出答案。

学生找关系,小组积极讨论、交流,小组汇报结果。

学生独立探究,很快得出答案。

学生独立解决

让学生先总结、交流谈体会

多边形内角和课件(篇10)

多边形及多边形的内角和

【教学目标】 知识与能力: 1.了解多边形定义。

2.掌握多边形内角和的计算公式.3.掌握“多边形外角和等于360°”.

4.会用多边形的内角和与外角和的性质解决简单几何问题. 过程与方法:

1.通过类比归纳得出多边形的概念,培养学生的类比能力,渗透化归思想方法。

2.探索并了解多边形的内角和公式,进一步发展学生的说理和简单推理的意识及能力;

3.通过探索多边形的内角和公式,感受数学思考过程的条理性; 4.探索多边形内角和公式,体验归纳发现规律的思想方法. 【教学重点、难点】

Ø重点:本节教学的重点是任意多边形的内角和公式. Ø难点:例2的解题思路不易形成,是本节教学的难点.。【教学过程】

1、创设情境,导入新课 1/4页

(1)昨天我们已经学习了四边形的定义,今天清晨,小明在广场的小路上跑步,请问小明跑步的图案可以抽象出什么图形呢?(2)上图广场上的小路可以抽象出一个边数为5的多边形——五边形。我们知道边数为 3的多边形——三角形,边数为4的多边形——四边形,„„边数为n的多边形——n边形(n≥3,n是整数).[设计意图:数学源于生活。教师创设生活情境,通过类比让学生有意识地整理所学习的内容,激发了学生的探究欲望和兴趣,从而自觉参与数学知识整理的活动和探究新知的过程。] 【合作交流,探究新知】

(1)你能设法求出这个五边形的五个内角和吗?先启发学生回顾四边形的内角和及推理 方法,提出多边形对角线定义:连结多边形不相邻两顶点的线段叫做多边形的对角线(是下面解决多边形问题的常用辅助线)。

(2)启发学生用连结对角线的方法把多边形划分成若干个三角形来完成书本第96页的合作学习。

(3)再启发学生观察所能划分成的三角形个数与边数n有关。(4)结论:n边形的内角和为(n-2)×180°(n≥3).(5)及时巩固

【总结回顾,反思内化】 这节课学了什么?学生自由发言。

教师小结:(1)从n边形的一个顶点出发有 条对角线.(2)一个n边形共有 条对角线】。(3)n边形的内角和为

(4)任何多边形的外角和为360°(5)数学思想:类比(多边形定义类比四边形定义)转化(多边形内角和问题可以转化为三角形问题)。【作业布置,延伸拓展】

多边形内角和课件(篇11)

【教学内容】

【教学目标】

1.掌握多边形的内角和的计算方法,并能用内角和知识解决一些简单的问题.

2.经历探索多边形内角和计算公式的过程,体会如何探索研究问题.

3.通过将多边形"分割"为三角形的过程体验,初步认识"转化"的数学思想.

【教学重点与教学难点】

1.重点:多边形的内角和公式

2.难点:多边形内角和的推导

3.关键:.多边形"分割"为三角形.

【教具准备】三角板、卡纸

【教学过程】

一、创设情景,揭示问题

1、在一次数学基础知识抢答赛中,老师出了这么一个问题,一个五边形的所有角相加等于多少度?一个学生马上能回答,你们能吗?

2、教具演示:将一个五边形沿对角线剪开,能分割成几个三角形?

你能说出五边形的内角和是多少度吗?(点题)意图:利用抢答问题和教具演示,调动学生的学习兴趣和注意力

二、探索研究学会新知

1、回顾旧知,引出问题:

(1)三角形的内角和等于_________.外角和等于____________

(2)长方形的内角和等于_____,正方形的内角和等于__________.

2、探索四边形的内角和:

(1)学生思考,同学讨论交流.

(2)学生叙述对四边形内角和的认识(第一二组通过测量相加,第三四组通过画对角线分成两个三角形.)回顾三角形,正方形,长方形内角和,使学生对新问题进行思考与猜想.以四边形的内角和作为探索多边形的突破口。

(3)引导学生用"分割法"探索四边形的内角和:

方法一:连接一条对角线,分成2个三角形:

180°+180°=360°

从简单的思维方式发散学生的想象力达到"分割"问题,并让学生发现问题,解决问题教学步骤教学内容备注方法二:在四边形内部任取一点,与顶点连接组成4个三角形.

180°×4-360°=360°

3、探索多边形内角和的问题,提出阶梯式的问题:

你能尝试用上面的方法一求出五边形的内角和吗?(第一二组)

你能尝试用上面的方法一求出六边形的内角和吗?(第三,四组)那么n边形呢?完成后填表:

n边形3456...n分成三角形的个数1234...n-2内角和...4、及时运用,掌握新知:

(1)一个八边形的内角和是_____________度

(2)一个多边形的内角和是720度,这个多边形是_____边形

(3)一个正五边形的每一个内角是________,那么正六边形的每个内角是_________

通过学生动手去用分割法求五(六)边形的内角和,从简单到复杂,从而归纳出n边形的内角和

三、点例透析

运用新知例题:想一想:如果一个四边形的一组对角互补,那么另一组对角有什么关系呢?

四、应用训练强化理解

4、第83页练习1和2多边形内角和定理的应用

五、知识回放

课堂小结提问方式:本节课我们学习了什么?

1多边形内角和公式

2多边形内角和计算是通过转化为三角形

六、作业练习

1、书面作业:

2、课外练习:

认识四边形课件集锦


您想了解有关“认识四边形课件”的内容吗接下来请看。每个老师在上课前会带上自己教案课件,因此老师会仔细规划每份教案课件重点难点。教案的设计需要与时俱进。请把本网页的网址加入您的收藏夹!

认识四边形课件【篇1】

课堂中教师充分利用学生的学具和多种教学媒体,给学生自己动手操作演示的空间,把对“平行四边形的认识”建立在丰富多彩的学习活动中,通过多种途径创造了一定个宽松、愉快的学习氛围。本节课的教学中我一直以小组活动为主,通过分一分、认一认、说一说、画一画等实践活动的安排,让每个学生经历了从具体形象的操作中认识平行四边形、在方格中画出平行四边形,了解平行四边形不稳定的特性,然后在小组讨论、交流、验证,真正把学生推到了学习的主体地位。在学生分组活动中,学生主动去量平行四边形的边,发现“对边相等”,又用想尽各种办法去量平行四边形的四个角,有的学生就用折纸的方法去量角,发现“对角相等”,而且有的学生发现平行四边形的对边都是“平行的”,平行四边形很容易变形等等。这些平行的重要特征,都不是出自教师的嘴里,而是通过学生的亲自实践活动,所发现、了解的,同时极大地调动学生自主学习的积极性。

本节课中我选择了许多与学生生活息息相关的题材作为教学素材,课堂上教师充分发挥这些素材的作用,注重学生已有的生活经验,将视野从课堂拓宽到生活的空间,并引导他们去观察生活,从现实世界中发现有关空间与图形的问题,从而使学生知道这些物体都是实际生活中的,从而使学生感受到数学源于生活,生活中处处有数学。重视学生生活经验,让学生在已有的知识和经验中建构新的知识。

当然,这节课仍然有许多不足之处,例如:课堂生成的处理部分不到位,学生活动后的教师评价语言有待加强等,在今后的教学中都有待进一步改善。

认识四边形课件【篇2】

教学内容:

本册教材第37—38页上的内容,完成第37页上的“做一做”。

教学目标:

知识与能力:

使学生初步认识平行四边形,了解平行四边形的特点。

过程与方法:

通过学生手动、脑想、眼看,使学生在多种感官的协调活动中积累感性认识,发展空间观念。

情感、态度与价值观:

数学来源于生活,只要你善于观察,生活中处处用到数学。

教学重点:

探究平行四边形的特点。

教学难点:

让学生动手画、剪平行四边形。

教学过程:

(一)认识平行四边形

1、出示主题图。

从图中你看到了哪些图形,指给同桌看。

2、出示带有平行四边形的`实物图片。

师:它们是正方形吗?是长方形吗?(学生回答后,教师接着问。)

师:它们有几条边?几个角?它们叫什么图形呢?

学生回答后教师说明:这样的图形叫平行四边形。

3、感受平行四边形的特点

(1)让学生拿出三条学具条,把它们钉成三角形,然后拉一拉。(学生一边拉一边说自己的感受)

(2)让学生拿出四条学具条,把它们钉成一个平行四边形形,然后拉一拉。(学生一边拉一边说自己的感受)

(3)小组讨论操作:怎样才能使平行四边形拉不动呢?

学生汇报时,要说说理由。

(二)掌握平行四边形。

1、在点子图上画。

你认为什么样的图形是平行四边形呢?在点子图上画画看。(学生动手操作,

然后汇报、展示

2、在方格纸上“画”。

让学生在方格纸上画出一个平行四边形。(学生动手操作,然后汇报、展示)

3、折一折、剪一剪。

你会剪一个平行四边形吗?(学生动手操作,然后汇报、展示并说说各自不同的剪法。)

4、通过上面的活动,你发现平行四边形是一个什么样的图形?(小组讨论)

(三)巩固平行四边形。

1、课堂练习:完成练习九第1—3题。

2、课外练习:完成练习九第5题。

板书设计:

平行四边形

特点:容易变形

特征:对边平行并且相等。

认识四边形课件【篇3】

本单元主要是教学三角形、平行四边形和梯形。之前学生已经直观认识了三角形、平行四边形和梯形及其他的一些简单的平面图形;还相对集中地认识了角;认识了两条直线的位置关系--平行和相交。这些都是本单元学习的基础。通过这部分内容的学习,既能使学生进一步了解具体平面图形的特征,又为他们进一步学习多边形的面积打好基础。本单元的内容主要分为三个板块:三角形、平行四边形和梯形。主要是引导学生通过一系列的活动自主探索这三种平面图形的特征。

学生已经直观认识了三角形、平行四边形和梯形及其他的一些简单的平面图形;还相对集中地认识了角,认识了两条直线的位置关系--平行和相交。这些都是本单元学习的基础。尤其是学生已经会画已知直线的垂线,为本单元学习画三角形、平行四边形和梯形的高奠定了直接的知识基础。

1.使学生在联系生活实际、观察、操作、画图和实验等活动中,发现并认识三角形、平行四边形和梯形的有关特征;知道什么是三角形、平行四边形和梯形的底和高;认识直角三角形、锐角三角形和钝角三角形以及等腰三角形和等边三角形,知道三角形的内角和是180°。

2.使学生会按要求在方格纸上画三角形,会测量和画出三角形指定底边上的高,能根据三角形内角和以及两边之和大于第三边等知识解释简单生活现象或解决简单实际问题,能判断一个三角形是什么三角形。

3.使学生在活动中进一步积累认识图形的学习经验;学会用不同的方法做出一个平行四边形或梯形,会在方格纸上画平行四边形或梯形,能正确判断一个平面图形是不是平行四边形或梯形,能测量和画出平行四边形和梯形的高。

4.使学生在由实物到图形的抽象过程中,感受图形与生活的密切联系,感受平面图形的学习价值,进一步培养对“空间与图形”的学习兴趣;以及在探索图形特征和相关结论的活动中,发展空间观念,锻炼思维能力。

5.使学生积极参与数学活动,并能和同学合作交流,进一步体验数学问题的探索性和数学结论的确定性,增强学习数学的兴趣和学好数学的信心。

1.联系生活实际认识三角形、平行四边形和梯形的特征。教材提供了一些生活中常见的图片,让学生通过图片形成对三角形、平行四边形和梯形的初步印象,再通过让学生联系实际例子使这种感知更加充分,对它们的印象更加深刻。

2.让学生在丰富的活动中探索并发现三角形、平行四边形和梯形的一些特征。在初步感知三角形、平行四边形和梯形特征的基础上,让学生分别动手制作图形,并相互交流,从中感受它们各自的特征,抽象出图形后,让学生进一步观察、测量、讨论,发现三角形、平行四边形和梯形相应的特征,形成对三角形、平行四边形和梯形的正确认识。

3.让学生在动手操作中感受不同平面图形之间的联系。学生通过进行动手操作活动,不仅能进一步认识三角形、平行四边形和梯形的特征,而且能从不同角度体会不同平面图形之间的联系,并为今后进一步的学习奠定良好的基础。

1 三角形的认识 1课时

2 三角形三边的关系与内角和 1课时

3 三角形的分类 1课时

4 认识平行四边形 1课时

5 认识梯形 1课时

6 整理与练习1课时

7 多边形的内角和 1课时

三角形的认识。(教材第75、第76页)

1.使学生联系实际和利用生活经验,通过观察、操作、测量等学习活动,认识三角形的基本特征,初步形成三角形的概念。

2.使学生在认识三角形有关特征的活动中,体会认识多边形特征的基本方法,发展观察能力和比较、抽象、概括等思维能力。

3.使学生体会三角形是日常生活中常见的图形,并在学习活动中进一步产生学习图形的兴趣和积极性。

重点:认识三角形的基本特征。

难点:培养学生的观察能力和比较、抽象、概括等思维能力。

课件。

师:同学们,今天我们一起走进图形的世界,认识新的朋友,有兴趣吗?

1.教学例1。

师:你能在图中找出三角形吗?生活中还有哪些地方能见到三角形?(课件出示:教材第75页例1图)

生1:图中的彩旗是三角形的,大桥上白色的线围成了许多三角形。

生2:生活中的自行车主体大架是三角形的。

生3:电线杆上的支架有三角形。

……

师:画一个三角形,并跟小组同学说说三角形有什么特点。

学生进行小组交流活动;教师巡视了解情况。

组织学生汇报交流:

三角形有3条边,3个角。

三角形的3条边都是线段。

这3条线段要首尾相接地围起来。

师:三条线段首尾相接围成的图形叫作三角形。三角形有几个顶点?(课件出示:教材第75页三角形图)

生:三角形有3个顶点。

师:在小组里与同学互相指一指三角形的3个顶点、3条边和3个角。

2.教学例2。

师:请同学们打开数学课本第76页,你能量出例2图中人字梁的高度吗?你量的是哪条线段?它有什么特点?

