五年级数学教案
发布时间:2023-05-19 五年级数学教案五年级数学教案合集6篇。
就新加入学校的教师来说,教案和课件是相当关键的,当然,它们所包含的内容也必须十分详尽。但只有了解学生在课堂上的反应,教师才能够更好地调整自己的教学方式。幼儿教师教育网小编为了您搜集和整理了有关“五年级数学教案”相关资料,希望对您有帮助。感谢您的浏览!
五年级数学教案 篇1
一、教材内容:
人教版小学数学五年级下册44页
二、学情分析
五年级学生已经有了一定的空间想象力、独立思考能力和小组合作交流的能力,学生的动手能力较强,喜欢自己通过动手、动脑去大胆探索问题,可以在活动中发现问题,总结规律。所以在学生已经认识了长方体和正方体的特征后,安排“探索图形”这个综合与实践活动,让学生通过观察实物,小组合作探究大正方体中各种涂色问题,并总结出规律,进一步培养学生的空间想象力和概括推理能力。
三、教学目标
1、借助正方体涂色问题,通过实际操作、演示、想象等活动发现小正方体涂色情况的位置特征和规律。
2、在探索规律的过程中,经历从特殊到一般的归纳过程,获得一些研究数学问题的方法、及分类、 归纳、推理、模型等数学思想和经验。
3、在解决问题的过程中,感受数学的有趣,激发主动探索、勇于实践的精神和实事求是的科学态度。
教学重点:借助正方体涂色问题,通过实际操作、演示、想象等活动发现小正方体涂色情况的位置特征和规律。
教学难点:在探索规律的过程中,经历从特殊到一般的归纳过程,获得一些研究数学问题的方法、及分类、 归纳、推理、模型等数学思想和经验。
四、 教学准备
魔方、正方体教具(教师)、正方体教具(学生)、学生小组探究卡
五、教学过程
一、复习引入
(一)、同学们玩过魔方吗?它是一个什么几何形体?(正方体),正方体有什么特征呢?
学生:有8个顶点、12条长度相等的棱、6个大小相等的面。
教师随机板书正方体的特征。
【设计意图:通过学生熟悉的魔方引入正方体,不仅复习了正方体的特征,为新课的学习做好良好铺垫,也使学生感受到数学来源于生活。】
(二)、出示①②③组图,它们分别是由多少块小正方体组成的吗?
生:图①2×2×2=8(块)
图②3×3×3=27(块)
图③4×4×4=64(块)
师:在它们的表面涂上颜色,那么这些小正方体都会被涂上颜色吗?
生:不是,有的会被涂上颜色,有的不会被涂上颜色。
师:涂色的面数有几种情况?
学生观察分类:3面涂色、两面涂色、一面涂色、没有涂色。
教师随机板书:3面 两面 一面 没有涂色
师:今天我们就一起来探究正方体表面涂色的问题——探究图形
教师板书课题。
二、探究新知
(一)探究三面涂色的问题
师:三面涂色的小正方体分别有多少块呢?
生观察回答:图①有8块、图②有8块、图③有8块。
师:怎么都是8块?分别在哪里?
生:都在大正方体的8个顶点上。
师:那么棱长上有5个、6个或7个小正方体的图形呢?三面涂色的小正方体有多少块?
生:也是8块。
师:这跟什么有关系?
生:跟正方体的顶点有关系,因为有8个顶点,顶点上的小正方体是三面涂色的。
教师随机板书:顶点
(二)探究两面涂色的问题
师:两面涂色的小正方体分别又有多少块呢?是否也存在一定的规律呢?请同学们利用学具四人小组进行探究。
小组合作提示:
1、四人合作,利用学具探究两面涂色的小正方体有多少块?
2、试着将发现的结果用列式的方法表示在小组探究卡的表格中
小组探究
小组汇报
生:一面有4块,6面一共有12块。
师:你是怎么知道的?为什么除以2呢?如果是正方体块数非常多的话,用这种方法还方便吗?还有其他的方法吗?
生:一条棱上去掉三面涂色的2块剩下的一块就是两面涂色的,而正方体有12条棱,一共就有1×12=12块.
师:③号图形两面涂色的有多少块呢?你发现两面涂色的小正方体在哪里?
生:在棱上。一条棱上去掉三面涂色的2块剩下的两块就是两面涂色的,而正方体有12条棱,一共就有2×12=24块.
师:那棱长是5块、6块的呢?怎样列式计算?
生:(5-2)×12=36块 (6-2)×12=48块
师:用字母n表示棱长上的小正方体的块数,怎样表示出两面涂色的小正方体块数?
生:(n-2)×12
师板书:在棱上 (n-2)×12
(三)探究一面涂色的问题
师:一面涂色的小正方体有多少块呢?试着借助刚才的经验进行探究并填表。
小组合作探究
小组汇报(使用希沃软件同屏互传,让孩子边展示列式边解释方法)
生:②号图形一面涂色的小正方体在每个面上,一面有1个一面涂色的,6个面一共就有6块。③号一面有4个一面涂色的,6个面一共就有24块。
师:你是怎么知道一面有1块、4块一面涂色的呢?
生:数的
师:如果正方体的块数非常多的时候呢?你觉得这种方法怎么样?
生:有局限性
师:是的,不具有一般化,并且还需要一定的计算前提。那还有什么更好的办法吗?
生:②号图形一条棱上去掉三面涂色的剩下的一块是一面涂色的这个正方形的棱长数,而这个小正方形的棱长数是(3-2)得到的,6个面就有(3-2)×(3-2)×6=6块。
生:③号图形一条棱上去掉三面涂色的剩下的两块是一面涂色的这个正方形的棱长数,而这个小正方形的棱长数是(4-2)得到的,6个面就有(4-2)×(4-2)×6=24块。
师:看来你们发现了一定的规律,棱长是5块、6块的图形呢怎么计算一面涂色的小正方体块数?
生:(5-2)×(5-2)×6=54块
(6-2)×(6-2)×6=96块
师:用字母怎么表示?
生:(n-2)×(n-2)×6=(n-2)2×6
(四)探究没有涂色的问题
师:没有涂色的小正方体有多少块呢?怎么计算?
生:可以用小正方体的总块数减去三面涂色、两面涂色以及一面涂色的。
师:这也确实是个办法。如果我只想知道没有涂色的块数是不是还需要算出其他的情况呢?是不是有些麻烦?没有涂色的小正方体在哪里呢?
生:在里面
师:有什么办法知道呢?
生:拆开看一看
师用教具给学生演示拆开的过程,观察里面没有涂色的小正方体块数
师:现在你知道有多少块没有涂色了吗?
生:②号图形有一块没有涂色
③号图形有8块没有涂色的
师:可以用算式计算出来吗?结合刚才拆的过程我们再看一看动画演示过程看看你能不能用列式的方法计算出没有涂色的块数。
组织学生观看动画过程。
生:②号图形每条棱上有3块,去掉两块三面涂色的剩下的一块就是中间正方体的棱长数,因此中间没有涂色的小正方体块数(3-2)×(3-2)×(3-2)=1块。
生:③号图形每条棱上有4块,去掉两块三面涂色的剩下的两块就是中间正方体的棱长数,因此中间没有涂色的小正方体块数(4-2)×(4-2)×(4-2)=8块。
师:真棒!你能试试棱长是5、6块的吗?
生:(5-2)×(5-2)×(5-2)=27块
(6-2)×(6-2)×(6-2)=64块
师:用字母怎么表示?
生:(n-2)×(n-2)×(n-2)=(n-2)3
三、知识应用
出示棱长由1000块小正方体拼成的大正方体,请问三面、两面、一面、没有涂色的小正方体分别有多少块?
学生计算汇报
四、课堂小结
通过这节课的探究,你能说说你用什么方法学会了本节课的知识?
五、版书设计
探索图形
顶点上 棱上 面上 中心
正方体的特征:8个顶点 12条棱 6个面
三面 两面 一面 没有涂色
8 (n-2)×12 (n-2)2×6 (n-2)3
五年级数学教案 篇2
教学目标:
1、通过解决问题,进一步理解方程的意义。
2、学会用方程解答简单的应用问题。
重点、难点:
重点:学会解方程
难点:正确列方程
教学步骤:
一、出示课题
1、你对方程是怎样认识的?既然同学们已经理解了方程的意义,下面我们就来应用方程解答简单的应用问题。
二、重点练习:
1、基础题:第2题。
理解和掌握解方程的方法。
2、应用题:第1、3、4、5、6、、9、10、7题
在理解题意的'基础上寻找等量关系,根据关系列方程解决问题。
3、相遇问题:第8题。
练习时,在学生理解题意的基础上,让学生说说估计两人在何处相遇,鼓励学生根据题意寻找等量关系,列方程解决第(2)题。
4、拓展题:第11题。
根据学生实际情况,尝试让学生列方程解决问题。第(2)题,只要学生提出的问题合理,都给予肯定。
三、课堂小结。
教学反思:略
五年级数学教案 篇3
教学目标:
1、通过欣赏与设计图案,使同学进一步熟悉已学过的对称、平移、旋转等现象。
2、欣赏美丽的对称图形,并能自身设计图案。
3、同学感受图形的美,进而培养同学的空间想象能力和审美意识。
重点难点:
1、能利用对称、平移、旋转等方法绘制精美的图案。
2、感受图形的内在美,培养同学的审美情趣。
教学准备:幻灯片、课件。
教学过程:
一、情境导入
利用课件显示课本第7页四幅美丽的图案,配音乐,让同学欣赏。
二、学习新课
(一)图案欣赏:
1、伴着动听的音乐,我们欣赏了这四幅美丽的图案,你有什么感受?
2、让同学尽情发表自身的感受。
(二)说一说:
1、上面每幅图的图案是由哪个图形平移或旋转得到的?
2、上面哪幅图是对称的?先让同学边观察讨论,再进行交流。
三、巩固练习
(一)反馈练习:
完成第8页3题。
1、这个图案我们应该怎样画?
2、仔细观察这几个图案是由哪个图形经过什么变换得到的?
(二)拓展练习:
1、分别利用对称、平移和旋转创作一个图案。
2、 交流并欣赏。说一说好在哪里?
四、全课总结
对称、平移和旋转知识广泛地应用于平面、立体的建筑艺术和几何图像上,而且还涉和到其它领域,希望同学们平时注意观察,都成为杰出的设计师。
五、安排作业:
教材第9页第5题。
板书设计:
欣赏和设计
图案1 图案2
图案3 图案4
对称、平移和旋转知识有广泛的应用。
五年级数学教案 篇4
学习目标
1、在现实情境中了解负数产生的背景,理解正负数及零的意义,掌握正负数表达方法。
2、结合现实情景,体验数学与日常生活的密切联系,激发学生对数学的兴趣
学情分析重点、难点:
在现实情景中理解正负数及零的意义。
易混点、易错点:感受用正数和负数来表示一些相反意义的量
学生认知基础:生活中见到过负数。
时间分配学20讲10练10
教法学法
自主探索法,练习法,讲授法。
教学准备
第一课时
一、自学例1
1、通过查资料了解“℃”和“℉”的含义,并学会看温度计的方法。
2、从图中你能知道些什么?上海的气温和南京比,怎么样?北京的气温和南京比,怎么样?
3、上海和北京的气温一样吗?不一样在哪儿?
4、那你知道在数学上是怎样区分和表示这两个不同的温度的呢?
二、自学例2
1、了解海拔的意义。
2、思考从图上你知道了什么?
3、试着用今天所学的知识来表示这两个地方的海拔高度。
学生活动教师助学课后改进
第一课时
第一板块:学生汇报预习情况。第二板块:根据预习情况,学习例1
(1)交流“℃”和“℉”的含义,说明我国是用“℃”来计量温度的,并指导看温度计的方法。
(2)交流:从图中你能知道些什么?上海的气温和南京比,怎么样?北京的气温和南京比,怎么样?
(3)上海和北京的气温一样吗?不一样在哪儿?
(5)那你知道在数学上是怎样区分和表示这两个不同的温度的呢?(零上4摄氏度记作+4℃或4℃,零下4摄氏度﹣4℃)
第三板块:正数和负数的读、写方法。
根据课本要求,记住读写方法。
学生看温度计,选择合适的卡片表示各地气温。
第三板块:交流学习例2
交流:从图上你知道了什么?
交流:你能用今天所学的知识来表示这两个地方的海拔高度吗?
共同小结:以海平面为基准,比海平面高8844米,通常称为海拔8844.43米,可以计作+8844.43米;比海平面低155米,通常称为海拔负155米,可以计作﹣155米。
学生根据今天所学知识把这些数分类。
正数都大于0,负数都小于0。
先指名读一读,再用正数或负数表示图中数据。
先读一读,再说说这些海拔高度是高于海平面还是低于海平面。
一:教学例1
1.出示例1的三幅分别显示三个城市某一天最低气温的温度计图。
根据学生的预习,共同学习交流认识新知。
(4)上海的气温是零上4摄氏度,北京的气温是零下4摄氏度。以0摄氏度分界,一个在0摄氏度以上,一个在0摄氏度以下。一上一下,正好相反。
2.教学正数和负数的读、写方法。
“+4”读作正四,“+4”的正号也可以省略不写,直接把“+4”写成“4”。“﹣4”读作负四。
3.指导完成“试一试”。
(卡片上分别写有+11℃、﹣11℃、19℃、+19℃、﹣7℃、+7℃)
二:教学例2
1.师:同学们你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。
2.出示例2中珠穆朗玛峰与吐鲁番盆地的海拔高度图。
三:初步归纳正数和负数。
⑴出示+4、﹣4、﹣7、﹣11 、19、+8844.43、﹣155这些数,提出要求:前面,我们用这些数来表示零上和零下的温度以及海平面以上和以下的高度。大家仔细观察这些数,你能将它们分分类吗?
⑵小结:像+4、19、+8844.43这样的数都是正数。像-4、﹣7、﹣11 、-155这样的数都是负数;而0既不是正数,也不是负数。
⑶提问:正数、负数和0比一比,它们的大小关系怎样?
四:练习
做“练一练”1,2题
2.做练习一第1题。
3.做练习一第2题。
4、练习一4、5、6题。
五:作业
练习一第3题。
交流认识新知。
正数和负数的读、写方法。
根据课本要求,记住读写方法。
交流:你能用今天所学的知识来表示这两个地方的海拔高度吗?
正数、负数和0比一比,它们的大小关系怎样?
正数都大于0,负数都小于0。
课后反思
得:
首先,对教材的编排作了重新的审视。在教材编排中,我们可以观察到,在学习负数的过程中,学生更多的是经历“具体情境中的数——解释数的'意义”这样的过程。在教学中我设计了通过观察生活中的盈亏、收支、增减及朝两个相反的方向运动中应用负数进一步理解负数的意义,明白用正负数可以表示一些具有相反意义的量,从而让学生体验负数产生的原因,接着引导学生列举生活中正负数应用的实例。
失:
《认识负数》单元的教学看似简单,教起来似乎觉得轻松,学生学习起来也看似轻松,可在解决实际问题的时候,却会发现有各种各样的问题出现。
由于正负数表示的是相反意义的量,如何帮助学生正确的解决实际生活情境下的正负数问题,这是值得我们在教学中进行思考的问题。由于问题的存在,不得不想一些办法去解决这样的问题。
五年级数学教案 篇5
教学目标:
1、结合具体实例,在观察、讨论、操作的活动中,经历认识简单图形旋转的过程。
2、了解顺时针、逆时针的旋转现象,能在方格纸上将简单的图形旋转90°。
3、在探索图形旋转并用语言描述的过程中,进一步发展空间观念。
教学重难点:
了解顺时针、逆时针的旋转现象,能在方格纸上将简单的图形旋转90°。
课前修改:
教学过程:
一、旋转方向
1、观察喷洒的情境图,说一说看到了什么旋转现象,是怎样旋转的。教师结合钟表上表针的转动介绍顺时针、逆时针转动。
2、拿一把转椅,按不同方向实际转一转,让学生描述旋转方向。
二、旋转90°
1、教师简笔画分步演示喷头顺时针旋转90°的画面,让学生认识并描述旋转了多少度。
2、再次旋转转椅,分别从顺时针、逆时针方向旋转90°,让学生用语言描述转椅是沿怎样的方向旋转的,旋转了多少度。
说一说
1、观察书中的两组图形,了解书中有什么。教师提出“说一说”的问题,给学生独立思考的、判断的时间。
2、交流,重点让学生说一说是怎样判断的,给学生充分表达的机会。
三、图形旋转
1、提出画图的要求,并提示画图时要先确定旋转方向,再考虑旋转90°后的位置。
2、展示画出的图形,交流画的方法。教师介绍先确定两条直角边旋转后的位置,最后连另一条边的方法。
3、让学生看书中画的三角形旋转90°后的图形。
练一练
1、弄清题目要求后,再判断。
2、学生在书中独立完成,教师辅导后进。
3、先引导学生了解图的特点,鼓励学生自己设计图案。
教后反思:
五年级数学教案 篇6
教学要求:
使学生会根据需要,用“四舍五人法”保留一定的小数位数,求出积的近似值。教学重点:用“四舍五人法”截取积是小数的近似值的一般方法。
教学难点:根据题目要求与实际需要,用“四舍五人法”截取积是小数的近似值。
教学用具:投影片若干张。
教学过程:
一、激发:
1、口算。
1.2×0.30.7×0.50.21×0.81.8×0.5
1-0.821.3+0.741.25×80.25×0.4
0.4×0.40.89×10.11×0.680×0.05
2、用“四舍五人法”求出每个小数的近似数。(投影出示)
保留整数
保留一位小数
保留两位小数
2.095
4.307
1.8642
思考并回答:(根据学生的回答填空)
(1)怎样用“四舍五人法”将这些小数保留整数、一位小数或两位小数,取它们的近似值?
