三角形的内角和课件
发布时间:2023-05-12 三角形内角课件 内角课件三角形的内角和课件推荐11篇。
跟小编一起深入了解“三角形的内角和课件”从不一样的角度去看待它。每个老师需要在上课前弄好自己的教案课件,所以在写的时候老师们就要花点时间咯。教案是教师备课的必备工具。还请您能收藏本网页!
三角形的内角和课件 篇1
一、教学目标:
1、理解掌握三角形内角和是180°,并运用这一性质解决一些简单的问题。
2、通过直观操作的方法,引导学生探索并发现三角形内角和等于180°,在实验活动中,体验探索的过程和方法。
3、在探索和发现三角形内角和的过程中获得成功的体验。
二、教学重、难点:
重点:探索并发现三角形内角和等于180°。
难点:运用三角形内角和等于180°的性质解决一些实际问题。
教具:课件、三角形若干。
学具:量角器、直角三角形、锐角三角形和钝角三角形各一个。
三、教学过程
(一)创设情境,导入新课
我们已经学过了三角形的知识,我们来复习一下,看看大屏幕,各是什么三角形?谁能说说什么是锐角三角形、直角三角形、钝角三角形?追问:不管是什么三角形它们都有几个角呢?这三个角都叫做三角形的内角,而这三个内角的和就是这个三角形的内角和。那么谁来说一说什么是三角形的内角和?三角形有大有小,形状也各不相同,那么它们的内角和有没有什么特点和规律呢?我们来看一个小片段,仔细听它们都说了什么?
教师放课件。
课件内容说明:一个大的直角三角形说:“我的个头大,我的内角和一定比你们大。”一个钝角三角形说:“我有一个钝角,我的内角和才是最大的)一个小的锐角三角形很委屈的样子说“是这样吗?”
都听清它们在争论什么吗?(它们在争论谁的内角和大。)谁能说一说你的想法?(学生各抒己见,是不评价)果真是这样吗?下面我们就来研究“三角形内角和”。
(板书课题:三角形内角和)
(二)自主探究,发现规律
1、探究三角形内角和的特点。
(1)检查作业,并提出要求:
昨天老师让每位学生都分别剪出了锐角三角形、直角三角形和钝角三角形,并量出了每个角的度数,都完成了吗?拿出来吧,一会我们要算出三角形的内角和填在下面的表格里。我们来看一下表格以及要求。出示小组活动记录表。
小组活动记录表
小组成员的姓名
三角形的形状
每个内角的度数
三角形内角的和
(要求:填完表后,请小组成员仔细观察你发现了什么?)
②小组合作。
会使用表格了吗?下面我们就以小组为单位,按照要求把结果填在小组长手中的表格内。
各组长进行汇报。发现了三角形的内角和都是180°左右。
师:实际上,三角形三个内角和就是180°,只是因为测量有误差,所以我们才得到刚才得到的数据。
2、验证推测。
那么同学们有没有什么办法知道三角形的内角和就是180°呢?大家可以讨论一下,学生可能会想到用折拼或剪拼的方法来看一看三角形的三个角和起来是不是180°,也就是说三角形的三个角能不能拼成一个平角。师生先演示撕下三个角拼在一起是否是平角,同学们在下面操作进行体验,再用课件演示把三个内角折叠在一起(这时要注意平行折,把一个顶点放在边上)学生也动手试一试。
通过我们的验证我们可以得出三角形的内角和是180°。
板书:(三角形内角和等于180°。)
3、师谈话:三个三角形讨论的问题现在能解决了吗?你现在想对这三个三角形说点什么吗?(让学生畅所欲言,对得出的三角形内角和是180°做系统的整理。)
4、同学们还有什么疑问吗?大家想一想我们知道了三角形内角和是180°可以干什么呢?(知道三角形中两个角,可以求出第三个角)
出示书28页,试一试第3题,并讲解。
说明:在直角三角形中一个锐角等于30°,求另一个锐角。
生独立做,再订正格式、以及强调不要忘记写度。
小结:同学们有没有不明白的地方?如果没有我们来做练习。
(三)巩固练习,拓展应用
1、出示书29页第一题。说明:第一幅图是锐角三角形已知一个锐角是75°,另一个锐角是28°,求第三个锐角?第二幅图是直角三角形已知一个锐角是35°,求另一个锐角?第三幅图是钝角三角形已知一个锐角是20°,另一个锐角是45°,求钝角?
完成,并填在书上。讲一讲直角三角形还有什么解法。
2、出示29页第2题。
说明:一个钝角三角形说:我的两个锐角之和大于90°。
一个直角三角形说:我的两个锐角之和正好等于90°。让学生判断。
3、画一画:
出示四边形和六边形。运用三角形内角和是180°计算出各自的内角和。你能推算出多边形的内角和吗?
三角形内角和180度是科学家帕斯卡12岁时发现的。我们同学还没到12岁,看你能不能通过自己的努力也去探索和发现。
(四)课堂总结
让学生说说在这节课上的收获!
三角形的内角和课件 篇2
【教学内容】:人教版第八册第85页例5及“做一做”和练习十四的第9、10、12题。
【课程标准】:认识三角形,通过观察、操作、了解三角形内角和是180度。
【学情分析】:
学生已经掌握了三角形的概念、分类,熟悉了钝角、锐角、平角这些角的知识。对于三角形的内角和是多少度,学生是不陌生的,因为学生有以前认识角、用量角器量三角板三个角的度数以及三角形的分类的基础,学生也有提前预习的习惯,很多孩子都能回答出三角形的内角和是180度,但是他们却不知道怎样才能得出三角形的内角和是180度。另外,经过三年多的学习,学生们已具备了初步的动手操作能力、主动探究能力以及小组合作的能力。
【学习目标】:
1、结合具体图形能描述出三角形的内角、内角和的含义。
2、在教师的引导下,通过猜测和计算能说出三角形的内角和是180°。
3、在小组合作交流中,通过动手操作,实验、验证、总结三角形的内角和是180°,同时发展动手动脑及分析推理能力。
4、能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。
【评价任务设计】:
1、利用孩子已有经验,通过教师的提问和引导以及学生的直观观察,说出三角形的内角、内角和的含义。达成目标1。
2、在教师的引导下,以游戏的形式学生通过猜测三角形的内角和是多少度,然后通过计算说出三角形的内角和是180°的结论。达成目标2。
3、在小组合作交流中,通折一折、拼一拼和摆一摆的动手操作、实验、验证并归纳总结出三角形的内角和是180°。达成目标3。
4、能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。通过“做一做”和习题第9、10、12题达成目标4和目标3。
【重难点】
教学重点:探索和发现三角形的内角和是180°。
教学难点: 充分发挥学生的主体作用,自主探索和发现三角形的内角和是180°
【教学过程】
一、复习准备。
1、三角形按角的不同可以分成哪几类?
2、一个平角是多少度?1个平角等于几个直角?两个三角板上各个角的度数?
二、探究新知
(一)创设情境,生成问题,认识三角形的内角及内角和
(播放课件)在图形王国中,有一天,三角形家族里为“三角形内角和的大小”爆发了一场激烈的争吵。钝角三角形大声叫着:“我的钝角大,我的内角和一定比你们的内角和大。”锐角三角形也不示弱:“你虽然有一个钝角,可其它两个角都很小。但是我的三个角都不是很小。我的内角和比你大”。直角三角形说:“别争了,三角形的内角和是180°,我们的内角和是一样大的。”
师:动画片看完了,请大家想一想,什么是三角形的内角和?
师引导学生说出三角形三个内角的度数和叫做三角形的内角和。
多媒体展示:三条线段在围成三角形后,在三角形内形成了三个角(课件闪烁三个角的弧线),我们把三角形内的这三个角,分别叫做三角形的内角(板书:内角),这三个内角的度数的和就叫做三角形的内角和。
(达成目标1:利用多媒体播放动画和孩子已有的经验,通过教师的提问和引导,学生说出什么叫三角形的内角及内角和达成目标1。多媒体创设的情景也为目标二打好铺垫)
(二)、引导猜测三角形的内角和是180度
师:在课件展示的直角三角形、钝角三角形、锐角三角形的对话中,你赞同谁的观点?
预设:学生回答直角三角形。
师:你为什么这么认为呢?
生:我是想三角板上三个角的度数是90度、45度、45度加起来是180度,90度、60度、30度加起来也是180度。
(达成目标2:激发引导学生运用已有经验猜三角形的内角和而不是盲目猜,激起学生的疑问和好奇心,这样在教师的引导下,学生通过猜测三角形的内角和是多少度,然后通过计算说出三角形的内角和是180°的结论。)
(三)、验证三角形的内角和是180度
1.确定研究范围
师:研究三角形的内角和,是不是应该包括所有的三角形?只研究这一个行不行?(不行)那就随便画,挨个研究吧。(学生反对)那该怎样去验证呢?请你们想个办法吧!
师:分类验证是科学验证的一种好方法,下面我们就用分类验证的方法来验证一下,看看三角形的内角和是不是180°?
2.操作验证
教师让每个学习小组拿出课前制作的各种各样的三角形,先找到三个内角,在每个内角标上序号1、2、3。然后请任意用一个三角形,想办法验证我们的猜想。如果有困难,可以启用老师提供的“智慧锦囊”或者寻求同学的帮助。
智慧锦囊:
(1)要知道三个内角的和,只要知道三个角分别是多少度就可以了,你觉得哪个工具可以测出角的度数?试一试。
(2)180°的角是个特殊的角,它是个什么角?你能想办法将这三个内角转化成这样的角吗?
3.汇报交流
师:谁来汇报你的验证结果?
(1)测算法
师小结:用量的方法验证既然有误差、不准,结论就难以让人信服,那有没有办法更好地验证我们的猜测呢?谁还有别的方法?
(2)剪拼法
(3)折拼法
师小结:用拼和折的方法都能将三角形的三个内角转化成一个平角,从而借助我们学过的平角知识证明三角形的内角和确实是180°,你们真会动脑筋!
(4)推算法
①把一个长方形沿对角线分成两个完全一样的直角三角形。因为长方形的内角和是360°,所以一个直角三角形的内角和等于180°。(课件演示过程)
师:直角三角形的内角和已经证明了是180°,现在我们只要能证明:锐角三角形和钝角三角形的内角和也是180°就可以了。
课件演示
②一个锐角三角形,从顶点往下画一条垂线,将三角形分为两个直角三角形,因为我们已经知道直角三角形的内角和是180°,所以两个直角三角形的度数和就是360°,减去两个直角的和180°,就是要证明的三角形内角和,肯定是180°。
4.总结提炼
师:孩子们,刚才我们通过“量——拼——折——推”的方法分类验证了三角形的内角和是( )度?
现在可以下结论了吗?
(板书:三角形三个内角和等于180°。)
师:那在“三角形的争吵中”谁是对的?
(达成目标3。此环节让学生通过“量——拼——折——推”的方法分类验证了三角形的内角和是180度。此环节充分体现了学生学习的主动性。)
(四)利用三角形内角和是180解决问题
1、看图,求出未知角的度数。
2、书本85页“做一做”
在一个三角形中,∠1=140。,∠3=25。,求∠2的度数。
(达成目标3和目标4:能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。通过“做一做”达成目标3和目标4.)
三、目标达成检测方案:
1、求出三角形各个角的度数。
2、埃及金字塔建于4500年前的埃及古王朝时期,它是用巨大石块修砌成的方锥形建筑物,外形像中文“金”字,故名“金字塔”。金字塔大小、高矮各异,外表有四个侧面,每个侧面都是等腰三角形。人们量得这个三角形的一个底角是64度。
四、课堂小结,提升认识
同学们,这节课你有哪些收获?我们是怎样得到“三角形内角和等于180度”这个结论的?
师:是啊,今天咱们不但知道了三角形的内角和是180°,更重要的是我们经历了探究三角形内角和的验证方法。咱们从猜想出发,经过验证(用量、拼、折、推等)得到了结论并利用结论解决了一些问题。孩子们,其实我们在不知不觉中已经走了数学家的探究历程……希望同学们在今后的学习中大胆应用,勇于创新,做最棒的'自己
三角形的内角和课件 篇3
尊敬的各位评委老师好!(鞠躬)
我是小学数学组几号考生,今天我说课的题目是《三角形的内角和》,下面开始我的说课。
依据数学课程标准,在新课程理念的指导下,我将以教什么,怎样教以及为什么这样教的思路,从教材分析,教学目标,教学方法教学内容等方面展开我的说课。
说教材
《三角形的内角和》是人教版小学数学四年级下册第五单元的内容。“三角形的内角和”是三角形的一个重要性质,学好它有助于学生理解三角形内角之间的关系,也是进一步学习几何的基础。本节课是在学生学过角的度量、三角形的特征和分类等知识的基础上进行教学的,学生已经具备一定的关于三角形的认识的直接经验,也已具备了一些相应的三角形知识和技能,这为感受、理解、抽象“三角形的内角和”的规律,打下了坚实的基础。
说学情
一节成功的课,不仅在于对教材的把握,还有对学生的研究。四年级的学生正处于具体形象思维为主导的阶段,他们解决问题的能力很强,但自控力稍差。因此本节课将注重引导学生动脑思考,动手实践,打破以知识传授为主的传统数学课堂模式,采用灵活多样的教学方法,牢牢将学生的注意力集中在课堂中。
说教学目标
根据新课程的要求及教材的编写特点,充分考虑到四年级学生的思维水平,我确立如下三维教学目标:
知识与技能目标:通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。
过程与方法目标:经历观察、猜想、验证的过程,提升自身动手操作及推理、归纳总结的能力。
情感态度价值观目标:在参与学习的过程中,感受数学的魅力,体验成功的喜悦,激发学习数学的兴趣。
说教学重难点
根据教学目标,我确定了本节课的重点和难点。重点为三角形内角和定理,而三角形内角和定理推理的过程为本节课的难点。
说教法
为了更好地突出重点,突破难点,坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,我将采用启发式教学法,引导学生利用已有的知识经验去探索新知,并在探索过程中掌握本节重难点,同时辅之以多媒体教学设备,直观地呈现教学内容。
我将引导学生采用自主探究,合作交流的方式进行学习,通过动手动脑动口来掌握本节课的教学重难点。
说教学内容
为了更好地完成本节课的教学内容,突出重点突破难点,我设计了以下几个教学环节:
(一)创设情境,导入新课
为了引入新课,调动学生的学习兴趣,一开始上课我便用多媒体播放有关三角形内角和情境视频:在图形的王国中,有一天,三角形家族里为“三角形内角和的大小”爆发了一场激烈的争吵。钝角三角形说“我的钝角大,我的内角和一定比你们的内角和大”。锐角三角形也不示弱“你虽然有一个钝角,可是其它两个角都很小,而我的三个角都不是很小,所以我的内角和比你大”。直角三角形说“别争了,我们的内角和是一样大的,因为三角形的内角和是180°”。根据视频中三角形的对话,顺势引出题目——三角形的内角和。
多媒体课件展示有关三角形内角和的内容,激发学生深厚的学习兴趣和求知欲望,快速的进入学习高潮。
(二)自主探究,感受新知
首先让学生画几个不同类型的三角形。然后同桌互相量一量,算一算,三角形3个内角的和各是多少度?通过测量,学生可以发现三角形的内角和是180°。
接着我会提出一个问题是不是所有的三角形的内角和都是180°,如何进行验证你的结论呢?接下来我会让学生分小组讨论,针对学生出现的问题,我给予指导,讨论过后,请同学汇报,鼓励学生用自己的语言表达,无论学生回答的全面与否,都给予积极的评价,其他同学认真倾听后做出判断,进行补充,提高学生的注意力。
通过小组之间的讨论,引导学生采用剪拼的方法进行验证,先把一个三角形的三个角剪下来,再拼一拼,拼成一个平角。
最后引导学生总结出三角形的内角和是180°。
以上教学活动采用让学生主动探索、小组合作交流的学习方式,使学生充分经历数学学习的全过程,体现以生为本的教学理念。学生在全程参与中不仅掌握新知发展能力培养的推理能力,又锻炼学生的语言表达能力和沟通能力,同时让学生体验数学与生活的紧密联系。
(三)巩固练习,强化知识
我利用小学生好胜心强的特点,以闯关的形式将课本的习题展现在多媒体上来巩固本节课所学的知识,这样设计能增加数学的趣味性,激发学生的学习兴趣,并查看他们知识的掌握情况。
(四)课堂小结
我将此环节分为两部分。第一部分是以学生为主体的知识性总结,让学生畅谈本节课的感受和收获,及时了解学生的学习情况和情感体验。第二部分是以教师为主体的情感性总结,我会对学生的表现予以表扬和激励,激发学生的学习兴趣,增强学习自信心。
(五)布置作业
针对学生的年龄特点,我会让学生在课下和家长交流今天的收获和感受,从而让家长了解学生在校的学习情况,并促进学生与家长的沟通。
说板书设计
一个好的板书应该是简洁明了整洁美观,重难点突出,能够对学生理解本节知识有一定的强化作用,因此我的板书是这样设计的。
以上就是我的全部说课,感谢各位老师的聆听!(鞠躬)
三角形的内角和课件 篇4
教学目标:
1、通过“算一算,拼一拼,折一折”等操作活动探索发现和验证“三角形的内角和是180度”的规律。
2、在操作活动中,培养学生的合作能力、动手实践能力,发展学生的空间观念。并运用新知识解决问题。
3、使学生有科学实验态度,激发学生主动学习数学的兴趣,体验数学学习成功的喜悦。
教学重点:
探究发现和验证“三角形的内角和180度”这一规律的过程,并归纳总结出规律。
教学难点:
对不同探究方法的指导和学生对规律的灵活应用。
教具学具准备:
课件、学生准备不同类型的三角形各一个,量角器。
教学过程:
一、创设情景,引出问题
1、课件出示三角形的争吵画面
锐角三角形:我的内角和度数最大。
直角三角形:不对,是我们直角三角形的内角和最大。
钝角三角形:你们别吵了,还是钝角三角形的内角和最大。
师:此时,你想对它们说点什么呢?
2、引出课题。
师:看来三角形里角一定藏有一些奥秘,这节课我们就来研究有关三角形角的知识“三角形内角和”。(板书课题)
二、探究新知
1、三角形的内角、内角和
(1)什么是三角形内角(课件)
三角形里面的三个角都是三角形的内角。为了方便研究,我们把每个三角形的3个内角分别标上∠1、∠2、∠3。
(2)三角形内角和(课件)
师:内角和指的是什么?
生:三角形的三个内角的度数的和,就是三角形的内角和。
2、看一看,算一算。
师:算一算两个三角尺的内角和是多少度?(课件)
学生计算
师:是不是所有的三角形的内角和都是180°呢?你能肯定吗?
(预设)师:大家意见不统一,我们得想个办法验证三角形的内角和是多少?可以用什么方法验证呢?
3、操作验证:小组合作。
选1个自己喜欢的三角形,选喜欢的方法进行验证。
(老师首先为学生提供充分的研究材料,如三种类型的三角形若干个(小组之间的三角形大小都不相同),剪刀,量角器,白纸,直尺等,以及充裕的时间,保证学生能真正地试验,操作和探索,通过量一量、折一折、拼一拼、画一画等方式去探究问题。)
4、学生汇报。
(1)教师:汇报的测量结果,有的是180°,有的不是180°,为什么会出现这种情况?
师:有没有别的方法验证。
(2)剪拼
a、学生上台演示。
B、请大家四人小组合作,用他的方法验证其它三角形。
C、展示学生作品。
D、师展示。
(3)折拼
师:有没有别的验证方法?
师:我在电脑里收索到拼和折的方法,请同学们看一看他是怎么拼,怎么折的(课件演示)。
(鼓励学生积极开动脑筋,从不同途径探究解决问题的方法,同时给予学生足够的时间和空间,不断让每个学生自己参与,而且注重让学生在经历观察、操作、分析、推理和想像活动过程中解决问题,发展空间观念和论证推理能力。)
师:此时,你想对争论的三个三角形说些什么呢?
5、小结。
三角形的内角和是180度。
三、解决相关问题
1、在能组成三角形的三个角后面画“√”(课件)
2、在一个三角形中,∠1=140°,∠3=25°,求∠2的度数。(课件)
3、一个等腰三角形的风筝,它的一个底角是70°,他的顶角是多少度?(课件)
四、练习巩固
1、看图,求三角形中未知角的度数。(课件)
2、求三角形各个角的度数。(课件)
五、总结。
师:这节课你有什么收获?
六、板书设计:
三角形的内角和是180°
三角形的内角和课件 篇5
课题
三角形的内角和
手 记
教学目标
1.让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。
2.在学生在动手获取知识的过程中,培养学生的实践能力,并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。
3.使学生体验成功的喜悦,激发学生主动学习数学的兴趣。
重点难点
重点:让学生经历“三角形内角和是180°”这一知识的形成、发展和应用过程。
难点:探索、验证三角形内角和是180°的过程。
过程
资源
体验目标
“学”与“教”
创设问题情境
课件出示:两个三角板
遵循由特殊到一般的规律进行探究,引发学生的猜想后,引导学生探讨所有的三角形的内角和是不是也是180°。
这是同学们熟悉的三角尺,请同学们说一说这两个三角尺的三个内角分别是多少度?
生: 45°、90°、45°。
生: 30°、90°、60°。
师:仔细观察,算一算这两个三角形的内角和是多少度?
生:90°+45°+45°=180°。
生:90°+60°+30°=180°。
师:通过刚才的算一算,我们得到这两个三角形的内角和是180°,由此你想到了什么?
生:直角三角形内角和是180°,锐角三角形、钝角三角形内角和也是180°。
师:这只是我们的一种猜想,三角形的内角和是否真的等于180°,还需要我们去验证。
构建
模型
每个组准备六个三角形(锐角三角形2个、直角三角形2个、钝角三角形2个)
课件
学生自己剪的一个任意三角形
大胆放手让学生通过有层次的自主操作活动,帮助学生结合已有的知识经验,探究验证三角形内角和的不同方法。
让学生在经历“提出猜想—实验验证—得出结论”中感悟、体验知识的形成过程,将“三角形内角和是180°”一点一滴,浸入学生大脑,融入已有认知结构。
这一系列活动同时还潜移默化地向学生渗透了“转化”的数学思想,为后继学习奠定了必要的基础。
师:之前老师为每个同学准备了①-⑥六个三角形,下面请组长分发给每个三角形,拿到手后,先别着急,先想一想你准备用什么方法去验证三角形内角和?
学生动手操作验证
师:汇报时,请先说一说是几号三角形?然后说一说这个三角形是什么三角形?
学生汇报:
生1:③号三角形是直角三角形,内角和是180°。
生2:②号三角形是锐角三角形,内角和是180°。
生3:⑤号三角形是钝角三角形,内角和是180°。
生4:④号三角形是直角三角形,内角和是180°。
生5:①号三角形是钝角三角形,内角和是180°。
生6:⑥号三角形是锐角三角形,内角和是180°。
师:除了量的方法外,还有其他方法验证三角形内角和吗?
生1:分别剪下三角形三个角拼成平角,平角是180°,所以推理得出三角形内角和是180°。
生2:分别撕下三角形三个角拼成平角,平角是180°,所以推理得出三角形内角和是180°。
生3:把三角形的三个角折成平角,平角是180°,所以推理得出三角形内角和是180°。
这些方法都验证了:三角形的内角和是180°。
师:观察这些三角形的内角和是多少度?这些三角形的内角和都是180°,这是不是老师故意安排好的呢?
师:有没有人质疑,用什么方法验证?
生用自己剪的任意三角形再次验证三角形内角和是否180°。
生:得出内角和还是180°。
师:不管是老师提供的三角形,还是你们自己准备的三角形,通过我们的算一算、拼一拼、折一折,都得出了三角形的内角和是180°。
师:我们已经学习了三角形的分类,三角形可以分成锐角三角形、直角三角形、钝角三角形。这些三角形的内角和是180°,我们能把它们概括成一句话吗?
生:三角形的内角和是180°。
师:看来我们的猜想是正确的。
师:早在20xx多年前著名数学家欧几里得就已经得到这个结论,到了初中以后同学们还会用更加严密的方法证明三角形的内角和是180°。
解释
运用拓展
课件
正方形纸
让学生更深的对所学的新知加以巩固,从而促使学生综合运用知识,解决问题的能力。同时在练习中发展学生的观察、归纳、概括能力和初步的空间想象力。
1.∠1=40°,∠2=48°,求∠3有多少度?
2.算出下面三角形∠3的度数。
⑴∠1=42°,∠2=38°,∠3=?
⑵∠1=28°,∠2=62°,∠3=?
⑶∠1=80°,∠2=56°,∠3=?
师:你是怎样算的?这三个三角形各是什么三角形?
提问:在一个三角形中最多有几个钝角?
在一个三角形中最多有几个直角?
3.游戏:将准备的正方形纸对折成一个三角形?
师:这个三角形的内角和是多少度?再对折一次,现在内角和是多少度?如果继续折下去,越折越小,三角形的内角和会是多少度?
说明:三角形大小变了,内角和不变。
4.有两个完全一样的三角尺拼成一个三角形,这个三角形的内角和是多少度?
说明:三角形形状变了,内角和不变。
5.根据所学知识,你能想办法求出下面图形的内角和吗?
板书
设计
三角形内角和
①号 钝角三角形 内角和180°
②号 锐角三角形 内角和180°
三角形内角和是180°
③号 直角三角形 内角和180°
④号 直角三角形 内角和180°
⑤号 钝角三角形 内角和180°
⑥号 锐角三角形 内角和180°
学具教具准备
课件三角形纸片量角器正方形纸
三角形的内角和课件 篇6
教学内容
人教版小学数学第八册第五单元第85页例5
任务分析
教材分析: 《三角形的内角和》是义务教育课程标准实验教科书(数学)四年级下册第五单元《三角形》中的一个教学内容。这部分内容是在学生学习了角的度量,角的分类,三角形的认识,三角形的分类的基上进行教学的。它是三角形的一个重要性质,有助于学生理解三角形的三个内角之间的关系,也是进一步学习的基础。教材通过实际操作,引导学生用实验的方法探索并归纳出这一规律,即任意一个三角形,它的内角和都是180度。教材在编写上也深刻的体现出了让学生探究的特点,通过动手操作探究发现三角形内角和为180度。教学内容的核心思想体现在让学生经历猜想—验证—结论的过程,来认识和体验三角形内角和的特点。
学情分析:通过前面的学习,学生已经掌握了三角形的一些基础知识,会用工具量角、画角,具备了探索三角形内角和的知识与基础技能。在四年级上册《角的度量》的学习中,学生有接触到两把三角尺的内角和是180°;并在相关的补充习题和数学练习册的练习中,也有要求测量任意三角形的三个内角的度数并求出它们的和的练习,很多学生已经知道了三角形的内角和是180°。但是要真正理解和掌握需要进行验证,因此,学生在这节课上的主要任务是通过实验操作验证三角形的内角和是180°。
教学目标
1、通过实验、操作、推理归纳出三角形内角和是180°。
2、能运用三角形的内角和是180°这一规律,求三角形未知角的度数并运用解决实际生活问题。
3、通过拼摆,感受数学的转化思想。
教学重点
探究发现和验证“三角形的内角和180度”。
教学难点
验证三角形的内角和是180度。
教学准备
多媒体课件,锐角三角形、直角三角形、钝角三角形,剪刀,量角器等。
教学过程
一、复习旧知,学习铺垫
1、一个平角是多少度?等于几个直角?
2、如下图,已经∠ 1=35°,∠2=78°,求∠3是多少度?
二、探究新知,理解规律
1、说明三角形的三个内角和
说出手中三角形的类型(锐角三角形,直角三角形,钝角三角形)并说出三角形有几个角?
师(指出):三角形的这三个角叫做三角形的三个内角,这三个内角的度数和叫做三角形的内角和。
板书课题:“三角形的内角和”。
揭示课题:今天我们一起来探究三角形的内角和有什么规律。
2、探究三角形的内角和规律
探究1:量一量,算一算
以小组为单位,用量角器计算出三种三角形的内角和各是多少度?
生讨论汇报,并引导学生发现:三角形的内角和接近180°。
师:三角形的内角和接近180°,那它到底与180° 有怎样的关系呢?
学生预设:有学生可能会说出三角形的内角和就是180°,这时老师可以提问,为什么就是180°?我们要进行验证,你有什么办法呢?
探究2:摆一摆,拼一拼
引导:我们刚刚每个三角形都量了三次角,每一次度量都有误差,所以量出来的内角和有误差。能不能换一种方法减少度量的次数,减少误差呢?
生可能很难想到,可以提示学生:把三个内角拼成一个角就只要量一次角。让我们一起动手做一做
如图:
(1)
锐角的三个内角拼成了一个平角,引导学生说出:锐角三角形的内角和是180°.
(2)
让学生小组合作用同样的方法,发现:直角三角形的内角和也是180°.
(3)
让学生独立用同样的方法,发现:钝角三角形的内角和也是180°.
引导学生归纳:三角形的内角和是180°。
是不是所有的三角形的内角和都是180°呢? (是,因为这三类三角形包括了所有三角形。)
板书:三角形的内角和是180°
三、巩固练习,应用规律
1、在一个三角形中,∠1=140°,∠3=25°,你能求出∠2的度数吗?
学生独立完成,并说出原因:因为三角形的内角和是180°,也就是∠1+∠2+∠3=180°,借助图像
∠2 =180°-∠1-∠3 或 ∠2 =180°-(∠1+∠3)
= 180°-140°-25° =180°-(140°+25°)
=40°-25° =180°-165°
=15° =15°
2、一个等腰三角形的顶角是80°,它的两个底角各是多少度?
学生分析:因为等腰三角形的两个底角相等,又因为三角形的内角和是180°,所以
(180°-80°)÷2
=100°÷2
=50°
四、拓展练习,深化规律
1、求出下面各角的度数。
(1) (2)
2、判断
(1)三角形任意两个内角的和大于第三个角。( )
(2)锐角三角形任意两个内角的和大于直角。( )
(3)有一个角是60°的等腰三角形不一定是等边三角形。( )
3、下面是两块三角形的玻璃打碎后留下的残片,你知道它们原来各是什么三角形吗?
( ) ( )
五、课堂小结,分享提升
1、谈谈这节课你有什么收获?
2、课后思考题
三角形的内角和是180°,那长方形、正方形的内角和呢?(根据三角形的内角和是180°求,参考课本88页第12题,完成89页16题)
板书设计
三角形的内角和课件 篇7
教学内容:
义务教育课程表准教科书数学(人教版)四年级下册85页.例题5.
教学目标:
1.让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。
2.让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。
3.使学生体验成功的喜悦,激发学生主动学习数学的兴趣。
教学重点:
让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。
教学准备:
多媒体课件、学具。
教学过程:
一、激趣引入
(一)认识三角形内角
1.我们已经认识了三角形,什么是三角形?谁能说三角形按角分类,可以分成哪几类?(学生回答问题.)
2.请看屏幕(课件演示三条线段围成三角形的过程)。
三条线段围成三角形后,在三角形内形成了三个角,(课件分别出现三个角的弧线),我们把三角形里面的这三个角分别叫做三角形的内角。
(二)设疑,激发学生探究新知的心理
1.请同学们帮老师画一个三角形,能做到吗?(激发学生主动学习的心理)请听要求,画一个有两个内角是直角的三角形,开始。(设置矛盾,使学生在矛盾中去发现问题、探究问题。)
学生安要求画三角形.
2.问:有谁画出来啦?
(课件演示):是不是画成这个样子了?只能画两个直角。问题出现在哪儿呢?这一定有什么奥秘?那就让我们一起来研究吧!
二、动手操作,探究新知
(一)研究特殊三角形的内角和
1.请看屏幕。(播放课件)熟悉这副三角板吗?(课件闪动其中的一块三角板)
学生回答:90°、45°、45°。(课件演示:由三角板抽象出三角形)
这个三角形各角的度数。它们的和是多少?
学生回答:是180°。
追问:你是怎样知道的?
生:90°+45°+45°=180°。
把三角形三个内角的度数合起来就叫三角形的内角和。
板题:三角形内角和
2.(课件演示另一块三角板的各角的度数。)这个呢?它的内角和是多少度呢?
90°+60°+30°=180°。
3.从刚才两个三角形内角和的计算中,你发现什么?
这两个三角形的内角和都是180°。这两个三角形都是直角三角形,并且是特殊的三角形。
(二)研究一般三角形内角和
1.猜一猜。
猜一猜其它三角形的内角和是多少度呢?同桌互相说说自己的看法。
2.操作、验证一般三角形内角和是180°。
(1)小组合作、进行探究。
1.所有三角形的内角和究竟是不是180°,你能用什么办法来证明,使别人相信呢?那就请四人小组共同研究吧!
2.每个小组都有不同类型的三角形。每种类型的三角形都需要验证,小组活动的要求如下:课件显示
组长负责填写表格,组员每人负责量一个三角形的每个内角,并记录下来,最后算出这个三角形的内角和,把结果告诉组长.
量一量,完成表格.
三角形的名称
内角和的度数
锐角三角形
直角三角形
(2)小组汇报结果。
请各小组汇报探究结果。
(三)继续探究
没有得到统一的结果。这个办法不能使人很信服,怎么办?还有其它办法吗?
引导学生用拼合的办法,就是把三角形的三个内角放在一起,可以拼成一个平角。
1.用拼合的方法验证。
小组内完成,活动的要求同上.
拼一拼,完成表格.
三角形的名称
是否可以拼成平角
锐角三角形
直角三角形
对角三角形
2.汇报验证结果。
先验证锐角三角形,我们得出什么结论?
(锐角三角形的内角拼在一起是一个平角,所以锐角三角形的内角和是180°。
直角三角形的内角和也是180°。
钝角三角形的内角和还是180°)。
3.课件演示验证结果。
请看屏幕,老师也来验证一下,是不是跟你们得到的结果一样?(播放课件)
我们可以得出一个怎样的结论?
(三角形的内角和是180°。)
(教师板书:三角形的内角和是180°学生齐读一遍。)
为什么用测量计算的方法不能得到统一的结果呢?
(量的不准。有的量角器有误差。)
三、解决疑问。
现在谁能说说不能画出有两个直角的一个三角形的原因?(让学生体验成功的喜悦)
(因为三角形的内角和是180°,在一个三角形中如果有两个直角,它的内角和就大于180°。)
在一个三角形中,有没有可能有两个钝角呢?
(不可能。)
追问:为什么?
(因为两个锐角和已经超过了180°。)
问:那有没有可能有两个锐角呢?
(有,在一个三角形中最少有两个内角是锐角。)
四、应用三角形的内角和解决问题。
1.看图求出未知角的度数。(知识的直接运用,数学信息很浅显)
2.85页做一做:
在一个三角形中,∠1=140度,∠3=35度,求∠2的度数.
3.88页第9.10题(数学信息较为隐藏和生活中的实际问题)
4.89页16题.思考题
板书设计:
三角形内角和
180°180°180°
三角形内角和180°
三角形的内角和课件 篇8
【教材分析】:
新课标把三角形的内角和作为第二学段中三角形的一个重要组成部分。本课是安排在三角形的特性及分类之后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。教材所呈现的内容,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间,安排了量一量、算一算和剪一剪、拼一拼两个实验操作活动,意图使学生在动手操作、合作交流中发现并形成结论。
【教学目标】
知识与技能
1.理解和掌握三角形的内角和是180度。
2.运用三角形的内角和的知识解决实际问题。
过程与方法
经历三角形的内角和的探究过程,体验“发现——验证——应用”的学习模式。
情感态度与价值观
在学习活动中,渗透探究知识的方法,提高学生学习的能力,培养学生的创新精神和实践能力。
【教学重点】
重点:理解和掌握三角形的内角和是180度。
突破方法:引导学生用测量或剪拼的方法探究三角形的内角和。合理猜想,测量验证。
【教学难点】
用三角形的内角和解决实际问题。
突破方法:推理分析计算。运用推理,正确计算。
教法:质疑
【教学方法】
引导,演示讲解。
学法:实践操作,小组合作。
【教学准备】:
多媒体课件,锐角,直角,钝角三角形的硬纸片,剪刀。
【教学时间】
一课时
【教学过程】
一.创设情境,引入新课
师:同学们,我们这俩天学习了三角形的分类,通过对角的分类,我们能够分成几类三角形?
生:三类,分别为锐角三角形,直角三角形,钝角三角形。
师:嗯,真好,那么对边的分类呢?
生:俩类,分别为等腰三角形,等边三角形。
师:老师想让同学们帮老师画一个三角形,能做到吗?
生:能。
师:请听要求,画一个有一个角是直角的三角形,开始。(学生动手操作)
师:再来一个可以吗?请听要求,画一个有俩个角是直角的三角形,开始。
生:不能画,因为当俩个角是90度的时候,俩个顶点在一条线上,不能组成封闭图形。
师:回答的真好,那么为什么会出现这种情况呢?是因为三角形中的角而引起的,那么同学们想不想知道其中的秘密呢?
生:想。
师:好,那么我们今天就一起来学习“三角形的内角和”(出示板书)
(设计意图:通过学生的动手操作,发现问题所在,这样更能调动学生的学习兴趣,为了更好的学习这节课做铺垫.)
二.探究新知
师:昨天呢,老师让同学们一人做一个自己喜欢的三角形,请同学们拿出来,看一看你们做的是什么样子的三角形。
生1:锐角三角形。
生2:直角三角形。
生3:钝角三角形。
师:嗯,我们在上个星期学习了三角形的各部分名称,谁能帮我告诉下同学们,角在哪里呢?
生:里面的三个角,可以用角1,角2,角3来表示。
师:嗯,这三个角我们也可以说成是三角形的内角,好了,今天我们既然学习三角形的内角和,也就是求成这三个角的度数和,你们猜一猜三角形内角和的度数是多少呢?
生:三角形的内角和是180度。
师:那么我们能不能一起用一些好的办法来验证一下呢?
生1:我们可以用量角器分别量出这三个内角的度数,然后再加在一起就可以求出三角形内角的和了。
师:还有其他的办法吗?
生2:我们可以用剪子剪下三个角,然后把它们拼在一起,看看这三个角拼在一起之后能够呈现出什么样子的角。
生3:我可以用折的方法,把三个角的度数折在一起。
师:同学们说的真好,既然有这么多的方法,到底哪个方法好呢?我们一起来研究一下,我把全班分成俩个小组,一队用量的方法,一队用拼的方法,看看哪个小组做的又对又快,开始。
(设计意图:通过学生的动手操作,合作交流,真正的把课堂还给学生,让学生成为学习的主体,教师适时引导,突出学生的学习的能力与价值。)
三.总结任意三角形的内角和是180度并做适当练习。
四.板书设计
三角形的内角和
量一量锐角三角形:75度+48度+58度=181度
直角三角形:90度+45度+45度=180度
钝角三角形:120度+38度+22度=180度
拼一拼图形呈现
折一折图形呈现
三角形的内角和课件 篇9
各位评委、老师大家好:
我说课的题目是《三角形内角和》,内容选自人教版九年义务教育七年级下册第七章第二节第一课时。
一、本节课在新一轮课程改革下的设计理念:
数学是人与人之间精神层面上进行的交往。课堂教学中的交往主要是教师与学生、学生与学生之间的交往。它需要运用“对话式”的学习方式,采取多种教学策略,使学生在合作、探索、交流中发展能力。新课程中对学生的情感、体验、价值观,以及获取知识的渠道都有悖于传统的教学模式,这正是教师在新课程中寻找新的教学方式的着眼点。应该说,新的教学方式将伴随着教师对新课程的逐渐透视而形成新的路径。要破除原有教学活动的框架,建立适应师生相互交流的教学活动体系;满足学生的心理需求,实现教者与学者感情上的融洽和情感上的共鸣;给学生体验成功的机会,把“要我学”变成“我要学”。我认为教师角色的转变一定会促进学生的发展、促进教育的长足发展,在未来的教学过程里,教师要做的是:帮助学生决定适当的学习目标,并确认和协调达到目标的最佳途径;指导学生形成良好的学习习惯,掌握学习策略;创造丰富的教学情境,培养学生的学习兴趣,充分调动学生的学习积极性;为学生提供各种便利,为学生的学习服务;建立一个接纳的、支持性的、宽容的课堂气氛;作为学习的参与者,与学生分享自己的感情和想法;和学生一道寻找真理,能够承认自己的过失和错误。教学情境的营造是教师走进新课程中所面临的挑战,适应新一轮基础教育课程改革的教学情境不是文本中的约定,也不是现成的拿来就能用的,需要我们在教学活动的全过程中去探索、研究、发现、形成。
二、教材分析与处理:
三角形的内角和定理揭示了组成三角形的三个角的数量关系,此外,它的证明中引入了辅助线,这些都为后继学习奠定了基础,三角形的内角和定理也是几何问题代数化的体现。
三、学生分析
处于这个年龄阶段的学生有能力自己动手,在自己的视野范围内因地制宜地收集、编制、改造适合自身使用,贴近生活实际的数学建模问题,他们乐于尝试、探索、思考、交流与合作,具有分析、归纳、总结的能力,他们渴望体验成功感和自豪感。因而老师有必要给学生充分的自由和空间,同时注意问题的开放性与可扩展性。
四、教学目标:
1.知识目标:在情境教学中,通过探索与交流,逐步发现“三角形内角和定理”,使学生亲身经历知识的发生过程,并能进行简单应用。能够探索具体问题中的数量关系和变化规律,体会方程的思想。通过开放式命题,尝试从不同角度寻求解决问题的方法。教学中,通过有效措施让学生在对解决问题过程的反思中,获得解决问题的经验,进行富有个性的学习。
2.能力目标:通过拼图实践、问题思考、合作探索、组内及组间交流,培养学生的的逻辑推理、大胆猜想、动手实践等能力。
3.德育目标:通过添置辅助线教学,渗透美的思想和方法教育。
4.情感、态度、价值观:在良好的师生关系下,建立轻松的学习氛围,使学生乐于学数学,遇到困难不避让,在数学活动中获得成功的体验,增强自信心,在合作学习中增强集体责任感。
五、重难点的确立:
1.重点:三角形的内角和定理探究与证明。
2.难点:三角形的内角和定理的证明方法(添加辅助线)的讨论
六、教法、学法和教学手段:
采用“问题情境-建立模型-解释、应用与拓展”的模式展开教学。
采用对话式、尝试教学、问题教学、分层教学等多种教学方法,以达到教学目的。
三角形的内角和课件 篇10
各位老师:
你们好,我是来应聘XX数学老师的X号考生,我今天抽到的试讲题目是《三角形的内角和》,下面开始我的试讲。
同学们,上节课我们已经学习了三角形的基本形状,那么同学们一起告诉老师我们都学了什么形状的三角形啊?对,非常好,有钝角三角形、直角三角形和锐角三角形。大家回答的很好,说明上节课掌握的很好,那今天老师想让大家画个特殊点的三角形,好不好?今天我请同学们在纸上画一个有两个直角的三角形,画好了请举手哦。有没有画好呀?没有,大家看黑板上老师画的,是不是和你们画出来的一样?为什么我们没办法画出有两个直角的三角形呢?肯定里面有秘密,大家跟着老师一起来研究一下好不好?
大家拿出事先准备好的三角板和量角器吧,同学们,你们现在用量角器来测量一下每一个三角形的角的度数,待会老师会进行统计。(转身画两个三角板模型),测好了吧,下面请靠窗的同学告诉老师你的测量答案。30度60度90度,非常好,那另一个呢?45度45度和90度,非常精确,请坐,相信咱们其他同学也一定能够测量出来。那么大家仔细观察一下,这两组数据有没有什么相似点。有的同学说都有个九十度,很好,还有呢,很好!有的同学发现了,说这三个角加起来是180度,非常棒。也就是这两个三角形内角和是180度。
可是是不是所有内角和都是180度啊,同学们,你们自己分别画一个不同的锐角、钝角、直角三角形,并且测量每个内角度数,并报给老师内角和。好,请第一排的女生起来回答,你的三个内角和是多少?179,180,180很好,大家知道为什么第一个不是吗?对,是因为毕竟有误差的存在,很棒。
下面大家按以前的安排分成六个组,交给你们一个任务,你们讨论一下,怎么来验证我们刚刚得出的这个结论呢?给大家十分钟时间来讨论。
好,讨论结束,来,哪个组派个代表来回答一下?请,哦,你说用量角器测量,恩不错,可是用量角器的话,有可能存在误差对不对?那还有没有更好的方法呢?
老师看到很多同学都皱起了眉头,那老师来给大家一点小提示,我们试着把三角形的三个角剪下来拼拼看。啊,很棒我看到前排的同学把三个角拼成了一个平角,大家知道平角多少度?180。那下面,大家可以动动手,任意再画几个三角形,用刚刚的方法看看能不能拼成一个平角?好,大家都非常积极,通过刚刚的验证,我们可以肯定:三角形的内角和是180度。
那接下来我们回到咱们刚开始上课的问题:为什么不能画一个有两个直角的三角形?谁愿意给大家说说?好,你举手最快,请你来说说。嗯,很好,因为有两个九十度的角加起来就是180度了,不可能画出一个三角形,太棒了。请坐。
大家看大屏幕,这里有两个三角形,老师给分别给大家标出了其中两个角的度数,有没有同学告诉我剩下的度数啊?赶紧开动脑筋算算看。好,算好的同学大声告诉老师,第一个是30度,很棒。第二个50度,很棒,算的非常准确,看来大家上课都非常认真。
这堂课我们就上到这里,请大家回去完成课后习题1到3。好,下课!
三角形的内角和课件 篇11
一、说教材
“三角形的内角和”是人教版小学数学四年级下册第五单元第3节的内容。本节课是在学生学过角的度量、三角形的特征和分类等知识的基础上进行教学的,学生已经具备一定的关于三角形的认识的直接经验,也已具备了一些相应的三角形知识和技能,这为感受、理解、抽象“三角形的内角和”的规律,打下了坚实的基础。
二、说学情
一堂成功的课不仅要熟悉教材,还需要我们充分的了解学生的特点。
本节课的授课对象是四年级的学生,从心理特征来说,他们对于新鲜的知识充满着好奇心和强烈的求知欲望,无意注意仍起着主要作用,有意注意正在发展。
从认知状况来说,学生在此之前已经学习了三角形有关的知识,对三角形的内角已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于三角形内角和都是180度的理解,学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。
三、说教学目标
根据新课程标准,教材特点、学生实际,我确定了如下三维教学目标。
【知识与技能】通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。
【过程与方法】经历观察、猜想、验证的过程,提升自身动手操作及推理、归纳总结的能力。
【情感态度与价值观】在参与学习的过程中,感受数学的魅力,体验成功的喜悦,激发学习数学的兴趣。
四、说教学重难点
根据学生现有的知识储备和知识点本身的难易程度,学生很难建构知识点之间的联系,这也确定了本节课的重点为三角形内角和定理,而三角形内角和定理推理的过程为本节课的难点。
五、说教法学法
新课程明确倡导动手实践,自主探索、合作交流的学习方式,教师不仅是知识的传授者,更是学生探究性、合作性学习活动的设计者,组织者和学生学习的伙伴。在教学过程中,我将采用创设情境,直观演示,观察,猜测,操作,思考,总结等方法,把学生带进开放的,富有挑战性的问题情景,让学生通过自己学习,合作学习,和交流等活动,获得知识与能力,掌握解决问题的方法,获得积极的情感体验。整个学习和探索活动,体现出开放性思维和多元思维并存的思维方式,教学生初步学会自主梳理知识,探索知识的方法,使他们亲历自主探究的过程。
六、教学过程
(一)导入新课
首先是导入环节,我会多媒体课件播放有关三角形内角和情境视频:在图形的王国中,有一天,三角形家族里为“三角形内角和的大小”爆发了一场激烈的争吵。钝角三角形说“我的钝角大,我的内角和一定比你们的内角和大”。锐角三角形也不示弱“你虽然有一个钝角,可是其它两个角都很小,而我的三个角都不是很小,所以我的内角和比你大”。直角三角形说“别争了,我们的内角和是一样大的,因为三角形的内角和是180°”。
根据视频中三角形的对话,顺势引出题目——三角形的内角和。
设计意图:在这个环节中,多媒体课件展示有关三角形内角和的内容,激发学生深厚的学习兴趣和求知欲望,快速的进入学习高潮。
(二)新课探究
接下里是新课探究环节,在这一教学环节中,我首先让学生画几个不同类型的三角形。然后同桌互相量一量,算一算,三角形3个内角的和各是多少度?通过测量,学生可以发现三角形的内角和是180°。
接着我会提出一个问题是不是所有的三角形的内角和都是180°,如何进行验证你的结论呢?接下来我会让学生分小组讨论,针对学生出现的问题,我给予指导,讨论过后,请同学汇报,鼓励学生用自己的语言表达,无论学生回答的全面与否,都给予积极的评价,其他同学认真倾听后做出判断,进行补充,提高学生的注意力。
通过小组之间的讨论,引导学生采用剪拼的方法进行验证,先把一个三角形的三个角剪下来,再拼一拼,拼成一个平角。最后引导学生总结出三角形的内角和是180°。
此环节通过小组合作,体现以生为本的教学理念。既培养学生的推理能力,又锻炼学生的语言表达能力和沟通能力。
(三)巩固提高
接下来进入巩固提高环节。本环节我依据教学目标和学生在学习中存在的问题,设计有针对性、层次分明的练习题组。让学生在解决这些问题的过程中,进一步理解、巩固新知,训练思维的灵活性、敏捷性、创造性,使学生的创新精神和实践能力得到进一步提高。
练习题组设计如下:
第二题把这两个完全一样的直角三角形拼组在一起,得到的新三角形的内角和是多少度?
设计意图:通过各种形式的练习,进一步提高学生学习兴趣,使学生的认知结构更加完善。同时强化本课的教学重点,突破教学难点。
(四)小结作业
在小结环节,我会引导学生同桌之间以“你问我答”的形式回顾本节课所学的主要内容,这节课你都学习了哪些内容?三角形内角和定理的推导过程体现了哪种数学思想方法?
这样设计的目的是让学生在回顾课堂经历的基础上,以相互交流、相互启发的方式总结自己的收获,教师通过概括性引导提升学生对三角形的内角和定理的认识
在作业环节,我会让学生利用本节课所学的知识,思考一下四边形的内角和是多少度?
这样设计的意图是学生在学习本节课内容的基础上,进一步对本节课的一个延伸,拓展学生的思维。
七、板书设计
为了让学生对本节课的学习形成清晰的思路,同时还有利于学生系统性地记忆新知。我的板书设计如下。
Yjs21.Com更多幼师资料扩展阅读
三角形内角和课件(集合七篇)
前辈告诉我们,做事之前提前下功夫是成功的一部分。在平日里的学习中,幼儿园教师时常会提前准备好有用的资料。资料的意义非常的广泛,可以指需要查到某样东西所需要的素材。参考相关资料会让我们的学习工作效率更高。那么,关于幼师资料你了解哪些内容呢?小编陆续为大家整理了三角形内角和课件(集合七篇),可能你会喜欢,欢迎分享。
三角形内角和课件 篇1
知识与技能
1、通过小组合作,运用直观操作的方法,探索并发现三角形内角和等于180。能应用三角形内角和的性质解决一些简单问题。
探索三角形内角和的过程,体会运用“量一量”、“算一算”、“拼一拼”、“折一折”进行验证的数学思想方法,提高动手操作能力和数学思考能力。
情感态度与价值观
探索精神和实践能力,在学生亲自动手实践和归纳中,感受理性的美。
教学重点:
1、探索和发现三角形三个内角和的度数和等于180o。
2、已知三角形的两个角的度数,会求出第三个角的度数。
教学难点:
已知三角形的两个角的度数,会求出第三个角的度数。
方法与过程
教法:主动探究法、实验操作法。
学法:小组合作交流法
教学准备:小黑板、学生、老师准备几个形状不同的三角形、量角器。
教学课时:1课时
教学过程
一、预习检查
说一说在预习课中操作的感受,应注意哪些问题,三角形的内角和等于多少度? 组内交流订正。
二、情景导入呈现目标
故事引入。一天,大三角形对小三角形说:“我的个头大,所以我的内角和一定比你的大。”小三角形很不甘心地说:“是这样的吗?”揭示课题,出示目标。产生质疑,引入新课。
三、探究新知
自主学习
比一比量一量
(1)什么是内角?