生1:人字梁的高度是上面的顶点到它对边的距离。

生2:量的线段与人字梁的底边互相垂直。

生3:图中人字梁的高度是2厘米。

师:像这样(课件出示:教材第76页三角形图)从三角形的一个顶点到对边的垂线段是三角形的高,这条对边是三角形的底。

3.教学“试一试”。

师:你能画出课本第76页“试一试”三角形底边上的高吗?并与同学交流你的画法。

学生尝试动手操作;教师巡视了解情况,个别指导学习有困难的学生。

组织学生交流画法,展示画图结果,给予画图正确的学生以肯定和鼓励。

【设计意图:首先出示主题图让学生找出三角形,然后举例说出生活中存在的三角形从而加深对三角形的直观认识,接着引导学生认识三角形的底和高,学习画三角形已知底边上的高,从而系统地认识三角形】

师:今天你有什么收获呢?

三角形的认识

3个顶点,3个角,3条边

1.三角形的认识是在学生初步认识三角形的基础上进行的,平时生活中学生又经常接触三角形,对三角形有丰富的感性认识。面对学生比较熟悉的学习内容,我从学生的实际情况入手,让学生从生活经验和已有的知识背景出发,在探索和交流过程中掌握知识、锻炼技能、培养数学思维和方法,同时让学生在讨论中得到学习的经验。

2.数学学习应给学生带来快乐。数学其负载的功能不仅仅是让学习者记住它,掌握它,更重要的是要让他们在学习的过程中体验学习它的快乐,感受它的魅力。因此,在教学过程中,我不仅让学生获得知识和技能,更关注他们的学习过程,特别是学生对数学的感觉,同时应不断给学生“成功”的体验,让学生快乐地学习。

A类

数一数,图中有几个三角形?

(考查知识点:三角形的认识;能力要求:认识三角形并了解三角形的特征)

B类

你能数出图中一共有几个三角形吗?

(考查知识点:三角形的认识;能力要求:认识三角形并了解三角形的特征)

课堂作业新设计

A类:

6个

B类:

8个

教材习题

教材第75页“试一试”

发现:在同一条直线上的三个点作顶点不能画出三角形。

教材第76页“试一试”

教材第76页“练一练”

1.第一个、第三个、第四个是三角形。 其余不符合三角形的定义。

2.略

三角形三边的关系与内角和。(教材第77~81页)

1.通过动手操作的实践活动,探索发现三角形三条边之间的关系,知道“三角形任意两边之和大于第三边”的道理。

2.通过教学探究活动,发现并验证三角形的内角和等于180°;在已知三角形任意两个内角的度数时,会求出第三个角的度数。

3.培养学生观察、对比分析和归纳概括的能力,以及初步的空间观念;培养学生的合作意识和探究精神。

重点:探索发现三角形三边之间的关系。

难点:理解并掌握三角形的内角和是180°。

量角器、各种不同的三角形、不同尺度(8cm、5cm、4cm和2cm)的小棒各一根。

师:同学们,上一节课我们已经初步认识了三角形,说说三角形的基本特征是什么呢?

学生自由回答。

师:这节课我们一起来继续深入研究三角形的有关问题。

【设计意图:做到“温故而知新”,为新课的学习做准备、打基础】

1.教学例3。

师:请同学们从老师为你们准备的小棒中任意选三根,能围成一个三角形吗?先围一围,再与同学交流。

学生进行动手操作及交流活动;教师巡视了解情况。

组织学生交流汇报:

我选的小棒是一根8cm的,一根5cm的,一根4cm的,可以围成三角形。

我选的小棒是一根2cm的,一根5cm的,一根4cm的,可以围成三角形。

我选的小棒是一根8cm的,一根5cm的,一根2cm的,不能围成三角形。

……

师:长8厘米、5厘米和2厘米的三根小棒为什么不能围成三角形?

生1:5厘米和2厘米的小棒太短了,3根小棒不能首尾相接。

生2:因为5厘米+2厘米

师:从围成三角形的三根小棒中任意选出两根,将它们的长度和与第三根比较,结果怎样?跟小组同学合作讨论。

学生进行小组活动;教师巡视了解情况。

组织学生汇报交流:

4+5>8,4+8>5,5+8>4,任意两边的和都大于第三条边。

4+2>5,4+5>2,5+2>4,任意两边的和都大于第三条边。

任意两根小棒的长度和一定大于第三根小棒。

师:三角形任意两边长度的和一定大于第三边吗?先画一个三角形,再量一量、算一算。

学生进行动手操作活动后,小结:

三角形任意两边长度的和大于第三边。

师:如果三根小棒的长度分别是8厘米、5厘米和3厘米,能围成三角形吗?为什么?

生:不能围成三角形,因为5厘米和3厘米这两条边的长度和不是大于第三边,所以就不能围成三角形。

【设计意图:让学生任意选三根小棒围一个三角形,这样容易使学生发现围成三角形应满足任意两边之和大于第三边】

2.教学例4。

师:你知道每块三角尺3个内角的和是多少度吗?

生1:我手中(展示出来)的这一块,是90°+60°+30°=180°。

生2:我手中(展示出来)的这一块,是90°+45°+45°=180°。

师:拿出我们准备好的各种不同的三角形,小组合作,用量角器量出每个三角形3个内角的度数,并算一算每个三角形的内角和。

学生进行小组活动;教师巡视了解情况。

师:通过刚才的小组活动,测量并计算之后,你发现了什么?

生:三角形的内角和都是180°。

师:想办法把每个三角形的3个内角拼在一起,看看拼成了什么角?

学生动手操作;教师巡视了解情况。

组织学生展示交流拼法:

小结:三角形的内角和等于180°。

【设计意图:首先分别计算两块三角尺上的三个角的度数和,接着安排学生通过实验操作,把一个三角形的3个角拼在一起,从拼成的平角得出三个角的度数和是180°】

师:今天你有什么收获呢?

【设计意图:梳理所学知识,将所学知识系统化】

三角形三边的关系与内角和

三角形任意两边长度的和大于第三边。

三角形的内角和等于180°

1.通过动手操作充分激发了学生的学习兴趣,让学生逐步完成知识的主动建构,真正成为学习的主人。采用小组合作学习,小组活动让每个学生都有机会参与,充分享有发言权,并能及时发现自己思维过程中的疑问,修正了自己的不足,同时学会了合作,学会了从他人的智慧中获得启迪。

2.三角形的内角和这一知识点对于学生来说比较抽象,所以上课时,着重引导学生通过折、撕、拼等多种活动,探索三角形的内角和,很好地体现了教师引导者的角色,让学生在探索中发现规律,加深印象。

A类

填空题。

1.在△ABC中,若∠B=∠C=40°,则∠A=( )。

2.在△ABC中,若∠ABC=90°,∠C=43°,则∠A=( )。

(考查知识点:三角形的内角和;能力要求:根据三角形的内角和是180°解决相关的问题)

B类

三角形中有一边比第二条边长3cm,这条边又比第三条边短4cm,这个三角形的周长为28cm,求最短边的长。

(考查知识点:三角形三边的关系;能力要求:依据三角形三边的关系判断三条边是否能围成三角形)

课堂作业新设计

A类:

1. 100°

2. 47°

B类:

最短边的长是6厘米。

教材习题

教材第78页“练一练”

1.第三组的线段可以围成三角形;因为这组线段中任意两边的长度和都大于第三边。

2.

5cm 25cm 30cm 38cm

教材第79页“练一练”

65

教材第80、第81页“练习十二”

1.

2.

3.

4.点到直线的距离垂线段最短。

5. 287 4284 5800

6.略

7.答案不唯一,2厘米、6厘米、6厘米。

8.从学校到少年宫有3条路线;从学校直接到少年宫的路线最近。

9. 75 50

10. 80° 15° 35°

11.拼成的三角形的内角和是180°。

12. 360 三角 180 三角 180

13. (1)100° (2)44°

三角形的分类。(教材第82~87页)

1.通过观察、操作、发现三角形角的特征和三角形三条边的特点。会给三角形分类,理解并掌握三角形的种类和特征,能解决一些简单的实际问题。

2.培养学生的观察能力、操作能力和灵活的思维能力。

3.激发学生的自主探索意识和创新精神。

重点:会按角的特征给三角形分类;会按边的特征给三角形分类。

难点:区别掌握各种三角形的特征。

课件、各种不同的三角形、长方形纸、正方形纸,剪刀。

师:同学们,什么叫直角?什么叫锐角?什么叫钝角?三角形有什么特点?

生1:等于90°的角叫直角,小于90°的角叫锐角;大于90°小于180°的角叫钝角。

生2:三角形都有3个顶点,3个角,3条边。

师:在三角形这个大家族里,你若仔细观察,会发现它们的角和边各有特点,今天我们就根据三角形角的特点或边的特点,给它们分分类。

【设计意图:做到“温故而知新”,为新课的学习做准备、打基础】

1.教学例5。

师:下面每个三角形的3个角分别是什么角?你能根据角的特点把这些三角形分类吗?(课件出示:教材第82页例5图)

生1:②和④这两个三角形的3个角都是锐角。

生2:①和⑥这两个三角形中都有1个直角,2个锐角。

生3:③和⑤这两个三角形中都有1个钝角,2个锐角。

师:3个角都是锐角的三角形是锐角三角形;有1个角是直角的三角形是直角三角形;有1个角是钝角的三角形是钝角三角形。同学们想一想,一个三角形中可能有2个直角或2个钝角吗?为什么?

生:一个三角形中不可能有2个直角,因为三角形的内角和是180°,如果出现2个直角,它们的和就已经是180°,怎么会有第三个角呢?同样道理一个三角形中不可能有2个钝角。

师:我们可以把所有三角形看作一个整体,锐角三角形、直角三角形和钝角三角形都是这个整体的一部分,它们之间的关系可以用下图来表示。(课件出示:教材第82页集合图)

2.教学例6。

师:请同学们打开课本第83页,量一量例6图中三角形每条边的长度,看看这些三角形有什么共同的特点。

学生进行测量活动;教师巡视了解情况。

师:你发现了什么?

生:这些三角形中都有两条边的长度是相等的。

师:两条边相等的三角形是等腰三角形。(课件出示:教材第83页等腰三角形的图)等腰三角形中相等的两条边叫作腰,剩余的一条边是底。两腰的夹角是顶角,腰与底的夹角是底角。你能指出例6中等腰三角形的顶角和底角分别在哪里吗?在小组里互相指一指,看一看。

学生进行小组活动;教师巡视了解情况。

师:请同学们拿出长方形纸,照样子剪一剪,比一比,看剪出的三角形是等腰三角形吗?(课件出示:教材第84页步骤图)

学生进行剪纸活动;教师巡视了解情况。

师:通过刚才的操作,你发现等腰三角形还有哪些特征?

学生可能会说:

等腰三角形的底角相等。

等腰三角形是轴对称图形。

等腰三角形底边上的高在它的对称轴上。

3.教学例7。

师:请同学们先打开课本第84页,量一量例7中的三角形3条边的长度都相等吗?

生:3条边的长度都相等。

师:3条边都相等的三角形是等边三角形,也叫作正三角形。现在请同学们拿出正方形纸,照下面的步骤操作,看剪出的是等边三角形吗?(课件出示:教材第84页步骤图)

学生进行剪纸活动;教师巡视了解情况。

组织学生汇报:经过测量,发现剪下来的是等边三角形。

师:把剪下来的等边三角形折一折,你有什么发现?

生1:等边三角形的3个角相等。

生2:等边三角形是轴对称图形。

生3:等边三角形有3条对称轴。

师:等边三角形一定是锐角三角形吗?为什么?

生:等边三角形一定是锐角三角形,因为等边三角形的3个角相等,且三角形的内角和是180°,所以等边三角形的一个内角度数是180°÷3=60°。

【设计意图:在学生的动手操作中,引导学生体会三角形分类的标准,领悟三角形的特征】

师:今天你有什么收获呢?

三角形的分类

按角分类 按边分类

1.让学生在独立思考的基础上进行合作交流。合作交流是学习数学的重要方式之一,但良好的合作必须建立在独立思考的基础之上,没有个人想法的合作,只是流于形式,耗能而低效。在这一节课中,我充分注意到这一点,每次合作前都提醒学生先自己想一想,试一试,再在小组中交流各自的想法,使学生的自主学习与合作交流有机结合,最大限度地发挥了合作学习的优势,不仅提高了学习效率,而且有助于学生形成良好的学习习惯。

2.引导学生有效参与,强化操作尝试,注重学生的亲身感悟,让学生在操作和尝试中,增强对知识的感悟,是本节课的突出特点。这堂课中紧紧抓住“给三角形分类”这样一个有价值的数学活动,引导学生通过小组合作,进行观察、猜测、验证、推理、交流,探究分类的方法。

A类

如果一个等腰三角形的已知边长分别是4cm和9cm,则此等腰三角形的周长为( )。

(考查知识点:等腰三角形与三角形三边的关系;能力要求:综合运用所学知识解决问题)

B类

等腰三角形的周长为14cm,腰长为xcm,则x的取值范围是( )。

(考查知识点:等腰三角形与三角形三边的关系;能力要求:综合运用所学知识解决问题)

课堂作业新设计

A类:

22cm

B类:

3.5

教材习题

教材第83页“练一练”

1.

锐角三角形 直角三角形 钝角三角形

2.

3.略

教材第85页“练一练”

1.第一个是等腰三角形;第三个是等边三角形。

2.是等腰三角形,是直角三角形。

3.