(2)按要求,它们的近似值各应是多少?
3、揭题谈话:在实际应用中,小数乘法乘得的积往往不需要保留很多的小数位数,这时可以根据需要,用“四舍五人法”保留一定的小数位数,求出积的近似值。(板书课题:积的近似值)
二、尝试:
谈话引出例题:同学们你们知道什么动物的嗅觉最灵敏吗?(生回答)所以人们常用狗来帮助侦探、看家。那狗的嗅觉到底有多灵呢?我们一起来看一组数据:
1、出示例6:人的嗅觉细胞约有0.049亿个,狗的嗅觉细胞个数是人的45倍,狗约有多少个嗅觉细胞?
2、读题,找出已知所求。
3、生列式,板书:0.049×45
4、生独立计算出结果,指名板演并集体订正。
5、引导学生观察、思考:
(1)积的小数位数这么多!可以根据需要保留一定的小数位数。
(2)保留一位小数,看哪一位?根据什么保留?
(3)横式中的结果应该怎样写?
6、专项练习(根据下面算式填空)
3.4×0.91=3.094
积保留一位小数是()。
积保留两位小数是()。
7、尝试后练习:
▲P.10页做一做1.计算下面各题。
0.8×0.9(得数保留一位小数)
1.7×0.45(得数保留两位小数)
▲判断,并改错.
10.286×0.32=3.29(保留两位小数)3.27×1.5=4.951.78×0.45≈0.80(保留两位小数)
10.2863.272.04
×0.32×1.5×28
2057216351632
30858327408
3.291524.9055712
三、运用
1、P.13页2题
2、两个因数的积保留两位小数的近似值是3.58。准确值可能是下面的哪个数?
3.0593.5783.5743.5833.585
四、体验:
谁来小结一下今天所学的内容?
五、作业:
P.8页1
yjs21.cOm更多小学数学教案编辑推荐
最新小学五年级数学教案1000字合集
做教师最主要的是不说假话。要求学生做到的,自己要先做到。说起教案,教师们肯定会很熟悉。教案是课堂教学活动的依据,那么教案要写哪些内容呢?我们特别为你收集的“最新小学五年级数学教案”,希望能帮助到你,请收藏。
最新小学五年级数学教案 篇1
除数是整数的小数除法(第2课时)
教学内容:使学生进一步理解除数是整数的小数除法的计算方法,进一步学会计算除数是整数的小数除法,掌握计算法则,提高计算能力。
教学重点:会计算除数是整数的小数除法,掌握计算法则。
教学难点:添0及整数部分不够商1的情况。
教学过程:
一.复习铺垫
1.把下面的数改写成三位小数。
4.20.713.563(要求学生说明改写的依据)
2.计算下面各题。
45.689.126
提问:这里除数是整数的小数除法是怎样算的?(出示:按照整数除法的法则除,商的小数点要和被除数的小数点对齐)
3.揭示课题并板书
二.教学新课
1.教学例2。
(1)这道题是怎样的小数除法,你会算吗?
(学生试做,一人板演)
你算到了哪一步?与前一节课的计算有什么不同?
引导学生观察:除到十分位时,余下了多少?是12个几分之一?
谁有办法在12末尾添上一个什么数字,使数的大小不变继续除下去?为什么可以添0?添0后的120又表示什么?(板书)
接着怎样除,请学生把这道题算完。
谁来说一说,例2与以前学的除法计算题有什么不同?怎样继续算下去?
指出:除到被乘数末尾有余数,在余数后面添0继续除。(出示结论)
(2)学生练习66.0832
注意提问十分位上为什么商0,末尾有余数是怎样除的。
2.教学例3。
(1)读题列式。提问:被乘数比除数,谁大谁小?36除以48够不够商1?
说明:在这种情况下,商应该是零点几的小数。个位要写0,表示商是小于1的小数,这与整数除法不同。
提问:怎样才能使被乘数大小不变,继续除下去?
追问:能直接添一个0写成360来除吗?为什么?
说明:36是整数,末尾不能直接添0。要使被乘数大小不变继续除下去,必须在个位6的右下脚先点上小数点,(板书)再在后面添上0,(板书)化成360个十分之一继续除。
现在你能除了吗?学生做在练习本上,一人板演。
请大家用乘法验算。提问:验算结果说明了什么?
提问:例3和前面的计算有什么不同?整数除以整数时,整数部分不够商1怎么办?接下去又要怎样算?
指出:在小数除法里,被乘数如果比除数小,整数部分就不够商1,先要在商的个位上写0。(出示结论)在个位商0后,还要在被乘数的末尾点上小数点,添0继续除。
(2)练习9.121957750
3.归纳法则。
提问:从前一课时例1的学习,到今天的例2例3,你能说一说除数是整数的小数除法计算法则是怎样的吗?
让学生读一读计算法则。
三.组织练习
1.做练习九第6题。
结合提问:第一题个位为什么商0?第二题个位商了0,为什么十分位还要商0?末尾有余数是怎样除的?
2.做练习九第8题。
提问:每组题里被乘数或除数有什么变化?商是怎样变化的?通过这组题的计算,你认为除数是整数的小数除法,按整数除法计算时,要注意那些问题?(商的小数点与被乘数小数点对齐;被乘数比除数小,整数部分不够商1要商0;有余数末尾添0继续除)
四.课堂作业
练习九第5题第7题
最新小学五年级数学教案 篇2
教学内容:(机动3课时左右)
1、小数乘法(9课时左右)
2、小数除法(11课时左右)
3、整理和复习(2课时左右)
教学要求:
1、使学生理解小数乘、除法的意义,掌握计算法则,能够比较熟练地进行小数乘、除法笔算和简单的口算。
2、使学生会用四舍五人法截取积、商是小数的近似值。
3、使学生理解整数乘法运算定律对于小数同样适用,并会运用这些定律进行一些小数的简便计算。
教学重点:
1、使学生掌握乘、除法的计算法则。
2、能正确地进行小数乘、除法的笔算和简单的口算,提高学生的计算能力。
3、能正确应用四舍五入法截取积、商是小数的近似值,并能解决有关的实际问题。
4、会应用所学的运算定律及其性质进行一些小数的简便计算。
教学难点:
1、在理解小数乘、除法的算理和算法的基础上,掌握确定
小数乘法中积的小数点位置和小数除法中商的小数点位置的方法。
2、会把除数是小数的除法转化成除数是整数的除法,并能正确的进行计算。
最新小学五年级数学教案 篇3
设计意图:教学实践告诉我们,教学的成败,学生的学习效果如何,在很大程度上取决于学生的参与程度。教师的全部劳动,归根到底就是为了学生的主动学习。因此,激发学生的参与意识,让学习成为学生发自内心的需要,让课堂成为学生获取知识的乐园是我们每位教师应努力的方向。还有对学生的评价,包罗万象,既有对学习方法的评价,又有对学习情感的评价,也有对自己的鞭策鼓励。这样的评价,教师只需适当点拨、启发,便能让学生在被他人肯定的同时得到极大的满足感,增强学生主动参与探究的自信心,从而把主动探究学习作为自己学习生活中的第一乐趣。这节课我在设计上注重这两点,来设计和展开教学。
教学要求 在知道两数特殊关系的基础上,使学生学会用不同的方法求两个数的最大公约数,培养学生的观察能力。
教学重点 掌握求两个数的最大公约数的方法。
教学难点 正确、熟练地求出两种特殊情况的最大公约数。
教学过程
一、创设情境
1、思考并回答:①什么是公约数,什么是最大公约数?②什么是互质数?质数与互质数有什么区别?(回答后做练习十四的第5题)
2、求30和70的最大公约数?
3、说说下面每组中的两个数有什么关系?
7和21 8和15
二、揭示课题
我们已经学会求两个数的最大公约数,这节课我们继续学习求这两种特殊情况的最大公约数(板书课题)
三、探索研究
1.教学例3
(1)求出下列几组数的最大公约数:7和21 8和15 42和14 17和19
(2)观察结果:通过求这几组数的最大公约数,你发现了什么?
(3)归纳方法:先让学生讲,再指导学生看教材第69页的结论。
(4)尝试练习。
做教材第69页的“做一做”,学生独立做后由学生讲评,集体订正。
四、课堂实践
1.做练习十四的第7题,学生独立观察看哪几组数是第一种特殊情况,哪几组数是第二种特殊情况,再解答出来。
2.做练习十四的第6题,先让学生独立作出判断后再让学生讲明判断的理由。
3.做练习十四的第9题,学生口答集体订正。
五、课堂小结
学生小结今天学习的内容、方法。
六、课堂作业
1、做练习十四的第8、10、11题。
2、有兴趣、有余力的同学可做练习十四的第13*题和思考题。
课后反思:有的数学问题比较复杂,光靠个人的学习,在短时间内达不到好的效果时,教学时,我让学生前后桌组成四人小组,小组中搭配上、中、下三类学生,由一位优等生任组长,组织组内同学讨论如下问题:(1)、一个数的约数与这个数的质因数有什么联系?
(2)、两个数的公约数与这两个数公有的质因数有什么联系?
(3)、怎样求两个数的最大公约数?
我们知道“最大公约数”一课最难理解的就是其算理,我也尝试过多种不同的教学组织形式,但无论是老师讲解还是学生看书,给学生的感觉大多是:太难懂了,算了吧!这时,何不让学生讨论讨论,让他们把自己的想法在组内说说?俗话说:三个臭皮匠顶一个诸葛亮。这样,不仅保证了全班同学的全员参与,使每位同学都有了发表自己见解的机会;而且通过小组之间的交流、启发、讨论、总结,学生的思路被打开了,想法在逐步完善着,学生个人对最大公约数算理的理解都会有不同幅度的提升;学生的归纳、推理、判断等能力也在这里得到提高;学生的合作意识,团结协作的精神也在不断增强;当自己的意见被采纳时,学生也在尽情地享受着交流成功的乐趣。如果学生能把学习当成一件“美差”去做,这不正是我们最想看到的吗?
最新小学五年级数学教案 篇4
教学目标:
1、通过从下面、上面以及不同侧面观察5个或6个相同正方体摆成的物体,积累辨认物体视图的经验,体会物体的相对位置关系。
2、使学生主动参与观察、操作、交流等活动,进一步学习利用实物或图形进行直观和有条理的思考,发展空间观察。
3、体验数学与日常生活的关系。
教学重点:积累辨认物体视图的经验
教学难点:体会物体的相对位置关系
教学准备:学具盒
教学思路:
一、导入新课:
出示4个同样大小的正方体摆成的物体。
让学生观察,说说从下面、侧面和上面看到的视图。
接着追问:还可以怎样摆?
二、探究新知:
让学生试一试,再看一看。
学生分组展示不同的摆法。
集体交流:你能找到摆的方法吗?
引导学生发现:在原来物体的前面或后面,与原来的某一个正方体对齐着放一个都是正确的。
教学试一试:
从上面自看形状不变,可以摆在哪里?从侧面看形状不变呢?
先让学生独立思考。
小组交流想法后,动手摆一摆,并在小组里互相检查摆得对不对。
集体交流。
三、巩固新知:
1、课件出示想想做做第1题,引导学生观察立体图形,进行想象推理,把观察的位置与相应视图
2、课件出示第2题,让学生先照样子摆一摆,再看一看,然后依次从正面、侧面和上面观察每一个物体,把看到的形状进行比较。
3、课件出示第3题,分别按要求想想该怎样摆另一个正方体,再实际操作,验证想得对不对。
板书设计:
观察物体
正面侧面上面
教学内容:从左侧面和右侧面观察物体
教学目标:
1、通过从下面、上面以及不同侧面观察5个或6个相同正方体摆成的物体,积累辨认物体视图的经验,体会物体的相对位置关系。
2、使学生主动参与观察、操作、交流等活动,进一步学习利用实物或图形进行直观和有条理的思考,发展空间观察。
3、体验数学与日常生活的关系。
教学重点:从左侧面和右侧面观察物体
教学难点:能辨认相应的视图的形状
教学准备:学具盒、课件
教学思路:
一、探究新知:
出示课件:书P49图
让学生照图摆一摆。
找一找他的左侧面和右侧面看到的形状相同吗?
指名说一说,你看到的形状。(如果学生没有发现从物体的右侧面和左侧面看到的形状并一样,引导学生重新进行观察。重点交流右侧面和左侧面看到的形状有什么不同,并且联系观察的位置说说原因。)
三、教学试一试:
出示课件:P49试一试图一
学生观察后,按照要求摆一摆。
引导学生观察从左侧面和右侧面看到的各是什么形状?
出示课件:P49试一试图二
先摆一摆再从右侧面和左侧面来观察,各是什么形状?
提问:通过观察你有什么发现?
集体交流:引导学生感受到:有的物体从左右侧面看到的形状不同,也有的物体从左右侧面看到的形状是相同的。
三、想想做做:
最新小学五年级数学教案 篇5
一、教学目标
知识与技能:掌握多位数减法连续退位的算理,能熟练使用此算理正确计算被减数中间有0或末尾两位都是0的多位数减法。
过程与方法:通过小组讨论发现被减数中间位置有0的多位数减法运算的算理的过程,感受由猜想到验证的数学探究方法。
情感态度价值观:收获通过合作与探究自主解决数学问题的成就感,增强数学学习的信心。
二、教学重难点
重点:被减数中间有0或末尾两位都是0的多位数减法的算理
难点:被减数中间有0或末尾两位都是0的多位数减法的算理、多位数减法的验证
三、教学过程
1、创设情境,复习导入
同学们昨天晚上都看xx卫视的《xx》了么?大家最喜欢哪位呢?
老师昨天在网上看到了喜欢他们的观众人数。其中,喜欢xx的有413人,喜欢xx的有379人,喜欢xx的有158人。你们能快速帮老师算出来喜欢xx的人比喜欢xx的人多多少个么?喜欢xx的人又比喜欢xx的人多多少呢?
师生互动:同学们可能较快算出379-158=221,413-158=225的结果,在引导学生回顾上一节课学习的多位数减法中的不退位减及退位减。
提问1:哪位同学能站起来说一下221是如何得出的么?
提问2:哪位同学能说一下225又是怎么算的呢?
2、提出原理
这一节课,我们继续来学习一下几种特别的多位数减法(板书多位数减法)
老师还看到,喜欢xx的人有403人,大家能用同样的办法告诉老师喜欢xx的人比喜欢xx的人多多少呢?同学们前后四人结为一组一起来讨论一下,3分钟过后老师请小组代表上台发言。
提问1:老师看到有的小组在讨论时按照原来的方法,数位对齐,从个位减起,哪一位不够减向前退一当十时遇到了困难。3不够减向前退1时,发现十位是0,没法退了,那怎么办呢?