(2)如何得到一个三角形的内角和?
(3)小组活动,每组同学分别画出大小,形状不同的若干个三角形。分别量出三个内角的度数,并求出它们的和。
(4)填写小组活动记录表。发现大小,形状不同的每个三角形,三个内角的度数和都接近度。
3、说一说,做一做。
(1)我们把三个角撕下来,再拼在一起,看一看会是怎样的。
(度。
四、当堂训练(小黑板出示内容)
°,一个等腰三角形,它的一个底角是。
厘米的三根小棒不能围成一个三角形。
性。
,这是一个()三角形。
三角形、()三角形、()三角形。
6、交流学案第三题。 先独立做,最后组内交流。
五、点拨升华
任意三角形三个角的度数和等于180度。独立思索小组交流总结方法教师点拨。
六、课堂总结
通过这节课的学习,你有什么新的收获或者还有什么疑问?先小组内说一说,最后班上交流。
七、拓展提高
妈妈给淘气买了一个等腰三角形的风筝。它的顶角是40°,它的一底角是多少? 先独立做,最后组内交流。
板书设计:
三角形的内角和
测量三个角的度数求和:结论:
教学反思:三角形内角和等于撕拼、折拼等实验活动,让学生得到的不仅仅是三角形内角和的知识,更重要的是学到了怎样由已知知识探索未知的思维方式与方法,激发了他们主动探索知识的欲望。通过多种实验进行操作验证也让学生明白了只要善于思考,善于动手就能找到解决问题的方法。
当然,在教学中也还有一些不顺利的地方,比如一些动手能力差的学生未能及时跟进,对于方法不对的学生未能及时指导和帮助等。但是本堂课采用这样的方式展开教学是学生喜欢的也是有成效的。
三角形内角和课件 篇2
教学过程:
一、激趣引入
(一)认识三角形内角
师:我们已经认识了什么是三角形,谁能说出三角形有什么特点?
生1:三角形是由三条线段围成的图形。
生2:三角形有三个角,……
师:请看屏幕(课件演示三条线段围成三角形的过程)。
师:三条线段围成三角形后,在三角形内形成了三个角,(课件分别闪烁三个角及的弧线),我们把三角形里面的这三个角分别叫做三角形的内角。(这里,有必要向学生直观介绍“内角”。)
(二)设疑,激发学生探究新知的心理
师:请同学们帮老师画一个三角形,能做到吗?(激发学生主动学习的心理)
生:能。
师:请听要求,画一个有两个内角是直角的三角形,开始。(设置矛盾,使学生在矛盾中去发现问题、探究问题。)
师:有谁画出来啦?
生1:不能画。
生2:只能画两个直角。
生3:只能画长方形。
师(课件演示):是不是画成这个样子了?哦,只能画两个直角。
师:问题出现在哪儿呢?这一定有什么奥秘?想不想知道?
生:想。
师:那就让我们一起来研究吧!
(揭示矛盾,巧妙引入新知的探究)
二、动手操作,探究新知
(一)研究特殊三角形的内角和
师:请看屏幕。(播放课件)熟悉这副三角板吗?请拿出形状与这块一样的三角板,并同桌互相指一指各个角的度数。(课件闪动其中的一块三角板)
生:90°、60°、30°。(课件演示:由三角板抽象出三角形)
师:也就是这个三角形各角的度数。它们的和怎样?
生:是180°。
师:你是怎样知道的?
生:90°+60°+30°=180°。
师:对,把三角形三个内角的度数合起来就叫三角形的内角和。
师:(课件演示另一块三角板的各角的度数。)这个呢?它的内角和是多少度呢?
生:90°+45°+45°=180°。
师:从刚才两个三角形内角和的计算中,你发现什么?
生1:这两个三角形的内角和都是180°。
生2:这两个三角形都是直角三角形,并且是特殊的三角形。
(二)研究一般三角形内角和
1。猜一猜。
师:猜一猜其它三角形的内角和是多少度呢?同桌互相说说自己的看法。
生1:180°。
生2:不一定。
2。操作、验证一般三角形内角和是180°。
(1)小组合作、进行探究。
师:所有三角形的内角和究竟是不是180°,你能用什么办法来证明,使别人相信呢?
生:可以先量出每个内角的度数,再加起来。
师:哦,也就是测量计算,是吗?那就请四人小组共同研究吧!
师:每个小组都有不同类型的三角形。每种类型的三角形都需要验证,先讨论一下,怎样才能很快完成这个任务。(课前每个小组都发有锐角三角形、直角三角形、钝角三角形,指导学生选择解决问题的策略,进行合理分工,提高效率。)
2)小组汇报结果。
师:请各小组汇报探究结果。
生1:180°。
生2:175°。
生3:182°。
(三)继续探究
师:没有得到统一的结果。这个办法不能使人很信服,怎么办?还有其它办法吗?
生1:有。
生2:用拼合的办法,就是把三角形的三个内角放在一起,可以拼成一个平角。
师:怎样才能把三个内角放在一起呢?
生:把它们剪下来放在一起。
师:先验证锐角三角形,我们得出什么结论?
生1:锐角三角形的内角拼在一起是一个平角,所以锐角三角形的内角和是180°。
生2:直角三角形的内角和也是180°。
生3:钝角三角形的内角和还是180°。
3课件演示验证结果。
师:请看屏幕,老师也来验证一下,是不是跟你们得到的结果一样?(播放课件)
师:我们可以得出一个怎样的结论?
生:三角形的内角和是180°。
(教师板书:三角形的内角和是180°学生齐读一遍。)
师:为什么用测量计算的方法不能得到统一的结果呢?
生1:量的不准。
生2:有的量角器有误差。
师:对,这就是测量的误差。
三、解决疑问。
师:现在谁能说说不能画出有两个直角的一个三角形的原因?(让学生体验成功的喜悦)
生:因为三角形的内角和是180°,在一个三角形中如果有两个直角,它的内角和就大于180°。
师:在一个三角形中,有没有可能有两个钝角呢?
生:不可能。
师:为什么?
生:因为两个锐角和已经超过了180°。
师:那有没有可能有两个锐角呢?
生:有,在一个三角形中最少有两个内角是锐角。
四、应用三角形的内角和解决问题。
1、看图求出未知角的度数。(知识的直接运用,数学信息很浅显)
2、 按要求计算。(数学信息较为隐藏和生活中的实际问题)
3、游戏巩固。在四人小组中完成:由一个同学出题,其它三个同学回答。(1)给出三角形两个内角,说出另外一个内角(有唯一的答案)。(2)给出三角形一个内角,说出其它两个内角(答案不唯一,可以得出无数个答案)。
五、全课总结。
今天你学到了哪些知识?是怎样获取这些知识的?你感觉学得怎么样?
三角形内角和课件 篇3
【教学目标】
1、利用电子白板,借助生活情景,通过“量一量”,“算一算”,“拼一拼”,“折一折”的方法,推想归纳出三角形内角和是180°,并能应用这一知识解决一些简单问题。
2、经历猜测——验证——得出结论——解释与应用的过程,体验“归纳”、“转化”等数学思想方法。
3、通过数学活动使学生获得成功的体验,增强自信心,培养学生的创新意识,探索精神和实践能力。
【教学重、难点】
教学重点:引导学生发现三角形内角和是180°。 教学难点:用不同方法验证三角形的内角和是180°。 【教学过程】
一、创设情景,提出问题
小游戏:猜一猜藏在信封后面的是什么三角形。(出示)
师:三角形的这三个角究竟存在什么奥秘呢,我们一起来研究研究。
【设计意图:运用电子白板,游戏引入,激起学生对于三角形已有知识的回忆,为下面探求新的知识作好铺垫。创设疑问,引出要探讨的问题,调动学生学习的兴趣。】
二、动手实践、自主探究
师:什么是内角?内角和是什么意思?三角形的内角和是多少度呢?
1.从特殊入手——计算直角三角板的内角和。
(1)师生拿出30度直角三角板
师:这是什么?是什么三角形?这个角是多少度?它的内角和是多少度,请口算?
(2)再拿出45度直角三角板。
师:这是什么三角形?这个角是多少度?它的内角和是多少度?
(3)师:通过刚才的计算,你有什么发现?
生:这两个三角形内角和都是180°。
【设计意图:这一环节先让学生在明确三角形内角和的概念基础上,先借助电子白板出示特殊三角形——“直角三角形”,让学生初步感知三角形的内角和,通过计算学生很容易发现直角三角形的内角和是180度,为学生作进一步猜想奠定理论基础。】
2、由特殊到一般——猜想验证,发现规律。
(1)提出猜想
师:其他所有三角形的内角和是否也是180°?
生:是、 不是……
师:有的说是,有的说不是,我们的猜想对不对呢,需要验证。
(出示小组调查表。)
(2)验证猜想(生测量计算,师巡视指导,收集回报的素材)
师:哪个小组愿意将您们组的发现与大家分享一下?
生上台展示:我们小组研究的是直角三角形(锐角三角形、钝角三角形),我们测量它的三个角分别是 度 度 度,内角和是180°,我们发现直角三角形(锐角三角形、钝角三角形)的内角和是180°)
师:研究锐角三角形(锐角三角形、钝角三角形)的小组请举手,你们的结论和他们一样吗?请你们小组来谈谈你们的发现!
【设计意图:实物投影仪在这个环节发挥了重要的作用,学生充分展示自己的想法。在初步感知的基础上,教师让学生猜测是否所有的三角形的内角和都一样呢?这个问题为后面的猜测和验证进行铺垫,引发思考,激发学习兴趣。然后再通过算出特殊的三角形的内角和推广到猜测所有三角形的内角和,引导学生从特殊三角形过渡到一般三角形的验证规律。】
(3)揭示规律
师:通过计算我们发现直角三角形的内角和是180°,锐角三角形的内角和是——180度,钝角三角形的内角和也是——180度,这就验证了我们的猜想。现在我们可以说所有的三角形的内角和是(完善课题180°)。
注:学生的汇报中可能会出现答案不是唯一的情况,如:180°、179°、181°等。(板书)(分别对这几个数进行统计)
师:观察这些测量结果你能发现什么?(三角形内角和大约是180°左右)
(4)方法提升。
师:我们从直角三角形——锐角三角形——钝角三角形——推出所有三角形的内角和,这种由个别到一般的推理方法,在数学上叫归纳推理(板书)归纳推理是重要的推理方法。
【设计意图:通过度量、比较这一活动,让学生在实践中充分感知三角形的内角和大小。但由于测量本身有差异,教师并没有直接告知三角形内角和的结论,而是让学生去另辟蹊径想办法验证前面的猜想,想一想有没有别的方法来求三角形的内角和,让思维真正“展翅高飞”,充分调动学生学习的积极性、自主性。】
3、剪拼法再次验证——转化思想的运用。
师:刚才我们通过测量发现了三角形的内角和是180°,现在我们不用量角器测量了,你能想办法证明三角形的内角和是180°吗?先思考再动手做。
生探究,师巡视指导,收集汇报素材。(呈现作品——说方法——统计点评)
班内交流,汇报撕拼法、折叠法。
师:将三角形的内角通过剪拼、折叠,转化成平角,你们应用了一种重要的数学思想——转化(板书),转化就是将我们不会直接解决的新问题,变成已会的旧知识,进而解决。
【设计意图:孩子的智慧来自于动手,电子白板适时演示,让学生通过“剪一剪,拼一拼,折一折”等操作方法,猜想、验证得出结论:三角形的内角和是180°,并利用语言概括出结论,提高语言表达能力。】
4.展示——再次强化。
师:现在大家知道这几个三角形的内角和是多少度吗?
师:我们可以请电脑来给我们验证一下。
(引入白板,通过拖动演示三角形从小到大度数的不断变化)
结论:不论三角形的大小、形状怎样变化,任何三角形的内角和都是180°。
【设计意图:让学生在白板上亲眼观看到拖拉出类别不同的三角形,让学生在拖动的过程中观察、体验。学生兴趣盎然,学习气氛热烈,学生不仅感受到这3个三角形的内角和是180°,还随着电子白板上这个三角形的任意拖动,发现三角形的3个角的度数在不断的变化,而三角形的内角和则始终没有变化,仍然是180°,深刻地理解了任意三角形的内角和都是180°。而这,恰恰就是本课的教学重点和难点。传统课中不容易突破的教学重难点轻而易举的攻破。抽象的知识变得直观、具体,促进学生知识内化的过程。】
三、巩固应用,内化提高
1.介绍科学家帕斯卡(白板出示帕斯卡的资料)
2.练习
(1). 做一做:在一个三角形中,∠1=140度, ∠3=25度,求∠2的度数。
(2). 求出下列三角形中各个角的度数。(书88页第9题)
(3). 算一算(书88页第10题):爸爸给小红买了一个等腰三角形的风筝。它的一个底角是70°,它的顶角是多少度?
【设计意图:练习中使用白板的交互性,学生更愿意参与,得出结果也更有成就感。素质教育要求我们要面向全体学生。为此,根据问题的不同难度,教学时兼顾到不同层次的学生,使每位学生都有所收获,都有机会体会到成功的喜悦。设计练习有新意,同时也注意了坡度。既有基本练习,也有发展性练习,尽最大努力体现因材施教。】
四、课后思考、拓展延伸
同学们,数学奥妙无穷,三角形是边数最少的封闭平面图形,那么,四边形五边形六边形(出图示)……的内角和是多少度,他们又有什么规律呢?有兴趣的同学下课之后可继续研究,下课。
三角形内角和课件 篇4
本课是三角形的内角和是北师大版四年级下册第二单元的内容,是三角形的一个重要性质,也是进一步学习几何的基础,经过第一学段以及本单元的学习,学生对于三角形已经有了直观的认识,这为感受、理解、归纳三角形内角和的概念打下坚实的基础,学好本课,对以后学习几何能起到承前启后的效果。
基于对教材以上的认识以及课程标准的要求,我拟定以下教学目标: 知识目标:使学生理解并掌握三角形内角和是180°。
能力目标:①通过学生画、量、猜、剪、拼、折、观察等活动,培养学生探索、发现、观察以及动手操作能力。
②能运用三角形内角和是180°解决实际问题。
情感目标:让学生体验探索的乐趣和成功的快乐,增强学好数学的信心。教学重点:理解并掌握三角形的内角和是180°。
教学难点:验证所有三角形的内角和都是180°的过程。让学生在动手实验中得到结论,感悟学习中的快乐
“授之于鱼不如授之于渔”,对于四年级的学生来说应进一步提高他们对问题的思考策略,在研究三角形的内角和是180°这一核心问题时,我先让学生独立思考、然后小组合作,通过量一量、剪一剪、拼一拼、折一折等活动来探究三角形内角和的秘密,完成了对新知识的建构,体现了学生动手实践、合作交流、自主探索的学习方法。既培养了学生的观察能力,同时又培养了学生的探索能力和创新精神。
长期以来,我们的教育进行的是颈部以上的学习,它只强调记忆、思维。荷兰教育家弗来登塔尔认为:数学学习是一种活动,这种活动与游泳、骑自行车一样,不经过亲身体验,仅仅看书本、听讲解、观察他人的演示是学不会的。因此将课堂还给学生,努力营造学生在教学活动中自主学习的时间,使他们课堂教学中重要的参与者,与创造者,学生动手实践、合作交流、自主探索的学习方法。本着这样的指导思想,在教学设计上,我力求充分体验以学生发展为本的教育理念,将教学思路拟定为:复习引入、猜想验证、巩固内化、拓展延伸。运用课件教学直观明了便于理解。
强调面向全体学生的同时,关注每个学生个体差异,因材施教、课堂遵循先易后难、先差生后优生的原则,完成大纲目标的同时,也去挖掘优生的潜能,全面提高学生的成绩。
教学的艺术不至于传授知识,而在于唤醒、激发和鼓励,上课伊始,我先让学生复习三角形的有关知识为切入点,以旧引新使学生明确学习方向。学生有了探索的愿望和兴趣,可是不能没有目标的去探索,那样只会事倍功半甚至没有结果。这时我让学生大胆猜想,形成统一的认识,使后面的探索和验证活动有了明确的目标。为此我精心设计了以下三个问题:什么是三角形的内角?什么是三角形的内角和?同学们先猜一猜三角形的内角和是多少度?可能学生都会猜180°。“那每一个三角形的内角和都是这个度数吗?你敢肯定吗?你能用什么方法去说服别人吗?”估计学生都得把刚才量的三角形的三个角的度数加起来进行验证。根据学生的回答我一一板书。(板书180°、180°、182°、179°、178°)同学们请仔细观察这一个个数据,你有什么发现?可能有的同学会说我们用量的方法得到三角形的内角和有的是180°,有的比180°大,有的比180°小。为什么会出现这种情况:测量时有误差。
“那你还有其他的方法来验证三角形的内角和就是180°吗?请你们利用老师提供的学具先独立思考,然后小组合作验证。”
当学生形成统一的猜想后,我就把课堂大量的时间和空间留给学生,让他们开展有针对性的探究活动,在活动中,我把“放”和“引”有机的结合,鼓励学生积极开动脑筋,从不同途径探索解决问题的方法。通过一系列“动”的过程,在大量感知的基础上,使学生能自己发现并总结出知识的规律,内化这一活动,使之不仅知其过程而且知其结果,从感性认识上升到理性认识,完成了认识上的飞跃,实现了知识的再创造。
当学生验证有困难时,我会适时的引导。“既然你们都猜三角形的内角和是180°,能不能把它转化成我们上册学过的某个知识点呢?”由于学生已经有了角大小比较的经验,会有一些学生想到把三角形的三个角撕下来拼在一起与平角作比较,从而得到三角形的内角和是180°。我让这些孩子到前面展示并鼓励全班同学都动手做一做,使更多的学生明白这个猜想是正确的。“同学们你们把三角形的三个角撕下来拼在一起得到什么结论?”估计会有下面精彩的回答:各种形状的三角形内角和都是180°;我不用撕,直接折也能得到三角形的内角和都是180°;老师我在验证直角三角形的时候有一个更好的方法,只要把两个锐角折成一个直角与原来的直角相加不也是180°吗;(有创新)老师也用折角的方法验证了各种形状的三角形。(课件……)通过课件的直观演示,又一次证实了学生的猜想是正确的。,每个孩子都是独有的个体,在合作中互补,确实有利于难点的突破。验证三角形的内角和是本节课的难点,所以我让孩子们合作验证。在合作中交流,在合作中相互学习。“同学们,通过刚才的活动,你现在可以肯定的告诉老师三角形的内角和是多少度了吗?这个三角形的内角和是多少度?(出示一个大三角形)把它剪小后问:现在呢?(剪几次)那现在你对三角形的内角和是180°还有怀疑吗?谁能用一句话总结出来?
我这样现场操作,让学生能从视觉上又一次证实了三角形的内角和不管形状和大小统统都是180°。
有人说:教育是一棵树摇动另一棵树,是一朵云推动另一朵云,一个心灵震撼另一个心灵。老师的一个眼神、一个微笑便能给孩子带来幸福和满足。适时的评价更能激起孩子思维的火花。当学生终于发现了三角形的内角和是180°这一秘密时,我会及时给学生评价:“同学们,你们经过画、量、剪、拼、折、观察等活动,自己发现并验证了三角形的内角和是180°(板书完整课题内角和是180°)这一重要规律,多了不起啊,老师由衷的为你们感到高兴。并祝贺你们孩子们。”我想得到老师这样的评价,学生们的高兴劲可想而知,解决问题的欲望也会更加强烈。拓展延伸。
在数学学习的研究中,常常有一些现实的、有趣的富有挑战性的题目呈现在孩子面前,有些题目带有明显的开放性,它把一个不确定的问题转化、分解为多个确定性的问题来解答。应该说这样的问题给孩子的思维空间是非常大的。
“下面三角形,剪掉一个40°的角,不改变其他角的度数,剩下图形的内角和是多少度?”我想会有学生利用自己的经验不假思索就会回答“140”,这时我不做任何评价,微笑着看着大家,“都同意这个答案吗?”引发了学生的再思考,我想最终一定会有学生发现“老师,剪掉这个40°的角以后,实际上就变成了一个四边形,要求四边形的内角和,就把它分割成两个三角形,一个三角形的内角和是180°,那两个三角形就是360°。我进而让学生引导“那么五边形的内角和又是多少度呢?”由于上一题的思路孩子们很快就会分割成三个三角形,即3个180°,共540°。“那六边形、七边形、一百边形的内角和又是多少度呢?”这时孩子会边画、边思考、边讨论,四边形能分割成两个三角形,五边形能分割成三个三角形,那六边形就能分割成四个三角形,最后孩子们终于发现了任意多边形的内角和等于边数减2的差乘180°。教学同时也是一门有遗憾的艺术。我认为对遗憾的态度应该约拿,并不断地探究、不断地改进,为此我思考着、探索着实践着。我想经过自己孜孜不倦的努力,一定会使预设的数学活动过程成为智慧和人格不断生成的过程。最后我希望每一个老师都能利用自己的人格魅力塑造出具有良好的习惯、健全的人格、坚定的信念、卓越成就的学生。布置作业。课后练一练1————5题
本课时间安排:检查上一课作业,练习3分钟。导入2分钟。新授25分钟。拓展,作业5分钟。在教学活动中及时了解学生掌握情况,随时调整教学方案,完成教学任务。
三角形内角和课件 篇5
教学内容:
义务教育课程表准教科书数学(人教版)四年级下册85页.例题5.
教学目标:
1.让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。
2.让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。
3.使学生体验成功的喜悦,激发学生主动学习数学的兴趣。
教学重点:
让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。
1.我们已经认识了三角形,什么是三角形?谁能说三角形按角分类,可以分成哪几类?(学生回答问题.)
2.请看屏幕(课件演示三条线段围成三角形的过程)。
三条线段围成三角形后,在三角形内形成了三个角,(课件分别出现三个角的弧线),我们把三角形里面的这三个角分别叫做三角形的内角。
1.请同学们帮老师画一个三角形,能做到吗?(激发学生主动学习的心理)请听要求,画一个有两个内角是直角的三角形,开始。(设置矛盾,使学生在矛盾中去发现问题、探究问题。)
(课件演示):是不是画成这个样子了?只能画两个直角。问题出现在哪儿呢?这一定有什么奥秘?那就让我们一起来研究吧!
1.请看屏幕。(播放课件)熟悉这副三角板吗?(课件闪动其中的一块三角板)
学生回答:90°、45°、45°。(课件演示:由三角板抽象出三角形)
这个三角形各角的度数。它们的和是多少?
把三角形三个内角的度数合起来就叫三角形的内角和。
2.(课件演示另一块三角板的各角的度数。)这个呢?它的内角和是多少度呢?
90°+60°+30°=180°。
3.从刚才两个三角形内角和的计算中,你发现什么?
这两个三角形的内角和都是180°。这两个三角形都是直角三角形,并且是特殊的三角形。
1.猜一猜。
猜一猜其它三角形的内角和是多少度呢?同桌互相说说自己的看法。
2.操作、验证一般三角形内角和是180°。
(1)小组合作、进行探究。
1.所有三角形的内角和究竟是不是180°,你能用什么办法来证明,使别人相信呢?那就请四人小组共同研究吧!
2.每个小组都有不同类型的三角形。每种类型的三角形都需要验证,小组活动的要求如下:课件显示
组长负责填写表格,组员每人负责量一个三角形的每个内角,并记录下来,最后算出这个三角形的内角和,把结果告诉组长.
(2)小组汇报结果。
没有得到统一的结果。这个办法不能使人很信服,怎么办?还有其它办法吗?
引导学生用拼合的办法,就是把三角形的三个内角放在一起,可以拼成一个平角。
1.用拼合的方法验证。
小组内完成,活动的要求同上.
2.汇报验证结果。
先验证锐角三角形,我们得出什么结论?
(锐角三角形的内角拼在一起是一个平角,所以锐角三角形的内角和是180°。
直角三角形的内角和也是180°。
钝角三角形的'内角和还是180°)。
3.课件演示验证结果。
请看屏幕,老师也来验证一下,是不是跟你们得到的结果一样?(播放课件)
我们可以得出一个怎样的结论?
为什么用测量计算的方法不能得到统一的结果呢?
三、解决疑问。
现在谁能说说不能画出有两个直角的一个三角形的原因?(让学生体验成功的喜悦)
(因为三角形的内角和是180°,在一个三角形中如果有两个直角,它的内角和就大于180°。)
在一个三角形中,有没有可能有两个钝角呢?
四、应用三角形的内角和解决问题。
2. 85页做一做:
在一个三角形中,∠1=140度, ∠3=35度,求∠2的度数.
180° 180° 180°
三角形内角和180°
三角形内角和课件 篇6
《三角形的内角和》教学设计
下肥镇学校:张海波
一、教材内容:人教版四年级下册数学第67页例6
二、教材内容分析
《三角形内角和》属于空间与图形的范畴,是在学生已经接触了三角形的稳定性和三角形的分类相关知识后对三角形进一步研究,探索三个内角的和。教材中安排了学生对不同形状的三角形进行度量,运用计算、测量、撕拼、折叠、推理等方法发现三角形的内角和是180°。扩充了学生认识图形的一般规律从直观感性的认识到具体的性质探索,培养了学生的空间观念。
三、三维目标 知识与技能:
1、理解和掌握三角形的内角和是180°。
2、运用三角形的内角和的知识解决实际问题。 过程与方法:
经历三角形内角和的探究过程,体验“发现——验证——应用”的学习模式。
情感态度与价值观:
在学习活动中,渗透探究知识的方法,提高学习的能力,培养创新精神和实践能力。
四、教学重点:理解和掌握三角形内角和是180°
五、教学难点:三角形内角和的探究过程。
六、教具准备:课件。
七、学具准备:三角板一副,锐角三角形、直角三角形、钝角三角形纸各一张,固体胶,剪刀一把,量角器一个。
八、教学过程:
一、创设情景,引出问题
1、复习
上节课我们学习了三角形的分类的知识,你还记得吗?让我们来试一试,一会老师出示三角形你来说出名称。
2、师:请同学们帮老师画一个三角形,能做到吗?
生:能。
师:请听要求,画一个有两个内角是直角的三角形,开始。(设置矛盾,使学生在矛盾中去发现问题、探究问题。)
师:有谁画出来啦?
生1:不能画。
生2:只能画两个直角。
生3:只能画长方形。
师:问题出现在哪儿呢?这一定有什么奥秘?想不想知道?
这节课我们就来研究三角形的角的知识——三角形的内角和(板书课题)
二、探究新知
1、三角形的内角、内角和
看了课题,你有什么疑问? 出示自主探究
(1)什么是三角形内角 (2)三角形有几个内角 (2)内角和指的是什么
生:三角形里面的三个角都是三角形的内角。有三个内角,三角形的三个角的度数的和,就是三角形的内角和。
2、研究特殊三角形的内角和
师:请看屏幕。(播放课件)熟悉这副三角板吗?请拿出形状与这块一样的三角板,并同桌互相指一指各个角的度数。(课件闪动其中的一块三角板)
生:90°、60°、30°。(课件演示:由三角板抽象出三角形) 师:也就是这个三角形各角的度数。它们的和怎样? 生:是180°。 师:你是怎样知道的? 生:90°+60°+30°=180°。
师:(课件演示另一块三角板的各角的度数。)这个呢?它的内角和是多少度呢?
生:90°+45°+45°=180°。
师:从刚才两个三角形内角和的计算中,你发现什么? 生1:这两个三角形的内角和都是180°。
生2:这两个三角形都是直角三角形,并且是特殊的三角形。
3、猜一猜。
师:(拿出一个任意三角形)问:这个三角形的内角和是多少度? 师:是不是所有的三角形的内角和都是180°呢?你能肯定吗? 师:大家意见不统一,我们得想个办法验证三角形的内角和是多少?自学67页例六,想象可以用什么方法验证呢? 生:可以先量出每个内角的度数,再加起来。
师:哦,也就是测量计算,是吗?那就请四人小组共同研究吧! 师:用量角器测量你们小组内的任意一个三角形每个内角的度数。最后要求计算出三个角的和是多少?填在表格里 4.操作、验证一般三角形内角和是180°。
(1)小组合作、进行探究。(教师巡视指导)
(2)小组汇报结果。
师:请各小组汇报探究结果。
生1:我们小组的测量结果是?
生2:175°。
生3:182°。
„„ 5..继续探究
师:没有得到统一的结果,怎么办?还有其它办法吗?请自学教材67页例六,想出办法。
生1:有。
生2:用拼合的办法,就是把三角形的三个内角放在一起,可以
拼成一个平角。
师:怎样才能把三个内角放在一起呢?
生:把它们剪下来放在一起。
(1.)用拼合的方法验证。
师:很好,请用不同的三角形来验证。
师:出示自学指导。小组内完成,仍然先分工怎样才能很快完成任务,开始吧。
(2.)汇报验证结果。 学生上台演示。
师:先验证锐角三角形,我们得出什么结论?
生1:我们小组是这样做的锐角三角形的内角拼在一起是一个平角,所以我们小组得出结论锐角三角形的内角和是180°。
生2:直角三角形的内角和也是180°。
生3:钝角三角形的内角和还是180°。
3.课件演示验证结果。
师:请看屏幕,老师也来验证一下,是不是跟你们得到的结果一样?(播放课件)
师:我们可以得出一个怎样的结论?
生:三角形的内角和是180°。
(教师板书:三角形的内角和是180°学生齐读一遍。)
师:为什么用测量计算的方法不能得到统一的结果呢?
生1:量的不准。
生2:有的量角器有误差。 师:对,这就是测量的误差。
4、折拼
师:有没有别的验证方法?
师:我在电脑里收索到折拼的方法,请同学们看一看他是怎么折的(课件演示)。
三、解决疑问。
师:现在谁能说说不能画出有两个直角的一个三角形的原因?(让学生体验成功的喜悦)
生:因为三角形的内角和是180°,在一个三角形中如果有两个直角,它的内角和就大于180°。
师:在一个三角形中,有没有可能有两个钝角呢?
生:不可能。
师:为什么?
生:因为两个锐角和已经超过了180°。
师:那有没有可能有两个锐角呢?
生:有,在一个三角形中最少有两个内角是锐角。
你对三角形内角和是多少度还有疑问吗?现在我们可以肯定的说:三角形的内角和是?度。
四、知识应用
师:接下来,利用三角形的内角和我们来解决一些相关的问题吧! 1.看图求出未知角的度数。(知识的直接运用,数学信息很浅显)
2、求出三角形各个角的度数。
3、爸爸给小红买了一个等腰三角形的风筝。它的一个底角是70度,它的顶角是多少度?
4.游戏巩固
请你设计一个三角形,并说出每个内角的度数,比一比谁设计的三角形更特别。
五、全课总结。 这节课你有哪些收获?
三角形内角和课件 篇7
【教学目标】
1、知识与技能:
(1)理解和掌握三角形的内角和是180°。
(2)运用三角形的内角和知识解决实际问题和拓展性问题。
2、过程与方法:
(1)通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的和等于180°。
(2)知道三角形两个角的度数,能求出第三个角的度数。
(3)发展学生动手操作、观察比较和抽象概括的能力。
3、情感态度与价值观:
让学生体验数学活动的探索乐趣,通过教学中的活动体会数学的转化思想。
【教学重、难点】
教学重点:理解掌握三角形的内角和是180°。
教学难点:运用三角形的内角和知识解决实际问题。
【教具准备】
教学课件、各种三角形
【教学过程】
一、创设情景,引出问题
1、猜谜语:
形状似座山,稳定性能坚。三竿首尾连,学问不简单。
(打一图形名称)
2、猜三角形
师:老师这有1个三角形,它的一部分被智慧星给遮住了,猜猜这是什么三角形?它里面会出现两个直角吗?为什么?
3、引出课题。
师:为什么不会出现两个直角?今天我们就再次走进数学王国,探讨三角形的内角和的奥秘。(板书课题)
二、探究新知
1、三角形的内角和
师:三角形内角和指的是什么?
2、猜一猜。
师:这个三角形的内角和是多少度?
3、验证。
让学生用自己喜欢的方式验证三角形的内角和是不是180°。
4、学生汇报。
(1)测量
师:汇报的测量结果,有的是180°,有的不是180°,为什么会出现这种情况?有没有别的方法验证?
(2)剪拼
A、学生上台演示。
B、请大家三人小组合作,用剪拼的方法验证其它三角形。
C、师演示。
(3)折拼
师:有没有别的验证方法?我在电脑里收索到折的方法,请同学们看一看他是怎么折的(课件演示)。
(4)结论:三角形的内角和是180。
(5)数学小知识。
5、巩固知识。
(1)解决课前问题,为什么一个三角形不可能有两个直角?一个三角形中可以有2个钝角吗?
(2)把两个小三角形拼在一起,问:大三角形的内角和是多少度。
教师:为什么不是360°?
三、解决相关问题
师:接下来,利用三角形的内角和我们来解决一些相关的问题吧!
1、看图,求未知角的度数。
2、判断。
3、如果一个都不知道,或只知道1个角,你能知道三角形各角的度数吗?
求出下面三角形各角的度数。
(1)我三边相等。
(2)我是等腰三角形,我的顶角是96°。
(3)我有一个锐角是40°。
4、求四边形、五边形内角和。
四、总结。
师:这节课你有什么收获?
五、板书设计:(略)
三角形内角和课件(收藏15篇)
优秀的人总是会提前做好准备,当幼儿园教师的教学任务遇到困难时,往往都需要参考一下我们提前准备参考资料。资料一般指可供参考作为根据的材料。资料可以帮助我们更高效地完成各项工作。你是否收藏了一些有用的幼师资料内容呢?经过整理,小编为你呈上三角形内角和课件(收藏15篇),欢迎大家借鉴与参考,希望对大家有所帮助。
三角形内角和课件 篇1
【教材分析】:
新课标把三角形的内角和作为第二学段中三角形的一个重要组成部分。本课是安排在三角形的特性及分类之后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。教材所呈现的内容,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间,安排了量一量、算一算和剪一剪、拼一拼两个实验操作活动,意图使学生在动手操作、合作交流中发现并形成结论。
【教学目标】
知识与技能
1.理解和掌握三角形的内角和是180度。
2.运用三角形的内角和的知识解决实际问题。
过程与方法
经历三角形的内角和的探究过程,体验“发现——验证——应用”的学习模式。
情感态度与价值观
在学习活动中,渗透探究知识的方法,提高学生学习的能力,培养学生的创新精神和实践能力。
【教学重点】
重点:理解和掌握三角形的内角和是180度。
突破方法:引导学生用测量或剪拼的方法探究三角形的内角和。合理猜想,测量验证。
【教学难点】
用三角形的内角和解决实际问题。
突破方法:推理分析计算。运用推理,正确计算。
教法:质疑
【教学方法】
引导,演示讲解。
学法:实践操作,小组合作。
【教学准备】:
多媒体课件,锐角,直角,钝角三角形的硬纸片,剪刀。
【教学时间】
一课时
【教学过程】
一.创设情境,引入新课
师:同学们,我们这俩天学习了三角形的分类,通过对角的分类,我们能够分成几类三角形?
生:三类,分别为锐角三角形,直角三角形,钝角三角形。
师:嗯,真好,那么对边的分类呢?
生:俩类,分别为等腰三角形,等边三角形。
师:老师想让同学们帮老师画一个三角形,能做到吗?
生:能。
师:请听要求,画一个有一个角是直角的三角形,开始。(学生动手操作)
师:再来一个可以吗?请听要求,画一个有俩个角是直角的三角形,开始。
生:不能画,因为当俩个角是90度的时候,俩个顶点在一条线上,不能组成封闭图形。
师:回答的真好,那么为什么会出现这种情况呢?是因为三角形中的角而引起的,那么同学们想不想知道其中的秘密呢?
生:想。
师:好,那么我们今天就一起来学习“三角形的内角和”(出示板书)
(设计意图:通过学生的动手操作,发现问题所在,这样更能调动学生的学习兴趣,为了更好的学习这节课做铺垫.)
二.探究新知
师:昨天呢,老师让同学们一人做一个自己喜欢的三角形,请同学们拿出来,看一看你们做的是什么样子的三角形。
生1:锐角三角形。
生2:直角三角形。
生3:钝角三角形。
师:嗯,我们在上个星期学习了三角形的各部分名称,谁能帮我告诉下同学们,角在哪里呢?
生:里面的三个角,可以用角1,角2,角3来表示。
师:嗯,这三个角我们也可以说成是三角形的内角,好了,今天我们既然学习三角形的内角和,也就是求成这三个角的度数和,你们猜一猜三角形内角和的度数是多少呢?
生:三角形的内角和是180度。
师:那么我们能不能一起用一些好的办法来验证一下呢?
生1:我们可以用量角器分别量出这三个内角的度数,然后再加在一起就可以求出三角形内角的和了。
师:还有其他的办法吗?
生2:我们可以用剪子剪下三个角,然后把它们拼在一起,看看这三个角拼在一起之后能够呈现出什么样子的角。
生3:我可以用折的方法,把三个角的度数折在一起。
师:同学们说的真好,既然有这么多的方法,到底哪个方法好呢?我们一起来研究一下,我把全班分成俩个小组,一队用量的方法,一队用拼的方法,看看哪个小组做的又对又快,开始。
(设计意图:通过学生的动手操作,合作交流,真正的把课堂还给学生,让学生成为学习的主体,教师适时引导,突出学生的学习的能力与价值。)
三.总结任意三角形的内角和是180度并做适当练习。
四.板书设计
三角形的内角和
量一量锐角三角形:75度+48度+58度=181度
直角三角形:90度+45度+45度=180度
钝角三角形:120度+38度+22度=180度
拼一拼图形呈现
折一折图形呈现
三角形内角和课件 篇2
教学目标:
1.掌握三角形内角和定理及其推论;
2.弄清三角形按角的分类,会按角的大小对三角形进行分类;
3.通过对三角形分类的学习,使学生了解数学分类的基本思想,并会用方程思想去解决一些图形中求角的问题。
4.通过三角形内角和定理的证明,提高学生的逻辑思维能力,同时培养学生严谨的科学态
5.通过对定理及推论的分析与讨论,发展学生的求同和求异的思维能力,培养学生联系与转化的辩证思想。
把问题作为教学的出发点,创设问题情境,激发学生学习兴趣和求知欲,为发现新知识创造一个最佳的心理和认知环境。
问题1三角形三条边的关系我们已经明确了,而且利用上述关系解决了一些几何问题,那么三角形的三个内角有何关系呢?
问题2你能用几何推理来论证得到的关系吗?
对于问题1绝大多数学生都能回答出来(小学学过的),问题2学生会感到困难,因为这个证明需添加辅助线,这是同学们第一次接触的新知识―――“辅助线”。教师可以趁机告诉学生这节课将要学习的一个重要内容(板书课题)
新课引入的好坏在某种程度上关系到课堂教学的成败,本节课从旧知识切入,特别是从知识体系考虑引入,“学习了三角形边的关系,自然想到三角形角的关系怎样呢?”使学生感觉本节课学习的内容自然合理。
让学生剪一个三角形,并把它的三个内角分别剪下来,再拼成一个平面图形。这里教师设计了电脑动画显示具体情景。然后,围绕问题设计以下几个问题让学生思考,教师进行学法指导。
问题2此实验给我们一个什么启示?
问题3由图中AB与CD的关系,启发我们画一条什么样的线,作为解决问题的桥梁?
其中问题2是解决本题的关键,教师可引导学生分析。对于问题3学生经过思考会画出此线的。这里教师要重点讲解“辅助线”的有关知识。比如:为什么要画这条线?画这条线有什么作用?要让学生知道“辅助线”是以后解决几何问题有力的工具。它的作用在于充分利用条件;恰当转化条件;恰当转化结论;充分提示题目中各元素间的一些不明显的关系,达到化难为易解决问题的目的。
(2)通过类比“三角形按边分类”,三角形按角怎样分类呢?
学生回答后,电脑显示图表。
(3)三角形中三个内角之和为定值,那么对三角形的其它角还有哪些特殊的关系呢?问题1直角三角形中,直角与其它两个锐角有何关系?
问题2三角形一个外角与它不相邻的两个内角有何关系?
问题3三角形一个外角与其中的一个不相邻内角有何关系?
其中问题1学生很容易得出,提出问题2之后,先给出三角形外角的定义,然后让学生经过分析讨论,得出结论并书写证明过程。
这样安排的目的有三点:第一,理解定理之后的延伸――推论,培养学生良好的学习习惯。第二,模仿定理的证明书写格式,加强学生书写能力。第三,提高学生灵活运用所学知识的能力。
三角形内角和课件 篇3
教学内容:
人教版四年级下册第85面——87面。
教学目标:
1、让学生亲自动手,通过量、剪、拼等活动发现三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。
2、让学生在动手获取知识的过程中,渗透“转化”数学思想,掌握简单的数学推理方法,培养学生的创新意识、探索精神和实践能力。
3、让学生感受到数学的价值,体会成功的喜悦,激发学生主动学习数学的兴趣。
教学重点:
让学生经历“三角形内角和是180°”这一知识的发现过程。
教学准备:
教具:多媒体课件、三角板一个、两个完全一样的直角三角形。
学具:锐角三角形、直角三角形、钝角三角形各一个。
师:同学们的歌声真嘹亮,老师站在这里和大家一起学习感到很高兴,
今天老师还给大家带来了一个老朋友,请看,是什么?
师:前面我们已经认识了三角形,谁能给大家介绍一下?
学生讲学过的三角形知识。
师:看来大家对三角形已经非常熟悉了,老师还为大家带来了两个特殊的三角形,请看,它们是什么三角形?(点击FLASH出示直角三角形实物图)
师:(师指第一个三角形)谁知道这个直角三角形每个角的度数吗?
师:答的真准确,(FLASH:生说完后师边说边点出度数)30度、60度、90度都在这个三角形的内部,我们把这样的角叫做三角形的内角。
角的和叫做三角形的内角和。(板书课题)下面请大家认真观察这两个算式,从结果上看,你发现了什么?
师:观察的真仔细!(点击课件,出示多种多样的三角形后提问)同学们,咱们都知道,这两个三角形是特殊三角形,在我们的生活中还有许许多多不是这个样子的三角形,请看大屏幕,这些任意三角形,它们的内角和是不是都是180度呢?
师:看来,大家是通过这两个三角形猜想的,是吗?想不想验证一下你们的猜想,(生:想)好,咱们一起走进三角形王国,一起去研究它们内角和的秘密吧!(师在课题“内角和”下面划上横线,打上问号)
师:看来,大家的意见不一致,想不想验证一下你们的猜想,(生:想)好,咱们一起走进三角形王国,一起去研究它们内角和的秘密吧!(师在课题“内角和”下面划上横线,打上问号)
师:老师看你们有答案了,哪位同学愿意说一说你的奇思妙想?
生:然后把它们三个内角的度数相加起来,就知道了三角形的内角和是多少?
生:我是把三角形的三个角剪下来,拼在一起(师鼓励:你的想法很有创意,等一会儿用你的行动来验证你的猜想吧!)
(如生一时想不到,师可引导:他是把三个内角的度数相加在一起,我们能不能想办法把三个内角放在一起进行观察,看看能不能发现些什么呢?)
师:好啦,老师相信咱们班的同学个个都是小数学家,一定能找出更多的方法的,请你们在研究之前,也像老师一样,在三个内角上编上序号,角一、角二、角三,现在就请同学们对锐角三角形、直角三角形和钝角三角形等各种类型的三角形进行研究,看看它们的内角和各有什么特点。咱们比一比,看一看,哪个小组的方法多,方法好!
师:老师看各小组已经研究好了,哪位同学愿意上来交流一下?
师:请你告诉大家,你是怎么研究的,最后发现了什么结果?
师:刚才有的同学测量的结果是180度,有的同学测量的结果是179度,有的同学测量的结果是182度,各不相同,但是这些结果都比较接近于多少?
师:那到底三角形的内角和是不是180度呢?还有哪位同学有其它的方法进行验证吗?
生:我是先把三角形的三个角剪掉以后粘在一起,然后在量出它们三个角组成的度数。
师:他演示的真好,你们听明白了吗?李老师把他的过程给大家在大屏幕上演示一下。
(师边讲解边点击FLASH:把三角形按照三个内角撕成三块,先把角一放在右边,再把角二放在左边,最后把角三调个头,插在角一角二的中间,这样它们三个内角就形成了一个大角,角一的这条边,角二这条边看起来在一条直线上,那到底是不是在一条直线上呢,我们一起用直尺来量一下,师演示后问学生:是不是在一条直线上,那这个大角是个什么角呢?通过刚才拼的过程,你有什么发现?)
师:好极了,刚才这个小组的同学用拼的方法得到XX三角形的内角和是180度,你们还有别的方法吗?
师:你们听明白了吗?李老师把他的过程给大家在大屏幕上演示一下。
(师边讲解边点击FLASH:先找到两条边的中点,把它连起来,把角一沿着中间的这条线向对边对折,再把角二向里对折,使它的顶点与角一对齐,最后把角三也用同样的方法对折,这样它们三个内角就形成了一个大角,这个大角是个什么角呢?)
师:除了用了量、拼、折的方法来研究以外,刚才在操作的过程中老师还发现了一个同学用了一种方法来进行研究,大家想知道吗?
生:我把两个相同的直角三角形拼成了一个长方形,因为长方形里面有四个直角,所以它的内角和是360度,那么一个三角形的内角和就是180度。
师:刚才我们用量、拼、折、推理的方法都得到了三角形的内角和是180度,同学们,现在我们回想一下,刚才测量的不同结果是一个准确数还是一个近似数?为什么会出现这种情况呢?
师:对,这就是测量的误差,如果测量仪器再精密一些,我们的方法再准确一些,那么任意一个三角形的内角和也将是180度。
师:同学们,我们刚才用不同的方法,不同的三角形研究了三角形的内角和,得到了一个相同的发现,这个发现就是?
师:请看老师手上的这两个三角形,左边这个内角和是多少度?(生:180度)右边呢(生:也是180度)
师:现在老师把它们拼在一起,这个大三角形的内角和又是多少度呢?
(生答后师引导归纳得出:三角形的内角和与形状大小无关,组成的大三角形的内角和依然是180度。)
师:刚才我们在讨论学习三角形知识的时候,三角形中的两个好朋友却争执了起来,想知道怎么回事吗?让我们一起去看看吧!(出示课件,课件内容:一个大一些的直角三角形说:“我的个头比你大,我的内角和一定比你大”。另一个稍小的锐角三角形说:“是这样吗”?)
师:到底谁说的对呢?今天我们就用我们今天学到的知识来为它们解决解决吧!
师:真不错,你们当了一回小法官,帮助三角形兄弟解决了问题,它俩很感谢你们,三角形王国中还有很多生活中的问题,小博士们,你们愿意解答吗?
(出示基础练习)在一个三角形中角一是140度,角三是25度,求角二的度数。
出示自行车、等边三角形的路标牌、告诉顶角求底角的房顶、直角三角形的电线杆架进行练习。
(出示)小红的爸爸给小红买了一个等腰三角形的风筝,它的一个底角是70度,它的顶角是多少度?
师:看来啊,三角形的知识在咱们生活中还有着这么广泛的运用呢!昨天,我们班发生了一件事情,小明不小心将镜框上的一块三角形玻璃摔破了,(课件呈现情境)他想重新买一块玻璃安上,小明非常聪明,只带了其中的一块到玻璃店去,就配到了和原来一模一样的玻璃了。你知道他带的是哪一块吗?
(预设:师:根据三角形的内角和是180度,你能求出下面四边形、五边形、六边形的内角和吗?
师:太棒了,这位同学把这个四边形分割成了二个三角形求出了它的内角和,你能像他一样棒求出五边形和六边形的内角和吗?
师:同学们,今天我们一起学习了三角形的内角和,你有哪些收获呢?
师:嗯,真不错,你们知道吗?三角形的内角和等于180度是法国著名的数学家帕斯卡在1635年他12岁时独自发现的,今天凭着同学们的聪明智慧也研究出了三角形的内角和是180度,老师为你们感到骄傲,老师相信在你们的勤奋学习和刻苦钻研下,你们就是下一个“帕斯卡”!
三角形内角和课件 篇4
教学内容:
教材第67页例6、“做一做”及教材第69页练习十六第1~3题。
教学目标:
1、通过动手操作,使学生理解并掌握三角形的内角和是180°的结论。
2、能运用三角形的内角和是180°这一结论,求三角形中未知角的度数。
3、培养学生动手动脑及分析推理能力。
重点难点:
掌握三角形的内角和是180°。
教学准备:
1、什么是平角?平角是多少度?
2、计算角的度数。
3、回忆三角形的相关知识。(出示直角三角形、锐角三角形、钝角三角形)
(设计意图:让学生经历质疑验证结论这样的思维过程,真正整体感知三角形内角和的知识,真正验证了“实践出真知”的道理,这样的教学,将三角形内角和置于平面图形内角和的大背景中,拓展了三角形内角和的数学知识背景,渗透数学知识之间的联系,有效地避免了新知识的“横空出现”。同时,培养学生的综合素养)
1、读学卡的学习目标、任务目标,做到心里有数。
4、验证:
(1)初证:用一副三角板说明直角三角形的内角和是180°。
(2)质疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。
(3)再证:请按学卡提示,拿出学具,选择自己喜欢的方式验证三角形的内角和是180°(师巡视)
6、追问:把两块三角板拼在一起,拼成的大三角形的内角和是多少?说明三角形无论大小它的内角和都是180°(课件演示)
7、看微课感知“伟大的发现”(设计意图:让学生感受自己所做的和帕斯卡发现三角形内角和是180°的过程是一样的,从而培养孩子的自信心和创造力。)
(1)一个三角形,它的两个内角度数之和是110,第三个内角是、
(2)一个直角三角形的一个锐角是50,则另一个锐角是()。
(3)等边三角形的3个内角都是()。
(4)一个等腰三角形,它的一个底角是50,那么它的顶角是()。
(5)一个等腰三角形的顶角是60,这个三角形也是()三角形。
根据所学的知识,你能想办法求出四边形、五边形的内角和吗?
1、小组讨论。2、汇报结果。3、课件提示帮助理解。
五、自我评价根据学卡要求给自己评出“优”“良好”“合格”。
三角形内角和课件 篇5
(一)知识与技能:掌握“三角形内角和定理”的证明及其简单应用,让学生探索发现三角形的内角和是180。
(二)过程与方法:通过量算、撕拼、折拼等活动培养学生观察、操作、探究、归纳、概括、反思等能力和初步的空间想象力,感受数学的转化思想;发展学生的空间观念和初步的逻辑思维能力;能运用所学知识解决简单的问题,训练学生对所学知识的运用能力。
(三)情感态度与价值观:
1、渗透转化迁移思想,培养学生大胆质疑的勇气和严谨科学的精神,及与他人合作交流的意识。
2、让学生切实感受到从实验中得到的现象,经过简单的推理证明以后可以成为我们的一般公理,初步感受从个别到一般的思维过程。
教学重点:
让学生经历“三角形内角和是180度”这一知识的形成、发展和应用的全过程;知道三角形的内角和是180度并且能应用。
教学难点:
三角形内角和是180度的探索和验证过程。
3、 认识三角形的内角,猜测内角和。
60°+30°+90°=180°
45°+45°+90°=180°
(二)操作、验证完成一般三角形的内角和是180度的.证明。
其他类。
3、 小结:
(课件演示)刚才同学们用量、折、剪、拼、计算、推理等这么多巧妙的方法得出,无论是什么样的三角形的内角和都是180°,你们真不错,让我们带着自豪的语气大声地读出“三角形的内角和是180°”
4、 知识升华:
大小不一的三角形的内角和各是多少?