等腰三角形  等边三角形

教材第86、第87页“练习十三”

1.

2.

3. 45°

4. 18÷3=6(厘米)

5.略

6. 159 2100 4600 5700

7.

8.钝角三角形 直角三角形 钝角三角形、直角三角形或锐角三角形都有可能

9.答案不唯一,

10. (180°-70°)÷2=55° 180°-35°×2=110°

11.(1)拼成三角形。

(2)拼成四边形。

12.钝角三角形 等边三角形(锐角三角形) 直角三角形

13. 20+10+20=50(米)

14.等边三角形都用8cm的小棒;等腰三角形一个用2根3cm的小棒和1根5cm的小棒,另一个用2根5cm的小棒和1根3cm的小棒。(答案不唯一)

认识平行四边形。(教材第88页)

1.使学生掌握平行四边形的意义和特征,了解它们的特性。

2.通过观察、动手操作,培养学生的抽象概括能力和初步的空间观念。

3.渗透事物是普遍联系的辩证唯物主义观点,培养学生观察和认识周围事物的兴趣和意识。

重点:平行四边形的意义。

难点:平行四边形的特征。

课件、方格纸、直尺。

师:同学们,喜欢做游戏吗?好,我们玩一个游戏,名字叫作猜图形。谁想来?其他同学们向他提供准确的信息,不能比画图形的形状,信息里不能包括这个图形的名字。好,开始!

教师逐个板贴长方形、正方形、平行四边形,学生逐个提供信息逐个猜。(在此过程中教师注意及时评价学生或纠正学生的错误)

师:长方形和正方形我们已经很熟悉了,大家提供的信息既准确又充分,(拿下长方形和正方形)今天这节课我们重点研究谁啊?(揭示课题:认识平行四边形)

【设计意图:立足于学生的学习起点,之前学生已经初步认识了平行四边形和梯形,通过猜图形唤醒学生的知识记忆,同时为下面的探究做好铺垫】

师:请同学们仔细看图,你能在图中找出平行四边形吗?(课件出示:教材第88页例8题)

学生指出图中的平行四边形。

师:生活中还有哪些地方能见到平行四边形?

生1:活动衣架上有平行四边形。

生2:窗户的防盗网上有平行四边形的格子。

……

师:你能在方格纸上画一个平行四边形吗?并说说平行四边形有什么特点。

学生尝试在方格纸上画图并进行小组交流;教师巡视了解情况。

师:你发现了什么?

学生可能会说:

平行四边形有4条边,4个角。

两组对边分别平行。

两组对边分别相等。

师:两组对边分别平行的四边形叫作平行四边形。从平行四边形一条边上的一点到它对边的垂直线段,是平行四边形的高,这条边是平行四边形的底。你能画出方格纸上的平行四边形的高吗?再量出它的高和底各是多少毫米。

学生进行画图、测量等操作活动;教师巡视了解情况。

组织学生交流汇报。

【设计意图:通过观察操作活动使学生深刻感悟平行四边形的两组对边互相平行这一特性,逐步认识平行四边形的定义】

师:今天你有什么收获呢?

认识平行四边形

两组对边分别平行的四边形叫作平行四边形

1.通过动手操作、猜想、验证以及借助多媒体演示让学生总结出平行四边形的特征,有效地突破了难点。在学生感知的基础上,使难点得以有效突破。在学生自学环节中,时间安排不是很充分,个别同学的成果展示中略显缺乏自信。

2.在今后课堂教学中,借助多媒体等现代化的教学手段达到大容量、高效率、激发学习兴趣的目的。体现“数学来源于生活”的理念,尽己所能,让数学课堂成为学生的精神乐园。

A类

判断题。(正确的画“”,错误的画“”)

(1)长方形、正方形是特殊的平行四边形。 ( )

(2)两条线段互相平行,它们也一定相等。 ( )

(3)两组对边分别平行的四边形叫作平行四边形。 ( )

(考查知识点:平行四边形;能力要求:掌握平行四边形的特征)

B类

1.填空题。

两组对边( )的四边形叫作平行四边形。

2.思考:两个形状一样的三角形可以拼成一个什么图形?

(考查知识点:平行四边形;能力要求:掌握平行四边形的特征)

课堂作业新设计

A类:

(1) (2) (3)

B类:

1.分别平行

2.长方形、正方形或平行四边形

教材习题

教材第89页“练一练”

量一量略

认识梯形。(教材第89~92页)

1.使学生认识梯形。

2.了解梯形与平行四边形的相同点和不同点。

3.培养学生的空间想象能力。

重点:梯形的意义。

难点:梯形的特征。

课件、方格纸、直尺。

师:同学们,我们学过哪些平面图形?

生:长方形、正方形、三角形、平行四边形……

师:你还知道四边形中有哪些图形吗?

生:梯形、菱形……

师:今天这节课,我们继续研究四边形中的另一种图形--梯形。

1.教学例9。

师:你能指出图中的梯形吗?(课件出示:教材第89页例9图)

学生指出图中存在的梯形。

师:你能在方格纸上画出一个梯形吗?并说说梯形有什么特点。

学生进行画图及小组交流活动;教师巡视了解情况。

师:你发现了什么?

生1:梯形也是四边形,有4条边,4个角。

生2:一组对边平行,另一组对边不平行。

生3:互相平行的一组对边长度不相等。

师:只有一组对边平行的四边形叫作梯形。(课件出示:教材第90页梯形图)互相平行的一组对边分别是梯形的上底和下底,不平行的一组对边是梯形的腰。从梯形一条底边上任意取一点,画出这一点到它的对边的垂线段叫作梯形的高。在你刚才方格纸上的梯形中画出梯形的高,并分别测量出它的上底、下底和高各是多少毫米。

学生进行画高及交流活动;教师巡视了解情况,个别指导学习有困难的学生。

组织学生展示画图结果,并进行画法交流,给予画图正确的学生以肯定鼓励。

师:请同学们打开课本第90页,量一量“练一练”上面的梯形的两腰,看你发现了什么?

生:梯形的两条腰相等。

明确:两腰相等的梯形是等腰梯形。

【设计意图:对于梯形这一图形学生之前只是感性的直观认识,这是第一次较为全面的认识梯形,所以有必要进行认读,加深学生的认识】

师:通过这节课的学习,你有何体会和收获?

认 识 梯 形

只有一组对边平行的四边形是梯形

1.在今后课堂教学中,借助多媒体等现代化的教学手段达到大容量、高效率、激发学习兴趣的目的。体现“数学来源于生活”的理念,尽己所能,让数学课堂成为学生的精神乐园。

2.通过动手操作、猜想、验证以及借助多媒体演示让学生总结出梯形的特征,有效地突破了难点。在学生自学环节中,时间安排不是很充分,个别同学在成果展示中略显缺乏自信。

A类

1.判断题:有一组对边平行的四边形是梯形。 ( )

2.你能用七巧板拼出不同的梯形吗?

(考查知识点:梯形;能力要求:掌握梯形的特征)

B类

1.填空题。

(1)两组对边( )的四边形叫作平行四边形。

(2)的四边形叫作梯形。

2.思考:两个形状一样的梯形可以拼成一个什么图形?

(考查知识点:梯形;能力要求:掌握梯形的特征)

课堂作业新设计

A类:

1.

2.略

B类:

1. (1)互相平行 (2)只有一组对边平行

2.长方形、正方形、平行四边形

教材习题

教材第90页“练一练”

1.

2.  量长度略

教材第91、第92页“练习十四”

1.略

2.

3. 8 59 1134

4.略

5.

6.等腰梯形是轴对称图形。 原因略

7. 9360 16100 23316 3424

8.平行四边形和梯形的相同点:都是四边形,有4条边,4个角;不同点:平行四边形的两组对边分别平行且相等,梯形只有一组对边平行。

9.略

10.对角相等。

11.略

12.略

整理与练习。(教材第93~95页)

1.进一步加深对三角形、平行四边形和梯形的认识,理解并掌握各自的特征。

2.能够运用所学知识解决实际问题。

3.在解决问题的过程中,使学生体会数学与生活的密切联系,提高学生解决问题的能力。

重点:理解并掌握三角形、平行四边形和梯形各自的特征。

难点:提高学生解决问题的能力。

课件。

师:同学们,这一单元的学习马上就要结束了,今天我们就一起来对本单元所学内容进行系统的整理与练习。

1.回顾与整理。

师:这一单元,你学到了哪些知识?

学生可能会说:

我知道了三角形、平行四边形和梯形的特征。

三角形按角可以分成锐角三角形、直角三角形和钝角三角形三类。

两条边相等的三角形是等腰三角形,三条边相等的三角形是等边三角形。

只有一组对边平行的四边形是梯形;两条腰相等的梯形是等腰梯形。

平行四边形的两组对边分别平行且相等。

……

师:请同学们在小组内就下面的问题进行讨论交流。(课件出示:教材第93页问题)

学生进行小组讨论;教师巡视了解情况。

组织学生交流汇报:

三角形的内角和是180°。

三角形任意两边长度的和大于第三边。

平行四边形是两组对边分别平行且相等的四边形;梯形是只有一组对边平行的四边形。

在本单元学习的图形中,等腰三角形、等边三角形、等腰梯形是轴对称图形。

2.练习与应用。

师:请同学们看题,然后说说你知道了什么?(课件出示:教材第94页第5题)

生1:知道了图中是三个等边三角形。

生2:从图中可以知道从A地到B地有3条路。

师:从A地到B地怎样走最近?

生:走正中间的路最近,因为两点之间线段最短。

师:哪两条路一样长?为什么?

生:走粉色的路(左边)与走蓝色的路(右边)一样长,因为这是三个等边三角形,所以粉色的路是(40+20)×2=120(米),蓝色的路是40×2+20×2=120(米)。

【设计意图:引导学生对本单元知识进行系统整理的基础上,让学生运用所学知识解决问题,激发学生的应用意识,提高解决问题的能力】

师:今天你有什么收获呢?

【设计意图:梳理所学知识,将所学知识系统化】

整理与练习

三角形的内角和是180°。

三角形任意两边长度的和大于第三边。

平行四边形是两组对边分别平行且相等的四边形;梯形是只有一组对边平行的四边形。

在本单元学习的图形中,等腰三角形、等边三角形、等腰梯形是轴对称图形

1.一个生动学习情境的营造,可以引起学生的新鲜感,使他们情不自禁地注入自己的热情,主动、积极地参与学习活动,在轻松愉悦的环境中收到事半功倍的教学效果。

2.合作探究,让学生建构数学。联系生活,让学生感悟数学。促进学生空间观念的发展是小学数学几何教学的重要任务,而学生生活的世界和所接触的事物大都和空间与图形有关,他们的生活经验是发展空间观念的宝贵资源。本节课我选择了许多与学生生活息息相关的题材。课堂上教师充分发挥这些题材的作用,注重学生已有的生活经验,将视野从课堂拓宽到生活的空间,并引导他们去观察生活,从现实世界中发现有关空间与图形的问题,从而使学生知道这些物体都是实际生活中的,从而使学生感受到数学源于生活,生活中处处有数学。

A类

填空题。

1.以平行四边形的一条边为底,就能做出( )条高,这些高的长度都( )。

2.( )和( )都是特殊的平行四边形。

3.等腰梯形( )一组对边平行。

4.平行四边形( )轴对称图形。

(考查知识点:平行四边形和梯形;能力要求:灵活运用所学知识解决问题)

B类

选择题。(把正确答案的序号填在括号里)

1.两个完全一样的三角形一定可以拼成一个( )。

A. 平行四边形 B. 梯形 C. 长方形 D. 正方形

2.下面图形中,不是轴对称图形的是( )。

A. 平行四边形 B. 等腰梯形 C. 长方形 D. 等腰三角形

(考查知识点:平行四边形和梯形;能力要求:灵活运用所学知识解决问题)

课堂作业新设计

A类:

1.无数 相等

2.长方形 正方形

3.只有

4.不是

B类:

1. A 2. A

教材习题

教材第93~95页“整理与练习”

1.三角形有3个顶点、3条边、3个角;

平行四边形有4个顶点、4条边、4个角,两组对边分别平行且相等;

梯形是只有一组对边平行的四边形,有4个顶点、4条边、4个角。

三角形平行四边形梯形

2.锐角三角形(等边三角形) 直角三角形 钝角三角形(等腰三角形) 钝角三角形 锐角三角形(等腰三角形) 直角三角形(等腰三角形) 根据角的特点可以分为锐角三角形、直角三角形和钝角三角形。

3.(1)180°-42°-68°=70°

(2)90°-53°=37°

(3)(180°-34°)÷2=73°

4.(1)能围成3个不同的三角形。

(2)9÷3=3(厘米)

(3)底是1厘米。

5.走正中间的路最近;走粉色的路(左边)与走蓝色的路(右边)一样长,因为这是三个等边三角形,所以粉色的路的长度是(40+20)×2=120(米),蓝色的路的长度是40×2+20×2=120(米)。

6.

等腰三角形 等腰梯形 平行四边形

7. 略

8. (1)略 (2)略 (3)拼成的平行四边形的底是梯形上底与下底的和,拼成的平行四边形的高与梯形的高相等。

多边形的内角和。(教材第96、第97页)

1.掌握多边形内角和的计算方法,并能用内角和知识解决有关多边形的计算问题;通过多边形内角和公式的推导,培养学生探索与归纳的能力。

2.经历探索多边形内角和的过程,多角度、全方位考虑问题,培养学生对简单数学结论的探究方法,进而运用掌握的理论知识解决实际问题,进一步培养学生的数学推理能力,初步形成一定的推理思维。

3.通过经历数学知识的形成过程,体验转化、类比等数学思想方法的应用,体验猜想得到证实的成就感。

重点:探究多边形的内角和公式。

难点:理解多边形的内角和公式。

课件。

师:同学们,一个三角形的内角和等于多少度?长方形的内角和等于多少度?正方形的内角和等于多少度?