师生互动:引导学生讨论得出十位是0没法退1当10时,再继续向前一位退1当10,此时十位变成了10,拿去1给个位,个位变成了13,13减8余5,十位剩9,减5余4,百位退1后剩3,减1余2,所以403-158=245。
追问1:哪位同学能说一下403-158在计算时和我们前面学习到的多位数减法有什么相同点又有什么不同点呢?
师生互动:引导学生得出,在被减数中间有0时,个位不够减应该连续向前退1进行两次。
追问2:同学们能否用学习过的方法来检验一下我们的结果是否正确呢?
预设一:158+245=403
预设二:403-245=158
3、讲解原理
提问:同学们思考一下,在什么情况下才需要连续退位呢?
师生互动:引导学生得出在被减数中间有0时需要连续退位。
4、应用原理
提问:现在老师还知道喜欢xx的人最多了,总共有500人,大家能快速算出喜欢xx的人比喜欢xx的人多多少么?
追问:哪位同学能说一下他发现了什么呢?
师生互动:引导学生得出被减数末尾两位都为0时,也是需要连续退位的。
5、小结作业
提问:同学们通过本节课都学到了哪些有用的知识呢?
作业:同学们课下自己编一道中间有0的被减数的减法题目,回家考考我们的爸爸妈妈,看看他们是否和我们一样聪明呢?
最新小学五年级数学教案 篇6
教材类型:苏教版所属学科:数学
教学目标:
1.使学生在现实情境中初步认识负数,了解负数的作用,感受运用负数的需要和方便。
2.使学生知道正数和负数的读法和写法,知道0既不是正数,又不是负数。正数都大于0,负数都小于0。
3.使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的能力。
4.增长学生的自然知识,产生热爱自然,享受自然的情感。
教学重点:初步认识正数和负数以及读法和写法。
教学难点:理解0既不是正数,也不是负数。
教学具准备:
温度计、练习纸、卡片等。
教学过程:
(一)游戏导入,感受生活中的相反现象。(放在课前)
1.游戏:我们来玩个游戏轻松一下,游戏叫做《我反我反我反反反》。游戏规则:老师说一句话,请你说出与它相反意思的话。
①向上看(向下看)②向前走200米(向后走200米)③电梯上升15层(下降15层)。
下面我们来难度大些的,看谁反应最快。
①我在银行存入了500元(取出了500元)。
②知识竞赛中,五(1)班得了20分(扣了20分)。
③10月份,学校小卖部赚了500元。(亏了500元)。
④零上10摄式度(零下10摄式度)。
2.谈话:李老师的一位朋友喜欢旅游, 11月下旬,他又打算去几个旅游城市走一走。我呢,特意帮他留意了一下这几个地方在未来某天的最低气温,以便做好出门前衣物的准备。下面就请大家一起和我走进天气预报。(天气预报片头)
(二)教学例1
1.认识温度计,理解用正负数来表示零上和零下的温度。
⑴(课件出示地图:点击南京出示温度计和南京的图片)首先来看一下南京的气温。这里有个温度计。
那我们先来认识温度计,请大家仔细观察:这样的一小格表示多少摄式度呢?5小格呢?10小格呢?
问:好,现在你能看出南京是多少摄式度吗?
学生交流:是0℃。
师:你是怎么知道的?(那里有个0,表示0摄式度)。
没错。(结合图说)这是零刻度线,表示0℃。(教师板书0)。
谁来温度计上表示出0℃。
⑵我们再来看上海的气温。(课件:点击上海出现温度计和上海的图片)
上海的最低气温是多少摄式度呢?(学生回答4摄式度后,教师板书4)在温度计上拨一拨。问:拨的时候是怎样想的呢?(在零刻度线以上四格)
指出:上海的气温比0℃要高,是零上4摄式度。(教师结合图,突出上海的气温在零刻度线以上)。
⑶接着让我们一起来了解首都北京的最低气温。(课件点击北京的图片和温度计)
北京又是多少摄式度呢?
与南京的0℃比起来,又怎样了呢?(比南京的0℃要低)
你能用一个手势来表示它和0℃的关系吗?(对,北京的气温比0度低,是零下4摄式度)
你能在温度计上拨出来吗?
⑷现在我们已经知道了这三个地方的最低气温。仔细观察上海和北京的最低气温,它们一样吗?(不一样,一个在0℃以上,一个在0℃以下)。
对,上海的气温比0℃高,是零上4摄式度,我们可以记作+4℃,读作正四摄式度,写的时候先写一个正号(指出是正号不是加号,意义和读法都不同了)再写一个4(板书),大家跟我一起来比划一下。+4也可以直接写成4,把正号省略了。所以同学们所说的4℃也就是+4℃。(板书)
北京的气温比0℃低,是零下4摄式度。我们可以用-4℃来表示零下4摄式度(板书-4)。跟老师一起来读一下。写的时候可以先写一个负号(指出是负号不是减号)再写一个4就可以了,同桌互相比划一下。
⑸小结:通过刚才对三个城市的温度的了解,我们知道,记录温度时,以0℃为界线,用象+4或4这些数可以来表示零上温度,用-4这样的数可以表示零下温度。
2.试一试:学生看温度计,写出各地的温度。并读一读。(写在卡片上)
师:我们再来了解一下其他几个城市的最低气温,注意观察温度计,把这些温度记录在卡片上,并读一读。准备好了吗?
香港:(19℃或+19℃)。写好了请举起你们的卡片。提问:你是怎么想到用+19℃来表示的?这位同学是用19℃来表示的?行吗?为什么?(对,正号可以省略不写)。
哈尔滨:(-10℃)。老师写了10℃后举起来:“和老师的记录一样的请举牌。为什么没人和我的一样啊?(对,零下10摄式度,我们用-10℃来表示,10摄式度是表示零上10摄式度的)。
西宁:你们记录好了,同桌互相校对一下再来交流。问:为什么这样用这个数来表示?
⒊我们再来听一段中央台的天气预报,将你听到城市的最低和最高温度记录下来。
播放中央台播音员播报的天气预报(天津 呼和浩特乌鲁木齐银川)
指名一位学生上前交流。师:你们觉得他记录怎样?这位同学的前面的正号没写,可以吗?老师把-1的负号去掉,你们同意吗?
谁能在温度计上拨出11℃?谁来拨-1℃?
小结:通过刚才的学习,我们得出:以零摄式度为界线,零上温度用正几或直接用几来表示,零下温度用负几来表示。
(三)自主学习珠峰、吐鲁番盆地的海拔表达方法,进一步认识正数和负数。
最新小学五年级数学教案 篇7
教学目标:
1、使学生了解测定直线是生产、生活的实际需要,知道测定直线的一些简单工具。
2、通过实践活动,掌握测定直线的方法。
3、培养学生动手操作的能力及合作意识。
教学重点:
使学生通过实践活动,掌握测定直线的方法。
教具准备:
测量工具若干套(标杆、卷尺、测绳等)
教学过程:
一、复习。
1、举例说明什么叫距离?
2、常用的长度单位是什么?
二、新授。
1、测量土地的意义。
结合本地建设实例,如:群星要建新校,要确定学校的面积有多大,都需要测量土地。所以我们这节课就学习实际测量。
2、认识测量工具。
(1)标杆:测定直线时使用的一种工具。
(2)卷尺和测绳:测量距离时所使用的工具。
把上述工具给学生看,介绍怎样看卷尺、测绳上的尺度。介绍使用方法,使用卷尺时在两点中要拉直。
3、学习测量距离的方法。
(1)量地面上较近距离,可以用卷尺或测绳直接量出。
请两个学生用卷尺测量教室门口到窗户的距离。
(2)量比较远的距离。
量比较远的距离如学校到市场,用卷尺不能一次测出距离,量几次就会歪斜,不可能在一条直线上,所得距离不准,所以要在两点中先测立一条直线。
(3)使用标杆测定两点间直线的方法。
学生先看第79页内容。
教师用教具讲解,教学生使用标杆的方法,怎样测定两点之间的直线。
问:为什么插在C点的插杆必须和B点标杆同时被A点标杆挡住,三点才在一条直线上?
把所有的点连起来就得到一条直线。测定直线后,就可以就卷尺或测绳逐段量出A、B间的距离。
三、实际测量练习。
1、把全班学生分成两大组。一组测量操场的长,另一组测量操场的宽。每组再分成两个小组。
2、小组内各成员由小组长负责,明确分工,分配好测量工具,讨论好测量方法。
3、测量后,记录有关数据。
4、一个小组完成后,另一个小组接着测量,(已测量过的同学自由选择同学讨论测量方法和疑难问题。)
5、完成后回教室,整理测量数据,计算所求问题。
6、组织学生交流测量体会与结果。
在实际测量的过程中,教师要加强具体指导,让学生注意把标杆扶正,认真观察,使后面的标杆被前面的标杆挡住。
四、小结。
要知道土地大小,就必须测量土地。本课要求大家认识测量工具,掌握测量方法,并对实际测量中的不正确方法,指出原因,提出注意点。
五、作业。
1、复习课本有关测量方法,要求理解和掌握。
2、练一练第1~2题。
3、《作业本》。
最新小学五年级数学教案 篇8
一、 教学目标
1、 在用小正方形拼长方形的活动中,体会找一个数的因数的方法,
培养有条理思考的习惯。
2、 在1-100的自然数中,能找出某个自然数的所有因数。
二、 重点难点
找因数的方法。
三、 教学过程
(一) 游戏引入新课
1、
①、用12
②、再与其他同学交流。
2、
1×12 12=3×4
=2×6 12=4×3
12=6×2 12=12×1
312的因数。
4、 总结:
①12的全部因数有:1、2、3、4、6、12。
②体会找一个数的因数的方法。
5、 练习:用同样的方法,分别找出9和15的全部因数。
(二) 练习巩固,加深理解
无纸化备课教学设计
1、 练一练。1、填空。
2、 第2题:让学生自己找一找18的因数和21的因数,并用不同
的符号作好记号,然后让学生说说找因数的方法。最后,说说哪几个数既是18的因数、又是21的因数。
3、 第3题:利用数形结合,进一步体会找因数的方法。
4、 第5题:可以引导学生用找因数的方法进48=1×48=2×24=3×16=4×12=6×8,48有1010种装法,如每行12人,排4行;每行437只有2个因数,只有两种装法。
(三) 总结
四、 板书设计
找因数
1×12 12=3×4
=2×6 12=4×3
12=6×2 12=12×1
12的全部因数有:1、2、3、4、6、12。
教学反思
通过本节课的教学,学生们初步掌握了找因数的方法。但在具体实施时很难正确得出结果,即使得出了结果,书写不规范。比如:48=3×16=6×8=1×48=4×12=2×24。48的全部因数有:1、48、2、24、3、4、6、8、12、16。不是按照一定的顺序书写的;找因数的时候不准确。在经后的练习中应及时纠正。
最新小学五年级数学教案 篇9
教学目标:
1,使学生理解分数的基本性质,并会应用分数的基本性质把不同分母的分数化成分母相同而大小不变的分数.
2,培养学生发现问题和解决问题的能力.渗透"事物之间是相互联系"的辩证唯物主义观点.
教学重点:掌握分数的基本的性质,能运用分数的基本性质解决有关的问题.
教学难点:理解分数的基本的性质.
教学课型:新授课
教具准备:课件
教学过程:
一、复习铺垫,准备迁移 [课件1]
1,120÷30的商是多少 被除数和除数都扩大3倍,商是多少 被除数和除数都缩小10倍呢
2,比较下列每组数的大小.
3/4( )3/5 15/20( )4/20
3,把下面的分数改写成两个数相除的形式.
2/3=( )÷( ) 5/8=( )÷( )
二、探索新知,发展智能
1,学生操作:将手中的纸圆片平均分成若干份.
2,反馈.
(1)提问:A,若要求剪下其中的一半,想想剪下的份数各自占圆的几分之几
B,虽然每个同学所剪的份数不同,但它们之间大小关系怎样
板书: 1/2=2/4=3/6
C,观察一下:这些分数的分子,分母变化有什么规律
(2)引导学生概括出分数的基本性质,并与前面的猜想相回应.
(3)小结:这里的"相同的数",是不是任何数都可以呢
(零除外)
板书:分数的分子和分母同时乘上或者除以相同的数(0除外),分数的大小不变.
3,分数的基本性质与商不变的性质的比较.
提问:在除法里有商不变的性质,在分数里有分数的基本性质.想一想:根据分数与除法的关系以及整数除法中商不变的性质,你能说明分数的基本性质吗
4,巩固认识.
P109 .1
(2)说数接龙.
5/6=5+5/( )……
三、运用延伸,深化概念
1,要求大小不变.[课件2]
1/3=( )/6 10/15=( )/6 1/4=5/( )
2,下面分数中哪两个分数相等 [课件3]
3/4 21/32 15/20 1/5 4/20
习后提问:A,依据是什么
B,3/4和1/5哪个大 你是怎么比较出来的
C,那么,从中你又有什么新发现 你的新发现是什么
四、全课总结
提问: A,这节课你学习了什么
B,运用分数的性质,你能做什么
C,本节课你还有哪些疑问 你还想从哪些方面去探索分数
的知识呢
五、家作
P109 .3,5,6
最新小学五年级数学教案 篇10
一、活动年级小学五年级
二、活动目标使学生了解许多事物的变化都有周期性,掌握事物变化的周期,并能灵活运用周期变化规律解决实际问题。
三、活动过程
(一)由循环小数认识周期现象
1.出示8.357357,提问:这是什么小数?它有什么特征?
2.想一想:我们日常生活中还有哪些周而复始的循环现象呢?(学生举例)
3.归纳:通过仔细观察,我们发现在日常生活中,有许多现象都是按照一定的规律、依次不断重复出现的,我们把这种现象叫做周期现象,(出示周期现象的概念)而重复出现的一节个数叫做周期。(出示周期的概念)
4.让学生指出8.357357的循环节是几位?周期是几?
(二)运用周期变化,解决问题。
1.根据周期找位置,定颜色。
(1)课件出示
●○○○○●○○○○●○○○○
提问:第16个圆片是什么颜色?第100个圆片是什么颜色?
(2)让学生说一说排列规律,说出它的变化周期。
(3)想一想:第16个圆片应在第几位?为什么?
(引导学生列出算式:165=31)
第100个圆片应在第几周期第几位?说说你是怎么想的?怎么算的?(1005=20)
(说明:没有余数,应该在第20周期最后一位。应该是白色的圆片。)
(4)小结:要想准确判断某一圆片的位置和颜色,首先要弄清这一排列的周期是几,然后通过计算,知道它在第几周期第几位后,再确定它的颜色。
(5)练习:
①0.428571428571的第545位上的数字是几?先让学生独立思考,再指名说说是怎么判断的。
②已知循环小数3.4650725072,它的第100位小数是几?
提示学生:这是一个混循环小数,循环节四位,不循环部分两位,在探求第100位小数是几时,首先要从100位中去掉不循环的2位,然后除以变化周期数。
2.根据周期找个数。
(1)课件出示
○○○△△●○○○△△●○○○△△●
提问:12个图片中有几个白色圆片?
(2)学生数出后,再引导学生想一想:这些图形是按什么次序排列的,它的变化周期是几?
想一想:1个周期里有几个白色圆片,几个三角,几个红色圆片?再引导学生通过计算算出12个图片中有几个白色圆片?(板书:126=232=6(个))
(3)再想一想:100个图形中有()○,()个△,()个●?(引导学生用1006=164)
说明:100个图形中有16个周期和3个○○○、1个△。要想算出100个图形中有多少个○,先算出16个周期里有几个○,(板书:算式316)再加上4个图形中有3个○,所以共有316+3=51(个)。(板书)
引导学生算出有()个△,()个●。
(板书:216+1=33(个)116=16(个))
(4)小结:根据周期规律找个数,关键还是要找出它们的变化周期数。
(5)练习:
五年级数学课件6篇
备课教案是指老师在授课前所准备的教学课件,按照学校的要求,每位老师都必须认真准备备课教案。备课教案的写作质量越好,所需时间就越多。那么,备课教案的写作重点在哪里呢?幼儿教师教育网小编为大家整理了《备课教案的写作重点》,希望能够对您有所帮助!