一个三角形分成两个三角形,他们的内角和各是多少?
1、 为什么不能画有两个直角的三角形?哪能画含有两个钝角的三角形吗?含有两个锐角呢?
2、 老师不小心把墨水倒在了三角形上,你知道它的度数吗?
你对自己的评价。
结束语:
三角形是一棵大树,内家和只是它的一片叶子;
数学是一棵大树,三角形只是它的一片叶子;
生活是一棵大树,数学只是它的一片叶子,
让我们欣赏着、享受着三角形为生活添得美!
三角形内角和课件 篇6
一、教学目标:
1、通过小组猜想、探索、验证三角形的内角和等于180°,并能运用知识解决简单问题。
2、经历三角形内角和的探究过程,体验“猜想——验证——应用”的学习模式。
3、通过各种实践活动,激发学习兴趣,体验学习成功感,并在教学中,感受数学与生活的密切联系。
二、教学重难点
教学重点:学生运用各种方法,探索三角形的内角和是180度这一知识的全过程
教学难点:运用三角形的内角和解决实际问题。
三、教具、学具准备:
课件、一副三角尺、几个三角形。学生准备一副三角尺。
四、教学过程:
一、创设情境 揭示课题。
师:猜谜语 形状似座山,稳定性能坚;三竿首尾连,学问不简单。(打一几何图形)生:三角形
师:前面我们已经认识三角形,谁能给大家介绍一下? 学生讲学过的三角形知识。分类
师:我们在讨论三角形知识的时候,三角形中的三个兄弟却吵了起来,想知道怎么回事吗?让我们一起去看看吧!
师:呦,瞧,三个兄弟在争论呢。(播放课件)它们在争论什么呀? 生:它们在争论谁的内角和大。
师:哦,原来如此。那么,你们知道什么是三角形的内角? 三角形的内角和又是指什么吗?(生:三角形的内角就是三角形里面的三个角。内角和就是三个内角的度数和。)
师:这个同学说得真好,(课件)我们把三角形里面的这三个角,就叫做三角形的内角,而这三个角的度数和,我们就称为三角形的内角和。
今天我们就来研究有关三角形内角和的知识。(板书课题)
二、探索交流,解决问
(一)、大胆猜想,产生分歧
师:理解了三角形的内角和,那请你们给评评理:这三个大小不一样的三角形,到底是谁的内角和大啊?(这位同学手举得最高,请你来说。)
生1:我认为是这样的,因为大三角形大,所以它的内角和更大。(哦,你是这样认为的,请坐。还有不同意见吗?这位同学很着急,好,你来。)
生2:我不同意,我认为两个三角形内角和的度数都是一样的。(很好,这是你的想法。还有同学想说,你来。)
生3:当然是大三角形的内角和大了。(你回答的声音真响亮。请坐)生4:我同意第二个同学的意见,两个三角形的内角和一样大。
师:现在出现了两种不同的意见,有的同学认为大三角形的内角和大,还有部分同学认为两个三角形的内角和的度数都是一样的。那么到底谁说得对呢?
(二)验证猜想,解决问题
师拿出两个三角尺,问:它们是什么三角形? 生:直角三角形。
师:请大家拿出自己的两个三角尺,同桌之间说说每一个三角尺上三个角的度数,并求出这两个直角三角形的内角和。(学生们能够很快求出每块三角尺的3个角的和都是180°)
师:你们算出来,这两个三角尺的内角和是多少度啊? 生齐:180°。
师:那„„其他三角形的内角和也是180°吗?(这位同学手举得真端正,你来说。)生1:其他三角形的内角和也是180°(好,还有谁想说?)生2:其他三角形的内角和不是180°
师:看来呀,大家都有不同的看法。我们学过三角形的分类,知道直角、锐角、钝角三角形可以代表所有的三角形。那下面就请同学们小组合作,从组里找出这
三类三角形,量一量每个三角形内角的度数,并求出它们的内角和,把结果填在表格里。(板书:测量)师:你们发现了什么?
生1:通过测量我们发现每个三角形的内角和都是180°。生2:不对,应该是180°左右,因为我们组算出来也有175°的。
师:噢!是呀,因为我们在测量时可能会出现一些误差,所以测量出的结果不是很准确,因此我们只能猜测三角形的内角和可能是180°。
师:那么,同学们能发挥你们的聪明才智,通过动手操作,想办法来验证自己的猜想吗?请同学们先独立思考一下,再在小组内把你的想法与同伴进行交流,然后每组选一种方法进行验证,看哪组最先发现其中的“奥秘”。(1)小组合作,讨论验证方法(2)汇报验证方法、结果。
师:谁愿意第一个向大家介绍你们组的验证方法?
组1:我们小组是用剪拼的方法(板书:剪拼),将三角形的三个角剪下来,拼成一个平角,得到三角形的内角和是180度。
师:上来展示给大家瞧一瞧。(投影仪)你们看这位同学多细心呀,为了方便、不混淆,在剪之前,他先给3个角标上了符号。
师:现在请同学们看大屏幕,老师在电脑里把刚才剪拼的过程重播一遍。你们看,成功了,3个角拼成了一个平角。可是,刚才剪拼的是一个锐角三角形,那还有直角三角形、钝角三角形呢,它们能不能拼成一个平角啊? 生齐:能!
师:好。那就是说,刚才这种剪拼的方法可以不用再一个角一个角来量,就能证明三角形的内角和是180°了。你们觉得这种方法好不好啊?那我们把掌声送给刚才这个小组。还有其他方法吗?
组2:我们小组是用折的方法(板书:折图),同样得到三角形的内角和是180度。(这个小组真了不起,竟能想出如此独特的方法,很有新意,非常好!)师:听起来有点抽象,请这位同学上来折给大家看看好不好呀?(投影仪展示)
(展示:3个角折成了一个平角。)
师:真是个手巧的孩子。不过呢,他刚才折的是一个直角三角形,那其他两类三角形呢,是不是也能折出平角呢,谁来告诉大家?
组3:可以,这三类三角形都能折出平角。(这一组探索数学的能力也真棒!)师小结:刚才同学们用量、剪、拼、折等方法证明了,无论是什么样的三角形,内角和都是1800,(板书:三角形的内角和是180°)现在让我们用自豪的、肯定的语气读出我们的发现:“三角形的内角和是1800”。师:(出示一个大三角形)它的内角和是多少度? 生:180 °
师:(出示一个很小的三角形)它呢? 生:180 °
师:一个三角形的内角和是180°,那两个同样的三角形拼成一个大三角形,它的内角和又是多少呢?
(生有的答360°,有的180 °。)
师:咦?有两种不同的声音哦。那到底哪一种是正确的呢?
师:(学生个个脸上露出疑问)大家可以在小组内拼一拼,并讨论讨论。(经过一翻激烈的讨论探究后,学生开始举手回答。)
生1:180°,因为两个三角形拼在一起,就变成了一个三角形了,每个三角形的内角和总是180°。(想一想,做一做,数学之门就被这组同学打开了,真棒!哈,还有同学要说,好,你再说。)
生2:我发现两个小三角形拼成一个大三角形,拼接在一起的两条边上的两个角没有了,就比原来两个三角形少180 °,所以大三角形的内角和还是180°,不是360°。
师:你分析问题这么透彻,老师真希望每节课都能听到你的发言。现在,老师把刚才这位同学说的用课件演示一遍,注意看哦。(课件演示)
师:好,这个问题解决了。那么,把大三角形平均分成两份。它的(指均分后的一个小三角形)内角和是多少度? 生齐:180°。
师:哈,看来已经骗不倒我们班的同学勒。答案还是180°,不是90°哦。师总结:所以说,三角形不论位置、大小、形状如何,它的内角和总是180°
三、巩固应用,内化提高
1、解决问题:
学会了知识,我们就要懂得去运用。下面,我们就根据三角形内角和的知识来解决一些相关的数学问题。(课件演示练习题)(1)在能组成三角形的三个角后面画“√”(2)判断下列说法对吗?(3)你能求出被遮住的角吗?(4)67页的做一做。(5)你会求下面图形的角吗?
四、回顾整理,反思提升
通过今天的学习,大家有什么收获?
拓展创新
小明不小心将镜框上的一块三角形玻璃摔成了两半,玻璃裂成了两块。一块只有原来的一个角,另一块有原来的两个角。他想重新买一块玻璃安上,小明非常聪明,只带了其中的一块到玻璃店去,就配到了和原来一模一样的玻璃了。你知道他带的是哪一块吗?
三角形内角和课件 篇7
三角形的内角和
(卢芳珍)
教学内容 :课本P85例5
教学要求:1.通过动手操作,使学生理解并掌握三角形的内角和是180°的结论。
2.能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。
3.培养学生动手动脑及分析推理能力。
教学重点 三角形的内角和是180°的规律。
教学难点 使学生理解三角形的内角和是180°这一规律。
教学用具 每个学生准备锐角三角形、直角三角形、钝角三角形纸片各一张,量角器。
教学过程:
一、引出课题
1.投影出示一组三角形:(锐角三角形、钝角三角形、直角三角形)。三角形有几个角?老师指出:三角形的这三个角,就叫做三角形的三个内角。(板书:内角)
2.三角形三个内角的度数和叫做三角形的内角和。(板书课题:三角形的内角和)今天我们一起来研究三角形的内角和有什么规律。
3.课件出示:长方形内角和引出直角三角形内角和。
思考:所有的三角形的内角和都是180°吗?
以小组为单位,拿出准备好的三种三角形卡片,选择自己喜欢的方法进行验证。
4.指名学生汇报各组度量和计算的结果。你有什么发现?
5.大家算出的三角形的内角和都接近180°,那么,三角形的内角和与180°究竟是怎样的关系呢?就让我们一起来动手实验研究,我们一定能弄清这个问题的。
6.刚才我们计算三角形的内角和都是先测量每个角的度数再相加的。在量每个内角度数时只要有一点误差,内角和就有误差了。我们能不能换一种方法,减少度量的次数呢?
二、重点点拨:
1、可以把三个内角拼成一个角,就只需测量一次了。
课件出示拼角方法。
2.三个角拼在一起组成了一个什么角?我们可以得出什么结论?(直角三角形的内角和是180°)
3.学生动手,拿一个锐角三角形纸片试试看,拼的方法一样。再拿钝角三角形折折看,你发现了什么?(直角三角形和钝角三角形的内角和也是180°)
4.那么,我们能不能说所有三角形的内角和都是180°呢?为什么?(能,因为这三种三角形就包括了所有三角形)11.老师板书结论:三角形的内角和是180°。
5.一个三角形中如果知道了两个内角的度数,你能求出另一个角是多少度吗?怎样求?
6.讨论交流:
A、你能画出一个有两个直角的三角形吗?说说原因!
B、可以画出一个有两个钝角的三角形吗?
C、一个三角形最多只能有()直角,或最多只能有
()钝角。最少有()锐角,最多有()个锐角。
7.出示教材85页做一做。让学生试做。
8.指名汇报怎样列式计算的。两种方法均可。
∠2=180°-140°-25°=15°
∠2=180°(140°+25°)=15°
三、巩固练习
1.88页第9题
这一题是不是只知道一个角的度数?另一个角是多少度,从哪看出来的?独立完成,集体订正。
直角三角形中的一个锐角还可以怎样算?
2、88页第10题
①等腰三角形有什么特点?(两底角相等)
②列式计算 180°-70°-70°=40°或
180°-(70°×2)=40°
2.88页第10题
四、课堂小结。
五、知识拓展
求多边形的内角和。
六、布置作业
三角形内角和课件 篇8
《三角形内角和》教学设计
杨 海 慧
【教材分析】
“三角形内角和”是三角形的一个重要性质,是“图形与几何”领域的重要内容之一,学好它有助于学生理解三角形内角之间的关系,也是进一步学习几何的基础。【学情分析】
学生在本节课学习之前已经认识了三角形的基本特征及分类,并且在四年级(上册)教材里已经知道了两块三角尺上的每一个角的度数,学生的数学知识、能力和思考问题的角度有一定的差异,因此课堂上比较容易出现解决问题策略的多样化。【设计理念】
本节课主要采用自主探究、小组合作、全班交流的方式,让学生通过探究式学习,在活动中体验三角形内角和性质的探索过程,发现三角形内角和的性质,并能运用这一性质解决相关的问题,进而加深学生对三角形内角和的认识。
首先让学生知道“内角”的含义;然后引导学生探究三角形的内角和是多少?大多数学生可能会想到用测量的方法,此时可以顺势引导安排小组活动。让每组同学选取大小、形状不同的三角形,分别量出三个内角的度数并求出它们的和,填在相应的表格中;最后通过比较发现:大小、形状不同的三角形,每一个三角形内角和都在180°左右;也可能会有学生提出已经知道三角形的内角和是180°,这时我会表示怀疑,并将一个大的三角形纸等分成两个小三角形进行设疑:每个小三角形的内角和还是180°吗?在学生感到疑惑时,顺势引导学生系统、深刻地再经历测量、计算的过程,当学生经过计算确认这两个小三角形内角和是180°后,再让学生思考其它的三角形呢?能否不用测量的方法呢?进而引导学生利用撕、折的方法验证猜想。【教学内容】
人民教育出版社,《义务教育课程标准实验教科书》数学四年级下册第85页。【教学目标】
1.通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的和等于180°。
2.通过把三角形的内角和转化为平角进行探究的过程,渗透“转化”的数学思想。
3.发展学生动手操作、观察比较和抽象概括的能力。4.能应用三角形内角和的性质解决一些简单的问题。【教学重点】
用不同的方法探究和发现三角形内角和是180°。
【教学难点】
进一步加深了对三角形内角和的理解和运用。【教具准备】
一副三角尺;多媒体课件、大三角形纸若干张(备用); 【学具准备】
直角三角形、锐角三角形和钝角三角形各一个,并分别测量出每个内角的度数标在图中 ;一副三角尺。【教学过程】
一、创设情境,谈话导入
猜谜语:
形状似座山,稳定性能坚,三竿首尾连,学问不简单。
(打一几何图形)生:三角形
师:同学们真了不起,一下就猜到了答案。
师:最近我们一直在研究三角形的知识,谁能给大家介绍一下? 生:回顾已学过的三角形知识…….师:通过学习,我们知道了三角形的那么多的知识,大家说数学知识是不是很神奇?今天我们还要继续研究三角形的新知识。(设计意图:回忆已经学过的三角形知识为新内容进行铺垫。同时,也为知识的迁移作了伏笔。《课标》强调学生数学学习的过程是建立在经验基础上的一个主动建构的过程。)
二、以疑激思,引出课题 师:什么是三角形的内角? 三角形有几个内角? 生:就是三角形内的三个角。每个三角形都有三个内角。师:这个同学说得很好,三条线段在围成三角形后,在三角形内形成了三个角(课件闪烁三个角的弧线),我们把三角形内的这三个角,分别叫做三角形的内角。
师:有两个三角形为了一件事正在争论,我们来帮帮他们。(出示课件)
师:同学们,请你们给评评理:是这样吗? 生1:我认为是这样的,因为大三角形大,它的三个内角的和就大。
生2:我不同意,我认为两个三角形的三个内角和的度数都是一样的。
生3:当然是大三角形的内角和大了。
生4:我同意第二个同学的意见,两个三角形的内角和一样大。师:现在出现了两种不同的意见,有的同学认为大三角形的内角和大,还有部分同学认为两个三角形的内角和的度数都是一样的。那么到底谁说得对呢?本节课我们就一起来研究这个问题。(板书课题:三角形的内角和)师:若这时有学生提出已经知道三角形的内角和是180°,我在表示质疑的同时,拿出事先准备好的三角形纸将其等分成两个小三角形,每个三角形的内角和还是180°吗?当学生也表示怀疑时,顺势引导学生系统、深刻地再经历测量、计算的过程。当学生经过计算确认这两个小三角形内角和是180°后,让学生思考其它的三角形呢?能否不用测量的方法呢?在学生思考的基础上,引导学生利用撕、折的方法验证猜想。
三、动手操作,探究新知
1、师拿出两个三角尺教具,问:它们是什么三角形? 生:直角三角形。
师:请大家拿出自己的两个三角尺,在小组内说说每一个三角尺上三个内角的度数,并求出这两个直角三角形的内角和。生:每块三角尺的3个内角的和都是180°。师:其他三角形的内角和也是180°吗? 生A:其他三角形的内角和也是180°。生B:不一定。
(设计意图:让学生经历了矛盾,发现问题后,再和小组的同学一起讨论、探究更好的验证方法,教师给予学生足够的时间和空间,让每个学生自主参与撕、折的实践活动,让学生在经历猜想、验证、演示、汇报过程中解决问题,发展学生空间观念和推理能力。)
2、师:同学们能通过动手操作,想办法来验证自己的猜想吗?请同学们先进行独立思考,然后在小组内把你的想法与同伴进行交流,最后选用一种方法进行验证。看谁最先发现其中的“奥秘”;看谁能争取到向大家作“实验成功的报告”。
(1)小组合作、讨论、验证方法(2)汇报验证方法、结果 师:谁愿意给大家介绍你们小组是用什么方法来验证的?结果怎样?
生A:我们小组是用撕的方法。每人选取一个不同形状的三角形,用手分别把3个角撕下来,然后再拼,结果拼成一个平角,得到三角形的内角和是180度。
师:上来展示给大家瞧一瞧。(投影仪展示)你们看这小组的同学多细心呀,为了不混淆,在撕之前,他们先给3个角分别标上了符号。师:现在请同学们看大屏幕,我在电脑里把刚才撕的过程重播一遍。(课件演示)3个角拼成了一个平角
生B:我们小组是用折的方法,同样得到三角形的内角和是180度。
师:好,请这位同学到前面来折给大家看看。(投影仪展示后课件演示)
生:3个角折成了一个平角。
师:真是个手巧的孩子。他刚才折的是一个锐角三角形,你们小组还有折其他三角形的吗?(学生汇报后课件演示)
师:锐角三角形、钝角三角形都折了几次?(3次)现在请同学们看屏幕,让我们来看看直角三角形折了几次?(课件展示:直角三角形折的过程)
师:折了几次?想想为什么直角三角形可以只折两次就能证明。生;因为它是一个直角三角形,已经有了一个直角,另外2个锐角只要能拼成直角,三个角的和就是180°了。师:说得真清楚。还有没有不同的方法?
生C:我们小组是用测量、计算的方法,但我们发现三角形的内角和有的比180°,有的比180°小,有的正好是180°。
师:为什么会出现这种情况呢?
生:因为测量时会出现一些误差,所以测量出的结果不是很准确。师:同学们真的很棒!
师:刚才同学们用撕、折、量等方法证明了无论是什么样的三角形内角和都是180°(板书:是180°)现在让我们用自豪的、肯定的语气读出我们的发现:“三角形的内角和是180°”。
师:(出示一个大三角形)它的内角和是多少度? 生:180 °。
师:(出示一个很小的三角形)它的内角和是多少度? 生:180 °。
师:一块三角尺的内角和180°,两块同样的三角尺拼成的一个大三角形的内角和又是多少呢? 生A:180 °。生B:360°
师:究竟谁对呢?让学生在小组内拼一拼,进行讨论。经过一翻激烈的讨论探究后,学生可以找到答案。
生A:180 °,因为两个三角形拼在一起,就变成了一个三角形了,每个三角形的内角和总是180 °。
生B :我发现两个小三角形拼成一个大三角形,拼接在一起的两条边上的两个角没有了,就比原来两个三角形少180 °,所以大三角形的内角和还是180°,不是360°。
师:你们真聪明。(课件演示)
师: 三角形不论位置、大小、形状如何,它的内角和总是180°。(设计意图:这里通过教师提出具有思考性的问题,层层设疑,使学生探究知识的兴趣波澜起伏,时刻处在紧张而又兴奋的学习状态中。)
四、巩固深化,加深理解
我们学习了三角形的内角和,你能运用所学知识解决下面的问题吗?(课件出示)
1、求三角形中一个未知角的度数。
在三角形中,已知∠1=140°,∠3=25°,求∠2的度数。
2、判断
(1)一个三角形的三个内角度数是:80°、75°、24°。()(2)三角形越大,它的内角和就越大。
()(3)一个三角形至少有两个角是锐角。
()(4)钝角三角形的两个锐角和大于90°。
()
3、解决生活实际问题。
(1)爸爸给小红买了一个等腰三角形的风筝,它的一个底角是70°,它的顶角是多少度?
(2)交通“警示牌”为等边三角形,求其中一个角的度数。
4、拓展练习。
利用三角形内角和是180°,求出下面四边形、六边形的内角和?
师:小组的同学讨论一下,看谁能找到最佳方法。学生汇报(课件演示)。让学生写在自己的练习本上。
(设计意图: 练习设计由浅入深,由易到难,紧紧围绕三角形的内角和来进行,进一步加深了对三角形内角和的理解和运用,让学生计算等腰三角形风筝顶角的度数和等边三角形交通警示牌的度数,不但培养了学生解决问题的能力,也让学生感受到数学与生活的密切联系。最后,让学生求四边形、六边形的内角和的度数,不仅培养了学生知识的迁移能力,而且将所学知识进行了内化和升华。)
五、全课小结。
三角形内角和课件 篇9
三角形内角和定理(1)教学反思
“三角形的内角和定理”我们在初一的时候就已经学会运用了,但是这个定理到底如何证明呢?这时,本节的目标就已经明确下来了。证明的过程中,通过课前准备好的三角形道具,让学生通过撕撕拼拼的方法,把三角形的三个内角拼成我们所熟悉的平角或者是同旁内角的关系,辅助线就自然而然的运用到其中。本节的重点和难点也就自然而然地被突破。
课后我认为本节中的成功之处有以下几点:
1、引入简单精炼,给了全体学生的自信心,能使所以学生的注意力迅速地集中到课堂上来;
2、利用拼图的方法来找到“三角形内角和定理”的证明方法的过程中,学生充分地配合,学生的思维得到了最大限度的发挥,而且采用此种方法来引出辅助线在几何中应用,巧妙地分散了本节的重点和难点,事实也证明学生的接受程度很好;
3、教师在多媒体上展示每个三角形都是用三种不同颜色的彩纸拼成的,学生在学习的过程中看起来会更加的清晰、醒目;
4、在本节课的整个流程中,师生之间的配合非常地默契,教师能够关注每一个学生,学生的思维也在短短的45分钟内得到了充分地发散和发挥,通堂的气氛活跃、轻松。
课后我认为本节课中的不足之处:
1、在学生拼图寻求“三角形内角和定理”证明之前的铺垫,有些过快,导致个别学生不太明白这些铺垫对于利用拼图来证明定理时有什么用途;
2、不完全相信学生的能力,比如在学生讨论拼图方法后,让学生到黑板上来展示作品的时候,我似乎不敢距离学生太远,恐怕中间会出现什么差错。而实践证明学生完全是通过自己来完成作品的展示的;
3、还是没有改掉急躁的毛病,一些问题还是急于说出答案,没有给学生们足够的思考时间,这是其一。其二,教师讲得过多,没有把课堂还给学生。
三角形内角和课件 篇10
教学目标:
1、通过测量一量、拼一拼、折一折三个活动,探索和发现三角形三个内角的度数和等于180°。
2、已知三角形两个角的度数,会求出第三个角的度数。
3、经历三角形内角和的研究方法,感受数学研究方法。
教学重点:
1、探索和发现三角形三个内角的度数和等于180°。
2、已知三角形两个角的度数,会求出第三个角的度数。
教学难点:
掌握探究方法(猜想-验证-归纳总结),学会用“转化”的数学思想探究三角形内角和。
一、创设情境揭示课题。
1、一天两个三角形发生了争执,他们请你们来评评理。大三角形说:“我的个头大,所以我的内角和一定比你大。”小三角形很不甘心地说:“我有一个钝角,我的内角和一定比你大。”。谁说得有道理呢?今天让我们来做一回裁判吧。
讲解:三角形内两条边所夹的角就叫做这个三角形的内角。每个三角形都有三个内角,这三个内角的度数加起来就是三角形的内角和。
二、自主探究,合作交流。
(一)提出问题:
1、你认为谁说得对?你是怎么想的?
2、你有什么办法可以比较一下这两个三角形的内角和呢?
生1:用量角器量一量三个内角各是多少度,把它们加起来,再比较。
生2:用拼一拼的办法把三个角拼到一起看它们能不能组成平角。
A、在练习本上画一个三角形,量一量三角形三个内角的度数并标注。(测量时要认真,力求准确)
B、把测量结果记录在表格中,并计算三角形内角和。
②小组合作。
③汇报交流。
你们测量了几个三角形?它们的内角和分别是多少?从测量和计算结果中你们发现了什么?
刚才我们通过测量和计算发现了三角形内角和都在180度左右,那你能不能大胆的猜测一下:三角形内角和是否相等?三角形的内角和等于多少度呢?(板书:猜测)
引导:180°,跟我们学过的什么角有关?我们课前准备了各种三角形纸片,你能不能利用这些三角形纸片,想办法把三角形的三个内角转换成一个平角呢?
(1)小组合作,讨论验证方法。(把三个角撕下来,拼在一起,3个角拼成了一个平角,所以三角形内角和就是180°)。
(2)讨论:锐角三角形、直角三角形、钝角三角形是否都能得出相同的结论呢?
师生一起活动,教师先让学生看课件演示,然后拿出准备好的三角形纸艮老师一起折一折。
(把三角形的角1折向它的对边,使顶点落在对边上,然后另外两个角相向对折,使它们的顶点与角1的顶点互相重合,也证明了三角形内角和等于180°,)。
讨论:锐角三角形、直角三角形、钝角三角形能否得到相同的结论?
3、回顾两种方法,归纳总结,得出结论。
(1)引导学生得出结论。
孩子们,三角形内角和到底等于多少度呢?”
我们通过动作操作,折一折,拼一拼,把三角形的三个内角转换成了一个平角,成功的得到了这个结论,让我们为自己的成功鼓掌!齐读结论。(板书:得到结论)
为什么我们刚才通过测量,计算出来的三角形内角和不是180°,呢?
那是因为我们在测量时,由于测量工具、测量操作等各方面的原因,使我们的测量结果存在一定的误差。实际上,三角形内角和就等于180°
(三)回顾问题:
为什么?请大家一起,自信肯定的告诉我。
三、巩固深化,加深理解。
∠A=180°—90°—30°
∠A=180°—75°—28°
四、回顾课堂,渗透数学方法。
2、介绍:三角形内角和等于180度这个结论的由来;数学领域里还未被证明的其它猜想,如哥德巴赫猜想、霍启猜想、庞加莱猜想等。
三角形内角和课件 篇11
《三角形的内角和》说课稿
各位领导、老师:
大家上午好!今天我说课的内容是青岛版小学数学四年级下册第四单元“角与三角形的认识”信息窗2中的第二课时《三角形的内角和》。下面我将从教材分析、学情分析、教学模式、教学设计、板书设计、课堂评价、资源开发七个方面进行说课。
一、教材分析
本册教材依据“数与代数”、“图形与几何”、“统计与概率”和“综合与实践”这四个维度共安排了七个单元,在图形与几何领域本册教材安排了两个单元:第三单元“角与三角形的认识”和第五单元“观察物体”,而第三单元“角与三角形的认识”既是本册教材的教学重点也是教学难点,在整个图形与几何领域起到承上启下的重要地位。上承一年级下册:方位与图形(各种平面图形的认识);二年级下册:角的初步认识(直角、锐角、钝角的认识);三年级上册:图形的周长,下启五年级上册多边形的面积;承上启下,使知识之间循序渐进,螺旋上升。
三角形是常见的一种图形,在平面图形中,三角形是最简单的多边形,也是最基本的多边形,一个多边形都可以分割成若干个三角形。三角形的稳定性在实践中有着广泛的应用。因此这部分知识的学习不仅可以从形的方面加深对周围事物的理解,发展学生空间观念,而且可以在动手探索实验和联系生活应用数学方面拓展学生的知识面,发展学生的思维能力和解决实际问题的能力。同时也为以后学习图形的面积打下基础。
本单元安排了2个信息窗,信息窗1学习角的认识、大小比较及画法,主要学习习近平角和周角的认识,直观比较角的大小,量角器的认识、角的度量、角的分类以及各种角的之间的关系和角的画法。信息窗2学习三角形的认识,包括三角形的认识及特性,三角形的三边关系,三角形的分类,三角形的底和高及高的画法,三角形的内角和。本单元的教学重点是全面认识角和三角形,教学难点是画角和三角形三边关系的探索。
在这里,我需要指出的是,与人教版和苏教版教材有所不同,青岛版教材不再把角的度量和认识三角形割裂开来,分成两个单元学习,而是按照知识的循序渐进原则把两部分知识放在一个单元中学习,角的度量是角的分类的基础,角的分类又是三角形分类的基础。因此教材安排信息窗1学习角的有关知识,信息窗2学习三角形的有关知识,教材将这部分知识有机地编排在一个单元中学习,符合学生认知特点,有助于学生很好地建构知识体系。
课标对这部分知识的要求是:
1.知道平角与周角,了解周角、平角、钝角、直角、锐角之间的大小关系。2.认识等腰三角形、等边三角形、直角三角形、锐角三角形、钝角三角形。3.认识三角形,通过观察、操作,了解三角形两边之和大于第三边、三角形内角和是180度。
三角形的内角和是180度是三角形的一个重要性质,它有助于学生理解三角形的三个内角之间的关系,也是进一步学习的基础。
依据课标要求和教材分析及学生的年龄特点,确定本节课的教学目标是:(1)通过“量一量”,“算一算”,“拼一拼”,“折一折”的小组活动的方法,探索发现并验证三角形内角和等于180°,并能应用这一知识解决一些简单问题。
(2)通过把三角形的内角和转化为平角进行探究实验,渗透“转化”的数学思想。
(3)知道三角形两个角的度数,能求出第三个角的度数。
(4)发展学生动手操作、观察比较和抽象概括的能力。体验数学活动的探索乐趣,体会研究数学问题的思想方法。
本课的教学重点:让学生探究发现并验证三角形内角和等于180度。教学难点是:让学生用不同方法验证三角形的内角和是180度。教具、学具准备 教具:多媒体课件;
学具:锐角三角形、钝角三角形三角形、直角三角形各一个,剪刀,三角板,直尺,量角器,纸。
二、学情分析
学生通过第一学段以及四年级上册对图形与几何内容的学习,对三角形已经有了直观的认识,能够从平面图形中分辨出三角形,但是还缺乏对角和三角形知识的系统深入了解。本节课是学生在学习了各种角,会画角,会量角以及学习了三角形的稳定性、三角形的三边关系,三角形分类的基础上来进行学习的。对于“三角形的内角和等于180度”这个性质,大多数学生已经在课前通过不同的途径知道,但不一定清楚道理,更不能用多种方法来进行验证。因此,我把本节课的教学重点及难点放在三角形内角和的验证上,在学生已有的学习基础上设置更高的目标,重视猜想与验证、培养学生事实求是的科学态度,学生对于验证的方式和方法,老师要做到适当点拨,及时鼓励。
三角形与日常生活联系紧密,图形直观,所以教学相对而言操作性很强。而学生的数学知识、能力和思考问题的角度存在一定的差异,因此比较容易出现解决问题的策略多样化,这样也对教学的开展提供了很好了研讨环境。
基于此,在教学时,学生的学习主要采取以下两种方法:
(1)动手操作学习法。鼓励学生自己去探索,让学生亲身经历观察、操作、归纳、验证的过程,培养学生探究的意识和能力。
(2)小组合作学习法。通过小组的合作、同桌的合作,让学生共同解决问题,培养团结协作精神。体会知识的产生及发展,使数学知识在充满探索中得到升华。
三、教学模式
新课标指出:教学活动是师生积极参与、交往互动、共同发展的过程。数学教学活动,特别是课堂教学应激发学生学习兴趣,调动学生积极性,引发学生的数学思考,鼓励学生的创造性思维。对于四年级的学生来说,“三角形的内角和等于180度”这个性质,大多数学生已经在课前通过不同的途径知道,但不一定清楚道理,更不能用多种方法来验证这个性质。如何才能让学生真正理解三角形的内角和为什么是180度,我力图通过:设疑——猜想——验证——提升这四大步去突破。
(一)设疑激趣,创设学生喜欢的学习情境
“良好的开端等于成功的一半”。上课伊始,我给同学们制造了一个小小的矛盾,“既然同学们都会画三角形,请你帮老师画一个有两个直角的三角形”,学生通过动手去画,发现按老师的要求是画不出这样的三角形的,这是为什么呢?从而激发学生的学习热情,激起学生求知的欲望。
(二)重视操作,引导学生形成正确的图形表象,发展空间观念。几何初步知识无论是线、面、体的特征还是图形的特征、性质,对于小学生来说,都比较抽象。要解决数学的抽象性与小学生思维特点之间的矛盾,就要充分运用其直观性进行教学。要让学生动手做数学,而不是用耳朵听数学,让学生带着问题,动手、动口、动脑,调动多种感参与数学学习活动,在活动中获得知识。本节课我通过猜想验证让学生在小组中合作探索,通过量一量,折一折,撕一撕,画一画,拼一拼选择一种或几种方法来验证三角形的内角和是180°。
四、教学设计
整节课我预设为4个大的教学环节:
(一)设疑激趣,初步感知。(本环节预计用时5分钟)
1.复习旧知 复习前面学过的锐角三角形,直角三角形,钝角三角形的特征及角的有关知识,特别是复习近平角是180度。
『有效的复习,承上启下,既复习了前面的知识,又为后面的学习做好铺垫』 2.设疑激趣:老师提出要求:让学生帮老师画一个有两个直角的三角形。
3、制造矛盾,引出课题:同学们根本画不出老师要求的三角形,这么看来,三角形的角之间一定藏有很多的奥秘在里面!这节课我们就一起来研究“三角形的内角和”。(板书:三角形的内角和)学习什么是三角形的内角?内角和?
『问题是数学的心脏,问题是最好的老师,学生研究学习的积极性、主动性,往往来自于充满疑问和问题的情境。上课一开始我通过创设“请你帮老师画一个有两个直角的三角形”这一问题情境,在学生求知心理之间制造一种“不协调”,激发学生产生强烈的研究欲望,为后面的学习打下良好的基础。』
(二)操作验证,引导建构。(本环节预计用时25分钟)
1、猜测 老师出示一个三角形,请同学们看一看,猜一猜,它的内角和可能是多少度?
2、验证
(1)动脑想一想 让同学们以小组为单位,先在小组里互相说说你打算用什么样的方法来验证。
(2)动手做一做 利用手中的学具从以上讨论的若干种方法中选择一种你喜欢的方法来进行求和。
【《课程标准》指出:学生学习应当是一个生动活泼的、主动的和富有个性的过程。学生应当有足够的时间和空间经历观察、实验、猜测、计算、推理、验证等活动过程。四年级学生经过第一学段以及本单元前面的学习,已经掌握了三角形的分类,比较熟悉平角等有关知识;具备了初步的动手操作,主动探究的能力,他们正处于由形象思维向抽象思维过渡的阶段.因此我重点引导学生从“猜测--验证”展开学习活动,让学生感受这种重要的数学思维方式.】
(3)动口说一说 全班汇报交流 a、量一量
①汇报交流 同学们汇报测量求和的结果。
②分析原因(误差的存在)为什么有的正好是180度,有的是在180度左右,这是什么原因呢?
b、拼一拼
①一生上台展示锐角三角形撕下来拼组成一个平角的过程。
②鼓励全班同学尝试 刚才这个同学为我们展示的锐角三角形撕下来拼组的过程,其余的三角形进行这样的操作也会有同样的结果吗?
③生动手操作,验证各种三角形撕下来拼组成平角的过程。④师引导点拨:多媒体课件展示各种三角形撕下来拼组的过程。c、折一折
课件展示各种三角形通过折叠三个角凑成一个平角的过程,再次验证三角形的内角和是180度。
『建构主义认为:学生的建构不是教师传授的结果,而是通过亲身经历,通过与学习环境的交互作用来实现的。用量一量的方法来验证三角形内角和需要进行测量和计算两个过程,略显麻烦又存在误差;采用折一折的方法对于有些同学操作起来又有一定的难度,而拼一拼的方法操作起来既简单又没有误差,还与我们刚刚尝过的平角联系紧密,是全体学生必须掌握的一种方法。』
(三)练习巩固,深化提升(本环节预设用时8分钟)1.第45页“做一做”第8题。
2、第46页“做一做”第12题。3.(1)请同学们回想一下,为什么画不出有两个直角的三角形?(2)将两个完全一样的直角三角形拼成一个大三角形, 这个大三角形的内角和是多少?
(3)将一个大三角形分成两个小三角形, 这两个小三角形的内角和分别是多少?
4、根据所学的知识,你能想办法求出四边形和五边形的内角和吗?
5、数学文化:向学生介绍帕斯卡在12岁时发现并证明三角形的内角和是180度,对同学们进行数学文化方面的教育。
『习题是沟通知识联系的有效手段.我遵循由浅入深的原则,设计了四个层次的练习, 能充分注意沟通知识之间的内在联系, 使学生从整体上把握知识的来龙去脉和纵横联系,逐步形成对知识的整体认知, 构建自己的认知结构, 从而发展思维, 提高综合运用知识解决问题的能力.』
(四)回顾全课,小结延伸:(本环节预设用时2分钟)
今天这节课你学到了什么?有什么收获?关于三角形你还想知道什么? 让学生自己总结重点知识。
五、板书设计
三角形的内角和
量一量 拼一拼 折一折
三角形的内角和等于180度
这样的板书设计,简单明了,直观易懂。不仅突出教学重点,更有利于帮助学生掌握正确的概念。整个设计重点突出,一目了然,画龙点睛。
六、课堂评价 评价包括评价内容和评价方法,从评价内容来看,本节课主要围绕学生的动手操作能力、自主探究能力、合作交流能力、质疑释疑能力、发展空间观念和学习态度六大方面来评价。依据这六大方面,针对四年级学生数学学习过程的评价,我专门设计了这张综合评价量表。表现很好(奖励五颗星)、表现不错(奖励四颗星)、还需加油(奖励三颗星)。以此来激励学生的学习。
评价方法多元化,主要从教师评价、学生互评、自我评价几个角度来评价。评价方式多样化,本节课主要采用课前检测、当堂达标测试、课后开放问题等方法检测学生对知识的理解和掌握程度,并充分发挥小组合作学习的优势,设计表格,由小组长负责做好每一个学生的成长记录。
七、资源开发
资源的开发和利用对学生的学习与成长起着潜移默化的作用,教学本节课时,我注重了以下几个方面:
1.多媒体资源
我们学校已实现了电子白板“班班通”,不仅可以播放各种多媒体课件,还能利用白板软件提供的数学工具画出常见的立体图形来直观演示教学内容。比如画出三角形,然后剪切,移动等,非常方便,效果明显。
2.自制教具、学具
既便于操作,又提高了学生的学习兴趣,增强了学生的动手能力。本节课我提前让学生自制了各种类型的三角形若干个。
3.及时捕捉课堂生成资源
比如:在采用量一量来验证三角形内角和的时候,有的学生通过测量三个内角的度数并相加得出三角形内角和并不正好是180度,而是在180度左右,这个时候,有些同学就认为是自己量错了,还有些同学对三角形内角和是180度产生了怀疑,这时就需要我们及时捕捉这一课堂生成资源,引入对测量误差的认识。
4、开发数学文化资源
数学作为一种文化走进小学课堂,渗入我们的实际教学中。本节课通过向学生介绍帕斯卡在12岁时发现并证明三角形的内角和是180度,对同学们进行数学文化方面的熏陶,增长了同学们的知识,激起了学生创新的欲望。以上我从七个方面阐述了自己对本节课的粗浅认识,希望各位老师批评指正,不吝赐教,谢谢大家!
三角形内角和课件 篇12
冀教版七年级下册数学
9.2《三角形内角和外角》
——三角形内角和定理证明教学设计
一.教材分析:
(一)教材的地位和作用:
这节内容是在前面学生对“三角形内角和是180°”这个结论有了一定直观认识的基础上编排的,以往对这个结论也曾进行过简单的说理,这里则以严格的步骤演绎证明,旨在让学生从实践操作转移到理性思维上来,使学生初步掌握证明的要求和格式,促使学生养成严谨的数学思维方法,发展学生的证明素养。
三角形内角和定理从数量角度揭示三角形三内角之间的关系,是三角形的一个重要性质,既是今后几何推理的重要依据,又是计算角度的重要方法。教材从学生实践操作到证明过程的呈现训练了学生的抽象思维能力和逻辑推理能力;其中辅助线的作法学生第一次接触,它集中了条件、构造了新图形、形了成新关系,实现了未知与已知的转化,起到了解决问题的桥梁作用。
(二)教学目标:
1.知识与技能目标:掌握三角形内角和定理的证明,初步学会作辅助线证明的基本方法,培养学生观察、猜想、和推理论证能力。
2.过程与方法目标:
(1)对比过去折纸、撕纸等探索过程,体会思维实验和符号化的理性作用。
(2)通过一题多证、一题多变体会思维的多向性。
(3)引导学生应用运动变化的观点认识数学。
3.情感与态度目标:通过一题多证激发学生勇于探索的精神,感悟逻辑推理的价值。
(三)教学重难点:
1.重点:探索证明三角形内角和定理的不同方法
2.难点:应用运动变化的观点认识数学,从拼图过程中发现并正确引入辅助线是本节课的关键。
二.教学方法:引导发现法、尝试探究法。
三.教学过程:
一、创设情景、提出问题:
在小学,我们已经知道三角形内角和是180°,那它是怎么来的呢?你能给出说理吗?
二、探究新知
(一)动手操作、探索解法:
画出一个三角形,并将它的内角剪下,做拼角实验
归纳:可以搬一个角用“两直线平行,同旁内角互补”来说理,也可以搬两个角、三个角用“平角定义”说明。引导学生合理添加辅助线,为书写证明过程做好铺垫。
(二)议一议,开阔思野:
1.‘搬三个角’的特点:把角‘搬’到一起,让顶点重合、两条边形成一条直线,以便利用平角定义。
在证明三角形内角和定理时,可以把三个角集中到三角形的某一个顶点吗?引导学生思考。
已知:如图,△ABC
求证:∠A+∠B+∠C=180°
证明:过A点作DE∥BC
C D A E
∵DE∥BC
∴∠DAB=∠B,∠EAC=∠C(两直线平行,内错角相等)
∵∠DAB+∠BAC+∠EAC=180°
∴∠BAC+∠B+∠C=180°(等量代换)
那么是否可以把三个角集中到三角形的一边上呢?集中在内部任意一点上呢?外部呢?引导学生开阔思维,大胆探索证明方法。
2.应指出辅助线通常画为虚线,并在证明前交代说明。添加辅助线不是盲目的,而是证明需要引用某个定义、公理、定理,但原图形不具备直接使用它们的条件,这时就需要添辅助线创造条件,以达到证明的目的。
已知:如图,△ABC
求证:∠A+∠B+∠C=180°
证明:作BC的延长线CD,过点C作射线CE∥BA.∵CE∥BA
∴∠B=∠ECD(两直线平行,同位角相等)
∠A=∠ACE(两直线平行,内错角相等)
∵∠BCA+∠ACE+∠ECD=180°
∴∠A+∠B+∠ACB=180°(等量代换)
四.教学反思 :C D
本课以撕纸法验证得出“三角形内角和是180°”后,启发学生还可利用添加辅助线的方法去证明三角形内角和定理。
课堂教学充分发挥课件辅助教学的作用,将知识形象化、生动化、具体化。重视数学思想方法的引导,并及时指导归纳总结。
为了突出重点、突破难点,我对教材做了少量的补充和扩展,利用多媒体直观形象、节省时间的特点,动画演示再现学生拼图过程、解题过程,引导学生从动态角度直观地思考问题,帮助学生理解运动变化的观点。
三角形内角和课件 篇13
【教学目标】
1.学生动手操作,通过量、剪、拼、折的方法,探索并发现"三角形内角和等于180度"的规律。
2.在探究过程中,经历知识产生、发展和变化的过程,通过交流、比较,培养策略意识和初步的空间思维能力。
3.体验探究的过程和方法,感受思维提升的过程,激发求知欲和探索兴趣。
【教学重点】
探究发现和验证"三角形的内角和为180度"的规律。
【教学难点】
理解并掌握三角形的内角和是180度。
【教具准备】
PPT课件、三角尺、各类三角形、长方形、正方形。
【学生准备】
各类三角形、长方形、正方形、量角器、剪刀等。
【教学过程】
口算训练(出示口算题)
训练学生口算的速度与正确率。
一、谜语导入
(出示谜语)
请画出你猜到的图形。谁来公布谜底?
同桌互相看一看,你们画出的三角形一样吗?
谁来说说,你画出的是什么三角形?(学生汇报)
(1)锐角三角形,(锐角三角形中有几个锐角?)
(2)直角三角形,(直角三角形中可以有两个直角吗?)
(3)钝角三角形,(钝角三角形中可以有两个钝角吗?)
看来,在一个三角形中,只能有一个直角或一个钝角,为什么不能有两个直角或两个钝角呢?三角形的三个角究竟存在什么奥秘呢?这节课,我们一起来学习"三角形的内角和。"(板书课题:三角形的内角和)
看到这个课题,你有什么疑问吗?
(1)什么是内角?有没有同学知道?
内:里面,三角形里面的角。
三角形有几个内角呢?请指出你画的三角形的内角,并分别标上∠1、∠2、∠3.
(2)谁还有疑问?什么是内角和?谁来解释?(三个内角度数的和)。
(3)大胆猜测一下,三角形的内角和是多少度呢?
【设计意图】
创设数学化的情境。学生用已经学的三角形的特征只能解释"不能是这样",而不能解释"为什么不能是这样".这样引入问题恰好可以利用学生的这种认知冲突,激发学生的学习兴趣。
二、探究新知
有猜想就要有验证,我们一起来探究用什么方法能知道三角形的内角和呢?
1、确定研究范围
先请大家想一想,研究三角形的内角和,是不是应该包括所用的三角形?
只研究你画出的那一个三角形,行吗?
那就随便画,挨个研究吧?(太麻烦了)
怎么办?请你想个办法吧。
分类研究:锐角三角形,直角三角形,钝角三角形(贴图)
2、探究三角形的内角和
思考一下:你准备用什么方法探究三角形的内角和呢?
小组合作:从你的学具袋中,任选一个三角形,来探究三角形的内角和是多少度?
小组汇报:
(1)量一量:把三角形三个内角的度数相加。
直接测量的方法挺好,虽然测量有误差,但我们知道了三角形的内角和在180°左右。究竟是不是一定就是180°呢?哪个小组还有不同的方法?
(2)拼一拼:把三角形的三个内角剪下来,拼成了一个平角。
能想到这种剪一剪拼一拼的方法,真不简单。三个角拼在一起,看起来像个平角,究竟是不是平角呢?谁还有别的方法?
(3)折一折:把三角形的三个角折下来,拼成了一个平角。
这种方法真了不起,能借助平角的度数来推想三角形内角和是180°。
总结:同学们动脑思考,动手操作,运用不同的方法来验证三角形的内角和。这三种方法都很好,但在操作过程中,难免会有误差,不太有说服力。我们能不能借助学过的图形,更科学更准确的来验证三角形的内角和?
3、演绎推理的方法。
正方形四个角都是直角,正方形内角和是多少度?
你能借助正方形创造出三角形吗?(对角折)
把正方形分成了两个完全一样的直角三角形,每个直角三角形的内角和:360°÷2=180°
再来看看长方形:沿对角线折一折,分成了两个完全一样的直角三角形,内角和:360°÷2=180°
这种方法避免了在剪拼过程中操作出现的误差,
举例验证,你发现了什么?
通过验证,知道了直角三角形的内角和是180度。
你能把锐角三角形变成直角三角形吗?
把锐角三角形沿高对折,分成了两个直角三角形。
一个直角三角形的内角和是180°,那么这个锐角三角形的内角和就是180°×2=360°了,对吗?(360-180=180°)
通过计算,我们知道了这个锐角三角形的内角和是180°,那么所有的锐角三角形的内角和都是180°吗?你是怎么知道的?
通过刚才的计算,你发现了什么?(锐角三角形内角和180°)
钝角三角形的内角和,你们会验证吗?谁来说说你的想法?180×2-90-90=180°
通过验证,你又发现了什么?(钝角三角形内角和180°)
4、总结
通过分类验证,我们发现:直角180,锐角180,钝角180,也就是说:三角形的内角和是180°。也验证了我们的猜想是正确的。(板书)
5、想一想,下面三角形的内角和是多少度?(小--大)
你有什么新发现?(三角形的内角和与它的大小,形状没有关系。)
【设计意图】
为了满足学生的探究欲望,发挥学生的主观能动性,通过独立探究和组内交流,实现对多种方法的体验和感悟。学生通过小组合作的方式学到方法,分享经验,更重要的是领悟到科学研究问题的方法。就学生的发展而言,探究的过程比探究获得的结论更有价值。
三、自主练习
1、在一个三角形中,如果想求一个角的度数,至少得知道几个角的度数呢?(2个)那我们就试一试,挑战第一关。(两道题)
2、算得真快!如果只知道一个角的度数,还能求出未知角的度数吗?挑战第二关。(三道题)
3、说得真清楚,如果一个角的度数也不知道,你还能求出未知角的度数吗?挑战第三关。(一道题)
师:同学们真了不起,从知道两个角的度数,到知道一个角的度数,再到一个角的度数也不知道,都能正确求出未知角的度数。
4、学无止境,课下,请你利用三角形的内角和,探究一下四边形、五边形、六边形的内角和各是多少度?
【设计意图】
练习由浅入深,层层递进。从知道两个角的度数,到知道一个角的度数,再到一个角的度数也不知道,要求学生求出未知角的的度数,梯度训练,拓展思维。
四、课堂总结
同学们,回想一下,这节课我们学习了什么?通过这节课的学习,你有哪些收获呢?
真了不起,同学们不仅学到了知识,还掌握了学习的方法。"在数学的天地里,重要的不是我们知道什么,而是我们怎么知道的",在这节课上,重要的不是我们知道了三角形的内角和是180°,而是我们通过猜测,一步一步验证,得到这个规律的过程。
课后反思
《三角形的内角和》是五四制青岛版四年级上册第四单元的信息窗二,本节课是在学生学习了与三角形有关的概念、边、角之间的关系的基础上,让学生动手操作,通过一系列活动得出"三角形的内角和等于180°".
本着"学贵在思,思源于疑"的思想,这节课我不断创设问题情境,让学生去猜想、去探究、去发现新知识的奥妙,从而让学生在动手操作、积极探索的活动中掌握知识,积累数学活动经验,发展空间观念。"问题的提出往往比解答问题更重要",其实三角形内角和是多少?大部分的学生已经知道了这一知识,所以很轻松地就可以答出。但是只是"知其然而不知其所以然".