学生思考并作答,并由教师评价。

师:那么一个多边形的内角和是多少呢?我们能不能算出来呢?这就是本节课我们要研究的问题。

【设计意图:先回顾三角形、正方形和长方形的内角和,促使学生对新问题进行思考与猜想】

师:任意四边形的内角和等于多少度呢?你是怎样得到的?你能找到几种方法?

生1:我是先量出每个角的度数,再求和,结果是360°。

生2:我是把四边形的对角线连接,分成2个三角形,算出内角和是180°×2=360°。

【设计意图:从简单的四边形入手,让学生亲自操作寻找结论。这样做易于引起学生兴趣,鼓励学生找到多种方法,让学生体验测量法及分割法的不同,有利于学生深入领会转化的实质--四边形转化为三角形,也让学生体验数学活动充满探索的乐趣和解决问题方法的多样性。通过交流,让学生用自己的语言清楚的表达解决问题的过程,可以提高语言表达能力】

师:把五边形、六边形各分成几个三角形后,就能方便的算出它们的内角和?分一分、算一算。

学生进行画图、计算活动;教师巡视了解情况。

师:你是怎样做的?结果怎样?

生1:五边形可以分成3个三角形,所以五边形的内角和是180°×3=540°。

生2:六边形可以分成4个三角形,所以六边形的内角和是180°×4=720°。

师:其他多边形也可以像这样分成几个三角形来计算内角和吗?小组合作,任意画出一些多边形,试一试,并完成下面的表格。(课件出示:教材第97页表格)

学生进行小组活动;教师巡视了解情况。

组织学生汇报交流,师生共同完成表格:

图形名称 边数 分成的三角形个数 内角和

三角形 3 1 180°

四边形 4 2 180°×2

五边形 5 3 180°×3

六边形 6 4 180°×4

七边形 7 5 180°×5

八边形 8 6 180°×6

…… …… …… ……

师:观察表中的数据,你有什么发现?

生1:可以把多边形分成若干个三角形,计算它的内角和。

生2:分成三角形个数都比多边形的边数少2。

生3:分成了几个三角形,多边形的内角和就有几个180°。

师:你能用一个式子表示多边形内角和的计算方法吗?

生:多边形内角和=(多边形边数-2)×180°。

师:回顾探索和发现规律的过程,说说自己的体会。

学生可能会说:

多边形的内角和可以根据三角形的内角和推算出来。

从简单的问题想起、有序思考,是探索规律的有效方法。

可以把新的问题转化成能够解决的问题。

【设计意图:通过对四边形内角和的思考研究,深入探索五边形、六边形和七边形等多边形的内角和,从而通过归纳总结得出多边形的内角和公式,并且对多边形的相关知识加以拓展】

师:今天你有什么收获呢?

多边形的内角和

多边形的内角和=(多边形的边数-2)×180

先让学生动手操作,亲自度量,根据度量的数据引导学生归纳总结,大胆猜想,得到四边形的内角和总是360°,而且内角和随着边数的增加而增大。再让学生填写表格,把多边形的边数从有限推广到无限,先猜想结论再加以证明是数学研究的一种常规思维。先操作、实践,后讲感悟、体会,既能充分发挥学生学习的主动性,抓住学习的重点,又能减轻学生的学习负担,调动其学习积极性,有效地提高课堂教学效果。

A类

求图中x的值。

(考查知识点:多边形的内角和;能力要求:灵活运用多边形的内角和公式解决问题)

B类

若一个多边形的内角和是540°,则这个多边形的边数是( )。

A. 4 B. 5 C. 6 D. 7

(考查知识点:多边形的内角和;能力要求:灵活运用多边形的内角和公式解决问题)

课堂作业新设计

A类:

180°×(4-2)-140°-90°=130° 130÷2=65°

B类:

B

认识四边形课件【篇4】

平行四边形的认识教案

学情分析:

平行四边形的认识,本单元是第一次出现,只要求学生能够从具体的实物或图形中识别出哪个是平行四边形,对它的一些特点有个初步的直观认识即可。本课主要是使学生运用已有知识与能力,通过观察、操作、讨论和归纳等数学活动,经历识平行四边形及长方形、正方形和平行四边形之间的关系,初步感受平行四边形。平行四边形的出现对于丰富学生对现实世界的认识,发展学生的空间观念都有十分积极的意义。教材分析:

本节课平行四边形的认识分为二个层次。第一层次,感悟平行四边形的特性,认识平行四边形。第二层次,认识平行四边形的底和高,并学会做高。教学中还应充分利用各种教具、学具和现代信息技术,为学生提供观察、操作、体验的活动空间,引导学生直观地认识平行四边形,教学目标:

1、使学生初步认识平行四边形,初步体会平行四边形的对边平行且相等的特征。

2、理解平行四边形的底和高,并能正确画出底对应的高。

3、通过直观演示,个体操作,集体交流,帮助学生掌握平行边形的特性:易变形。

4、积极引导学生参与学习,帮助学生建立初步的空间观念和逻辑观念。

知识技能:

1、在联系生活实际和动手操作的过程中初步认识平行四边形,使学生能够识别平行四边形,并理解平行四边形的底和高。

2、会在平行四边形上画高。过程方法:

1.使学生在观察、动手操作等活动中,通过有条理经历体验平行四边形的基本特征的过程,进一步积累认识图形的经验,形成表象,进而发展空间观念。

2.通过量一量,画一画等数学活动,培养学生运用数学的思维方式进行思考问题,帮助学生建立初步的空间观念。情感态度与价值观:

1.感受图形与生活的联系,使学生体会平行四边形在生活中的应用,培养数学应用意识,增强对“图形与几何”的学习兴趣。2.通过多种学习方式促进学生积极参与数学活动,对数学有好奇心和求知欲。

教学重点: 认识平行四边形,初步体会平行四边形的对边平行且相等的特征。

教学难点:理解平行四边形的底和高,并能正确画出底对应的高。

学具准备:每人一张平行四边形卡片,每人一张练习纸,三角尺。

教具准备:多媒体课件,平行四边形卡片、平行四边形的框架。

一、创设情境,揭示主题。

1.游戏导入

回顾旧知:同学们学过哪些几何图形? 回顾长方形、正方形等图形 做游戏—芝麻开门 猜测门后面是什么图形?

揭示课题:像这样的图形是平行四边形。

师:这节课老师将和同学们一起来认识平行四边形。(板书课题)

2.感受生活中的平行四边形

【设计意图:把平行四边形与其他图形的联系中揭示,让学生在游戏中学习,初步了解要研究的问题,达到回顾旧知、引出新知的良好效果。更重要的是在这个过程中学生体会到先进的思维方式——迁移。】 教学过程:

二、探究新知

(一)认识平行四边形 1.观察表象

明确平行四边形的对边、邻边。2.动手操作,感悟特征。

独立研究老师准备的平行四边形卡片,测一测,量一量,研究平行四边形的特点。3交流汇报,描述特征。

每4人一组,说说发现了什么以及怎么发现的。

师:仔细观察这个平行四边形,说一说,它有哪些特征? 思考:用什么办法知道平行四边形的对边相等?

师:电脑展示,通过平移验证平行四边形对边平行且相等。4初步运用

下面哪个图形是平行四边形?

【设计意图:利用新旧知识之间的联系,从知识的逻辑顺序和大数学观的背景中引导学生初步发现平行四边形和已学的长方形之间的联系,抓住问题的关键,让每一位学生通过推拉长方形框,既动手又动脑,充分发挥学生的主动性,感悟平行四边形的特性,从而发现平行四边形与长方形的联系,培养了学生的合情推理能力。】

(二)认识平行四边形的底和高 1.观察表象

师出示两个不同的平行四边形,比较哪个更高。学生说说什么是平行四边形的高。2.出示概念

通过多媒体边演示,教师边解释什么是平行四边形的底和高:从平行四边形一条边上的一点向对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高,垂足所在的边叫做平行四边形的底。

师:你在平行四边形上画几条高呢?你能分析一下平行四边形为什么可以画无数条高吗? 3.研究画法

师演示平行四边形的高的画法,指出哪个是底哪个是高。

学生在学习纸上练习画高,投影展示。

(三)平行四边形的特性

师推拉长方形框让学生直观感受长方形框变成平行四边形框的过程。

介绍平行四边形易变形特性以及在生活中的应用。

三、练习巩固,深化认识 自我挑战 1判断

1)对边平行的四边形叫做平行四边形。()

2)把一个长方形框架拉成一个平行四边形后,周长变大了。()

3)长方形是特殊的平行四边形。()2数一数

图中共有()个平行四边形? A、2 B、3 C、4 3判断下面的红色线段是平行四边形的高吗?

四、小结收获。

想一想,你今天由什么收获?

五、板书设计

平行四边形

两组对边分别平行的四边形 叫做平行四边形。

认识四边形课件【篇5】

平行四边形的认识

教学目标:

1.知识目标:

学生初步认识平行四边形。2.能力目标:

了解平行四边形的特点。3.情感目标:

通过学生手动、脑想、眼看,使学生在多种感官的协调活动中积累感性认识发展空间观念。

教学重点:

探究平行四边形的特点。

教学难点:

让学生动手画、剪平行四边形。

教学过程:

一、导入

1.欣赏生活中的平行四边形。

2.为什么推拉门中间做成平行四边形?而不用其他图形呢? 让我们带着这个问题共同来探究平行四边形的特征。

二、展开

摆平行四边形,提出要求:

1.同桌合作,学生动手摆出两个平行四边形

2.搭好后说说“你们认为怎样的图形是平行四边形,它有什么特点?”。3.生汇报:两组对边相等;容易变形(动手拉一拉)……。4.师:现在你们能解释“为什么推拉门中间做成平行四边形吗?” 动手拉一拉 看看结果会怎样?

5.判断下面哪些图形是平行四边形?(见课件)

三、围一围、画一画 1.在钉子板上围平行四边形(1)生独立动手操作

(2)反馈。在反馈中再次感受平行四边形的特点。(3)小结:围的时候要注意什么? 2.在方格纸上画平行四边形。(1)生独立画一个平行四边形。(2)反馈交流

(3)总结交流方法,学生总结、电脑示范。

四、巩固

认识四边形课件【篇6】

一、教学目标:

1.使学生掌握平行四边形的意义及特征,了解它的特性。

2.通过观察、动手,培养学生抽象概括能力和初步的空间观念。

3.渗透事物是相互联系的辩证唯物主义观点。培养学生观察和认识周围图形的兴趣和认识。

二、教学重点:

平行四边形的意义。

三、教学难点:

抽象概括平行四边形的意义。

四、教学过程:

(一)老师出示一个长方形框架

1、老师动手拉它的一组相对的角,请同学们观察:这个框架还是长方形吗?为什么?

(这个图形不是长方形了,因为它的四个角不是直角)

我们把这样的图形叫做平行四边形,在黑板右上角贴出一个平行四边形

2.请同学们观察:黑板上还有哪些平行四边形?

(分类中的“其它四边形”都是平行四边形)老师把黑板上的“其它四边形”改写成“平行四边形”)

问:同学们平时见过平行四边形吗?请举例来说(有一种防盗网上的图形、篱笆上的图形,有的编织图案)

3.平行四边形和长方形有什么相同点和不同点?(老师又一次演示长方形活动框架)

(它们的相同点是都有四条边且对边相等、它们都有四个角;不同点是:长方形的四个角必须是直角)

今天,我们又认识了一个图形——平行四边形

(二)通过活动,再次感知平行四边形。

1. 小朋友看过魔术表演吗?咱们来变个魔术,请打开1号纸袋。看一看,里面有什么?(6根硬纸条,4个图钉)

师:咱们要围一个长方形框,得用几根硬纸条?4根什么样的硬纸条?请小组的同学讨论选出来。

学生讨论筛选后,教师提问:你们选了什么样的?为什么这样选?

最后小组合作用图钉固定出长方形框。

围好后,请小朋友推一推,拉一拉,看图形变了没有?(学生操作)

在日常生活中我们经常见到这种图形。请看屏幕。(课件显示“纺织图案”、“楼梯扶手”、“篱笆”,并闪动其中的几何图形再抽象出来。)

2. 学生自己发现平行四边形与长方形、正方形的共同点。观察后交流。

3. 分组操作、研究平行四边形的特征。

(1)回忆研究长方形、正方形特点的方法。(量一量、折一折、比一比)

(2)打开2号纸袋(里面有两张平行四边形纸片),用刚才的方法,也可以想别的办法,也可以观察变平行四边形框的过程,小组讨论平行四边形4条边和 4个角的特点。

(3)分组交流,教师小结。

4. 辨认平行四边形。

完成课本练习三十九第2题,指生订正并说出理由。

(三)巩固练习

1、判断题:

(1)长方形、正方形和平行四边形都是四边形.( )

(2)四个角都是直角的四边形一定是正方形.( )

(3)一个四边形,它的四条边相等,这个四边形一定是正方形.( )

(4)对边相等的四边形都是长方形.( )

(5)有个四边形,它的四个角都是直角,那么,这个四边形不是正方形就是长方形.( )

2.思考题:

有两个大小一样的长方形,长都是4分米,宽都是2分米.

(1)把这两个长方形拼成一个正方形,你是怎样拼的?

(2)把这两个长方形拼成一个大的长方形,它的长是多少?宽是多少?你是怎样拼的?