五年级数学课件(篇1)
一、说教材:
质数和合数是在约数和倍数以及能被2、5、3整除的数的特征的基础上进行教学的。质数和合数是求最大公约数、最小公倍数以及约分、通分的基础。因此这部分内容的教学不仅要使学生掌握质数、合数的概念,而且能记较快地看出常见数是质数还是合数。这一节内容中抽象概念较多,而且有些概念容易混淆,如:质数与奇数、合数与偶数等。
教学目标:
1.学生能理解质数、合数的意义,会正确判断一个数是质数还是合数。
2.能初步弄清质数与奇数、合数与偶数等概念的区别及联系,提高学生对知识的把握水平。
3.让学生在活动中体验到学习数学的乐趣。
4.培养学生的观察、比较、归纳、概括能力。
教学重、难点:
1.掌握质数、合数的概念,准确判断一个数是质数还是合数。
2.奇数、偶数、质数、合数的区别与联系。
二、说教法、学法:
首先,在学习准备中让学生根据以往的
知识经验,对小组号码数字进行分类(按奇数、偶数分,按位数分等等)。对学生不同的分法老师都给予肯定,同时引导学生对非零自然数的另一种分法,即按一个数的约数的个数来分,从而引入新课。
其次,教师引导学生写出自己小组号码数的约数,并绘制成表,让学生观察表“按约数的个数来分”该怎样来分。通过观察、比较,发现这三类数的特点,归纳、概括出质数、合数的概念。然后教学例2:质数和合数的判断。教师指出还可以通过查质数表来判断一个数是质数还是合数,并引导学生制作质数表。从而使学生初步发现质数和奇数、合数和偶数等概念的区别及联系。
再次是一些练习题巩固所学知识,拓展学生思维。最后课堂小结布置作业。
三、说教学过程:
(一)学习准备:
让学生根据以往的学习经验,对自己的小组号码数进行分类(按奇数、偶数分,按位数分等等),同时引导学生对非零自然数的另一种分法,即按一个数的约数的个数来分,从而引入新课。
(二)探究新知:
1. 建立质数、合数概念:
找约数进行分类、观察归纳出质数、合数概念。
2.教学例2:质数和合数的判断。
“你认为怎样去判断一个数是质数还是合数?”
告诉学生还可以通过查质数表来判断,并指导学生制作质数表,引导学生发现,初步弄清质数与奇数、合数与偶数等概念的区别及联系。
(三)巩固拓展应用:
1.填空 2.判断 3.思维训练
(四)全课小节:
这节课我们学习了什么?你有哪些收获?还有什么问题?
(五)布置作业:
练习十三的第2、3题。
五年级数学课件(篇2)
各位评委老师好!
我今天说课的内容是,我将从以下几个方面来分析本节课。
第一, 指导思想
本课以"健康第一"为指导思想,全面推进素质教育,培养学生终身体育的意识和科学健身的能力,充分发挥学生主体地位,提高学生的体育素养,使学生快乐学习。
第二, 教学内容
本课的教学内容是初中《体育与健康》____ 教学模块____ 必修单元的______ 技术,______ 直接影响学生的______ 素质,在教学中占重要地位。其技术动作并不复杂,但要是学生做到____ _就比较困难,所以师生都应高度重视,努力完成教学目标。
第三, 教学目标。根据教学内容可确定以下教学目标:
1、使学生掌握____ 的基本知识,形成正确的概念。
2、通过学习,使大部分学生掌握____ 的技术动作,发展学生____ 素质。
3、培养学生______ 精神。
第四,重点和难点。根据___ 的技术特点和学生实际情况,可确定本课的
重点是:
难点是:
可通过教师的指导和学生的练习突破次重点和难点。
第五, 学情分析。
本课的教学主题学生是 年级学生,共40人。由于小学生处于生长发育期,身体素质和运动技术较差,但对于直观的,易于模仿的知识兴趣较高,根据此特点,本课采用直观的教学原则,利用学校现有场地和器材,努力完成教学目标。
第六,教法和学法
本课采用教师启发指导,学生反复练习的教学策略,利用讲解、示范、启发、问答和纠正错误等教学方法,充分发挥学生主题地位和教师主导作用,利用循序渐进的练习过程,使学生掌握______ 的技术,努力完成教学目标,培养学生的______ 素质。
第六, 教学过程。
根据人体生理机能活动变化规律,可将本课教学分为引入情境阶段、激发动机阶段、技能学习阶段、总结整理阶段。
激发动机阶段包括
1课堂常规 ,包括正队、检查人数、师生问好等,使学生进入上课状态。
2向学生宣布本课教学内容、目标和要求
激发动机阶段包括:
1学生热身,进入运动状态,防止运动损伤出现。
2(新内容的辅助练习)进一步热身,激发学习兴趣,活跃课堂气氛,为新技能的学习奠定基础。
技能学习阶段:
1学生观看教学录像,了解__ 的基本知识,教师提出观看目标,学生讨论__ 技术动作,形成模糊概念。
2教师利用挂图向学生讲解示范动作,学生模仿教师动作。讲解时注意重点和难点,示范时注意分解动作和示范速度,以侧面示范为主,正面示范为辅,使学生看的更清楚。
3徒手练习,使学生初步体验动作和初步形成动作。
4分组练习,教师指导、观察学生练习,发现错误并纠正错误,通过提问,了解学生练习感受。使学生基本形成动作。
5.游戏或比赛,了解学生掌握动作情况。
总结整理阶段:
1在音乐的伴奏下,教师指导学生做放松操,使学生身心。
2教师总结学习情况,回收器材,宣布下课。
第八:根据教学内容和教学需要,本课需要场地为————
需要器材为———
第九:本课的练习密度为35%,学生平均心率为140/分钟。
第十:本课遵循客观事物认识规律和动作技能形成规律,课堂教学合理,气氛活跃,能完成教学目标。
五年级数学课件(篇3)
教材内容:
北师大版数学五年级上册P90-91。
教材分析:
在组合图形面积中,重点探索计算组合图形面积的方法。教材的第二单元,学生已经学习了平行四边形、三角形与梯形的面积,在此基础上学习组合图形,一方面可以巩固已学的基本图形,另一方面则能将所学的知识进行整合,注重将解决问题的思考策略渗透其中,提高学生综合能力。
教学目标:
1、通过欣赏图形的活动,让学生了解组合图形的特点。
2、在自主探索的活动中,归纳计算组合图形面积的多种方法。能根据各种组合图形的条件,有效地选择计算方法进行解答。
3、培养学生探索数学问题的积极性,增强学生学习数学的信心和兴趣。
4、进一步渗透转化教学思想,提高学生运用新知识解决实际问题。
教学重点:
学生能够通过自己的动手操作,掌握用分割法和添补法求组合图形的计算方法。
教学难点:
理解计算组合图形面积的多种计算方法,根据图形之间的联系和一定的条件,割、补成学过的图形,选择最适当的方法求组合图形的面积。
教学过程:
一、创设情境,认识组合图形
(课件出示一组组合图形)
提问
1、这些图形象什么,是由哪些基本图形组成的?
2、这些图形有什么共同的特征?
师:我们把由几个基本图形组合而成的图形叫做组合图形。(板书:组合图形)今天这节课,我们就来探索组合图形面积的计算方法。(板书:组合图形面积)
【设计意图:让学生看一看,想一想,说一说,充分调动学生的积极性,在浓厚的学习氛围中感受到知识来源于生活,而又服务于生活。】
二、探究新知,主动建构。
1、猜一猜
(课件出示主题图)
提问:请你猜一猜这是什么图形?(学生根据课件观察,在质疑中猜出图形)
教师引导,这就是淘气家客厅的地面的平面图,提问:你能根据这些信息,帮淘气算一算至少买多少平方米的地板吗?
2、估一估。
师:在算之前,请您帮她估估,并说出理由。
3、探索简单组合图形面积计算方法,
师:如果我们要计算这个组合图形的面积,你准备怎么算?
引导归纳:组合图形是由几个基本图形拼成的,面积就是拼成它的基本图形面积之和。
4、班级汇报,教师适时点拔
(1)汇报时用多媒体将学生的学习成果演示出来,预设会出现五种情况。
学生边汇报,教师随即板书。其他同学能清楚地与自己的思路进行比较,并及时发现错误并纠正过来。汇报结束后,再让学生对小组成员的汇报情况作评价,最后其他小组作补充汇报。
(2)师生总结分割法、添补法并提升方法的优化性。
让学生自主观察比较上面几种方法的不同之处,总结出求组合图形面积的计算方法,再进行分类,掌握分割法和添补法这两种计算方法。
教师小结:分割的方法不同,但思路都是一样的,都是把复杂的图形简单化。
三、综合实践、学以致用
(为了巩固新知,又突出本课的教学难点,设计了三关闯关练习。)
第一关:分一分,说一说
1、任意分:任意分这个图形(只要分出来的图形是我们已学的图形)。
2、最少分:请你把它分出最少的学过的图形。
3、带上条件分:要求分得合理,能计算这个组合图形的面积。
【设计意图:本题一题多用,循序渐进,螺旋上升,通过三个层次的分割,使学生明白在组合图形的分割中,需要根据所给的条件进行合理的分割,对条件进行优化。】
第二关:算一算。
请你算一算这个组合图形的面积。
【设计意图:为了能使学生可以自主选择适合自己的学习内容,充分考虑学生的个体差异,在练习设计中照顾到不同学生的需求,设计了开放性的练习题】
第三关:小设计
运用我们所学过的基本图形(长方形,正方形,平行四边形,三角形,梯形)设计一个组合图形,并算出它们的面积,然后考考老师和同学。
【设计意图:本题是个开放性的题目,让学生在学习中感悟,并运用所学知识进行整合运用,使不同层次的学生在原有的基础上都有相应的提高,进而体会到成功的喜悦,增强学习数学的兴趣和信心。重新阐述了数学和数学教育的含义:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。】
四、总结收获、小结全课
同学们,今天,你有什么收获?
学生可以说知识上的收获,也可以说情感上的收获,生生互动评价,既认识自我,建立信心,又共同体验成功,促进了发展。
师:最后老师送给大家一句话和大家共勉我没有什么特别的才能,不过喜欢寻根刨底地追究问题罢了。爱因斯坦希望大家在数学的海洋里遨游地更快,更强。
五年级数学课件(篇4)
一、说内容
《找次品》是人教版数学五年级下册第七单元数学广角的内容。现实生活生产中的“次品”有许多种不同的情况,有的是外观与合格品不同,有的是所用材料不符合标准等。这节课的学习中要找的次品是外观与合格品完全相同,只是质量有所差异,且事先已经知道次品比合格品轻(或重),另外在所有待测物品中只有唯一的一个次品。
二、说教材
“找次品”的教学,旨在通过“找次品”渗透优化思想。优化是一种重要的数学思想方法,运用它可迅速有效地解决实际问题。此前学习过的“沏茶”,“田忌赛马”等都运用了简单的优化思想方法,学生已经具有一定的优化意识。本节课以“找次品”这一操作活动为载体,让学生在感受解决问题策略的多样性的基础上,再通过归纳、推理的方法体会运用优化策略解决问题的有效性,感受到数学的魅力。
仔细阅读教材后,发现教材的编排结构比较重视数学知识的逻辑顺序。例1安排了从5个物品中找次品,仅要求学生说出找次品的方法,不需要进行规律的总结,让学生感受到问题解决策略的多样性。例2安排了9个待测物品,要求学生归纳出解决问题的最优策略,让学生经历多样化过渡到优化的思维过程。教材这样安排,考虑了学生的思维过程,但是对于刚经历找次品的学生来说,为什么要找次品?5个次品是否难度过大?找次品平均分成三份是学生在观察9个待测物品的测量过程中,比较得出的,“为什么平均分成三份是最优方案”教材没有涉及,学生的疑惑是否会更多呢?
基于上述考虑,我把教学目标定位在:让学生初步认识“找次品”这类问题的基本解决手段和方法。2.学生通过观察、猜测、试验、推理等活动,体会解决问题策略的多样性及运用优化的方法解决问题的有效性。3.通过观察多个待测物品时,让学生体会到最优化策论的成因。
三、说教法
在教材中,非常突出的一点是教材比较重视新课程背景下学生之间的小组讨论和探究。确实经过小组讨论,学生之间可以互相补充,迅速达到多种策略的有效补充。但是同时存在的问题是,该教材内容偏难,如果仅通过交流,势必优秀生言之灼灼,而后进生听之糟糟。因此我在执教时选用了学生安静思考,人人动手的形式,让每个学生都动起来,再视情况交流。在反馈中逐步得到提高。
四、说设计
(一)课前游戏。课前游戏主要是让学生明白至少需要多少次的含义,为新课教学扫清学生认知上的障碍,出现不必要的过多的纠缠。
(二)、情景导入,激发兴趣。
(设计意图:“美国挑战者号失事”作为引入,让学生了解事故的原因是由一个不合格的零件造成的,让学生从血的教训中,懂得了次品的危害,领悟到严格检验的必要性,同时把人文教育渗透在教学中。)
(三)、自主探索用天平找次品的基本方法。(安排了3个层次)
首先安排了从3个正品中找出一个次品来,就是从3瓶菠萝片中找出一瓶少了3片的(这样设计贴近学生的实际生活,为学生喜闻乐见,也为下面探究如何找次品作好铺垫,充分激发学生的求知欲和表现欲。增加课前准备题三瓶中找次品,利于学生进入研究状态,也考虑照顾到中下层次学生。)
紧接着我刻意安排了4这个环节(设计意图:多了4这一环节,它的作用就是为后面研究5和9中找次品打基础,看似渺小,其实起奠基作用,让学生感悟从4个中找就要比3个中找多了1次。为接下去体现划归的数学思想做准备。也为最佳策略的成因探索埋下伏笔)
最后安排5个中找次品,仅要求学生说出找次品的方法,不需要进行规律的总结,让学生感受到问题解决策略的多样性。
(四)、尝试解决实际问题,寻找最优方法。
首先通过学生自己动手操作,尝试称出从9个中找出次品的方法,以及发现最佳方法。教师引领学生如果是3的倍数的数,为什么要分成3份,以及为什么而且要平均分成3份对最佳策略的成因作出推理和解释。接着用12去验证发现的规律的正确性。最后运用规律解决27、81、243个…中去找次品。让学生感悟这里其实有规律可寻。
(五)、留与悬念,课余激发探索兴趣。
这里主要探索非3倍数的最佳策略并且完善找次品的规律,即不能平均分成3份的,尽量平均分成3份,保证有两份数量相同,并且只和第三组差1个,所用的次数是最少的。这是否是最优的方法
(六)、学习反思:
对全课进行输理,回顾找次品的方法和最佳策略。
五、说体会
教完以后,体会最深的就是这个难度的教材,教到什么度是合适的?对于最佳策略的成因还有没有更好的、更有说服力的相通的解释方法?教师的反馈怎么样能更有层次一些?课上下来还是觉得问题多多,但自己觉得还是在云里雾里。很希望能得到专家和同行们的帮助和指点。谢谢各位!