为此,我设计了大量的操作活动:画一画、量一量、折一折、拼一拼等,我没有限定了具体的操作环节。在操作活动中,老师有"扶"有"放".做到了"扶"而不死,"伴"而有度,"放"而不乱。利用课件演示,更直观的展示了活动过程,生动又形象,吸引学生的注意力。使学生感受到每种活动的特点,这对他认识能力的提高是有帮助的。
最后通过习题巩固三角形内角和知识,培养学生思维的广阔性,为了强化学生对这节课的掌握,从知道两个角的度数,到知道一个角的度数,再到一个角的度数也不知道,要求学生求出未知角的的度数,层级练习,步步加深,梯度训练。
教学是遗憾的艺术。当然本节课的教学中,存在许多不尽如意之处:
1、让学生养成良好的学具运用习惯,特别是小组学生在合作操作时,应有效指导,对学生及时评价,激励表扬,调动学生学习的积极性与主动性。
2、学生在介绍剪拼的方法时,可以让介绍的学生先上台演示是如何把内角拼在一起,这样学生在动手操作的时候就可以节省时间。
3、在做练习时,为了赶时间,题出现的频率较快,留给学生计算思考的时间不足,可能只照顾到好学生的进程,没有关注全体学生,今后应注意这一点。
教学是一门艺术,上一节课容易,上好一节课谈何容易,在今后的课堂教学中,只有勤学、多练,才能更好的为学生的学习和成长服务,让自己的人生舞台绽放光彩。
三角形内角和课件 篇14
教学内容:
人教版四年级下册第85面——87面。
教学目标:
1、让学生亲自动手,通过量、剪、拼等活动发现三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。
2、让学生在动手获取知识的过程中,渗透“转化”数学思想,掌握简单的数学推理方法,培养学生的创新意识、探索精神和实践能力。
3、让学生感受到数学的价值,体会成功的喜悦,激发学生主动学习数学的兴趣。
教学重点:
让学生经历“三角形内角和是180°”这一知识的发现过程。
教学准备:
教具:多媒体课件、三角板一个、两个完全一样的直角三角形。
学具:锐角三角形、直角三角形、钝角三角形各一个。
教学过程:
(一)创设情境,提出问题。
师:同学们的歌声真嘹亮,老师站在这里和大家一起学习感到很高兴,
今天老师还给大家带来了一个老朋友,请看,是什么?
生:三角形!
师:前面我们已经认识了三角形,谁能给大家介绍一下?
学生讲学过的三角形知识。
(学生叙述到部分主要内容即可)
师:看来大家对三角形已经非常熟悉了,老师还为大家带来了两个特殊的三角形,请看,它们是什么三角形?(点击FLASH出示直角三角形实物图)
师:(师指第一个三角形)谁知道这个直角三角形每个角的度数吗?
师:答的真准确,(FLASH:生说完后师边说边点出度数)30度、60度、90度都在这个三角形的内部,我们把这样的角叫做三角形的内角。
师:有谁知道这个三角形三个内角的度数?
(FLASH:生说完后师点击出第二个三角形,边说边点出度数)
[U1]试一试,看谁算得快。
师:谁来说说自己的计算过程?
[U2]角的和叫做三角形的内角和。(板书课题)下面请大家认真观察这两个算式,从结果上看,你发现了什么?
生:它们的内角和都是180度。
师:观察的真仔细!(点击课件,出示多种多样的三角形后提问)同学们,咱们都知道,这两个三角形是特殊三角形,在我们的生活中还有许许多多不是这个样子的三角形,请看大屏幕,这些任意三角形,它们的内角和是不是都是180度呢?
[回答可能有二]:
(一种全部说是:)
师:请问,你们是怎么想的,为什么这么认为?
生:……
师:看来,大家是通过这两个三角形猜想的,是吗?想不想验证一下你们的猜想,(生:想)好,咱们一起走进三角形王国,一起去研究它们内角和的秘密吧!(师在课题“内角和”下面划上横线,打上问号)
(一种有一部分同学说是,有一部分同学说不是:)
师:看来,大家的意见不一致,想不想验证一下你们的猜想,(生:想)好,咱们一起走进三角形王国,一起去研究它们内角和的秘密吧!(师在课题“内角和”下面划上横线,打上问号)
(二)动手操作,探究新知
[U3]
师:老师看你们有答案了,哪位同学愿意说一说你的奇思妙想?
生:我准备用量的方法。
师:然后呢?
生:然后把它们三个内角的度数相加起来,就知道了三角形的内角和是多少?
师:说的真不错,还有没有其它的方法?
生:我是把三角形的三个角剪下来,拼在一起(师鼓励:你的想法很有创意,等一会儿用你的行动来验证你的猜想吧!)
生:……
(如生一时想不到,师可引导:他是把三个内角的度数相加在一起,我们能不能想办法把三个内角放在一起进行观察,看看能不能发现些什么呢?)
师:好啦,老师相信咱们班的同学个个都是小数学家,一定能找出更多的方法的,请你们在研究之前,也像老师一样,在三个内角上编上序号,角一、角二、角三,现在就请同学们对锐角三角形、直角三角形和钝角三角形等各种类型的三角形进行研究,看看它们的内角和各有什么特点。咱们比一比,看一看,哪个小组的方法多,方法好!
[U4]开始吧!(学生研究,师巡回指导)预设时间:5分钟
师:老师看各小组已经研究好了,哪位同学愿意上来交流一下?
师:请你告诉大家,你是怎么研究的,最后发现了什么结果?
(预设:如果第一类同学说的是量的方法)
师:你是用什么来研究的?
生:量角器。
师:那请你说一下你度量的结果好吗?
(生汇报度量结果)
师:刚才有的同学测量的结果是180度,有的同学测量的结果是179度,有的同学测量的结果是182度,各不相同,但是这些结果都比较接近于多少?
生:180度。
师:那到底三角形的内角和是不是180度呢?还有哪位同学有其它的方法进行验证吗?
生:我是先把三角形的三个角剪掉以后粘在一起,然后在量出它们三个角组成的度数。
师:他演示的真好,你们听明白了吗?李老师把他的过程给大家在大屏幕上演示一下。
(师边讲解边点击FLASH:把三角形按照三个内角撕成三块,先把角一放在右边,再把角二放在左边,最后把角三调个头,插在角一角二的中间,这样它们三个内角就形成了一个大角,角一的这条边,角二这条边看起来在一条直线上,那到底是不是在一条直线上呢,我们一起用直尺来量一下,师演示后问学生:是不是在一条直线上,那这个大角是个什么角呢?通过刚才拼的过程,你有什么发现?)
师:好极了,刚才这个小组的同学用拼的方法得到XX三角形的内角和是180度,你们还有别的方法吗?
生:我们还用了折的方法(生介绍方法)
师:你们听明白了吗?李老师把他的过程给大家在大屏幕上演示一下。
(师边讲解边点击FLASH:先找到两条边的中点,把它连起来,把角一沿着中间的这条线向对边对折,再把角二向里对折,使它的顶点与角一对齐,最后把角三也用同样的方法对折,这样它们三个内角就形成了一个大角,这个大角是个什么角呢?)
生:是个平角。180度。
师:除了用了量、拼、折的方法来研究以外,刚才在操作的过程中老师还发现了一个同学用了一种方法来进行研究,大家想知道吗?
师:请这位同学来说给大家听听吧!
生:我把两个相同的直角三角形拼成了一个长方形,因为长方形里面有四个直角,所以它的内角和是360度,那么一个三角形的内角和就是180度。
师:刚才我们用量、拼、折、推理的方法都得到了三角形的内角和是180度,同学们,现在我们回想一下,刚才测量的不同结果是一个准确数还是一个近似数?为什么会出现这种情况呢?
生1:量的不准。
生2:有的量角器有误差。
师:对,这就是测量的误差,如果测量仪器再精密一些,我们的方法再准确一些,那么任意一个三角形的内角和也将是180度。
师:同学们,我们刚才用不同的方法,不同的三角形研究了三角形的内角和,得到了一个相同的发现,这个发现就是?
生:三角形的内角和是180度。(师板书)
师:把你们伟大的发现读一读吧!
(三)拓展应用,深化认识
师:请看老师手上的这两个三角形,左边这个内角和是多少度?(生:180度)右边呢(生:也是180度)
师:现在老师把它们拼在一起,这个大三角形的内角和又是多少度呢?
(生答后师引导归纳得出:三角形的内角和与形状大小无关,组成的大三角形的内角和依然是180度。)
师:刚才我们在讨论学习三角形知识的时候,三角形中的两个好朋友却争执了起来,想知道怎么回事吗?让我们一起去看看吧!(出示课件,课件内容:一个大一些的直角三角形说:“我的个头比你大,我的内角和一定比你大”。另一个稍小的锐角三角形说:“是这样吗”?)
师:到底谁说的对呢?今天我们就用我们今天学到的知识来为它们解决解决吧!
师:真不错,你们当了一回小法官,帮助三角形兄弟解决了问题,它俩很感谢你们,三角形王国中还有很多生活中的问题,小博士们,你们愿意解答吗?
师:好,请看大屏幕!
(出示基础练习)在一个三角形中角一是140度,角三是25度,求角二的度数。
生答后,师提问:你是怎样想的?
生陈述后,师鼓励:说的真好!
出示自行车、等边三角形的路标牌、告诉顶角求底角的房顶、直角三角形的电线杆架进行练习。
(出示)小红的爸爸给小红买了一个等腰三角形的风筝,它的一个底角是70度,它的顶角是多少度?
师:看来啊,三角形的知识在咱们生活中还有着这么广泛的运用呢!昨天,我们班发生了一件事情,小明不小心将镜框上的一块三角形玻璃摔破了,(课件呈现情境)他想重新买一块玻璃安上,小明非常聪明,只带了其中的一块到玻璃店去,就配到了和原来一模一样的玻璃了。你知道他带的是哪一块吗?
(预设:师:根据三角形的内角和是180度,你能求出下面四边形、五边形、六边形的内角和吗?
师:太棒了,这位同学把这个四边形分割成了二个三角形求出了它的内角和,你能像他一样棒求出五边形和六边形的内角和吗?
师:同学们,今天我们一起学习了三角形的内角和,你有哪些收获呢?
师:嗯,真不错,你们知道吗?三角形的内角和等于180度是法国著名的数学家帕斯卡在1635年他12岁时独自发现的,今天凭着同学们的聪明智慧也研究出了三角形的内角和是180度,老师为你们感到骄傲,老师相信在你们的勤奋学习和刻苦钻研下,你们就是下一个“帕斯卡”!
师:好,下课!同学们再见!
三角形内角和课件 篇15
【教材分析】
《三角形内角和》是北师大版《数学》四年级下册的内容。是在学生学习了三角形的概念及特征之后进行的,它是掌握多边形内角和及其他实际问题的基础,因此,掌握“三角形的内角和是180度”这一规律具有重要意义。教材首先出示了两个三角形比内角和这一情境,让学生通过测量、折叠、拼凑等方法,发现三角形的内角和是180度。教材还安排了“试一试”,“练一练”的内容。已知三角形两个内角的度数,求出第三个角的度数。
【学生分析】
经过近四年的课改实验,孩子们已经有了一定的自主探究,合作交流的能力。他们喜欢在实践中感悟,在实践中发表自己的见解,对数学产生了浓厚的兴趣。1.知识方面:学生已经掌握了三角形的概念、分类,熟悉了钝角、直角、锐角、平角这些角的知识。2.能力方面:已具备了初步的动手操作能力和探究能力,并且能够进行简单的微机操作。
【学习目标】
知识目标:掌握三角形内角和是180度这一规律,并能实际应用。
能力目标: 培养学生主动探索、动手操作的能力。培养学生收集、整理、归纳信息的能力。使学生养成良好的合作习惯。
情感目标: 让学生体会几何图形内在的结构美。
【教学过程】
一、 情景激趣,质疑猜想。
播放动画片:在图形王国中,有一天三角形大家庭里为“三角形内角和的大小”爆发了一场激烈的争吵。
钝角三角形大声叫着:“我的钝角大,我的内角和一定比你们的内角和大。”锐角三角形也不示弱:“我的锐角虽然比钝角小,但我的内角和并不比你小。”直角三角形说:“别争了,三角形的内角和都是180°。我们的内角和是一样大的。”
师:想一想,什么是三角形的三个内角的和。
生:三角形的三个内角的度数和。
师:同学们刚才看了动画片你们知道谁说对了吗?不知道的话想一想,猜一猜谁说的对?
学生进行猜想,自由发言。
(设计意图:教师借助多媒体技术创设问题情境,架起数学学习与现实生活,抽象数学与具体问题之间的桥梁,激发了学生的学习兴趣。鼓励学生主动质疑猜想是培养学生学会学习的重要途径。)
二、自主探究,验证猜想
师:刚才大部分同学都猜直角三角形说的对。三角形的三个内角的和都是 180°,你能设法验证这个猜想吗?
生1:能。我量出三角形的三个内角和度数,加起来是否接近180°(量的时候可能会有些误差)。
生2:我把三角形的三个角剪下来拼一拼是否能拼成一个平角。
生3:我把三角形的三个角撕下来,拼一拼是否180°。
生4:我把三角形的三个角往里折,看一看这三个角是否折成一个平角。
……
师:上面你们说了不少的验证猜想的方法,请大家用准备好的材料用你喜欢的方法,动手验证自己的猜想吧!(学生把三角形的三个内角分别标上∠1、∠2、∠3,以免在剪拼时把内角搞混了。)
学生边实验边整理信息,完成实验报告单后,学习小组内进行交流讨论。
(设计意图:验证猜想为学生提供了“做数学”的机会,让每个学生围绕自己的猜想、决定自己的探索方向、选择自己的方法,量一量、剪一剪、撕一撕、拼一拼、折一折,让学生在操作中自主探究数学知识的产生发展过程。验证自己的猜想,鼓励学生用不同的方法进行验证,促进学生创新能力的发展。)
三、交流评价,归纳结论。
学生操作验证,完成实验报告单后,利用投影仪展示学生填写的实验报告单。
实验报告单
实验名称
三角形内角和
实验目的
探究三角形内角和是多少度。
实验材料
尺子
剪刀
量角器
锐角三角形纸片
直角三角形纸片
钝角三角形纸片
我的方法
我的发现
我的表现
自评
互评
学生在展示过程中,充分交流和讨论实验中各自使用的方法和发现,教师要对学生的闪光点及时进行表扬和鼓励。
师生共同归纳,得出结论:
三角形内角和等于180°
(设计意图:各学习小组汇报自己的验证过程,展示探究的成果。对学生探索发现的方法、策略进行总结归纳,集思广益,取长补短达到共识。在交流、归纳过程中,及时肯定其中的闪光点给予表扬和鼓励,使他们体验到成功的愉悦,促使他们获得更大的成功。)
四、分层练习,巩固创新。
①课件出示:
师:这个三角形是什么三角形?知道几个内角的度数?
生:直角三角形,知道一个角是30°,还有一个角是90°。∠A=90°-30°=60°。
师:根据今天所学的知识,谁能求出A的度数?大家自己试一试。
学生做完后反馈讲评时让学生说说自己的方法。
生1:用三角形内角的和(180°)减去30°再减去90°,算出∠A是60°。
∠A=180°-30°-90°=60°。
生2:先用30°加上90°得120°再用180°减去120°也可得∠A =60°。
②学生完成完成P29的第一题。
引导学生按照前面的方法独立完成,教师巡视,集体订正。
③猜一猜三角形的另外两个角可能各是多少度。
同桌同学互相说一说。(答案不唯一)
④小组操作探究活动。
让学生剪出几个不同的四边形,按表中所给的方法以做一做,并填一填。
方 法
四边形内角和
用量角器量出每个内角的度数,并相加。
把四边形四个角剪下来,拼在一起。
把四边形分为两个三角形。
填表后让学生想一想、互相说一说,四边形内角和是多少度?
(设计意图:引导学生将探究学习活动中所获得的结论经验和方法运用于探索解决简单的实际问题。组织学生参与具有趣味性、操作性和开放性的练习活动,让学生在巩固练习中培养动手能力、实践能力和创新思维。)
三角形的内角和课件集合十四篇
现在为您提供的是幼儿教师教育网小编整理的“三角形的内角和课件”,您可以将我的建议作为一个参考做出您自己的决定。老师在上课前需要有教案课件,只要课前把教案课件写好就可以。编写完整的教案是实现高质量高效益教学的基础。
三角形的内角和课件 篇1
教材分析
教材的小标题为“探索与发现”,说明这部分内容要求学生自主探索,并发现有关三角形内角和性质。
教材创设了一个有趣的问题情境,以此激发学生的兴趣,引出探索活动。首先,教师应使学生明确“内角”的意义,然后引导学生探索三角形内角和等于多少。大多数学生会想到用测量角的方法,此时就可以安排小组活动。每组同学可以画出大小、形状不同的若干个三角形,分别量出三个内角的度数,并求出它们的和,填写在教材提供的表中。最后发现,大小、形状不同的三角形,每一个三角形内角和都在180°左右。
三角形的内角和是否正好等于180°呢?教材中安排了两个活动:一是把三角形三个内角撕下来,再拼在一起,组成一个平角,因此三角形内角和是180°。二是把三个内角折叠在一起,发现也能组成一个平角。每个活动都要使学生动手试一试,加深对三角形内角和的认识,体验三角形内角和性质的探索过程。
另外,教材还从两个方面引导学生应用三角形的内角和:一是根据三角形中已知的两个角的度数,求另一个角的度数;二是直角三角形里的两个锐角和等于90°,钝角三角形里的两个锐角和小于90°。
学情分析
学生在前面的学习中已经认识了三角形的基本特征及分类,并且在四年级(上册)教材里已经知道了两块三角尺上的每一个角的度数,知道了平角是180°;学生通过前几年的学习,已具备了初步的动手操作能力和主动探究能力以及合作学习的习惯,所以在学生具备这些数学知识和能力的基础上,来引导学生探索和发现三角形内角和是180°这一性质。
要让学生明确一个三角形分成两个小三角形后,每个三角形内角和还是180°,两个小三角形拼成一个大三角形,大三角形的内角和也是180°。
教学目标
1、知识目标:让学生探索与发现三角形的内角和是180°,已知三角形的两个角度,会求出第三个角度。
2、能力目标:培养学生动手操作和合作交流的能力,促进掌握学习数学的方法。
3、情感目标:培养学生自主学习、积极探索的好习惯,激发学生学习数学应用数学的兴趣。
教学重点和难点
教学重点:掌握三角形的内角和是180°,会应用三角形的内角和解决实际问题。
教学难点:让学生经历探索和发现三角形的内角和是180°的过程。
教学过程:
(一)、激趣导入:
1、认识三角形内角
我们已经认识了什么是三角形,谁能说出三角形有什么特点?
(三角形是由三条线段围成的图形,三角形有三个角,…。)
请看屏幕(课件演示三条线段围成三角形的过程)。
三条线段围成三角形后,在三角形内形成了三个角,(课件分别闪烁三个角及它的弧线),我们把三角形里面的这三个角分别叫做三角
形的内角。(这里,有必要向学生直观介绍“内角”。)
2、设疑激趣
现在有两个三角形朋友为了一件事正在争论,我们来帮帮它们。(播放课件)
同学们,请你们给评评理:是这样吗?
现在出现了两种不同的意见,有的同学认为大三角形的内角和大,还有部分同学认为两个三角形的内角和的度数都是一样的。那么到底谁说得对呢?
这节课我们就一起来研究这个问题。(板书课题:三角形的内角和)
(二)、动手操作,探究新知
1、探究特殊三角形的内角和
师拿出两个三角板,问:它们是什么三角形?
(直角三角形)
请大家拿出自己的两个三角尺,在小组内说说每一个三角尺上三个角的度数,并求出这两个直角三角形的内角和。
(由于学生在四年级(上册)教材里已经知道了两块三角尺上的每一个角的度数,所以能够很快求得每块三角尺的3个角的和都是180°)
从刚才两个三角形内角和的计算中,你们发现了什么?
(这两个三角形的内角和都是180°)。
这两个三角形都是直角三角形,并且是特殊的三角形。
2、探究一般三角形内角和
(1).猜一猜。
猜一猜其它三角形的内角和是多少度呢?(可能是180°)
(2).操作、验证一般三角形内角和是180°。
所有三角形的内角和究竟是不是180°,你能用什么办法来证明,使别人相信呢?
(可以先量出每个内角的度数,再加起来。)
测量计算,是吗?那就请四人小组共同计算吧!
老师让每个同学都准备了直角三角形、锐角三角形和钝角三角形三种不同的三角形,并量出了每个内角的度数,下面就请同学们在小组内每种各选一个求出它们的内角和,把结果填在表中:
(3)小组汇报结果。
请各小组汇报探究结果
提问:你们发现了什么?
小结:通过测量计算我们发现每个三角形的三个内角和都在180°左右。
3继续探究
(1)动手操作,验证猜测。
没有得到统一的结果。这个办法不能使人很信服,怎么办?还有其它办法吗?请同学们动脑筋想一想,能通过动手操作来验证吗?
(先小组讨论,再汇报方法)
大家的办法都很好,请你们小组合作,动手操作。
(2)学生操作,教师巡视指导。(3)全班交流汇报验证方法、结果。
学生放在投影仪上展示给大家看。(剪拼、撕拼、折拼)
我们可以得出一个怎样的结论?(三角形的内角和是180°)
引导学生通过剪拼、撕拼和折拼的方法发现:各类三角形的三个内角都可以拼成一个平角,使学生证实三角形内角和确实是180°,测量计算有误差。
5、辨析概念,透彻理解。
(出示一个大三角形)它的内角和是多少度?
(出示一个很小的三角形)它的内角和是多少度?
一块三角尺的内角和180°,两块同样的三角尺拼成的一个大三角形的内角和又是多少呢?(学生有的答360°,有的180°.)
把大三角形平均分成两份。每个小三角形的内角和是多少度?(生有的答90°,有的180°。)
这两道题都有两种答案,到底哪个对?为什么?
(学生个个脸上露出疑问。)
大家可以在小组内用三角尺拼一拼,也可以画一画,互相讨论。
经过一翻激烈的讨论探究后,学生发现:三角形不论位置、大小、形状如何,它的内角和总是180°
(三)小结
刚才同学们用很多方法证明了无论是什么样的三角形内角和都是180°,现在让我们用自豪的、肯定的语气读出我们的发现:“三角形的内角和是180°”。
(四)、巩固练习,拓展应用
下面,我们就根据三角形内角和的知识来解决一些相关的数学问题。(课件)
1、求三角形中一个未知角的度数。
(1)在三角形中,已知∠1=85°,∠2=65°,求∠3。
(2)在三角形中,已知∠1=98°,∠2=49°,求∠3。
2、判断
(1)一个三角形的三个内角度数是:90°、75°、25°。()
(2)一个三角形至少有两个角是锐角。()
(3)钝角三角形的内角和比锐角三角形的内角和大。()
(4)直角三角形的两个锐角和等于90°。()
3、解决生活实际问题。
(1)爸爸给小红买了一个等腰三角形的风筝,它的一个底角是70°,它的顶角是多少度?
(2)交通警示牌“让”为等边三角形,求其中一个角的度数。
4、拓展练习。
利用三角形内角和是180°,求出下面四边形、六边形的内角和?(课件)
小组的同学讨论一下,看谁能找到最佳方法。
学生汇报,在图中画上虚线,教师课件演示。
请同学们自己在练习本上计算。
(四)、课堂总结
通过这节课的学习,你有哪些收获?
三角形的内角和课件 篇2
各位老师:
下午好!
今天我们相聚在云周小学,共同行走在“生本”课堂的道路上。作为一名新教师,我也是抱着一种学习的心态来评课。应老师的这节《三角形内角和》,无论是他的设计,还是他对课的演绎,都充分体现了“以生为本”的理念。
这节课有以下几点值得我们去探讨:
一、学生的起点在哪里?
既然是生本课堂,那我们在备课之前,就要做到备学生,找起点。新课导入时,应老师花了一些时间复习三角形的分类和平角的知识,充分唤醒学生对三角形的认知,分类是为了抓住三角形的本质,缩小验证时选材的范围,而三个角拼成一个平角的练习,则为学生之后的验证搭好一个脚手架,降低他们学习的难度。但从课堂上来看,部分学生已经知道三角形内角和是180°,而且当出示平角那道题时,学生立刻说出180°是三角形内角和,而没有想到平角,这需要我们来反思这个环节的必要性。为什么学生会联想到内角和呢?我想可能是应老师在此之前询问了:“三角形有几个角?如果告诉你两个角,会求第三个角吗?”同样是为了复习,却产生了负迁移,反而没有达成预定的效果。再此之后又介绍“内角”等概念,这样难免有回课嫌疑。课堂选材要有取舍,我觉得这个环节可以删除。
二、既然量正确了,为什么还要拼?
有位老师说过:“数学老师和语文老师就是不一样,语文老师会发散,将一句简单的话复杂化;而数学老师会收敛,将复杂的例题、方法融汇成一句话。”所以数学课上必须让学生亲身经历知识的发展过程。在探究过程中,应老师放手让学生想方法验证猜想,学生首先会想到量出内角并相加,从反馈来看,学生量得的结果都是180°,既然得到想要的结果了,再拼不是多此一举了吗?课堂上应老师也对学生的精确结果赶到意外,究竟量角的误差在哪里?
学生的心里总是不敢犯错的,这就会让很多数据失真。其实误差不仅仅只是存在于内角总和,还存在于每个内角的度数。课堂反馈上,对于同样的锐角,学生量出了“60°,40°,80°和55°,45°,80°”同样一个三角形,为什么内角度数会有所不同,此时通过对比,让学生明白量角时有误差,容易改变角度,看来量不是最准确的方法,而撕角拼角则不会改变它的大小。我想这就是我们为什么将力气花在剪拼法上了。
三、如何凸显内角和的本质?
通过各种方法的验证,我们知道了三角形的内角和是180°,难道点到即止吗?应老师巧妙借助几何画板,改变三角形的形状和大小,并引导学生观察什么变了,什么不变?这一简单的演示却寓意深远,无论形状大小如何改变,三角形内角和永远是180°,这也从另一个角度说明了三角形为什么具有稳定性,只要确定两个角,第三个角永远的唯一的。结论只是静态的文字,而课件是动态的演示,这种动静结合的美渲染了我们的眼球,同时也凸显了内角和的本质,让结论更具说服力。
四、练习设计的创新点在哪里?
练习是一节课的精髓,这节课的练习主要分三层,一算二辨三延伸。应老师在练习的设计上很注重一材多用,而且非常有坡度性,这也是本节课最大的亮点。在“只知道一个角”的环节中,应老师设计了只露出一个70°角的等腰三角形,求另两个角。大多数学生只想到一种情况后,便沾沾自喜,不会更深入思考问题,因为在学生潜意识中总认为正确答案只有一个。这也给了我们一个启示,关注答案,更要关注学生解题的意识,引导学生从多维角度思考问题。
这里我有一个的想法,这个想法也来源于作业本的习题。能不能把70°角改成40°,当学生算出答案后,询问学生,如果按角分,这是一个什么三角形?沟通按角分和按边分三角形的横向联系,在练习中温故而知新。再设计已知一个角是140°的等腰三角形的练习,打破学生的思维定势,并不是所有等腰三角形都有两种可能。之后再询问:“一个角都不知道,如何求内角。”让练习更具层次性。
应老师这节课还有很多值得我们学习的地方,比如应老师自如的教态、亲切的语言让学生倍感温暖;精心准备的教具让课堂不再沉闷;精彩的练习让知识落到实处。以上是我对这节课一些不成熟的想法,希望各位老师给予批评和指正。
三角形的内角和课件 篇3
课题
三角形的内角和
手 记
教学目标
1.让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。
2.在学生在动手获取知识的过程中,培养学生的实践能力,并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。
3.使学生体验成功的喜悦,激发学生主动学习数学的兴趣。
重点难点
重点:让学生经历“三角形内角和是180°”这一知识的形成、发展和应用过程。
难点:探索、验证三角形内角和是180°的过程。
过程
资源
体验目标
“学”与“教”
创设问题情境
课件出示:两个三角板
遵循由特殊到一般的规律进行探究,引发学生的猜想后,引导学生探讨所有的三角形的内角和是不是也是180°。
这是同学们熟悉的三角尺,请同学们说一说这两个三角尺的三个内角分别是多少度?
生: 45°、90°、45°。
生: 30°、90°、60°。
师:仔细观察,算一算这两个三角形的内角和是多少度?
生:90°+45°+45°=180°。
生:90°+60°+30°=180°。
师:通过刚才的算一算,我们得到这两个三角形的内角和是180°,由此你想到了什么?
生:直角三角形内角和是180°,锐角三角形、钝角三角形内角和也是180°。
师:这只是我们的一种猜想,三角形的内角和是否真的等于180°,还需要我们去验证。
构建
模型
每个组准备六个三角形(锐角三角形2个、直角三角形2个、钝角三角形2个)
课件
学生自己剪的一个任意三角形
大胆放手让学生通过有层次的自主操作活动,帮助学生结合已有的知识经验,探究验证三角形内角和的不同方法。
让学生在经历“提出猜想—实验验证—得出结论”中感悟、体验知识的形成过程,将“三角形内角和是180°”一点一滴,浸入学生大脑,融入已有认知结构。
这一系列活动同时还潜移默化地向学生渗透了“转化”的数学思想,为后继学习奠定了必要的基础。
师:之前老师为每个同学准备了①-⑥六个三角形,下面请组长分发给每个三角形,拿到手后,先别着急,先想一想你准备用什么方法去验证三角形内角和?
学生动手操作验证
师:汇报时,请先说一说是几号三角形?然后说一说这个三角形是什么三角形?
学生汇报:
生1:③号三角形是直角三角形,内角和是180°。
生2:②号三角形是锐角三角形,内角和是180°。
生3:⑤号三角形是钝角三角形,内角和是180°。
生4:④号三角形是直角三角形,内角和是180°。
生5:①号三角形是钝角三角形,内角和是180°。
生6:⑥号三角形是锐角三角形,内角和是180°。
师:除了量的方法外,还有其他方法验证三角形内角和吗?
生1:分别剪下三角形三个角拼成平角,平角是180°,所以推理得出三角形内角和是180°。
生2:分别撕下三角形三个角拼成平角,平角是180°,所以推理得出三角形内角和是180°。
生3:把三角形的三个角折成平角,平角是180°,所以推理得出三角形内角和是180°。
这些方法都验证了:三角形的内角和是180°。
师:观察这些三角形的内角和是多少度?这些三角形的内角和都是180°,这是不是老师故意安排好的呢?
师:有没有人质疑,用什么方法验证?
生用自己剪的任意三角形再次验证三角形内角和是否180°。
生:得出内角和还是180°。
师:不管是老师提供的三角形,还是你们自己准备的三角形,通过我们的算一算、拼一拼、折一折,都得出了三角形的内角和是180°。
师:我们已经学习了三角形的分类,三角形可以分成锐角三角形、直角三角形、钝角三角形。这些三角形的内角和是180°,我们能把它们概括成一句话吗?
生:三角形的内角和是180°。
师:看来我们的猜想是正确的。
师:早在20xx多年前著名数学家欧几里得就已经得到这个结论,到了初中以后同学们还会用更加严密的方法证明三角形的内角和是180°。
解释
运用拓展
课件
正方形纸
让学生更深的对所学的新知加以巩固,从而促使学生综合运用知识,解决问题的能力。同时在练习中发展学生的观察、归纳、概括能力和初步的空间想象力。
1.∠1=40°,∠2=48°,求∠3有多少度?
2.算出下面三角形∠3的度数。
⑴∠1=42°,∠2=38°,∠3=?
⑵∠1=28°,∠2=62°,∠3=?
⑶∠1=80°,∠2=56°,∠3=?
师:你是怎样算的?这三个三角形各是什么三角形?
提问:在一个三角形中最多有几个钝角?
在一个三角形中最多有几个直角?
3.游戏:将准备的正方形纸对折成一个三角形?
师:这个三角形的内角和是多少度?再对折一次,现在内角和是多少度?如果继续折下去,越折越小,三角形的内角和会是多少度?
说明:三角形大小变了,内角和不变。
4.有两个完全一样的三角尺拼成一个三角形,这个三角形的内角和是多少度?
说明:三角形形状变了,内角和不变。
5.根据所学知识,你能想办法求出下面图形的内角和吗?
板书
设计
三角形内角和
①号 钝角三角形 内角和180°
②号 锐角三角形 内角和180°
三角形内角和是180°
③号 直角三角形 内角和180°
④号 直角三角形 内角和180°
⑤号 钝角三角形 内角和180°
⑥号 锐角三角形 内角和180°
学具教具准备
课件三角形纸片量角器正方形纸
三角形的内角和课件 篇4
【教学目标】
1.学生动手操作,通过量、剪、拼、折的方法,探索并发现"三角形内角和等于180度"的规律。
2.在探究过程中,经历知识产生、发展和变化的过程,通过交流、比较,培养策略意识和初步的空间思维能力。
3.体验探究的过程和方法,感受思维提升的过程,激发求知欲和探索兴趣。
【教学重点】
探究发现和验证"三角形的内角和为180度"的规律。
【教学难点】
理解并掌握三角形的内角和是180度。
【教具准备】
PPT课件、三角尺、各类三角形、长方形、正方形。
【学生准备】
各类三角形、长方形、正方形、量角器、剪刀等。
【教学过程】
口算训练(出示口算题)
训练学生口算的速度与正确率。
一、谜语导入
(出示谜语)
请画出你猜到的图形。谁来公布谜底?
同桌互相看一看,你们画出的三角形一样吗?
谁来说说,你画出的是什么三角形?(学生汇报)
(1)锐角三角形,(锐角三角形中有几个锐角?)
(2)直角三角形,(直角三角形中可以有两个直角吗?)
(3)钝角三角形,(钝角三角形中可以有两个钝角吗?)
看来,在一个三角形中,只能有一个直角或一个钝角,为什么不能有两个直角或两个钝角呢?三角形的三个角究竟存在什么奥秘呢?这节课,我们一起来学习"三角形的内角和。"(板书课题:三角形的内角和)
看到这个课题,你有什么疑问吗?
(1)什么是内角?有没有同学知道?
内:里面,三角形里面的角。
三角形有几个内角呢?请指出你画的三角形的内角,并分别标上∠1、∠2、∠3.
(2)谁还有疑问?什么是内角和?谁来解释?(三个内角度数的和)。
(3)大胆猜测一下,三角形的内角和是多少度呢?
【设计意图】
创设数学化的情境。学生用已经学的三角形的特征只能解释"不能是这样",而不能解释"为什么不能是这样".这样引入问题恰好可以利用学生的这种认知冲突,激发学生的学习兴趣。
二、探究新知
有猜想就要有验证,我们一起来探究用什么方法能知道三角形的内角和呢?
1、确定研究范围
先请大家想一想,研究三角形的内角和,是不是应该包括所用的三角形?
只研究你画出的那一个三角形,行吗?
那就随便画,挨个研究吧?(太麻烦了)
怎么办?请你想个办法吧。
分类研究:锐角三角形,直角三角形,钝角三角形(贴图)
2、探究三角形的内角和
思考一下:你准备用什么方法探究三角形的内角和呢?
小组合作:从你的学具袋中,任选一个三角形,来探究三角形的内角和是多少度?
小组汇报:
(1)量一量:把三角形三个内角的度数相加。
直接测量的方法挺好,虽然测量有误差,但我们知道了三角形的内角和在180°左右。究竟是不是一定就是180°呢?哪个小组还有不同的方法?
(2)拼一拼:把三角形的三个内角剪下来,拼成了一个平角。
能想到这种剪一剪拼一拼的方法,真不简单。三个角拼在一起,看起来像个平角,究竟是不是平角呢?谁还有别的方法?
(3)折一折:把三角形的三个角折下来,拼成了一个平角。
这种方法真了不起,能借助平角的度数来推想三角形内角和是180°。
总结:同学们动脑思考,动手操作,运用不同的方法来验证三角形的内角和。这三种方法都很好,但在操作过程中,难免会有误差,不太有说服力。我们能不能借助学过的图形,更科学更准确的来验证三角形的内角和?
3、演绎推理的方法。
正方形四个角都是直角,正方形内角和是多少度?
你能借助正方形创造出三角形吗?(对角折)
把正方形分成了两个完全一样的直角三角形,每个直角三角形的内角和:360°÷2=180°
再来看看长方形:沿对角线折一折,分成了两个完全一样的直角三角形,内角和:360°÷2=180°
这种方法避免了在剪拼过程中操作出现的误差,
举例验证,你发现了什么?
通过验证,知道了直角三角形的内角和是180度。
你能把锐角三角形变成直角三角形吗?
把锐角三角形沿高对折,分成了两个直角三角形。
一个直角三角形的内角和是180°,那么这个锐角三角形的内角和就是180°×2=360°了,对吗?(360-180=180°)
通过计算,我们知道了这个锐角三角形的内角和是180°,那么所有的锐角三角形的内角和都是180°吗?你是怎么知道的?
通过刚才的计算,你发现了什么?(锐角三角形内角和180°)
钝角三角形的内角和,你们会验证吗?谁来说说你的想法?180×2-90-90=180°
通过验证,你又发现了什么?(钝角三角形内角和180°)
4、总结
通过分类验证,我们发现:直角180,锐角180,钝角180,也就是说:三角形的内角和是180°。也验证了我们的猜想是正确的。(板书)
5、想一想,下面三角形的内角和是多少度?(小--大)
你有什么新发现?(三角形的内角和与它的大小,形状没有关系。)
【设计意图】
为了满足学生的探究欲望,发挥学生的主观能动性,通过独立探究和组内交流,实现对多种方法的体验和感悟。学生通过小组合作的方式学到方法,分享经验,更重要的是领悟到科学研究问题的方法。就学生的发展而言,探究的过程比探究获得的结论更有价值。
三、自主练习
1、在一个三角形中,如果想求一个角的度数,至少得知道几个角的度数呢?(2个)那我们就试一试,挑战第一关。(两道题)
2、算得真快!如果只知道一个角的度数,还能求出未知角的度数吗?挑战第二关。(三道题)
3、说得真清楚,如果一个角的度数也不知道,你还能求出未知角的度数吗?挑战第三关。(一道题)
师:同学们真了不起,从知道两个角的度数,到知道一个角的度数,再到一个角的度数也不知道,都能正确求出未知角的度数。
4、学无止境,课下,请你利用三角形的内角和,探究一下四边形、五边形、六边形的内角和各是多少度?
【设计意图】
练习由浅入深,层层递进。从知道两个角的度数,到知道一个角的度数,再到一个角的度数也不知道,要求学生求出未知角的的度数,梯度训练,拓展思维。
四、课堂总结
同学们,回想一下,这节课我们学习了什么?通过这节课的学习,你有哪些收获呢?
真了不起,同学们不仅学到了知识,还掌握了学习的方法。"在数学的天地里,重要的不是我们知道什么,而是我们怎么知道的",在这节课上,重要的不是我们知道了三角形的内角和是180°,而是我们通过猜测,一步一步验证,得到这个规律的过程。
课后反思
《三角形的内角和》是五四制青岛版四年级上册第四单元的信息窗二,本节课是在学生学习了与三角形有关的概念、边、角之间的关系的基础上,让学生动手操作,通过一系列活动得出"三角形的内角和等于180°".
本着"学贵在思,思源于疑"的思想,这节课我不断创设问题情境,让学生去猜想、去探究、去发现新知识的奥妙,从而让学生在动手操作、积极探索的活动中掌握知识,积累数学活动经验,发展空间观念。"问题的提出往往比解答问题更重要",其实三角形内角和是多少?大部分的学生已经知道了这一知识,所以很轻松地就可以答出。但是只是"知其然而不知其所以然".
为此,我设计了大量的操作活动:画一画、量一量、折一折、拼一拼等,我没有限定了具体的操作环节。在操作活动中,老师有"扶"有"放".做到了"扶"而不死,"伴"而有度,"放"而不乱。利用课件演示,更直观的展示了活动过程,生动又形象,吸引学生的注意力。使学生感受到每种活动的特点,这对他认识能力的提高是有帮助的。
最后通过习题巩固三角形内角和知识,培养学生思维的广阔性,为了强化学生对这节课的掌握,从知道两个角的度数,到知道一个角的度数,再到一个角的度数也不知道,要求学生求出未知角的的度数,层级练习,步步加深,梯度训练。
教学是遗憾的艺术。当然本节课的教学中,存在许多不尽如意之处:
1、让学生养成良好的学具运用习惯,特别是小组学生在合作操作时,应有效指导,对学生及时评价,激励表扬,调动学生学习的积极性与主动性。
2、学生在介绍剪拼的方法时,可以让介绍的学生先上台演示是如何把内角拼在一起,这样学生在动手操作的时候就可以节省时间。
3、在做练习时,为了赶时间,题出现的频率较快,留给学生计算思考的时间不足,可能只照顾到好学生的进程,没有关注全体学生,今后应注意这一点。
教学是一门艺术,上一节课容易,上好一节课谈何容易,在今后的课堂教学中,只有勤学、多练,才能更好的为学生的学习和成长服务,让自己的人生舞台绽放光彩。
三角形的内角和课件 篇5
三角形的内角教案
教学目标 经历实验活动的过程,得出三角形的内角和定理,能用平行线的性质推出这一定理 2 能应用三角形内角和定理解决一些简单的实际问题 重点:三角形内角和定理
难点:三角形内角和定理的推理的过程 教学方法:采用引导发现法。教学手段:折纸,拼角,多媒体 课前准备
每个学生准备好二个由硬纸片剪出的三角形 教学过程
一、做一做
1在所准备的三角形硬纸片上标出三个内角的编码 让学生动手把一个三角形的两个角剪下拼在第三个角的顶点处,用量角器量出BCD的度数,可得到ABACB180
剪下A,按图(2)拼在一起,从而还可得到ABACB180
图2 4 把B和C剪下按图(3)拼在一起,用量角器量一量MAN的度数,会得到什么结果。
二想一想
如果我们不用剪、拼办法,可不可以用推理论证的方法来说明上面的结论的正确性呢? 已知ABC,说明ABC180,你有几种方法?
归纳总结如下:(用幻灯片逐个展示)
证法一:作BC的延长线CD,在△A B C的外部以C A 为一边,CE为另一边作∠1=∠A.则 C E∥B A ﹙内错角相等,两直线平行﹚ ∴ ∠2 =∠B ﹙两直线平行,同位角相等﹚ ∵ ∠B C A +∠1 +∠2=180° ∴ ∠B C A +∠A +∠B = 180° 证法二:过点A画DE∥BC
∴∠1= ∠B,∠2=∠C(两直线平行,内错角相等)
∵ ∠1+ ∠BAC+ ∠2=180°(平角定义)
∴∠B+ ∠BAC+ ∠C=180°
证法三:在BC上取一点D,过点D画DE∥BA,DF ∥CA
∴ ∠BDF= ∠C,∠EDC= ∠B,(两直线平行,同位角相等)
∠EDF=∠DEC=∠A(两直线平行,内错角相等)
∵ ∠BDF+ ∠EDF+ ∠EDC=180 °
∴ ∠A+ ∠B+ ∠C=180
° 证法四:过点C作CD ∥BA
∴ ∠ACD= ∠A(两直线平行,内错角相等)
∠BCD+ ∠B=180 °(两直线平行,同内角互补)
∴ ∠BCA+ ∠ ACD+ ∠B =180 °
即∠BCA+ ∠ A+ ∠B =180
三、练一练
1.例题如图,C岛在A岛的北偏东50方向,B岛在A岛的北偏东80方向,C岛在B岛的北偏西40方向,从C岛看A、B两岛的视角ACB是多少度?
2.练习一:
在三角形ABC中,(1)∠C=90°,∠A=30 °,则∠B= ;(2)∠A=50 °,∠B=∠C,则∠B= ;
(3)∠A—∠C=25 °,∠B—∠A=10 °,则 ∠B= 3.练习二;课本P74,练习1,2 4.补充练习
。三角形中最大的角是70,那么这个三角形是锐角三角形()2 一个三角形中最多只有一个钝角或直角()3 一个等腰三角形一定是锐角三角形()4 一个三角形最少有一个角不大于60()
四、小结
学会了一个定理:三角形内角和定理:三角形三个内角和等于180 °
五、作业:P76 1,2,3,4,5
三角形的内角和课件 篇6
教学内容:
义务教育课程标准实验教科书xx版小学数学四年级下册第42~46页
教学目标:
1、通过量、剪、拼、折等数学活动,让学生亲自实践操作,发现规律,主动推导并得出三角形内角和是180的结论,会应用这一规律进行计算。
2、在操作、验证三角形内角和的过程中,体验解决问题方法的多样性,发展空间观念,提高初步的逻辑思维能力。
教学过程:
一、创设情境,导入新课
1、谈话:我们已经认识了三角形,你知道哪些关于三角形的知识?
2、我们在讨论三角形知识的时候,三角形中的三个好朋友却吵了起来,想知道是怎么回事吗?我们一起去看看吧!
播放课件
详细内容说明:一个大的直角三角形说:我的个头大,我的内角和一定比你们大。一个钝角三角形说:我有一个钝角,我的内角和才是最大的。一个小的锐角三角形很委屈的样子说:是这样吗?(它们在争论谁的内角和大。)
你知道什么是三角形的内角和吗?
通过学生讨论,得出三角形的内角和就是三角形三个内角的度数和。
3、故事中到底谁说得对呢?今天我们就来研究三角形的内角和。
【设计意图】从学生的心理、兴趣和意愿为出发点,利用故事的形式提出疑问,激发学生的学习兴趣,提高学生探索的积极性。
二、自主探究、发现规律
1、探究三角形内角和的特点
(1)量一量
师:你认为怎样能知道三角形的内角和?
生:把三角形的三个内角分别量出来,再用加法算出三角形的内角和。
学生活动(小组合作———每组准备三种不同的三角形)量角,求和,完成第43页的表格。
学生交流汇报测量结果。
师:从刚才的交流中,你发现了什么?
生:不管是锐角三角形、直角三角形还是钝角三角形,内角和都是180。
(在量的过程中,由于误差,有的学生可能算出内角和在180左右,这时教师要相机诱导:在测量的过程中出现一些误差是正常的,因为同学们画的角不够标准,量角器的不同,还有本身测量的原因都可能导致误差。)
师:看来量一量会出现误差,那么你还有其它的更科学的办法进行验证吗?
(2)拼一拼
学生分小组活动,教师参与学生的活动,并给予必要的指导。
学生展示交流,师:从大家的交流中,我们发现都可以把三角形的三个内角拼成一个平角,证明三角形内角和是180 。
(3)折一折
小组活动,学生交流
生1:将正方形(或长方形)纸沿对角线对折,这样,就折成了两个大小一样的三角形。因为正方形(或长方形)的四个直角的和是360,所以三角形的内角和就是它的一半,是180。
生2:直角三角形的两个锐角可以折成一个直角,也就是说,在直角三角形中,两个锐角的和是90,因此三角形内角和就是180。
2、归纳
师:通过刚才的活动,我们得出了什么结论?
生:三角形的内角和等于180。
3、师谈话:三个三角形争论的问题现在能解决了吗?你现在想对这三个三角形说点什么?
学生畅所欲言,对得出的规律做系统的整理。
【设计意图】动手实践,自主探索,亲身体验,是学习数学的重要方式。学生分组合作,量一量、拼一拼、折一折,通过多种感官参与比较、分析从而自主探索得出结论,得到的不仅是三角形内角和的知识,也使学生学到了怎样由已知探索未知的思维方式与方法,培养了他们主动探索的精神。
三、灵活运用,巩固练习
师:好,大家已经发现了三角形内角和是180这一规律,你能应用这个规律解决一些实际的问题吗?
1、判断
钝角三角形比锐角三角形的内角和大。 ( )
锐角三角形的两个内角和小于90。 ( )
一个三角形最少有两个锐角。 ( )
一个钝角三角形最少有一个钝角。 ( )
学生判断并说出理由。
2、自主练习第6题
练习时,先让学生独立填空,再说说自己是怎么想的,然后用量角器验证计算的结果。
小结:以后如果遇到求一个三角形内未知角的度数时,我们可以用计算的方法算一算,简单又精确。
3、游戏: 选度数,组三角形
(课件显示如下)
请选出三个角的度数来组成一个三角形
10 18 15 150 130 72
20 50 70 35 75
52 56 54 58 60
学生回答的同时,教师操作课件,把学生选择的度数拖入方框内,通过电脑计算相加是否等于180,来验证学生的选择是否正确。验证学生选的对了以后,再让学生判断选择的度数所组成的三角形按角的大小分类,并说出理由。
[设计意图]用已学到的新知解决实际数学问题,认识学数学的价值,再次体验成功,增强学习数学的兴趣。尤其是第三个练习,依据学生的年龄特征和认知水平,设计探索性和开放性的问题,注重拓宽学生的思维活动空间。
四、课堂总结、深化认识
谈话:这节课你学会了什么?解决了什么问题?是怎样解决的?
【设计意图】不仅从知识方面进行总结,还引导学生回顾发现问题、提出问题、解决问题的过程,关注学生学习过程中的情感体验。既让学生习得一种学习方法,又培养了学习兴趣。
课后反思:
本节课学生以小组为单位进行合作学习,从自己的已有经验出发,积极地进行操作、测量、计算,并对自己的结论进行思考、分析。在充分发挥学生主体作用,放手让学生开展探究的同时,教师也恰到好处的发挥了引导作用。整个探究过程学生是自主的、有积极性的,在获得数学结论的同时学习了科学探究的方法,为今后的学习打下了坚实的基础。
三角形的内角和课件 篇7
《三角形的内角和》教学设计
下肥镇学校:张海波
一、教材内容:人教版四年级下册数学第67页例6
二、教材内容分析
《三角形内角和》属于空间与图形的范畴,是在学生已经接触了三角形的稳定性和三角形的分类相关知识后对三角形进一步研究,探索三个内角的和。教材中安排了学生对不同形状的三角形进行度量,运用计算、测量、撕拼、折叠、推理等方法发现三角形的内角和是180°。扩充了学生认识图形的一般规律从直观感性的认识到具体的性质探索,培养了学生的空间观念。
三、三维目标 知识与技能:
1、理解和掌握三角形的内角和是180°。
2、运用三角形的内角和的知识解决实际问题。 过程与方法:
经历三角形内角和的探究过程,体验“发现——验证——应用”的学习模式。
情感态度与价值观:
在学习活动中,渗透探究知识的方法,提高学习的能力,培养创新精神和实践能力。
四、教学重点:理解和掌握三角形内角和是180°
五、教学难点:三角形内角和的探究过程。
六、教具准备:课件。
七、学具准备:三角板一副,锐角三角形、直角三角形、钝角三角形纸各一张,固体胶,剪刀一把,量角器一个。
八、教学过程:
一、创设情景,引出问题
1、复习
上节课我们学习了三角形的分类的知识,你还记得吗?让我们来试一试,一会老师出示三角形你来说出名称。
2、师:请同学们帮老师画一个三角形,能做到吗?
生:能。
师:请听要求,画一个有两个内角是直角的三角形,开始。(设置矛盾,使学生在矛盾中去发现问题、探究问题。)
师:有谁画出来啦?
生1:不能画。
生2:只能画两个直角。
生3:只能画长方形。
师:问题出现在哪儿呢?这一定有什么奥秘?想不想知道?