(四)全课总结

通过今天的学习你有什么收获?谈一谈。

认识四边形课件【篇7】

十、新课程理念在本课中的体现:

在本节课中,我根据数学新课标的基本理念,精心设计学生的数学活动,创设问题情景。纵观本节课,主要有以下特点:

本节课一开始,我就告诉学生:老师要带领你们到光明小学去参观,接着出示主题图。这幅图是学校操场示意图,是学生比较熟悉的生活场景,所以学生感到非常亲切、非常有兴趣。《新课标》指出“要让学生亲身经历将实际问题抽象成数学模型,并进行解释与应用的过程。”通过这个过程,学习和应用数学。在一个充满探索的过程中,让已经存在于学生头脑中的那些不那么正规的数学知识和数学体验上升发展为科学的结论,从中感受数学发现的乐趣。在这节课中,通过让学生从熟悉的主题图中找出许多关于“图形”的信息如:长方形的篮球场、通道、窗户、正方形的地砖、平行四边形的推拉门、楼梯护栏等。目的是,联系学生的生活经验,丰富其对图形特别是四边形的感性认识,并从整体上感知自己生活中的几何图形。

《新课标》指出:“动手实践,自主探索与合作交流是学生学习数学的重要方式,数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。”数学的学习方式不再是单一的、枯燥的、以被动听讲和练习为主的方式。学生在自主探索、亲身实践、合作交流的氛围中,有机会分享自己和他人的想法。在合作交流、与人分享和独立思考的氛围中,获取新知。本节课,我通过让学生分一分、围一围等活动,在小组合作交流中,完成学习任务。

认识四边形课件【篇8】

课题

认识平行四边形

课时

1

课型

新授

教学目标

知识技能认识四边形和平行四边形,能在方格纸上画平行四边形。

过程方法

在对简单图形分类的过程中,经历认识平行四边形的过程。

情感态度

鼓励学生发现日常生活中形状是平行四边形的物体,初步体会平行四边形的作用。

教学重点

1、认识四边形和平行四边形,能在方格纸上画平行四边形。

2、在对简单图形分类的过程中,经历认识平行四边形的过程。

教学难点

鼓励学生发现日常生活中形状是平行四边形的物体,初步体会平行四边形的作用

教学准备

多媒体课件

教学方法

自主学习、合作探究

教学过程设计

教师活动

学生活动

设计意图

一、创设情境:

同学们,前面我们认识了长方形和正方形,谁能说一说长方形和正方形各有什么特点?今天我们继续学习认识新的图形。

二、探究与实践

1、认识平行四边形

(1)小组活动:我们每个组老师都发了8张图形卡片,请同学们小组内共同合作,仔细观察,把这8张卡片分成两类。

(2)全班交流:哪个组的同学可以出个代表来前面说一说你们组是如何分类的?同学们的分类方法非常好,而且还有很多种,老师也用两种方法给它们分了类,我们一起看一下,看看和你们组分的一样吗?(多媒体展示分类过程)在交流的基础上,让学生了解什么样的图形叫做平行四边形。

(板书)平行四边形我们的生活中有许多地方都有平行四边形,谁能说说你在哪里见过平行四边形?老师也找到了许多生活中的平行四边形,我们一起看一下。(多媒体展示图片)

2、感悟平行四边形的特征。

我们既然认识了平行四边形,那么它有什么特点呢?老师先给大家变一个魔术。

教师演示活动的长方形用手拉对角。谁发现了什么?学生回答,教师补充学生对图形分类,小组合作。

学生可以分成两种:

一种

(1)都有直角1 4 5 6

(2)没有直角2 3 7 8

二种

(1)三角形5 7

(2)四边形1 4 3 2 6 8 小组内派一名同学在展台上边操作,边说分类的根据。

全班交流,让学生把分类的想法和结果交流一下、

教师引导学生像图2、图8这样的图形叫做平行四边形。

让学生举例生活中的平行四边形。

学生用自己的语言描述木框的变化,尝试总结平行四边形的特征:对边相等。(板书)巩固旧知培养学生的动手操作的能力和思维能力。

培养学生的自信心和语言表达能力。

三、实践与应用师出示课件

1、下面哪些图形是平行四边形?

2、在方格纸上画一个同样大的平行四边形。

老师也和大家一起来画,你们看看,老师的.画法和你的画法一样吗?(多媒体演示画平行四边形的过程)

3、在方格纸上画一个大一点的平行四边形。

四、全课小结。

今天这节课我们认识平行四边形,你都有哪些收获呢?

五、作业。

如何把一个长方形的纸剪开,拼成一个平行四边形。

学生独立完成,集体订正、 学生独立完成,说一说自己是怎么画的。

学生独立完成。

学生汇报本节课的收获。

培养学生动手能力。

教学反思:

今天学习了《认识平行四边形》,本节课是在学生直观认识四边形的基础上认识平行四边形的,教学时,我通过复习长方形和正方形的特点引入课题,再学习由长方形到平行四边形的变化的过程中,让学生拉动长方形的框架,观察、体验、交流,借助已有的长方形的有关知识自己去发现平行四边形的特点,让学生初步感知平行四边形的特点是对边相等,为以后的学习做好铺垫。同时在课堂上给学生提供充足的自主探究空间,从而使课堂气氛很活跃,更进一步的认识平行四边行。总体来说,在探究平行四边形特点的过程中,学到了科学探究的方法,培养了学生主动获取知识的能力。

认识四边形课件【篇9】

“认识四边形”教学设计

一、教学内容:

人教版三年级上册长方形和正方形第一课时“认识四边形”。

二、教学目标:

1.直观感知四边形,能区分和辨认四边形,知道四边形的特征。进一步认识长方形和正方形,知道它们的角都是直角。

2.通过画一画、找一找、拼一拼,剪一剪等活动,培养学生的观察比较和概括抽象的能力,发展空间想象能力。

3.通过情境图和生活中的事物进入课堂,感受生活中的四边形无处不在,进一步激发学生的学习兴趣。

三、教学重点:

感知四边形的特征,能判别四边形。

四、教具、学具:

课件、三角尺、四边形、彩纸等。

五、教学过程:

一、生活引入,感知新知 师:同学们图形是一个美丽的世界,生活中的许多漂亮的图案都是由图形构成的,今天我们一起来走进这美丽的图形世界,认识四边形(出示课题)

这是什么地方?(电脑课件展示主题图)多么美丽、整洁的

校园啊!我们要爱护环境、不乱丢垃圾,保持校园的美丽和整洁。你从图中发现 了哪些图形,谁来介绍一下? 学生自由说出自己找到的图形。师给与肯定

二、小组合作,探究新知

(一)找四边形

(1)把你认为是四边形的图形图上颜色。说说理由。(2)小组合作,讨论四边形有什么特点?

给学生充分的时间让学生讨论,指生说出四边形的特点:有四条直的边,有四个角。

(二)寻找生活中的四边形 师:同学们,你们学得真不错!你能说一说身边哪些物体的表面是四边形的吗? 学生举例??

师:只要我们留心观察,四边形就在我们的身边。

(三)小巧手

拿出课前准备好的彩纸,剪刀自己制作一个四边形。

(四)学生作品展示

将做的好的四边形拿给全班同学看,并借助同学们的作品让学生认识长方形和正方形,接着进入下一部分的学习。

三、长方形和正方形的特点

借助同学们做的图形选出做得好的长方形和正方形,同时大屏幕出示这两个图形,让同学们观察,小组讨论长方形和正方形有什么特点? 各小组派代表说出自己的发现

师总结长方形和正方形的特点,找同学板书。

四、愉快练习,提高认识

1、走迷宫:“小猴摘桃” 调皮的小猴要去摘桃子,但必须朝着画有四边形的路牌方向前进,才能顺利摘到桃子,让学生说一说小猴的行走路线,再次让学生对四边形有个更清晰的认识。

2、涂色

让学生更进一步巩固长方形和正方形的特点

3、提高练习

查找四边形,让学生在挑战的过程中,感受到学无止境,同时培养了学生的创造性思维能力。

五、课堂总结

由学生现总结本节课有哪些收获,师最后总结。

“认识四边形”教学反思

通过本节课的教学,我感到还有很多不足的地方。首先,课堂调控能力还有待在今后的工作中进一步提高,对课堂发生的一些教学设计之外的情况还有些手足无措,比如学生在拼图的活动中时间浪费过长,导致最后的提高练习时间紧张,没能完成,是一个遗憾,其次,由于上的是比赛教课,心里难免紧张,老是想着所设计的环节能不能进行完,迫切的期待学生的精彩发言,而忽视了对学生学习情况的关注,将课堂教学的天秤倾向了表演一方,课堂教学最主要的目标体现不突出。当然,这节课还有许多细微处需要改进,我会在今后的教学工作中不断反思,力争把课上扎实,让学生真正学到知识,学会学习。

以上是我对本节课一些粗浅的认识和看法,敬请各们老师批评指正。

《认识四边形》说课稿

今天我说课的内容是:人教版小学数学第五册长方形和正方形的第一课时。

首先,我对这一课时的教材和学生情况进行简单的分析。

一、教材和学情分析

本节课是在学生学习了简单的平面图形、认识了长方形与正方形的基本特征的基础上进行教学的,也是以后进一步学习其它图形的基础。本教材安排了两个例题:例1是给四边形涂颜色,让学生从众多的图形中区分出四边形,感悟四边形的特点;例2让学生认识长方形和正方形各部分的名称,加深对长方形和正方 形的认识。教材通过找一找、涂一涂、分一分等一系列的活动,加深学生对四边形的了解。

为了掌握学生对此部分知识的了解情况,课前和部分学生进行了交谈,发现他们对四边形不是一无所知,在生活和学习中,此类图形比比皆是,只是对这一类图形的概念非常模糊。为了在他们已有的知识基础上让其对四边形具有更加科学、系统的认识,我在教学时,对例题做了稍许改动。

根据我对教材的理解和对学情的分析,我制定了以下教学目标:

二、教学目标。

1、直观感知四边形,能区分和辨认四边形。进一步认识长方形和正方形,知道它们的角都是直角。

2、通过找一找、画一画、拼一拼等活动,培养学生的观察比较和概括抽象的能力。

3、通过情境图和生活中的事物进入课堂,感受生活中的四边形无处不在,进一步激发学生的学习兴趣。

三、重点和难点 教学重点:

1、认识四边形,能区分和辨认四边形。

2、进一步认识长方形和正方形。教学难点:

1、一系列活动直观感知四边形,总结概括四边形的概念,经历从直观到抽象的学习过程。

由于本节课的学习内容有很强的可操作性,所以我认为突破重难点的关键是让学生在实践活动中感知,通过自己的动手操作将知识内化,并抽象出概念性的知识。故本节课我的设计理念如下:

四、设计理念:

1.联系生活,让学生学有用的数学。

空间与图形与我们的生活息息相关,现实生活为发展学生空间观念提供了宝贵资源。所以在设计这节课时,我充分利用生活实际的情境--校园场景引入四边形的教学,把认识四边形这一数学知识与学生的生活经验联系起来,让学生感受到图形无处不在,激发学生学习数学的兴趣。在充分认识了四边形后,又回归到生活中,找到真实存在的四边形,不只局限于书上的平面的几何图形,让学生真真切切地感受到数学与生活的关系。2.动手动脑,自主探究。像空间与图形这样实践操作强的课程,我主张提供一定的素材,加上教师适当的引导,充分发挥学生学习的自主性,让他们在实际操作中发现知识,学习知识。一方面培养学生的动手能力,另一方面让不同层次的学生都能有学习上的成就感,增强学习兴趣。3.小组合作,全体发展

小组合作的形式贯穿全课,充分应用分组合作、共同探究的学习模式,在教学中鼓励学生与同伴交流,引导学生展开讨论,一方面使学生学会分工、协作,一方面在这种面对面的交流中,各种层次的学生互相影响,取长补短。另外,在小组合作中,培养他们学会谦让、团结友爱等的情感、态度方面的优点。这样做,使学生在合作中学会了知识,体验了学习的乐趣,思维活动也更加活跃。

五、说教法学法

(一)说教法

由于本节课是继续对平面图形的进一步认识,所以在教法上的选择适合这类课程的方法,有情景教学法、直观演示法、实验操作法等。

(二)说学法

根据新课程改革提出的理念及本节课的教学内容,我认为指导学生运用以下学习方法较佳:

1、观察对比:在概括四边形特征时,让学生通过观察了解其特征,再通过对比他们不同的特征,将其进行了分类;

2、动手操作:如让学生制作出自己心目中的四边形,学生可根据自己喜好,采取画一画、剪一剪、折一折方法制作四边形;

3、小组合作:在拼四边形和四边形分类中都采用了合作的学习形式,但根据其难易程度,又分为小组合作和同桌合作,让同学在不同的合作中体验学习的快乐和收获的喜悦。

六、说教学过程:

本节课分四个教学环节:情境导入、直观感知四边形、掌握长方形和正方形的特点和本节课小结。

在第一个环节中,利用书中校园主题图导入,较贴近学生生活,从学生们找到图中认识的平面图形导入本节课主题。

第二部分,直观感知。

(1)从学生的生活经验出发,提供丰富的直观材料和相关的问题,让学生通过判断观察、比较,概括出了四边形的共同特点。在议一议的过程中先让大家观察涂好的四边形,接着提出这些四边形有什么共同的特征这一问题,让同学在小组内互相说说自己的发现。教师再根据学生的汇报,总结出四边形的特征:有四条直直的边,有四个角的图形就是四边形(学生板书)。再让学生根据我提供的图形说一说哪些不是四边形,为什么?进一步巩固四边形的特征。最后让学生举例说一说生活中哪些物体表面的形状是四边形的。

(2)然后让学生动手操作,剪一个四边形。动手实践、合作交流是学生学习数学的重要方式,而有效的小组合作学习是有目标、有计划、有分工的,在这个环节里,我以“温馨提示”、“建议”的方式让学生明确合作学习的目的、任务和分工,为有效的学习打下了良好的基础,同时突破了本节课的难点。

三、愉快练习提高认识 练习是帮助学生加深理解和巩固所学知识的手段,是培养和提高学生的数学素质和良好的心理素质的途径,在整节课上我设计了许多有针对性、层次感强的练习。

1、走迷宫:“小猴摘桃”

调皮的小猴要去摘桃子,但必须朝着画有四边形的路牌方向前进,才能顺利摘到桃子,让学生说一说小猴的行走路线,再次让学生对四边形有个更清晰的认识。

2、涂颜色

让同学们给长方形图上红色,正方形涂上黄色,进一步掌握长方形和正方形的特点。

3、提高练习

仔细数一数找出图中的四边形

本节课最后的课堂小结,让数学回归生活,找到生活中的四边形,并让学生谈谈本节课的收获和体会,对自己做出客观的评价。

“认识四边形”教学设计

胡家学校 孙立鑫

“认识四边形”说课稿

胡家学校 孙立鑫

“认识四边形”教学反思

胡家学校 孙立鑫

2024多边形的面积课件(汇集6篇)


栏目小编已经根据您的需求为您整理出以下相关信息:“多边形的面积课件”。教案和课件是老师们必不可少的工具,因此在编写教案和制作课件时,老师们需要花费一些时间。然而,在编写的同时,需要充分展示每个知识点的教学过程。分享是一种美德,将这些分享给朋友更加有品质的体现!