五年级数学课件(篇5)
一、 说教材
1、教学内容:
小学五年级数学上册P57,及“做一做”,练习十一第4题。
2、教材简析:
本节课是在学生已经学过用字母表示数和数量关系,掌握了求未知数x的方法的基础上学习的。通过学习使学生理解方程的意义、方程的解和解方程等概念,掌握方程与等式之间的关系,掌握解方程的一般步骤,为今后学习列方程解应用题解决实际问题打下基础。
3、教学目标:
(1)、结合具体的题目,让学生初步理解方程的解与解方程的含义。
(2)、会检验一个具体的值是不是方程的解,掌握检验的格式。
(3)、进一步提高学生比较、分析的能力。
4、教学重点及难点:
比较方程的解和解方程这两个概念的含义
二 、说教法学法
(一) 创设情境,自主体验
本课以游戏导入,通过创设学生感兴趣的学习情境,以激趣为基点,激发学生强烈的求知欲望。让学生在操作、观察、交流等活动中感知平衡,自主体验,积累数学材料,为更好地引入新课,理解概念作铺垫。并且无论是生活中有趣的平衡现象,还是天平称东西的实际状态,都无不放射出科学的光芒,它们带给学生的不仅仅是兴趣的激发,知识的体验,更有潜在的科学态度和求真求实的精神。
(二) 突出重点,自主探索
理解方程的意义,掌握方程与等式之间的关系是本课教学的重点,让学生通过列式观察,自主探索,分析比较,逐次分类,讨论举例等一系列活动去理解方程的意义,掌握方程与等式之间的关系。使学生把知识探究和能力培养溶为一体,锻炼了学生科学的思维方法,使学生学得主动,学得投入。同时层层深入的设疑和引导也渗透了教师对学生科学思维的鼓励和培养,使学生在探索与实践中不断亲历求知的过程,如剥茧抽丝般汲取知识的养分。
(三) 自学思考,获取新知
在教学解方程和方程的解的概念时,通过出示两道自学思考题(1)什么叫方程的解?请举例说明。(2)什么叫解方程?请举例说明。”改变了以示范、讲解为主的教学方式,让学生带着问题通过自学课本,将枯燥乏味的理论概念转化为具体的例子加以阐明,既培养了学生独立思考的能力,也解决了数学知识的抽象性与小学生思维依赖于直观这一矛盾。
正是基于以上考虑,在教学解方程的一般步骤和检验方法时,也采用了让学生通过自学来掌握检验的方法及规范书写格式。
(四) 使用交流,注重评价
要探索知识的未知领域,合作学习不失为一条有效途径。新的教学理念使合作学习的意义更加广泛,有生生合作、师生合作等等。生生合作有助于相互验证、集思广益。师生合作体现在“师导”,尤其在学生思维受阻,关键知识点的领会上,在本课中,有多处让同桌互说互评互查的过程,合作的力量必将促使学生认知水平的提高,自评与互评相结合的评价方式也将更好的有利于学生端正学习态度,掌握科学的学习方法,促进良好的学习习惯的形成。
三 说教学过程
一 复习引入
我们前边学了天平平衡的道理,我们先来做一个天平平衡的游戏,老师说,你来对:我在天平左边放一个苹果,要想使天平平衡,你应该怎么做?再放两个梨呢?
学习天平平衡的道理有什么作用呢?通过今天这节课的学习你就会发现它的作用了。
二 教学什么是方程的解
出示课本57页插图,问:从图上你能看到什么信息?你能根据图中告诉的等量关系列一个方程吗?
板书:100+X=100
问:X表示什么?X可以是任何一个数吗?为什么?
X是什么数时,方程左右两边才相等呢?你是怎么算出来的?
生答,板书:
1 100+(150)=250,所以X=150
2 250-100=150,所以X=150
3 利用天平平衡的道理100+X—100=250-100
X=150
教师总结:刚才同学们通过多种方法都算出了X=150时,方程左右两边相等,像这样,使方程左右两边相等的未知数的值就叫方程的解。
加深记忆:问X=120是这个方程的解吗?为什么?根据你的理解什么才是方程的解呢?
判断:
X=3是方程3X=15的解吗?X=2呢?为什么?
刚才同学们找出这个方程的解得过程叫做解方程,今天这节课我们重点利用天平平衡的道理来解方程。(板书课题:解方程)
三 解方程
1 利用这道题讲解解方程的格式
解方程有固定的格式,教师边讲格式边完成100+X=100的解方程的完整步骤。
2 学生独立尝试做例1
(1.)出示例1主题图:请你用一句话说一说这幅图所表示的内容。
(2.)学生叙述图意,并列出方程。
(3.)激趣:你能用方程平衡的原理来解方程吗?
(4).学生尝试解决χ+3=9。教师巡视,指名板演。
(5.)板演的学生讲解解决问题的思路方法
(6)观察黑板上同学的板书,你有什么发现,你认为还有什么需要同学们注意的地方吗?
(7).x=6是不是方程的解呢?(需要进行检验)
(8.)学生自学课本,掌握方程检验的方法和格式。
A方程是怎样验算的?
B它的格式有什么特殊的要求?
四 迁移练习:x+8=10 x-8=10
1.全班齐练,指名板演。
2.评价分析讲解。
对比提升:x+8=10 x-8=10
1.观察两道方程的解答过程,你有什么发现?(x加几,我们就减几;x减几,我们就加几。)
2.为什么要这样做?
3.方程的左边发生了变化,为了使方程成立,方程的右边又应该怎样做?这样做的依据是什么?
五 回顾总结
这节课你都学会什么?什么是方程的解?什么是解方程?解方程时要注意些什么?
课后反思:
在进行了一次试讲后,我上了《解方程》这节课。因为试讲过一次,对学生容易出现的问题已有所了解,所以再次上这节课时,就知道了侧重点在哪,这也是我没有教过五年级教材的一个弊端吧,总是对学生的情况不了解,把握不好学生容易在哪出问题,总是等学生出现了问题后才知道侧重点。通过上同一节课,通过老师评课和课后反思,对这节课的教学思路清晰了。
这节课与我试讲时相比,我觉得其中一个环节在教学中有所突破。就是让学生认识什么是“方程的'解”,在试讲时,这部分教的不扎实,对学生来说印象不深刻。再次讲这节课时,我是这样处理的:通过100+X=250,让学生找出当X的值是∏时,方程的左右两边才相等,当学生用各种不同的方法算出X=150时,方程左右两边相等,这时我指出,X=150就是这个方程的解,然后问,X=100是这个方程的解吗?为什么?什么才是方程的解?通过这样的反复强调,学生很清晰地明白了,使方程左右两边相等的未知数的值才是方程的解。这样处理,我觉得学生对这个概念理解的比较清楚,印象也比较深刻。如果再将“解方程”和“方程的解”进行区分,效果可能会更好些。
但是这节课还有很多不足的地方,如利用天平平衡的算理来解方程时,有些知识点处理的不够主次分明,如,在结合一道题来讲时,重点根据天平平衡的道理来讲,学生明白了其中的道理后,在接下来的进一步练习巩固中,只要结合等式的性质让学生明白只要在方程两边同时加几或者同时减几即可,不需要再讲算理了。也就是说,教学层次不是很分明,应该是有主有次,多放些空间给学生。
五年级数学课件(篇6)
一、 说教材
1、教材内容:小学数学第十册《解简易方程》及练习二十六1~5题。
2、教材简析:
本节课是在学生已经学过用字母表示数和数量关系,掌握了求未知数x的方法的基础上学习的。通过学习使学生理解方程的意义、方程的解和解方程等概念,掌握方程与等式之间的关系,掌握解方程的一般步骤,为今后学习列方程解应用题解决实际问题打下基础。
3、教学目标:
(1)使学生理解方程的意义、方程的解和解方程的概念,掌握方程与等式之间的关系。
(2)掌握解方程的一般步骤,会解简单的方程,培养学生检验的习惯,提高计算能力。
(3)结合教学,培养学生事实求是的学习态度,求真务实的科学精神,养成良好的学习习惯。渗透一一对应的数学思想。
4、教学重点及难点:理解方程的意义,掌握方程与等式之间的关系。
教具:天平一只,算式卡片若干张,茶叶筒一只。
二 、说教法学法
(一) 创设情境,自主体验
本课以游戏导入,通过创设学生感兴趣的学习情境,以激趣为基点,激发学生强烈的求知欲望。让学生在操作、观察、交流等活动中感知平衡,自主体验,积累数学材料,为更好地引入新课,理解概念作铺垫。并且无论是生活中(cn—teacher。com)有趣的平衡现象,还是天平称东西的实际状态,都无不放射出科学的光芒,它们带给学生的不仅仅是兴趣的激发,知识的体验,更有潜在的科学态度和求真求实的精神。
(二) 突出重点,自主探索
理解方程的意义,掌握方程与等式之间的关系是本课教学的重点,让学生通过列式观察,自主探索,分析比较,逐次分类,讨论举例等一系列活动去理解方程的意义,掌握方程与等式之间的关系。使学生把知识探究和能力培养溶为一体,锻炼了学生科学的思维方法,使学生学得主动,学得投入。同时层层深入的设疑和引导也渗透了教师对学生科学思维的鼓励和培养,使学生在探索与实践中不断亲历求知的过程,如剥茧抽丝般汲取知识的养分。
(三) 自学思考,获取新知
在教学解方程和方程的解的概念时,通过出示两道自学思考题
(1)什么叫方程的解?请举例说明。
(2)什么叫解方程?请举例说明。”改变了以示范、讲解为主的教学方式,让学生带着问题通过自学课本,将枯燥乏味的理论概念转化为具体的例子加以阐明,既培养了学生独立思考的能力,也解决了数学知识的抽象性与小学生思维依赖于直观这一矛盾。
正是基于以上考虑,在教学解方程的一般步骤和检验方法时,也采用了让学生通过自学来掌握检验的方法及规范书写格式。
(四) 使用交流,注重评价
要探索知识的未知领域,合作学习不失为一条有效途径。新的教学理念使合作学习的意义更加广泛,有生生合作、师生合作等等。生生合作有助于相互验证、集思广益。师生合作体现在“师导”,尤其在学生思维受阻,关键知识点的领会上,在本课中,有多处让同桌互说互评互查的过程,合作的力量必将促使学生认知水平的提高,自评与互评相结合的评价方式也将更好的有利于学生端正学习态度,掌握科学的学习方法,促进良好的学习习惯的形成。
2025二年级下数学教案模板集合6篇
二年级下数学教案【篇一】
教学目标:
1、结合具体情境,借助相同加数连加的计算,体会乘法的意义,能根据加法算式列出乘法算式,知道乘法算式中各部分的名称。
2、经历数与算的过程,体会乘法产生的必要性以及乘法与加法之间的关系,感受乘法计算的简捷性,初步有符号感。
教学重点:
通过探究使学生理解求几个相同加数的和用乘法计算比较简单。
教学难点:
能正确熟练地进行加法和乘法间的转化。
教学方法:
谈话法,讲授法,练习法。
教具准备:
多媒体
教学过程:
一、 创设情景。
1、谈话引入。
师:同学们喜欢刘谦的魔术表演吗?魔术表演不仅非常神奇,在魔术表演的过程中还隐藏着很多数学知识呢,我们今天就来一起研究隐藏在魔术表演中的数学问题。
2、学生观察信息窗,搜集有关信息。
师:从舞台上你发现了什么?
学生交流自己的发现。
3、引导学生提出数学问题。
师:看魔术师的表演,你能什么数学问题?
学生交流根据信息提出的数学问题。
二、师生合作探究。
1、学生根据提出的问题列出算式,如:6+6+6+6=24,4+4+4=12,5+5+5+5+5+5=30
2、初步感知加法算式的繁琐:魔术师变出了这么多宝葫芦,在列式计算时你有什么感觉?
初步思考:魔术师如果变得串数更多呢?比如8串呢?
3、明确探究问题。
学生说出算式,教师板书,在板书时,老师故意写成9个5相加。
学生发现老师的错误后帮助找出写错的原因。
师:那我们能不能想一种新写法,既能让人看懂是8个5相加,写起来又不易出错比较简便呢?
4、小组合作交流,创造数学符号。
学生独立思考,然后在小组内交流。
全班交流。
学生讲述自己创造方法的想法,然后大家来比较每种写法的优点。
5、引入乘法。
85=40或58=40
认识乘法各部分的名称、意义和读法。
引导学生观察加法算式和乘法算式,找出二者之间的联系。
学生交流。
师生小结:乘法算式中一个因数是加法算式中的相同加数,另一个因数是相同加数的个数。
师生一起用手势表示从加号到乘号的过程。
进一步让学生明确:求几个相同加数的和用乘法计算比较简便。
三、练习拓展,巩固新知。
练习1:根据魔术师的表演把写出的加法算式改写出乘法算式。
练习2:寻找生活中的乘法。
四、小结。
同学们,这节课你知道了什么?你觉得自己的表现怎么样?
五、布置作业。
提前预习下一课。
板书设计:
求几个相同加数的和用乘法计算比较简便。
教学反思:
经过一段时间的学习,乘法的初步认识已经学完,也为学生作了相应的检测,总体来说还可以,但也有许多不尽人意的地方。
比如,有许多同学对乘法的意义理解还不透彻,如7个6相加,有些同学列式为6+7.而求8+8+8+8+8+8+8+8的和是多少,有些同学列式为88。另外,学生对生活中的题目解决不够好,(1)一星期有7天,3个星期有( )天。(2)我们每天在学校的时间大约是6小时,一周(过双休)在校学习时间大约是( )小时。这两个题目可以说是拔高的题目,仍有大部分的同学做对了,但也有老师讲解完还是不明白的同学,还需多进行生活实践类题目的指导。
二年级下数学教案【篇二】
学习内容:“水桶和油桶”的问题
学习目标:
1.让学生增加对数学的兴趣,认识数学的多种形式。
2.另外教授一些数学计算的巧妙方法。
3.引导学生通过思考操作发现并验证“水桶和油桶”问题的特征,培养学生大胆猜测、勇于探究的求索精神。
4.利用简便方法,提高学生计算效率,更加高效的学习数学。
学习形式:学生自主探索、合作交流
学习过程
一、引入
师:提出问题:你能解决这样的问题吗?展台出示题目。
二、探究新知
1.请同学们取出1号靶,认真观察(引导学生观察)
2.小组交流,探究解决。
3.请同学们取出2号靶,尝试解决。(引导学生动手实践)如果有的学生做出来,让孩子展示,教师给予赞赏;如果学生做不出来,充分调动组内力量,探究解决。
4.请同学们按照组内交流出的方法各自解决。(小组合作,互相帮助)
三、课堂拓展
同学们通过今天这节课的学习,是不是觉得数学充满了奥秘呢?课后,有兴趣的同学可以在网络上找很多有关“水桶和油桶”的知识,然后和老师、同学们一起去研究研究,好吗?
今后老师会继续为你们介绍一些更有趣的数学现象,这些数学方法更贴近你们平时的数学学习,有助于你们更好地学习数学。
二年级下数学教案(篇三)
教学目标:
1、让学生在情景中发现问题,在解决问题的过程中探究整百、整千数的加减法的计算方法,并在多种方法中选择自己喜欢的方法正确计算。
2、培养学生用独立思考、合作交流等方式解决简单实际问题的能力。
3、体验数学与生活的密切联系,形成良好的思维习惯。
4、在交流与评价中培养学生的自信心。
教学重点:
掌握整百、整千的进(退)位加减法的计算方法。
教学难点:
掌握口算方法并口述其算理。
教学过程:
一、创设情境,提出问题
创设看电视机和冰箱提出想知道的问题(单价、求和、求差)。
二、联想猜测,明确方向
1、组织猜单价活动。
2、明确探索方向
三、自主探索,成果展示
1、独立尝试,先行先试(同时完成两个问题)
2、小组合作,质疑问难
3、展示成果,得出算法
第一个问题:1000+20xx=3000(元)
(1)数的组成:1个千加2个千是3个千,3个千是3000。
(2)以小见大:从1+2=3想出1000+20xx=3000。
(3)两个加数都先去掉三个零,再相加,然后在得数末尾添上三个零。
(4)1+2=3,10+20=,100+200=,1000+20xx=,1000+500=来分析辩解零个数要相同)
第二个问题:20xx-1000=1000(元)方法同上。
4、迁移类推,完善算法(例10的变形)——“想加求差”法
小头爸爸买回电视机和冰箱共花了3000元,已知电视机的单价1000元,冰箱的单价是多少呢?
5、应用新知,解决问题(例10及做一做的题目)
师:真了不起,大家不但帮助小头爸爸正确算钱,又在算钱的过程中,想出了这么多解决问题的好方法,打开书本,完成P81例10和小精灵聪聪的两道题。
1、例10:80+50=130-80=(说想法)
2、900+600=(由一想二:1500-600=900,1500-600=900)
(出示课题:整百、整千数加减法)
四、模拟练习,扩展应用
1、真接说得数,带红色的要说算理。
70+50=
800+400=
3000+6000=
9000-5000=
1200-500=
1500+1000=
2、捉鼠游戏P84第一题。(让学生先独立完成,再同桌互相质疑释疑,然后向全班求助,组织学生点评)
3、扩展题。在()里填整百、整千数。
()+()=7001000-()=()
4、小头爸爸可有钱呀,共带去了5000元,够花吗?还剩多少钱呀?
五、归纳总结,完善认知
1、学生汇报学习所得
2、教师评价学习情况
二年级下数学教案【篇四】
教学目标:
1、通过比一比活动,掌握比较万以内数的大小的方法,能够用符号表示万以内数的大小。
2、通过估计,结合现实素材,感受大数的意义,体会估计在现实生活中的实际作用。
教学准备:
教师:数字卡片、
学生:100以内的数字卡片
教学过程:
一、复习
1、同桌用100以内的数字卡片,每次每人抽出一张,谁先说出大数,谁就赢。
2、交流判断大数的经验。
二、新授
1、教学“比一比”
(1)出示1084、982说说谁大,谁小?