这节课我们就来研究三角形的角的知识——三角形的内角和(板书课题)
二、探究新知
1、三角形的内角、内角和
看了课题,你有什么疑问? 出示自主探究
(1)什么是三角形内角 (2)三角形有几个内角 (2)内角和指的是什么
生:三角形里面的三个角都是三角形的内角。有三个内角,三角形的三个角的度数的和,就是三角形的内角和。
2、研究特殊三角形的内角和
师:请看屏幕。(播放课件)熟悉这副三角板吗?请拿出形状与这块一样的三角板,并同桌互相指一指各个角的度数。(课件闪动其中的一块三角板)
生:90°、60°、30°。(课件演示:由三角板抽象出三角形) 师:也就是这个三角形各角的度数。它们的和怎样? 生:是180°。 师:你是怎样知道的? 生:90°+60°+30°=180°。
师:(课件演示另一块三角板的各角的度数。)这个呢?它的内角和是多少度呢?
生:90°+45°+45°=180°。
师:从刚才两个三角形内角和的计算中,你发现什么? 生1:这两个三角形的内角和都是180°。
生2:这两个三角形都是直角三角形,并且是特殊的三角形。
3、猜一猜。
师:(拿出一个任意三角形)问:这个三角形的内角和是多少度? 师:是不是所有的三角形的内角和都是180°呢?你能肯定吗? 师:大家意见不统一,我们得想个办法验证三角形的内角和是多少?自学67页例六,想象可以用什么方法验证呢? 生:可以先量出每个内角的度数,再加起来。
师:哦,也就是测量计算,是吗?那就请四人小组共同研究吧! 师:用量角器测量你们小组内的任意一个三角形每个内角的度数。最后要求计算出三个角的和是多少?填在表格里 4.操作、验证一般三角形内角和是180°。
(1)小组合作、进行探究。(教师巡视指导)
(2)小组汇报结果。
师:请各小组汇报探究结果。
生1:我们小组的测量结果是?
生2:175°。
生3:182°。
„„ 5..继续探究
师:没有得到统一的结果,怎么办?还有其它办法吗?请自学教材67页例六,想出办法。
生1:有。
生2:用拼合的办法,就是把三角形的三个内角放在一起,可以
拼成一个平角。
师:怎样才能把三个内角放在一起呢?
生:把它们剪下来放在一起。
(1.)用拼合的方法验证。
师:很好,请用不同的三角形来验证。
师:出示自学指导。小组内完成,仍然先分工怎样才能很快完成任务,开始吧。
(2.)汇报验证结果。 学生上台演示。
师:先验证锐角三角形,我们得出什么结论?
生1:我们小组是这样做的锐角三角形的内角拼在一起是一个平角,所以我们小组得出结论锐角三角形的内角和是180°。
生2:直角三角形的内角和也是180°。
生3:钝角三角形的内角和还是180°。
3.课件演示验证结果。
师:请看屏幕,老师也来验证一下,是不是跟你们得到的结果一样?(播放课件)
师:我们可以得出一个怎样的结论?
生:三角形的内角和是180°。
(教师板书:三角形的内角和是180°学生齐读一遍。)
师:为什么用测量计算的方法不能得到统一的结果呢?
生1:量的不准。
生2:有的量角器有误差。 师:对,这就是测量的误差。
4、折拼
师:有没有别的验证方法?
师:我在电脑里收索到折拼的方法,请同学们看一看他是怎么折的(课件演示)。
三、解决疑问。
师:现在谁能说说不能画出有两个直角的一个三角形的原因?(让学生体验成功的喜悦)
生:因为三角形的内角和是180°,在一个三角形中如果有两个直角,它的内角和就大于180°。
师:在一个三角形中,有没有可能有两个钝角呢?
生:不可能。
师:为什么?
生:因为两个锐角和已经超过了180°。
师:那有没有可能有两个锐角呢?
生:有,在一个三角形中最少有两个内角是锐角。
你对三角形内角和是多少度还有疑问吗?现在我们可以肯定的说:三角形的内角和是?度。
四、知识应用
师:接下来,利用三角形的内角和我们来解决一些相关的问题吧! 1.看图求出未知角的度数。(知识的直接运用,数学信息很浅显)
2、求出三角形各个角的度数。
3、爸爸给小红买了一个等腰三角形的风筝。它的一个底角是70度,它的顶角是多少度?
4.游戏巩固
请你设计一个三角形,并说出每个内角的度数,比一比谁设计的三角形更特别。
五、全课总结。 这节课你有哪些收获?
三角形的内角和课件 篇8
一、课题:三角形内角和定理的证明
二、教材:北师大版义务教育课程标准实验教科书数学八年级下册第六章第五节
三、学习目标:
1、知识与技能目标:学生由对三角内角和定理感性认识上升到理性推理证明,掌握三角形内角和定理的证明及简单应用。
2、过程与方法目标:学生亲历探索撕纸过程对比,体会思维实验和符号化的理性运用,在观察、操作、推理、归纳等探索过程中,发展合情推理能力,逐步养成逻辑推理能力,并形成一定的逻辑思维能力。
3、情感态度与价值观目标:经历三角形内角和定理不同种方法的推理证明过程,培养学生创造性,弘扬个性发展,体验解决问题的成就感,体会数学证明的严谨性和推理意义,培养学习数学的兴趣,感悟逻辑推理的数学价值。
四、教材分析
1、内容分析
三角形内角和定理是“空间与图形”中的一个很重要的定理。
(1)它为以后学习多边形内角和定理奠定基础。
(2)实际生活、生产中有广泛的应用。
(3)是求角度的有力工具(有时非它不可)。
三角形内角和定理的证明过程为学生建立数学思想方法和逻辑推理能力提供一个发展提高平台,其论证过程总体体现为化归思想。学过之后,这种思想方法可以类比运用到其它问题的探索与解决过程之中,其说理过程将成为“普通语言向符号语言转化”的可能,这一可能将随时间的推移与知识的积攒成为现实。
在证明过程中,学生从中学到的不仅仅是知识、方法及数学逻辑,他们克服困难的勇气及对问题的好奇心和互相评价,学习方式的选择等等方面都将大有收获,说明了本节教材内容对学生非智力因素的影响还是非常大的。
2、学情分析:
(1)学生已经在小学和七年级的时候接触过三角形内角和定理,并且进行了猜想与验证及口头说理过程。这为证明三角形内角和定理提供了认知基础。
(2)从学生的学习动机与需要上看,他们有探究新事物的欲望和好奇心,这为探究三角形内角和定理的证明策略及方法提供了情感保障。
(3)学生在学习三角形内角和定理的证明过程中,其认知顺序可能是建构型的。平行线是其原有知识储备的主要图式,他们利用原有图式完全可以同化三角形内角和定理。
3、障碍预测:
辅助线的作法是学生在几何证明过程中第一次接触,并且辅助线的添法没有统一的规律,要根据需要而定,另外本节课开始将训练学生把几何命题翻译为几何符号语言,这对学生来说都有一定接受难度。
五、教学重点、难点
重点:以三角形内角和定理的证明为载体,学习几何证明思想,以及辅助线的有关知识,体会数形结合思想。
难点:辅助线添加的必要性和具体方法:(1)为什么要添加;(2)在哪里添加;(3)如何添加;(4)哪种添加方法最简单。
六、设计思路分析:
三角形内角和定理是学生接触较早的定理之一,其内容和应用早已为学生所熟悉。因此,本节课需要重点解决的问题是定理的证明;在定理证明中,学生将首次接触和应用辅助线,于是,在证明中“为什么要添加辅助线”、“如何添加辅助线”就必然成为本节课的重点。
本课基本定位在于,通过三角形内角和定理证明的教学实践、感受几何证明的思想,体会辅助线在几何问题解决中的桥梁作用。同时,引领学生体会数学中的重要思想——数形结合。
借助“撕三角形纸片,拼接,验证三角形内角和定理”的过程分析,启发诱导学生初步体会辅助线及其在证明中的作用。最后,引领学生进一步体会辅助线添加方法的多样性,渗透“最优化”思想。
七、教学策略:
1、学教方式:为真正落实学生的主体地位,教师只是教学过程的组织者、合作者、引导者,特确定了如下学教方式:学生自主探究、合作交流学习,教师引导发现教学。
2、教学支持:为促进学生自主学习,增大课堂容量,提高效率,突出重点,突破难点,本节课将采用多媒体演示教学。
八、教学过程
(一)知识回顾,积累经验
1、平行线的判定:
2、平行线的性质:
3、证明一个文字命题的一般步骤:
(二)情景再现,导入新课
问题1:我们知道三角形三个内角的和等于180°.你还记得这个结论的探索过程吗?
(1)数的研究:对于三角形的内角和是180°这样一个结论,启发学生回想,我们在小学时是怎样知道这个结论的。
(通过量角器进行角度的测量,这就是“数”的研究,量角器在这里起到桥的作用。)
问题2:通过前两节课的学习,我们知道通过观察、度量、猜测得到的结论不一定是正确的,测量会产生误差,问题解决得并不完美。这就促使我们去寻找新的研究方向——形。(体会证明的必要性)
(2)形的研究:对于三角形的内角和是180°这样一个结论,启发学生回想,七年级下册时是怎样知道这个结论的。
(通过动手操作拼图,将分散的三个角“搬”到一起,从而构成一个平角或两角互补,为本节课引出辅助线做好铺垫)
【设计意图】(1)鉴于学生对证明已有一定的认识和了解,并且对三角形内角和已经有初步认识,在教学过程设计上并没有从学生身边熟悉的事例创设情境,而是简单地对三角形内角和的知识加以回忆。
(2)学生以前所做的都是特殊的三角形,而且“量一量、拼一拼、折一折”受客观因素的制约,影响了研究结果的准确性,况且当时有些学生量出内角和的度数确实要高于或低于180°。
(3)学生的怀疑是正常的,剪拼得到的结论有一定的合理性,但还需证明来确认,这正是我们这节课要解决的问题 ——教育学生研究问题要有一个严谨的科学态度。
(三)活用化归,证明定理
根据前面给出的公理和定理,你能用自己的语言说说这一结论的证明思路吗?你能用比较简洁的语言写出这一证明过程吗?与同伴交流.结论:三角形三个内角的和等于180°。
师: 这是一个文字命题,证明时需要先干什么呢?
生:需要先画图形,根据命题的条件和结论写出已知、求证。
师:对,下面大家来证明,哪位同学上黑板给大家板演呢?
已知: ∠A、∠B、∠C 是△ABC的三内角.求证:∠A+∠B+∠C=180°
分析:延长BC到D,过点C作射线CE∥AB,这样,就相当于把∠A移到了∠ACE的位置,把∠B移到了∠ECD的位置.证明:延长BC到D,过点C作直线CE∥AB
∴∠B=∠ECD(两直线平行,同位角相等)
∠ACE=∠A(两直线平行,内错角相等)
∵∠ACE+∠ECD+∠ACB=180°
∴∠A+∠B+∠ACB=180°(等量代换)
师:同学们写得证明过程很好,在证明过程中,我们添画了射线CE、CD,使处于原三角中不同位置的三个角,巧妙地拼凑到一起来了。为了证明的需要,在原来的图形上添画的线叫做辅助线。在平面几何里,辅助线通常画成虚线。
我们通过推理的过程,得证了命题:三角形的三个内角的和等于180°是真命题,这时称它为定理。即:三角形内角和定理:三角形三个内角的和等于180°。
【设计意图】培养学生有“公理化思想”,能运用基本事实和定理证明问题,有学会运用旧知解决新知,从以前的活动中思考获取解决的方法,有合作学习的能力,有探究新知的能力。
(四)开启智慧,分组探究
师:你还有其他方法来证明三角形内角和定理吗?在证明三角形内角和定理时,小明的想法是把三个角“凑”到A处,他过点A作直线PQ∥BC(如图),他的想法可以吗? 请你帮小明把想法化为实际行动
证明:过点A作PQ∥BC
∴∠PAB=∠B(两直线平行,内错角相等),∠QAC=∠C(两直线平行,内错角相等),∵∠BAC+∠B+∠C=180°(平角的定义),∴∠BAC+∠B+∠C=180°(等量代换).小明的想法已经变为现实,由此你受到什么启发?你有新的证法吗?
1、教师组织学生分组讨论:有了上面的知识作为铺垫,我们可以开展探究活动了,看哪组最先找到解决办法,找到的方法最多。
2、在学生开展探究的过程中,教师参与其中,对个别感到困难的小组可以进行适当的提示和引导。
3、教师指导学生添加辅助线,给出完整的“三角形内角和定理”的证明。
4、分组探究,成果展示
教师指导学生进行全班交流:(1)借助实物投影仪,将学生找到的添加辅助线的方法进行汇总展示。(2)在展示过程中,注意关注学生的表达以及寻找到的添加辅助线的方法,若有不全的,教师进行必要的提示。(3)引导学生将辅助线添加在三角形的顶部,边上及三角形内、外部均可。然后,进一步引导学生比较哪种最好。
【设计意图】
1、让学生在证明的过程中,进一步了解三角形内角和定理的证明思路,并且了解一题的多种证法,从而拓宽学生的思路.
2、这里是本节课的一个重点,教师在这里要交代①什么是辅助线,添加时要用虚线画出;②辅助线怎么来的在证明开始时要交代清楚,后添加的字母要在证明的开始前交代清楚;③规范书写格式是自上而下的;④有条理的表达上面的分析思路,有一个严密的逻辑思维过程。
3、三角形内角和的证明实质是利用化归思想将三角形内角和转化为“平角等于180°”或“两直线平行同旁内角和等于180°这一点应向学生交代清楚
4、给学生充分的自我展示的机会,尽量发现更多的添加辅助线的方法。
(五)实践应用,培养能力
1、已知:如图在△ABC中,DE∥BC,∠A=60°, ∠C=70°.求证: ∠ADE=50°
2.、已知:如图,△ABC中,∠B 和∠C的平分线BE,CF交点O.求证: ∠BOC=90°+
12∠A
(六)知识回顾,拓展延伸,如图,利用几何画板,在△ABC中,(1)如果BC不动,把点A“压”向BC,∠A
就越来越大,而∠B与∠C的和越来越小,由此你
能想到什么?
(2)如果BC不动,把点A“拉离”BC,∠A就越来越小,而∠B与∠C则越来越大,它们的和越来越接近180°,由此你能想到什么?
【设计意图】引导学生利用运动变化的观点理解和认识数学,渗透极限思想。
(七)畅谈收获,反思升华
本节课,我们证明了一个很有用的三角形内角和定理。在三角形中,求角的大小可将被求角看作三角形的内角来求。证明的基本思想是:借助辅助线将原三角形中处于不同位置的三个内角集中在一起,拼成一个平角或两个互补的角.通过本节课的学习,你有哪些收获?
(八)课外作业,巩固练习
课外作业:课本P241习题6.61、2、3(九)板书设计:
三角形内角和定理的证明
三角形的内角和定理:三角形的三个内角的和等于180°。
九、教学反思
《课标》强调:数学教学是数学活动的教学,是师生交往、互动、共同发展的过程。学生是数学学习的主人,教师是学生数学学习的组织者、引导者和合作者。有效的数学教学应当从学生的生活经验和已有的知识背景出发,向他们提供充分的从事数学活动的机会,在活动中激发学生的学习潜能,促使他们在自主探索与合作交流的过程中真正理解和掌握基本的数学知识、技能、思想方法,获得广泛的数学活动经验,提高解决问题的能力,学会学习,同时使学生在意志力、自信心、理性精神等情感与态度方面得到良好的发展。
作为“几何证明”的重要组成部分,这节课所涉及的内容对于证明的学习显得十分重要。其原因一方面在于,这是添加辅助线、进行几何证明的首次学习,学生对此普遍感到困难;另一方面,这是《义务教育数学课程标准》下的“几何公理体系”第一次循环的综合运用,即“两直线平行,内错角相等”、“内错角相等,两直线平行”的综合应用。
这篇案例经过了精心设计,尤其是从“数”与“形”两个角度对辅助线作法的分析与探索,做了相当大的内容准备。
1、在备课时,教师不能只备教材而不备学生,只考虑自己如何“教”而忽视学生如何“学”。在这节课上产生的情况,由于我对学生已有知识经验估计不足,造成有些内容没完成。因此,教师在备课时,要充分预计学生已有的知识水平,站在学生的角度来思考:如果自己是学生,我已懂了哪些知识?还有什么问题?不能只考虑自己教得舒畅、教得精彩,而应更多地从学生的角度来思考“教什么”和“怎样教”,做到以“学”定“教”。充分体现学生是学习的主体。
2、教师的教学方式要适应学生的学习。新课程明确倡导动手实践、自主探究、合作交流的学习方式。这就要求教师的角色,应当从过去知识的传授者转变为学生自主性、探究性、合作性学习活动的设计者和组织者。在教学过程中,我给学生设置了富有挑战性的问题情境,让学生分组合作、自主地去探究和发现方法。
3、本节课教师主导作用的发挥是比较好的,作用体现在让学生的主体得到充分的展示。
4、要想使学生感受到学习的快乐,就必须让学生体验到靠自己力量获得的成功,体会到探究与发现带来的乐趣。在教学中,我遵循的基本教学原则是激励学生展开积极的思维活动。不断的表扬学生,使学生感到自身的价值存在。
给学生一个展示个性、享受成功的机会。创设民主和谐的氛围,有助于减轻学生的心理负担,使学生的个性见解自由表达,独特做法主动展示。例如:证明方法的多样性,反映学生思维的多样性,学生个性的多样性;放手给学生自己小结体现不同学生有不同发展,交流是一种互补。
本节课老师多次深入到学习困难的学习小组,参与研究,引导他们发现,解决学生遇到的问题。因为每个学生都有按自己的选择参与学习的权利。都受个体已有认知水平和经验的限制,学生的学习很可能“遭遇”障碍,这常常会引发学生的失败感,降低学生学习的自信心,所以老师要适时鼓励,使学生享受到成功的喜悦。享受到一次成功,就会激励学生以更大的努力去追求更大的成功。
三角形的内角和课件 篇9
【教学目标】
1、学生动手操作,通过量、剪、拼、折的方法,探索并发现“三角形内角和等于180度”的规律。
2、在探究过程中,经历知识产生、发展和变化的过程,通过交流、比较,培养策略意识和初步的空间思维能力。
3、体验探究的过程和方法,感受思维提升的过程,激发求知欲和探索兴趣。
【教学重点】
探究发现和验证“三角形的内角和180度”这一规律的过程,并归纳总结出规律。
【教学难点】
对不同探究方法的指导和学生对规律的灵活应用。
【教具准备】
课件、表格、学生准备不同类型的三角形各一个,量角器。
【教学过程】
一、激趣引入。
1、猜谜语
师:同学们喜欢猜谜语吗?
生:喜欢。
师:那么,下面老师给大家出个谜语。请听谜面:
形状似座山,稳定性能坚,三竿首尾连,学问不简单。(打一图形)大家一起说是什么?
生:三角形
2、介绍三角形按角的分类
师:真聪明!!板书“三角形”!那么,三角形按角分可以分为钝角三角形、直角三角形和锐角三角形这几类
师分别出示卡片贴于黑板。
3、激发学生探知心里
师:大家会不会画三角形啊?
生:会
师:下面请你拿出笔在本子上画出一个三角形,但是我有个要求:画出一个有两个直角的三角形。试一试吧!
生:试着画
师:画出来没有?
生:没有
师:画不出来了,是吗?
生:是
师:有两个直角的三角形为什么画不出来呢?这就是三角形中角的奥秘!这节课我们就来学习有关三角形角的知识“三角形内角和”
二、探究新知。
1、认识三角形的内角
看看这三个字,说说看,什么是三角形的内角?
生:就是三角形里面的角。
师:三角形有几个内角啊?
生:3个。
师:那么为了研究的时候比较方便,我们把这三个内角标上角1角2角3,请同学们也拿出桌子上三角形标出(教师标出)
师:你知道什么是三角形“内角和”吗?
生:三角形里面的角加起来的度数。
2、研究特殊三角形的内角和
师:分别拿出一个直角三角板,请同学们看看这属于什么三角形,说出每个角的度数,那这个三角形的内角和是多少度?
生:算一算:90°+60°+30°=180°90°+45°+45°=180°
师:180°也是我们学习过的什么角?
生:平角
师:从刚才两个三角形的内角和的计算中,你发现了什么?
3、研究一般三角形的内角和
师:猜一猜,其它三角形的内角和是多少度呢?
生:
4、操作、验证
师:同学们猜的结果各不相同,那怎么办呀?你能想个办法验证一下吗?
要求:
(1)每4人为一个小组。
(2)每个小组都有不同类型的三角形,每种类型都需要验证,先讨论一下,怎样才能较快的完成任务?
(3)验证的方法不只一种,同学们要多动动脑子。
师:好,开始活动!
师:巡视指导
师:好!请一组汇报测量结果。
生:通过测量我们发现每个三角形的三个内角和都在180度左右。
师:其实三角形的内角和就是180度,只是因为我们在测量时存在了一些误差,所以测量出的结果不准确。
生:我是用撕的方法,把直角三角形三个内角撕下来,拼在一起,拼成一个平角,是180度。
师:好!非常好!
师:有其它同学操作锐角三角形和钝角三角形的吗?谁愿意到前面来展示一下?生:展示锐角三角形(撕拼)
生:展示折一折我是用折的方法把锐角三角形三个角折在一起,组成一个平角,是180°。
师:老师也做了一个实验看一看是不是和大家得到结果一样呢?(多媒体展示)
现在老师问同学们,三角形的内角和是多少?
生:180度。
师:通过验证:我们知道了无论是锐角三角形,直角三角形还是钝角三角形,它们的内角和都是180°。
三、解决疑问
师:好!请同学们回忆一下,刚才课前老师让同学们画出有两个直角的三角形画出来了吗?
生:没有
师:那你能用这节课的知识解释一下为什么画不出来吗?
生:两个直角是180度,没有第三个角了。
师:如果想画出有两个角是钝角的三角形你能画出来吗?
生:大于180度,也画不出第三个角。师:所以,生活中不存在这样的三角形。
师:学会了知识,我们就要懂得去运用。
三角形的内角和课件 篇10
尊敬的各位评委,各位老师:
大家好!今天我说课的内容是人教版义务教育课程标准实验教材数学四年级下册85页内容《三角形的内角和》。
一、教材分析
新课标把三角形的内角和作为第二学段中三角形的一个重要组成部分。本课是安排在三角形的特性及分类之后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。教材所呈现的内容,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间,安排了量一量、算一算和剪一剪、拼一拼两个实验操作活动,意图使学生在动手操作、合作交流中发现并形成结论。
二、学情分析
1、通过前面的学习,学生已经掌握了三角形的一些基础知识,会用工具量角、画角,具备了探索三角形内角和的知识与技能基础。
2、学生的生活经验是可利用的教学资源。我在课前了解到,已经有不少学生知道了三角形内角和是180度,,但却不知道怎样才能得出这个结论,因此学生在这节课上的主要目标是验证三角形的内角和是180度。
三、教学目标
基于以上对教材的分析以及对学生情况的思考,我从知识与技能,过程与方法,情感态度价值观三方面拟定了本节课的教学目标:
1、通过"量一量","算一算","拼一拼","折一折"的方法,让学生推理归纳出三角形内角和是180°,并能应用这一知识解决一些简单问题。
2、通过把三角形的内角和转化为平角进行探究实验,渗透"转化"的数学思想。
3、通过数学活动使学生获得成功的体验,增强自信心,培养学生的创新意识,探索精神和实践能力。
教学重难点:理解并掌握三角形的内角和是180度这一结论。
四、教学准备:
教具:多媒体课件,
学具:各类三角形、长方形、量角器、活动记录表等。
五、教法和学法
“三角形的内角和”一课,知识与技能目标并不难,但我认为本节课更重要的是通过自主探索与合作交流使学生经历知识的形成过程,领悟转化思想在解决问题中的应用,以及在探索过程中,培养学生实事求是、敢于质疑的科学态度,同时,在不同方法的交流中,开拓思维、提升能力。基于以上理念,本节课,我准备引导学生采用自主探究、动手操作、猜想验证、合作交流的学习方法,并在教学过程中谈话激疑,引导探究;组织讨论,适时地启发帮助。使教法和学法和谐统一在“以学生的发展为本”这一教育目标之中。
六、教学过程
本节课,我遵循“学生主动和教师指导相统一,问题主线和活动主轴相统一”的原则,制定了以下教学程序:
(一)创设情境,激发兴趣
“兴趣是最好的老师”。开课伊始我利用课件动态演示一只蝴蝶在把一条绳子围成不同的三角形。让学生观察在围的过程中,什么变了?什么没变?让学生在变与不变的观察与对比中,激发学生的学习兴趣,引出本节课的学习内容(板书:三角形的内角和),为后面的探索奠定基础。
【设计意图:以问题情境为出发点,既丰富了学生的感官认识,又激发了学生的学习热情。】
(二)动手操作,探索新知
本环节是学生获取知识、提高能力的一个重要过程。我有目的、有意识的引导学生主动参与实践活动、经历知识的形成过程。
1、揭示“内角”和“内角和”的概念
明确“内角”和“内角和”的概念是学生进一步探究内角和度数的前提,本环节首先请学生都拿出一个三角形,指一指三个内角,然后让学生谈谈自己对内角和的理解,在大家交流的基础上得出:三角形的内角和就是三个内角的度数之和。
2、猜测内角和
牛顿曾说:“没有大胆的猜想,就没有伟大的发现!”所以我放手让学生猜测三角形内角和的度数,由于绝大多数学生有课外知识的积累,不难说出三角形的内角和是180度,但猜想并不等于结论,三角形的内角和到底是不是180度?(板书:?)还要进一步的验证。猜想——验证是学生探究数学的有效途径。
3、动手验证,汇报交流
(1)介绍学具筐
由教师介绍学具筐中都有什么学习材料。
(2)生独立思考、动手操作
因为合作交流应建立在独立思考的基础上,所以先让学生独立思考:打算选用什么材料,怎样来验证三角形的内角和是不是180°。然后再让学生把想法付诸实践。此环节会留给学生充分的思考、操作、发现的时间,让学生在探索中找到证明的切入点,体验成功。在这期间,教师走下讲台,参与学生的活动,与学生一起寻找验证的方法,对有困难的学生提供帮助,不放弃任何一个学生。
(3)组内交流
经过独立思考和动手操作,每人都有了自己的验证方法,先在小组内交流各自的验证方法。
(4)全班汇报交流。
在足够的交流之后,开始进入全班汇报展示过程,达到智慧共享的目的。学生可能会出现以下几种方法:
A、测量方法
活动记录表
三角形的形状每个内角的度数三个内角和
∠1∠2∠3
这个验证方法应是大多数学生都能想到的,在交流汇报结果时会发现答案不统一,可能会出现大于180度、等于180度或小于180度不同的结果。此时学生会在心中产生更大的疑惑,“三角形的内角和到底是多少度?谁的答案正确呢?”在这里教师要抓住契机,肯定学生实事求是的态度和质疑的精神,把这一问题抛给学生,再次激起学生的探究热情,强烈的求知欲和好胜心让学生跃跃欲试,让学生充分发表观点,最终使学生认识到测量法会有误差,看来仅用一种测量的方法来验证只能得到三角形的内角和在180°左右,到底是不是180°,疑问依然存在,说服力还不够,此时我顺水推舟,让用不同验证方法的学生上台汇报展示。
B、撕拼法
我认为数学课不仅是解决数学问题,更重要的是思维方式的点拨,使数学思想的种子播种在学生的头脑中。本环节主要想实现向学生渗透“转化”的数学思想的教学目标。四年级学生在以往的数学学习过程中都积累了不少“转化”的体验,但这种体验基本上处于无意识的状态,只有合理呈现学习素材,才能使学生对转化策略形成清晰的认识。所以我请用撕拼法的同学上台展示撕拼的过程,学生可能会撕拼不同类型的三角形,如:
此时教师适时追问:你是怎么想到把三个内角撕下来拼成一个平角来验证的呢?因为平角是180度,三角形的三个内角拼在一起正好形成了一个平角,所以三角形的内角和就是180度。教师可及时评价点拨:“你们把本不在一起的三个角,通过移动位置,把它转化成一个平角来验证,运用了转化策略,真了不起。”从而使学生清晰的感受到数学学习就是把新知转化成旧知的过程。
C、其它方法
除了以上两种验证方法外,学生可能还会出现不同的验证方法,比如折一折的方法,把三个完全相同的三角形用不同的三个内角拼成一个平角来验证的方法,例图:
如果学生出现用长方形剪成两个完全相同的直角三角形或把两个完全相同的直角三角形拼成长方形来验证的方法,例图:
教师可追问:“这种方法只能证明哪一类的三角形呢?”使学生明白,这种验证方法有局限性,只能证明直角三角形的内角和是180°。然后教师引导学生归纳出这些不同方法都有异曲同工之妙,就是都运用了转化的策略,让学生在不知不觉中进一步感悟转化在数学学习中的重要作用。通过各种方法的展示交流,学生对三角形内角和是不是180度的疑问已经消除,所以可以把“?”改成“。”
【设计意图:《标准》指出:“教师应激发学生的积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。”在教学设计中我注意体现这一理念,允许学生根据已有的知识经验进行猜测,在猜测后先独立思考验证的方法,再进行小组交流。给学生充分的活动时间和空间,让学生动手操作,使学生在量、剪、拼、折等一系列实验活动中理解和掌握三角形内角和是180°这个图形性质。在探索活动中,使学生学会与他人合作,同时也使学生学到了怎样由已知探索未知的思维方式与方法,培养他们主动探索的精神,让学生在活动中学习,在活动中发展。】
4、科学验证方法
数学是一门严谨的学科,数学结论的得出必须经过严格的证明。那如何科学地验证三角形内角和是不是180°呢?用课件动态演示科学家的验证方法。
【设计意图:一方面使学生为自己猜想的结论能被证明而产生满足感;另一方面使学生体会到数学是严谨的,从小就应该让学生养成严谨、认真、实事求是的学习态度。】
(三)课外拓展,积淀文化
为了使学生在获得数学知识的同时积淀数学文化,用课件介绍最早发现三角形内角和秘密的法国科学家帕斯卡(课件)让学生交流:听了这个故事,你想说什么?在学生交流的基础上,教师抓住契机,及时鼓励学生:这节课才10岁的我们利用自己的智慧发现了帕斯卡12岁时数学发现,我们同样了不起,刘老师为大家感到骄傲!(板书:!)这个感叹号不仅表示教师对学生的赞叹,更是学生对自我的一种肯定,获得成功的自豪感。
【设计意图:适当的引入课外知识,它既可以激发学生的学习兴趣,又有机的渗透了向帕斯卡学习,做一个善于思考、善于发现的孩子,对学生的情感、态度、价值观的形成与发展能起到了潜移默化的作用。】
(四)应用新知,解决问题
数学规律的形成与深化,不仅靠感知,还要辅以灵活、有趣、有层次的课堂训练,以达到练习的有效性。对此,我设计了三个层次的练习:
1、把两个小三角形拼成一起,大三形的内角和是多少度?为什么?
【设计意图:通过两个三角形分与合的过程,让学生进一步理解三角形内角和等于180度这个结论,认识到三角形的内角和不因三角形的大小而改变。】
2、想一想,做一做
在一个三角形ABC中,已知∠A═45°,∠B═85,求∠с的度数。
在一个直角三角形中,已知∠с═52,求∠A的度数。
爸爸给小红买了一个等腰三角形的风筝。它的一个底角是70°,它的顶角是多少度?
【设计意图:将三角形内角和知识与三角形特征结合起来,引导学生综合运用内角和知识和直角三角形、等腰三角形等图形特征求三角形内角的度数。】
3、思考:
你能画出一个有两个直角或两个钝角的三角形吗?为什么?
【设计意图:将三角形内角和知识与三角形的分类知识结合起来,引导学生运用三角形内角和的知识去解释直角三角形、钝角三角形中角的特征,较好地沟通了知识之间的联系。】
(五)全课小结,完善新知
你在这堂课中有什么收获?
【设计意图:这样用谈话的方式进行总结,不仅总结了所学知识技能,还体现了学法的指导,增强了情感体验。】
板书设计:
三角形的内角和180°
三角形的形状每个内角的度数三个内角和
∠1∠2∠3
总之,本节课我力图引导学生通过自主探究、合作交流,让学生充分经历一个知识的学习过程,让学生学会数学、会学数学、爱学数学。在教学中,随时会生成一些新教学资源,课堂的生成一定大于课前预设,我将及时调整我的预案,以达到最佳的教学效果。
教学特色:
本节课我努力体现以下2个教学特色:
1、引导学生自主探索,激发学生的学习兴趣,体现以学生的发展为本的教学理念。
强化学生探究学习的心理体验,把数学学习和情感态度的发展有机的结合起来。
三角形的内角和课件 篇11
一、说教材
“三角形的内角和”是三角形的一个重要性质,是“空间与图形”领域的重要内容之一,学好它有助于学生理解三角形内角之间的关系,也是进一步学习几何的基础。经过第一学段以及本单元的学习,学生已经具备一定的关于三角形的认识的直接经验,已具备了一些相应的三角形知识和技能,这为感受、理解、抽象“三角形的内角和”的概念,打下了坚实的基础。
为方便教师领会教材编写的意图与理念,开展有效的教学,更好的发展学生的空间观念,培养学生的各种能力,教材在呈现教学内容时,不但重视体现知识形成的过程,而且注意留给学生充分进行自主探索和交流的空间,为教师灵活的组织教学提供了清晰的思路。主要体现在:概念的形成不直接给出结论,而是提供丰富的动手实践的素材,设计思考性较强的问题,让学生通过探索、实验、发现、讨论、交流等获得。从而让学生在动手操作,积极探索的活动过程中掌握知识,积累数学活动经验,发展空间观念和推理能力,不断提高自己的思维水平。基于对教材以上的认识及课程标准的要求,我拟定本节课的教学目标为:
1、知识目标:知道三角形内角和是180°。
2、能力目标:①通过学生猜、测、拼、折、观察等活动,培养学生探索、发现能力、观察能力和动手操作能力。②能运用三角形内角和是180°这一规律解决实际问题。
3、情感目标:①让学生在探索活动中产生对数学的好奇心,发展学生的空间观念;②体验探索的乐趣和成功的快乐,增强学好数学的信心。
教学重点:三角形内角和是180°的实际应用。
教学难点:探索三角形的内角和是180°
{二、教学用具}
本节课采用课件、不同形状的三角形、量件器等。
三、说教法
新课程标准的基本理念就是要让学生“人人学有价值的数学”。强调“教学要从学生已有的经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程。要激发学生的学习积极性,向学生提供充分从事数学活动的机会,让他们积极主动地探索,解决数学问题,发现数学规律,获得数学经验;而教师只是学生学习的组织者、引导者和合作者,在全面参与和了解学生的学习过程中起着对学生进行积极的评价,关注他们的学习方法、学习水平和情感态度,促使学生向着预定的目标发展的作用”。因此,我运用“猜一猜——量一量——拼—拼——折一折——看一看……”的教学法,让学生知道身边的数学问题随处可见,能用自己所学的知识解决生活当中的事情,培养学生的发散思维,进一步激发学生学习数学的热情。
四、说学法
学法是学生再生知识的法宝。为了使学生能在整节课的探索活动中积极主动参与动手实践、自主探究、合作交流的学习活动,我设计了独立活动、二人活动及分小组活动。在具体活动中,我让学生大胆猜想,自主探索三角形的内角和是多少度?再通过测量、拼折、验证等方式让学生确定三角形内角的度数是18度。这样,既培养了学生的观察能力和归纳概括能力,又体现了学生动手实践、合作交流,自主探索的学习方式,同时也培养了学生探索能力和创新精神。
五、说教学流程
“将课堂还给学生,让课堂焕发生命的活力”,“努力营造学生在教学活动中独立自主学习的时间和空间,使他们成为课堂教学中重要的参与者与创造者。在整个教学设计上力求充分体现“以学生发展为本”教育理念,我将教学流程拟定为“设疑导入——大胆猜想——动手验证——巩固内化&mdash
;—拓展延伸”,努力构建探索型的课堂教学模式。
1、设疑导入
教学的艺术不在于传授知识,而在于唤醒、激发和鼓励。伊始上课,我想以前面学过的知识“三角形的分类”为切入点,给出不同形状的三角形,让学生说出它们的名称,有锐角三角形、直角三角形、钝角三角形,随后我提出挑战,让学生画一个很特殊的三角形:即含有两个直角的三角形,结果是可想而知的,学生是不可能画出来的,想知道为什么呢?学了“三角形内角和”我们就知道了。板书课题:三角形内角和。这样,我在很短的时间内最大限度的激发学生探究数学的愿望和兴趣,为学生进一步学习打好基础。
2、大胆猜想
学生有了探索的愿望和兴趣,可是不能没有目标的去探索,那样只会事倍功半,甚至没有结果,这时我让学生大胆猜想:为什么不能画出有两个直角的三角形呢?猜一猜三角形的内角和”大约是多少度?学生猜想时我在黑板上书写几个比较接近的度数。这样形成统一的认识,使后边的探索和验证活动有了明确的目标。
3、动手验证
学生形成统一的猜想后,我就把课堂大量的时间和空间留给学生,让他们开展有针对性的数学探究活动{既验证三角形的内角和是否是180度?},在活动中,我既不像过去那样告诉学生怎么动手去验证,让学生做机械的操作员,也不是随意放开让学生盲目的操作,我想把放和引有机的结合起来,鼓励学生积极开动脑筋,从不同的途径探索解决问题的方法。不但让每个学生自主参与验证活动,而且使学生在经历观察、操作、分析、推理和想象活动过程中解决问题,发展空间观念和论证推理能力。具体过程为:量一量量不同形状的三角形的三个内角拼一拼将三角形的三个内角可以拼成一个什么角,折一折将三角形的三个内角可以折成一个什么角,看一看无论是量、还是拼、或者是折我们得到的三角形内角和都是多少度?。
4、巩固内化:
俗话说的好:“熟能生巧”。数学离不开练习,要掌握知识,形成技能技巧,一定要通过练习。养成良好的思维品质也要通过一定的思考练习,课程标准提倡练习的有效性。对此,我力争注意将数学的思考融入不同层次的练习之中,很好的发挥练习的作用。
1、释疑练习:让学生用所学的知识说一说为什么画不出含有两个直角的三角形?目的是解释课前的设疑,从中培养学生应用意识和解决问题的能力;
2、基本练习:巩固本节课所学的知识。
3、变式练习:目的是是学生将知识转化成能力。
4、综合练习:目的是让学生感受数学与生活的联系,培养运用所学知识解决实际问题的能力。
5、拓展创新:力求体现“不同的人在数学上得到不同的发展”这一新课程理念。
数学具有严密的逻辑性和抽象性。而学生学习内容的呈现是从简单到复杂,思维方式是从具体到抽象的一个循序渐进的过程,前面学习的知识往往是后面进一步学习的基础。要培养学生思维的灵活性,可以先让学生学会对知识的迁移。本课最后,我给学生出了一道通过对本节课所学知识的迁移就可以完成的问题,对学生进行思维训练,既培养了学生应用知识的能力,又培养了学生的创新意识和创新精神。
总之,在本节课教学活动中我力求充分体现一下特点:以学生发展为本,以学生为主体,以思维训练为主线的教学思想;充分关注学生的自主探究与合作交流,注重培养学生的创新意识和实践能力。
三角形的内角和课件 篇12
一堂成功的课不仅要熟悉教材,还需要我们充分的了解学生的特点。
本节课的授课对象是四年级的学生,从心理特征来说,他们对于新鲜的知识充满着好奇心和强烈的求知欲望,无意注意仍起着主要作用,有意注意正在发展。
从认知状况来说,学生在此之前已经学习了三角形有关的知识,对三角形的内角已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于三角形内角和都是180度的理解,学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。
三、说教学目标
根据新课程标准,教材特点、学生实际,我确定了如下三维教学目标。
【知识与技能】通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。
【情感态度与价值观】在参与学习的过程中,感受数学的魅力,体验成功的喜悦,激发学习数学的兴趣。
根据学生现有的知识储备和知识点本身的难易程度,学生很难建构知识点之间的联系,这也确定了本节课的重点为三角形内角和定理,而三角形内角和定理推理的过程为本节课的难点。
新课程明确倡导动手实践,自主探索、合作交流的学习方式,教师不仅是知识的传授者,更是学生探究性、合作性学习活动的设计者,组织者和学生学习的伙伴。在教学过程中,我将采用创设情境,直观演示,观察,猜测,操作,思考,总结等方法,把学生带进开放的,富有挑战性的问题情景,让学生通过自己学习,合作学习,和交流等活动,获得知识与能力,掌握解决问题的方法,获得积极的情感体验。整个学习和探索活动,体现出开放性思维和多元思维并存的思维方式,教学生初步学会自主梳理知识,探索知识的方法,使他们亲历自主探究的过程。
首先是导入环节,我会多媒体课件播放有关三角形内角和情境视频:在图形的王国中,有一天,三角形家族里为“三角形内角和的大小”爆发了一场激烈的争吵。钝角三角形说“我的钝角大,我的内角和一定比你们的内角和大”。锐角三角形也不示弱“你虽然有一个钝角,可是其它两个角都很小,而我的三个角都不是很小,所以我的内角和比你大”。直角三角形说“别争了,我们的内角和是一样大的,因为三角形的内角和是180°”。
根据视频中三角形的对话,顺势引出题目——三角形的内角和。
设计意图:在这个环节中,多媒体课件展示有关三角形内角和的内容,激发学生深厚的学习兴趣和求知欲望,快速的进入学习高潮。
接下里是新课探究环节,在这一教学环节中,我首先让学生画几个不同类型的三角形。然后同桌互相量一量,算一算,三角形3个内角的和各是多少度?通过测量,学生可以发现三角形的内角和是180°。
接着我会提出一个问题是不是所有的三角形的内角和都是180°,如何进行验证你的结论呢?接下来我会让学生分小组讨论,针对学生出现的问题,我给予指导,讨论过后,请同学汇报,鼓励学生用自己的语言表达,无论学生回答的全面与否,都给予积极的评价,其他同学认真倾听后做出判断,进行补充,提高学生的注意力。
通过小组之间的讨论,引导学生采用剪拼的方法进行验证,先把一个三角形的三个角剪下来,再拼一拼,拼成一个平角。最后引导学生总结出三角形的内角和是180°。
此环节通过小组合作,体现以生为本的教学理念。既培养学生的推理能力,又锻炼学生的语言表达能力和沟通能力。
接下来进入巩固提高环节。本环节我依据教学目标和学生在学习中存在的问题,设计有针对性、层次分明的练习题组。让学生在解决这些问题的过程中,进一步理解、巩固新知,训练思维的灵活性、敏捷性、创造性,使学生的创新精神和实践能力得到进一步提高。
练习题组设计如下:
第二题把这两个完全一样的直角三角形拼组在一起,得到的新三角形的内角和是多少度?
设计意图:通过各种形式的练习,进一步提高学生学习兴趣,使学生的认知结构更加完善。同时强化本课的教学重点,突破教学难点。
在小结环节,我会引导学生同桌之间以“你问我答”的形式回顾本节课所学的主要内容,这节课你都学习了哪些内容?三角形内角和定理的推导过程体现了哪种数学思想方法?
这样设计的目的是让学生在回顾课堂经历的基础上,以相互交流、相互启发的方式总结自己的收获,教师通过概括性引导提升学生对三角形的内角和定理的认识
在作业环节,我会让学生利用本节课所学的知识,思考一下四边形的内角和是多少度?
这样设计的意图是学生在学习本节课内容的基础上,进一步对本节课的一个延伸,拓展学生的思维。
为了让学生对本节课的学习形成清晰的思路,同时还有利于学生系统性地记忆新知。我的板书设计如下。
三角形的内角和课件 篇13
教学内容:
人教版四年级下册第85面——87面。
教学目标:
1、让学生亲自动手,通过量、剪、拼等活动发现三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。
2、让学生在动手获取知识的过程中,渗透“转化”数学思想,掌握简单的数学推理方法,培养学生的创新意识、探索精神和实践能力。
3、让学生感受到数学的价值,体会成功的喜悦,激发学生主动学习数学的兴趣。
教学重点:
让学生经历“三角形内角和是180°”这一知识的发现过程。
教学准备:
教具:多媒体课件、三角板一个、两个完全一样的直角三角形。
学具:锐角三角形、直角三角形、钝角三角形各一个。
师:同学们的歌声真嘹亮,老师站在这里和大家一起学习感到很高兴,
今天老师还给大家带来了一个老朋友,请看,是什么?
师:前面我们已经认识了三角形,谁能给大家介绍一下?
学生讲学过的三角形知识。
师:看来大家对三角形已经非常熟悉了,老师还为大家带来了两个特殊的三角形,请看,它们是什么三角形?(点击FLASH出示直角三角形实物图)
师:(师指第一个三角形)谁知道这个直角三角形每个角的度数吗?
师:答的真准确,(FLASH:生说完后师边说边点出度数)30度、60度、90度都在这个三角形的内部,我们把这样的角叫做三角形的内角。
角的和叫做三角形的内角和。(板书课题)下面请大家认真观察这两个算式,从结果上看,你发现了什么?
师:观察的真仔细!(点击课件,出示多种多样的三角形后提问)同学们,咱们都知道,这两个三角形是特殊三角形,在我们的生活中还有许许多多不是这个样子的三角形,请看大屏幕,这些任意三角形,它们的内角和是不是都是180度呢?
师:看来,大家是通过这两个三角形猜想的,是吗?想不想验证一下你们的猜想,(生:想)好,咱们一起走进三角形王国,一起去研究它们内角和的秘密吧!(师在课题“内角和”下面划上横线,打上问号)
师:看来,大家的意见不一致,想不想验证一下你们的猜想,(生:想)好,咱们一起走进三角形王国,一起去研究它们内角和的秘密吧!(师在课题“内角和”下面划上横线,打上问号)
师:老师看你们有答案了,哪位同学愿意说一说你的奇思妙想?
生:然后把它们三个内角的度数相加起来,就知道了三角形的内角和是多少?
生:我是把三角形的三个角剪下来,拼在一起(师鼓励:你的想法很有创意,等一会儿用你的行动来验证你的猜想吧!)
(如生一时想不到,师可引导:他是把三个内角的度数相加在一起,我们能不能想办法把三个内角放在一起进行观察,看看能不能发现些什么呢?)
师:好啦,老师相信咱们班的同学个个都是小数学家,一定能找出更多的方法的,请你们在研究之前,也像老师一样,在三个内角上编上序号,角一、角二、角三,现在就请同学们对锐角三角形、直角三角形和钝角三角形等各种类型的三角形进行研究,看看它们的内角和各有什么特点。咱们比一比,看一看,哪个小组的方法多,方法好!
师:老师看各小组已经研究好了,哪位同学愿意上来交流一下?
师:请你告诉大家,你是怎么研究的,最后发现了什么结果?
师:刚才有的同学测量的结果是180度,有的同学测量的结果是179度,有的同学测量的结果是182度,各不相同,但是这些结果都比较接近于多少?
师:那到底三角形的内角和是不是180度呢?还有哪位同学有其它的方法进行验证吗?
生:我是先把三角形的三个角剪掉以后粘在一起,然后在量出它们三个角组成的度数。
师:他演示的真好,你们听明白了吗?李老师把他的过程给大家在大屏幕上演示一下。
(师边讲解边点击FLASH:把三角形按照三个内角撕成三块,先把角一放在右边,再把角二放在左边,最后把角三调个头,插在角一角二的中间,这样它们三个内角就形成了一个大角,角一的这条边,角二这条边看起来在一条直线上,那到底是不是在一条直线上呢,我们一起用直尺来量一下,师演示后问学生:是不是在一条直线上,那这个大角是个什么角呢?通过刚才拼的过程,你有什么发现?)
师:好极了,刚才这个小组的同学用拼的方法得到XX三角形的内角和是180度,你们还有别的方法吗?
师:你们听明白了吗?李老师把他的过程给大家在大屏幕上演示一下。
(师边讲解边点击FLASH:先找到两条边的中点,把它连起来,把角一沿着中间的这条线向对边对折,再把角二向里对折,使它的顶点与角一对齐,最后把角三也用同样的方法对折,这样它们三个内角就形成了一个大角,这个大角是个什么角呢?)
师:除了用了量、拼、折的方法来研究以外,刚才在操作的过程中老师还发现了一个同学用了一种方法来进行研究,大家想知道吗?
生:我把两个相同的直角三角形拼成了一个长方形,因为长方形里面有四个直角,所以它的内角和是360度,那么一个三角形的内角和就是180度。
师:刚才我们用量、拼、折、推理的方法都得到了三角形的内角和是180度,同学们,现在我们回想一下,刚才测量的不同结果是一个准确数还是一个近似数?为什么会出现这种情况呢?
师:对,这就是测量的误差,如果测量仪器再精密一些,我们的方法再准确一些,那么任意一个三角形的内角和也将是180度。
师:同学们,我们刚才用不同的方法,不同的三角形研究了三角形的内角和,得到了一个相同的发现,这个发现就是?
师:请看老师手上的这两个三角形,左边这个内角和是多少度?(生:180度)右边呢(生:也是180度)
师:现在老师把它们拼在一起,这个大三角形的内角和又是多少度呢?
(生答后师引导归纳得出:三角形的内角和与形状大小无关,组成的大三角形的内角和依然是180度。)
师:刚才我们在讨论学习三角形知识的时候,三角形中的两个好朋友却争执了起来,想知道怎么回事吗?让我们一起去看看吧!(出示课件,课件内容:一个大一些的直角三角形说:“我的个头比你大,我的内角和一定比你大”。另一个稍小的锐角三角形说:“是这样吗”?)
师:到底谁说的对呢?今天我们就用我们今天学到的知识来为它们解决解决吧!
师:真不错,你们当了一回小法官,帮助三角形兄弟解决了问题,它俩很感谢你们,三角形王国中还有很多生活中的问题,小博士们,你们愿意解答吗?
(出示基础练习)在一个三角形中角一是140度,角三是25度,求角二的度数。
出示自行车、等边三角形的路标牌、告诉顶角求底角的房顶、直角三角形的电线杆架进行练习。
(出示)小红的爸爸给小红买了一个等腰三角形的风筝,它的一个底角是70度,它的顶角是多少度?
师:看来啊,三角形的知识在咱们生活中还有着这么广泛的运用呢!昨天,我们班发生了一件事情,小明不小心将镜框上的一块三角形玻璃摔破了,(课件呈现情境)他想重新买一块玻璃安上,小明非常聪明,只带了其中的一块到玻璃店去,就配到了和原来一模一样的玻璃了。你知道他带的是哪一块吗?
(预设:师:根据三角形的内角和是180度,你能求出下面四边形、五边形、六边形的内角和吗?
师:太棒了,这位同学把这个四边形分割成了二个三角形求出了它的内角和,你能像他一样棒求出五边形和六边形的内角和吗?
师:同学们,今天我们一起学习了三角形的内角和,你有哪些收获呢?
师:嗯,真不错,你们知道吗?三角形的内角和等于180度是法国著名的数学家帕斯卡在1635年他12岁时独自发现的,今天凭着同学们的聪明智慧也研究出了三角形的内角和是180度,老师为你们感到骄傲,老师相信在你们的勤奋学习和刻苦钻研下,你们就是下一个“帕斯卡”!