多边形的面积课件【篇1】

【教学内容】:

课本79页到81页的内容

【教学目标】:

1、知识与能力目标:使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积.

2、过程与方法:通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力.

3、情感态度价值观:通过解决问题,使学生体会所学知识在生活中的应用,增强学生学好数学的兴趣和意识。

【教学重点】:

理解公式并正确计算平行四边形的面积.

【教学难点】:

通过转化,理解平行四边形面积公式的推导过程.

【教具】:

多媒体课件

【学具】:

每个学生准备一个平行四边形纸片、剪刀。

【教学过程】:

一、复习铺垫。

同学们这节课我们来学习第五单元的内容《多边形面积的计算》,这节课我们先来研究平行四边形的面积。

现在大家来看这幅图,你在图中可以找到什么我们以前认识的图形呢?

指名回答。

同学们长方形正方形的面积我们都会计算了,这节课开始我们来学习平行四边形的面积计算。

【设计意图:通过主题图让学生知道本单元的所有内容以及本节课要学习的内容,明确学习目的。】

二、探索新知。

1、在学校门口有两个花坛,一个是长方形的一个是平行四边形的,同学们这两个花坛哪个的面积大一些呢?

我们可以用数方格的方法。

同学们可以以小组为单位进行,在数的过程中要注意如果不满一格的我们就当半格数,数完后还要把图下面的表格填好。

把你们小组数出来的结果和大家一起共同分享一下。

根据刚才填的内容,观察表中的数据,你发现了什么呢?

(平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,而且它们的面积也相等)

【设计意图:通过让学生动手数方格以及观察表中的结果来初步了解长方形面积与平行四边形面积以及它们的长宽与底高之间的关系。】

三、小组合作,探究方法。

非常好!刚才我们通过数方格知道长方形的面积与平行四边形的面积的关系。下面我们通过小组合作的方式来找一找平行四边形和长方形的关系是怎样的。

同学们能不能利用手上的平行四边形把它转化成我们学过的图形呢?(可以,可转化成长方形或正方形)

下面大家分小组来进行操作,看你们组能不能用多种方法来进行转化。在做的过程中大家要注意平行四边形的大小不能有变化的。

学生根据小组合作的结果在平台上进行展示。(可能会有不同的方法展示出来的)

同学们,从刚才大家的展示可以看出,一个平行四边形可以转化成长方形或正方形,那它们是什么关系呢?(演示)

由刚才的演示我们可以得出,长方形的长等于平行四边形的底,长方形的宽等于平行四边形的高,长方形的面积等开平行四边形的面积。(板书)

由些我们可以得出:

平行四的面积=底高

用字母表示是:

S=ah

小结:同学们由些我们可以知道,要求一个平行四边形的面积,我们必须要知道它的底和高。

【设计意图:通过在小组合作进行操作、探究,理解平行四边形和转化后的长方形之间的关系,从而得出平行四边形的面积计算的方法。】

四、实际运用

同学们我们现在可以有办法知道学校门口的两个花坛的面积哪个大了吧?

我们不仅可以用数方格的方式,也可以用计算的方法来知道它们的面积,以后我们主要是通过计算来得到平行四边形的面积的。

【设计意图:通过实际运用,使学生明确解决平行四边形面积的方法和格式,让学生把生活与数学联系起来。】

五、巩固练习。

1、82页第1题。

2、如右图

【设计意图:通过练习,找出存在问题,加以纠正并解决问题。让学生进一步掌握平行四边形面积的计算,并能利用学习到的知识解决实际的问题。】

六、总结:这一节课我们学习了什么?你学会了什么?

板书设计:

平行四边形的面积计算

长方形的面积=长宽

平行四边形的面积=底高

S=ah

【教学内容】:

人教版义务教育课程标准实验教材数学人教版小学数学五年级上册82~83页

【教学目标】:

一、知识与技能:

1、巩固平行四边形的面积计算公式,能比较熟练地运用平行四边形面积公式解答有关实际问题。

2、引导学生养成良好的身体习惯。

3、培养学生灵活运用掌握的知识解决问题的能力。

二、过程与方法:

经历运用平行四边形的面积计算公式解决实际问题的过程,体会数学与现实生活的密切联系。

三、情感态度与价值观:

感受数学知识的实用价值,激发学习数学知识的兴趣。

【教学重、难点】

会灵活运用所学知识解答有关平行四边形的实际问题。

【教具准备】:课件、三角尺。

【学具准备】:三角尺。

【教学过程】:

一、复习引入。

1、计算平行四边形的面积有哪些方法?

2、平行四边形的面积计算公式是怎样推导出来的?

教师结合学生的回答板书平行四边形的面积计算公式:S=ah

3、引入练习:今天这节课,我们就要用上节课学习的知识来解决一些实际问题。

【设计意图:通过复习,让学生对有关知识进行梳理回顾。】

二、指导练习。

教材练习十五第2-7题。

1、课件出示第2题

这道练习要求学生自己想办法求出平行四边形的面积,有一定的探索性。学生审题后同桌商量要求平行四边形的面积需要知道什么信息?指导学生先在课本上画出平行四边形一边上的高,再量出底和对应高的长度,注意引导学生可以以不同的边作底来求出面积。最后应用公式进行计算,同桌合作完成,集体交流。

2、课件出示第3题

这个平行四边形的高是多少?

组织学生在小组中议一议,使学生明确,已知平行四边形的面积和底,求高学生可以依据乘除法的互逆关系学会灵活运用公式或列方程解答。独立完成,然后同学自己点评。

板书:287=4(m)

或解:设这个平行四边形的高是x米。

7x=28

7x7=287

X=4

3、练习十五第4题

这道练习要进行面积单位的换算和除法计算。

(1)组织学生讨论题意。

组织学生在小组中合作探究。

(2)学生独立完成。

(3)交流做法和结果,强调注意面积单位的变化。

4、练习十五第5题

这道练习是让学生认识等地等高的平行四边形的面积相等。

(1)引导学生讨论它们的面积相等吗?并说明理由。

(2)学生得出它们的面积相等的结论后,再让学生计算它们的面积验证刚才的结论。

5、练习十五第6题

第六题与第五题道理相同

组织同学小组讨论:正方形与平行四边形有什么关系?引导学生明确算平行四边形面积就是算正方形面积。完成后小组汇报结果。

6、练习十五第7题

(1)组织学生以小组为单位做实物学具实验。

实验过程要求学生观察、讨论什么不变什么变?

(2)进一步讨论面积怎样变化?什么情况下面积最大?小组汇报集体评析。

【设计意图:通过这几道练习,让学生体会到生活中处处有数学,所学的数学知识跟实际生活有紧密联系,掌握数学知识能解决生活中许许多多实际问题。】

三、拓展练习。

8、练习十五第8题

学生小组讨论A、B是大平行四边形上下两边的中点,可以得到什么信息?它们的高之间有什么关系?然后邀请一些愿意出来为大家分析的同学上讲台上说说他如何解决这个问题。最后老师归纳解答方法。对分析精彩的同学给予肯定和表扬。

【设计意图:通过拓展练习,培养学生的逻辑思维和刻苦钻研自觉探求精神。】

四、课堂总结。

今天这节课的学习,我们进行了许多有关平行四边形面积知识的练习,你有哪些收获?正确解决平行四边形有关知识你认为要做到什么?注意什么?

组织学生说一说,相互交流。

【设计意图:通过课堂总结,对本节课有关的知识进行归纳整理,培养学生善于总结的好习惯。】

板书设计:

平行四边形的面积练习

S=ah

287=4(m)

或解:设这个平行四边形的高是x米。

7x=28

7x7=287

x=4

多边形的面积课件【篇2】

教学内容:(机动1课时)

1.平行四边形面积的计算(2课时)

2.三角形面积的计算(2课时)

3.梯形面积的计算(3课时)

4.实际测量(1课时)

5.组合图形的面积(1课时)

6.整理和复习(2课时)

教学要求:

1.使学生在理解的基础上掌握平行四边形、三角形和梯形的面积计算公式,能够计算它的面积。

2.使学生初步学会使用简单的测量工具测定直线和沿着直线测量指定的距离;了解步测和目测的方法,能够计算常见的规则形状的土地面积。

教学重点:

1.引导学生运用转化的方法;在动手操作的基础上掌握三角形、平行四边形和梯形面积的计算公式;能正确地应用各种图形面积的计算公式,求它们的面积和解决有关面积的实际问题。

2.使学生认识常用的测量工具及其用途;掌握测定直线和沿直线测量指定距离的步骤和方法;初步学会测定直线和沿着直线测量指定的距离;了解步测和目测的方法,初步学会步测和目测。

3.使学生能够正确计算常见的规则形状的土地面积,并会解决有关土地面积的实际问题。

教学难点:

1.使学生知道三角形、平行四边形和梯形面积公式的推导过程;掌握各图形面积的计算公式并能灵活地应用它们解决有关面积的实际问题。

2.使学生初步掌握用简单的测量工具测定直线和沿着直线,测量指定距离的方法。

多边形的面积课件【篇3】

复习要求:使学生在理解的基础上进一步掌握平行四边形、三角形和梯形面积的计算公式,能够计算它们的面积。

复习重点:熟悉各图形面积公式的推导过程,加深对公式的理解。教具准备:平行四边形、两个完全一样的三角形和梯形、剪刀。

教学过程:

一、基本练习

口算(三)。

0.10.024.20.1990.35

120.31.250.80.50.90.01

1.50.4161.63.5+3.53

64.32160.050.81.233

0.651.028.82.22.42.5

4.23.57.20.3+2.80.3

2.870.7(1.5+0.25)4

6.40.2+3.60.2

二、复习指导

1.复习平行四边形、三角形、梯形面积公式的推导过程。

⑴请大家回忆一下:平行四边形、三角形、梯形面积的计算公式是怎样经过平移、旋转等方法转化成我们已经学过的图形,从而推导出它们的面积计算公式的。

⑵根据学生的回答,投影出示每个公式的推导过程。如图:

2.生独立做整理和复习的第1题。集体订正时让学生讲一讲为什么三角形和梯形的面积公式中要2?

三、课堂练习

1.整理和复习的第2题。

学生独立计算。指6名学生板演,集体订正

2.练习二十第1题。

学生独立计算并做在课本上,集体订正。

3.整理和复习的第3题。

首先让学生分组讨论,发表各自的看法,然后教师适当举例说明平行四边形的面积跟它的底边和高的关系。当高一定时,底边越长它的面积越大。而三角形的面积是与它等底等高的平行四边形面积的一半。

四、作业

练习二十第2、3、4题。

学有余力的同学可做第10题。

多边形的面积课件【篇4】

第一课时 平行四边形面积

教学反思:

第三课时 三角形面积的应用

教学内容:

冀教版小学数学五年级上册第60、61页三角形面积的应用。

教学提示:

学生已掌握了三角形面积的计算公式,在此基础上引导学生把计算结果同实际的需要联系起来,培养数学应用意识和解决实际问题的能力。

教学目标:

1、知识与技能:结合具体情境,经历综合应用知识解决实际问题的过程。

2、过程与方法:通过解决与三角形面积有关的简单问题,获得综合应用所学知识解决实际问题的经验和方法。

3、情感态度与价值观:愿意对数学问题进行讨论,感受数学运算的合理性与结果运用的现实性,培养数学应用意识。

重点、难点:

教学重难点:会应用三角形的面积计算公式解决一些简单的实际问题。

教学准备:

多媒体,图形。

教学过程:

一、复习导入

同学们,我们已经学习了哪几种平面图形的面积?

谁能说一说怎样求他们的面积?(学生自愿回答)

【设计意图:让学生复习长方形、正方形、平行四边形、三角形的面积公式,为下面的学习打下伏笔。】

二、探索新知

1、出示例题:有两块白布,用它们做医院包扎使用的三角巾(不可拼接),第一块白布:长135分米,宽9分米。第二块白布:长140分米,宽10分米。

9d

2、提出问题。

第一块白布可做多少块这样的三角巾呢?第二块白布可做多少块这样的三角巾呢?请同学试着用自己的方法算一算。

3、解决问题。

学生试算,教师巡视。了解学生计算的方法。

师:学生汇报计算的结果。

生:我先算第一块白布和一块三角巾的面积,再计算第一块白布可做多少块三角巾。

135×9=1215(平方分米)

9×9÷2=40.5(平方分米)

1215÷40.5=30(块)

生:我列成了一个综合算式

(135×9)÷(9×9÷2)

生:边长是9分米的正方形白布可以做2块三角巾,那么第一块白布可做多少块三角巾,就用

135÷9×2=30(块)

【设计意图:通过让学生自己尝试解决问题,经历成功与失败,培养学生克服困难的精神和勇气。】

师:同学们的做法很好,希望大家在做题的时候用不同的方法解决问题,提高自己的思维能力。

师:哪个组再汇报一下第二个问题的解决方法。

生:我们组用“总面积÷每块三角巾的面积”来做。

白布面积:140×10=1400(平方分米)

三角巾的面积:9×9÷2=40.5(平方分米)

可以做多少块三角巾:1400÷40.5≈34(块)

师:能做出34块吗?大家画图试一试。

学生画图,发现问题,小组讨论

师:同学们通过画图,发现了什么问题?