(2)学生说:三位数比四位数小,所以1084>982
(3)教师出示另一些数,学生进行比较。
(4) 总结规律:
数的比较:
(1)数位比较多的一个数比较大
(2)从位比起,位的数大的大(数位相同)
(3)如果数位和位都相同,我们比较下一位。
2、练一练
(1)学生完成P36在O里填上、=
(2)说说自己为什么这样填
3、试一试
(1)教师指导学生读题,理解题意
(2)说说怎样能比较快地比出大小?
(3)教师总结:
先将这些数按数位多少分一分,再将相同数位的数进行比较。
99
4、想一想
(1)指导读题,理解题意
(2)最小的四位数1000,的四位数9999
5、数学游戏:
(1)告诉同桌你写了一个什么样的数,……
(2)请一个学生上台示范,全班再分组做。
6、练一练
完成练习题1、2两道题
三、小结
这节课,同学们都学到了哪些知识?
1、学会了比较万以内数的大小
2、四位数与三位数怎样比
3、都是同数位的数怎样比
4、如果很多数在一起比较大小,该怎样做
四、作业
1、最小的四位数是( ),的四位数是( )
2、最小的三位数是( ),的三位数是( )
3、在287、7650、80、285、1651、79这几个数中,二位数的有( ),三位数的有( ),四位数的有( )
4、427 O 527 1620 O 620 888 O 988
29 O110 99 O 999 6080 O 3090
二年级下数学教案【篇五】
教学目标:
1.通过实例,认识统计表中和条形统计图,知道条形统计图中1格代表1个单位。
2.能根据统计图表中的数据,提出并回答简单的问题,并作出简单的预测。
教学重难点:
1.根据实例,读懂统计表和条形统计图,从统计图表中获取信息。
2.根据统计图表中的数据,作出简单的预测。
教学准备:
草稿纸。
教学过程:
一、读懂纵向统计图
1.会看统计图。
师:这是育才小学二年级同学最喜欢的电视节目统计图,请同学们认真观察:这个统计图和你们以前接触过的统计图有什么不同?学生可能会发现:
(1)现在的统计图中有很多的直条。
(2)在统计图的左边还有许多数。师:你知道统计图中的直条和左边的数各表示什么吗?让学生自由发言,交流自己的想法。教师说明:图中的直条表示喜欢各种电视节目的人数;图中左边的数的意义是:1格代表1个单位,在这里1格代表1个人,2格代表2个人……
2.从统计图中获取信息。师:这个统计图告诉了你什么?
(1)学生独立思考。
(2)然后在小组内交流。
(3)最后小组代表汇报。
学生可能会从图中看出:喜欢卡通片的人数最多,有12热;喜欢看歌舞片的人数最少,才4人;喜欢看新闻和喜欢看电视剧的人数同样多……从图中还能计算出一共统计了39个人。
3.延伸。
师:根据统计图表中的信息,你又想到了什么?让学生说出自己的想法,充分发挥学生的想象力。
4.给统计图起名字。师:同学们仔细观察一下这个统计图,你认为给它起个什么名字好呢?
(1)让学生自由发言,说一说自己喜欢的名字。
(2)教师指出:因为这种统计图是用直条的高矮表示数量的多少,所以我们给它起个名字,叫做“条形统计图”。
5.条形统计图的优点。
(1)学生说一说用条形统计图进行统计有哪些优点。
(2)教师总结:条形统计图的优点是只管得看出数量的多少,一目了然。
二、读懂横向统计图
1、条形统计图可以是横向的。
师:这是育才小学二年级同学最喜欢的体育项目统计图,这副统计图和第一副比较,又有什么不同?学生会发现,第一副统计图是直条是竖着的,第二副的直条是横着的……教师肯定:条形统计图也可以是横向的。
2、会看横向统计图。鼓励学生自己说一说横着看、竖着看各表示什么。
3、从图中获取信息。让学生与同伴说一说,从图中了解到了哪些信息。
4、讨论。
师:如果我们班要组织单项体育竞赛,你认为组织哪项比赛欢迎?组织学生讨论、交流。当他们的意见不一致时,使学生体会到通过统计有助于做出决策。
三、读懂统计表
1、会看统计表。
师:这是某地安装电话情况的统计表。你们知道这个统计表中的第一行和第二行各表示什么吗?
(1)学生自由发言。
(2)引导学生说出:统计表的第一行表示年份,每隔5年统计一次,而第二行表示这个地区安装电话的部数。
2、对统计表所呈现的信息作出分析。对统计表所呈现的信息作出分析,学生会感到比较捆但。教师可以引导学生作出简单的分析:如1985年安装的电话很少,只有18部,以后每五年统计一次,电话数量逐年增加:1985到1990年增加142部;1990—1995年增加190部;1995—20xx年增加950部,远远高于前些年的增长速度。
3、估计。
在学生对统计表所呈现的信息作出简单分析的基础上,鼓励学生根据表中组数的变化情况估计一下现在可能有多少部电话。
四、课堂总结
学生说一说这节课的收获与体会,教师给予评价。
二年级下数学教案(篇六)
教学内容:
课本第87~89页。
教学目标:
1、使学生通过“称一称”的实践活动,亲自感受1课和1千克的实际质量。
2、通过实践活动使学生加深质量单位的理解,让学生深刻体会到质量单位与实际生活是紧密联系的,在实际生活中是非常有用的。
3、培养学生的动手能力及创新意识。
4、培养学生与他人的合作意识和分工合作的精神。
教学重点:
1、进一步了解克和千克的质量单位概念。
2、能够用老师提供的称,来称量物体质量。
教学难点:
巩固对质量单位实际概念是认识。
教学准备:
天平,盘称,适量的生活用品,如水果,蔬菜等。
教学过程:
一、创设情境,引人新知。
请同学们想一想上节课我们学习了哪些知识?
二、实践、操作领悟新知
1、称一称。
(1)我们通过调查,知道了一些物品的质量。如果想知道同学们带来的水果蔬菜的质量,可以用什么方法?
要称我们就要用到什么?下面就让我们一起来认识几种常见的称。这些称各有什么用途?
(2)下面我们来重点实践一下生活中最常见的盘称和电子称。
出示挂图称水果、蔬菜。
1千克苹果有多少个?能把书中的苹果数一数吗?你们想自己称一称吗?
(3)分组活动。
明确活动要求:各小组把自己带来的水果、蔬菜各称出1千克。再数一数各有多少个。
(4)刚才我们使用了盘称称物品的质量,是用什么作单位?请小组长上来汇报一下本组称的结果。
(5)通过刚才的小组活动,大家发现1千克的水果、鸡蛋有几个。鱼有几条?
2、估一估。
(1)大家能估一估你们带来的其他日用品的质量有多少吗?你估计的理由是什么?把估计的结果写到书上。
(2)称一称,验证学生估计的结果。
(3)请大家看书上的图,李奶奶从市场里买了苹果、鸡蛋、鱼,大家可以提出哪些数学问题?
三、教学效果测评
1、引导学生完成教材第88页第1题。
2、引导学生完成教材第88页第2题。
3、引导学生完成教材第89页第7题。
四、全课总结。
今天我们学到了什么?请大家想一想,说一说
1-6年级数学教案
引用您的要求编辑为您汇集了一篇“1-6年级数学教案”,阅读完这篇文章后您可以把它分享给您的朋友们让大家都受益。教案课件是老师上课中很重要的一个课件,就需要老师用心去设计好教案课件了。 良好的教案和课件是提高教学质量和效益的保障。
1-6年级数学教案(篇1)
教学目标:
1、使学生能正确数出数量100以内的物体的个数,知道这些数是由几个十和几个一组成的。
2、能根据提供的素材,估计数量在100以内的.物体的个数;通过对100以内的数的认识,进一步培养学生的数感。
3、激发学生学习数学的兴趣,培养学生的合作意识。
教学重点:
认识100以内的数,建立100以内数的数感。
教学难点:
100以内数的“拐弯数”。
教具准备:
小棒、方块、回形针、珠子
教学过程:
一、故事导入--骄傲的青蛙
1、老师讲故事
2、我们以前认识过哪些数?谁能从0数到20?
二、数数活动
1、这节课我们继续来学习数数。老师准备了一些物品,谁来说说你们组都有什么?(小棒、方块、回形针、珠子)
2、数出物体的个数,思考:“怎样摆放,才容易看清楚?”
3、汇报,交流数数的方法。
引导学生总结出“先一个一个地数,10个一是10,在十个十个地数,10个十是100”
4、帮小猪数泡泡。
5、动手摆一摆
同桌合作要求:随意抓一把物品,数一数有多少个?
三、巩固练习
1、说明游戏玩法。
教师:下面我们做个游戏。(教师抓一把糖,放在实物投影下。)请学生先估一估,然后数一数,看谁估得准数得对。
2、学生同桌做游戏。
3、发展游戏。
四、总结:“这节课你学到了什么?”
1-6年级数学教案(篇2)
1.展示生活中一些平行四边形的实际应用图片(推拉门,活动衣架,篱笆、井架等),想一想:这里面应用了平行四边形的什么性质?
2.思考:拿一个活动的平行四边形教具,轻轻拉动一个点,观察不管怎么拉,它还是一个平行四边形吗?为什么?(动画演示拉动过程如图)
3.再次演示平行四边形的移动过程,当移动到一个角是直角时停止,让学生观察这是什么图形?(小学学过的长方形)引出本课题及矩形定义.
矩形定义:有一个角是直角的平行四边形叫做矩形(通常也叫长方形).
矩形是我们最常见的图形之一,例如书桌面、教科书的封面等都有矩形形象.
【探究】在一个平行四边形活动框架上,用两根橡皮筋分别套在相对的两个顶点上(作出对角线),拉动一对不相邻的顶点,改变平行四边形的形状.
①随着∠α的变化,两条对角线的长度分别是怎样变化的?
②当∠α是直角时,平行四边形变成矩形,此时它的其他内角是什么样的角?它的两条对角线的长度有什么关系?
操作,思考、交流、归纳后得到矩形的性质.
矩形性质1 矩形的四个角都是直角.
矩形性质2 矩形的对角线相等.
如图,在矩形ABCD中,AC、BD相交于点O,由性质2有AO=BO=CO=DO=AC=BD.因此可以得到直角三角形的一个性质:直角三角形斜边上的中线等于斜边的一半.
例习题分析
例1(教材P104例1)已知:如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=4cm,求矩形对角线的长.
分析:因为矩形是特殊的平行四边形,所以它具有对角线相等且互相平分的特殊性质,根据矩形的这个特性和已知,可得△OAB是等边三角形,因此对角线的长度可求.
解:∵ 四边形ABCD是矩形,
∴ AC与BD相等且互相平分.
∴ OA=OB.
又∠AOB=60°,
∴△OAB是等边三角形.
∴矩形的对角线长AC=BD=2OA=2×4=8(cm).
例2(补充)已知:如图,矩形ABCD,AB长8cm,对角线比AD边长4cm.求AD的长及点A到BD的距离AE的长.
分析:(1)因为矩形四个角都是直角,因此矩形中的计算经常要用到直角三角形的性质,而此题利用方程的思想,解决直角三角形中的计算,这是几何计算题中常用的方法
1-6年级数学教案(篇3)
1.通过类比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0),分清二次项及其系数、一次项及其系数与常数项等概念.
2.了解一元二次方程的解的概念,会检验一个数是不是一元二次方程的解.
重点
通过类比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0)和一元二次方程的解等概念,并能用这些概念解决简单问题.
难点
一元二次方程及其二次项系数、一次项系数和常数项的识别.
活动1 复习旧知
1.什么是方程?你能举一个方程的例子吗?
2.下列哪些方程是一元一次方程?并给出一元一次方程的概念和一般形式.
(1)2x-1 (2)mx+n=0 (3)1x+1=0 (4)x2=1
3.下列哪个实数是方程2x-1=3的解?并给出方程的解的概念.
A.0B.1C.2D.3
活动2 探究新知
根据题意列方程.
1.教材第2页 问题1.
提出问题:
(1)正方形的大小由什么量决定?本题应该设哪个量为未知数?
(2)本题中有什么数量关系?能利用这个数量关系列方程吗?怎么列方程?
(3)这个方程能整理为比较简单的形式吗?请说出整理之后的方程.
2.教材第2页 问题2.
提出问题:
(1)本题中有哪些量?由这些量可以得到什么?
(2)比赛队伍的数量与比赛的场次有什么关系?如果有5个队参赛,每个队比赛几场?一共有20场比赛吗?如果不是20场比赛,那么究竟比赛多少场?
(3)如果有x个队参赛,一共比赛多少场呢?
3.一个数比另一个数大3,且两个数之积为0,求这两个数.
提出问题:
本题需要设两个未知数吗?如果可以设一个未知数,那么方程应该怎么列?
4.一个正方形的面积的2倍等于25,这个正方形的边长是多少?
活动3 归纳概念
提出问题:
(1)上述方程与一元一次方程有什么相同点和不同点?
(2)类比一元一次方程,我们可以给这一类方程取一个什么名字?
(3)归纳一元二次方程的概念.
1.一元二次方程:只含有________个未知数,并且未知数的最高次数是________,这样的________方程,叫做一元二次方程.
2.一元二次方程的一般形式是ax2+bx+c=0(a≠0),其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.
提出问题:
(1)一元二次方程的一般形式有什么特点?等号的左、右分别是什么?
(2)为什么要限制a≠0,b,c可以为0吗?
(3)2x2-x+1=0的一次项系数是1吗?为什么?
3.一元二次方程的解(根):使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解(根).
活动4 例题与练习
例1 在下列方程中,属于一元二次方程的是________.
(1)4x2=81;(2)2x2-1=3y;(3)1x2+1x=2;
(4)2x2-2x(x+7)=0.
总结:判断一个方程是否是一元二次方程的依据:(1)整式方程;(2)只含有一个未知数;(3)含有未知数的项的最高次数是2.注意有些方程化简前含有二次项,但是化简后二次项系数为0,这样的方程不是一元二次方程.
例2 教材第3页 例题.
例3 以-2为根的一元二次方程是()
A.x2+2x-1=0 B.x2-x-2=0
C.x2+x+2=0 D.x2+x-2=0
总结:判断一个数是否为方程的解,可以将这个数代入方程,判断方程左、右两边的值是否相等.
练习:
1.若(a-1)x2+3ax-1=0是关于x的一元二次方程,那么a的取值范围是________.
2.将下列一元二次方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项.
(1)4x2=81;(2)(3x-2)(x+1)=8x-3.
3.教材第4页 练习第2题.
4.若-4是关于x的一元二次方程2x2+7x-k=0的一个根,则k的值为________.
答案:1.a≠1;2.略;3.略;4.k=4.
活动5 课堂小结与作业布置
课堂小结
我们学习了一元二次方程的哪些知识?一元二次方程的一般形式是什么?一般形式中有什么限制?你能解一元二次方程吗?
作业布置
教材第4页 习题21.1第1~7题.
1-6年级数学教案(篇4)
学习目标
1、通过运算多项式乘法,来推导平方差公式,学生的认识由一般法则到特殊法则的能力。
2、通过亲自动手、观察并发现平方差公式的结构特征,并能从广义上理解公式中字母的含义。
3、初步学会运用平方差公式进行计算。
学习重难点重点:
平方差公式的推导及应用。
难点是对公式中a,b的广泛含义的理解及正确运用。
自学过程设计教学过程设计
看一看
认真阅读教材,记住以下知识:
文字叙述平方差公式:_________________
用字母表示:________________
做一做:
1、完成下列练习:
①(m+n)(p+q)
②(a+b)(x-y)
③(2x+3y)(a-b)
④(a+2)(a-2)
⑤(3-x)(3+x)
⑥(2m+n)(2m-n)
想一想
你还有哪些地方不是很懂?请写出来。
_______________________________
_______________________________
________________________________、
1、下列计算对不对?若不对,请在横线上写出正确结果、
(1)(x-3)(x+3)=x2-3( ),__________;
(2)(2x-3)(2x+3)=2x2-9( ),_________;
(3)(-x-3)(x-3)=x2-9( ),_________;
(4)(2xy-1)(2xy+1)=2xy2-1( ),________、
2、(1)(3a-4b)( )=9a2-16b2; (2)(4+2x)( )=16-4x2;
(3)(-7-x)( )=49-x2; (4)(-a-3b)(-3b+a)=_________、
3、计算:50×49=_________、
应用探究
1、几何解释平方差公式
展示:边长a的大正方形中有一个边长为b的小正方形。
(1)请计算图的阴影部分的面积(让学生用正方形的面积公式计算)。
(2)小明将阴影部分拼成一个长方形,这个长方形长与宽是多少?你能表示出它的.面积吗?