三角形的内角和课件 篇14
三角形的内角和
各位评委老师,大家好,我是XX号考生,我今天说课的题目是《三角形的内角和》。下面我将从教材分析,学情分析,教法,学法,教学过程,及板书设计六个方面展开我的说课。
一》说教材。一切教学设计都基于教材,首先我来说一下教材分析,本节课是人教版八年级上册第11章第二节的内容,本节课研究三角形的内角和定理,它是小学学习的三角形有关知识的拓展,并为以后学习三角形的其他知识奠定了基础,因此本节课的学习是十分重要的。由以上分析,结合新课标的要求,我确定了以下三维教学目标:1.知识与技能目标:掌握三角形内角和定理的证明及简单应用。2.过程与方法目标:通过对三角形内角和定理的探索证明,培养学生的动手操作能力和独立思考的能力。3.情感态度与价值观目标:经历三角形内角和定理的探索过程,增强学习数学的兴趣,初步认识数学与人类的联系,体验数学活动充满着探索与研究。
根据以上对教学目标的分析,我将本节课的教学重点确定为:证明三角形内角和定理。教学难点:三角形内角和定理的应用。
二》说学情:作为一名老师,不仅要对教材进行分析,还要对学生的情况有清晰明了的掌握,这样才能做到因材施教,有的放矢。接下来,我将对学情进行分析:初中学生的思维已由形象思维向抽象思维发展,学生的观察力,记忆力,想象力也有一定的发展,但这一时期的学生活泼好动,记忆力容易分散,并且对知识的概括和应用也有一定的欠缺,这都是我在教学中应考虑的问题。
三》说教法:基于以上对教材和学情的分析,结合本节课的特点,我将采用以下教学方法:在教法上,采用引导发现法和练习法,通过教师的引导,启发调动学生的积极性,让学生在课堂上多活动,多观察,主动参与到整个教学活动中来。在学法上,学生们合作交流,自主学习,这种学习方式,有助于发展学生独立分析和探究的意识,培养学生养成良好的学习习惯。
四》说教学过程:关于本节课的教学过程,我从以下几方面入手:1.情境导入,激发兴趣。
我会问学生:同学们,你们听过内角三兄弟之争的故事吗?有的回答有,有的回答没有,我会说:“那今天我来给大家讲一讲吧。在一个直角三角形的家里住着内角三兄弟,平时他们三兄弟非常团结,可是有一天,老二突然不高兴,发起脾气来,他指着老大说:你凭什么度数最大,我也要和你一样大!“不行啊!老大说,“这是不可能的,否则我们就围不成一个家了。”“为什么呢?”老二很纳闷,同学们,你们知道其中的道理吗?设置悬疑,自然导入三角形内角和的学习,通过这样的设计,可以在一开始就吸引学生的注意力,激发学生的探求欲望。
2.合作交流,探索新知
在这一环节,首先由学生自己在纸上画一个三角形(板书画三角形),并将内角剪下,然后我引导学生 :试着拼一拼,看看会有发展思维的灵活性,创造性。然后,我会设问:从刚才的拼图过程中是不是剪下的内角可以拼成一个平角啊?那这说明什么呢?由学生举手回答:三角形的内角和为180度。为调动学生的积极性,我会对学生的回答给予肯定,然后我会想学生说明这种操作存有误差,需要我们给予证明,接下来由学生分组讨论证明方法,并交流方法,这样有助于丰富学生的思维,增强学生的合作意识,然后我会引导学生分析:首先过点A做边BC的平行线进而出现内错角角1=角B,角2=角C,然后请同学得出角1+角2+角CBA=180度,所以角A+B+C=180度,这样可以帮助学生更好的理解三角形内角和定理,培养浓厚的学习兴趣。接下来,仍借助多媒体出示例题,通过例题的分析,让学生体会分析问题的基本方法,进一步加深对定理的认识。
3.巩固练习,强化新知。对新知识的学习需要一定的练习来巩固,为此我借助多媒体设置了一些有层次的练习,通过这些练习,加深了对知识的理解,培养了学生思维的广阔性。
4.归纳小结,畅所欲言。
为了了解学生对本节课知识的掌握程度,我会请学生总结“本节课你的收获是什么呢?”并请学生提出存有疑问的地方,大家在解决问题的过程中继续巩固三角形内角和定理。
5.布置作业。
在布置作业时我注重了分层练习,设置了必做题和选做题,必做题为课本76页第3,5题,通过这些题目,继续巩固三角形内角和定理,选做题:继续生活中有关三角形的实例或趣味故事?这样既开阔了学生的视野,有更好的将生活与数学相结合。
6.说板书》
最后说一下我的板书设计,为帮助学生清晰明了的掌握本节知识,掌握重点,突破难点,我的板书设计如下:(看黑板)利用图形,符号表示更直观,形象,便于记忆。
我的说课到此结束,谢谢大家!
三角形的内角和课件(模板十二篇)
我们常说,机会是留给有准备的人。在幼儿教育工作中,我们都有会准备一写需要用到资料。资料意义广泛,可以指一些参考素材。有了资料的帮助会让我们在工作中更加如鱼得水!只不过,你是否知道有哪些幼师资料种类呢?小编经过整理,为你编辑了三角形的内角和课件(模板十二篇),欢迎你收藏本站,并关注网站更新!
三角形的内角和课件 篇1
教学目标:
1、通过“算一算,拼一拼,折一折”等操作活动探索发现和验证“三角形的内角和是180度”的规律。
2、在操作活动中,培养学生的合作能力、动手实践能力,发展学生的空间观念。并运用新知识解决问题。
3、使学生有科学实验态度,激发学生主动学习数学的兴趣,体验数学学习成功的喜悦。
教学重点:
探究发现和验证“三角形的内角和180度”这一规律的过程,并归纳总结出规律。
教学难点:
对不同探究方法的指导和学生对规律的灵活应用。
教具学具准备:
课件、学生准备不同类型的三角形各一个,量角器。
教学过程:
一、创设情景,引出问题
1、课件出示三角形的争吵画面
锐角三角形:我的内角和度数最大。
直角三角形:不对,是我们直角三角形的内角和最大。
钝角三角形:你们别吵了,还是钝角三角形的内角和最大。
师:此时,你想对它们说点什么呢?
2、引出课题。
师:看来三角形里角一定藏有一些奥秘,这节课我们就来研究有关三角形角的知识“三角形内角和”。(板书课题)
二、探究新知
1、三角形的内角、内角和
(1)什么是三角形内角(课件)
三角形里面的三个角都是三角形的内角。为了方便研究,我们把每个三角形的3个内角分别标上∠1、∠2、∠3。
(2)三角形内角和(课件)
师:内角和指的是什么?
生:三角形的三个内角的度数的和,就是三角形的内角和。
2、看一看,算一算。
师:算一算两个三角尺的内角和是多少度?(课件)
学生计算
师:是不是所有的三角形的内角和都是180°呢?你能肯定吗?
(预设)师:大家意见不统一,我们得想个办法验证三角形的内角和是多少?可以用什么方法验证呢?
3、操作验证:小组合作。
选1个自己喜欢的三角形,选喜欢的方法进行验证。
(老师首先为学生提供充分的研究材料,如三种类型的三角形若干个(小组之间的三角形大小都不相同),剪刀,量角器,白纸,直尺等,以及充裕的时间,保证学生能真正地试验,操作和探索,通过量一量、折一折、拼一拼、画一画等方式去探究问题。)
4、学生汇报。
(1)教师:汇报的测量结果,有的是180°,有的不是180°,为什么会出现这种情况?
师:有没有别的方法验证。
(2)剪拼
a、学生上台演示。
B、请大家四人小组合作,用他的方法验证其它三角形。
C、展示学生作品。
D、师展示。
(3)折拼
师:有没有别的验证方法?
师:我在电脑里收索到拼和折的方法,请同学们看一看他是怎么拼,怎么折的(课件演示)。
(鼓励学生积极开动脑筋,从不同途径探究解决问题的方法,同时给予学生足够的时间和空间,不断让每个学生自己参与,而且注重让学生在经历观察、操作、分析、推理和想像活动过程中解决问题,发展空间观念和论证推理能力。)
师:此时,你想对争论的三个三角形说些什么呢?
5、小结。
三角形的内角和是180度。
三、解决相关问题
1、在能组成三角形的三个角后面画“√”(课件)
2、在一个三角形中,∠1=140°,∠3=25°,求∠2的度数。(课件)
3、一个等腰三角形的风筝,它的一个底角是70°,他的顶角是多少度?(课件)
四、练习巩固
1、看图,求三角形中未知角的度数。(课件)
2、求三角形各个角的度数。(课件)
五、总结。
师:这节课你有什么收获?
六、板书设计:
三角形的内角和是180°
三角形的内角和课件 篇2
探索三角形内角和的度数以及已知两个角度数求第三个角度数。
教学目标:
1、通过测量、撕拼、折叠等探索活动,使学生发现三角形内角和的度数是180?
2、已知三角形两个角的度数,会求第三个角的度数。
3、培养学生动手实践,动脑思考的习惯。
教学重点:
了解三角形三个内角的度数。
教学难点:
理解三角形三个内角大小的关系。
教具学具准备:
课件三角形若干量角器剪刀。
教材与学生
教材创设了一个有趣的问题情境,通过对大小两个三角形内角和的大小比较来激发学生探索的兴趣。教材为了得到三角形内角和是180的结论安排了两个活动,通过学生测量,折叠,撕拼来找到答案。
学生在已有的会用量角器来度量一个角的度数的基础上,会首先想到这种方法。但测量的误差会导致测量不同,因此,学生会想到采取其他更好的办法,通过亲手实践,得出结论。
教学过程:
一、呈现真实状态。
师:今天我们来研究三角形内角和度数。这里有两个三角形,一个是大三角形,一个是小三角形(图略),到底哪一个三角形的内角和比较大呢?
学生各抒己见。
二、提出问题:
师;刚才我们观察三角形哪个内角和大,同学们有两种不同的猜想,可以肯定,必定有错下面我们来测量验证。
(1)以小组为单位请同学们拿出量角器,量一量,算一算图中大小两个三角形内角和度数,并做好记录,记录每个内角的度数。
(2)组内交流。
(3)全班交流。由小组汇报测出结果(三角形内角和)
(4)师小结:我们通过测量发现,每个三角形的内角和测出结果接近180。
三。自主探索、研究问题、归纳总结:
师引导提问:三角形的内角和会不会就是180呢?
(一)组内探索:
(1)以小组为单位探索更好的办法。
(2)以小组为单位边展示边汇报探索的过程与发现的结果。
(有的小组想不出来,可以安排小组和小组之间进行交流,目的是让学生通过实践发现结果,在探索中发现问题,在讨论中解决问题,是学生学习到良好的学习方法)
(3)把你没有想到的方法动手做一次
(使学生更直观地理解三角形的内角和是180的证明过程)
(4)根据学生的反馈情况教师进行操作演示。
(二)教师演示
撕拼法1。教师取出三角形教具,把三个角撕下来,拼在一起,如图所示
2.师:这三个内角放在一起你有什么发现?
生:发现三个内角拼成一个平角。
师:平角是多少度呢?说明什么?
生:180?说明三个内角和刚好等于180。
师:这种方法是不是适用各种三角形呢?
3。学生每人动手实践,看看是不是不同的三角形是否都有这个特点,也能拼出一个平角呢?
进行实验后,结果发现同样存在这一规律,三角形三个内角和是180。
折叠法:师:刚才我们通过测量发现三角形内角和接近180,那是因为测量的不那么精确,所以说“接近”,又通过撕拼方法发现三角形的三个内角刚好拼成一个平角,进一步说明三个内角和是180,现在再来演示另一种实验,再次证明我们的发现。
你们也来试一试好吗?
在学生完成这一实践后肯定这一发现
三角形三个内角和等于180?
:充分发挥了学生的主观能动性,让学生大胆去思考发言,把课堂交给学生,最后老师在演示达成共识,这样学生学到知识印象颇深,也理解最为透彻,提高课堂教学的效率
四。巩固练习,知识升华。
1.完成课本第28页的“试一试”第三题。
2.想一想:钝角三角形最多有几个钝角?为什么?
锐角三角形中的两个内角和能小于90吗?
3.有一个四边形,你能不用量角器而算出它的四个内角和吗?
试一试,看谁算得快。
师:谁来说说自己的计算过程?
角的和叫做三角形的内角和。(板书课题)下面请大家认真观察这两个算式,从结果上看,你发现了什么?
生:它们的内角和都是 180 度。
师:观察的真仔细!(点击课件,出示多种多样的三角形后提问)同学们,咱们都知道,这两个三角形是特殊三角形,在我们的生活中还有许许多多不是这个样子的三角形,请看大屏幕,这些任意三角形,它们的内角和是不是都是 180 度呢?
[回答可能有二]:
(一种全部说是:)
师:请问,你们是怎么想的,为什么这么认为?
生: ……
师:看来,大家是通过这两个三角形猜想的,是吗?想不想验证一下你们的猜想,(生:想)好,咱们一起走进三角形王国,一起去研究它们内角和的秘密吧!(师在课题“内角和”下面划上横线,打上问号)
(一种有一部分同学说是,有一部分同学说不是:)
师:看来,大家的意见不一致, 想不想验证一下你们的猜想,(生:想)好,咱们一起走进三角形王国,一起去研究它们内角和的秘密吧!(师在课题“内角和”下面划上横线,打上问号)
(二)动手操作,探究新知
师:老师看你们有答案了,哪位同学愿意说一说你的奇思妙想?
生:我准备用量的方法。
师:然后呢?
生:然后把它们三个内角的度数相加起来,就知道了三角形的内角和是多少?
师:说的真不错,还有没有其它的方法?
生:我是把三角形的三个角剪下来,拼在一起( 师鼓励: 你的想法很有创意, 等一会儿用你的行动来验证你的猜想吧!)
生:……
(如生一时想不到,师可引导:他是把三个内角的度数相加在一起,我们能不能想办法把三个内角放在一起进行观察,看看能不能发现些什么呢?)
师: 好啦, 老师相信咱们班的同学个个都是小数学家, 一定能找出更多的方法的, 请你们在研究之前,也像老师一样,在三个内角上编上序号,角一、角二、角三,现在就请同学们对锐角三角形、直角三角形和钝角三角形等各种类型的三角形进行研究,看看它们的内角和各有什么特点。咱们比一比,看一看,哪个小组的方法多,方法好!
开始吧!(学生研究,师巡回指导)预设时间:5 分钟
师:老师看各小组已经研究好了,哪位同学愿意上来交流一下?
师:请你告诉大家,你是怎么研究的,最后发现了什么结果?
( 预设: 如果第一类同学说的是量的方法)
师:你是用什么来研究的?
生:量角器。
师: 那请你说一下你度量的结果好吗?
( 生汇报度量结果)
师: 刚才有的同学测量的结果是180 度,有的同学测量的结果是179 度,有的同学测量的结果是182 度,各不相同,但是这些结果都比较接近于多少?
生:180 度。
师:那到底三角形的内角和是不是180 度呢?还有哪位同学有其它的方法进行验证吗?
生:我是先把三角形的三个角剪掉以后粘在一起,然后在量出它们三个角组成的度数。
师:他演示的真好,你们听明白了吗? 李 老师把他的过程给大家在大屏幕上演示一下。
(师边讲解边点击 FLASH :把三角形按照三个内角撕成三块,先把角一放在右边,再把角二放在左边,最后把角三调个头,插在角一角二的中间,这样它们三个内角就形成了一个大角,角一的这条边,角二这条边看起来在一条直线上,那到底是不是在一条直线上呢,我们一起用直尺来量一下,师演示后问学生:是不是在一条直线上,那这个大角是个什么角呢?通过刚才拼的过程,你有什么发现?)
师:好极了,刚才这个小组的同学用拼的方法得到XX 三角形的内角和是180 度,你们还有别的方法吗?
生:我们还用了折的方法(生介绍方法)
师: 你们听明白了吗? 李老师把他的过程给大家在大屏幕上演示一下。
(师边讲解边点击 FLASH :先找到两条边的中点,把它连起来,把角一沿着中间的这条线向对边对折,再把角二向里对折,使它的顶点与角一对齐,最后把角三也用同样的方法对折,这样它们三个内角就形成了一个大角,这个大角是个什么角呢?)
生:是个平角。180 度。
师:除了用了量、拼、折的方法来研究以外,刚才在操作的过程中老师还发现了一个同学用了一种方法来进行研究,大家想知道吗?
师:请这位同学来说给大家听听吧!
生:我把两个相同的直角三角形拼成了一个长方形,因为长方形里面有四个直角,所以它的内角和是360 度,那么一个三角形的内角和就是180 度。
师:刚才我们用量、拼、折、推理的方法都得到了三角形的内角和是 180 度,同学们,现在我们回想一下,刚才测量的不同结果是一个准确数还是一个近似数?为什么会出现这种情况呢?
生 1 :量的不准。
生 2 :有的量角器有误差。
师:对,这就是测量的误差,如果测量仪器再精密一些,我们的方法再准确一些,那么任意一个三角形的内角和也将是 180 度。
师:同学们,我们刚才用不同的方法,不同的三角形研究了三角形的内角和,得到了一个相同的发现,这个发现就是?
生:三角形的内角和是180 度。(师板书)
师:把你们伟大的发现读一读吧!
(三)拓展应用,深化认识
师:请看老师手上的这两个三角形,左边这个内角和是多少度?(生: 180 度)右边呢(生:也是 180 度)
师:现在老师把它们拼在一起,这个大三角形的内角和又是多少度呢?
(生答后师引导归纳得出:三角形的内角和与形状大小无关,组成的大三角形的内角和依然是 180 度。)
师:刚才我们在讨论学习三角形知识的时候,三角形中的两个好朋友却争执了起来,想知道怎么回事吗?让我们一起去看看吧!(出示课件,课件内容:一个大一些的直角三角形说:“我的个头比你大,我的内角和一定比你大”。另一个稍小的锐角三角形说:“是这样吗”?)
师:到底谁说的对呢?今天我们就用我们今天学到的知识来为它们解决解决吧!
师:真不错,你们当了一回小法官,帮助三角形兄弟解决了问题,它俩很感谢你们,三角形王国中还有很多生活中的问题,小博士们,你们愿意解答吗?
师:好,请看大屏幕!
(出示基础练习)在一个三角形中角一是 140 度,角三是 25 度,求角二的度数。
生答后,师提问:你是怎样想的?
生陈述后,师鼓励:说的真好!
出示自行车、等边三角形的路标牌、告诉顶角求底角的房顶、直角三角形的电线杆架进行练习。
(出示)小红的爸爸给小红买了一个等腰三角形的风筝,它的一个底角是 70 度,它的顶角是多少度?
师:看来啊,三角形的知识在咱们生活中还有着这么广泛的运用呢!昨天,我们班发生了一件事情,小明不小心将镜框上的一块三角形玻璃摔破了,(课件呈现情境)他想重新买一块玻璃安上,小明非常聪明,只带了其中的一块到玻璃店去,就配到了和原来一模一样的玻璃了。你知道他带的是哪一块吗?
(预设:师:根据三角形的内角和是180 度,你能求出下面四边形、五边形、六边形的内角和吗?
师:太棒了,这位同学把这个四边形分割成了二个三角形求出了它的内角和,你能像他一样棒求出五边形和六边形的内角和吗?
师: 同学们,今天我们一起学习了三角形的内角和,你有哪些收获呢?
师:嗯,真不错, 你们知道吗? 三角形的内角和等于 180 度是 法国著名的数学家帕斯卡 在 1635 年他 12 岁时独自发现的, 今天凭着同学们的聪明智慧也研究出了三角形的内角和是180 度,老师为你们感到骄傲,老师相信在你们的勤奋学习和刻苦钻研下,你们就是下一个“帕斯卡”!
师:好,下课!同学们再见!
三角形的内角和课件 篇3
【教学内容】
《人教版九年义务教育教科书数学》四年级下册《三角形的内角和》
【教学目标】
1.使学生知道三角形的内角和是180,并能运用三角形的内角和是180解决生活中常见的问题。
2.让学生经历量一量、折一折、拼一拼等动手操作的过程。通过观察、判断、交流和推理探索用多种方法证明三角形的内角和是180。
3.培养学生自主学习、互动交流、合作探究的能力和习惯,培养学习数学的兴趣,感受学习数学的乐趣。
【教学重点】
使学生知道三角形的内角和是180,并能运用它解决生活中常见的问题。
【教学难点】
通过多种方法验证三角形的内角和是180。
【教学准备】
课件。四组教学用三角板。铅笔。大帆布兜子。固体胶。剪刀。筷子若干。
【教学过程】
一、激趣导入,提炼学习方法
1.课程开始,教师耳朵上别着一根铅笔,肩背大帆布兜子,里面装着一个量角器和几把缺了直角的三角板,手拿一张不规则的白纸,以一位老木匠的身份出现在学生面前。激发学生的好奇心。然后自述:“你们好,我是一个有三十多年工作经验的老木匠了。我收了三个徒弟,他们已经从师学艺三年了,今天我想让他们下山挣钱,可又不放心,想出几道题考验考验他们,又不知我的题合不合适,大家想不想先当一会我的徒弟试试这几道题呢?”
2.继续以老木匠的身份说:前几天我造了一架柁,徒弟们能不能用我手中的工具验证一下横木和立柱是不是成直角的。
3.选择工具,总结方法。
让选择不同工具的同学用自己的方法验证。教师随机板书:量一量、拼一拼、折一折。
师:你们真是爱动脑筋的好徒弟,那么请听好师傅的第二个问题。
4.导入新课。
图中有很多三角形,不论什么样的三角形都有三个角,这三个角就叫做三角形的内角,徒弟们能不能用学过的方法或者你喜欢的方法求一求三角形三个内角的和是多少?(板书课题:三角形的内角和)
二、动手操作,探索交流新知
1.分组活动,探索新知
根据学生的选择把学生分成三组,分别采用量一量、折一折和拼一拼的方法探索新知。
量一量组同学发给以下几种学具:
折一折组同学发给上面的三角形一组。
拼一拼组同学发给上面的三角形一组、剪刀一把还有下面这样的白纸一张。
在学生探索的过程中教师要走近学生,与他们共同交流探讨,在学生有困难的时候要适当给予引导。
2.多方互动,交流新知
师:请我的大徒弟(量一量组)的同学先来汇报你们的研究成果。
(1)首先要求学生说一说你们小组是怎样进行探究的。
(2)说出你们组的探究结果怎样。(在此过程中教师不能急于纠正学生不正确的结论,因为这是知识的形成过程。)
(3)请学生说说通过探究活动你们组得出的结论是什么。
师:大徒弟就是大徒弟,汇报的真不错。二徒弟(折一折组)你们有没有更好的办法呢?
引导这一组从探究的过程和结论与同学、老师交流。
师:别看小徒弟(拼一拼组)这么小,方法可能是最好的。快来把你们的方法给大家汇报汇报。
同样引导这一组从探究的过程和结论与同学、老师交流。
3.思想碰撞,夯实新知
师:三个徒弟你们能说说谁的方法最好吗?
学生都会说自己的方法最好,再让其他同学发表自己的意见,此时生生之间,师生之间交流。(教师要引导学生说出量一量的方法可能由于量的不够准确,所以结果可能比180大一些,或小一些。而其他两种方法没有改变角的大小,所以他们的是正确的。)
师:不论你量的怎样认真都会有不准确的地方,这就叫误差。而其他两组同学的方法更准确。三角形的内角和就是180。(板书:三角形的内角和是180)
四、走进生活,提升运用能力
1.出示课前那架柁标出它的顶角是120,求它的一个底角是多少度?
2.给你三根木条,能做出一个有两个直角的三角形吗?
五、总结
师:徒弟们你们经过三年的苦学,终于学有所成了。今天,能说说你们在我这里都学到了什么手艺吗?
六、拓展新知,课外延伸
师:俗话说“活到老,学到老。”你们下山后还要继续探索,所以我要把我毕生都没有完成的任务交给你们去研究。
大屏幕出示:
能用你今天学过的知识和方法探索一下四边形的内角和是多少度吗?
三角形的内角和课件 篇4
教学内容:
教材第67页例6、“做一做”及教材第69页练习十六第1~3题。
教学目标:
1.通过动手操作,使学生理解并掌握三角形的内角和是180°的结论。
2.能运用三角形的内角和是180°这一结论,求三角形中未知角的度数。
3.培养学生动手动脑及分析推理能力。
重点难点:
掌握三角形的内角和是180°。
教学准备:
三角形卡片、量角器、直尺。
导学过程
一、复习
1、什么是平角?平角是多少度?
2、计算角的度数。
3、回忆三角形的相关知识。(出示直角三角形、锐角三角形、钝角三角形)
二、新知
(设计意图:让学生经历质疑验证结论这样的思维过程,真正整体感知三角形内角和的知识,真正验证了“实践出真知” 的道理,这样的教学,将三角形内角和置于平面图形内角和的大背景中,拓展了三角形内角和的数学知识背景,渗透数学知识之间的联系,有效地避免了新知识的“横空出现”。同时,培养学生的综合素养)
1、读学卡的学习目标、任务目标,做到心里有数。
2、揭题:课件演示什么是三角形的内角和。
3、猜想:三角形的内角和是多少度。
4、验证:
(1)初证:用一副三角板说明直角三角形的内角和是180°。
(2)质疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。
(3)再证:请按学卡提示,拿出学具,选择自己喜欢的方式验证三角形的内角和 是180°(师巡视)
(4)汇报结论(清楚明白的给小组加优秀10分)
5、结论:修改板书,把“?”去掉,写“是”。
6、追问:把两块三角板拼在一起,拼成的大三角形的内角和是多少?说明三角形无论大小它的内角和都是180°(课件演示)
7、看微课感知“伟大的发现”(设计意图:让学生感受自己所做的和帕斯卡发现三角形内角和是180°的过程是一样的,从而培养孩子的自信心和创造力。)
三、知识运用(课件出示练习题,生解答)
1、填空
(1)一个三角形,它的两个内角度数之和是110 ,第三个内角是( ).
(2)一个直角三角形的一个锐角是50,则另一个锐角是( )。
(3)等边三角形的3个内角都是( )。
(4)一个等腰三角形,它的一个底角是50,那么它的顶角是( )。
(5)一个等腰三角形的顶角是60,这个三角形也是( )三角形。
2、判断
(1)一个三角形中最多有两个直角。 ( )
(2)锐角三角形任意两个内角的和大于90。 ( )
(3)有一个角是60的等腰三角形不一定是等边三角形。 ( )
(4)三角形任意两个内角的和都大于第三个内角。 ( )
(5)直角三角形中的两个锐角的和等于90。 ( )
四、拓展探究
根据所学的知识,你能想办法求出四边形、五边形的内角和吗?
1、小组讨论。2、汇报结果。3、课件提示帮助理解。
五、自我评价根据学卡要求给自己评出“优”“良好”“合格”。
六、谈谈自己本节课的收获。
教学反思
今天我讲了《三角形内角和》这部分内容,学生其实通过不同途径已经知道三角形内角和是180°,是不是说这节课的重难点就已经突破了,只要学生能应用知识解决问题就算是达到这节课的教学目标了呢?我想应该好好思考教材背后要传递的东西。
任何规律的发现都要经过一个猜测、验证的过程,不经历这个探究的过程,学生对于这一内容的认识就不深刻,聪明的孩子还会怀疑三角形内角和是180°吗?。因此这个结论必须由实践操作得出结论。所以最终我把本课定为一个实践探究课。
如何开篇点题,是我这次要解决的第一个问题。怎样才能让学生由已知顺利转向对未知的探求,怎样直接转向研究三个角的“和”的问题呢?因此我只设计了三个简单的问题然学生快速进入主题。
如何验证内角和是180°,是我一直比较纠结的环节。由于小学生的知识背景有限,无法利用证明给予严格的验证。只能通过动手操作、空间想象来让孩子体会,这些都有“实验”的特点,那么就都会有误差,其实都无法严格的证明。但是这节课我们除了要尊重知识的严谨还应该尊重孩子的认知。如果通过剪拼、折叠、想象后,还有的孩子认为三角形内角和是180°值得怀疑的话,这无非也是件好事,说明孩子体会到了这些方法的不严谨,同时对知识有一种尊重,对自己的操作结果充满自信,否则拼个差不多也可以简单的认同了内角和是180°。
本节课的练习的设置也是努力做到有梯度、有趣味、有拓展。从开始的抢答内角和体会三角形内角和跟大小无关、跟形状无关,到已知两个角的度数求第三个角,这些都是巩固。之后的,求拼接两个完全一样的直角三角形后,得到的图形的内角和是多少度,求被剪开的三角形,形成的新图形的内角和是多少度,这些都是对三角形内角和的一次拓展。让学生的认知发生冲突,提出挑战。
给学生一个平台,她会给你一片精彩。通过动手操作来验证内角和是否是180°,学生最容易出现的就是把3个角剪下来拼一拼,个别人可能会想到折的方法。而这节课上有个小姑娘研究的是直角三角形,她的折法很巧妙,将两个锐角折过来,刚好拼成一个直角,这个直角和原来三角形已有的直角就重叠在了一起,两个直角就180°。虽然我知道这样的方法,但是通过试讲,孩子们没有这样的表现,我就没有奢求什么。但是今天的课堂太丰富多元了。这样的方法都出现了让我觉得特别值得肯定。为什么会这样呢?我想还是因为我给了他们足够的时间去思考。当有了空间,孩子才会施展他们的才华。这是我的一大收获。
前边验证时间过多,到练习时间就有些少,特别是求四边形和六边形内角和时,给的时间过短,学生没有充分思维。
总而言之,这次的公开课,给了我一次学习和锻炼的机会。在教案设计时,该怎么样把每一个环节落实到位,怎么样说好每一句话,预设好每一个环节,在教研中听取各位教师的点评,让我有了茅塞顿开的感觉。在此,我衷心感谢数学团队教师对我中肯的评价,感谢他们对我的直言不讳,无私奉献自己的想法,让我在教学中,能够在一个轻松和谐的教学氛围中与学生共同去探讨,去发现,去学习。
三角形的内角和课件 篇5
今天我说课的内容是人教版九年义务教育小学数学四年级下册第五单元第85页的《三角形的内角和》。
《三角形的内角和》是探索型的教材。是在学生学习了三角形、长方形等基本图形,以及角的度量、三角形的特征、分类的基础上进行教学的,学生对这一知识的理解和掌握又将为进一步学习几何知识打下坚实的基础。
仔细分析教材的知识结构,它是分成3个部分来呈现的。第一部分是让学生通过量一量、算一算,初步感知三角形的内角和是180°;第二部分是通过拼角的实验来探究并归纳三角形内角和的规律,第三部分是运用规律、解决问题。教材这样编排由发现问题,到验证问题,再到运用规律,充分体现了知识结构的有序性和强烈的数学建模思想,既符合四年级学生的认知规律,又突出了本课教学的重点。
根据小学数学教学大纲对四年级学生的具体要求,结合教材特点及学生年龄特征,将本节课的目标制定为以下几点:
认知技能:学生动手操作,在猜想后通过量、剪、拼、折的方法,探索并发现“三角形内角和等于180度”的规律。
数学思考:在操作实验中,让学生感受图形的转化过程及数学建模思想,初步培养学生的空间思维观念。
解决问题:在运用知识解决问题的过程中,感受所学知识的重要性,初步培养学生的应用意识。
情感态度:通过各种实验活动,激发学习兴趣,体验学习成功感,并在教学中,感受生活与数学的密切联系。
根据本节课的教学目标及对编者意图的理解。将运用各种实验方法探究三角形内角和为180度的过程并掌握规律,运用规律解决实际问题确定为本节课的教学重点。而同时学生难以理解不易掌握的探究规律的全过程则是本节课的教学难点。
每个4人小组准备4个不同的三角形(锐角三角形、钝角三角形、直角三角形的纸片至少各一个,且要求大小不一)、实验报告单一份;
学生每人准备量角器、小剪刀、白纸各一张。
我要说的第二块是教法学法。
新课程标准的基本理念就是要让学生“人人学有价值的数学”。强调“教学要从学生已有的经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程”。
因此,我运用“猜一猜--量一量--拼-拼--折一折--看一看……”的教学法, 让学生大胆猜想,自主探索三角形的内角和是多少度?再通过测量、拼折、验证等方式让学生确定三角形内角的度数和。这样,既培养了学生的观察能力和归纳概括能力,又体现了学生动手实践、合作交流,自主探索的学习方式。
在整个教学设计上力求充分体现“以学生发展为本”教育理念,将教学思路拟定为“谈话激趣设疑导入-- 猜想--验证{自主探究}--巩固新知--全面提升”,努力构建探索型的课堂教学模式。
当然,一堂课的效果如何,还要看课堂结构是否合理。接下来,我就来说说我的教学程序设计。
根据我对教材的把握和对学情的了解,设计了4个环节展开教学。
师:我们在猜三角形的时候,看到一个直角,就能断定它一定是直角三角形;看到一个钝角,就能断定他一定是钝角三角形;但只看到一个锐角,就判断不出来是哪种三角形。看来在一个三角形中,只能有一个直角或一个钝角,为什么画不出有两个直角或两个钝角的三角形呢?
三角形的这三个角究竟存在什么奥秘呢,我们一起来研究研究。
(创设的不是生活中的情境,而是数学化的情境。有的孩子认为一个三角形中可能会有两个钝角,还有的提出等边三角形中可能会有直角,这两个问题显现出学生在认知上的矛盾,学生用已经学的三角形的特征只能解释“不能是这样”,而不能解释“为什么不能是这样”。这样引入问题恰好可以利用学生的这种认知冲突,激发学生的学习兴趣,让学生在疑问与猜想中寻找验证的方法。)
师:我们现在研究三角形的三个角,都是它的内角。
师:今天我们就来一起探究《三角形的内角和》。猜一猜其它三角形的内角和是多少度呢?同桌互相说说自己的看法。
师:研究三角形的内角和,是不是应该包括所有的三角形?只研究黑板上这一个行不行?那就随便画,挨个研究吧。(学生反对)
请你想个办法吧!
(通过引导学生分析,“研究哪几类三角形,就能代表所有的三角形”这个问题,来渗透研究问题要全面,也就是完全归纳法的数学思想)
(一)测量法:
(1)学生自然想到要量出三角形每个角的度数就能够求出三角形的内角和,从而证明三角形的内角和与三角形的大小和形状没有关系都接近180度。
(2)教师要组织学生进行小组合作每人用量角器量出一种三角形(锐角三角形、钝角三角形、直角三角形)的三个内角并计算出它们的总和是多少?
实验目的探究三角形内角和是多少度。
实验材料尺子剪刀量角器 锐角三角形纸片 直角三角形纸片 钝角三角形纸片
三角形的内角和课件 篇6
教学内容:人教版小学数学第八册第85页例5及”做一做”
教学目标:
1、让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。
2、让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想
3、在探索中体验发现的乐趣,增强学好数学的信心、
教学重点
让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。
教学难点 :
验证所有三角形的内角之和都是180°
教具准备:多媒体课件。
学具准备:量角器、正方形、剪刀、各类三角形(包括直角三角形、锐角三角形、钝角三角形)
教学过程:
一、 设疑引思
1、 分小组分别量出直角三角形、锐角三角形、钝角三角形的三个内角的度数、
2、 每小组请一位同学说出自已量的三角形中两个角的度数老师迅速”猜出”第三个角的度数、
3、 设问:老师为什么能很快”猜” 出第三个角的度数呢?
三角形还有许多奥妙,等待我们去探索、
二、 探索交流,获取新知
1、 量一量:每个学生将自已刚才量出的三角形的内角和的度数相加,初步得出”三角形的内角和是180°”的结论、
2、 折一折:将正方形纸沿对角线对折,使之变成两个完全重合的三角形,发现:一个三角形的内角和就是正方形4个角内角和的一半,也就是360的一半,即180度, 初步验证”三角形的内角和是180°”的结论、
3、 拼一拼:学生先动手剪拼所准备的三角形,进一步验证得出”三角形的内角和是180°”的结论、
4、 师利用课件演示将一个三角形的三个角拼成一个平角的过程、
5、 验证:FLASH演示三种三角形割补过程
发现1: 通过把直角三角形割补后,内角∠2,∠3 组成了一个()角,等于()度,∠1等于90度。所以直角三角形的内角和等于( )度。
发现2:通过把钝角、锐角三角形割补后,三角组成了一个( )角,而( )角等于( )度。所以锐角三角形和钝角三角形的内角和都是180度。
6、 小结:刚才能过量一量折一折拼一拼,你发现了什么?
生说,师板书:三角形的内角和———180°
三、 应用练习,拓展提高
1、书例5后”做一做”
思考:为什么不能画出一个有两个直角的三角形?(两个钝角、一个直角和一个钝角的三角形?)
2、下面哪三个角会在同一个三角形中。
(1)30、60、45、90
(2)52、46、54、80
(3)61、38、44、98
3、走向生活:
(1)那天,老师去买了一块三角形的玻璃,我拿着玻璃,刚到校门,一不小心,碰在门上了,摔成这几块(撕),哎,只有再去买一块,但尺寸我记不得了,该怎么办,你们能不能帮老师想想办法?我凭哪块碎片能再去配一块和原来一样的三角形玻璃吗?
(结合学生回答进行演示:延长两条边,交于一点,形成原来的三角形。所以:两个角确定了,三角形玻璃形状和大小也就确定了。)
四 作业:作业本
五 全课总结
总结:今天这节课我们研究了三角形的内角和,你们学到了哪些知识,有什么收获?
板书设计:三角形的内角和
三角形的内角和———180°
三角形的内角和课件 篇7
教学内容:
人教版四年级下册第85面——87面。
教学目标:
1、让学生亲自动手,通过量、剪、拼等活动发现三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。
2、让学生在动手获取知识的过程中,渗透“转化”数学思想,掌握简单的数学推理方法,培养学生的创新意识、探索精神和实践能力。
3、让学生感受到数学的价值,体会成功的喜悦,激发学生主动学习数学的兴趣。
教学重点:
让学生经历“三角形内角和是180°”这一知识的发现过程。
教学准备:
教具:多媒体课件、三角板一个、两个完全一样的直角三角形。
学具:锐角三角形、直角三角形、钝角三角形各一个。
教学过程:
(一)创设情境,提出问题。
师:同学们的歌声真嘹亮,老师站在这里和大家一起学习感到很高兴,
今天老师还给大家带来了一个老朋友,请看,是什么?
生:三角形!
师:前面我们已经认识了三角形,谁能给大家介绍一下?
学生讲学过的三角形知识。
(学生叙述到部分主要内容即可)
师:看来大家对三角形已经非常熟悉了,老师还为大家带来了两个特殊的三角形,请看,它们是什么三角形?(点击FLASH出示直角三角形实物图)
师:(师指第一个三角形)谁知道这个直角三角形每个角的度数吗?
师:答的真准确,(FLASH:生说完后师边说边点出度数)30度、60度、90度都在这个三角形的内部,我们把这样的角叫做三角形的内角。
师:有谁知道这个三角形三个内角的度数?
(FLASH:生说完后师点击出第二个三角形,边说边点出度数)
[U1]试一试,看谁算得快。
师:谁来说说自己的计算过程?
[U2]角的和叫做三角形的内角和。(板书课题)下面请大家认真观察这两个算式,从结果上看,你发现了什么?
生:它们的内角和都是180度。
师:观察的真仔细!(点击课件,出示多种多样的三角形后提问)同学们,咱们都知道,这两个三角形是特殊三角形,在我们的生活中还有许许多多不是这个样子的三角形,请看大屏幕,这些任意三角形,它们的内角和是不是都是180度呢?
[回答可能有二]:
(一种全部说是:)
师:请问,你们是怎么想的,为什么这么认为?
生:……
师:看来,大家是通过这两个三角形猜想的,是吗?想不想验证一下你们的猜想,(生:想)好,咱们一起走进三角形王国,一起去研究它们内角和的秘密吧!(师在课题“内角和”下面划上横线,打上问号)
(一种有一部分同学说是,有一部分同学说不是:)
师:看来,大家的意见不一致,想不想验证一下你们的猜想,(生:想)好,咱们一起走进三角形王国,一起去研究它们内角和的秘密吧!(师在课题“内角和”下面划上横线,打上问号)
(二)动手操作,探究新知
[U3]
师:老师看你们有答案了,哪位同学愿意说一说你的奇思妙想?
生:我准备用量的方法。
师:然后呢?
生:然后把它们三个内角的度数相加起来,就知道了三角形的内角和是多少?
师:说的真不错,还有没有其它的方法?
生:我是把三角形的三个角剪下来,拼在一起(师鼓励:你的想法很有创意,等一会儿用你的行动来验证你的猜想吧!)
生:……
(如生一时想不到,师可引导:他是把三个内角的度数相加在一起,我们能不能想办法把三个内角放在一起进行观察,看看能不能发现些什么呢?)
师:好啦,老师相信咱们班的同学个个都是小数学家,一定能找出更多的方法的,请你们在研究之前,也像老师一样,在三个内角上编上序号,角一、角二、角三,现在就请同学们对锐角三角形、直角三角形和钝角三角形等各种类型的三角形进行研究,看看它们的内角和各有什么特点。咱们比一比,看一看,哪个小组的方法多,方法好!
[U4]开始吧!(学生研究,师巡回指导)预设时间:5分钟
师:老师看各小组已经研究好了,哪位同学愿意上来交流一下?
师:请你告诉大家,你是怎么研究的,最后发现了什么结果?
(预设:如果第一类同学说的是量的方法)
师:你是用什么来研究的?
生:量角器。
师:那请你说一下你度量的结果好吗?
(生汇报度量结果)
师:刚才有的同学测量的结果是180度,有的同学测量的结果是179度,有的同学测量的结果是182度,各不相同,但是这些结果都比较接近于多少?
生:180度。
师:那到底三角形的内角和是不是180度呢?还有哪位同学有其它的方法进行验证吗?
生:我是先把三角形的三个角剪掉以后粘在一起,然后在量出它们三个角组成的度数。
师:他演示的真好,你们听明白了吗?李老师把他的过程给大家在大屏幕上演示一下。
(师边讲解边点击FLASH:把三角形按照三个内角撕成三块,先把角一放在右边,再把角二放在左边,最后把角三调个头,插在角一角二的中间,这样它们三个内角就形成了一个大角,角一的这条边,角二这条边看起来在一条直线上,那到底是不是在一条直线上呢,我们一起用直尺来量一下,师演示后问学生:是不是在一条直线上,那这个大角是个什么角呢?通过刚才拼的过程,你有什么发现?)
师:好极了,刚才这个小组的同学用拼的方法得到XX三角形的内角和是180度,你们还有别的方法吗?
生:我们还用了折的方法(生介绍方法)
师:你们听明白了吗?李老师把他的过程给大家在大屏幕上演示一下。
(师边讲解边点击FLASH:先找到两条边的中点,把它连起来,把角一沿着中间的这条线向对边对折,再把角二向里对折,使它的顶点与角一对齐,最后把角三也用同样的方法对折,这样它们三个内角就形成了一个大角,这个大角是个什么角呢?)
生:是个平角。180度。
师:除了用了量、拼、折的方法来研究以外,刚才在操作的过程中老师还发现了一个同学用了一种方法来进行研究,大家想知道吗?
师:请这位同学来说给大家听听吧!
生:我把两个相同的直角三角形拼成了一个长方形,因为长方形里面有四个直角,所以它的内角和是360度,那么一个三角形的内角和就是180度。
师:刚才我们用量、拼、折、推理的方法都得到了三角形的内角和是180度,同学们,现在我们回想一下,刚才测量的不同结果是一个准确数还是一个近似数?为什么会出现这种情况呢?
生1:量的不准。
生2:有的量角器有误差。
师:对,这就是测量的误差,如果测量仪器再精密一些,我们的方法再准确一些,那么任意一个三角形的内角和也将是180度。
师:同学们,我们刚才用不同的方法,不同的三角形研究了三角形的内角和,得到了一个相同的发现,这个发现就是?
生:三角形的内角和是180度。(师板书)
师:把你们伟大的发现读一读吧!
(三)拓展应用,深化认识
师:请看老师手上的这两个三角形,左边这个内角和是多少度?(生:180度)右边呢(生:也是180度)
师:现在老师把它们拼在一起,这个大三角形的内角和又是多少度呢?
(生答后师引导归纳得出:三角形的内角和与形状大小无关,组成的大三角形的内角和依然是180度。)
师:刚才我们在讨论学习三角形知识的时候,三角形中的两个好朋友却争执了起来,想知道怎么回事吗?让我们一起去看看吧!(出示课件,课件内容:一个大一些的直角三角形说:“我的个头比你大,我的内角和一定比你大”。另一个稍小的锐角三角形说:“是这样吗”?)
师:到底谁说的对呢?今天我们就用我们今天学到的知识来为它们解决解决吧!
师:真不错,你们当了一回小法官,帮助三角形兄弟解决了问题,它俩很感谢你们,三角形王国中还有很多生活中的问题,小博士们,你们愿意解答吗?
师:好,请看大屏幕!
(出示基础练习)在一个三角形中角一是140度,角三是25度,求角二的度数。
生答后,师提问:你是怎样想的?
生陈述后,师鼓励:说的真好!
出示自行车、等边三角形的路标牌、告诉顶角求底角的房顶、直角三角形的电线杆架进行练习。
(出示)小红的爸爸给小红买了一个等腰三角形的风筝,它的一个底角是70度,它的顶角是多少度?
师:看来啊,三角形的知识在咱们生活中还有着这么广泛的运用呢!昨天,我们班发生了一件事情,小明不小心将镜框上的一块三角形玻璃摔破了,(课件呈现情境)他想重新买一块玻璃安上,小明非常聪明,只带了其中的一块到玻璃店去,就配到了和原来一模一样的玻璃了。你知道他带的是哪一块吗?
(预设:师:根据三角形的内角和是180度,你能求出下面四边形、五边形、六边形的内角和吗?
师:太棒了,这位同学把这个四边形分割成了二个三角形求出了它的内角和,你能像他一样棒求出五边形和六边形的内角和吗?
师:同学们,今天我们一起学习了三角形的内角和,你有哪些收获呢?
师:嗯,真不错,你们知道吗?三角形的内角和等于180度是法国著名的数学家帕斯卡在1635年他12岁时独自发现的,今天凭着同学们的聪明智慧也研究出了三角形的内角和是180度,老师为你们感到骄傲,老师相信在你们的勤奋学习和刻苦钻研下,你们就是下一个“帕斯卡”!
师:好,下课!同学们再见!
三角形的内角和课件 篇8
一堂成功的课不仅要熟悉教材,还需要我们充分的了解学生的特点。
本节课的授课对象是四年级的学生,从心理特征来说,他们对于新鲜的知识充满着好奇心和强烈的求知欲望,无意注意仍起着主要作用,有意注意正在发展。
从认知状况来说,学生在此之前已经学习了三角形有关的知识,对三角形的内角已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于三角形内角和都是180度的理解,学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。
三、说教学目标
根据新课程标准,教材特点、学生实际,我确定了如下三维教学目标。
【知识与技能】通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。
【情感态度与价值观】在参与学习的过程中,感受数学的魅力,体验成功的喜悦,激发学习数学的兴趣。
根据学生现有的知识储备和知识点本身的难易程度,学生很难建构知识点之间的联系,这也确定了本节课的重点为三角形内角和定理,而三角形内角和定理推理的过程为本节课的难点。
新课程明确倡导动手实践,自主探索、合作交流的学习方式,教师不仅是知识的传授者,更是学生探究性、合作性学习活动的设计者,组织者和学生学习的伙伴。在教学过程中,我将采用创设情境,直观演示,观察,猜测,操作,思考,总结等方法,把学生带进开放的,富有挑战性的问题情景,让学生通过自己学习,合作学习,和交流等活动,获得知识与能力,掌握解决问题的方法,获得积极的情感体验。整个学习和探索活动,体现出开放性思维和多元思维并存的思维方式,教学生初步学会自主梳理知识,探索知识的方法,使他们亲历自主探究的过程。
首先是导入环节,我会多媒体课件播放有关三角形内角和情境视频:在图形的王国中,有一天,三角形家族里为“三角形内角和的大小”爆发了一场激烈的争吵。钝角三角形说“我的钝角大,我的内角和一定比你们的内角和大”。锐角三角形也不示弱“你虽然有一个钝角,可是其它两个角都很小,而我的三个角都不是很小,所以我的内角和比你大”。直角三角形说“别争了,我们的内角和是一样大的,因为三角形的内角和是180°”。
根据视频中三角形的对话,顺势引出题目——三角形的内角和。
设计意图:在这个环节中,多媒体课件展示有关三角形内角和的内容,激发学生深厚的学习兴趣和求知欲望,快速的进入学习高潮。
接下里是新课探究环节,在这一教学环节中,我首先让学生画几个不同类型的三角形。然后同桌互相量一量,算一算,三角形3个内角的和各是多少度?通过测量,学生可以发现三角形的内角和是180°。
接着我会提出一个问题是不是所有的三角形的内角和都是180°,如何进行验证你的结论呢?接下来我会让学生分小组讨论,针对学生出现的问题,我给予指导,讨论过后,请同学汇报,鼓励学生用自己的语言表达,无论学生回答的全面与否,都给予积极的评价,其他同学认真倾听后做出判断,进行补充,提高学生的注意力。
通过小组之间的讨论,引导学生采用剪拼的方法进行验证,先把一个三角形的三个角剪下来,再拼一拼,拼成一个平角。最后引导学生总结出三角形的内角和是180°。
此环节通过小组合作,体现以生为本的教学理念。既培养学生的推理能力,又锻炼学生的语言表达能力和沟通能力。
接下来进入巩固提高环节。本环节我依据教学目标和学生在学习中存在的问题,设计有针对性、层次分明的练习题组。让学生在解决这些问题的过程中,进一步理解、巩固新知,训练思维的灵活性、敏捷性、创造性,使学生的创新精神和实践能力得到进一步提高。
练习题组设计如下:
第二题把这两个完全一样的直角三角形拼组在一起,得到的新三角形的内角和是多少度?
设计意图:通过各种形式的练习,进一步提高学生学习兴趣,使学生的认知结构更加完善。同时强化本课的教学重点,突破教学难点。
在小结环节,我会引导学生同桌之间以“你问我答”的形式回顾本节课所学的主要内容,这节课你都学习了哪些内容?三角形内角和定理的推导过程体现了哪种数学思想方法?
这样设计的目的是让学生在回顾课堂经历的基础上,以相互交流、相互启发的方式总结自己的收获,教师通过概括性引导提升学生对三角形的内角和定理的认识
在作业环节,我会让学生利用本节课所学的知识,思考一下四边形的内角和是多少度?
这样设计的意图是学生在学习本节课内容的基础上,进一步对本节课的一个延伸,拓展学生的思维。
为了让学生对本节课的学习形成清晰的思路,同时还有利于学生系统性地记忆新知。我的板书设计如下。
三角形的内角和课件 篇9
教学内容:
教材第67页例6、“做一做”及教材第69页练习十六第1~3题。
教学目标:
1、通过动手操作,使学生理解并掌握三角形的内角和是180°的结论。
2、能运用三角形的内角和是180°这一结论,求三角形中未知角的度数。
3、培养学生动手动脑及分析推理能力。
重点难点:
掌握三角形的内角和是180°。
教学准备:
三角形卡片、量角器、直尺。
导学过程
一、复习
1、什么是平角?平角是多少度?