生:第二块白布的长、宽虽然比第一块长5分米、宽1分米,题中要求“不可拼接”,所以不能做出34块,只能用第2种方法,做30块。

生:先算白布长可以做多少个边长9分米的正方形。

140÷9=15(个)……5(分米) 余数5分米是多余的布料,不能做一个三角巾。

再算白布宽可以做多少个边长9分米的正方形。

10÷9=1(个)……1(分米) 余数1分米是多余的布料,不能做一个三角巾。

最后算可以做多少块三角巾。

15×2=30(块)

师总结:当长方形的长和宽不是三角形的底和高的整数倍时,一般不能应用“总面积÷每块三角巾的面积”来解决问题。

【设计意图:在具体情境中,发展学生的空间观念,考察学生能否创造性运用已有知识。结合画图,引导学生把计算的结果同实际的需要联系起来,培养数学的应用意识和解决问题的能力。因此否定第一种算法、】

三、巩固新知

1、判断题

(1) 两个面积相等的三角形可以拼成平行四边形行( )

(2) 等底等高的三角形面积相等( )

(3) 三角形的面积等于平行四边形面积的一半( )

(4)三角形面积的大小与它的底和高有关,与它的形状和位置无关。( )

2、一块广告牌是三角形,底是12.5米,高6.4米。如果要给广告牌刷漆(只刷一面),每平方米用油漆0.4千克,刷这个广告牌需要油漆多少千克?

3、教材第61页练一练1题。

答案:1、×、√、×、√ 2、16千克 、 3、0.48平方米,72元

【设计意图:练习分层次设计,主要是巩固、熟练公式,解决实际问题是让学生感知生活化的数学。】

四、达标反馈

1、大白菜地的形状是三角形,底80米,高60米,如果每棵大白菜占0.2平方米,这地可种大白菜多少棵?

2、明明的房间是一个长4米、宽3米的长方形。用直角边分别是4分米和3分米这样的直角三角形地砖铺地,至少需要多少块?

3、教材第61页2-3题。

答案:1、80×60÷2=2400(平方米) 2400÷0.2=12000(棵)

2、4米=40分米 ,3米=30分米 ,

40×30=1200(平方分米),4×3=12(平方分米),1200÷12=100(块)

3、教材2、5×4.2÷2=10.5(平方米),39×11=429(千克)

教材3、421≈400,58≈60,400×60÷2=12000(平方米)

五、课堂小结

师:通过今天的学习,你学会了那些知识?

生:我知道:在实际问题中,三角形的底和高确定后,三角形的'面积也就确定了。

生:在解决问题时,根据实际情况确定方法。如例题的第二个问题就要考虑实际问题选择方法。当长方形的长和宽不是三角形的底和高的整数倍时,一般不能应用“总面积÷每块三角巾的面积”来解决问题。

六、布置作业

1、教材第61页4----6题。

2、如图一个交通标志牌的面积是36平方分米,它的高是多少分米?

多边形的面积课件【篇5】

教学内容:

1、平行四边形面积的计算(第12-14页)

2、三角形面积的计算(第15-18页)

3、梯形面积的计算(第19-21页)

4、实践活动:校园的绿化面积(第26-27页)

教材分析:

教学面积计算时,不仅教会学生面积计算的方法,更重要的是通过教学培养学生的能力。一是培养学生动手操作的能力,通过数方格、图形割补、拼、摆等小系列的操作,发展学生的空间观念。二是培养学生转化矛盾,探索规律的能力。教学中,要启发学生设法把所研究的图形转化成已会计算的图形,还要引导学生主动探索所研究的图形与已学过的图形之间的联系,从而找到计算方法,这样学生的印象深刻,思维也得到发展。

教学目标:

1、使学生通过剪拼、平移、旋转等方法,探索并掌握三角形、平行四边形和梯形的面积公式,能正确计算它们的面积。

2、使学生通过列表、画图等策略,整理平面图形的面积公式,加深对各种图形特征及其面积计算公式之间内在联系的认识。

3、使学生经历操作、观察、填表、讨论、分析、归纳等数学活动过程,体会等积变形、转化等数学思想,发展空间观念,发展初步的推理能力。

4、使学生在操作、思考的过程中,提高对空间与图形内容的学习兴趣,逐步形成积极的数学情感。

教学重点:平行四边形、三角形、梯形的面积计算公式

教学难点:理解三种图形面积公式的推导过程,运用公式解决面积的计算问题。

课时安排:9课时

第一课时:平行四边形面积的计算

教学内容:平行四边形面积的计算

教学目标:

1、在学生理解的基础上掌握平行四边形面积计算公式,能正确地计算平行四边形的面积。

2、使学生通过操作和对图形的观察、比较,发展学生的空间观念,使学生初步知道转化的思考方法在研究平行四边形面积时的运用。

3、培养学生的分析、综合、抽象、概括和解决实际问题的能力。

教学重点:理解并掌握平行四边形的面积公式

教学难点:理解平行四边形面积公式的推导过程

教学过程:

一、复习导入:

1、说出学过的平面图形。

2、在这些图形中,哪些图形的面积你会求?

二、探究新知:

1、教学例1:

(1)出示例1中的第1组图

要求:下面的两个图形面积是否相等?在小组里说一说你准备怎样比较这两个图形的面积。(学生分组活动后组织交流)

(2)出示例1中的第2组图

要求:不用刚才的方法还能比较这两个图形的大小吗?(学生交流,教师适当强调转化的方法。)

(3)揭示课题:

师:今天我们运用已学过有关知识运用转化的数学思想来研究新图形的面积计算公式。今天我们来研究平行四边形面积的计算。(板书课题)

2、教学例2:

(1)出示一个平行四边形

师:你能想办法把这个平行四边形转化成学过的图形吗?

(2)学生操作,教师巡视指导。

(3)学生交流操作情况

第一种:①沿着平行四边形的高剪下左边的直角三角形。

②把这个三角形向右平移。

③到斜边重合。

第二种:①沿着平行四边形的任意一条高将其剪为两个梯形。

②把左侧的梯形向右平移。

③道斜边重合。

(4)教室用课件进行演示并小结。

师:沿着平行四边形的任意一条稿剪开,再通过平移,都可以把平行四边形转化成一个长方形。

(5)小组讨论:

①转化后长方形的面积与原平行四边形面积相等吗?

②长方形的长与平行四边形的底有什么关系?

③长方形的宽与平行四边形的高有什么关系?

(6)学生总结,形成下面的板书:

长方形的面积=长X宽

平行四边形的面积=底X高

3、教学例3:

(1)提问:是不是任意一个平行四边形都能转化成长方形?都能推导出平行四边形的面积公式呢?请大家从教科书第123页上任选一个平行四边形剪下来,先把它转化成长方形,再求出面积并填写下表。

转化后的长方形平行四边形

长(cm)宽(cm)面积(cm)底(cm)高(cm)面积(cm)

(2)学生操作,反馈交流。

(3)用字母表示面公式:S=ah(板书)

三、巩固练习:

1、指导完成试一试:明确应用公式求平行四边形的面积一般要有两个条件,即底和高。

2、指导完成练一练:强调底和高的对应关系。

四、总结:

师:通过今天的学习有哪些收获?

板书设计:平行四边形面积的计算

转化

已学过的图形新图形

割补、剪拼

因为长方形的面积=长宽

所以平行四边形的面积=底高

课后札记:

多边形的面积课件【篇6】

本单元教学平行四边形、三角形和梯形的面积计算,这是在学生认识了这些图形的特征,掌握了面积的意义和长方形面积计算公式的基础上安排的。全单元内容在编排上有四个特点。

第一,先教学平行四边形的面积公式,然后以它为基础教学三角形、梯形的面积公式。因为把三角形、梯形转化成平行四边形比较化成长方形简便,从平行四边形面积公式推理出三角形、梯形的面积公式比较容易。

第二,加强练习,突出知识的实际应用。为了使学生掌握平面图形的面积计算方法,全单元安排了三个练习,分别巩固平行四边形、三角形、梯形的面积公式,并在简单的情境中应用这些公式解决实际问题。

第三,设计了全单元内容的整理与练习,除了知识的巩固性练习和应用性练习外,突出了对知识的整理和结构的建立,并引导学生开展自我学习评价,小结自己在知识与技能的掌握方面、学习活动的开展方面、习惯与态度等情感方面的表现与收获,力求把促进学生全面、持续、和谐的发展落到教学的实处。

第四,安排了一次实践活动。在本单元结束时,利用已经掌握的五种平面图形的面积公式,通过割、补等操作活动,对图形进行分解与组合,计算稍复杂的不规则图形的面积,从而提升对常用面积公式的掌握水平。

你知道吗介绍了我国古代把一个三角形转化成长方形,从而推导三角形面积计算方法的历史记载。不仅弘扬中华民族的文明历史,还让学生体会转化策略的具体应用是多样而灵活的。在此基础上,编排了第25页的思考题,让有兴趣的学生学习使用。

1.组织学生动手操作、合作交流,经历探索面积计算公式的过程。

教材希望学生通过探索,理解并掌握三角形等图形的面积公式。因为这些图形的面积计算的教学价值,不只是知道几个公式和进行求积计算,更在于通过这些内容的教学发展学生的形象思维和空间观念,培养实践能力和创新精神,积极参与数学学习活动的热情和信心。

研究并推导三角形等平面图形面积公式的途径是多样的,教材选择了把平行四边形割补成长方形、把两个完全相同的三角形(梯形)拼成平行四边形等方法。这些方法与思路比较贴近学生已有的数学活动能力和思维发展水平,易于操作,适宜大多数学生应用。

教材通过引导方向、提供条件、安排交流、组织思维这样的线索支持和帮助学生探索。

(1)创设启动学生探索的情境。

研究新的数学问题,需要明确的方向和清晰的思路,这一点在教学中尤为重要。

在教学平行四边形面积时,第12页的两道例题起帮助学生确立研究思路的作用。例1通过每组的两个图形面积相等吗唤醒把图形等积变换的思想方法一个复杂的图形可以转化成面积相等的、比较简单的图形,这是研究平行四边形面积计算的策略。例2把一个平行四边形转化成长方形,为学生明确了探索活动的思路和方法。沿着平行四边形的一条高把它剪成两部分,是实现图形有效转化的关键。为此,教材一方面把平行四边形置于方格纸上,便于学生沿着高剪。另一方面提出它们都是沿着什么剪的这个问题,引导学生注意自己的剪法,交流各人的剪法,体会沿着高剪的必要性与合理性。

在教学三角形面积时,第15页的例4用图呈现了一个三角形的面积是它所在的平行四边形面积的一半这个十分重要的数量关系。学生可以用数方格的方法,从每个三角形的面积各是几个小方格,推出它的面积是多少平方厘米。也可以先通过底高算出每个平行四边形的面积,再除以2算出每个三角形的面积。两种方法结果相同,印证了两种方法都是正确的。而后一种方法比前一种方法方便,避免了数方格时的一些麻烦。由此产生研究三角形面积计算的方向和思路:能否从平行四边形面积算出三角形的面积

(2)为学生提供操作的物质条件和方法指导。

研究平行四边形面积计算的问题,要把平行四边形剪拼成长方形;研究三角形面积计算,要把两个相同的三角形拼成一个平行四边形。这些研究活动都在相应的图形上进行操作,教材第127页有许多平行四边形和三角形,第129页有许多梯形,为学生开展操作活动提供需要的图形。

除了提供操作的图形,教材还在以下三个方面对操作活动给予支持:一是告诉学生到哪里去选取操作的材料。第13页例3和第15页例5都清楚地指出从第127页选一个平行四边形(或三角形)剪下来,第19页例6的操作材料是方格纸上的梯形。二是指导学生怎样操作。在三道例题中分别有把平行四边形转化成长方形看看与(例题中)哪一个三角形可以拼成平行四边形,拼一拼看看哪两个梯形能拼成平行四边形,拼一拼。三是指出通过操作应初步知道些什么。如通过长方形的面积求出平行四边形的面积;先求出平行四边形面积,再求出每个三角形的面积;先求出平行四边形面积,再求出每个梯形的面积。教材希望这些方法指导,使操作活动有序、有效地进行,为进一步的数学思考积累感性材料。

(3)在个体操作的基础上安排合作学习。

在三道研究图形面积计算公式的例题中,每个学生都只进行了一次图形的割补或移拼活动。同一小组的学生,在第123页里选择了不同的平行四边形和三角形,因此具有相互交流的需要与可能。通过交流,学生能知道,任何形状的平行四边形都可以转化成长方形,只要是完全相同的两个三角形都可以拼成一个平行四边形。这样,他们对图形变换的认识不再是个案的体会,而是对图形本质联系的体验。这对形成图形的面积公式是十分重要的一步,也体现了数学学习的严谨性与数学结论的确定性。