2、用平方差公式计算
(1)103×93 (2)59、8×60、2
拓展提高
1、阅读题:
我们在计算(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)时,发现直接运算很麻烦,如果在算式前乘以(2-1),即1,原算式的值不变,而且还使整个算式能用乘法公式计算、解答过程如下:
原式=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)
=(22-1)(22+1)(24+1)(28+1)(216+1)(232+1)
=(24-1)(24+1)(28+1)(216+1)(232+1)
=……=264-1
你能用上述方法算出(3+1)(32+1)(34+1)(38+1)(316+1)的值吗?请试试看!
2、仔细观察,探索规律:
(x-1)(x+1)=x2-1
(x-1)(x2+x+1)=x3-1
(x-1)(x3+x2+x+1)=x4-1
(x-1)(x4+x3+x2+x+1)=x5-1
……
(1)试求25+24+23+22+2+1的值;
(2)写出22006+22005+22004+…+2+1的个位数、
堂堂清
一、选择题
1、下列各式中,能用平方差公式计算的是( )
(1)(a-2b)(-a+2b);
(2)(a-2b)(-a-2b);
(3)(a-2b)(a+2b);
(4)(a-2b)(2a+b)、
1-6年级数学教案(篇5)
教学内容:
义务教育课程标准实验教科书小学数学四年级下册第40~42页
教学目标:
1.使学生理解三角形的概念,知道它各部分的名称,了解它的特性,掌握它的分类。
2.培养学生的探究意识和观察、比较、分析、判断等能力,发展学生的创新思维。
3.在小组合作学习中培养学生的团结合作精神,激发学生良好的数学学习情感,增强学习的自信心。
教学过程:
一、活动一:生活引入,直入主题
谈话:你们喜欢旅游吗?老师就特别喜欢旅游,尤其爱看城市中的建筑,走在繁华的街道上,看着一座座宏伟的建筑,就能感受到这座城市的魅力。不过受时间限制,有些地方我们也只能在书中或网上领略它的风采了。我这里收集了一些建筑物的图片,咱们一起欣赏一下吧。(电脑出示)美吗?这些图片中最基本的图形是什么?(三角形)你知道这其中的高楼大厦是在什么机器的协助下盖起来的吗?(塔吊)(出示信息窗)来看看这幅图,你看到了什么?
学生回答:塔吊上有许多三角形
谈话:为什么饱经风雨的宏伟建筑和结实的塔吊最基本的构造都是三角形呢?
学生回答:具稳定性、牢固
谈话:三角形到底有什么魅力,使人们在生活中处处都离不开它?这节课我们就一起来研究三角形。(板书课题:三角形的认识)
【设计意图】通过从生活中寻找形似三角形的物体,使学生感受到三角形对人们生活的重要性。引导学生提出“为什么要设计成三角形?”这样有价值的问题,从而进一步思考三角形有何种特性。
二、活动二:深入生活,感知特性
谈话:三角形真的牢固吗?让我们动手试一试。每个小组内有一个三角形框架和一个多边形框架,先观察一下,两者间有什么区别?
引导学生观察边和角的数量。
分别拉一拉,比比看,两个框架有什么变化。
学生操作实验并回答发现:三角形框架形状没有发生改变,多边形形状变了。
谈话:这是为什么呢?
学生可能回答:三角形有三条边把它的形状固定住了,所以怎么拉它也不会变形,而四边形不具稳定性,轻轻一拉就变形了。
总结:刚才同学说的很对,三角形是牢固的,也可以说它具有稳定性。(板书:稳定性)我们的生活中常常巧妙的利用了这一点。像这样的小木凳,(课件出示木凳)用得时间久了,经常会不牢固,你们有办法修修它吗?
学生回答:加斜杠,只有构成三角形,凳子才不摇,说明三角形具有稳定性。
谈话:看这两幅图中,哪里用到了三角形的稳定性?(课件出示这些物体的图片)生活中还有哪些应用三角形稳定性的例子?(学生举例)
谈话:三角形的稳定性在生活中的体现无处不在,请看(电脑出示)建筑上的斜拉桥、铁塔、自行车架、照相机三角支架、电线杆、房屋的金字架、上海东方明珠电视塔、吊车的长臂、埃及金字塔、香港中银大厦、晒衣架,太阳能架、大广告牌后面三角支架,相框后三角支架,固定小树用三角形,铁栏杆里外每隔一段有一支斜的铁杆,构成三角形。细心观察你还会发现更多呢!
【设计意图】通过亲自动手操作,验证三角形具有“稳定性”这一特点,并能有条理地把操作过程及呈现结果进行简单的表述。结合生活中物体的直观形象,体会三角形的稳定性及给人们生活带来的方便好处。
三、活动三:自制图形,引导归纳。
谈话:每个小组里都有几根小棒,请你试着用它们摆出三角形,边摆边思考:三角形是怎样构成的?
学生观察讨论:由三条边按顺序围起来(强调解释重点字眼:围成)
谈话:谁能来试着总结一下什么叫三角形?
学生总结:由三条线段围成的图形叫做三角形。(板书)
谈话:三角形除了有三条边,还有什么?你能再试着找找吗?(教学三个角、三个顶点)
【设计意图】通过学生亲自操作,了解三根小棒是一根接着一根连在一起的,明白围成的含义,并能总结出三角形的概念,结合自己摆出的三角形进一步观察了解三角形的各组成部分。
四、活动四:观察分析,按角分类。
1.新授
谈话:每个小组的学具袋里都放着许多三角形,这些大大小小,形形色色的看起来好象各不相同,可细心的人发现有一些三角形放在一起还有不少共同点呢。请大家仔细观察三角形中各角的特点,以小组为单位,将学具袋里的三角形分分类,抓住主要特征为这类三角形起个名字。
(学生操作)
谈话:谁来把你们组的分类结果展示给同学们看看?
(学生分类)
谈话:能给你们分的这几类三角形分别起个名字吗?
学生:三个都是锐角, 叫锐角三角形
一个直角,两个锐角,叫直角三角形 教师板书
一个钝角,两个锐角,叫钝角三角形
2.巩固
谈话:下面我们来做个小游戏,请同学们扮演这三种不同类型的三角形来向大家作以简单介绍。(我是一个三角形,我的特点是……)其他同学根据它的介绍来猜猜它的名字,好吗?
谈话:认识三种三角形,你能根据各自的特征把他们画下来吗?打开书第44页,完成自主练习3.(学生独立完成,教师点评)
【设计意图】给学生足够的思考空间,让学生通过观察,自己总结各种三角形的特点并加以分类,引导学生形成正确的图形表象,发展空间观念。
五、活动五:观察三边,按边分类
谈话:我了解了三角形按角可以分为三类,其实它们的边也可作为分类的依据。(出示等腰三角形、等边三角形)小组讨论一下,它们有什么不同,可以怎样分类。(引导学生用量,对折……的方法验证一下)
(学生讨论)边分类边回答
学生:三条边都不相等: 不等边三角形
两边相等: 等腰三角形
三条边都相等: 等边三角形(也叫正三角形)
有时我们把等边三角形看成是等腰三角形中的一种特殊情况。
谈话:等腰三角形和等边三角形各部分也有名称,请打开书第42页自学。
(学生自读了解)
请同学介绍等腰三角形和等边三角形各部分的名称。
小结:我们通过刚才的学习了解到三角形如果按角分可分为:锐角三角形、直角三角形、钝角三角形,还有两边相等的等腰三角形和三边相等的等边三角形。
老师这里有许多三角形,你能试着给它们找找家吗?请打开书44页,完成自主练习的第2题。
(反馈、订正)
练习:再来看这幅图(课件出示书45页第4题)在地板砖图案中,你能找到哪些三角形?还能找到哪些图形?
【设计意图】知道按边分,三角形可以分为哪几类,丰富三角形分类的知识。了解等腰三角形和等边三角形各部分的名称及特点,以结合名称特点帮助学生理解记忆两个特殊三角形。
六、活动六:结合已知,教学底、高
谈话:我们在上学期学习过如何过直线外一点作这条直线的垂线。还记得怎样画吗?谁来示范一个?
(学生板书)
谈话:今天我们就在这个知识的基础上学习三角形的底和高。(边画边讲解)任选三角形的一个顶点,向它的对边作一条垂线,顶点和垂足之间的线段就叫做三角形的高,这条对边就叫做三角形的底。看清楚了吗?
【设计意图】以旧知带新知,既复习巩固,又使得新知的出现没那么突然,学生自然轻松地掌握,记忆深刻。
七、活动七:回顾整理,拓展延伸
谈话:回忆一下,这节课你都有哪些收获?课后我们可以利用三角形来画一幅画,尽可能多的使用各种类型的三角形,明天我们开个画展,看看谁的画最有特点。
【设计意图】让学生用自己的话回顾本节课学习的重点,最后布置以三角形为素材作画,寓教于乐,让学生边复习三角形的分类边体会数学带给人们生活的乐趣。
课后反思:
三角形是学生们平日里接触较多的一种图形,在低年级就已经直观认识过,因而本课的重点就放在三角形的稳定性、定义和分类上。所学重难点都是由学生在操作中获得的,不是由老师讲出来,硬塞给学生。这样做,学生就会主动参与学习,落到实处,效果也好。在整个课堂里,老师只是充当一个参与者、引导者。课堂总结也是通过老师的引导,由学生做出归纳,这样效果要比由老师包办好。从这节课可以看出
1.有效地激发了学生的兴趣,促进学生主动参与。
从学生的生活入手,让学生感受三角形与生活的密切联系,从而激发学生学习三角形的热情,变“要我学”为“我要学”。
2.改变数学学习方式,引导学生经历过程。
学习不仅是追求一个完美的结论,它更是一种经历,要让学生亲身体验、感知、认识和学习。“三角形的分类”是本课的重点与难点,因而更应给学生充足的时间与空间让学生充分去操作,去感知,去思考、交流,让学生在交流中碰撞思维,促进思维的发展。
3.及时进行科学评价,激励学生全面发展。
评价的主要目的在于:“激励学生的学习热情,促进学生的全面发展。”因而,在评价过程中,我注意了运用多种评价方式,及时对学生的表现进行评价与鼓励,让学生树立自我认同感,明确努力方向。
数学学习应给学生带来快乐。数学其负载的功能不仅仅是让学习者记住它,掌握它,更重要的是要让他们在学习的过程中体验学习它的快乐,感受它的魅力。因此,在教学过程中,不仅要使学生获得知识和技能,更应关注他们的学习过程,特别是学生对数学的感觉,同时应不断给学生“成功”的体验,让学生快乐地学习。
1-6年级数学教案(篇6)
【教学目标】
知识与技能
会推导平方差公式,并且懂得运用平方差公式进行简单计算。
过程与方法
经历探索特殊形式的多项式乘法的过程,发展学生的符号感和推理能力,使学生逐渐掌握平方差公式。
情感、态度与价值观
通过合作学习,体会在解决具体问题过程中与他人合作的重要性,体验数学活动充满着探索性和创造性。
【教学重难点】
重点:平方差公式的推导和运用,以及对平方差公式的几何背景的了解。
难点:平方差公式的应用。
关键:对于平方差公式的推导,我们可以通过教师引导,学生观察、总结、猜想,然后得出结论来突破;抓住平方差公式的本质特征,是正确应用公式来计算的关键。
【教学过程】
一、创设情境,故事引入
【情境设置】教师请一位学生讲一讲《狗熊掰棒子》的故事
【学生活动】1位学生有声有色地讲述着《狗熊掰棒子》的故事,其他学生认真听着,不时补充。
【教师归纳】听了这则故事之后,同学们应该懂得这么一个道理,学习千万不能像狗熊掰棒子一样,前面学,后面忘,那么,上节课我们学习了什么呢?还记得吗?
【学生回答】多项式乘以多项式。
【教师激发】大家是不是已经掌握呢?还是早扔掉了呢?和小狗熊犯了同样的错误呢?下面我们就来做这几道题,看看你是否掌握了以前的知识。
【问题牵引】计算:
(1)(x+2)(x—2);(2)(1+3a)(1—3a);
(3)(x+5y)(x—5y);(4)(y+3z)(y—3z)。
做完之后,观察以上算式及运算结果,你能发现什么规律?再举两个例子验证你的发现。
【学生活动】分四人小组,合作学习,获得以下结果:
(1)(x+2)(x—2)=x2—4;
(2)(1+3a)(1—3a)=1—9a2;
(3)(x+5y)(x—5y)=x2—25y2;
(4)(y+3z)(y—3z)=y2—9z2。
【教师活动】请一位学生上台演示,然后引导学生仔细观察以上算式及其运算结果,寻找规律。
【学生活动】讨论
【教师引导】刚才同学们从上述算式中找到了这一组整式乘法的结果的规律,这些是一类特殊的多项式相乘,那么如何用字母来表示刚才同学们所归纳出来的特殊多项式相乘的规律呢?
【学生回答】可以用(a+b)(a—b)表示左边,那么右边就可以表示成a2—b2了,即(a+b)(a—b)=a2—b2。
用语言描述就是:两个数的和与这两个数的差的积,等于这两个数的平方差。
【教师活动】表扬学生的探索精神,引出课题──平方差,并说明这是一个平方差公式和公式中的字母含义。
二、范例学习,应用所学
【教师讲述】
平方差公式的运用,关键是正确寻找公式中的a和b,只有正确找到a和b,一切就变得容易了。现在大家来看看下面几个例子,从中得到启发。
例1:运用平方差公式计算:
(1)(2x+3)(2x—3);
(2)(b+3a)(3a—b);
(3)(—m+n)(—m—n)。
《乘法公式》同步练习
二、填空题
5、幂的乘方,底数______,指数______,用字母表示这个性质是______。
6、若32×83=2n,则n=______。
《乘法公式》同步测试题
25、利用正方形的面积公式和梯形的面积公式即可求解;
根据所得的两个式子相等即可得到。
此题考查了平方差公式的几何背景,根据正方形的面积公式和梯形的面积公式得出它们之间的关系是解题的关键,是一道基础题。
26、由等式左边两数的底数可知,两底数是相邻的两个自然数,右边为两底数的和,由此得出规律;
等式左边减数的底数与序号相同,由此得出第n个式子;
1-6年级数学教案(篇7)
教学内容:
P6/例3 P10/例4(含有两级运算或有括号的混合运算)
教学目标:
1. 使学生进一步掌握含有两级运算的运算顺序。
2. 让学生经历探索和交流解决实际问题的过程,感受解决问题的一些策略和方法,
学会用两步计算的方法解决一些实际问题。
3. 使学生在解决实际问题的过程中,养成认真审题、独立思考等学习习惯。
教学过程:
一、主题图引入
观察主题图,找出条件,提出问题。
引导学生观察主题图。从图中你们都看到了什么?能提出什么数学问题?
二、新授
就学生提出的问题,出示例3 星期天,爸爸妈妈带着玲玲去"冰雪天地"游玩,购买门票需要花多少钱?
学生在练习本上解答此问题。
同桌两人说说自己是怎样解答的。
汇报:教师根据学生的汇报进行板书。
(1)24+24+24÷2
=24+24+12
=48+12
=60(元)
24÷2是一张儿童票的价钱,是半价,所以用24÷2,前两个24是爸爸和妈妈的两张成人票的总价。两张成人票加上一张儿童票就是他们购买门票需要多少钱。
(2)24×2+24÷2
=48+12
=60(元)
24×2是爸爸和妈妈两张成人票的总价,玲玲的儿童票用24÷2,再把三张门票的价钱加在一起就是总门票的价钱。
我们用不同的方法解决了同一个问题,这两个综合算式有什么共同特点?
这两个综合算式都是没有括号的,而且算式中有加减法也有乘除法。
这样的综合算式的运算顺序是什么?
学生总结运算顺序。
买3张成人票,付100元,应找回多少钱?