2、计算角的度数。
3、回忆三角形的相关知识。(出示直角三角形、锐角三角形、钝角三角形)
二、新知
(设计意图:让学生经历质疑验证结论这样的思维过程,真正整体感知三角形内角和的知识,真正验证了“实践出真知”的道理,这样的教学,将三角形内角和置于平面图形内角和的大背景中,拓展了三角形内角和的数学知识背景,渗透数学知识之间的联系,有效地避免了新知识的“横空出现”。同时,培养学生的综合素养)
1、读学卡的学习目标、任务目标,做到心里有数。
2、揭题:课件演示什么是三角形的内角和。
3、猜想:三角形的内角和是多少度。
4、验证:
(1)初证:用一副三角板说明直角三角形的内角和是180°。
(2)质疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。
(3)再证:请按学卡提示,拿出学具,选择自己喜欢的方式验证三角形的内角和是180°(师巡视)
(4)汇报结论(清楚明白的给小组加优秀10分)
5、结论:修改板书,把“?”去掉,写“是”。
6、追问:把两块三角板拼在一起,拼成的大三角形的内角和是多少?说明三角形无论大小它的内角和都是180°(课件演示)
7、看微课感知“伟大的发现”(设计意图:让学生感受自己所做的和帕斯卡发现三角形内角和是180°的过程是一样的,从而培养孩子的自信心和创造力。)
三、知识运用(课件出示练习题,生解答)
1、填空
(1)一个三角形,它的两个内角度数之和是110,第三个内角是()、
(2)一个直角三角形的一个锐角是50,则另一个锐角是()。
(3)等边三角形的3个内角都是()。
(4)一个等腰三角形,它的一个底角是50,那么它的顶角是()。
(5)一个等腰三角形的顶角是60,这个三角形也是()三角形。
2、判断
(1)一个三角形中最多有两个直角。()
(2)锐角三角形任意两个内角的和大于90。()
(3)有一个角是60的等腰三角形不一定是等边三角形。()
(4)三角形任意两个内角的和都大于第三个内角。()
(5)直角三角形中的两个锐角的和等于90。()
四、拓展探究
根据所学的知识,你能想办法求出四边形、五边形的内角和吗?
1、小组讨论。2、汇报结果。3、课件提示帮助理解。
五、自我评价根据学卡要求给自己评出“优”“良好”“合格”。
多边形内角和课件合集11篇
老师在开学前需要把教案课件准备好,每天老师都需要写自己的教案课件。设计教案需要注重课堂效果的反馈和评估。深入了解“多边形内角和课件”并理解它的背景接下来请阅读,欢迎你阅读与收藏!
多边形内角和课件(篇1)
教学目标
知识与技能:经历探索多边形的外角和公式的过程;会应用公式解决问题;
过程与方法:培养学生把未知转化为已知进行探究的能力,在探究活动中,进一步发展学生的说理能力与简单的推理能力.
情感态度与价值观:让学生体验猜想得到证实的成功喜悦和成就感,在解题中感受生活中数学的存在,体验数学充满着探索和创造.
教学重点:多边形外角和定理的探索和应用.
教学难点:灵活运用公式解决简单的实际问题;转化的数学思维方法的渗透.
教学准备:多媒体课件
教学过程
第一环节 创设情境,引入新课(5分钟,学生理解情境,思考问题)
问题:(多媒体演示)清晨,小明沿一个五边形广场周围的小路,按逆时针方向跑步。
(1)小明每从一条街道转到下一条街道时,身体转过的角是哪个角?
(2)他每跑完一圈,身体转过的角度之和是多少?
(3)在上图中,你能求出∠1+∠2+∠3+∠4+∠5的结果吗?你是怎样得到的?
第二环节 问题解决(10分钟,小组讨论,合作探究)
对于上述的问题,如果学生能给出一些合理的解释和解答(例如利用内角和),可以按照学生的思路走下去。然后再给出“小亮的做法”或以“小亮做法”为提示,鼓励学生思考。如果学生对于这个问题无法突破,教师可以给出“小亮的做法”,或引导学生按“小亮的做法”这样的思路去思考,以便解决这个问题。
小亮是这样思考的:如图所示,过平面内一点O分别作与五边形ABCDE各边平行的射线OA′,OB′,OC′,OD′,OE′,得到∠α,∠β,∠γ,∠δ,∠θ,其中,∠α=∠1,∠β=∠2,∠γ=∠3,∠δ=∠4,∠θ=∠5.
这样,∠1+∠2+∠3+∠4+∠5=360°
问题引申:
1.如果广场的形状是六边形那么还有类似的结论吗?
2.如果广场的形状是八边形呢?
第三环节 探索多边形的外角与外角和(10分钟,全班交流,学生理解识记)
1.多边形内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角。
2.在每个顶点处取这个多边形的一个外角,它们的和叫做这个多边形的外角和。
探究多边形的外角和,提出一般性的问题:一个任意的凸n边形,它的外角和是多少?
鼓励学生用多种方法解决这个问题,可以参考第二环节解决特殊问题的方法去解决这个一般性的问题。
方法Ⅰ:类似探究多边形的内角和的方法,由三角形、四边形、五边形…的外角和开始探究;
方法Ⅱ:由n边形的内角和等于(n-2)180°出发,探究问题。
结论:多边形的外角和等于360°
(1)还有什么方法可以推导出多边形外角和公式?
(2)利用多边形外角和的结论,能否推导出多边形内角和的结论?
第四环节 巩固练习(10分钟,学生利用知识独立解决问题)
例1一个多边形的内角和等于它的外角和的3倍,它是几边形?
随堂练习
1.一个多边形的外角都等于60°,这个多边形是几边形?
2.右图是三个不完全相同的正多边形拼成的无缝隙、不重叠的图形的一部分,这种多边形是几边形?为什么?
挑战自我:
1.在四边形的四个内角中,最多能有几个钝角?最多能有几个锐角?
2.在n边形的n个内角中,最多能有几个钝角?最多能有几个锐角?
挑战自我的2个问题,对于新授课上的学生而言,难度是比较大的。因为之前不管是多边形的内角和还是外角和,基本上都是利用等式,从“正向”解决的。而这里要解决的问题,在解决的过程中,需要用到简单的不等式知识和“反证”的思想,对于初次接触这些的学生而言,难度是比较大的。教师要注意讲解的方式方法。
第五环节 课时小结(3分钟,学生加深记忆)
多边形的外角及外角和的定义;
多边形的外角和等于360°;
在探求过程中我们使用了观察、归纳的数学方法,并且运用了类比、转化等数学思想.
第六环节 布置作业:
习题4.11
A组(优等生)第1,2,3题
B组(中等生)1、2
C组(后三分之一生)1
多边形内角和课件(篇2)
课题
探索多边形内角和
教学目标
知识目标
1、探索多边形内角和定义、公式
2、正多边形定义
能力目标
1、发展学生的合情推理意识、主动探索的习惯
2、发展学生的说理能力和简单的推理意识及能力
德育目标
培养用多边形美花生活的意识
教学重点
多边形内角和公式的推导
学难点
多边形内角和公式的简单运用
教学方法
探索、讨论、启发、讲授
教学手段
利用学生剪纸、投影仪进行教学
教学过程:
一、引入:
1、出示多媒体投影片或出示事物图:正方形石英钟、五边形(广场图)、六变形螺母、八边形。
2、给出多边形概念:多边形的顶点、边、内角和、对角线及其有关概念。
二、多边形内角和公式:
1、三角形的内角和是多少度?任意四边形的内角和是多少度?怎样得到的?那么五边形的内角和怎样求呢?要求学生剪纸或画图找出五边形可剪成多少个三角形求内角和?六边形可怎样剪成三角形?n边形呢?
2、学生讨论:在剪纸及画图活动中充分的探索、交流、体会,先独立思考,然后小组讨论、交流,发表不同见解。探索五边形内角和的不同方法:(学生可能得出如图一、图二、图三中的不同方法)
(1)量出每个内角度数然后相加为540°;
(2)从五边形的任一顶点出发,连结不相邻的两个顶点,将五边形分割成三个三角形,得出五边形内角和为540°(如图一);
(3)在五边形内任取一点,连结各顶点,将五边形分割成五个三角形,得出五边形内角和为5×180°—360°=540°(如图二);
(4)从五边形任意一边上取一点,连接不相邻的顶点,将五边形分割成四个三角形内角和为4×180°—180°=540°(如图三);
(5)六边形可怎样剪成三角形求内角和?n边形呢?
(6)总结规律:多边形内角和为(n—2)×180°(n≥3)。
3、议一议:
(1)过四边形一个顶点的对角线把四边形分成两个三角形;
(2)过五边形一个顶点的对角线把五边形分成( )个三角形;
(3)过六边形一个顶点的对角线把六边形分成( )个三角形。
(4)过n边形一个顶点的对角线把n边形分成( )个三角形;
三、正多边形定义:
1、出示课本第109页想一想图:(思考,图中的多边形各是几边形,它们的边和角有什么特点)
2、多边形定义:在平面内,内角都相等,边也相等的多边形是正多边形。
3、填表:
正多边形的边数
3
4
5
6
8
…
n
正多边形的内角和
180°
360°
540°
720°
1080°
…
正多边形每个内角的度数
60°
90°
108°
120°
135°
…
四、小结:
主要表扬本节课同学们很善于思考,对所学知识应用得很好,做得好的小组及他们做得好的地方。
五、布置作业:
课本P110、习题4、10第1、2、3题。
附:选用随堂练习:
1、一个多边形的每个内角都是140,它是()边形?
2、过四边形一顶点的对角线把它分成两个三角形,过五边形一个顶点的对角线把它分成()个三角形。
3、过六边形的一个顶点的对角线把它分成()个三角形,过n边形的一个顶点的对角线把n边形分成()个三角形。
4、一个多边形的每个内角都是140°,这个多边形是()边形。
5、如果一个多边形的边数增加1,那么这时它的内角和增加了()度。
6、下列角能成为一个多边形的内角和的是()
A、270°B、560°C、1800°D、1900°
思考题:如图(1),求∠A+∠B+∠C+∠D+∠E+∠F等于多少度?
如图(2),求∠A+∠B+∠C+∠D+∠E+∠F+∠G等于多少
多边形内角和课件(篇3)
一、教学目标
【知识与技能】
掌握多边形的内角和公式,能应用公式解决简单问题。
【过程与方法】
通过由四、五、六边形归纳多边形内角和的过程,提高总结归纳能力。
【情感、态度与价值观】
在探究过程中体验成功的喜悦,激发学习数学的兴趣。
二、教学重难点
【重点】多边形的内角和公式。
【难点】多边形的内角和公式的探究过程。
三、教学过程
(一)导入新课
回顾三角形内角和为180,正方形、长方形内角和为360。
提问:一般的四边形内角和是否也是360?五边形、六边形等多边形的内角和又是多少?
引出课题《多边形的内角和》。
(二)讲解新知
自主探究:在纸上画任意四边形,利用三角形内角和推导四边形的内角和。
预设学生想到只需连接一条对角线,即可将一个四边形分割为两个三角形,故内角和为360。
多边形内角和课件(篇4)
学情分析:
学生已经学过三角形的内角和定理的知识基础,并且具备一定的化归思想,但是推理能力和表达能力还稍稍有点欠缺。针对这种情况,我会引导学生利用分类、数形结合的思想,加强对数学知识的应用,发展学生合情合理的推理能力和语言表达能力。
教学目标:
1.知识与技能:运用三角形内角和定理来推证多边形内角和公式,掌握多边形的内角和的计算公式。
2.过程与方法:经理探究多边形内角和计算方法的过程,培养学生的合作交流的意识。
3.情感态度与价值观:感受数学化归的思想和实际应用的价值,同时培养学生善于发现,积极探究,合作创新的学习态度。
教学重点:
多边形的内角和公式。
教学难点:
探索多边形的内角和定理的推导
教学过程:
一、创设情境,导入新课
1、请看:我身后的建筑物是什么?─水立方。我看到水立方时发现它的膜结构的结合处都是多边形,你们想知道这些多边形的内角和吗?(多媒体展示)
这节课咱们一起来探究《多边形的内角和》。
二、合作交流,探究新知
1、多边形的内角和
问:要求内角和你联想到什么图形的内角和?(示三角形的内角和定理)。如果两个三角形能够拼成四边形,你能求出四边形的内角和是多少度呢?
预设回答:三角形的内角和360°。四边形的内角和360°
知道四边形的内角和为360°,现在你能利用三角形的内角和定理证明吗?自主学习教材第34页“动脑筋”
【教学说明】“解放学生的手,解放学生的大脑”,鼓励学生积极参与合作交流,寻找多种图形形式,深入全面转化的本质——将四边形转化为三角形问题来解决.
2、是否所有的多边形的内角和都可以“转化”为两个三角形的内角和来求得呢?如何“转化”?
预设回答:能,可以引对角线,将多边形分成几个三角形。
让学生合作交流讨论,展示探究成果。教材第35页“探究”
示图,取多边形上任意一个顶点,连接除相邻的两点,则多边形的内角和可转化为三角形内角和之间的关系,
多边形边数可分成三角形的个数多边形的内角和56 7┅┅┅┅n边形n
n边形有几个内角?是否可以“转化”为多个三角形的角来求得呢?如何“转化”?
预设回答:有n个内角,可以转化多个三角形来求,n边形可以引n-3条对角线,即有n-2个三角形。所有n边形的内角和等于(n-2)x180°
【教学说明】通过五边形、六边形、七边形、八边形等特殊多边形内角和的探索,让学生从特殊到一般归纳总结出多边形内角和公式,体会数形间的联系,感受从特殊到一般的数学推理过程和数学思考方法.
例:教材第36页例1
【教学说明】让学生利用多边形的内角和公式求一个多边形的内角和或它的边数,加深知识的理解与运用.
三、课堂演练
1、若从一个多边形的一个顶点出发,最多可以引10条对角线,则它是()
A.十三边形B.十二边形
C.十一边形D.十边形
2、十二边形的内角和为,已知一个多边形的内角和是1260°,则这个多边形的边数是。
【教学说明】由学生自主完成,教师及时了解学生的学习效果,让学生经历运用知识解决问题的过程.对需要帮助的学生及时点拨并加以强化.在完成上述题目后,让学生完成练习册中本课时的对应训练部分.
四、课时小结
1、这节课你有什么新的收获?
五、布置作业:
教材第36页练习1、2题。
六、板书设计多边形的内角和n边形内角和等于(n-2)×180°。
多边形的内角和是180的倍数;
边数越多,内角和就越大;
每增加一条边,内角和就增加180度。
多边形内角和课件(篇5)
一、教学任务分析
1、教学目标定位
根据《数学课程标准》和素质教育的要求,结合学生的认知规律及心理特征而确定,即:七年级的学生对身边有趣事物充满好奇心,对一些有规律的问题有探求的欲望,有很强的表现欲,同时又具备了一定的归纳、总结表达的能力。因此,确定如下教学目标:
(1).知识技能目标
让学生掌握多边形的内角和的公式并熟练应用。
(2).过程和方法目标
让学生经历知识的形成过程,认识数学特征,获得数学经验,进一步发展学生的说理意识和简单推理,合情推理能力。
(3).情感目标
激励学生的学习热情,调动他们的学习积极性,使他们有自信心,激发学生乐于合作交流意识和独立思考的习惯。。
2、教学重、难点定位
教学重点是多边形的内角和的得出和应用。
教学难点是探索和归纳多边形内角和的过程。
二、教学内容分析
1、教材的地位与作用
本课选自人教版数学七年级下册第七章第三节《多边形的内角和》的第一课时。本节课作为第七章第三节,起着承上启下的作用。在内容上,从三角形的内角和到多边形的内角和,层层递进,这样编排易于激发学生的学习兴趣,很适合学生的认知特点。
2、联系及应用
本节课是以三角形的知识为基础,仿照三角形建立多边形的有关概念。因此
多边形的边、内角、内角和等等都可以同三角形类比。通过这节课的学习,可以培养学生探索与归纳能力,体会把复杂化为简单,化未知为已知,从特殊到一般和转化等重要的思想方法。而多边形在工程技术和实用图案等方面有许多的实际应用,下一节平面镶嵌就要用到,让学生接触一些多边形的实例,可以加深对它的概念以及性质的理解。
三、教学诊断分析
学生对三角形的知识都已经掌握。让学生由三角形的内角和等于180°,是一个定值,猜想四边形的内角和也是一个定值,这是学生很容易理解的地方。由几个特殊的四边形的内角和出发,譬如长方形、正方形的内角和都等于360°,可知如果四边形的内角和是一个定值,这个定值是360°。要得到四边形的内角和等于360°这个结论最直接的方法就是用量角器来度量。让学生动手探索实践,在探索过程中发现问题"度量会有误差"。发现问题后接着引导学生联想对角线的作用,四边形的一条对角线,把它分成了两个三角形,应用三角形的内角和等于180°,就得到四边形的内角和等于360°。让学生从特殊四边形的内角和联想一般四边形的内角和,并在思想上引导,学习将新问题化归为已有结论的思想方法,这里学生都容易理解。课堂教学设计中,在探究五边形,六边形和七边形的内角和时,让学生动手实践,设置探究活动二,为了让学生拓宽思路,从不同的角度去思考这个问题,这个活动对学生的动手能力要求进一步提高了,学生对这个问题的理解稍微有些难度,但学生可根据自己本身的特点来加以补充和完善。在教学设计中,要求根据小组选择的方法探索多边形的内角和。首先,小组内各个成员对所选择的方法要了解,能够把掌握的知识运用到实践中;再者,小组内各个成员需要分工协作,才能够顺利的把任务完成;最后,学生还需要把自己的思维从感性认识提升到理性认识的高度,这样就培养了学生合情推理的意识。
四、教法特点及预期效果分析本节课借鉴了美国教育家杜威的"在做中学"的理论和叶圣陶先生所倡导的"解放学生的手,解放学生的大脑,解放学生的时间"的思想,我确定如下教法和学法:
1、教学方法的设计
我采用了探究式教学方法,整个探究学习的过程充满了师生之间,学生之间的交流和互动,体现了教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。
2、活动的开展
利用学生的好奇心设疑、解疑,组织活泼互动、有效的教学活动,鼓励学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。
3、现代教育技术的应用
我利用课件辅助教学,适时呈现问题情景,以丰富学生的感性认识,增强直观效果,提高课堂效率。探究活动在本次教学设计中占了非常大的比例,探究活动一设置目的让学生动手实践,并把新知识与学过的三角形的相关知识联系起来;探究活动二设置目的让学生拓宽思路,为放开书本的束缚打下基础;培养学生动手操作的能力和合情推理的意识。通过师生共同活动,训练学生的发散性思维,培养学生的创新精神;使学生懂得数学内容普遍存在相互联系,相互转化的特点。练习活动的设计,目的一检查学生的掌握知识的情况,并促进学生积极思考;目的二凸现小组合作的特点,并促进学生情感交流。
以上是我对《多边形的内角和》的教学设计说明。
多边形内角和课件(篇6)
各位评委、各位老师:
大家好!我说课的内容是人教版义务教育课程标准实验教科书,七年级数学(下)第七章第三节《多边形的内角和》。下面,我从以下几个方面对本节课的教学设计进行说明。
一、教材分析
1、教材的地位和作用本节课作为第七章第三节,起着承上启下的作用。在内容上,从三角形的内角和到多边形的内角和,再将内角和公式应用于平面镶嵌,环环相扣,层层递进,这样编排易于激发学生的学习兴趣,很适合学生的认知特点。通过这节课的学习,可以培养学生探索与归纳能力,体会从简单到复杂,从特殊到一般和转化等重要的思想方法。
2、教学重点和难点重点:多边形的内角和与外角和难点:探索多边形内角和时,如何把多边形转化成三角形。
二、教学目标分析
1、知识与技能:掌握多边形的内角和与外角和,进一步了解转化的数学思想。
2、数学思考:能感受数学思考过程的条理性,发展能力推理和语言表达能力,并体会从特殊到一般的认识问题的方法。
3、解决问题:让学生尝试从不同的角度寻求解决问题的方法,并能有效地解决问题。
4、情感态度:让学生体验猜想得到证实的成就感,在解题中感受生活中数学的存在,体验数学充满探索和创造。
三、教法和学法分析
本节课借鉴了美国教育家杜威的“在做中学”的理论和叶圣陶先生所倡导的“解放学生的手,解放学生的大脑,解放学生的时间”的思想,我确定如下教法和学法:
1、教学方法的设计我采用了探究式教学方法,整个探究学习的过程充满了师生之间,生生之间的交流和互动,体现了教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。
2、活动的开展利用学生的好奇心设疑、解疑,组织活泼互动、有效的教学活动,鼓励学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。
3、现代教育技术的应用我利用课件辅助教学,适时呈现问题情景,以丰富学生的感性认识,增强直观效果,提高课堂效率。
四、教学程序设计
1、本节教学将按以下六个流程展开创设情境引入新课↓合作交流探索新知↓自主探究得出结论↓尝试练习应用新知↓归纳总结形成体系↓分组竞赛升华情感
2、教学过程
互动环节互动内容设计意图1创设情境引入新课
(1)在一次数学基础知识抢答赛上,王老师出了这么一个问题:某个多边形所有的角加起来等于它的外角和,那么该多边形是几边形?小明同学仅用几秒钟就解决了问题,你能吗?
(2)(演示教具)用四块大小形状完全相同的四边形可拼成一块无空隙的纸板,你知道这是为什么吗?通过今天的学习,我们就能明白其中的道理,引出课题。
这样一开始就利用抢答赛问题以及教具演示实验来提问设疑,学生很容易发问:这个多边形是几边形呢?用四块大小形状完全相同的四边形可拼成一块无空隙的纸板,为什么会产生这种效果呢?从而可调动学生的学习兴趣和注意力,创设恰当的教学情境。
2合作交流探索新知
(1)问题:三角形的内角和等于多少度?外角和等于多少度?长方形的内角和等于多少度?正方形的内角和等于多少度?
(2)问题:任意四边形的内角和等于多少度呢?你是怎样得到的?你能找到几种方法?
(3)学生思考,并分组交流讨论,教师深入小组参与活动,指导、倾听学生交流。
(4)学生分组选代表展示小组的探索成果,师生共同进行评判,对学生找到的不同方法要加以及时肯定。
学生可能找到以下几种方法:
①“量”—即先测量四边形四个内角的度数,然后求四个内角的和;
②“拼”—即把四边形的四个内角剪下来,拼在一起,得到一个周角;
③“分”—即通过添加辅助线的方法,把四边形分割成三角形。
教师在学生展示完后提问:
①在“量”、“拼”、“分”这几种方法中,哪种方法操作简单又相对准确?
②我们刚才找到了几种不同的辅助线的作法,它们的共同点是什么?
先回顾三角形、正方形和长方形的内角和,促使学生对新问题进行思考与猜想。
从简单的四边形入手,让学生亲自操作寻求结论,易于引起学习兴趣,鼓励学生找到多种方法,让学生体会多种分割形式,有利于深入领会转化的本质——四边形转化为三角形,也让学生体验数学活动充满探索和解决问题方法的'多样性。通过交流,让学生用自己的语言清楚地表达解决问题的过程,可以提高语言表达能力。
3自主探究得出结论
(1)问题:用刚才类似的方法,你能算出五边形、六边形、七边形的内角和吗?
学生先独立思考,分组讨论,然后再叙述结论。
(2)问题:依此类推,n边形的内角和等于多少度呢?让学生自己归纳总结,得出n边形的内角和公式为(n—2)·180°。从探索四边形的内角和,到五边形、六边形、七边形乃至n边形,通过增强图形的复杂性,让学生体会由简单到复杂,由特殊到一般的思想方法,再一次经历转化的过程,同时在分组交流的过程中,感受合作的重要性。
4应用新知尝试练习
(1)想一想:如果一个四边形的一组对角互补,那么另一组对角有什么关系?为什么(教材88页例1)。
(2)算一算
①教材89页练习1、2。
②四边形的外角和等于多少度?
③五边形的外角和,六边形以及n边形的外角和呢?
(3)读一读先让学生阅读教材89页最后两段内容,然后我再用课件展示。通过做例题和练习来巩固新知识。先求四边形的外角和,再求五边形、六边形以及n边形的外角和,我提出阶梯式的问题,让学生逐步归纳得出多边形的外角和等于360°。这两段是新增加的内容,从另一个角度增加对任意多边形外角和理解与认识。这样处理,注重教材阅读学习,同时用课件演示更加形象直观,便于理解。
5归纳总结形成体系我从以下几个方面引导学生进行小结:
(1)现在你能解决数学知识抢答赛上,王老师提出的问题了吗?你知道为什么能用四块大小形状完全相同的四边形拼成一块无空隙的纸板了吗?
(2)这节课我们学习了哪些知识和方法?你有什么收获?让学生运用所学知识解决引问中的问题,提高解决问题的能力,鼓励学生畅所欲言总结对本节课的收获和体会,有利于培养归纳、总结的习惯和能力,让学生自主建构知识体系。
6分组竞赛升华情感
我制作了A、B、C、D四组不同的电子试卷,让学生运用所学知识通过小组竞赛的形式合作完成,自检掌握情况。通过竞赛的方式,激发学生的学习兴趣,引导他们在做练习的过程中,通过小组协作来巩固知识和获得技能。
在每组试卷中,大部分选自教材的练习题。另外,我还另增加了1个思考题,实际上是对证明四边形内角和方法的补充,主要是通过一题多解发散思维,提高思维的灵活性,还可以复习旧知识,把握知识间的相互联系,让学生再次体会转化的思想方法。
五、评价分析
1、注意评价内容的多元化通过课堂中学生展示自己对所学内容的理解,交流对某一问题的看法,动手操作的表演,各种问题尝试解答等活动,使教师从学生思维活动、有关内容的理解和掌握,以及学生参与活动的程序等多层面地了解学生。
2、注重对学生学习过程的评价在整个教学过程中,通过对学生参与数学活动的程度、自信心、合作交流的意识以及独立思考的习惯,发现问题的能力进行评价,并对学生中出现的独特的想法或结论给予鼓励性评价。
六、设计说明
1、指导思想根据义务教育阶段数学课程的要求,结合教材的编写意图,在本节课设计时,我遵循以下原则:情境引入激发兴趣,学习过程体现自主,知识建构循序渐进,思想方法有机渗透。
2、关于教材处理本教案设计时,我对教材作了如下改变:
①将教材例1作为练习中的“想一想”,由学生自已尝试解答;
②将例2中的求“六边形”的外角和,改为练习中的“算一算”,先让学生求“四边形”的外角和,再探索“五边形、六边形,以及n边形的外角和”。这样处理仍然是为了体现学生的自主探索,使学生学习变“被动”为“主动”。
③作业采取分组竞赛的形式合作完成。这样,在情感上,本节课学生由好奇到疑惑,由解决单个问题的一点点快感,到解决整个问题串的极大兴奋,产生了强烈的学习激情。这时,一次有效的教学竞赛活动,使学生的学习激情得到释放,学科个性得以张扬,教师可稍加点拨,适可而止,把更多的思考空间留给学生。以上是我对本节课的设计说明,不足之处,请各位指正,谢谢!
多边形内角和课件(篇7)
《探索多边形的内角和与外角和》的教案
一、教学目标:
1、让学生经历探索多边形外角和公式的过程,培养学生主动探究的习惯。
2、能灵活的运用多边形内角和与外角和公式解决有关问题。
二、教材分析
本节的主要内容是多边形的外角定义和公式.多边形的外角和是三角形的一个重要性质,与前面的内角和公式综合运用能解决一些较难的问题.为提供三角形的外角提供了一种方法。
三、教学重点、难点
1、多边形的外角和公式及公式的探索过程。
2、能灵活运用多边形的内角和与外角和公式解决有关问题。
四、教学建议
关于外角和公式关键要让学生理解它是不随多边形边数的增加而增大,因此在教学中应设置由特殊到一般的题目,让学生亲身体会这个外角和是360°.
五、教具、学具准备
投影仪、题板、画图工具
六、教学过程
1.复习提问:
(1)多边形的内角和是多少?
(2)正八边形的每一个内角为度?
2.创设问题情景,引入新课:
教师投放课本51页图9-35时,并出示以下问题:
小明沿一个五边形广场周围的小路,按顺时针方向跑步。
(1)小明从一条街道转到下一条街道时,身体转过的角是哪个角?在图中标出它们。
(2)观察∠1、∠2、∠3、∠4、∠5的`两边分别与它相邻的五边形的内角的边有何关系?
(3)问题:你能计算小明跑完一圈,身体转过的角度和吗?如何计算∠1+∠2+∠3+∠4+∠5呢?
点拨:
请填写下题:
如图,oa‘∥ae,ob‘∥ab,oc‘∥bc,od‘∥cd,oe‘∥de,则∠α= ,∠β= ,∠γ= ,∠δ= ∠θ= .
因为∠α+∠β+∠γ+∠δ+∠θ=.
所以∠1+∠2+∠3+∠4+∠5= .
由此可得:五边形的外角和是360°
(4)你能借助内角和来推导五边形的外角和吗?
点拨:
因五边形的每一个内角与它相邻的外角是邻补角,所以五边形的内角和加外角和等于5×180°所以外角和等于5×180°-(5-2)×180°=360°。
(5)你用第二种方法推导下列多边形的外角和三角形的外角和 四边形的外角和 五边形的外角和 n边形的外角和是得出结论:多边形的外角和都等于360°。
4.应用举例
例 一个多边形的内角和等于它的外角和的3倍,它是几边形?
点拨:
设出未知数,根据相等关系: 内角和=3×外角和列出方程。
5.练习:
见学案练习一和练习二
6.达标检测
见学案达标检测
7.小结
本节课你学到了什么?有什么收获?
8.作业
学生口答,并计算出度数
学生独立观察分析思考找出特征,试概括所得结论,从而引出多边形的外角定义及外角和定义及引入新课从而板书课题.
学生质疑思考,一时找不到方法,可按点拨的引导继续思考。
生充分思考,认真分析,小组讨论交流得出答案。
学生找关系,小组积极讨论、交流,小组汇报结果。
学生独立探究,很快得出答案.
学生独立解决
让学生先总结、交流谈体会
多边形内角和课件(篇8)
这三条线段叫做这个三角形的边;(AB、BC、CA)
相邻两条边的公共端点叫做这个三角形的顶点;(A、B、C)
相邻两条边所夹的角叫做这个三角形的内角,又叫做这个三角形的角(∠A、∠B、∠C)
三角形的内角的邻补角叫做这个三角形的外角
2.三角形的表示为△ABC
3.三角形的三条重要线段:高、中线、内角平分线(三条高所在的直线都交于一点,这个点叫
做三角形的垂心;三条中线交于一点,这个点叫做三角形的重心;
三条内角平分线交于一点,这个点叫做三角形的内心)
4.三角形内角和定理以及相关的结论
(1)三角形的内角和为180°
(2)直角三角形的两个锐角互余
(3)三角形的外角和为360°
(4)三角形的一个外角等于与它不相邻的两个内角的和
(5)三角形的一个外角大于与它不相邻的任何一个内角
5.三角形的三边关系定理
三角形的任意两边之和都大于第三条边;任意两边之差都小于第三条边
6.三角形具有稳定性
7.多边形:由在同一平面内,不在同一直线上的若干条线段首尾顺次连接所围成的封闭图形叫
做多边形
这些线段叫做这个多边形的边;
相邻两条边的公共端点叫做这个多边形的顶点;
相邻两条边所夹的角叫做这个多边形的内角,又叫做这个多边形的角
多边形的内角的邻补角叫做这个多边形的外角
8.对角线:连结多边形不相邻的两个顶点的线段叫做多边形的对角线
由一个顶点出发的对角线有(n-3)条;(n表示边数)
条对角线(n表示边数)
9.多边形的内角和及外角和
(1)多边形的内角和为(n-2).180°(n表示边数)
(2)多边形的外角和为360°
【阶段练习】
一、回答下列各问题
1.什么是三角形?它有哪些元素?通常用什么符号来表示它及三个角所对的边?
2.为什么屋架、桥梁及电杆的支架多采用三角形的形状?
3.如果△ABC的三条边长分别为(12、13、14)及(10、20、30),这样的三角形能成立吗?
为什么?
4.设△ABC的边长分别为a、b、c,那么这三条边的边长须具有什么条件,才能将△ABC画
出来
5.△ABC中有几条角平分线?试画图说明
6.什么是三角形的高?一个三角形有几条高?三角形的高的位置是否一定在形内?为什么?
试画图说明
7.三角形的一条中线把这个三角形分成两部分,这两个部分的面积有什么关系?为什么?
8.三角形的三个内角分别为α、β、γ,则α+β+γ的值是多少?
9.三角形的一个外角与它不相邻的两个内角之间有什么关系?
二、填空题
1.三角形的外角和是内角和的_____________倍
2.四边形的外角和是内角和的____________倍
3.六边形的外角和是内角和的_______________倍
4.一个多边形的内角和是900°,则这个多边形是________边形
三、解答题
已知AC、AD是五边形ABCDE的对角线,求证:AB+BC+CD+DE+EA>AC+CD+DA
多边形内角和课件(篇9)
一、教学目标:
1、让学生经历探索多边形外角和公式的过程,培养学生主动探究的习惯。
2、能灵活的运用多边形内角和与外角和公式解决有关问题。
二、教材分析
本节的主要内容是多边形的.外角定义和公式。多边形的外角和是三角形的一个重要性质,与前面的内角和公式综合运用能解决一些较难的问题。为提供三角形的外角提供了一种方法。
三、教学重点、难点
1、多边形的外角和公式及公式的探索过程。
2、能灵活运用多边形的内角和与外角和公式解决有关问题。
四、教学建议
关于外角和公式关键要让学生理解它是不随多边形边数的增加而增大,因此在教学中应设置由特殊到一般的题目,让学生亲身体会这个外角和是360°。
五、教具、学具准备
投影仪、题板、画图工具
六、教学过程
1、复习提问:
(1)多边形的内角和是多少?
(2)正八边形的每一个内角为度?
2、创设问题情景,引入新课:
教师投放课本51页图9—35时,并出示以下问题:
小明沿一个五边形广场周围的小路,按顺时针方向跑步
(1)小明从一条街道转到下一条街道时,身体转过的角是哪个角?在图中标出它们。
(2)观察∠1、∠2、∠3、∠4、∠5的两边分别与它相邻的五边形的内角的边有何关系?
(3)问题:你能计算小明跑完一圈,身体转过的角度和吗?如何计算∠1+∠2+∠3+∠4+∠5呢?
点拨:
请填写下题:
如图,oa‘∥ae,ob‘∥ab,oc‘∥bc,od‘∥cd,oe‘∥de,则∠α=,∠β=,∠γ=,∠δ=∠θ=。
因为∠α+∠β+∠γ+∠δ+∠θ=。
所以∠1+∠2+∠3+∠4+∠5=。
由此可得:五边形的外角和是360°
(4)你能借助内角和来推导五边形的外角和吗?
点拨:
因五边形的每一个内角与它相邻的外角是邻补角,
所以五边形的内角和加外角和等于5×180°
所以外角和等于5×180°—(5—2)×180°=360°
(5)你用第二种方法推导下列多边形的外角和
三角形的外角和四边形的外角和五边形的外角和n边形的外角和是。
得出结论:多边形的外角和都等于360°。
4、应用举例:
例一个多边形的内角和等于它的外角和的3倍,它是几边形?
点拨:
设出未知数,根据相等关系:内角和=3×外角和列出方程
5、练习:
见学案练习一和练习二
6、达标检测
见学案达标检测
7、小结
本节课你学到了什么?有什么收获?
8、作业
学生口答,并计算出度数
学生独立观察分析思考找出特征,试概括所得结论,从而引出多边形的外角定义及外角和定义及引入新课从而板书课题。
学生质疑思考,一时找不到方法,可按点拨的引导继续思考。
生充分思考,认真分析,小组讨论交流得出答案。
学生找关系,小组积极讨论、交流,小组汇报结果。
学生独立探究,很快得出答案。
学生独立解决
让学生先总结、交流谈体会
多边形内角和课件(篇10)
多边形及多边形的内角和
【教学目标】 知识与能力: 1.了解多边形定义。
2.掌握多边形内角和的计算公式.3.掌握“多边形外角和等于360°”.
4.会用多边形的内角和与外角和的性质解决简单几何问题. 过程与方法:
1.通过类比归纳得出多边形的概念,培养学生的类比能力,渗透化归思想方法。
2.探索并了解多边形的内角和公式,进一步发展学生的说理和简单推理的意识及能力;
3.通过探索多边形的内角和公式,感受数学思考过程的条理性; 4.探索多边形内角和公式,体验归纳发现规律的思想方法. 【教学重点、难点】
Ø重点:本节教学的重点是任意多边形的内角和公式. Ø难点:例2的解题思路不易形成,是本节教学的难点.。【教学过程】
1、创设情境,导入新课 1/4页
(1)昨天我们已经学习了四边形的定义,今天清晨,小明在广场的小路上跑步,请问小明跑步的图案可以抽象出什么图形呢?(2)上图广场上的小路可以抽象出一个边数为5的多边形——五边形。我们知道边数为 3的多边形——三角形,边数为4的多边形——四边形,„„边数为n的多边形——n边形(n≥3,n是整数).[设计意图:数学源于生活。教师创设生活情境,通过类比让学生有意识地整理所学习的内容,激发了学生的探究欲望和兴趣,从而自觉参与数学知识整理的活动和探究新知的过程。] 【合作交流,探究新知】
(1)你能设法求出这个五边形的五个内角和吗?先启发学生回顾四边形的内角和及推理 方法,提出多边形对角线定义:连结多边形不相邻两顶点的线段叫做多边形的对角线(是下面解决多边形问题的常用辅助线)。
(2)启发学生用连结对角线的方法把多边形划分成若干个三角形来完成书本第96页的合作学习。
(3)再启发学生观察所能划分成的三角形个数与边数n有关。(4)结论:n边形的内角和为(n-2)×180°(n≥3).(5)及时巩固
【总结回顾,反思内化】 这节课学了什么?学生自由发言。
教师小结:(1)从n边形的一个顶点出发有 条对角线.(2)一个n边形共有 条对角线】。(3)n边形的内角和为
(4)任何多边形的外角和为360°(5)数学思想:类比(多边形定义类比四边形定义)转化(多边形内角和问题可以转化为三角形问题)。【作业布置,延伸拓展】
多边形内角和课件(篇11)
【教学内容】
【教学目标】
1.掌握多边形的内角和的计算方法,并能用内角和知识解决一些简单的问题.
2.经历探索多边形内角和计算公式的过程,体会如何探索研究问题.
3.通过将多边形"分割"为三角形的过程体验,初步认识"转化"的数学思想.
【教学重点与教学难点】
1.重点:多边形的内角和公式
2.难点:多边形内角和的推导
3.关键:.多边形"分割"为三角形.
【教具准备】三角板、卡纸
【教学过程】
一、创设情景,揭示问题
1、在一次数学基础知识抢答赛中,老师出了这么一个问题,一个五边形的所有角相加等于多少度?一个学生马上能回答,你们能吗?
2、教具演示:将一个五边形沿对角线剪开,能分割成几个三角形?
你能说出五边形的内角和是多少度吗?(点题)意图:利用抢答问题和教具演示,调动学生的学习兴趣和注意力
二、探索研究学会新知
1、回顾旧知,引出问题:
(1)三角形的内角和等于_________.外角和等于____________
(2)长方形的内角和等于_____,正方形的内角和等于__________.
2、探索四边形的内角和:
(1)学生思考,同学讨论交流.
(2)学生叙述对四边形内角和的认识(第一二组通过测量相加,第三四组通过画对角线分成两个三角形.)回顾三角形,正方形,长方形内角和,使学生对新问题进行思考与猜想.以四边形的内角和作为探索多边形的突破口。
(3)引导学生用"分割法"探索四边形的内角和:
方法一:连接一条对角线,分成2个三角形:
180°+180°=360°
从简单的思维方式发散学生的想象力达到"分割"问题,并让学生发现问题,解决问题教学步骤教学内容备注方法二:在四边形内部任取一点,与顶点连接组成4个三角形.
180°×4-360°=360°
3、探索多边形内角和的问题,提出阶梯式的问题:
你能尝试用上面的方法一求出五边形的内角和吗?(第一二组)
你能尝试用上面的方法一求出六边形的内角和吗?(第三,四组)那么n边形呢?完成后填表:
n边形3456...n分成三角形的个数1234...n-2内角和...4、及时运用,掌握新知:
(1)一个八边形的内角和是_____________度
(2)一个多边形的内角和是720度,这个多边形是_____边形
(3)一个正五边形的每一个内角是________,那么正六边形的每个内角是_________
通过学生动手去用分割法求五(六)边形的内角和,从简单到复杂,从而归纳出n边形的内角和
三、点例透析
运用新知例题:想一想:如果一个四边形的一组对角互补,那么另一组对角有什么关系呢?
四、应用训练强化理解
4、第83页练习1和2多边形内角和定理的应用
五、知识回放
课堂小结提问方式:本节课我们学习了什么?
1多边形内角和公式
2多边形内角和计算是通过转化为三角形
六、作业练习
1、书面作业:
2、课外练习:
三角形课件
每位教师都要为每一节课准备详尽的教案和课件,努力将它们设计得更加优美完善。教案不仅是衡量学习成果和提高教学效果的重要工具,也是教师们必备的必须物品。因此,希望我们的“三角形课件”能够满足您的需求,也欢迎你的阅读和分享,希望你能喜爱我们的作品!
三角形课件(篇1)
教学目标:
1.通过观察、操作、比较,发现三角形角的特征,会给三角形按角进行分类,理解并掌握三角形的种类特征,能解决一些生活中的实际问题。
2.在分类中进一步提高观察能力、操作能力,体会分类标准的严密性。
教学重点:三角形的分类标准
教学难点:以角为标准进行分类
教具准备:一支彩笔、一把尺子、一个双面胶、一把剪刀、手工纸两张、一个磁铁。每个小组准备一张A4纸。
设计过程:
预设的教师活动
可能的设计活动
设计说明
一、谈话导入
同学们,我们已经学过了哪些角?
课件出示锐角、直角、钝角。能说这些角的名称吗?
(课件演示)老师在每个角上添上一条线段把它们变成变成了什么图形?
什么是三角形呢?
请同学们用水彩笔和尺子任意画一个三角形。画好后用剪刀把它剪下来。
二、新授
1.小组内把剪下来的三角形分类。
如果和他们分法相同,请有序的的把三角形帖在它的同类三角形一起。
2.揭题:三角形的分类
3.小组讨论每类角的共同特征。
4.比较锐角三角形、直角三角形、钝角三角形的相同点和不同点。
6.如果我们把三角形看成一个大集体,这个大集体有几名成员。课件出示集合图。
三、巩固练习
1.
判断题。
①任意一个三角形,至少有两个角是锐角。
②最大的角是锐角的三角形一定是锐角三角形。
③直角三角形中有2个直角。1个锐角。
④一个三角形中只能有一个直角或者一个钝角。
2.猜一猜被信封遮住的是锐角三角形、直角三角形还是钝角三角形?
说说你的理由。
3.用一张正方形纸折出4个完全一样的直角三角形。
4.找出物品中哪些是我们今天学过的三角形。
5.用信封里的三角形拼成美丽的图形或图案,每组四名学生合作。还有四名学生到黑板上来拼。
生:直角、锐角、钝角、平角、周角
生:三角形
由三条线段围成的图形叫做三角形
组长来展示分类的情况。组长说这样分的理由。
组1:根据三角形大小来分。
组2:根据纸的颜色给三角形分类
组3:根据三角形的角的特点来分
揭示特征把三角形取名。锐角三角形、直角三角形、钝角三角形
相同点是:每个三角形都有2个锐角。
不同点是:它们的最大角不一样,有锐角、有直角、有钝角。所以三角形的名称是由三角形中的最大角决定的。
学生自由读题,用手势表示对与错。错题学生要说出自己的理由。
用一张正方形纸折出4个完全一样的直角三角形,有两种折法,一是,把正方形对角对折再对折,二是,把正方形对边对折成长方形,再沿着长方形的对角线对折。
通过复习角的知识,让学生对知识进行迁移,根据角的特点给三角形进行分类作好铺垫。
学生通过画、剪三角形让学生更深的理解封闭图形,也培养了学生的动手操作能力。
小组内进行分一分,说一说自己的分类的标准是什么。培养学生的小组合作的意识。
重视培养学生的观察能力的培养。
通过判断检验学生对知识的掌握情况和灵活运用知识的能力。
让学生猜一猜是什么三角形?培养了学生观察能力和逻辑思维的推理能力。通过折长方形,,不仅培养了学生的操作能力,还培养了学生数学思维的发散能力。
找找生活中的物品中哪些是今天我们认识的三角形。让学生体会学数学是有用的,数学就在我们的身边。让学生更爱数学、更喜欢数学。通过拼图让学生得到了数学美的熏陶。
三角形课件(篇2)
【教材分析】本课是苏教版四年级下册第七单元第一课时的内容。学生在已经直观认识了三角形,且对三角形有一些感性认识。所以教学例1时选择从生活中的场景入手,通过让学生画三角形、说三角形特点,逐步总结出三角形概念及基本特征。教学例2,也是从现实情境出发,通过测量人字梁高度,感知三角形的底和高,并由此抽象出三角形高和底的概念。从实例到抽象概念,使学生获得正确而清晰的表象。
【学情分析】学生在低年级时已经对三角形有了直观的认识和初步的感知,这种感知往往来自于生活,所以教学时例题的选择都是来源于现实生活,有利于学生对概念的抽象。画高对学生来说是一个难点,所以教学过程中要引导学生和已有知识进行练习,在比较中区分,从而正确的对知识体系进行重组和建构。
【教学目标】
1、知识与技能:使学生联系已有知识和经验,通过观察、操作、测量等具体活动,认识三角形的基本特征,初步形成三角形的概念,知道三角形的高与底的含义,会用三角尺画三角形的高(在三角形内)。
2、过程与方法:使学生经历探索和发现三角形基本特征的过程,积累一些观察和操作、比较和分析、抽象和概括等活动经验,体验数学抽象的一般过程,发展空间观念。
3、情感态度和价值观:使学生在参与数学活动的过程中,获得一些学习成功的体验,进一步激发数学学习的兴趣,树立学好数学的信心。
【教学重点】认识三角形的基本特征,理解三角形概念。
【教学难点】会画三角形底边上的高。
【课时安排】安排1课时【课前准备】课件,直角三角尺,学生每人一张学习单
【教学过程】
一、谈话导入出示大桥夜景,提问:同学们,你能从这幅图中看到什么?师:生活中你还在哪些地方见过三角形?多媒体展示存在于生活中的三角形。
揭题:生活中我们在许多地方见到过三角形,到底什么样的图形才能叫做三角形,三角形又有哪些特征呢?今天跟随老师一起来认识三角形(板书课题)
二、探究新知(一)、三角形概念、特征1、画三角形提出要求:刚才我们看了那么多的三角形,你能画出来一个吗?生尝试画三角形,教师巡视,收集学生存在的错误案例。
2、展示交流,抽象概念师提问:你画的三角形有什么特点?小组交流。
指名展示,并介绍所画三角形特点。
(1)三角形由三条边组成。师追问这三条边是什么线?根据学生回答板书:线段
(2)出示反例,,这三条线段能组成三角形吗?这三条线段应该是什么关系?板书:围成
(3)三条线段围在一起就是三角形了吗?出示反例。这三条线段应该怎样围在一起呢?板书:首尾相接抽象概念:根据我们刚才的交流不难发现,这些是三角形共同的特点。所以,我们把由三条线段首尾相接围成的图形叫做三角形。板书完整。
师:同位之间看着手中的图形互相说一说什么样的图形叫做三角形。
3、自学三角形各部分名称师:你知道三角形各部分的名称吗?自学书本75页。
组织交流:这是三角形的什么(边)?有几条边?顶点(有几个顶点)?角,有几个角?4、试一试提问:如果给你顶点让你画出一个三角形,你能画出来嘛?出示题目,自行阅读理解题目意思。学生绘制。
交流展示,谁愿意展示一下自己所画的三角形?提问:任选3个作为顶点,都能画一个三角形吗?你有什么发现?为什么下面3个点不能画出一个三角形。交流(找2名学生说)小结:在同一条直线上的点只能画出一条直线。所以三角形的顶点能不能在同一条直线上。
(二)、认识高和底1、教学三角形底和高的概念师:三角形在我们生活中还有很多的用处,出示屋顶图。从这几幅图中你又能看到什么?知道这是什么吗?如果学生回答不出则师简单介绍人字梁。
师:同学们手中也有一张人字梁图,你能量出图中人字梁的高度吗?学生尝试。
展示交流,指名演示度量过程并提问
(1)你量的是从哪里到哪里的距离?引导学生说出从人字梁的顶点到它对边的距离
(2)我们所量的这条线段和人字梁的底边在位置上有什么关系?(互相垂直)
(3)你能想办法验证一下吗?指名演示验证过程。
(4)师小结:通过刚才讨论我们可以发现人字梁的高度,其实就是从这个三角形的顶点(出示顶点)到对边所做的垂直线段的长度(边指边说)。
抽象概念:如果我们把这个人字梁所在的三角形画出来,那么从三角形的一个顶点向它的对边作一条垂直线段,这条垂直线段就是三角形的高(板书,画出高,和直角标志),而这条对边就叫做三角形的底(标出底)。
回忆刚才过程,说一说什么是三角形的高,什么是三角形的底?2、教学画高
(1)提问:如果已知三角形的底,怎样画出底边上的高呢?
(2)学生尝试画底边上的高。
(3)指名演示画高,总结画高的方法和注意点。
(4)对比画三角形底边上高的方法和过直线外一点画已知直线垂直线的方法。寻找相同和不同点。
三、练习巩固同学们这节课收获可不少,不仅知道了什么样的图形是三角形,还知道了三角形的特征,认识了三角形的底和高,也知道如何画底边上的高。接下来就是要检验你们的时刻了。做好准备了吗?
1、练一练第1题。
(1)学生同位之间互相说一说。
(2)指名说一说哪些是,哪些不是,为什么?
2、练一练第2题。
(1)说一说题目有哪些要求。注意取整厘米。
(2)学生独立完成。
(3)反馈交流。注意让学生表达清楚:第一个图形底边上的高为2cm。
底3、下图中底边上的高画的对吗?底底底④ ③ ② ①
(1)投影出示,先观察,思考如何改正?
(2)指名用直角三角尺把正确的画图方法摆出来。
(3)说说在画高时我们需要注意哪些问题。
4、练习十二第1题。
(1)独立完成,指名展示自己的作业,并说说画高的方法。
(2)改变第一个三角形的底,提问:这时该如何画高。指名演示。再改变底边,又该如何画?观察图1,你有什么发现?三角形有几条高?
(3)讨论直角三角形的的高。提问:这是一个什么三角形?你能指出它的两条直角边吗?如果以一条直角边为底(老师用手指),怎样画三角形的高?指名摆三角尺。你有什么发现?如果以另一条直角边为底呢?你又有什么发现?
(4)小结:直角三角形中以一条直角边为底,另一条直角边就是三角形的高。
(5)提问:你能画出这个直角三角形的第三条高吗?以哪条边为底?
5、练习十二第2题。
(1)学生按要求画出三角形。
(2)同桌互相检查所画的三角形是否满足要求,交流是怎样画的。
(3)展示学生作业,并提问:问什么条件相同,所画的三角形却不同呢?你有什么发现?
(4)如果用同一条底边,你能画出多少个等高的三角形?
四、全课总结提问:这节课学习了什么?你有哪些收获?还有什么疑问?