在每道例题中都设计了一张表格,这是在交流后每名学生都要填写的。表格的内容都是两部分:一部分是转化后的图形的有关数据,如转化成的长方形的长、宽与面积,拼成的平行四边形的底、高与面积;另一部分是转化前的图形的有关数据,即原来平行四边形的底、高与面积,原来一个三角形(梯形)的底、高与面积。把这两部分内容设计在同一张表格里,能引导学生从数量的角度,体会图形转化前后在长度与面积上的对应联系。表格里先填转化成的图形的数据,后填转化前的图形的数据,出于两点原因:一是学生通过操作,已经实现了图形的转化,新图形的边的长度可以用尺量得,面积能够算得,完成表格的左半部分比较容易。二是原来图形的面积是依据图形的形状变了、大小不变推导出来的,没有转化后的图形的面积就得不到原来图形的面积。至于原来图形的底、高的长度,学生有条件通过推理得到。在填写表格右半部分时,学生对转化前后两个图形的联系有所理解。

(4)组织推理,建立数学模型。

在教学面积公式的三道例题中,都设计了三个讨论题,这些讨论题的任务是组织起面积公式的推理活动。其中前两个讨论题是关于转化前后两个图形的比较研究,归纳出两者之间的内在联系,包括面积之间的联系以及线段间的对应联系。这些联系,学生在操作活动中已有初步感知,又通过填写表格有了比较清楚的体会,通过讨论,可以把具体现象上升为理性认识。第三个讨论题是从转化后图形的面积计算得出原来图形的面积计算,是对已有的面积公式进行等量替换得出新的面积公式。教材里没有写出这样的替换,把它留给学生进行。学生从中不仅认识了新的面积公式,而且在数学思考,特别是开展推理活动方面,将得到一次很好的锻炼。本单元教学的三个面积公式,既用文字表达,也用字母表达,都是具有普遍规律和应用价值的数学模型。公式的得出是建模的过程,只要学生经历了探索公式的全过程,一定能理解和掌握这些公式。

2.在练习中加强对面积公式的体验。

本单元结合面积公式的练习是比较充分的,配合每个面积公式各安排了一道试一试、少量的练一练以及一个练习。试一试是学生首次应用新学的面积公式解决简单的实际问题,在练一练和练习中一般都有三方面的内容,一是加强对面积公式的理解,突出公式中最关键的成分,二是应用公式求图形的面积,三是解决与面积计算有关的实际问题。这里对第一方面的内容作一些说明。

教材十分重视学生对面积公式的理解,在得出面积公式以后,仍然给学生许多机会,让他们的体会逐步深刻。

第14页第1题在方格纸上画两个形状不同的平行四边形,可以有两种思路。一种是画出面积为15平方厘米的平行四边形(因为长方形的面积是15平方厘米),这样的平行四边形可以是底5厘米、高3厘米,底3厘米、高5厘米应用这种思路能更熟悉平行四边形的面积公式。另一种是画出底5厘米、高3厘米而形状不同的平行四边形(因为长方形长5厘米、宽3厘米),这种思路能更好地认识平行四边形与相应长方形的联系,又一次体会这两种图形面积公式的关系。

第14页第5题拉动细木条钉成的长方形框,它的周长始终不变,面积变得越来越小。原因是图形变了,先是长方形变成平行四边形,再是平行四边形的高越来越短。学生从中区分平行四边形的边与高,体会到它的底虽然不变,由于高变小了,面积也小了。

第16页练一练、练习三第1题都是两个完全一样的三角形拼成一个平行四边形或一个平行四边形(长方形)分成两个一样的三角形,如果已知一个三角形的面积能求平行四边形的面积或已知平行四边形(长方形)的面积能求一个三角形的面积。这些题突出了等底等高的平行四边形与三角形面积的关系,能减少学生求三角形面积忘记除以2的错误。练习三第10题使学生进一步体会平行四边形与三角形的关系,只要它们等底等高,无论三角形在平行四边形的哪里,它的面积总是平行四边形的一半。

第17页第5题判断方格纸上哪几个三角形的面积是平行四边形的一半。其中最左边的那个三角形与平行四边形的底都是3、高都是4;最右边的那个三角形刚巧是底4、高3。平行四边形的面积是34,这两个三角形的面积都是342。这样,学生不仅作出了判断,而且对三角形面积公式的理解更灵活了。

第17页第6题在方格纸上画面积是9平方厘米的三角形,也有两种思路。一种是根据底高2=9,假设底是2厘米,则高是9厘米;假设底是3厘米,则高是6厘米另一种思路是先画出面积是18平方厘米的平行四边形(如29、36等),再把平行四边形分成两个相同的三角形,从中选取一个。两种思路都能加深学生对三角形面积公式的体验。

第20页练一练第1题,练习四第1、2题的设计都与前面相似,不再重述。

3.整理与练习以及实践活动《校园的绿化面积》的编写,充分考虑了学生学习的需要,努力提高他们的学习水平。

小学高年级数学,教学的内容多了,可应用的范围广了。因此,及时整理学到的知识,经常调整认知结构;回顾学习过程,积累继续学习的资源;联系实际,在日常生活中应用知识都是学生的学习需要。教材编写全单元的整理与练习,安排实践活动是从学生的实际需要考虑,满足他们的需要,培养学习数学的能力。

先分析整理与练习。回顾与整理已经学过的面积计算公式,包括本单元教学的三个公式以及三年级(下册)教学的长方形、正方形的面积公式。这个栏目在编写上有两个特点:一是鼓励学生自己整理,在回忆知识的时候,用适合自己的形式把全部知识理一理。教材中呈现了两种整理形式,即列表整理和画图整理,前者理出了有什么知识、是什么知识,后者理出了面积公式间的关系。教学时要从学生的实际能力出发,对有条件的学生,应鼓励他们自己整理,并加强交流,体会整理方法是多样的,各种整理形式都有其特点。对有困难的学生,可以先看看教材中的整理,然后选一种形式自己也来理一理。二是突出对学习过程的回顾与学习策略的提炼。平行四边形、三角形和梯形面积计算公式的推导过程有什么相同的地方这个问题引导学生回顾学习过程,通过寻找相同的地方提炼转化策略,都是把新的图形转化成已能求面积的图形,都是利用已有的面积公式推出新的面积公式。转化策略支持了本单元中对面积计算公式的探索,还能广泛应用于其他数学知识的学习和数学问题的解决。练习与应用栏目有三个编写特点:一是通过第1题、第4题的判断与画图,继续加强对各个面积公式的理解以及公式之间联系的体验,如第1题里的四个图形的底相等、高也相等,长方形与平行四边形面积相等,三角形、梯形的面积都是平行四边形、长方形的一半。所以三角形、梯形的面积公式里都有2。二是以练习平行四边形、三角形、梯形的面积计算为主,带着练习长方形、正方形的面积计算,帮助学生全面地掌握知识。三是在稍复杂的情境中解决与求面积有关的实际问题,如第3、7、8、9题。这些题比前面练习中的实际问题复杂,但更贴近实际生活,对学生更有吸引力和挑战性。探索与实践栏目引导学生走出书本、走出教室、走进生活,寻找并解决与面积知识有关的实际问题。栏目里设计的两道题都富有教育、教学的价值。第1题求一堆钢管的根数,学生最容易想到的方法是把各层的根数连加,还能应用加法运算律使连加计算简便。教材引导学生从梯形面积的计算方法的角度体会自己的算法,进一步理解梯形的面积公式,获得解决这个实际问题的技巧。第2题安排学生自行开展小型的实践活动,把图形的认识、测量长度的方法和计算面积的公式等多方面知识融为一体,对发展学生的数学意识是十分有益的。评价与反思是教材新开辟的教学活动栏目,以这个栏目推动课堂教学评价的改革。教材中的这个栏目,引导学生实事求是地反思自己在学习过程中的表现和学习的收获,对自己的学习作出主动、客观、有积极意义的评价,从而促进更好地发展。这个栏目里的内容有两个显著的特点:第一,知识与技能的习得是评价内容之一,但不是惟一。把参与学习活动的态度、能力和对数学活动的体会作为评价的重要方面,努力体现新课程倡导的动手实践、自主探索、合作交流等学习方式。通过评价,使学生知道应该以什么样的态度学习数学。第二,尽力调动学生开展评价的积极性,以自我评价为主,配置有趣的评价表达方式,由学生根据自己的表现,能得几颗星,就把几颗星涂上颜色,从而清楚自己在学习时的表现以及以后应该怎样做。

再分析实践活动《校园的绿化面积》。编排这次实践活动的目的是,进一步丰富学生学习、应用数学知识的思想方法,培养估计、测量等应用能力,发展学生的想像和创新精神。在想想算算里计算稍复杂的图形的面积,这些图形都可以分解成两个基本的图形,它的面积或是两个基本图形的面积之和,或是两个基本图形的面积之差。教材把分解与组合作为一种思想方法,通过计算不规则图形的面积凸现出来。呈现华风小学校园里的草坪的平面图,由大卡通提问你准备怎样算在小组里交流,引导教学把重心放在思想方法上。呈现了学生交流的场面,交流的内容也是解决问题的策略。对计算校园里两块花圃的面积,也应该先让学生说说自己的思路。在分别求出各个基本图形的面积时,找到相关的长度数据是教学的难点,如从草坪图分解出来的梯形的底和高,左边花圃图分解成的长方形的宽或长等,这些都需要联系图形的特征通过推理和计算才能得出,应该给学生适当的指点。量量算算在校园里找一块合适的草坪或花圃,先估计,再测量计算面积。合适的意思是,形状为已经学过的图形,并且不太复杂,最好是平行四边形、三角形或梯形的;面积不要过大,也不要过小,便于估计和测量;测量长度方便、安全。学生估计花圃或草坪的面积可能出现两种思路:一种是凭借头脑中对1平方米的表象,直接估计面积大约是多少平方米;另一种是先估计有关的长度大约是多少米,再应用面积公式算出面积大约是多少平方米。两种思路都是可以的。估计面积允许有较大的误差,重要的是估计时的思考。实际测量计算面积所要的长度,由于学生还没有学过小数,花圃、草坪的面积通常以平方米为单位,所以只要量得大约长几米就可以了。对于面积较小的花圃用平方分米作面积单位也是允许的。画画算算里为华风小学设计一个花圃,它的形状、大小都是开放的,学生可以按自己的意愿设计,把自己的个性特点、丰富的想像、创新意识充分地表现出来。在方格纸上进行设计,便于画图,也容易算出面积。

相关推荐

  • 多边形说课稿集锦9篇 作为一名优秀的幼儿园教师,我们的工作任务写说课稿是少不了的,为了让学生在乐趣中学习成长,我们一般会事先准备好说课稿,一份优秀的说课稿可以让上课自己轻松的同时,学生也更好的消化课堂内容。怎么才能将幼儿园说课稿写得全面呢?为此,小编从网络上精心整理了《多边形说课稿集锦9篇》,供有需要的朋友参考借鉴,希望...
    2023-04-28 阅读全文
  • 多边形的面积课件汇集 我们听了一场关于“多边形的面积课件”的演讲让我们思考了很多。老师会对课本中的主要教学内容整理到教案课件中,所以老师写教案可不能随便对待。教案是评估学生学习效果的有效依据。经过阅读本页你的认识会更加全面!...
    2024-10-22 阅读全文
  • 多边形课件(热门五篇) 教案课件是我们老师工作的一部分,相信老师对写教案课件也并不陌生。教案是教学经验的重要积累,教案教案会包含哪些部分?栏目小编为您准备了最新的“多边形课件”相关内容请阅读,我相信这对你有所帮助!...
    2024-09-03 阅读全文
  • 多边形课件(汇总11篇) 俗话说,不打无准备之仗。在幼儿园教师的平时工作生活中,会经常需要提前准备参考资料。资料的意义非常的广泛,可以指需要查到某样东西所需要的素材。有了资料才能更好的在接下来的工作轻装上阵!那么,关于幼师资料你了解哪些内容呢?也许下面的“多边形课件”正合你意!供大家参考借鉴,希望可以帮助到有需要的朋友。人教...
    2023-05-18 阅读全文
  • 多边形内角和课件合集11篇 老师在开学前需要把教案课件准备好,每天老师都需要写自己的教案课件。设计教案需要注重课堂效果的反馈和评估。深入了解“多边形内角和课件”并理解它的背景接下来请阅读,欢迎你阅读与收藏!...
    2023-05-11 阅读全文

作为一名优秀的幼儿园教师,我们的工作任务写说课稿是少不了的,为了让学生在乐趣中学习成长,我们一般会事先准备好说课稿,一份优秀的说课稿可以让上课自己轻松的同时,学生也更好的消化课堂内容。怎么才能将幼儿园说课稿写得全面呢?为此,小编从网络上精心整理了《多边形说课稿集锦9篇》,供有需要的朋友参考借鉴,希望...

2023-04-28 阅读全文

我们听了一场关于“多边形的面积课件”的演讲让我们思考了很多。老师会对课本中的主要教学内容整理到教案课件中,所以老师写教案可不能随便对待。教案是评估学生学习效果的有效依据。经过阅读本页你的认识会更加全面!...

2024-10-22 阅读全文

教案课件是我们老师工作的一部分,相信老师对写教案课件也并不陌生。教案是教学经验的重要积累,教案教案会包含哪些部分?栏目小编为您准备了最新的“多边形课件”相关内容请阅读,我相信这对你有所帮助!...

2024-09-03 阅读全文

俗话说,不打无准备之仗。在幼儿园教师的平时工作生活中,会经常需要提前准备参考资料。资料的意义非常的广泛,可以指需要查到某样东西所需要的素材。有了资料才能更好的在接下来的工作轻装上阵!那么,关于幼师资料你了解哪些内容呢?也许下面的“多边形课件”正合你意!供大家参考借鉴,希望可以帮助到有需要的朋友。人教...

2023-05-18 阅读全文

老师在开学前需要把教案课件准备好,每天老师都需要写自己的教案课件。设计教案需要注重课堂效果的反馈和评估。深入了解“多边形内角和课件”并理解它的背景接下来请阅读,欢迎你阅读与收藏!...

2023-05-11 阅读全文
Baidu
map