等等。
出示例4 上午冰雕区有游人180位,下午有270位。如果每30位游人需要一名保洁员,下午要比上午多派几名保洁员?
小组讨论,独立完成。
小组内互相说说你是怎样解答的?
汇报。
(1)270÷30-180÷30
=9-6
=3(名)
270÷30算出上午需要派几名保洁员;180÷30算出下午需要派几名保洁员,然后再用减法计算出下午比上午需要多派几名保洁员。
(2)(270-180)÷30
=90÷30
=3(名)
270-180算出下午比上午多出游人多少人,再除以30就算出了下午要比上午多派几名保洁员。
引导学生观察两个算是的不同点,以及运算顺序的不同。
学生进行小结。
教师根据学生的小结进行板书。
三、巩固练习
P7/做一做1、2
P11/做一做(完成书上的后,可以变化条件,如"买2副手套"等等。)
教师在练习的过程中应抓住学生的关键语言进行知识的巩固。
四、作业
P8-9/5-9
板书设计:
四则运算(二)
星期天,爸爸妈妈带着玲玲去"冰雪 上午冰雕区有游人180位,下午有270位。
天地"游玩,购买门票需要花多少钱? 如果每30位游人需要一名保洁员,下午要
(1)24+24+24÷2 (2)24×2+24÷2 比上午多派几名保洁员?
=24+24+12 =48+12 (1)270÷30-180÷30 (2)(270-180)÷30
=48+12 =60(元) =9-6 =90÷30
=60(元) =3(名) =3(名)
运算顺序:在没有括号的算式里,有乘、 运算顺序:算式里有括号,要先算括号里
除法和加、减法,要先算乘、除法。 面的。
课后小结:
1-6年级数学教案(篇8)
21.2.1 配方法(3课时)
第1课时 直接开平方法
理解一元二次方程“降次”——转化的数学思想,并能应用它解决一些具体问题.
提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=0型的一元二次方程.
重点
运用开平方法解形如(x+m)2=n(n≥0)的方程,领会降次——转化的数学思想.
难点
通过根据平方根的意义解形如x2=n的方程,将知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程.
一、复习引入
学生活动:请同学们完成下列各题.
问题1:填空
(1)x2-8x+________=(x-________)2;(2)9x2+12x+________=(3x+________)2;(3)x2+px+________=(x+________)2.
解:根据完全平方公式可得:(1)16 4;(2)4 2;(3)(p2)2 p2.
问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程与一元一次方程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法?
二、探索新知
上面我们已经讲了x2=9,根据平方根的意义,直接开平方得x=±3,如果x换元为2t+1,即(2t+1)2=9,能否也用直接开平方的方法求解呢?
(学生分组讨论)
老师点评:回答是肯定的,把2t+1变为上面的x,那么2t+1=±3
即2t+1=3,2t+1=-3
方程的两根为t1=1,t2=-2
例1 解方程:(1)x2+4x+4=1 (2)x2+6x+9=2
分析:(1)x2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1.
(2)由已知,得:(x+3)2=2
直接开平方,得:x+3=±2
即x+3=2,x+3=-2
所以,方程的两根x1=-3+2,x2=-3-2
解:略.
例2 市政府计划2年内将人均住房面积由现在的10 m2提高到14.4 m2,求每年人均住房面积增长率.
分析:设每年人均住房面积增长率为x,一年后人均住房面积就应该是10+10x=10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x)2
解:设每年人均住房面积增长率为x,
则:10(1+x)2=14.4
(1+x)2=1.44
直接开平方,得1+x=±1.2
即1+x=1.2,1+x=-1.2
所以,方程的两根是x1=0.2=20%,x2=-2.2
因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去.
所以,每年人均住房面积增长率应为20%.
(学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么?
共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想称为“降次转化思想”.
三、巩固练习
教材第6页 练习.
四、课堂小结
本节课应掌握:由应用直接开平方法解形如x2=p(p≥0)的方程,那么x=±p转化为应用直接开平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±p,达到降次转化之目的.若p
五、作业布置
教材第16页 复习巩固1.第2课时 配方法的基本形式
理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题.
通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面两种形式的一元二次方程的解题步骤.
重点
讲清直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤.
难点
将不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧.
一、复习引入
(学生活动)请同学们解下列方程:
(1)3x2-1=5 (2)4(x-1)2-9=0 (3)4x2+16x+16=9 (4)4x2+16x=-7
老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得
x=±p或mx+n=±p(p≥0).
如:4x2+16x+16=(2x+4)2,你能把4x2+16x=-7化成(2x+4)2=9吗?
二、探索新知
列出下面问题的方程并回答:
(1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢?
(2)能否直接用上面前三个方程的解法呢?
问题:要使一块矩形场地的长比宽多6 m,并且面积为16 m2,求场地的长和宽各是多少?
(1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x的完全平方式而后二个不具有此特征.
(2)不能.
既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化:
x2+6x-16=0移项→x2+6x=16
两边加(6/2)2使左边配成x2+2bx+b2的形式→x2+6x+32=16+9
左边写成平方形式→(x+3)2=25降次→x+3=±5即x+3=5或x+3=-5
解一次方程→x1=2,x2=-8
可以验证:x1=2,x2=-8都是方程的根,但场地的宽不能是负值,所以场地的宽为2 m,长为8 m.
像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法.
可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解.
例1 用配方法解下列关于x的方程:
(1)x2-8x+1=0 (2)x2-2x-12=0
分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上.
解:略.
三、巩固练习
教材第9页 练习1,2.(1)(2).
四、课堂小结
本节课应掌握:
左边不含有x的完全平方形式的一元二次方程化为左边是含有x的完全平方形式,右边是非负数,可以直接降次解方程的方程.
五、作业布置
教材第17页 复习巩固2,3.(1)(2).第3课时 配方法的灵活运用
了解配方法的概念,掌握运用配方法解一元二次方程的步骤.
通过复习上一节课的解题方法,给出配方法的概念,然后运用配方法解决一些具体题目.
重点
讲清配方法的解题步骤.
难点
对于用配方法解二次项系数为1的一元二次方程,通常把常数项移到方程右边后,两边加上的常数是一次项系数一半的平方;对于二次项系数不为1的一元二次方程,要先化二次项系数为1,再用配方法求解.
一、复习引入
(学生活动)解下列方程:
(1)x2-4x+7=0 (2)2x2-8x+1=0
老师点评:我们上一节课,已经学习了如何解左边不含有x的完全平方形式的一元二次方程以及不可以直接开方降次解方程的转化问题,那么这两道题也可以用上面的方法进行解题.
解:略. (2)与(1)有何关联?
二、探索新知
讨论:配方法解一元二次方程的一般步骤:
(1)先将已知方程化为一般形式;
(2)化二次项系数为1;
(3)常数项移到右边;
(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;
(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±q;如果q
例1 解下列方程:
(1)2x2+1=3x (2)3x2-6x+4=0 (3)(1+x)2+2(1+x)-4=0
分析:我们已经介绍了配方法,因此,我们解这些方程就可以用配方法来完成,即配一个含有x的完全平方式.
解:略.
三、巩固练习
教材第9页 练习2.(3)(4)(5)(6).
四、课堂小结
本节课应掌握:
1.配方法的概念及用配方法解一元二次方程的步骤.
2.配方法是解一元二次方程的通法,它的重要性,不仅仅表现在一元二次方程的解法中,也可通过配方,利用非负数的性质判断代数式的正负性.在今后学习二次函数,到高中学习二次曲线时,还将经常用到.
五、作业布置
教材第17页 复习巩固3.(3)(4).
补充:(1)已知x2+y2+z2-2x+4y-6z+14=0,求x+y+z的值.
(2)求证:无论x,y取任何实数,多项式x2+y2-2x-4y+16的值总是正数.21.2.2 公式法
理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程.
复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a≠0)的求根公式的推导,并应用公式法解一元二次方程.
重点
求根公式的推导和公式法的应用.
难点
一元二次方程求根公式的推导.
一、复习引入
1.前面我们学习过解一元二次方程的“直接开平方法”,比如,方程
(1)x2=4 (2)(x-2)2=7
提问1 这种解法的(理论)依据是什么?
提问2 这种解法的局限性是什么?(只对那种“平方式等于非负数”的特殊二次方程有效,不能实施于一般形式的二次方程.)
2.面对这种局限性,怎么办?(使用配方法,把一般形式的二次方程配方成能够“直接开平方”的形式.)
(学生活动)用配方法解方程 2x2+3=7x
(老师点评)略
总结用配方法解一元二次方程的步骤(学生总结,老师点评).
(1)先将已知方程化为一般形式;
(2)化二次项系数为1;
(3)常数项移到右边;
(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;
(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±q;如果q
二、探索新知
用配方法解方程:
(1)ax2-7x+3=0 (2)ax2+bx+3=0
如果这个一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.
问题:已知ax2+bx+c=0(a≠0),试推导它的两个根x1=-b+b2-4ac2a,x2=-b-b2-4ac2a(这个方程一定有解吗?什么情况下有解?)
分析:因为前面具体数字已做得很多,我们现在不妨把a,b,c也当成一个具体数字,根据上面的解题步骤就可以一直推下去.
解:移项,得:ax2+bx=-c
二次项系数化为1,得x2+bax=-ca
配方,得:x2+bax+(b2a)2=-ca+(b2a)2
即(x+b2a)2=b2-4ac4a2
∵4a2>0,当b2-4ac≥0时,b2-4ac4a2≥0
∴(x+b2a)2=(b2-4ac2a)2
直接开平方,得:x+b2a=±b2-4ac2a
即x=-b±b2-4ac2a
∴x1=-b+b2-4ac2a,x2=-b-b2-4ac2a
由上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a,b,c而定,因此:
(1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b2-4ac≥0时,将a,b,c代入式子x=-b±b2-4ac2a就得到方程的根.
(2)这个式子叫做一元二次方程的求根公式.
(3)利用求根公式解一元二次方程的方法叫公式法.
公式的理解
(4)由求根公式可知,一元二次方程最多有两个实数根.
例1 用公式法解下列方程:
(1)2x2-x-1=0 (2)x2+1.5=-3x
(3)x2-2x+12=0 (4)4x2-3x+2=0
分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可.
补:(5)(x-2)(3x-5)=0
三、巩固练习
教材第12页 练习1.(1)(3)(5)或(2)(4)(6).
四、课堂小结
本节课应掌握:
(1)求根公式的概念及其推导过程;
(2)公式法的概念;
(3)应用公式法解一元二次方程的步骤:1)将所给的方程变成一般形式,注意移项要变号,尽量让a>0;2)找出系数a,b,c,注意各项的系数包括符号;3)计算b2-4ac,若结果为负数,方程无解;4)若结果为非负数,代入求根公式,算出结果.
(4)初步了解一元二次方程根的情况.
五、作业布置
教材第17页 习题4,5.21.2.3 因式分解法
掌握用因式分解法解一元二次方程.
通过复习用配方法、公式法解一元二次方程,体会和探寻用更简单的方法——因式分解法解一元二次方程,并应用因式分解法解决一些具体问题.
重点
用因式分解法解一元二次方程.
难点
让学生通过比较解一元二次方程的多种方法感悟用因式分解法使解题更简便.
一、复习引入
(学生活动)解下列方程:
(1)2x2+x=0(用配方法) (2)3x2+6x=0(用公式法)
老师点评:(1)配方法将方程两边同除以2后,x前面的系数应为12,12的一半应为14,因此,应加上(14)2,同时减去(14)2.(2)直接用公式求解.
二、探索新知
(学生活动)请同学们口答下面各题.
(老师提问)(1)上面两个方程中有没有常数项?
(2)等式左边的各项有没有共同因式?
(学生先答,老师解答)上面两个方程中都没有常数项;左边都可以因式分解.
因此,上面两个方程都可以写成:
(1)x(2x+1)=0 (2)3x(x+2)=0
因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)x=0或2x+1=0,所以x1=0,x2=-12.
(2)3x=0或x+2=0,所以x1=0,x2=-2.(以上解法是如何实现降次的?)
因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法.
例1 解方程:
(1)10x-4.9x2=0 (2)x(x-2)+x-2=0 (3)5x2-2x-14=x2-2x+34 (4)(x-1)2=(3-2x)2
思考:使用因式分解法解一元二次方程的条件是什么?
解:略 (方程一边为0,另一边可分解为两个一次因式乘积.)
练习:下面一元二次方程解法中,正确的是()
A.(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7
B.(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1=25,x2=35
C.(x+2)2+4x=0,∴x1=2,x2=-2
D.x2=x,两边同除以x,得x=1
三、巩固练习
教材第14页 练习1,2.
四、课堂小结
本节课要掌握:
(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其应用.
(2)因式分解法要使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.
五、作业布置
教材第17页 习题6,8,10,11.21.2.4 一元二次方程的根与系数的关系
1.掌握一元二次方程的根与系数的关系并会初步应用.
2.培养学生分析、观察、归纳的能力和推理论证的能力.
3.渗透由特殊到一般,再由一般到特殊的认识事物的规律.
4.培养学生去发现规律的积极性及勇于探索的精神.
重点
根与系数的关系及其推导
难点
正确理解根与系数的关系.一元二次方程根与系数的关系是指一元二次方程两根的和、两根的积与系数的关系.
一、复习引入
1.已知方程x2-ax-3a=0的一个根是6,则求a及另一个根的值.
2.由上题可知一元二次方程的系数与根有着密切的关系.其实我们已学过的求根公式也反映了根与系数的关系,这种关系比较复杂,是否有更简洁的关系?
3.由求根公式可知,一元二次方程ax2+bx+c=0(a≠0)的两根为x1=-b+b2-4ac2a,x2=-b-b2-4ac2a.观察两式右边,分母相同,分子是-b+b2-4ac与-b-b2-4ac.两根之间通过什么计算才能得到更简洁的关系?
二、探索新知
解下列方程,并填写表格:
方程 x1 x2 x1+x2 x1•x2
x2-2x=0
x2+3x-4=0
x2-5x+6=0
观察上面的表格,你能得到什么结论?
(1)关于x的方程x2+px+q=0(p,q为常数,p2-4q≥0)的两根x1,x2与系数p,q之间有什么关系?
(2)关于x的方程ax2+bx+c=0(a≠0)的两根x1,x2与系数a,b,c之间又有何关系呢?你能证明你的猜想吗?
解下列方程,并填写表格:
方程 x1 x2 x1+x2 x1•x2
2x2-7x-4=0
3x2+2x-5=0
5x2-17x+6=0
小结:根与系数关系:
(1)关于x的方程x2+px+q=0(p,q为常数,p2-4q≥0)的两根x1,x2与系数p,q的关系是:x1+x2=-p,x1•x2=q(注意:根与系数关系的前提条件是根的判别式必须大于或等于零.)
(2)形如ax2+bx+c=0(a≠0)的方程,可以先将二次项系数化为1,再利用上面的结论.
即:对于方程 ax2+bx+c=0(a≠0)
∵a≠0,∴x2+bax+ca=0
∴x1+x2=-ba,x1•x2=ca
(可以利用求根公式给出证明)
例1 不解方程,写出下列方程的两根和与两根积:
(1)x2-3x-1=0 (2)2x2+3x-5=0
(3)13x2-2x=0 (4)2x2+6x=3
(5)x2-1=0 (6)x2-2x+1=0
例2 不解方程,检验下列方程的解是否正确?
(1)x2-22x+1=0 (x1=2+1,x2=2-1)
(2)2x2-3x-8=0 (x1=7+734,x2=5-734)
例3 已知一元二次方程的两个根是-1和2,请你写出一个符合条件的方程.(你有几种方法?)
例4 已知方程2x2+kx-9=0的一个根是-3,求另一根及k的值.
变式一:已知方程x2-2kx-9=0的两根互为相反数,求k;
变式二:已知方程2x2-5x+k=0的两根互为倒数,求k.
三、课堂小结
1.根与系数的关系.
2.根与系数关系使用的前提是:(1)是一元二次方程;(2)判别式大于等于零.
四、作业布置
1.不解方程,写出下列方程的两根和与两根积.
(1)x2-5x-3=0 (2)9x+2=x2 (3)6x2-3x+2=0
(4)3x2+x+1=0
2.已知方程x2-3x+m=0的一个根为1,求另一根及m的值.
3.已知方程x2+bx+6=0的一个根为-2,求另一根及b的值.