【板书设计】认识三角形由三条线段首位相接围成的图形叫三角形。
高底教学反思:本课教学过程中通过画三角形,说三角形特征,并用正反例引导学生建立正确的三角形概念,从而突出本课教学重点。而对于本课的教学难点,则通过让学生联系已有知识,对比知识之间的联系和区别,从而对知识体系进行重新建构,突破难点。而练习过程中,除了关注基本的知识技能的掌握,还通过一些题目发展学生的思维能力。
三角形课件(篇3)
题目:三角形的特性
时间:xxxx年4月20日
课时:1课时
来源:教科书第59页至61页,练习十五第1、2、3题
课型:图形与几何
授课对象:四年级学生
课标分析:
1、课标要求:联系生活实际,通过动手画、拼摆、设计等活动,使学生进一步感受三角形的特征及三角形与四边形的联系,感受数学的转化思想,感受数学与生活的联系,学会欣赏数学美。
2、使学生在探索图形的特征、图形的变换以及图形的设计活动中进一步发展空间观念,提高观察能力和动手操作能力。
教材分析:
1、《三角形的特性》是人教版小学数学四年级下册第五单元的内容。
2、三角形是平面图形中最简单也是最基本的多边形,一切多边形都可以分割成若干个三角形,并借助三角形来推导出有关的性质,而三角形的稳定性在实践中有着广泛的应用。因此把握好这部分内容的教学不仅可以从形的方面加深学生对周围事物的理解,发展学生的空间观念,而且可以在动手操作、探索实验和联系生活应用数学方面拓展学生的知识面,发展学生的思维能力和解决实际问题的能力,同时也为以后学习图形的面积计算打下基础。
学情分析:
在日常生活中学生经常接触到三角形,对三角形有一定的感性认识,而且本节课是在学生已经学习了线段、角、直观认识了三角形的基础上进行教学的,所以本节课是三角形认识的第二阶段。这一阶段的学生已经积累了一些有关“空间与图形”的知识和经验,形成了一定程度的空间感,具备了一定的抽象思维能力。但是,几何知识就是初步的几何知识对于小学生来说都是很抽象的,要解决数学的抽象性与小学生思维特点之间的矛盾,就要充分利用教具,学具,运用其直观性进行教学。
确立目标:
1、通过动手操作和观察比较,使学生进一步认识三角形,理解三角形的概念,认识三角形各部分名称,知道三角形的.底和高,会在三角形内画高。
2、通过摆一摆、拉一拉的实验,使学生理解三角形的稳定性,了解这一特性在生活中的应用。
3、培养学生观察、操作能力和应用数学知识解决实际问题的能力。
4、体会数学与生活的密切联系,培养学生学习数学的兴趣。
评价标准:
测评目标1:知道三角形的特征,正确说出三角形各部分的名称。
测评目标2:知道三角形的底和高的含义,能正确画出三角形的高。
测评目标3:掌握三角形的特性,了解这一特性在生活中的运用。
教学环节
环节1:
直观感知,导入新课
创设情境,生成问题。
1、说说生活中有哪些物体的形状是三角形的。展示学生收集的有关三角形的图片
2、课件出示埃及金字塔图片,简单介绍有关埃及金字塔的历史,帮助学生进一步了解古埃及文明史,激发学生的学习兴趣。让学生找出金字塔上的三角形,并用笔把三角形描出来。
3、课件出示大桥图片,先让学生整体观察大桥,感受大桥的宏伟、壮观,再让学生从大桥中找出各种各样的三角形,并用笔把三角形描出来
4、能手口一致地描绘三角形。让学生把描绘三角形的动作和语言描述紧密结合,增加学生对图中不同形状三角形的直观感受。
5、导入新课。(板书:三角形的特性)
师:我们大家认识了三角形,三角形看起来简单,但在工农业生产和日常生活中有许多用处,看来生活中的三角形无处不在,三角形还有些什么奥秘呢?今天这节课我们就一起来研究这个问题。
让学生在观察交流中复习学习过的知识,为后面的学习打下基础。
环节2:
操作感知理解概念
探索交流,解决问题
(一)三角形的概念
1、师:请你画一个自己喜欢的三角形,边画边想你是怎样画这个三角形的?你画的三角形有什么特点?教师根据学生的汇报板书,标出三角形各部分的名称。
师:同学们说得真好,现在请同学们把刚刚画的三角形标上各部分的名称。
2、概括三角形的定义。
师:那你认为什么样的图形才是三角形?由学生的回答总结出三角形的概念并板书:三条线段围成的图形叫做三角形。
怎样判断图形是不是三角形呢?“围成”和“组成”一样吗?有什么区别?
判断下面几个图形是不是三角形?课件出示。
3、认识三角形的底和高。
除了三角形概念,书中还向我们介绍了什么?自学课本60页余下的内容。
根据学生的回答小结出以下内容:
(1)三角形各部分的名称(边、角、顶点)
(2)如何用字母表示三角形。
(3)三角形的底和高。
师展示三角形高的画法并问:老师刚刚画的线段叫什么?(三角形的高)它所垂直的边叫什么?(三角形的底)在画的过程中让学感受三角形的底和高是一组互相垂直的线段,体会底与高的相互依存性,为学习三角形面积的计算奠定基础。
师:画三角形的高要注意什么?(用三角尺,画垂直符号)请同学们再画一个三角形并画出高,标上底和高。
指出这个三角形就可以表示为三角形ABC。请同学们把刚刚画的三角形也表示成三角形ABC。
(二)三角形的特性:
1、下面做一个游戏,请你用三根小棒摆一个三角形,用四根小棒摆一个四边形,你能摆几个?摆完以后小组内交流一下,看看你有什么发现。(让学生充分体会,无论怎么摆,所摆出的三角形大小、形状不变,摆出的四边形大小、形状可以发生变化。)
2、为什么呢?是什么确定了三角形的形状和大小呢?(角度确定形状,边长确定大小)
3、对给定的三角形、四边形进行拉伸.
给出教具,让学生拉一拉,看看有什么发现?(三角形三条边的长度确定了,这个三角形的形状和大小也确定了,不会发生变化了,由于四边形的角度会发生变化,所以它的形状也会发生变化,所以三角形具有稳定性。)根据学生的回答归纳出:三角形不易变形,具有稳定性。(板书)
4、看看下图中哪有三角形、四边形?想想它们有什么作用?
5、举出生活中应用三角形稳定性和四边形易变性的例子。
6、接着问:要使这个四边形像三角形一样拉不动,怎么办?
小结:三角形的这种特性在生活中的应用非常广泛,在今后学习数学的时候,我们应该多想想,怎样把数学中的有关知识应用到实际生活中去。
学生在已有知识的基础上自己动手画一个三角形,并观察总结出三角形的定义,三角形的特征。再在老师的指导下学会画三角形的高,最后通过学生动手拼三角形和四边形认识三角形不易变形的特性。
环节3:
巩固练习,提高认知
巩固应用,内化提高
1、完成60页做一做
2、指导学生完成练习十五1、2、3题。
先让学生尝试画,然后同桌交流画法,怎样画得又好又快?
环节4:
回顾反思,提高认识
回顾整理,反思提升
通过这节课的学习,你有什么收获?
1、三角形和四边形都是平面图形。
2、应用三角形的稳定性可以解决许多实际生活问题。
3、知道了用三角形三个顶点的字母可以表示一个三角形,会在三角形内画高。
在老师的眼里,三角形不仅具有稳定性,它还是一种美丽的图形。它和圆、长方形等一起构成了美丽的图形世界,可以说数学因为有了美丽的图形而五彩纷呈,生活因为有了美丽的图形而更加丰富多彩。
板书设计:
三角形的特性
1、定义:由三条线段围成的图形叫三角形。
2、特征:3条边,3个角,3个顶点。
3、特性:具有稳定性。
作业
教学反思
三角形课件(篇4)
一、创设情境,揭示课题
引入语:明年“六一”我们学校一年级有一批小朋友加入少先队,学校准备做一批红领巾,要我们帮忙算算要用多少布,同学们有没有信心帮学校解决这个问题?(屏幕出示红领巾图)同学们,红领巾是什么形状的?你会算三角形的面积吗?这节课我们就来一起研究、探索这个问题。(板书:三角形面积的计算)
二、探索交流、归纳新知
1.出示一个平行四边形
(1)平行四边形面积怎样计算?(板书:平行四边形面积=底×高)
(2)观察:沿平行四边形对角线剪开成两个三角形。两个三角形的形状,大小有什么关系?(完全一样)三角形面积与原平行四边形的面积有什么关系?
(3)上节课,我们把平行四边形转化成长方形来探索平行四边形面积的计算公式的。大家猜一猜:能不能把三角形也转化成已学过的图形来求面积呢?
2.分组实验,合作学习。
(1)提出操作和探究要求。
让学生拿出课前准备的三种类型三角形(各两个)小组合作动手拼一拼、摆一摆或剪拼。
屏幕出示讨论提纲:①用两个完全一样的三角形摆拼,能拼出什么图形?
②拼出的图形与原来三角形有什么联系?
(2)学生以小组为单位进行操作和讨论。
(3)展示学生的剪拼过程,交流汇报。
①各小组汇报实验情况。(让学生将转化后的图形贴在黑板上,再选择有代表性的情况汇报)
可能出现以下情况:(用两个完全一样的三角形摆拼)
(两锐角三角形)(两钝角三角形)(两直角三角形)(两等腰直角三角形)
②课件演示:用旋转平移的方法将三角形转化成各种已学过的图形。
师:通过实验,你们发现了什么?
引导学生得出:只要是两个完全一样的三角形都能拼成一个平行四边形。每个三角形的面积与拼成的平行四边形的面积有什么关系?
3.归纳公式
(1)讨论:
A、三角形的底和高与平行四边形的底和高有什么关系?
B、怎样求三角形的面积?
C、你能根据实验结果,写出三角形的面积计算公式吗?
(2)归纳交流推导过程,说出字母公式。
根据学生讨论、汇报,教师进行如下板书:
因为:三 角 形 面 积=拼成的平行四边形面积÷2
所以:三 角 形 面 积=底×高÷2
师:为什么要除以2?
生:……
师:如果用S表示三 角 形 面 积,用α和h分别表示三 角 形的底和高,那么你能用字母写出三角形的面积公式吗?
结合学生回答,教师板书S=ah÷2
同学们真了不起,得到了这个公式,我们就可以求出任何三角形的面积。用这个公式计算三角形的面积(指板书),需要知道什么条件?
三、应用新知,解决问题
师:有了公式,下面我们可以帮学校解决问题了。(回应引入问题)
1、(屏幕显示)出示85页例1:
学生独立完成(一生板演),集体订正。
师:你认为计算三角形的面积,什么地方容易出错?(强调“÷2”这一关键环节)
2、独立完成P85做一做。
完成后交流、讲评。
四、深化理解、应用拓展
1.课本86页的练习第1题。课件出示下图:
2、课本86页第2题:你能想办法计算出每个三角形的面积吗?。
3.想一想,下面说法对不对?为什么 ?
(1)三角形面积是平行四边形面积的一半。( )
(2)一个三角形面积为20平方米,与它等底等高平行四边形面积是40平方米。( )
(3)一个三角形的底和高是4厘米,它的面积就是16平方厘米。( )
(4)等底等高的两个三角形,面积一定相等。 ( )
(5)两个三角形一定可以拼成一个平行四边形。( )
4.求右图三角形面积的正确算式是( )
①3×2÷2 ②6×2÷2
③6×3÷2 ④6×4÷2
5.做课本86页第4题(然后汇报、评讲。)
要在公路中间的一块三角形空地(见下图)上种草坪。1O草坪的价格是12元。种这片草坪需要多少元?
五、回顾总结,深化提高
1.这节课我们探究学习了什么?是怎样探究的呢?(渗透数学方法)
2.今天我们分小组通过动手操作,相互讨论、交流,用摆拼(还可以用折叠、割补)等方法将三角形转化成学过的图形推导出了三角形面积的计算公式,这种“转化”的数学思想方法能帮助我们找到探究问题的方向,相信同学们今后能应用这一数学方法探究和解决更多的数学问题。
三角形课件(篇5)
一、说教材
1、我说课的内容是《九年义务教育人教版》第八册的《三角形的内角和》。
2、教材简析
三角形在平面图形中是简单的,也是最基本的多边形,这部分内容是在学生对三角形已经有了直观的认识,并且对三角形的特性及分类有了一定的了解的基础上进行学习的。通过这部分内容的学习,培养学生的实际操作能力、观察能力、小组合作交流能力、语言表达能力以及抽象的思维能力,为以后学习多边形打好基础。
3、教学目标
根据教材的内容以及学生的知识现状和年龄心理特点,我制定以下教学目标。
(1)知识目标:从实际出发,通过互动学习初步感知三角形的内角和是180度,在此基础上,用实验的方法加以探究。
(2)能力目标:通过教学活动,培养学生动手操作、归纳推理以及抽象概括的能力。
(3)情感目标:使学生经历探究的过程,体会与他人合作交流的乐趣,学会用数学的眼光去发现问题、解决问题。感受到数学的价值。
4、教学重点与难点。
《三角形内角和》的教学是学生从直观形象到抽象掌握的过程,即学生从感性认识到理性认识的升华,对学生发展类推的能力有着重要的作用。因此,我认为学生通过操作,自主探究三角形的内角和是180度是本节课的重点;采用多种途径证明三角形的内角和等于180度是本节课的难点。
5、教学准备
为了更好的达到教学目标,突出重点,突破难点,我准备以下教具和学具:课件、不同类型的三角形纸片、量角器、剪刀、胶水。
二、说教法学法
根据新课程教材的特点和学生实际情况,教学中以直观教学为主。运用动手观察,分组讨论等多种方法,采用现代化手段结合教材,让学生在“想一想”、“做一做”、“说一说”的自主探索过程发挥学生相互之间的作用,让学生自己动脑、动手、动口中促进思维的发展。培养学生的动手操作能力、语言表达能力和自学能力。
本节课在学生学习方法的引导上尽量体现:
①在具体的情景中,让学生亲身经历发现问题、提出问题、解决问题的过程,体验成功的快乐。
②通过师生、生生互动,探究、合作交流,完善自己的想法,形成自己独特的学习方法。
③通过灵活、有趣和富有创意的练习,提高学生解决问题的能力。
三、学生情况分析
学生在日常生活中接触了很多大小不同的角,但对于三角形内角和等于180度的知识,生活中很少接触,显得比较抽象,对于四年级的学生抽象思维虽然有一定的发展,但依然以形象具体思维为主,分析、综合、归纳、概括能力较弱,有待进一步培养。
四、说教学流程
为了达到本节课的教学目标,我这样设计教学流程:
1、设疑导入。
为了激起学生求知的欲望,再根据本课题的特点和四年级学生心理的特点,我采取了直接设疑导入。具体步骤如下:
(1)让学生汇报三角尺各个内角的度数,并计算出每个三角尺的内角和是多少度。
(2)提出问题:当学生答出三角尺的内角和度数之后,我问:所有的三角形的内角和都是180度吗?学生讨论之后引出课题。
2、动手操作,自主探究。
为创新学生的思维,张扬学生的个性,学生动手量、剪、拼等活动贯穿于整个课堂。我根据四年级学生的心理特点设计了这一环节,其目的是:让学生在活动过程中形成问题意识,从而展开想象,培养学生的问题意识。具体做法是:(1)先让学生思考如何验证三角形的内角和是180度,然后通过讨论交流得到几种验证方法。(2)让学生利用量角器量出学具三角形纸片的各个内角的度数,再求出三角形的内角和,初步感知三角形的内角和等于180度。(3)让学生利用剪拼的方法感知三角形的三个内角拼在一起是一个平角,从而得到结论。
3、巩固新知
本环节我设计了不同类型的习题。有操作题,计算题,画图题,拼角题等等。其目的是:通过这一环节,让学生掌握、理解三角形的内角和等于180度,并把所学知识回归于生活实践,从而达到情感、态度、价值观这一教学目标的实现。
五、板书设计
板书是课堂教学语言的一种表现形式,它具有启发性、指导性和应用性。精巧的板书设计有“引”和“导”的功能,“引”是引学生之思,“导”是导学生之路。
三角形课件(篇6)
各位评委、各位同行朋友:
大家上午好!
“三角形的内角和”是九年义务教育六年制新课程标准教科书第八册第二单元——认识图形中第三节的内容。
一、说教材和新课标
(包括教材、新课标和教学目标)
1、在学习本节内容——探索与发现三角形的内角和之前,学生已经掌握了有关角的分类和三角形的分类知识,知道平角的度数是180°,并且能够通过量角器测量角的大小。教材编排了通过小组合作学习形式,即每人随意画一个三角形,通过小组成员的分工与合作,求出每个同学画的三角形的内角和的度数。然后与学生共同分析各活动小组的“三角形内角和”的记录情况,进而归纳出三角形的内角和等于
180°。为证明这个结论的正确性和加深学生的认识,教材还编排了“拼一拼”(即把三角形的三个角撕下来拼在一起)和“折一折”(即先把一个长方形折成一个三角形,再把这个三角形的三个角折成一个平角)这两个实践与操作环节。本节教材的最后编排了已在三角形中两个角的度数求第三个角的度数的内容。
2、新课程改革的重要目标就是要改变学生学习数学的方式,其中一个非常重大的变化就是由过去注重教师“怎么教”到现在更重视学生“怎么学”,因此我认为:学生“怎么学”比“学什么”更重要。一个学生如果掌握了“怎么学”,就如同拥有了点石成金的仙人指,这才是他一身中最可宝贵的、无穷无尽的财富。基于此,我们的教学目的就不言可愈了。
基于新课标的要求,本课的教学目标是:
1、通过小组分工合作学习与亲身体念,学习和探索三角形的内角和等于180°;
2、利用三角形的内角和等于180°这个已知条件进行有关角的计算;
3、培养学生自主学习。
二、说教法和学法
在本课题的教法和学法主要体现在以下两方面:
1、突出学生作为学习主体的作用
学生是学习的主体,教学中放手让学生去尝试、去思考,让他们亲身感受知识的来龙去脉、获取知识的认知规律。作为教师,应以学生的发展为立足点,以自主探索为主线,以求异创新为宗旨,采取多媒体辅助教学,尽可能地为学生创设参与的情境,充分调动学生学习的积极性,强化学生的主体地位,不断培养学生自学能力。根据本节课教材内容和编排特点,按照学生认知规律,遵循教师为主导,学生为主体的指导思想,我主要采取操作尝试、观察对比、发现归纳等方法进行教学。
2、让学生在创造中学习,在学习中创造
学会在具体情境中发现问题、提出问题并初步解决问题,体念探索的成功、学习的快乐。通过动手操作、独立思考和小组合作交流活动,完善自己的想法,提高自己的技能;通过动手操作、观察辨析、自主探究,让学生全面、全程地参与到每个教学环节。鼓励学生大胆想象,通过自己的思考和探究,努力尝试去发现和创造,培养他们的创造精神。这也正是“新课标”赋予我们每一个教学工作者的神圣使命!
三、说教学过程
为了激发学生的学习兴趣,我事先邀请两个学生表演两个大小相去甚远的三角形的争辩:都说自己的内角和较大,用夸张搞怪的动作争得唾沫星四溅,以期引起学生的注意力,进而提出问题:到底谁说的正确呢?以“请你做裁判”为名引入课题。
接着进行小组分工合作学习活动,在小组内,每个同学画一个任意三角形,然后分工量角度、登记与求和,并对这些三角形的内角和的度数进行分析、归纳,得出三角形的内角和大约是180°左右的初步结论。接着由教师引导学生综合分析归纳各活动小组的计算结果,得出任何三角形的内角和都等于180°的结论。
为证明这个论断的正确性和加深学生的认识,教师接着组织学生进行“拼一拼”(即把三角形的三个角撕下来拼在一起拼成一个平角)和“折一折”(即先把一个长方形折成一个三角形,再把这个三角形的三个角折成一个平角)这两个实践与操作活动,使学生更进一步确信:三角形的内角和等于180°。同时向学生灌输数学王国里有许许多多的规律和奥秘,有待同学们去努力探索,以激发学生的学习兴趣。
接下来是知识的应用:已知三角形中两个角的度数求第三个角的度数以及其他的相关知识和练习。
四、教学演示
1、两个学生表演争论自己的三角形内角和大些,以让大家做裁判为名引入课题;
2、指导小组合作学习活动,然后综合归纳:三角形的内角和等于180°;
3、引导学生实践操作:拼一拼、折一折(以证明三角形的内角和确实等于180°);
4、练习:判断题
①钝角三角形的内角和大于直角三角形的内角和。
②把一个三角形剪成两个三角形后,每个三角形的度数不再等于180°了。
③直角三角形中的两个锐角和等于90°
5、学习求三角形中角的度数的方法……
三角形课件(篇7)
一、教学目标
1、知识与技能:学生通过动手操作,实践学习,能够按照三角形各个角、各条边的关系,给在三角形分类。
2、数学思考:利用已有的分类知识,概况出三角形的特点。
3、解决问题:在分类的过程中掌握三角的共性与个性,从而为进一步学习三角形的认识奠定定基础。
4、情感与态度:在共同学习中,训练学生的自我探索能力,培养学生主动探索精神中和创新意识。
二、教学准备
1、课件一个。内有三角形分类的标准,按角分、按边分的集合图及各个练习。
2、每个学生课前准备好各不相同的6个三角形。
三、教学过程
(一)复习旧知导入新课
同学们,上节课我们已初步认识了三角形,知道每个三角形都有三条边,三个角和三个顶点。今天这节课我们一起来学习三角形的分类。
(二)探索交流,解决问题
师:老师给大家带来了一幅图片,这是?生:三角形。
师:这艘船里面有很多各种各样的三角形,我们整理一下,看看有几类三角形。要给三角形分类,就要依据一定的标准,三角形可以按照什么来分呢?生:可以按照角,也可以按照边。
师:我们回顾一下角的知识。角可以分为锐角、直角、钝角。(白板演示)师:拿出你们的自学探究1,把这艘大船上的三角形先按照角分一分。
1、小组合作、讨论。
学生动手操作,教师巡视。(学生拿出信封里的8个三角形,动手操作,有的用量角器量角的度数,并进行讨论)
2、选择一名同学上黑板分一分。
同学们,经过大家的合作、讨论,你发现了三角形的三个角有什么特征?(学生会说出:我发现有些三角形有3个锐角,有些有2个锐角。我发现三角形有2个锐角,1个直角,我发现三角形有2个锐角,1个钝角??)
3、师生共同优化
根据角你认为可以把三角形分成几类?(交流。最后结论:三个角都是锐角,两个锐角一个直角,两面个锐角一个钝角)
在这些三角形中一定会有几个锐角?第三个角又会出现几种情况?(锐角、直角、钝角)
那三角形按角的大小可分几类?(分三类。一类是三个角都是锐角,另一类是有一个角是直角,还有一类是有一个角是钝角,我觉得这样既简单又清楚三角形各类的特点)
请大家根据它们的主要特征,给这三类取个名字好吗?(三个角是锐角的叫锐角三角形,有一个角是钝角的叫钝角三角形,有一个角是直角的叫直三角形)
那为什么直角、钝角三角形只要说出有一个角是直角、钝角就可以,而锐角三角形要说出三个角都是锐角呢?(因为每个三角形都有2个锐角,而锐角三角形才有3个锐角,没有说出3个锐角。我们就不能确定它属于什么三角形)
4、得出结论。
三角形按角可分三类(幻灯片出示集合图)。
直角三角形
锐角三角形
钝角三角形
5、研究按边的分类
(1)根据角可以把三角形分成三类,你们还有其他发现吗?看看边有什么规律呢?(①我发现我这个锐角三角形三边相等。②我这个三角形只有两边相等。③我的这个三角形三边都不相等)
交流中得到:三角形按边的长短也有三种情况,一种是三边不相等,一种是两边相等,另一种是三边都相等。
(2)教师归纳:我们根据三角形三边的长短,可把三角形分为三种。(板书:按边分类)
①三边都不相等的三角形,我们把它叫做不等边三角形(任意三角形)。 ②两边相等的三角形,叫做等腰三角形,是特殊的三角形。③三边都相等的三角形叫等边三角形,是特殊的等腰三角形,也叫做正三角形。
6、认识等腰、等边三角形各部分的名称。
(1)课件出示。认识等腰三角形的腰和底,等边三角形的三条边。师生在交流中指出各部分名称:
等腰三角形中相等的两边我们把它叫做腰,另一边叫做底。我们把等边三角形叫做特殊的等腰三角形。等边三角形一定是等腰三角形,而等腰三角形只有两边相等,等腰三角形不一定是等边三角形。
(2)探究等腰三角形和等边三角形角的待征。
7、同桌合作研究这两种三角形的三个角。(量一量角的大小)
师生交流得出:等腰三角形两条腰所对的角叫底角,两个底角也相等。另一个角叫顶角。等边三角形的三个角都相等。
8、掌握按边分类三角形之间的关系。三角形按边分类的情况(课件出示集合图)。
(三)巩固应用,内化提高
1、说书上84页三个生活中的例子分别是什么三角形?
2、判断
(四)回顾整理,反思提升
今天这节课你们学会了什么?你是怎样学到这个知识的?最高兴的上什么?还有什么不懂的地方吗?对老师有什么建议?教学反思
在设计本课教学时,我觉得“要无限地相信学生的潜力”,我决定只要学生自己能说的、能做的我就绝对不说、不做。整堂课学生的自主学习相当充分,并不是留于形式,浮于表面,而是实实在在的自主学习。特别是在探索三角形分类的过程中,多次让学生观察、思考、讨论,自主探索三角形的分类知识,教师仅仅起了组织和引导的作用
三角形课件(篇8)
教学目标:
●让每位学生通过动手操作,经历给三角形分类的过程,认识并识别锐角三角形、直角三角形、钝角三角形、等腰三角形和等边三角形,了解各种类型三角形的特点。
●通过观察、比较、归类,培养学生的观察能力和思维能力。
●创设恰当的问题情景让学生充分地、主动地进行思考、归纳和相互讨论,激发其更加积极主动学习的精神和探索的勇气;通过小组合作探究,培养学生学会合作学习。
教学重点:
认识锐角三角形、直角三角形、钝角三角形、等腰三角形和等边三角形,体会每一类三角形的特点。
教学难点:
理解并掌握各种三角形的特征。关键:学会根据事物的某一特征对其进行分类。教学准备:三角形卡片若干张
一、谈话导入
师:同学们,今天咱班来了许多客人,你能对教室里的人进行分类吗?(学生们想到按性别分、按发型分、按年龄分、按视力分、按身份分等多种不同的分类标准)很好,分类的标准不同,分的结果也不同。这节课我们就来研究《三角形的分类》。板书课题
二、探究新知
1、出示幻灯片1前置作业
2、研究分类标准
①师:下面我们就围绕这几个问题展开研究。首先,小组讨论我们可以按什么标准给三角形分类?你们组想怎样分
②师:小组代表来说说你们是怎样想的?组1:可以根据这些三角形角的特点来分类。组2:也可以根据边的特点给这些三角形分类。 ㈡三角形的分类
1、三角形的分类
师:老师也同意你们的观点,下面我们就根据三角形角和边的特点,来对这些三角形进行分类。
请同学们拿出课前老师发的信封,请小组长分好工,一起合作完成这个活动。开始吧。
2、学生汇报
师:同学们分好了吗?先请这个小组派同学到前面来说一说,你们是怎样对这些三角形分类的?
3、认识锐角三角形、直角三角形、钝角三角形
组1:我们组通过观察和测量,发现这些三角形有的三个角都是锐角,有的有一个角是直角,有的有一个角是钝角。所以我们将三个角都是锐角的三角形分为一类,把有一个角是直角的三角形分为一类,把有一个角是钝角的三角形分为一类。师:你说的真好。和他们组分的一样的举手?恩,实际啊在数学上根据三角形角的特征也是这样分类的。(师指着按角分的三角形逐一说)像这样,三个角都是锐角的三角形,我们就把它叫做——锐角三角形(板书);像这样,有一个角是直角的三角形,我们就把它叫做——直角三角形(板书);有一个角是钝角的三角形,我们就把它叫做——钝角三角形(板书)。
什么叫锐角三角形、直角三角形、钝角三角形呢?小组内练习说一说。谁来汇报?
4、小结。
师:在三角形这个大家庭中,根据角的特征,我们可以将它分为哪几类?(生说师出示幻灯片2集合图)
生:根据角的特征,我们可以将三角形分为锐角三角形、直角三角形、钝角三角形。
5、练习出示幻灯片3
6、出示幻灯片4小组合作学习三种三角形角的特点
7、学生汇报
师:根据三角形角的特点,我们可以把三角形分成这样三类。我们再来看看其他同学是怎样分的。请这个小组也派一名同学到前面来说一说,你们是怎样对这些三角形分类的?
组2:通过测量,我们发现有的三角形三条边的长度都相等,有的三角形有两条边长度相等,所以我们组这样进行分类:将三条边都相等的分为一类,有两条边相等的分为一类,其他的分为一类。
5、认识等腰三角形、等边三角形①认识等腰三角形
师:还有哪些同学是这样分的?同学们分得真仔细。
(师手指等腰三角形)同学们,象这样有两条边相等的三角形,叫做等腰三角形。(板书)
②学习各部分名称
师:我们来进一步认识等腰三角形,请同学们看屏幕。(出示幻灯片
5、
6、7)
在等腰三角形中,相等的两条边叫做它的腰,另一条边叫做它的底;两条腰之间的夹角叫做它的顶角,腰与底之间的夹角叫做它的底角。
同学们看,等腰三角形有几个底角?生:等腰三角形有两个底角。
师:这两个底角有什么关系呢?请同学们动手研究研究。生:我通过测量底角的度数,发现等腰三角形两个底角相等。师:有没有不一样的方法?
生:我将等腰三角形对折,发现两个底角重合,所以也发现两个底角相等。
师:谁来说说看你可以根据什么判断一个三角形是不是等腰三角形?生1:看这个三角形中是否有两条边相等。生2:看这个三角形中是否有两个角相等。 ③出示幻灯片8做一做
出示等腰直角三角板、红领巾、底角为75度的等腰三角形和底角为60度的等腰三角形,让学生逐一判断是否是等腰三角形。 ④认识等边三角形,了解它的特点
师:同学们,其实底角为60度的等腰三角形(幻灯片9),是等腰三角形的一种特殊情况。它的顶角也是60度,它的三条边都相等。象刚才同学们找出的4号、6号三角形都是这种情况。象这样,三条边都相等的三角形,我们把它等边三角形。
谁能完整地说说等边三角形有什么特点?
生:等边三角形三条边都相等,三个角都相等。
师:也就是说,根据三角形边的特点可以把三角形分为两类,一类是不等边三角形,一类是等腰三角形。等边三角形是特殊的等腰三角形。(出示幻灯片10集合图)
⑤出示幻灯片11做一做
师:你能从一些三角形中分辨出等腰三角形、等边三角形吗?
三、水平测试
师:刚才同学们通过观察,找到了给三角形分类的标准,并根据三角形角和边的特点对三角形进行了分类。老师要看看你们学的怎么样
㈠填空出示幻灯片12 ㈡判断出示幻灯片13 ㈢信封游戏出示幻灯片
三角形课件(篇9)
[设计思路]
这节课主要运用动手实践、自主探索、合作交流的学习方式,通过操作、讨论、交流等活动,使学生主动地获得数学知识的技能,发展学生的思维能力,培养学生创新意识。教学中加强数学知识与生活实际的联系,让学生体会到数学的价值,激发学生的学习兴趣,培养学生应用意识和实践能力。设计练习时应具有一定针对性、层次性、实践性,以此巩固三角形特征的认识。
[教学目标]
1、使学生联系实际和利用生活经验,通过观察、操作、测量、等学习活动认识三角形的基本特征,知道三角形各部分的名称,了解三角形的两边之和大于第三边。
2、让学生在由实物到图形的抽象过程中,在探索图形特征以及相关结论的过程中,进一步发展空间观念,锻炼思维能力。
[教具、学具准备]
学生准备小棒若干根(包括10cm、6cm、5cm、4cm长的小棒各一根),三角板,铁丝。
[教学过程]
一、创设情境,提出问题
1、(课件出示:如下图)师:老师每天上班都要从学校先经过加油站,再从加油站到学校,有没有更近一点的路呢?(从家直接去学校)
2、师:为什么从家直接去学校这条路最近呢?我们可以把这几个地点和路线看成什么图形呢?
3、谈话:三角形是我们过去认识的图形,这里面还有很多数学问题,今天同学要通过动手操作,自己来探索发现。(板书:三角形的认识)
[设计意图:创设学生熟悉的生活情境,提出问题引发学生深入思考,引起悬念,从而激起学生探索的愿望]
二、动手操作、探索新知
(一)感知三角形
1、师:生活中你在哪些地方见到过三角形?课件演示生活中的一些三角形。
2、师:同学们在生活中找出了许多三角形,你能想办法自己做个三角形吗?
学生操作,教师巡视指导
3、展示学生做出的各种三角形,并说说做的过程和方法(学生可能是用小棒摆,铁丝围,用纸折,用三角板画……)
指名让一名学生用小棒摆一个三角形,师故意拨动小棒,使学生明白摆小棒时应首尾相连。
4、师:同学们用自己的方法做出了不同的三角形,你们能自己画一个三角形吗?在课本第23页的点子图上自己画一个三角形。
5、师在黑板上画出三角形。
6、师:我们已经做了三角形,又画了三角形,你们知道三角形各部分的名称吗?自学课本第22页下面的图。
学生找出黑板上三角形的三条边、三个角、三个顶点。(师相机板书)
7、在自己画出的三角形上,标出各部分的名称。
8、小结:三角形是有三条线段围成的图形,它有三条边、三个角、三个顶点。
[设计意图:通过让学生自己动手做三角形、画三角形,并在学生摆小棒的过程中故意“捣乱”,让学生体验到三角形是由三条线段围成的图形,也为后面学生的活动打好基础;通过自学认识三角形有三条边、三个角、三个顶点,逐步形成三角形的概念。]
(二)感受三角形三条边的关系
1、谈话:刚才我们用小棒摆了三角形,如果任意给你们三根小棒能把他们围成三角形吗?(有的说“能”,有的说“不能”。)让我们动手实验一下吧!
小组活动要求:
a、从四根中任意选三根(小棒的长度分别为:10cm、6cm、5cm、4cm)
b、记录所选三根小棒的长度,看一看能否用选定的三根小棒围成一个三角形。
c、小组讨论有什么发现?
学生操作,教师巡视指导
2、展示和报告实验结果,说说选的哪三根小棒能围成三角形,哪三根小棒不能围成三角形。
3、说说能不能围成三角形跟小棒的什么有关?(长度)课件演示不能围成三角形的两种情况。
4、师:通过刚才的小组活动,老师的演示,你有什么发现?
引导学生说出:当两根小棒的长度之和等于或小于第三根时,就不能围成一个三角形。
5、观察能围成的三角形的三条边,看看有什么发现?
师生共同总结出:三角形两条边长度的和大于第三条边。
[设计意图:让学生动手操作、小组合作,让学生自己在操作过程中感受三角形三条边之间的关系;在交流中升华。培养学生动手操作能力,真正体现了学生学习方式的改善,体现了以学生发展为本的新理念。]
三、变式练习、加深理解
1、回到课开始的关于“老师去学校”的生活情境,现在可以说说什么从家直接去学校这条路近呢?
2、判断下面的线段能不能围成三角形?(“想想做做”第二题)
2厘米、4厘米、6厘米
5厘米、2厘米、5厘米
6厘米、2厘米、5厘米
总结窍门:只要看较短的两边之和大于第三边就能判断能否围成三角形。
3、把一根14厘米长的吸管剪成三段,用线串成一个三角形,能做多少个?如果每小段剪成整厘米长,能剪几个?
[设计意图:三个练习设计体现了一定的层次性,第一个练习前后呼应,让学生认识到数学知识源于生活,又用于生活;第二个练习旨在让学生学以致用,并总结出窍门;第三个练习有一定难度,拓展学生的思维,使不同的学生得到不同的发展,体现了“下要保底,上不封顶”的教学思想。
四、总结延伸
1、 师:这节课你对三角形有了什么新的认识?你有那些收获?
2、(课件演示)摇晃的椅子加了一根木棒就稳了,艾非尔铁塔高一千多米,这么多年依然雄伟壮观……这到底什么原因呢?其实这就跟三角形一个重要的特征有关,有兴趣的同学课后可以去查查资料研究研究。
三角形课件(篇10)
设计理念:
数学课程标准指出:有效的数学学习活动不能单纯地依赖模仿和记忆,动手实践、自主探究与合作交流是学生学习数学的重要方式。本课的教学遵循学生的认知特点,为学生提供大量的观察、思考、操作、合作、交流、验证等空间和时间,使学生在自主探究和合作交流中,学会给三角形分类,掌握各类三角形的特征,体会数学的思想方法并获得广泛的数学获得经验。
教学内容:
人教版小学数学四年级下册第83—84页的内容。
学情与教材分析:
三角形对于学生来说是比较熟悉的,三角形的基本特征和各部分名称学生都已经掌握,而且学生已经学过了角的分类,认识了各种角的特征,这对于学生进一步学习三角形的分类打下了扎实的基础,在三角形分类的过程中,能沟通知识间的联系,掌握各种三角形的特征,培养学生的探究意识和合作意识。提高解决实际问题的能力,发展学生的空间观念。
教学目标:
1、通过观察、操作、比较,会根据三角形的角和边的特点进行分类,掌握各种三角形的特征。
2、在活动中渗透分类和集合的数学思想,培养学生动手操作能力和归纳概括能力,进一步发展学生的空间观念。
3、在三角形分类的过程中,沟通知识间的联系,培养学生的探究意识和合作意识。
教学重点:
会根据角和边的特点给三角形分类。
教学难点:
掌握各种三角形的特征。
教学准备:
课件、各类三角形学具、实验报告单、量角器、尺子等。
教学过程:
课前互动:用手比角。
一、创设情境,复习旧知
1、猜谜,复习旧知
师:孩子们,喜欢猜谜吗?(喜欢)今天,老师给大家带来了一个谜语,猜猜看。
课件出示:
形状似座山,
稳定性能坚。
三竿首尾连,
学问不简单。
——打一几何图形
师追问:猜得真准!你是怎么猜出来的?
2、导入、揭示课题
师:三角形有三个角和三条边,它的稳定性在日常生活中有着广泛的应用。你瞧,今天三角形王国的许多朋友来了(课件出示:不同形状的三角形),它们的形状一样吗?(不一样)对,它们形态各异,各有各的特点。这节课咱们就根据它们的特点来分分类。(板书课题:三角形的分类)
(设计意图:趣味竞猜,引“生”入胜。通过竞猜,唤起学生对三角形的角和边的有意注意,激活学生的学习热情,做到“课伊始,趣亦生”。)
二、实践操作,探究分类
师:孩子们,认真想一想,你要根据什么来给这些三角形分类?有不同意见吗?对,分类要按一定的标准进行,三角形可以按三个角和三条边的特点进行分类。接下来我们先按角来分。
(一)、按角分
1、师:老师把这些三角形放在小组长的1号信封里,在操作之前我们来看看学习提示,请位同学读一读。
学习提示:
A、每个组员从1号信封里取出2个三角形,仔细观察或比一比、量一量三角形三个角的每个角分别是什么角,标在三角形上。
B、有顺序地汇报,把同一类的三角形放在一起。
C、组长填写好报告单。
D、每组派一名代表汇报。
2、动手操作,合作分类。
3、全班汇报交流、评价。
师:你们组分成几类?哪几个分成一类?有什么特点?有不一样的分法吗?
4、课件展示,并根据各类三角形的特点起名称。
5、小结,师介绍三角形按角分的集合图并板书集合图。
6、比较三种三角形的异同点。
7、小结
(二)、按边分
1、师:学会了按角的特点给三角形分类,我们再来研究按边分的三角形。我把这些三角形放在小组长的2号信封里。操作之前请看学习提示,请位同学读一读。
学习提示:
A、每个组员从2号信封里取出1个三角形,用自己喜欢的方式研究三角形三条边的长度,你发现了什么?
B、有顺序地汇报,把同一类的三角形放在一起。
C、每组派一名代表汇报。
2、动手操作,合作分类
3、全班汇报交流、评价。
4、课件展示,并根据各类三角形的特点起名称。
5、认识等腰三角形和等边三角形各部分的名称,以及等腰三角形两底角的关系和等边三角形的三个内角的关系。
6、说一说生活中见过的等腰三角形和等边三角形,课件展示。
7、小结。
(设计意图:“自主学习的过程实际就是教学活动的过程”。以活动促学习是本节的教学定位。在活动中,给学生足够的时间和空间,自由的、开放的探究数学知识的产生过程。通过看一看、想一想、议一议、分一分、猜一猜等多种形式的学习,为学生提供更多“数学对话”的机会,力求让学生真正地动起来,充分展现做中学,从而获得对三角形边、角特征的认识,进而学会给三角形分类,促进学生的分类、概括、推理以及动手操作能力的提高,使他们在活动的过程中感悟出数学的真谛,逐渐养成探索的习惯,培养学生合作意识和创新能力。)
三、巩固练习,内化提高
1、猜角游戏
师:把三角形藏起来,只露出一个角,你能猜出是哪种三角形吗?(课件分别出示:露出一个直角、一个钝角、一个锐角)
追问:你是怎么猜出来的?
2、在点子图中画一个自己喜欢的三角形。
投影展示,介绍既是什么三角形又是什么三角形的知识。
(设计意图:多形式、多层次的练习力求把学生带人一个活动场,一个思维场,一个情感场!学生在这个场域中游历,逐渐地内化知识、增长智慧、提升能力。)
四、全课总结,课外延伸
1、这节课你有什么收获和大家一起分享,说说吧!
2、完成课本第87页第5题。
3、用三角形拼一幅美丽的图案。
(设计意图:通过总结帮助学生统揽知识要领,完善认知,使得对三角形有有更全面更深刻的理解,再把知识从课堂延伸课外,有效沟通数学与生活,实现小课堂大社会,体会数学知识在生活中的应用价值。)
三角形课件(篇11)
教学要求
1、通过动手操作,使学生理解并掌握三角形的内角和是180°的结论。
2、能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。
3、培养学生动手动脑及分析推理能力。
教学重点
三角形的内角和是180°的规律。
教学难点
使学生理解三角形的内角和是180°这一规律。
教学用具
每个学生准备锐角三角形、直角三角形、钝角三角形纸片各一张,量角器。
教学过程:
一、出示预习提纲
1、三角形按角的不同可以分成哪几类?
2、一个平角是多少度?1个平角等于几个直角?
3、如图,已知∠1=35°,∠2=75°,求∠3的度数。
二、展示汇报交流
1、投影出示一组三角形:(锐角三角形、钝角三角形、直角三角形)。三角形有几个角?老师指出:三角形的这三个角,就叫做三角形的三个内角。(板书:内角)
2、三角形三个内角的度数和叫做三角形的内角和。(板书课题:三角形的内角和)今天我们一起来研究三角形的内角和有什么规律。
3、以小组为单位先画4个不同类型的三角形,利用手中的工具分别计算三角形三个内角的和各是多少度?
4、指名学生汇报各组度量和计算的结果。你有什么发现?
5、大家算出的三角形的内角和都接近180°,那么,三角形的内角和与180°究竟是怎样的关系呢?就让我们一起来动手实验研究,我们一定能弄清这个问题的。
6、刚才我们计算三角形的内角和都是先测量每个角的度数再相加的。在量每个内角度数时只要有一点误差,内角和就有误差了。我们能不能换一种方法,减少度量的次数呢?
提示学生,可以把三个内角拼成一个角,就只需测量一次了。
7、请拿出桌上的直角三角形纸片,想一想,怎样折可以把三个角拼在一起,试一试。
8、三个角拼在一起组成了一个什么角?我们可以得出什么结论?(直角三角形的内角和是180°)
9、拿一个锐角三角形纸片试试看,折的方法一样。再拿钝角三角形折折看,你发现了什么?(直角三角形和钝角三角形的内角和也是180°)
10、那么,我们能不能说所有三角形的内角和都是180°呢?为什么?(能,因为这三种三角形就包括了所有三角形)11。老师板书结论:三角形的内角和是180°。
12、一个三角形中如果知道了两个内角的度数,你能求出另一个角是多少度吗?怎样求?
13、出示教材85页做一做。让学生试做。
14、指名汇报怎样列式计算的。两种方法均可。
∠2=180°—140°—25°=15°
∠2=180°(140°+25°)=15°
课后反思:
对于三角形的内角和,学生并不陌生,在平时的做题中已经涉及到了。可是学生并不知道如何去验证,所以本节课,重点让孩子们经历体验,感悟图形。从而收获了经验。特别是动手操作将三角形拼成一个直角时,有的孩子将角剪得非常小,很不好拼,在此进行了重点的提示。
三角形课件(篇12)
一、说教材
《三角形三边的关系》是人教版义务教育课程标准实验教科书《数学》第八册第82页的教学内容,属于"空间与图形"的领域。这部分内容是在学生知道了三角形有三条边、三个角和具有稳定性的基础上探索三角形三边的关系。大家知道,在平面图形里,三角形是由3条线段围成的,但并不意味着任意三条线段都能围成三角形。所以掌握这部分内容,可以进一步丰富学生对三角形的认识和理解;它既是对所学知识的延续,又是后继学习多边形的基础,在知识体系上具有承上启下的作用。
几何初步知识无论是线、面、体还是图形的特征、性质,对于小学生来说都比较抽象,要解决数学的抽象性和小学生思维之间的矛盾,就要充分运用直观性进行教学,让学生动手做数学,而不是用耳朵听数学,让学生经历"数学化"、"做数学"等过程,强调在教师的引导作用下,由"获得知识结论快乐"转变为"探究发现知识快乐",并注重与生活实际紧密联系,让学生获得良好的数学教育。依据新课标的精神、结合学生的知识现状和年龄特点,以及这一教学内容在教材中所处的地位与作用,我制定了以下教学目标:
(一)教学目标
1、认知目标:通过创设情景、实物操作、观察比较,发现三角形任意两边之和大于第三边。
2、能力目标:培养学生自主探究、观察、比较和概括能力以及小组合作的意识,能根据三角形三边关系解释生活中的现象,提高解决问题的能力。
3、情感目标:结合教学内容,渗透数学文化、思想、方法的教育。
(二)说教学重难点
探究发现"三角形任意两条边的和大于第三边"是教学重点,而理解"任意两边"是本节课的教学难点。
接下来说说这节课的教法与学法
二、说教法
新课标指出,教无定法,贵在得法。数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。新课程改革要求教师要由传统意义上知识的传授者和学生的管理者转变为学生发展的促进者和帮助者;课堂教学要体现以学生为中心,让学生真正成为学习的主人。因此,我主要采用了情境导入法、设疑诱导法、操作发现法等来组织学生开展探索性的活动,让他们在这一系列活动中经历"数学化"的过程
三、说学法
有效的数学学习活动不是单纯的依赖模仿与记忆,而是一个有目的、主动建构知识的过程,动手操作法、观察发现法、自主探究法、合作交流法是这一节课的学习方法。整节课让学生体验"做数学"的过程。
以下是我的`而教学流程。
四、说教学流程教学流程按照8个环节进推进:
第一环节:矛盾冲突。
兴趣是最好的老师,上课一开始,我给学生变魔术,用长度分别是15厘米,13厘米10厘米的三根小棒首尾相接围成三角形,在学生认为我的魔术太简单而不屑一顾时,我让一个学生也上来变一个(给表演的学生提供长度是15厘米,9厘米,26厘米的小棒)学生围不了三角形。我说,他没能围出一个三角形,你能吗?(不能)问题到底出在哪?学生估计会把注意力集中在第三根小棒上,认为第三根小棒太长了,如果是这样,我就把第三根小棒换成5厘米的,还是围不了,此时,教师引导学生提出疑问:怎么就围不起来的呢?看来,看来,三根小棒是否能围成三角形跟它们的长度有关,这节课,老师和你们一起来研究三角形三边的关系。(板书课题)
在教师能变魔术,而学生却变不成的矛盾冲突中,可能已经有大部分学生开始这节课的数学思考了。此处"魔术"的价值不仅仅在于激发学生学习的兴趣,还在于成功地将学生引入到数学思考之中。
第二环节:初建模型。
新课标强调要从学生已有的生活经验出发,让学生动起来,活起来,让他们在猜想、质疑、验证、探究、问题解决等过程中,经历摆一摆、围一围、比一比、想一想、议一议等活动,努力营造协作互动、大胆表达课堂教学氛围,将课堂真正还给学生,让学生在自主活动中得以发展。
给学生提供研究的材料,(5根小棒,不同颜色长度不同,红色(2根)3厘米,绿色5厘米,蓝色7厘米,黄色8厘米。)并提出操作要求(ppt出示)
(1)从这5根小棒中任意选取3根围一个三角形;
(2)同桌2人合作,共同摆小棒。
(3)摆完后共同观察,并把结果记录在表格中。
(4)音乐响起开始,音乐停止时活动结束。
看哪一组完成最多最好。
这一环节是要发挥每个人的。作用,全员参与,人人有事做,避免小组合作流于形式。
反馈(1)3 3 5(2)3 3 7
(3)3 3 8(4)3 5 7
(5)3 5 8(6)3 7 8
(7)5 7 8(ppt出示表格)
观察:三根小棒在什么情况下能围城三角形呢?
最后引导归纳:三角形两条边的和大于第三条边(师板书)
随着教学活动的逐步展开,教师围绕"核心知识"精心设疑,引导学生操作观察比较,使学生的思考沿着教学目标不断深入。
第三个环节,完善模型。
回到变魔术的环节,验证学生没有围成的三角形三边的关系,9+155怎么也不能围成三角形呢?
完善性质:三角形任意两边的和大于第三边
验证老师变出的三角形三边的关系,10+13>15 10+15>13 15+13>10
第四环节:验证模型。
验证:让学生画出任意三角形,量出三条边的长短再算一算,三边之间的关系。
引导学生经历从特殊到一般的数学思考过程,让学生猜想,发现,归纳,验证,寻找反例等数学活动中思考、辨析、释疑、概括、推理,有效渗透从特殊到一般的数学思想,为学生构建了一种结构严谨、逻辑严密的数学思维模式。
第五环节:应用模型。
判断下面的小棒能否围成三角形
(1)2厘米3厘米8厘米()
(2)4厘米7厘米8厘米()
(3)6厘米5厘米8厘米()
(4)5厘米14厘米9厘米()
(5)5厘米9厘米13厘米()
第六环节:优化模型、并体会极限思想。
——优化
有的学生很快做出判断,他们有什么诀窍?
这一过程实际上是打破刚才建构的数学模型,抓住问题本质属性,留下两条短边与长边比较,形成最优化的数学模型结构——两条短边的和大于第三边,
——极限思想
让学生重点观察(4)中的数据
提问:5厘米和9厘米能与多长的小棒围成三角形?
学生思考:第三边不比4厘米短,不能超过14厘米(课件演示)
这一环节是通过直观操作让学生感悟数学的极限思想,让学生感受当两边的长度是5厘米和9厘米时,第三边的长度在4与14厘米之间,感受当第三边变成4厘米或14厘米时,三角形便不存在,将成为一条直线,感受量变到质变的过程,充满理性的思考的数学课堂才是真正扎实有效甚至高效的数学课堂。
第七个环节、走进生活
老师要去小雨家家访,走哪条路近?请你用今天学习的知识来解释
《三角形三边关系》说课
走小路近(让学生说明理由)
(ppt显示草坪)
还走这条路吗?
这一环节的设计不仅使学生深化了对三角形三边关系的理解,还让学生感知作为人还应该有一份社会责任,有一份人文情怀,彰显数学的大教育观。)
第八个环节:课后延伸。
播放《将军饮马》的故事(课件呈现图)
教师讲述:古希腊有一位聪明国人的学者,名叫海伦,有一天,一位将军不远千里来向他请教一个百思不得其解的问题,将军从A地出发到河边饮马,再到B地视察军营(出示图),怎么走路线最短?(出示路线图)你们能用今天学习的知识解决吗?
五、说板书设计
板书设计力求做到重点突出,一目了然。
纵观本节课,体验是学生学习的前提,是学生学习数学的本职与要求,可以说,没有体验就没有真正意义上的学习,慢慢跟着学生的脚步,让学经历的探索过程,在这一过程中,学生参与、经历、思考、反思、发展,作为教者,我们一路倾听花开的声音。